
SoK: Post-Quantum TLS Handshake
Nouri Alnahawi

Darmstadt University of Applied Sciences
Darmstadt, Germany

Johannes Müller
University of Luxembourg

Esch-sur-Alzette, Luxembourg

Jan Oupický
University of Luxembourg

Esch-sur-Alzette, Luxembourg

Alexander Wiesmaier
Darmstadt University of Applied Sciences

Darmstadt, Germany

ABSTRACT
Transport Layer Security (TLS) is the backbone security protocol
of the Internet. As this fundamental protocol is at risk from future
quantum attackers, many proposals have been made to protect TLS
against this threat by implementing post-quantum cryptography
(PQC). The widespread interest in post-quantum TLS has given rise
to a large number of solutions over the last decade. These proposals
differ in many aspects, including the security properties they seek
to protect, the efficiency and trustworthiness of their post-quantum
building blocks, and the application scenarios they consider, to
name a few.

Based on an extensive literature review, we classify existing
solutions according to their general approaches, analyze their in-
dividual contributions, and present the results of our extensive
performance experiments. Based on these insights, we identify the
most reasonable candidates for post-quantum TLS, which research
problems in this area have already been solved, and which are still
open. Overall, our work provides a well-founded reference point
for researching post-quantum TLS and preparing TLS in practice
for the quantum age.

CCS CONCEPTS
• Security and privacy→ Security protocols; Web protocol
security; Digital signatures.

KEYWORDS
TLS, post-quantum cryptography, post-quantum TLS

1 INTRODUCTION
Transport Layer Security (TLS) is the backbone security protocol of
the Internet. This fundamental protocol protects the confidentiality,
authenticity, and integrity of individual communication channels
in potentially malicious network environments. TLS is one of the
most widely used tool for securing application protocols, e.g., for
browsing, email, instant messaging or voice-over-IP.

Like any other protocol that uses public key cryptography, the
security of TLS is threatened by future quantum attackers. This is
because quantum computers can efficiently break the underlying
hardness assumptions of the public key cryptography on which
the TLS handshake protocol is currently based, namely the integer
factorization and discrete logarithm problems. Thus, future adver-
saries with such powerful machines can undermine the security
of TLS by forging signatures to falsely authenticate themselves to
users, and by deriving encryption keys to read secret messages,
even from past TLS sessions.

To address this fundamental threat, and thus prevent a poten-
tial security and privacy disaster, numerous proposals have been
made to replace the current quantum-insecure public-key cryp-
tography in TLS with so-called post-quantum cryptography (PQC).
These are building blocks whose security is based on certain com-
putational problems that are believed to be practically unsolvable
even by scalable quantum computers. Many of the proposals for
post-quantum TLS are closely related to the NIST standardization
process for PQC [72], as TLS is often cited as a main motivation
for developing cryptographic solutions that cannot be broken by
quantum attackers.

While this level of interest is encouraging, the large number of
contributions makes it difficult to understand the state of the art.
Indeed, the existing proposals differ in many aspects: The secu-
rity properties they seek to protect (confidentiality, authenticity
or both), their underlying post-quantum hardness assumptions
(lattice, code, isogeny, multivariate or hash-based), their specific ap-
plication scenarios (unilateral or mutual authentication, pre-shared
keys, etc.), the corresponding TLS versions (1.2 or 1.3), the different
setups for their experiments and the resulting benchmarks (e.g.,
idealized or real networks), and their type of protection (purely
post-quantum or combined with classical schemes).

This confusing state of affairs raises several questions such as:
Which approaches actually achieve the desired properties? Which
proposals are efficient? Which post-quantum assumptions are trust-
worthy? What application scenarios are realistic? Which research
problems have been solved, and which are still open or need more
attention? Answering these fundamental questions is crucial for
making TLS post-quantum on a large scale in practice.

1.1 Our contributions
We provide the following contributions to address these questions.

Literature and internet research. To find relevantwork, we searched
for key words (variations of “post quantum”, “TLS”, “transport layer
security”, “authentication”, “key exchange”, “handshake”) on Google
Scholar, Crossref, and DBLP. For each relevant work we identified,
we conducted a forward-backward search, i.e., we looked at which
publications the work referred to and which publications referred
to the work to find additional relevant information.

Taxonomy. We classify existing proposals for post-quantum TLS
handshake according to the security properties they aim to pro-
tect: (1) post-quantum authentication only, (2) post-quantum key
exchange only, and (3) post-quantum authenticated key exchange.



Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

For each of these three main categories, we identified different sub-
categories to which we assigned individual publications/projects.
See Table 1 for our complete categorization.

Evaluation. We provide a critical and comparative assessment
of the state of affairs:

(1) We summarize which proposals have proven insecure over
time, which are considered secure according to the current
state of research, and how their underlying hardness as-
sumptions and thus their post-quantum security are related.

