
Automatic Verification of Cryptographic Block
Function Implementations with Logical

Equivalence Checking

Li-Chang Lai1, Jiaxiang Liu2, Xiaomu Shi3, Ming-Hsien Tsai4, Bow-Yaw
Wang5, and Bo-Yin Yang5

1 National Taiwan University, Taiwan
2 Shenzhen University, China

3 Chinese Academy of Sciences, China
4 National Institute of Cyber Security, Taiwan

5 Academia Sinica, Taiwan

Abstract. Given a fixed-size block, cryptographic block functions gen-
erate outputs by a sequence of bitwise operations. Block functions are
widely used in the design of hash functions and stream ciphers. Their
correct implementations hence are crucial to computer security. We pro-
pose a method that leverages logic equivalence checking to verify assem-
bly implementations of cryptographic block functions. Logic equivalence
checking is a well-established technique from hardware verification. Using
our proposed method, we verify two dozen assembly implementations of
ChaCha20, SHA-256, and SHA-3 block functions from OpenSSL and
XKCP automatically. We also compare the performance of our technique
with the conventional SMT-based technique in experiments.

Keywords: hash functions, stream ciphers, cryptographic programs, logical
equivalence checking, formal verification

1 Introduction

Hash functions are widely used in computer security. Digital signatures and
message authentication codes are but some applications of hash functions [4,16].
To digest an arbitrary message, hash functions often divide the message into
blocks and compute by message blocks. Such block functions are common in
the design of hash functions and stream ciphers. Because block functions dom-
inate the computation time by nature, cryptographic libraries can have several
implementations of a block function for different architectures to improve effi-
ciency. In OpenSSL, for instance, the SHA-3 block function has more than 10
implementations [37]. They are critical to computer security.

Through careful design and analysis, cryptographic hash functions often en-
joy some provable measure of resilience against various attacks (see, for exam-
ple, [8,12,29]). Their implementations moreover are results of skillful program-
ming and engineering. In fact, implementations are often manually optimized for

2 L. Lai et al.

better performance on different architectures. Such optimizations can increase
programming complexity significantly. If any programming mistake occurs, im-
plementations may not compute cryptographic block functions correctly. All se-
curity guarantees of hash functions are then voided. Incorrect implementations
of block functions therefore can be a devastating threat to computer security.

In this paper, we propose a method to verify functional equivalence of cryp-
tographic block functions and their implementations formally, by taking advan-
tages of a well-established automatic technique. By functional equivalence, we
mean that an implementation always generates the same output as the corre-
sponding block function on any input. In contrast to testing, formal verification
aims to demonstrate the equivalence of functions and implementations through
logical reasoning. Formal verification consequently ensures that an implementa-
tion of a block function computes correct results for not only many but all inputs.
It is believed that such a strong guarantee is preferred for critical components
like block functions.

To check functional equivalence between cryptographic block functions and
their implementations, we apply logic equivalence checking. Logic equivalence
checking is a well-established automatic formal verification technique to check
functional equivalence between circuits [26]. The technique has been developed
for several decades and widely applied to verify the correctness of circuit syn-
thesis and optimization. Open-source and commercial tools for logic equivalence
checking are available and widely used by the research community and indus-
try [31,15,40].

Our idea is simple. To check functional equivalence between cryptographic
block functions and their optimized implementations, we pick a reference im-
plementation provided by designers or programmers, and compare the reference
implementation with optimized implementations. In order to apply the hard-
ware verification technique, we transform both reference and optimized imple-
mentations to circuits. A logic equivalence checking tool is applied to verifying
equivalence between the circuits derived from the reference and optimized imple-
mentations. The tool applies various heuristics during verification automatically.
No human guidance is needed to check equivalence between circuits.

We develop a tool called CryptoLEC to realize the method and verify im-
plementations of block functions in the ChaCha20 stream cipher, the SHA-
256 and SHA-3 hash functions. Precisely, we take reference C implementa-
tions from the designers (ChaCha20 and SHA-3) or C programmers (SHA-
256). Optimized assembly implementations in the OpenSSL and XKCP are
compared against their reference implementations. ChaCha20 assembly imple-
mentations (avx512vl multi-blocks, ssse3, armv4, aarch64) are verified within
seconds; SHA-3 implementations (ssse3 multi-blocks, avx2, avx2 multi-blocks,
avx512vl, avx512vl multi-blocks, armv4, aarch64) are verified in a quarter hour;
and SHA-256 implementations (shaext, avx2, avx multi-blocks, avx2 multi-
blocks, avx512vl, aarch64) are verified in an hour. Our technique is sufficiently
general and effective to verify two dozen industrial implementations of block
function.

Title Suppressed Due to Excessive Length 3

It is worth noting that our technique is not based on Satisfiability Modulo
Theories (SMT) solvers. SMT solvers are a general tool designed to verify a
wide range of properties. They are not optimal for functional equivalence check-
ing. SMT-based techniques moreover encode programs by specifying relations
between input and output variables. Relational encoding is again more gen-
eral but not suitable for our purposes. To evaluate our proposed technique, we
compare the SMT-based technique in experiments. The SMT-based technique
successfully verifies ChaCha20 implementations, but it fails to verify any but
one implementation for SHA-256 and SHA-3. Recall that the ChaCha20 block
function is considerably simpler than the others. The SMT-based technique is
ineffective in our experiments.

We summarize our contributions as follows.

– We propose a simple, general, effective, and automatic method to verify
cryptographic block functions with logic equivalence checking.

– We introduce CryptoLEC, a tool implementing our proposed method.
– We verify 24 assembly implementations of ChaCha20, SHA-256, SHA-3

block functions from OpenSSL and XKCP using CryptoLEC. We are not
aware of prior formal verification works on OpenSSL and XKCP assembly
implementations of the SHA-3 block function.

Related Work The problem of verifying the functional correctness or security
properties of hash functions has been studied by several tools and techniques,
including Hacl⋆ [42] and ValeCrypt [13]. They provide F⋆ [39] verified high-level
codes (for ChaCha20, SHA-3), and then generate C and assembly implemen-
tations respectively. Another notable study focuses on generating efficient as-
semblies for SHA-3 [1]. It uses EasyCrypt to prove the equivalence between the
reference and the efficient Jasmin implementation, which is then used to gen-
erate the assembly. Instead of generating new codes with manual proofs of cor-
rectness, we focus on verifying existing assembly implementations automatically.
Prior works that also focus on existing code are in [2] and [27]. The former man-
ually verifies the SHA-256 hash function in C with the proof assistant Coq, but
does not verify assembly implementations. The latter develops an SMT-based
technique to verify four assembly implementations of ChaCha20 and SHA-
256 from OpenSSL. SAW and Cryptol adopt abc as the equivalence checking
engine for implementations such as SHA-3 in C [20], and for hardware design
of the Skein hash algorithm in VHDL [18]. Those implementations are checked
against the hand-written specifications in Cryptol language. Axe is a symbolic
execution tool that has been used to verify existing Java implementations of
AES [38], but it does not consider assembly implementations.

This paper is organized as follows. Preliminaries are briefly reviewed in Sec-
tion 2. Section 3 gives an introduction to our methodology. It is followed by
descriptions of various block functions and the highlighted distinctions in their
implementations (Section 4). Section 5 presents our formal models for the block
functions, providing the detailed exploration in these case studies. Experiments
are reported in Section 6. We conclude in Section 7.

4 L. Lai et al.

2 Preliminaries

We will use both hexadecimal and binary representations as in 0xc = 0b1100 =
12. An n-bit word is a bit sequence of bit width n. Let w be an n-bit word. w[i]
denotes the i-th bit in w where 0 ≤ i < n. We write •, • ∧ •, • ∨ •, and • ⊕ • for
the bitwise NOT, AND, OR, and exclusive-or (XOR) operations respectively.
Let a and b be n-bit words. ror(a, i) is the n-bit word obtained by rotating a to
the right by i bits. shr(a, i) is the n-bit word of a shifting to the right by i bits.
a⊞ b is the n-bit arithmetic sum of a and b.

Given a bit string (called message) of an arbitrary length, a hash function
computes an output bit string (called digest) of a fixed length. Typically, the
message is divided into blocks of a certain size. Message blocks are processed
by a block function consecutively to produce the digest. Block functions often
compute in rounds. Stream ciphers may also use block functions for encryption.

Given two function descriptions, they are functionally equivalent if they de-
note the same function. That is, both descriptions yield the same result on every
input. Given a target implementation of a block function, we want to check if
it is functionally equivalent to the block function. To do so, a reference imple-
mentation of a block function is chosen. It suffices to check if the reference and
target implementations always compute the same output on every input.

For efficiency, a block function often has implementations for different archi-
tectures. We will consider implementations for the 32- and 64-bit ARM archi-
tectures armv4 and aarch64 respectively. The 64-bit Intel x86_64 instruction
set, 128-bit Supplemental Streaming Single-Instruction-Multiple-Data (SIMD)
Extensions 3 (ssse3), 128-bit Advanced Vector Extensions (avx), 256-bit Ad-
vanced Vector Extensions 2 (avx2), 512-bit Advanced Vector and Vector Length
Extensions (avx512 and avx512vl respectively), and SHA Extensions (shaext)
are also considered.