(2) We examine which proposals deal with real-world scenarios
and which do not.

(3) We analyze the performance of all secure and practicable
proposals that are purely post-quantum and address the dif-
ferent security properties separately. To this end, we have
carried out extensive experimental simulations, the bench-
marks of which we present here. The special feature of our
analysis is that we study all proposals in the same setting
and that we also examine proposals whose performance
has not yet been tested.

Open and solved problems. We identify which research problems
have been solved and which ones are still open or require further
attention.

1.2 Overview
In Sec. 2, we explain how the security of TLS is affected by future
quantum attackers. In Sec. 3, we give an overview of the PQC
building blocks that are relevant for making the TLS handshake
post-quantum. In Secs. 4, 5, and 6 we study the three different
categories of post-quantumTLS that we have identified (see Table 1).
Finally, in Sec. 7, we summarize our main findings and conclude our
paper. In App. B, we recall how the TLS protocol works. In App. C,
we elaborate on whether and how to adapt symmetric cryptography
in TLS for quantum security. In App. A, we provide full details of
our extensive performance analysis.

1.3 Related work
The performance of different post-quantum TLS proposals has been
studied in various works, e.g., [34, 36, 59, 75, 94, 95, 98, 101]. While
these analyses provide valuable insights into local aspects of some
post-quantum TLS handshake proposals, a global and complete anal-
ysis of the state of the art was missing prior to our work. Although,
to the best of our knowledge, [33] is the only paper that approaches
post-quantum TLS in a more systematic way, its scope is limited to
specific case studies and, being from 2019, it is missing the latest
developments.

2 QUANTUM THREAT ANALYSIS OF TLS
We explain how a quantum attacker, i.e., an adversary with access
to a scalable quantum computer, can break the security properties
of existing TLS versions. See App. B for a description of TLS.

Quantum attackers. Tab. 2 shows the general threat that future
quantum attackers pose to the cryptographic building blocks that
we commonly use in today’s security protocols.

Table 1: Our categorization

Post-quantum authentication (Sec. 4)
Purely post-quantum authentication (Sec. 4.1)

Hash-based signatures
Lattice-based signatures
Multivariate-based signatures

Hybrid post-quantum authentication (Sec. 4.2)

Post-quantum key exchange (Sec. 5)
Purely post-quantum key exchange (Sec. 5.1)

Lattice-based KEMs
Code-based KEMs
Isogeny-based KEMs

Hybrid post-quantum key exchange (Sec. 5.2)
Concatenation
Separation
Robust hybrid

Post-quantum authenticated key exchange (Sec. 6)
KEMTLS (Sec. 6.1)
Mutually authenticated key exchange (Sec. 6.2)

Ring-LWE authenticated key exchange
Password-authenticated key exchange
Identity-based encryption

For TLS, which uses RSA and ECDSA as signature algorithms
and the Diffie-Hellman (DH) protocol for key exchange, this means
that these building blocks would no longer guarantee their desired
security properties. Below, we describe the implications for the
confidentiality and authenticity of TLS.

In App. C, we discuss whether and how to adapt the symmetric
cryptographic primitives in TLS to make them post-quantum.

Confidentiality. A quantum attacker with access to the transcript of
any TLS session can break the DH key exchange protocol and thus
learn the peers’ shared secret. With this information, the attacker
can decrypt the data from the record protocol, which completely
undermines the confidentiality of the channel.

It is important to note that future quantum attackers who have
stored transcripts of past TLS sessions can break the confidentiality
of those sessions retrospectively and obtain sensitive information
that remain sensitive in the future. Such attacks are called “store
now, decrypt later”, and they illustrate the need for a timely transi-
tion to post-quantum key exchange in TLS.

Authenticity. A quantum attacker can forge signatures in certifi-
cates that peers use to authenticate themselves in TLS sessions. In
particular, a quantum attacker can impersonate the Certificate Au-
thority (CA) of the underlying PKI and thus break the authenticity
of any TLS communication channel established with certificates
from that PKI.

Unlike the confidentiality of today’s TLS sessions, the authentic-
ity of these channels will not be affected by future quantum attack-
ers because authentication is complete at the end of the handshake
phase. However, this does not mean that we can “sit back and relax”,



SoK: Post-Quantum TLS Handshake

because for a variety of reasons it will take a long time to make the
complete underlying PKIs post-quantum (see also Sec. 4.3).

Table 2: Quantum-Resistance of Classical Cryptography [28]

Primitive Algorithm Quantum-Resistance

Symmetric cipher AES Requires larger keys

Hash function SHA-2 Requires larger output
SHA-3 Requires larger output

Key exchange (EC)DH Not secure

Public key encryption RSA Not secure
ElGamal Not secure

Digital signature RSA Not secure
(EC)DSA Not secure

3 POST-QUANTUM CRYPTOGRAPHY
We give an overview of the state of the art in post-quantum cryptog-
raphy (PQC). The security of these cryptographic building blocks
is based on hardness assumptions that even scalable quantum com-
puters (presumably) cannot break.

Aswe shall see in the remainder of this paper, most post-quantum
TLS proposals use post-quantum signatures and/or post-quantum
key encapsulation mechanisms (KEMs) from the NIST PQC stan-
dardization process launched in 2016. Starting with 82 initial sub-
missions [69], 15 candidates advanced to the third round. Tab. 3
summarizes the most relevant PQC candidate primitives, catego-
rized according to the classes of their underlying hardness assump-
tions, i.e., those based on lattices, codes, multivariates, isogenies
and hashes. As we will see in the course of this paper, these cat-
egories offer different balances between size, speed and security.
Following the third round, NIST announced in 2022 that the three
signature schemes Dilithium [65], Falcon [81], and SPHINCS+ [52])
as well as the KEM Kyber [91] will be standardized, and that it has
selected the KEMs BIKE [5], Classic McEliece [3], HQC [68], and
SIKE [55] for another round of evaluation.

As defined by NIST [72], each post-quantum candidate algorithm
has multiple parameter sets that provide different security levels,
increasing from level 1 to 5. For example, an algorithmwith security
level 1 should be as hard to “break” as recovering an AES-128 key.

In the course of this standardization process, it has been demon-
strated that several initial submissions do not achieve the desired
security properties. This includes the signature schemes Picnic and
qTesla [2], all multivariate signature schemes (Rainbow, GeMSS,
MQDSS) [12, 57, 99], and the only isogeny-based KEM SIKE [22].

Since, apart from the (comparatively less efficient) hash-based
signature scheme SPHINCS+ [52], the only other two signature
schemes to be standardized by NIST, Dilithium [65] and Falcon [81],
require structured lattices, NIST has recently announced a new par-
allel standardization process for additional post-quantum signature
schemes to diversify future PQC standards [73].

4 POST-QUANTUM AUTHENTICATION
We describe and compare existing proposals for post-quantum au-
thentication in TLS. We distinguish between purely post-quantum

and hybrid post-quantum approaches: purely post-quantum solu-
tions (Sec. 4.1) use only post-quantum cryptography, while hy-
brid post-quantum solutions (Sec. 4.2) combine classical and post-
quantum cryptography.

Authentication in TLS requires two cryptographic primitives
(App. B): digital signatures and HMACs. Since HMACs are gen-
erally considered to be quantum-secure (App. C), only the digital
signatures used in TLS need to be updated to make authentication
post-quantum. Signatures are used in TLS for two purposes: First, as
“static” signatures of certificates in the certificate chain, and second,
as “fresh” signatures of messages in the handshake protocol.

We note that the use of new signature schemes, classical or post-
quantum, in TLS is straightforward because the signature scheme
is treated as a black box at the higher protocol level. For example,
by using the reserved code points in TLS to agree and employ
additional signature schemes that are not yet officially supported.
Therefore, the main challenge for post-quantum authentication in
TLS is to find a cryptographic solution that provides a reasonable
balance between post-quantum security and performance.

4.1 Purely post-quantum authentication
We describe works that replace classical signature schemes in TLS
with post-quantum ones. We classify these papers based on the
underlying post-quantum hardness assumptions of the signatures.

In Tab. 4, we summarize the sizes of the most relevant post-
quantum signature schemes and their impact on the computational
performance of TLS. To this end, we simulated TLS with these signa-
tures in a realistic and consistent environment to obtain meaningful
and comparable benchmarks (see App. A for details).

Hash-based signatures. Numerous works [19, 36, 59, 76, 77, 92, 94,
95, 98, 100, 101] proposed the use of hash-based signatures in TLS
and provided some benchmarks. Specifically, three hash-based sig-
natures were studied: XMSS [51], Picnic [105], and SPHINCS+ [52].

XMSS [51] is a stateful signature scheme that has been standard-
ized by NIST [30] in parallel with the PQC competition. The main
advantage of XMSS over the other signature schemes below is its
performance, both in terms of computation and size. However, its
statefulness limits its applicability in practice. In fact, since stateful
signature schemes require private keys to be updated each time they
are used, XMSS could well be used in the real world for creating
certificates, as tested in [76, 92], but hardly for signing messages in
individual TLS sessions. Note that the limitations of XMSS apply to
any stateful signature scheme in this context.

Picnic [26] is a stateless signature scheme whose performance in
the TLS authentication phase has been tested in [75, 101]. These
results show that Picnic’s performance in terms of speed, key and
signature sizes is similar to other hash-based signatures such as
SPHINCS+ (see below). However, during the NIST competition, it
was discovered that Picnic does not meet the originally claimed
security level because the underlying block cipher is flawed [69],
and therefore NIST discarded Picnic.