3 Methodology

ref impl

target impl

model construction

model construction

ref model

target model

transform
to circuit

ref circuit

target circuit

logic
equivalence

checker

YES

NO

Fig. 1. Methodology Overview: General Framework

Figure 1 gives the framework of our method. To verify implementations of a
block function, verifiers first need to choose a reference implementation for the
block function. Our method strongly advocates that the reference implementa-
tion should be provided by block function designers or programmers, instead

Title Suppressed Due to Excessive Length 5

ref.c

tgt.S

llvm2cryptoline

CryptoLine tools

ref.cl

tgt.cl
CryptoLEC

ref.aig

tgt.aig

abc
YES

NO

Fig. 2. Methodology Overview: Our Instantiation

of the verifiers themselves. On the other hand, verifiers have in hand a target
implementation to verify.

From the reference and target implementations, we construct formal models
for the two implementations. A formal model is a mathematical abstraction spec-
ifying behaviors of an implementation. Program behaviors can be ambiguous.
They also contain unnecessary details (such as execution time) for functional
verification. To rid such ambiguities and irrelevant details, formal models are
constructed to specify program behaviors.

After formal models are constructed, we proceed to transform them to cir-
cuits. In general, transforming programs to circuits is a difficult problem. This
transformation however is especially easy for block function implementations.
For security reasons, cryptographic block functions need be constant-time. Con-
trol flows in implementations of block functions subsequently are simple. Trans-
forming block function implementations to circuits are thus straightforward after
applying standard techniques such as loop unrolling.

With the two circuits derived from the reference and target implementations
respectively, we invoke a logic equivalence checker for circuits. Logic equivalence
checking [26] is a well-developed technique from hardware verification. Scalable
open-source and commercial tools are widely available, for instance, [31,15,40].
Our method exploits heuristics in logic equivalence checking for free.

Our method differs from prior works in two aspects. Previously, specifications
of block functions are constructed by verifiers manually. Instead, our specifica-
tions are obtained by converting reference implementations provided by design-
ers or programmers. Our technique greatly simplifies the effort for constructing
formal specifications. More importantly, it can also reduce misinterpretations or
even errors made by verifiers. After all, cryptographic block function designers
are the main authority of correct specifications, not verifiers.

Secondly, our method employs logic equivalence checking for verification.
The hardware verification technique has been commercialized. Logic equivalence
checkers have numerous heuristics to improve their performance. Particularly,
identifying potentially equivalent subcircuits is critical to its effectiveness. Once
potentially equivalent subcircuits are identified, logic equivalence checking is
performed by divide and conquer. By transforming formal models to circuits,
our method takes advantages of heuristics from logic equivalence checking. This
is the main reason for the generality and effectiveness of our method.

Instantiating the Framework To evaluate our method, we provide an instantia-
tion as depicted in Figure 2 to verify assembly implementations of block func-
tions in the ChaCha20 stream cipher, the SHA-256 and SHA-3 hash functions.

6 L. Lai et al.

Specifically, we take assembly programs from OpenSSL [37] and XKCP [41] as
target implementations in our case studies. As for reference implementations, we
take reference C implementations from block function designers or programmers.
Let us call the reference C implementation ref.c and the target implementation
tgt.S. We choose the CryptoLine modeling language [35,19] to define formal
models. Thus the tool llvm2cryptoline [28] is applied to convert ref.c into the
reference model ref.cl. We also leverage the tools equipped with CryptoLine
to convert tgt.S into the target model tgt.cl. Given two CryptoLine models
ref.cl and tgt.cl, we develop a tool called CryptoLEC that transforms them
to circuits and invokes a logic equivalence checker fully automatically. The open-
source tool abc [31] is adopted as the underlying logic equivalence checker. The
AIGER format [10,11] is used for circuit representation. As a result, our tech-
nique successfully verifies two dozen OpenSSL and XKCP assembly implemen-
tations for block functions in ChaCha20, SHA-256, and SHA-3 automatically.

We further detail how our method is implemented in the following Sec-
tions 3.1–3.3.

3.1 Model Construction

Our formal models are written in the CryptoLine modeling language [35,19,28].
CryptoLine is a domain-specific language designed for modeling cryptographic
assembly programs. For the reference implementation ref.c, we convert its LLVM
intermediate representation to the CryptoLine model ref.cl [25]. For the tar-
get implementation tgt.S, we extract its execution trace via the GNU debugger
gdb and convert the trace to the CryptoLine model tgt.cl. To check equiva-
lence between the reference and target models, ref.cl and tgt.cl need to have
the same input and output variable names. Moreover, input and output variables
in both models must correspond semantically. Otherwise, equivalence checking
will fail.

CryptoLine The domain specific language CryptoLine is used to construct
formal models [36] in this work. It is the modeling language for the automatic
verification tool CryptoLine. The CryptoLine language has modeled cryp-
tographic primitives from elliptic curve [35,19,28] to post-quantum cryptogra-
phy [21]. In CryptoLine, bit widths, signs of constants and variables are speci-
fied by their types. CryptoLine instructions consist of mnemonics and operands
similar to typical assembly languages. For instance, the following CryptoLine
instruction assigns an unsigned 32-bit word 0xffff to the variable r1:

mov r1 0xffff@uint32;

Observe that the destination appears before the source operand. The Crypto-
Line type system infers the types of destination operands automatically. The
variable r1 is thus of the unsigned 32-bit word type. Now consider the conditional
move instruction:

cmov rax carry rdx rax;

Title Suppressed Due to Excessive Length 7

The instruction sets rax to the value of rdx if the bit variable carry is 1; rax is un-
changed otherwise. The CryptoLine type checker ensures the source operands
rdx and rax are of the same type. The destination rax then has the same type
as both source operands.

CryptoLine supports arithmetic operations, as well as bitwise operations
such as AND, OR, NOT, XOR, rotations, and shifts. Although destination types
of arithmetic operations are easy to infer, they are usually meaningless for bitwise
operations. CryptoLine consequently requires explicit destination types for
bitwise operations. Consider

xor r2@uint32 r1 0xffff@uint32;

The type of the destination operand r2 is unsigned 32-bit word. The Crypto-
Line type checker moreover requires both source operands to have the same
type. It would be a type error if the source operand r1 were not an unsigned
32-bit word. Another instruction whose destination type needs to be specified is
the non-deterministic assignment. The following instruction assigns an unsigned
64-bit number to the variable r3 non-deterministically:

nondet r3@uint64;

A CryptoLine function is of the following form:

proc foo(uint32 a, uint32 b) =
{ true && true } (* pre -condition *)
xor x@uint32 a b;
xor y@uint32 x b;
xor x@uint32 x y;
{ true && and [x=b,y=a] } (* post -condition *)

The function foo needs two arguments. The input variables a and b are of the
type unsigned 32-bit word. The pre-condition { true && true } is not used and
ignored here. The post-condition { true && and [x = b, y = a] } specifies that
the variables x and y must be equal to b and a respectively at the end of function.
Functions are invoked by the keyword inline. A CryptoLine program consists
of functions. The main function is the entry point of a program.

Using the CryptoLine language, we construct reference and target models
to specify the reference and target implementations respectively. The Crypto-
Line language however is different from x86_64 and ARM assembly. Our refer-
ence implementations moreover are written in C. They do not look like assembly
at all. Some works are needed to construct formal models for implementations.

Reference Models We use the llvm2cryptoline tool to automate the con-
struction of formal models for reference C implementations such as the reference
implementations of the ChaCha20, SHA-256 and Keccak-p[1600, 24] (em-
ployed in SHA-3) block functions [28]. Roughly, the tool takes a reference C
implementation, obtains the LLVM intermediate representation of the imple-
mentation from the Clang compiler [25], and translates it to a CryptoLine
model.

8 L. Lai et al.

The LLVM intermediate representation is designed for arbitrary C programs.
Some instructions in the representation are missing in the CryptoLine lan-
guage. For instance, CryptoLine does not have instructions for loops. Loops
in the LLVM intermediate representation are not translatable. Lacking loops
nonetheless is not a limitation for verifying block functions. To prevent side
channels, loops in block functions always have a constant number of iterations.
They can be unrolled by the compiler automatically. Moreover, recall formal
models derived from the LLVM intermediate representation are specifications of
block functions. We certainly would like to minimize (possible) errors induced by
the compiler. The llvm2cryptoline tool thus translates the LLVM intermediate
representation after simple architecture-independent optimizations such as loop
unrolling and constant propagation.

Target Models To construct formal models for target assembly implementa-
tions, we obtain an execution trace of the implementation with the itrace script
from the CryptoLine tool [36]. The trace is then translated to a CryptoLine
model by the to_zdsl script also from the tool.