SPHINCS+ [52] is the only stateless hash-based signature scheme
that is planned to be standardized by NIST [2]. While its key sizes
are small, its signature size is relatively largewhich limits its applica-
bility in TLS. Specifically, while the public key size is only 32 bytes,
the signature size of SPHINCS+ is 7856 or 17088 bytes at security



Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

Table 3: Post-quantum hardness problems

Problem category Hardness assumption(s) Example algorithm(s)

Lattice-based Learning With Errors problem, Shortest Vector problem Kyber [91], NTRU [27], Falcon [81], Saber [54]
Code-based Syndrome Decoding problem, Codeword Finding problem Classic McEliece [3], HQC [68], BIKE [5]

Multivariate-based Multivariate Quadratic polynomial problem, MinRank problem Rainbow [56], GeMSS [21], MQDSS [88]
Isogeny-based Supersingular Isogeny Diffie-Hellman problem SIKE [55]
Hash-based PQ distinct-function, multi-target second-preimage resistance SPHINCS+ [52], Picnic [105]

level 1 [2]. Additionally, the operations of SPHINCS+ are orders of
magnitudes slower than, e.g., those of RSA or Dilithium [94]. As a re-
sult, the TLS handshake with SPHINCS+ is significantly slower than
with other signature schemes: [94, 95] report that the handshake
with SPHINCS+ takes 3 − 4× the time of the handshake with classi-
cal (RSA/ECDSA) or post-quantum lattice-based (Dilithium/Falcon)
signatures, and according to [36] the handshake with SPHINCS+
takes 2.5−15× the time of the handshake with Dilithium. SPHINCS+
was evaluated on embedded devices in [19, 100]; [19] reports that
handshake with Kyber and SPHINCS+ takes 12 − 20× the time of
the classical handshake with ECDHE and ECDSA; [100] reports
that the handshake with SPHINCS+ takes 714× the time of the
handshake with Dilithium. In our measurements, the TLS 1.3 hand-
shake with SPHINCS+ at security level 1 took 1.58× the time of
the classical handshake with Ed25519. We suspect that the wide
range of reported SPHINCS+ performance is due to a combination
of different setups and the fact that SPHINCS+ has 12 parameter
sets (with varying performance) at each security level (1, 3 and 5).

Lattice-based signatures. Various works [34, 36, 59, 66, 75, 94, 95, 98,
101] studied the use of lattice-based signature schemes in TLS and
tested their performance. Specifically, three lattice-based signatures
were studied: Dilithium [65], Falcon [81] and qTesla [13].

Both Dilithium [65] and Falcon [81] are going to be standardized
byNIST [30]. The security of Dilithium is based on theModule-LWE
problem and that of Falcon on the NTRU problem. The computa-
tional efficiency of these schemes is in the same order of magnitude
as classical algorithms such as ECDSA, but their sizes are much
larger. In fact, Falcon’s keys and signatures are about 16× the sizes
of ECDSA and Dilithium’s sizes are about 39× the sizes of ECDSA
(e.g., Tab. 1 in [95]). At the computational level, Falcon signature
verification time is 0.3 − 0.5× Dilithium’s time, but its signing time
is about 10× Dilithium’s time [36, 76]. On the other hand, Falcon
requires 64-bit floating-point arithmetic, which is not always sup-
ported; in such cases these operations must be emulated which
slows down the signing time by a factor of 10 according to [80].
As [59, 76] have shown, Dilithium and Falcon offer similar perfor-
mance in TLS, except in cases where Falcon’s slower signing time
creates a bottleneck, e.g., when a server (doing the signing) has
to serve multiple clients. Our measurements show that Falcon’s
advantage over Dilithium grows with increasing security level: a
TLS 1.3 handshake with Dilithium takes 1.04× the time of the hand-
shake with Falcon at security levels 1 and 2, while the handshake
with Dilitihum takes 1.1× the time of the handshake with Falcon
at security level 5.

The security of qTesla [13] is based on Ring-LWE. qTesla was
submitted to the NIST competition but did not advance from the

second to the third round because its security/efficiency balance
was not convincing [69] and its closely related competitor Dilithium
is based on a weaker hardness assumption1 (namely Module-LWE)
and offers better performance. In fact, [75, 101] have shown that
qTesla typically performs worse than Dilithium in TLS handshake
scenarios.

Multivariate-based signatures. In addition, the use of multivariate
signature schemes in the TLS handshake, such as GeMSS [21],
Rainbow [56] and MQDSS [88], has been studied in some works [36,
92, 95]. These schemes offer comparable or even better performance
than hash-based or lattice-based ones, but all of them have been
broken subsequently [12, 57, 99]. As it is an open question if and
how they can be fixed, we do not provide details on how the TLS
handshake works with these schemes in this paper, but refer to
those works that studied their deployment.