More precisely, we build an executable binary code which invokes a target
implementation. The itrace script extracts assembly instructions from the im-
plementation using the GNU debugger gdb [17]. If a memory cell is accessed, the
script also obtains its address. Consider the following instruction extracted from
the OpenSSL Keccak-p[1600, 24] avx2 implementation:

vpsllvq -0x60(%r8),%ymm2 ,% ymm10 #! EA=L0x5..5a80

Recall that ymm2 and ymm10 are 256-bit registers. Each contains four 64-bit words.
The avx2 instruction vpsllvq shifts four 64-bit words in the ymm2 register to the
left by the offsets stored in the memory located at -0x60(r8) with the effective
address (EA) 0x555555555a80. Shifted results are then written to ymm10.

After an execution trace is obtained, we use to_zdsl to translate assembly in-
structions to CryptoLine instructions. The script requires rules for translation.
The avx2 instruction vpsllvq, for instance, needs the following rule:

#! vpsllvq $1ea , $2ymm , $3ymm -> \\
shl $3ymm_0 $2ymm_0 $1ea; \\
shl $3ymm_1 $2ymm_1 $1ea [+8]; \\
shl $3ymm_2 $2ymm_2 $1ea [+16]; \\
shl $3ymm_3 $2ymm_3 $1ea [+24]

The rule matches any vpsllvq instruction with an effective address as its first
argument ($1ea), and two ymm registers as the second and third arguments ($2ymm
and $3ymm respectively). If the rule matches, the vpsllvq instruction is translated
to four CryptoLine shl instructions. Each shl instruction shifts a 64-bit word
in $2ymm to the left by the offset in the corresponding memory cell and writes the
result to a 64-bit word in $3ymm. After applying the rule, we obtain the following
CryptoLine fragment:

vpsllvq -0x60(%r8),%ymm2 ,%ymm10 #! EA=L0x5 ..5a80

Title Suppressed Due to Excessive Length 9

shl ymm10_0 ymm2_0 L0x555555555a80;
shl ymm10_1 ymm2_1 L0x555555555a88;
shl ymm10_2 ymm2_2 L0x555555555a90;
shl ymm10_3 ymm2_3 L0x555555555a98;

The first line is a comment showing the avx2 instruction. A 256-bit ymmi regis-
ter is modeled by four 64-bit CryptoLine variables ymmi_0, . . ., ymmi_3. Mem-
ory cells are represented by variables with names derived from their addresses
(L0x555555555a80, . . ., L0x555555555a98). The code shifts the four 64-bit words
in ymm2 to the left by values in respective memory cells, and writes the results
to ymm10.

The model construction using itrace is also applicable to reference C im-
plementations. However, the resulting execution trace is more complex com-
pared to the LLVM intermediate representation of the implementation. Its cor-
rectness also depends on code generators during compilation. Thus we use the
llvm2cryptoline tool for reference C implementations.

3.2 Transformation to Circuits

Formal CryptoLine models are different from circuits. To apply logic equiva-
lence checking, they are transformed to circuits in a suitable format. We trans-
form CryptoLine models to logic circuits in two steps. A CryptoLine model
is converted to the BTOR format [32] first. The Boolector tool is then used
to transform formal models in the BTOR format to circuits in the AIGER
format [33,10,11].

In hardware verification, there are two different encodings for circuits. The
relational encoding specifies input and output signals as a relation; the functional
encoding specifies output signals as functions on input signals. Consider an AND-
gate with the output signal o and two input signals i0, i1. The functional encoding
for the logic gate is simply i0 ∧ i1 since the output o is the logical AND function
with arguments i0 and i1. The relational encoding for the AND-gate on the other
hand is o ⇔ i0∧ i1. This is the characteristic function for the relation on o, i0, i1,
namely, {(o, i0, i1)|(o, i0, i1) = (1, 1, 1), (0, 0, 1), (0, 1, 0), or (0, 0, 0)}. Relational
encoding can specify arbitrary relations and is hence more general. It however
does not preserve circuit structures. Hardware verification techniques thus prefer
functional encoding.

Most SMT solvers are not designed for hardware verification. The commonly
used SMT-LIB format for SMT solvers thus uses the relational encoding [3]. To
enable functional encoding, a different input format is needed. BTOR is an input
format for the SMT solver Boolector [33,32]. Different from the SMT-LIB
format, BTOR is designed for functional encoding. In BTOR, constants and
variables are declared with identification numbers and bit widths. They will be
referred by identification numbers. For example, the following two lines declare
a 64-bit constant 42 with the identification number 1 and a 64-bit variable too
with the identification number 2:

1 constd 64 42

10 L. Lai et al.

2 var 64 too

New variables are defined by the identification numbers, operations, bit widths,
and arguments. Consider

3 sll 64 2 1

It defines a 64-bit variable with the identification number 3. The keyword sll
denotes the logical left-shift operation. The new variable has the value of the
variable too (with the identification number 2) shifted to the left by 42 (with the
identification number 1) bits.

We develop the CryptoLEC tool to convert CryptoLine models to the
BTOR format. Except the non-deterministic assignment instruction, Crypto-
Line instructions are converted to BTOR instructions easily. For non-deterministic
assignments, destination variables are converted to fresh BTOR variables of the
same bit widths.

From formal models in the BTOR format, CryptoLEC employs the Boolec-
tor tool to transform them to the AIGER format [10,11]. The AIGER format
is based on AND and NOT gates. Models in the AIGER format are just cir-
cuits. Particularly, arithmetic functions such as addition are transformed to AND
and NOT gates. Most importantly, formal models in the AIGER format are in
functional encoding.

3.3 Logic Equivalence Checking

After reference and target models are transformed to the AIGER format, we
use the abc tool to verify whether the two models are equivalent [31]. abc is
an open-source formal verification tool for circuits with sophisticated heuristics
for logic equivalence checking. Let ref.aig and tgt.aig be the circuits derived
from the CryptoLine reference and implementation models respectively. The
abc command cec ref.aig tgt.aig verifies whether the two circuits are logic
equivalent automatically. In logic equivalence checking, identifying potentially
equivalent subcircuits is an indispensable component for its effectiveness. Differ-
ent from [38,27,20], we do not reinvent the wheel but take advantages of existing
heuristics in abc for free.

Another advantage of logic equivalence checking is to verify equivalence at
the gate level. This is particularly favorable to verifying block function imple-
mentations. To disperse content information, block functions perform bitwise
operations. Block functions are thus essentially logic circuits. Logic equivalence
checking is hence most suitable for the task.

To illustrate our points, consider the 32-bit armv4 implementation of the
Keccak-p[1600, 24] block function from OpenSSL (Section 4.3). Since the block
function computes in 64-bit words, the 32-bit implementation has to represent
a 64-bit word in two 32-bit words on armv4. The bit interleaving representation
suggests that the Keccak-p[1600, 24] block function in fact computes in bits,
not words. If one attempts proving functional equivalence between the 32-bit
armv4 implementation and the block function in 64-bit words, tedious conver-
sions between representations would be unavoidable. It is thus more natural to

Title Suppressed Due to Excessive Length 11

prove in bits. Bit-level proofs may be infeasible for humans, but this is where
logic equivalence checking excels.

4 Block Functions

Inputs to hash functions or stream ciphers are typically much larger than a block,
so block functions almost surely dominate their computations. In our case stud-
ies, we focus on verifying implementations of block functions in the ChaCha20
stream cipher [5], plus the SHA-256 [22] and SHA-3 [23] hash functions (which
are NIST or National Institute of Standards and Technology standards [22,23],
the latter block function is also used for post-quantum cryptosystems [14]). The
ChaCha20 stream cipher is used in web browsers [34,30]. We describe the block
functions and optimization tricks applied in various assembly implementations,
showing the hardness of equivalence checking.

4.1 ChaCha20

ChaCha20 is a stream cipher proposed in [5]. Together with the message au-
thentication code Poly1305 [6], it has been adopted by Google and OpenSSH [34,30].

Description The ChaCha20 block function takes 16×32-bit words as inputs
and outputs 16×32-bit words in 20 rounds. Four times each round it invokes QR
(Algorithm 1), which applies 32-bit additions, XORs, and right-rotations to four
variables.

Algorithm 1 The QR Function
Require: a, b, c, d : 32-bit word

function QR(a, b, c, d)
a← a⊞ b; d← ror(d⊕ a, 16); c← c⊞ d;
b← ror(b⊕ c, 12); a← a⊞ b; d← ror(d⊕ a, 8);
c← c⊞ d; b← ror(b⊕ c, 7).

end function

ChaCha20 (Algorithm 2) first copies the input array H to the working array
X. Then four QRs each round are invoked on varying (according to even and
odd rounds) subsets of X. After 20 rounds, the sum of H and X is the output
array H ′.

Implementations The ChaCha20 designer released [7] a reference C imple-
mentation. The OpenSSL project also provides a ChaCha20 implementation in
C, which serves for us as the reference for the (speed-optimized) ssse3, avx512vl,
armv4, and aarch64 [37] assembly implementations.