4.2 Hybrid post-quantum authentication
Hybrid post-quantum authentication uses a classical and a post-
quantum signature scheme in parallel, thus combining classical and
post-quantum security.

Since the current TLS standard does not support the use of
multiple signatures in parallel, the Open Quantum Safe (OQS)
project [33, 98] extended the OpenSSL library as follows: classi-
cal and post-quantum keys and signatures are concatenated and
regarded as regular keys and signatures, respectively, of a single
signature scheme. This hybrid signature scheme is then used in TLS
as usual. The approach is implemented for TLS 1.3 and currently
supports the combination of classical algorithms RSA/ECDSA with
Dilithium/Falcon/SPHINCS+.

Two works [66, 101] have tested the OQS implementation in sev-
eral configurations. From their results, we can conclude that hybrid
post-quantum authentication takes about 1.2−2× the time of purely
post-quantum authentication. The specific factor depends, of course,
on the performance ratio between the classical and post-quantum
signatures used. For example, according to [101], a purely post-
quantum TLS handshake using Dilithium (purely post-quantum
authentication) and Kyber (purely post-quantum key exchange,
Sec. 5.1) takes 18 ms, while a hybrid TLS handshake using RSA
+ Dilithium (hybrid post-quantum authentication) and ECDHE +
Kyber (hybrid post-quantum key exchange, Sec. 5.2) takes 30 ms.
Another result, using FrodoKEM instead of Kyber and Picnic instead
of Dilithium, shows that the purely post-quantum handshake takes
64ms and the hybrid handshake takes 75ms. The main reason why
the factor is about 1.7 in the first example but only 1.2 in the second
1If the security of a cryptographic primitive/security protocol 𝑋 reduces to a weaker
hardness assumption than another one 𝑌 , then 𝑋 is at least as secure as 𝑌 .



SoK: Post-Quantum TLS Handshake

Table 4: Comparison of post-quantum signatures

Algorithm (sec. level) Category Public key Signature Public key + signature TLS slowdown coefficient
[bytes] [bytes] [bytes] Our data External sources

Falcon (L1) Lattice-based 897 666 1 563 0.98 0.75 − 1.04 [36, 59, 95]
Dilithium (L2) Lattice-based 1 312 2 420 3 732 1.02 0.95 − 1.03 [36, 59, 95]
SPHINCS+ (L1) Hash-based 32 7 856 7 888 1.58 3 − 13.8∗ [36, 59, 94, 95]

Data sizes taken from [2] (for SPHINCS+ we take the small parameter choice, as defined in [52]). “TLS slowdown coefficient” is defined as 𝑡𝑝𝑞

𝑡𝑐
, where 𝑡𝑝𝑞 is the TLS handshake time

with the post-quantum scheme and 𝑡𝑐 is the time with a comparable classical scheme (RSA/ECDSA). We provide ranges for the external sources since their setups are not completely
consistent. ∗We attribute the wide range to SPHINCS+ having multiple security level 1 parameter sets which differ in performance. Setup for our data (see Appendix A for more
details): comparison with Ed25519, certificate chain length 2, and key exchange x25519; RTT 7ms, bandwidth 1.08Gb/s; SPHINCS+ parameter set: SHA2, simple, small.

is that the post-quantum primitives in the first example are more
efficient than those in the second.

4.3 Discussion
We summarize the state of the art and place these findings in a
real-world context.

Observation 1. Both purely and hybrid post-quantum authenti-
cation can be implemented efficiently.

The benchmarks of our simulations confirm and refine the results
of previous analyses (see Tab. 4). In particular, Dilithium and Falcon
are the most reasonable proposals so far for quantum-proofing TLS
authentication, both for use in single handshake sessions and for
certificates, while XMSS is a viable alternative for certificates only.
All three of these schemes will be or have been standardized by
NIST. Both Dilithium and Falcon can be combined with classical
signature schemes such as RSA or ECDSA for hybrid post-quantum
authentication in TLS that is almost as efficient as purely post-
quantum authentication.

We also find that the hash-based signature scheme SPHINCS+
provides an interesting alternative to the other schemes, but depend-
ing on its mode it can significantly slow down the TLS handshake.

We note that the main bottleneck of post-quantum authentica-
tion in TLS is the larger key/signature size, which may limit its
applicability especially in low-bandwidth networks or for some IoT
applications.

We finally observe that both the purely post-quantum and hy-
brid post-quantum authentication approaches are crypto-agile, as
they are not tailored to specific signature schemes, and are back-
ward compatible. While the purely post-quantum approach can be
implemented in TLS without any conceptual changes, the hybrid
approach requires some protocol modifications (see above).

Observation 2. Hybrid post-quantum solutions for authentica-
tion in TLS have not yet received the attention (in academia) that
their practical relevance deserves.