12 L. Lai et al.

Algorithm 2 The ChaCha20 Block Function
Require: H : 32-bit word array of size 16

function ChaCha20(H)
for all 0 ≤ i < 16 do

Xi ← Hi

end for
for all 0 ≤ i < 20 do

if i is even then
QR(X0, X4, X8, X12); QR(X1, X5, X9, X13);
QR(X2, X6, X10, X14); QR(X3, X7, X11, X15).

else
QR(X0, X5, X10, X15); QR(X1, X6, X11, X12);
QR(X2, X7, X8, X13); QR(X3, X4, X9, X14).

end if
end for
for all 0 ≤ i < 16 do

H ′
i ← Xi ⊞Hi

end for
return H ′

end function

The designer’s reference implementation is almost Algorithm 2 line by
line, except with a macro QUARTERROUND implementing QR and writing the 20
rounds as 10 double-rounds (avoiding ifs).

The OpenSSL ssse3 and avx512vl implementations of the ChaCha20
block function compute on 32-bit words which fits four in a 128-bit register.
The OpenSSL ssse3 implementation hence loads the working array X in four
128-bit xmm registers to speed up computation, with the 128-bit xmmi register
holding X4i, . . ., X4i+3. 4 simultaneous 32-bit operations on xmm registers are just
1 ssse3 instruction. E.g., if xmm0= [X0, X1, X2, X3] and xmm1= [X4, X5, X6X7].
Then xmm0 will become [X0⊞X4, X1⊞X5, X2⊞X6, X3⊞X7] after paddd xmm1,
xmm0. Using SIMD instructions, the OpenSSL ChaCha20 ssse3 implementation
computes four QR functions in parallel.

The OpenSSL ChaCha20 avx512vl implementation also exploits SIMD —
but it computes more than one input (2, 8, or 16 according to message size)
block at the same time. The 2-block implementation uses AVX2 instructions
(like ssse3 in duplex) and loads two working arrays in four 256-bit registers.
Larger avx512vl implementations divide 8 and 16 independent working sets into
16× 256- and 512-bit registers respectively, each computing a ChaCha20 block
function.

4.2 SHA-256

The SHA-2 family (published in 2001 and revised in [22]), defines six hash func-
tions: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-
512/256 with digest sizes 224, 256, 384, 512, 224, and 256 respectively. SHA-

Title Suppressed Due to Excessive Length 13

224 and SHA-256 (which we focus on) compute on 512-bit blocks; the others
1024-bit blocks.

Description The SHA-256 block function generates a 256-bit output digest
from a 256-bit input digest and a 512-bit message block, computing only on
words (in Section 4.2 always 32 bits). The input digest is represented as 8 words
H[0], . . . ,H[7], and each message block M as 16 words M [0], . . . ,M [15].

The following functions are defined for words x, y, and z:

Ch(x, y, z) = (x ∧ y)⊕ (x ∧ z)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ0(x) = ror(x, 2)⊕ ror(x, 13)⊕ ror(x, 22)
Σ1(x) = ror(x, 6)⊕ ror(x, 11)⊕ ror(x, 25)
σ0(x) = ror(x, 7)⊕ ror(x, 18)⊕ shr(x, 3)
σ1(x) = ror(x, 17)⊕ ror(x, 19)⊕ shr(x, 10)

SHA-256 also defines 64 constants K0,K1, . . . , K63 as the initial 32 bits of frac-
tional parts of the cube roots of the first 64 primes. E.g., K0 =

⌊
232

(
3
√
2− 1

)⌋
=

0x428a2f98. Algorithm 3 shows the round function sha256_round, called 64
times by the SHA-256 block function (Algorithm 4).

In sha256_round the inputs are 8 words a, b, . . . , h, a 32-bit working word
(akin to a “round key”) w, and a round index r. We apply various 32-bit functions
to words a, b, . . . , h, the constant Kr, and the working word w to get temporary
variables T1 and T2. 8 output words are then obtained by shifting input words
and (32-bit) sums with temporary variables.

Algorithm 3 The SHA-256 Round Function
Require: a, b, . . . , h : 32-bit word (initialized to digest H)
Require: w : 32-bit word
Require: r : round index 0 ≤ r < 64

function sha256_round(a, b, c, d, e, f, g, h, w, r)
T1 ← h⊞Σ1(e)⊞ Ch(e, f, g)⊞Kr ⊞ w
T2 ← Σ0(a)⊞ Maj(a, b, c)
(a′, b′, c′, d′, e′, f ′, g′, h′)←

(T1 ⊞ T2, a, b, c, d⊞ T1, e, f, g)
return (a′, b′, c′, d′, e′, f ′, g′, h′)

end function

M [i] in round i < 16 is both the working word wi and used to initialize
a non-linear feedback shift register (NLFSR) whose feedback uses σ0, σ1, and
32-bit addition (see below). This NLFSR returns wi for 16 ≤ i < 64. Then each
round we update words a, b, . . . , h using sha256_round. Finally, the output
digest H = H ⊕ (a, b, . . . , h) after 64 iterations.

14 L. Lai et al.

Algorithm 4 The SHA-256 Block Function
Require: M : input 32-bit word array of size 16
Require: H : digest 32-bit word array of size 8

function sha256(H,M)
(a, b, c, d, e, f, g, h)← (H[0], H[1], H[2], H[3],

H[4], H[5], H[6], H[7])
for r ← 0 to 64 do

if r < 16 then ▷ compute the working word
wr ←M [r]

else
wr ← σ1(wr−2)⊞ wr−7 ⊞ σ0(wr−15)⊞ wr−16

end if
(a, b, c, d, e, f, g, h)←

sha256_round(a, b, c, d, e, f, g, h, wr, r)
end for
H ′[0]← a⊞H[0], H ′[1]← b⊞H[1], H ′[2]← c⊞H[2],
H ′[3]← d⊞H[3], H ′[4]← e⊞H[4], H ′[5]← f ⊞H[5],
H ′[6]← g ⊞H[6], H ′[7]← h⊞H[7].
return H ′

end function

Implementations The block function SHA-256(H,M), unlike ChaCha20,
does not have an official reference implementation from its designers (the NSA).
Most cryptographic libraries however provide their own reference C implemen-
tations.

OpenSSL’s 64-bit C implementation should be the baseline for compar-
isons of its optimized-for-efficiency assembly implementations (Intel x86 shaext,
avx2, armv4, and aarch64). The reference C implementation follows Algorithm 4
except for implementing Algorithm 3 (the SHA-256 round function) as a macro
— by rotating variables, the assignments at the end of Algorithm 3 are skipped.

OpenSSL’s shaext implementation uses new instructions:

sha256msg1 and sha256msg2 do 4 σ0’s and σ1’s in parallel.
sha256rnds2 does two rounds of Algorithm 3, with two 128-bit inputs holding

digest words (a, b, e, f) and (c, d, g, h) and xmm0 implicitly holding precom-
puted wr + Kr and wr+1 + Kr+1. It returns the new (a, b, e, f), with the
original (a, b, e, f) becoming the new (c, d, g, h).

OpenSSL’s two avx2 implementations both use 256-bit avx2 instructions
to compute SHA-256(H,M). The multi-block implementation divides each avx2
register into 8×32-bit data paths, facilitating eight simultaneous independent
SHA-256(H,M) computations.

The single block avx2 implementation is more complicated. The working word
wr in Algorithm 4 needs to be computed for rounds r ≥ 16 from the input block
M [•]. Therefore the avx2 registers are used to compute the w• and the x86_64

Title Suppressed Due to Excessive Length 15

GPRs (general-purpose registers) to compute Algorithm 3, with the paths of
computation interleaved for performance.

Both single- and multi-block versions replace Maj(x, y, z) = Ch(x ⊕ y, z, y)
to compute the former in 4 instructions.

OpenSSL’s aarch64 implementation computes Maj in 4 instructions (where
the naïve way needs 5) using

((y ⊕ z) ∧ (x⊕ y))⊕ y = Maj(x, y, z)

Also Ch(x, y, z) = (x ∧ y) ∨ (x ∧ z).
The aarch64 architecture supports the NEON extension with 128-bit vector

registers. Similar to avx2, it computes the wr’s using NEON instructions and the
round function (Algorithm 3) using scalar instructions in interleaved fashion.

4.3 SHA-3

The SHA-3 family is based on the Keccak algorithm selected from the SHA-3
Cryptographic Hash Algorithm Competition in 2012 [23]. It defines four hash
functions SHA3-224, SHA3-256, SHA3-384, and SHA3-512 with 224-, 256-,
384-, and 512-bit digests respectively. Despite of variances in digest sizes, all
SHA-3 hash functions employ the Keccak-p[1600, 24] block function.

Description The Keccak-p[1600, 24] block function receives 1600 input bits
and generates 1600 output bits in 24 rounds. The 1600 bits are represented by
a 3-dimensional bit array A[x, y, z] with 0 ≤ x, y < 5 and 0 ≤ z < 64. For fixed
x, y, z, we call the 5-bit word A[•, y, z] a row, the 5-bit word A[x, •, z] a column,
the 64-bit word A[x, y, •] a lane, the 5× 64 bit array A[•, y, •] a plane, and the
5× 5 bit array A[•, •, z] a slice.

Each round of Keccak-p[1600, 24] consists of five functions θ, ρ, π, χ, and
ι. Algorithm 5 shows the θ(A) function. It first computes the parity of each
column. Every bit of a column is the XOR of itself and two nearby columns.

The ρ(A) function is shown in Algorithm 6. It simply rotates every lane other
than A[0, 0, •] by different amounts.

The π(A) function moves around entire lanes, alternatively, it permutes bits
on each slice (Algorithm 7). Observe that the lane at ((x + 3y) mod 5, x) is
moved to (x, y) which is itself moved to (y, 2x+3y mod 5). In other words, π(A)
is invertible. The lane A[0, 0, •] remains unchanged after permutation.

For each row, χ(A) XORs into each bit the conjunction of the bit two posi-
tions down and the complement of the next bit (Algorithm 8).

At round r, the ι(A, r) function modifies the 64-bit lane A[0, 0, •] by the round
constant RC (Algorithm 10). The constant RC of round r is a sparse 64-bit bit
array with only 7 possible non-zero bit positions RC[2i − 1] = rc(7r + i), i =
0 · · · 6. Where rc(t) is a linear feedback shift register (Algorithm 9) with the
polynomial being 1+x4+x5+x6+x8. Subsequently, at most 7 bits may change
at the lane A[0, 0, •] by the ι(A, r) function. Note that the round constant RC
only depends on the round number r. It can be pre-computed for efficiency.

16 L. Lai et al.

Algorithm 5 The θ(A) Function
Require: A : bit array of size 5× 5× 64

function θ(A)
for all 0 ≤ x < 5, 0 ≤ z < 64 do

C[x, z]← A[x, 0, z]⊕A[x, 1, z]⊕A[x, 2, z]⊕
A[x, 3, z]⊕A[x, 4, z]

end for
for all 0 ≤ x < 5, 0 ≤ z < 64 do

D[x, z]← C[(x− 1) mod 5, z]⊕
C[(x+ 1) mod 5, (z − 1) mod 64]

end for
for all 0 ≤ x < 5, 0 ≤ y < 5, 0 ≤ z < 64 do

A′[x, y, z]← A[x, y, z]⊕D[x, z]
end for
return A′

end function

Algorithm 6 The ρ(A) Function
Require: A : bit array of size 5× 5× 64

function ρ(A)
for all 0 ≤ z < 64 do

A′[0, 0, z]← A[0, 0, z]
end for
(x, y)← (1, 0)
for t← 0 to 23 do

for all 0 ≤ z < 64 do
A′[x, y, z]←

A[x, y, (z − (t+ 1)(t+ 2)/2) mod 64]
(x, y)← (y, 2x+ 3y) mod 5

end for
end for
return A′

end function

Algorithm 7 The π(A) Function
Require: A : bit array of size 5× 5× 64

function π(A)
for all 0 ≤ x < 5, 0 ≤ y < 5, 0 ≤ z < 64 do

A′[x, y, z]← A[(x+ 3y) mod 5, x, z]
end for
return A′

end function

Title Suppressed Due to Excessive Length 17

Algorithm 8 The χ(A) Function
Require: A : bit array of size 5× 5× 64

function χ(A)
for all 0 ≤ x < 5, 0 ≤ y < 5, 0 ≤ z < 64 do

A′[x, y, z]← A[x, y, z]⊕
(A[(x+ 1) mod 5, y, z] ∧A[(x+ 2) mod 5, y, z])

end for
return A′

end function

Algorithm 9 The rc(t) Function (LFSR)
Require: t : integer

function rc(t)
(R0, R1, R2, R3, R4, R5, R6, R7)← (1, 0, 0, 0, 0, 0, 0, 0)
for i← 1 to t mod 255 do

(R0, R1, R2, R3, R4, R5, R6, R7)←
(R7, R0, R1, R2, R3 ⊕R7, R4 ⊕R7, R5 ⊕R7, R6)

end for
return R0

end function

Finally, Algorithm 11 gives the Keccak-p[1600, 24] block function. It is
defined by 24 repetitions of ι ◦ χ ◦ π ◦ ρ ◦ θ.

Implementations The Keccak team releases the official 64-bit C and multi-
block ssse3, avx2, avx512vl implementations for the Keccak-p[1600, 24] block
function in the eXtended Keccak Code Package (XKCP) [41]. The OpenSSL
project also provides Keccak-p[1600, 24] implementations in C, x86_64, avx2,
avx512vl, armv4, and aarch64 assembly [37].

Algorithm 10 The ι(A, r) Function
Require: A : bit array of size 5× 5× 64
Require: r : round index

function ι(A, r)
A′ = A
for j ← 0 to 6 do

A′[0, 0, 2j − 1]← A′[0, 0, 2j − 1]⊕ rc(j + 7r)
end for
return A′

end function

The XKCP 64-bit reference C implementation follows Algorithm 11 al-
most verbatim. Concretely, the C functions theta, rho, pi, chi, and iota imple-
ment the functions θ, ρ, π, χ, and ι respectively. The 5 × 5 × 64 bit array A

18 L. Lai et al.

Algorithm 11 The Keccak-p[1600, 24] Block Function
Require: A : bit array of size 5× 5× 64

function Keccak-p[1600, 24](A)
A′ ← A
for r ← 0 to 23 do

A′ ← ι(χ(π(ρ(θ(A′)))), r)
end for
return A′

end function

moreover is represented by a 64-bit word array of size 25 in row-major order.
ρ(A) is implemented by 64-bit rotations with various offsets (t+1)*(t+2)/2 % 64.

The rotation offsets in the ρ(A) function and the round constants in ι(A, r),
instead of being computed on the fly, are pre-computed and stored in arrays to
be retrieved and used by the C functions rho and iota.

The KeccakP1600Round C function implements Keccak-p[1600, 24] and uses
KeccakP1600_Permute_24rounds which calls 24 times KeccakP1600Round, which in
term just calls the functions theta, rho, pi, chi, and iota in sequence.

The OpenSSL x86_64 implementation computes the Keccak-p[1600, 24]
block function in 13×64-bit registers. The 10 bit arrays C[•, •] and D[•, •] in θ(A)
(Algorithm 5) are kept in 10 registers. One register is a pointer to the array of
pre-computed round constants in ι(A, r) (Algorithm 10). There are two scratch
registers. To reduce memory access, this Keccak-p[1600, 24] implementation
does not quite follow Algorithm 11 — the implementation combines θ, ρ, π, χ,
and ι together, rearranges instructions, and uses registers carefully. Each round
reads each lane from memory at most twice to minimize latency. A trick is also
employed where some lanes are stored complemented to reduce NOT operations.
For instance, a plane A′[•, y, •] can be computed by the following equations in
the χ(A) function (Algorithm 8):

A′[0, y, •] = A[0, y, •]⊕ (A[1, y, •] ∧A[2, y, •])
A′[1, y, •] = A[1, y, •]⊕ (A[2, y, •] ∧A[3, y, •])
A′[2, y, •] = A[2, y, •]⊕ (A[3, y, •] ∧A[4, y, •])
A′[3, y, •] = A[3, y, •]⊕ (A[4, y, •] ∧A[0, y, •])
A′[4, y, •] = A[4, y, •]⊕ (A[0, y, •] ∧A[1, y, •])

Suppose we store the input lanes A[2, y, •] and A[4, y, •] by their complements
A[2, y, •] and A[4, y, •] respectively. By De Morgan’s law, the plane A′[•, y, •] can
be computed by

A′[0, y, •] = A[0, y, •]⊕ (A[1, y, •] ∨A[2, y, •])
A′[1, y, •] = A[1, y, •]⊕ (A[2, y, •] ∧A[3, y, •])
A′[2, y, •] = A[2, y, •]⊕ (A[3, y, •] ∨A[4, y, •])
A′[3, y, •] = A[3, y, •]⊕ (A[4, y, •] ∧A[0, y, •])
A′[4, y, •] = A[4, y, •]⊕ (A[0, y, •] ∨A[1, y, •]).

Title Suppressed Due to Excessive Length 19

Note that the output lanes A′[0, y, •] and A′[2, y, •] are now represented by their
complements A′[0, y, •] and A′[2, y, •] respectively, and 80% of the NOT opera-
tions are canceled if the complementing transform is propagated throughout all
functions [9].

The OpenSSL avx2 implementation uses avx2 extension instructions. For
example the vpxor instruction computes bitwise XOR over two 256-bit regis-
ters; and the vpsrlq instruction computes logical right rotation of four 64-bit
words in a register. The avx2 extensions moreover provide various instructions
for rearranging words in 256-bit registers.