In the following, we elaborate on this observation. To begin with,
we recall from above that hybrid post-quantum authentication
has so far been studied in only two papers, while a dozen papers
have analyzed purely post-quantum solutions. Furthermore, only
standard TLS with its single signatures has been formally verified
(e.g., [31]) or cryptographically analyzed (e.g., [39]), but not TLS
with two (arbitrary) signatures.

We think that this state of affairs is unsatisfactory, since the
hybrid approach can offer significant advantages in real world sce-
narios. First, from a security point of view, the hybrid approach
is more robust, since even if one of the hardness assumptions, i.e.,
the classical or the post-quantum one, does not hold, the other can
still serve as a backup. Second, hybrid solutions are also advanta-
geous in the transition to the post-quantum era. For example, if a
Trust Service Provider (TSP) [41] wants to prepare to protect its
authentication services against quantum attackers, it needs to find
a post-quantum TLS solution that meets the relevant regulatory
requirements. Since major standards such as eIDAS in Europe cur-
rently mandate the use of classical cryptography, the TSP must
adopt a hybrid approach. For these reasons, post-quantum tran-
sition projects, such as HAPKIDO [82] in the Netherlands, often
follow the hybrid post-quantum approach, and some authorities,
such as the German Federal Office for Information Security (BSI) [1],
require using hybrid cryptography during the migration to post-
quantum cryptography.

To bridge this gap between theory and practice, we recommend
that the academic community continues to explore hybrid solutions,
both in terms of engineering and formal security.

Observation 3. Although future quantum attackers cannot break
the authentication of past TLS sessions, migration to post-quantum
PKIs must begin soon.

While future quantum attackers who gain access to the tran-
scripts of today’s TLS sessions can indeed break the secrecy of
those sessions (see also Sec. 5), these attackers do not pose a threat
to the authentication of today’s TLS sessions for a simple reason.
Authentication is complete at the end of the TLS handshake, and
even if the server reveals its signature key afterwards, the client
can still be sure that it is communicating with the correct server.

However, this does not mean that we can sit back and relax,
because for a variety of reasons it will take a long time to fully secure
the underlying PKIs against quantum attackers. A major constraint
in this transition is the long lifetime of CA root certificates, typically
10 to 20 years, which should be secure for that time. Although in
principle root certificates can be revoked at any time, in practice
such a process would be cumbersome and error-prone, as it would
require updating the entire PKI and all users’ devices. Since current
research (e.g., [70]) estimates that there is a high risk that quantum
computers will be able to forge classically signed certificates in the
next 10 to 20 years, work should start now on building PKIs that
enable post-quantum authentication (in TLS).



Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

We note that there are essentially two approaches to making
existing PKIs post-quantum: creating a standalone, purely post-
quantum PKI and using the classical and the post-quantum PKIs
in parallel, or integrating post-quantum signatures into classical
certificates. As this specific topic is beyond the scope of our paper,
we refer the reader to [14, 33, 58] for details, in particular for a
comparison of these two approaches.

5 POST-QUANTUM KEY EXCHANGE
We describe and compare existing proposals for post-quantum
key exchange in TLS. Again, as with post-quantum authentication
(Sec. 4), we distinguish between purely post-quantum and hybrid
post-quantum approaches. Purely post-quantum solutions (Sec. 5.1)
use only post-quantum cryptography, while hybrid post-quantum
ones (Sec. 5.2) combine classical and post-quantum cryptography.

We will see that there is only one general purely post-quantum
key exchange approach, while there are several approaches for
hybrid post-quantum key exchange.

5.1 Purely post-quantum key exchange
All works in the literature that studied replacing the classical DH
key exchange with post-quantum alternatives are based on KEMs.
This approach was studied for TLS 1.2 in [15, 16, 19, 33, 34, 77, 98]
and for TLS 1.3 in [11, 33, 36, 66, 76, 92, 92, 94, 98, 100, 101, 103].

The idea of using KEMs for ephemeral key exchange in TLS
works as follows (Figs. 1 and 2):

(1) The client generates an ephemeral KEM key pair and sends
the public key to the server.

(2) The server runs the encapsulation mechanism with the pub-
lic key of the client as the input and obtains the ciphertext
and the shared secret. The server sends the ciphertext to
the client.

(3) The client decapsulates the ciphertext with its private key
and gets the shared secret.

Comparing this process with the original DH flow (Fig. 1) shows
that it is possible to use KEMs in TLS instead of DH key exchange
without changing the overall protocol flow.2 Thus, the main chal-
lenge for purely post-quantum key exchange is to find a cryp-
tographic solution with a reasonable balance between quantum-
security and performance in terms of speed and size.

In Tab. 5, we summarize the sizes of the most relevant post-
quantum signature schemes and their impact on the computational
performance of TLS. As with the purely post-quantum authentica-
tion, we simulated TLS with these KEMs in a realistic and consistent
environment to obtain meaningful and comparable benchmarks
(see App. A for details).