A[0, 0, •] A[0, 0, •] A[0, 0, •] A[0, 0, •]
A[4, 0, •] A[3, 0, •] A[2, 0, •] A[1, 0, •]
A[0, 3, •] A[0, 1, •] A[0, 4, •] A[0, 2, •]
A[4, 2, •] A[3, 4, •] A[2, 1, •] A[1, 3, •]
A[4, 3, •] A[3, 1, •] A[2, 4, •] A[1, 2, •]
A[4, 1, •] A[3, 2, •] A[2, 3, •] A[1, 4, •]
A[4, 4, •] A[3, 3, •] A[2, 2, •] A[1, 1, •]

Currently, the OpenSSL Keccak-p[1600, 24] avx2 implementation uses the
lane arrangement above. The avx2 implementation loads four 64-bit lanes in a
256-bit register. Seven 256-bit registers suffice to load 25 64-bit lanes in A[•, •, •].

Observe first that four copies of the lane A[0, 0, •] are loaded in the first reg-
ister. This is because A[0, 0, •] is not permuted by the ρ(A) nor π(A) functions
(Algorithms 6 and 7 respectively). It therefore is treated specially. The remaining
24 64-bit lanes are distributed in six 256-bit registers. Secondly, the arrangement
seems peculiar. It is indeed designed for the π(A) function (Algorithm 7). Con-
sider the content of the fourth register: A[4, 2, •], A[3, 4, •], A[2, 1, •], A[1, 3, •].
In the π(A) function, they are assigned to A[4 + 3 · 2 mod 5, 4, •], A[3 + 3 ·
4 mod 5, 3, •], A[2+3 ·1 mod 5, 2, •], A[1+3 ·3 mod 5, 1, •] or A[0, 4, •], A[0, 3, •],
A[0, 2, •], A[0, 1, •] respectively. These lanes are precisely the content of the third
register after permutation. In other words, the π(A) function is permutations on
register contents. It is easily implemented by avx2 word arrangement instruc-
tions.

The OpenSSL avx512vl implementation uses the same lane arrangement
as the OpenSSL avx2 implementation, and further uses the avx512vl table look-
up instruction vpternlogq to compute XOR of three bits [9]. The instruction
takes three 256-bit registers and an 8-bit constant as inputs. The three 256-bit
registers represent 256 triple of bits. Each bit triple in turn represents an integer
from 0 to 7. A triple thus serves as a read index into the 8-bit constant array.
Consider the 8-bit constant 0x96. The following table shows the outputs for all

20 L. Lai et al.

bit triples:
0bxyz 7 6 5 4 3 2 1 0
x 1 1 1 1 0 0 0 0
y 1 1 0 0 1 1 0 0
z 1 0 1 0 1 0 1 0

out 1 0 0 1 0 1 1 0 = 0x96

Note that the output bit is the XOR of the bit triple. The vpternlogq instruction
therefore can compute 256 XORs of three bits simultaneously.

The OpenSSL armv4 implementation differs because armv4 is a 32-bit
architecture while Keccak-p[1600, 24] however computes in 64-bit lanes. A
naïve 64-bit word represented in two 32-bit registers would lead to expensive
rotations, needed for θ(A) and ρ(A) (Algorithms 5–6).

To implement 64-bit bit rotations on 32-bit armv4 architecture, OpenSSL
armv4 implementation uses the bit interleaving representation [9]. A 64-bit word
w = 0bb63b62 · · · b0 is represented by two 32-bit words w0 = 0bb62b60 · · · b2i · · · b0
and w1 = 0bb63b61 · · · b2i+1 · · · b1. The 32-bit word w0 consists of bits with even
indices and w1 of bits with odd indices (written w = [w0, w1]). With the bit in-
terleaving representation, bit rotations can be implemented efficiently. Consider
rotating w to right by two bits. We have

ror(w, 2) = 0bb1b0b63b62 · · · b5b4b3b2
= [0bb0b62 · · · b4b2, 0bb1b63 · · · b5b3].

Note that 0bb0b62 · · · b4b2 and 0bb1b63 · · · b5b3 are simply w0 and w1 rotated to
right by one bit respectively. Rotations by odd number of bits are almost as easy.
Consider

ror(w, 3) = 0bb2b1b0b63 · · · b6b5b4b3
= [0bb1b63 · · · b5b3, 0bb2b0 · · · b6b4].

Even bits of the result are w1 rotated to right by one bit; odd bits of the result
are w0 rotated to right by two bits. One simply swaps the even and odd bits
with proper rotations.

The XKCP implementations by the Keccak team [41] include (in ad-
dition to a reference C implementation) several Keccak-p[1600, 24] assembly
implementations written with C intrinsic functions for ssse3, avx2, and avx512
instructions. Intrinsic functions can be reordered by C compilers. XKCP imple-
mentations are thus optimized automatically.

5 Block Function Models

In order to verify implementations of block functions (Section 4), we build ref-
erence and target models for block functions and their implementations respec-
tively (Section 3). Once the models are constructed, the equivalence checking
between two of them is carried out by CryptoLEC automatically. We explain
how these formal models are constructed.

Title Suppressed Due to Excessive Length 21

5.1 Reference Models

Reference models serve as specifications for block functions. Instead of writing
reference models ourselves, we obtain reference models by translating reference
C implementations for block functions.

ChaCha20 block function The ChaCha20 designer provides a reference C im-
plementation for the ChaCha20 block function [7]. We translate the function
salsa20_wordtobyte in chacha.c to a CryptoLine model using llvm2cryptoline.
We use the pragma directive to force the Clang compiler to unroll the loop au-
tomatically.

SHA-256 block function The C implementation sha256.c from OpenSSL is
used to construct the reference model for the SHA-256 block function. Similar
to ChaCha20, the pragma directive is needed to unroll the loop for the last 48
rounds before using the llvm2cryptoline tool.

Keccak-p[1600, 24] block function To construct the reference model for the
Keccak-p[1600, 24] block function, we take the 64-bit C reference implementa-
tion KeccakP-1600-reference.c from the XKCP [41] project. The llvm2cryptoline
tool is used to obtain a CryptoLine function for the round function implemen-
tation KeccakP1600Round. The CryptoLine function is then invoked 24 times in
our reference model for the Keccak-p[1600, 24] block function.

5.2 Target Models

Our target models are obtained by translating execution traces of assembly im-
plementations. Most assembly instructions are translated to CryptoLine in-
structions easily. Two special instructions however deserve explanations.

The shaext sha256rnds2 instruction The instruction performs two rounds of the
SHA-256 round function on the digest values loaded in 128-bit registers (Al-
gorithm 3). The CryptoLine language does not support such complicated in-
structions. A CryptoLine model based on the Intel manual for sha256rnds2 is
constructed [24].

In our model, a 128-bit register is represented by four 32-bit CryptoLine
variables. The Ch,Maj, Σ0, and Σ1 functions are specified by CryptoLine func-
tions. For instance, the following CryptoLine function specifies Ch:

proc Ch(uint32 x, uint32 y, uint32 z, uint32 o)=
{ true && true }
and xy@uint32 x y;
not nx@uint32 x;
and nxz@uint32 nx z;
xor o@uint32 xy nxz;
{ true && true }

22 L. Lai et al.

The Ch function has three unsigned 32-bit input arguments x, y, z, and an un-
signed 32-bit output argument o. It computes the bitwise AND of x and y, and
stores the result in xy. Similarly, the bitwise AND of z and the bitwise NOT of
x is written to nxz. The output argument o is the bitwise XOR of xy and nxz.
Hence

o = xy⊕ nxz = (x ∧ y)⊕ (x ∧ z) = Ch(x, y, z).

Other functions are defined similarly. Our model for sha256rnds2 is built upon
these auxiliary functions.

The avx512vl vpternlogq instruction Recall that the vpternlogq instruction takes
three 256-bit registers as 256 indices and an 8-bit constant as a table. It computes
256 bits by looking up the table with indices. CryptoLine does not have such
an instruction. We again write a CryptoLine model for vpternlogq.

Our model first splits each 256-bit register into 256 bit variables. 256 triples
of indices are obtained. Let (x, y, z) be one of the triples. We want to find the bit
in the 8-bit constant table T with the index 0bxyz. Observe that the bit variable
x is 1 if and only if the index 0bxyz is 4, 5, 6, or 7. The output bit must be
among the most significant four bits of T . Similarly, the output must be among
the least significant four bits of T if x is 0. We use the CryptoLine conditional
assignment to obtain the mask.

cmov mask_x x 0xf0@uint8 0x0f@uint8;

The 8-bit unsigned variable mask_x is 0xf0 if x is 1; it is 0x0f otherwise. Likewise,
the bit variable y is 1 if and only if the index 0bxyz is 2, 3, 6, 7; z is 1 if and only
if the index 0bxyz is 1, 3, 5, 7. Define the following masks:

cmov mask_y y 0xcc@uint8 0x33@uint8;
cmov mask_z z 0xaa@uint8 0x55@uint8;
and mask_xy@uint8 mask_x mask_y;
and mask_xyz@uint8 mask_xy mask_z;

The 8-bit mask mask_xyz is the bitwise AND of mask_x, mask_y, and mask_z. Note
that all bits in mask_xyz are 0 except the bit with the index 0bxyz. The output
bit is the bitwise AND of the table T with mask_xyz. The 256-bit result of the
vpternlogq instruction is obtained by collecting 256 output bits for all triples.

6 Evaluation

To evaluate the effectiveness of our technique, we implement our approach in
CryptoLEC and verify 28 target implementations against their reference imple-
mentations in experiments. We carry out our experiments on an Ubuntu 22.04.2
Linux server with four 1.5 GHz AMD EPYC 7763 64-core CPUs and 2 TB RAM.
CryptoLEC employs Boolector 3.2.2 to generate AIGER files [33,32], and
employs abc (commit: 311b9b03) to check logic equivalence between two circuits
in the AIGER format [31].

In addition to our technique, a naïve SMT-based technique is tested to ver-
ify block function implementations. The CryptoLine tool employs the SMT

Title Suppressed Due to Excessive Length 23

Table 1. Experimental Results

Block function Impl SizeASM SizeCL TimeLEC TimeSMT Block function Impl SizeASM SizeCL TimeLEC TimeSMT

ChaCha20
OpenSSL

reference - 1738 - -

Keccak-p[1600, 24]
OpenSSL

reference - 671 - -
cc 1239 1278 < 1 < 1 cc 5934 6011 59 > 7200

ssse3 476 1347 < 1 < 1 x86_64 4818 6283 663 > 7200
avx512vl (2x) 331 1288 < 1 1 avx2 2642 7942 257 > 7200
avx512vl (8x) 1074 4141 2 18 avx512vl 2024 7774 733 > 7200
avx512 (16x) 1074 8187 6 74 armv4 8009 10688 111 > 7200

armv4 1221 1271 < 1 < 1 aarch64 3375 5646 1 > 7200
aarch64 1022 1064 < 1 < 1

Keccak-p[1600, 24]
XKCP

reference - 671 - -

SHA-256
OpenSSL

reference - 3893 - - armv7a 3548 7381 71 > 7200
cc 4185 4274 2992 > 7200 armv7a (2x) 6235 10892 2 6

shaext 240 731 19076 > 7200 armv8a 3496 4483 115 > 7200
avx2 2127 3684 11496 > 7200 ssse3 (2x) 3418 8252 112 > 7200

avx (4x) 3729 9121 19126 > 7200 avx2 (4x) 5204 23417 205 > 7200
avx2 (8x) 3870 18064 19236 > 7200 avx512 (2x) 2908 7098 567 > 7200

armv4 2043 2119 > 7200 > 7200 avx512 (4x) 2910 12888 794 > 7200
aarch64 1779 2716 3591 > 7200 avx512 (8x) 2882 24276 821 > 7200

1 The shaext and avx2 are verified against the aarch64 implementation; the avx (4x) and avx2 (8x) are against 4 and 8 copies of the
aarch64 implementation respectively.

solver Boolector to check equalities (Section 3.1) [33,35,19]. To verify imple-
mentations by SMT solvers, we create another CryptoLine program for each
target implementation. The program contains the models for the target imple-
mentation and its reference implementation. We then specify equalities between
corresponding variables in the two implementations. For each equality, Cryp-
toLine creates a dedicated thread to verify it with the SMT solver.

Table 1 shows the experimental results. In the table, the column Block func-
tion indicates which block function is verified. Impl shows names of implemen-
tations. SizeASM is the number of assembly instructions in the implementation.
SizeCL gives the number of CryptoLine instructions in the formal model.
TimeLEC shows the total time for logic equivalence checking (CryptoLEC);
TimeSMT gives the total time needed for the SMT-based technique (CryptoLine).
They include the time for parsing CryptoLine models, translation to AIGER
format, and verification time from abc or Boolector in seconds. It is domi-
nated by the verification time.

For ChaCha20 and Keccak-p[1600, 24], the reference implementations are
provided by their respective designers [7,41]. The reference implementation for
SHA-256 is the OpenSSL C implementation [37]. We use llvm2cryptoline to
obtain reference models from reference implementations (Section 3.1). Sizes of
reference models are indicated in the row reference for each block function.

For each block function, we verify a C and several assembly implementa-
tions in OpenSSL or XKCP against their reference implementations. The C
implementations are from OpenSSL. We compile each C implementation to a
binary executable and verify the x86_64 assembly code from the compiled C
implementation (marked by row cc).

OpenSSL provides several assembly implementations for each block function.
Specifically, both 32- and 64-bit ARM architectures have dedicated assembly im-
plementations (rows armv4 and aarch64, respectively). For the Intel family, the
row x86_64 indicates the basic 64-bit x86 instruction set (Keccak-p[1600, 24]).
The ssse3 implementation is provided for ChaCha20 (row ssse3). The avx2 im-
plementations are found for SHA-256 and Keccak-p[1600, 24] (row avx2); the

24 L. Lai et al.

avx512vl implementations are available for Keccak-p[1600, 24] (row avx512vl).
The rows avx512vl (2x), avx512vl (8x), and avx512 (16x) denote multi-block im-
plementations computing two, eight, and sixteen ChaCha20 block functions in
the avx512vl extensions respectively. Similarly, the rows avx (4x) and avx2 (8x)
stand for the multi-block implementations for computing four and eight SHA-
256 block functions respectively. Finally, a shaext implementation for SHA-256
is provided in OpenSSL (row shaext).

XKCP also offers several assembly implementations for the Keccak-p[1600,
24] block function. In addition to the 64-bit ARM architecture (row armv8a),
32-bit ARM with the NEON extensions is provided (row armv7a). It moreover
has multi-block implementations. Specifically, two copies of the Keccak-p[1600,
24] block function are computed in parallel with the ARM NEON extensions
(row armv7a (2x)). The ssse3 implementation computes two Keccak-p[1600,
24] block functions simultaneously (row ssse3 (2x)). The avx2 implementation
computes four copies at the same time (row avx2 (4x)). The avx512 implemen-
tations can compute two, four, or eight copies in parallel (rows avx512 (2x),
avx512 (4x), avx512 (8x) respectively).

Table 1 shows that CryptoLEC verifies all but one target implementations
against their respective reference implementations in an hour. Among the three
block functions, ChaCha20 is the simplest and easiest to verify. All ChaCha20
implementations are verified within seconds. All Keccak-p[1600, 24] are veri-
fied in 15 minutes. Note that the OpenSSL Keccak-p[1600, 24] aarch64 and
XKCP Keccak-p[1600, 24] armv7a (2x) implementations are verified in sec-
onds. Heuristics in logic equivalence checking perform exceptionally well in both
cases.

SHA-256 implementations are harder to verify. CryptoLEC fails to verify
the OpenSSL SHA-256 armv4 implementation within two hours. It takes about
an hour to verify the OpenSSL SHA-256 C and aarch64 implementations. Once
the aarch64 implementation is verified, it is used as the reference implementa-
tion to verify other implementations. For multi-block implementations, several
threads are created. The multi-block avx and avx2 implementations are equiva-
lent to four and eight copies of the OpenSSL SHA-256 aarch64 implementation
respectively. The verification of OpenSSL SHA-256 shaext, avx2, multi-block
avx, and multi-block avx2 is finished in about 32 minutes.

In comparison, the SMT-based technique only verifies the XKCP Keccak-
p[1600, 24] armv7a (2x) block function and the simplest ChaCha20 block func-
tion implementations successfully. Among ChaCha20 implementations, its ver-
ification time increases significantly for avx512vl multi-block implementations.
The conventional technique fails to verify all but one Keccak-p[1600, 24] and
SHA-256 implementations within two hours. This is perhaps not surprising. In
addition to equality, SMT solvers also support arbitrary logic formulae over in-
equality. Logic equivalence checking on the other hand is highly optimized for
checking equality in circuits. Experimental results suggest that the specialized
technique is both general and effective in verifying logic equivalence between two
dozen pairs of reference and assembly implementations.

Title Suppressed Due to Excessive Length 25

Another advantage of our automatic technique is to generate witnesses for
buggy implementations. To demonstrate, we randomly remove one instruction
from the XKCP Keccak-p[1600, 24] armv7a (2x) implementation and com-
pare the modified implementation against the reference C implementation. The
underlying logic equivalence checker abc reports the error with a witnessing in-
put in seconds. The SMT-based technique also reports the error with a witness
shortly. Programmers can then use witnesses to fix programming errors. Both
techniques not only verify block function implementations automatically, they
are also debugging tools should errors occur in implementations.

7 Conclusions

We apply logic equivalence checking to verifying optimized implementations of
block functions. We take reference implementations provided by designers or
programmers as specifications of block functions. Optimized implementations
are formally verified to generate the same output as the specification on every
input. Instead of SMT solvers, our automatic technique employs logic equiva-
lence checking from hardware verification. Experimental results suggest that our
technique is simple, general, and scalable. We plan to explore other applications
of logic equivalence checking in cryptographic program verification in the future.