Analogous to Sec. 4.1, we classify existing work on purely post-
quantum key exchange based on the underlying hardness assump-
tions of the key exchange schemes.

Lattice-based KEMs. We identified three different groups of lattice-
based KEMs that we characterize by their underling hardness as-
sumptions: variants of Learning-with-Errors (LWE) [15, 16, 79, 91],

2This approach is not entirely new, since RSA key exchange, which can be considered
a KEM, could be used in TLS 1.2 for (static) key exchange.

Client Server

pubkey𝐶

𝑠𝑠 ← DH(privkey𝑆, pubkey𝐶)
pubkey𝑆

𝑠𝑠 ← DH(privkey𝐶, pubkey𝑆)

Shared secret 𝑠𝑠 established

Figure 1: DH key exchange

Client Server

pubkey𝐶

(𝑐, 𝑠𝑠) ← Encaps(pubkey𝐶)
𝑐

𝑠𝑠 ← Decaps(privkey𝐶, 𝑐)

Shared secret 𝑠𝑠 established

Figure 2: KEM key exchange

Learning-with-Rounding (LWR) [54], and variants of NTRU [10,
27].

Among the LWE KEMs, we distinguish between the following
three categories, depending on which variant of LWE their security
is based on. The security of Frodo [15] reduces to the “conservative”
plain LWE assumption, that of Kyber [91] to the Module LWE
(MLWE) assumption, and that of NewHope [79] (and its predecessor
BCNS [16]) to the stronger Ring LWE (RLWE) assumption. All of
these KEMs were submitted to the NIST standardization process.3
NIST selected Kyber as a winner, while FrodoKEM and NewHope
did not advance from the 3rd to the 4th round because Kyber’s
performance is significantly better than FrodoKEM’s (see below),
and because Kyber offers a similar performance to NewHope but
requires a weaker hardness assumption for this (see [2, 69] for
details about NIST’s selection).

The TLS performance of these LWE KEMs was extensively stud-
ied in the literature (see, e.g., [19, 36, 66, 76, 77, 92, 94, 100, 101])
and their characteristics can be summarized as follows. Overall,
the performance of TLS with Kyber is similar to that of TLS with
classical key exchange protocols such as ECDHE, and in some con-
figurations even better. According to [94], the TLS 1.3 handshake
with Kyber and Dilithium, at security level 1, takes roughly the
same time as a classical handshake with ECDHE and RSA while at
security level 3 it takes 2× the time (compared to the same classical
scheme). Another work [36] finds that Kyber, at NIST security level
3The submitted versions of Frodo, called FrodoKEM [71], and of NewHope [79] differ
from their original specifications [4, 15] in that they provide not only IND-CPA but
even IND-CCA security, as required by NIST.



SoK: Post-Quantum TLS Handshake

Table 5: Comparison of post-quantum KEMs

Algorithm (sec. level) Category Public key Ciphertext Public key + ciphertext TLS slowdown coefficient
[bytes] [bytes] [bytes] Our data External sources

Saber (L1) Lattice-based 672 736 1 408 1.07 0.89 [36]
Kyber (L1) Lattice-based 800 768 1 568 1.06 0.86 − 1.02 [36, 38]
NTRU (L1) Lattice-based 930 930 1 860 1.13 1.57 − 1.64∗ [15]
NTRU Prime (L2) Lattice-based 1 158 1 039 2 197 1.53 0.95 [11]
BIKE (L1) Code-based 1 540 1 572 3 112 2.55 N/A
HQC (L1) Code-based 2 249 4 481 6 730 1.23 N/A
FrodoKEM (L1) Lattice-based 9 616 9 720 19 336 2.53 1.14 − 1.29∗ [15]

Data sizes taken from [2] (for NTRU Prime we take the streamlined parameter choice at security level 2, as defined in [10], because this parameter was used in the external
source [11]). “TLS slowdown coefficient” is defined as 𝑡𝑝𝑞

𝑡𝑐
, where 𝑡𝑝𝑞 is the TLS handshake time with the post-quantum scheme and 𝑡𝑐 is the time with ECDHE. We provide ranges

for the external sources since their setups are not completely consistent. “N/A” is used where we did not find external sources from which we could compute the TLS slowdown
coefficient. ∗ indicates that tested KEMs were only IND-CPA secure. Setup for our data (see Appendix A for more details): comparison with x25519, certificate chain length 2, and
signature ECDSA (prime256v1); RTT 7ms, bandwidth 1.08Gb/s; FrodoKEM: AES, NTRU Prime: Streamlined.