References

1. Almeida, J.B., Baritel-Ruet, C., Barbosa, M., Barthe, G., Dupressoir, F., Grégoire,
B., Laporte, V., Oliveira, T., Stoughton, A., Strub, P.Y.: Machine-checked proofs
for cryptographic standards: Indifferentiability of sponge and secure high-assurance
implementations of sha-3. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 1607–1622 (2019)

2. Appel, A.W.: Verification of a cryptographic primitive: "sha-256". ACM Transac-
tions on Programming Languages and Systems 37(2), 7:1–7:31 (April 2015)

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017)

4. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash func-
tions— the HMAC construction. CryptoBytes 1 (1996)

5. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: The State of the Art of Stream
Ciphers. vol. 8, pp. 3–5 (2008)

6. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) Fast Software Encryption. LNCS, vol. 3557, pp. 32–49.
Springer (2005)

7. Bernstein, D.J.: ChaCha20 reference c version. https://cr.yp.to/
streamciphers/timings/estreambench/submissions/salsa20/chacha20/ref/
chacha.c (2008)

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: On the indifferentiability of
the sponge construction. In: Smart, N.P. (ed.) Advances in Cryptology - EURO-
CRYPT 2008, 27th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceed-
ings. Lecture Notes in Computer Science, vol. 4965, pp. 181–197. Springer (2008).

https://cr.yp.to/streamciphers/timings/estreambench/submissions/salsa20/chacha20/ref/chacha.c
https://cr.yp.to/streamciphers/timings/estreambench/submissions/salsa20/chacha20/ref/chacha.c
https://cr.yp.to/streamciphers/timings/estreambench/submissions/salsa20/chacha20/ref/chacha.c

26 L. Lai et al.

https://doi.org/10.1007/978-3-540-78967-3_11, https://doi.org/10.1007/
978-3-540-78967-3_11

9. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keccak imple-
mentation overview (May 2012), http://keccak.noekeon.org/

10. Biere, A.: The aiger and-inverter graph (aig) format version 20071012. Tech. rep.,
Institute for Formal Models and Verification, Johannes Kepler University (2011)

11. Biere, A., Heljanko, K., Wieringa, S.: Aiger 1.9 and beyond. Tech. rep., Institute
for Formal Models and Verification, Johannes Kepler University (2011)

12. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer (1993)

13. Bond, B., Hawblitzel, C., Kapritsos, M., Leino, K.R.M., Lorch, J.R., Parno, B.,
Rane, A., Setty, S.T., Thompson, L.: Vale: Verifying high-performance crypto-
graphic assembly code. In: USENIX Security Symposium. vol. 152 (2017)

14. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - Kyber: a CCA-secure module-
lattice-based KEM. In: Smith, M., Piessens, F. (eds.) IEEE European Symposium
on Security and Privacy. pp. 353–367. IEEE (2018)

15. Cadence: Conformal overview. https://www.cadence.com/en_US/home/tools/
digital-design-and-signoff/conformal-overview.html (2023)

16. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: ACM conference on Computer and communications security. pp. 46—-51. ACM
(November 1999)

17. developers, T.G.: GDB: The GNU project debugger. https://sourceware.org/
gdb/ (2023)

18. Erkök, L., Carlsson, M., Wick, A.: Hardware/software co-verification of crypto-
graphic algorithms using cryptol. In: 2009 Formal Methods in Computer-Aided
Design. pp. 188–191. IEEE (2009)

19. Fu, Y.F., Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Signed cryptographic
program verification with typed cryptoline. In: Wang, X., Katz, J. (eds.) 26th ACM
SIGSAC Conference on Computer and Communications Security. pp. 1591–1606.
ACM, London, UK (November 2019)

20. Hanson, P., Winters, B., Mercer, E., Decker, B.: Verifying the sha-3 implementation
from openssl with the software analysis workbench. In: Model Checking Software:
28th International Symposium, SPIN 2022, Virtual Event, May 21, 2022, Proceed-
ings. pp. 97–113. Springer (2022)

21. Hwang, V., Liu, J., Seiler, G., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verified
NTT multiplications for NISTPQC KEM lattice finalists: Kyber, SABER, and
NTRU. IACR Transactions on Cryptographic Hardware and Embedded Systems
2022, 718–750 (2022)

22. Information Technology Laboratory, N.I.o.S., Technology: Secure hash standard
(shs). https://dx.doi.org/10.6028/NIST.FIPS.180-4 (August 2015), fIPS PUB
180-4

23. Information Technology Laboratory, N.I.o.S., Technology: Sha-3 standard:
Permutation-based hash and extendable-output functions. https://dx.doi.org/
10.6028/NIST.FIPS.202 (August 2015), fIPS PUB 202

24. Intel®: https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-sha-extensions.html (2013)

25. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s the-
sis, University of Illinois at Urbana-Champaign (December 2002)

26. Lavagno, L., Martin, G., Scheffer, L.: Electronic Design Automation for Integrated
Circuits Handbook - 2 Volume Set. CRC Press, Inc., USA (2006)

https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
http://keccak.noekeon.org/
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/conformal-overview.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/conformal-overview.html
https://sourceware.org/gdb/
https://sourceware.org/gdb/
https://dx.doi.org/10.6028/NIST.FIPS.180-4
https://dx.doi.org/10.6028/NIST.FIPS.202
https://dx.doi.org/10.6028/NIST.FIPS.202
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html

Title Suppressed Due to Excessive Length 27

27. Lim, J.P., Nagarakatte, S.: Automatic equivalence checking for assembly implemen-
tations of cryptography libraries. In: 2019 IEEE/ACM International Symposium
on Code Generation and Optimization. pp. 37–49 (2019)

28. Liu, J., Shi, X., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic in cryp-
tographic c programs. In: Lawall, J., Marinov, D. (eds.) 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering. pp. 552–564. IEEE, San
Diego, CA, USA (November 2019)

29. Mella, S., Daemen, J., Assche, G.V.: New techniques for trail bounds and applica-
tion to differential trails in Keccak. IACR Transactions on Symmetric Cryptology
1, 329–357 (2017)

30. Miller, D.: ChaCha20 and Poly1305 in OpenSSH. http://blog.djm.net.au/2013/
11/chacha20-and-poly1305-in-openssh.html (2013)

31. Mishchenko, A.: ABC: System for sequential logic synthesis and formal verification
(2023), https://github.com/berkeley-abc/abc.git

32. Niemetz, A., Preiner, M., Wolf, C., Biere, A.: Btor2 , BtorMC and Boolector 3.0.
In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification (CAV).
Lecture Notes in Computer Science, vol. 10981, pp. 587–595. Springer (2018).
https://doi.org/10.1007/978-3-319-96145-3_32, https://doi.org/10.1007/
978-3-319-96145-3_32

33. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. J. Satisf. Boolean Model. Com-
put. 9(1), 53–58 (2014). https://doi.org/10.3233/sat190101, https://doi.
org/10.3233/sat190101

34. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF protocols. https://www.
rfc-editor.org/rfc/rfc8439.html (June 2018)

35. Polyakov, A., Tsai, M.H., Wang, B.Y., Yang, B.Y.: Verifying arithmetic assembly
programs in cryptographic primitives. In: Schewe, S., Zhang, L. (eds.) CONCUR.
pp. 4:1–4:16. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

36. CryptoLine Project, T.: https://github.com/fmlab-iis/cryptoline (2023)
37. Project, T.O.: The OpenSSL library. https://github.com/openssl/openssl

(2023)
38. Smith, E.W.: Axe: An automated formal equivalence checking tool for programs.

Ph.D. thesis, Stanford University (2011)
39. Swamy, N., Hriţcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S.,

Bhargavan, K., Fournet, C., Strub, P.Y., Kohlweiss, M., et al.: Dependent types
and multi-monadic effects in f. In: Proceedings of the 43rd annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. pp. 256–270 (2016)

40. Synopsys: Formality equivalence checking. https://www.synopsys.com/
implementation-and-signoff/signoff/formality-equivalence-checking.
html (2023)

41. Keccak Team, T.: The extended Keccak code package (xkcp). https://github.
com/XKCP/XKCP (2014)

42. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: Hacl*: A ver-
ified modern cryptographic library. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 1789–1806 (2017)

http://blog.djm.net.au/2013/11/chacha20-and-poly1305-in-openssh.html
http://blog.djm.net.au/2013/11/chacha20-and-poly1305-in-openssh.html
https://github.com/berkeley-abc/abc.git
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.1007/978-3-319-96145-3_32
https://doi.org/10.3233/sat190101
https://doi.org/10.3233/sat190101
https://doi.org/10.3233/sat190101
https://doi.org/10.3233/sat190101
https://www.rfc-editor.org/rfc/rfc8439.html
https://www.rfc-editor.org/rfc/rfc8439.html
https://github.com/fmlab-iis/cryptoline
https://github.com/openssl/openssl
https://www.synopsys.com/implementation-and-signoff/signoff/formality-equivalence-checking.html
https://www.synopsys.com/implementation-and-signoff/signoff/formality-equivalence-checking.html
https://www.synopsys.com/implementation-and-signoff/signoff/formality-equivalence-checking.html
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP

	Automatic Verification of Cryptographic Block Function Implementations with Logical Equivalence Checking