1, has almost identical performance to ECDHE with Curve25519
in TLS 1.3, and is even faster at security levels 3 (ECDHE with
Curve448) and 5 (ECDHE with curve P-521) by a factor of 2 and 7 re-
spectively. NewHope’s performance is similar to that of Kyber [94]
but it requires a stronger hardness assumption (RLWE vs. MLWE)
and therefore Kyber can be considered superior to NewHope. The
TLS handshake with FrodoKEM takes 2.7× the time a handshake
with Kyber or NewHope takes according to [101] and its public key
and ciphertext sizes are about 10× the sizes of Kyber or NewHope
[2]. The original FrodoKEM paper [15] reports that the TLS 1.2
handshake with FrodoKEM takes 1.14−1.29× the time of a classical
handshake with ECDHE but we note that this paper tested only the
IND-CPA version. We measured the latest FrodoKEM IND-CCA ver-
sion and we observed that the TLS 1.3 handshake with FrodoKEM at
security level 1 takes 2.53× the time of the classical handshake with
ECDHE (Curve25519). While these numbers show that Kyber’s per-
formance is significantly better than FrodoKEM’s, they demonstrate
that the more conservative FrodoKEM can still be a practical choice
for use in TLS. Indeed, FrodoKEM is still recommended by some
authorities (e.g., German Federal Office for Information Security)
and is currently being standardized by ISO [42].

The security of Saber [54] is based on the Module Learning-with-
Rounding (MLWR) assumption. The use of Saber in TLS 1.3 was
studied in [36, 66, 101], all of which report that the key exchange
phase in TLS with Saber is at least as efficient as with Kyber, both
in terms of time and size. We also measured Saber’s performance
with the same outcome (App. A). Saber was also submitted to the
NIST competition but, unlike Kyber, Saber did not advance to the
4th round of the NIST competition because its hardness assumption
Module Learning-with-Rounding had not yet been researched as
much as Kyber’s Module Learning-with-Errors assumption [2].

There are two KEMs whose security reduces to the NTRU prob-
lem. The first KEM is based on a modification of NTRU, called
NTRU Prime [10]. Its hardness assumption is intended to be more
conservative than the original NTRU problem and than the un-
derlying hardness assumptions of Kyber and Saber, respectively
(see above), with only slightly larger key shares. In [11], the NTRU
Prime KEM was integrated into TLS 1.3, essentially as described
above, but with some performance optimizations which ensured

that the resulting TLS 1.3 handshake with NTRU Prime takes 0.95×
the time of the classical handshake with x25519. Our measurements
show that the TLS 1.3 handshake with NTRU Prime’s LPR variant at
security level 1 takes 1.11× the time of the handshake with x25519
while the Streamlined varint at security level 1 takes 1.45× the time.

The security of the second KEM reduces to the classic NTRU
problem and is therefore commonly referred to as NTRU [27]. The
key shares of NTRU and NTRU Prime (see above) have essentially
the same size. According to [94], the TLS 1.3 handshake with NTRU
takes similar time as with Kyber (at security level 3) and takes
about 2× the time of a classical ECDHE handshake; however, this
result is inconsistent with the claim in the same paper that NTRU’s
algorithms take up to 100× the time of Kyber algorithms while
having similar sizes. The performance of NTRU and Kyber in TLS
has also been studied and compared in [101] which reports that the
handshake with NTRU takes about 3.25× time of the handshake
with Kyber while being comparable to FrodoKEM. According to [66]
the TLS 1.3 handshake with NTRU takes 1.05 − 1.07× the time of a
handshake with Kyber or Saber at multiple security levels which
corresponds to our measurements presented in Appendix A.

Code-based KEMs. HQC [68] and BIKE [5] are the only code-based
KEMs tested in TLS [36, 100, 101].4 HQC and BIKE were both sub-
mitted to the NIST competition and reached the 4th round [2].
BIKE’s public key and ciphertext sizes are about 0.5× the sizes
of HQC but its computations (key generation, encapsulation, de-
capsulation) take approximately 4.3× the time of HQC’s computa-
tions [37].5 According to [100], the TLS 1.3 handshake with BIKE
takes 4.3× the time of the handshake with Kyber, and the handshake
with HQC takes about 1.8× the time of the handshake with Kyber,
whose performance is similar to that of ECDHE. Our measurements
show that the TLS 1.3 handshake with HQC at sec. level 1 takes
1.45× the time of the classical handshake with x25519 while the

4A reader may wonder if Classic McEliece [3] has been also integrated into TLS. We
have not found such a work, and we suspect that this is because TLS does not support
public keys larger than 216 − 1 bytes [87], but the smallest public key size for Classic
McEliece is 4× this limit.
5Computed as sum of cycles for each operation at security level 1, x86 architecture,
code type - performance mode, 2023-06-24.



Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

handshake with BIKE at sec. level 1 takes 2.55× the time of the
classical handshake.

Isogeny-based KEMs. SIKE [55] is the only isogeny-based KEM that
was tested in TLS, in fact in [36, 92, 100, 101]. The advantage of
SIKE over code-based or lattice-based schemes (see above) is its key
and ciphertext sizes which are at most 0.5× the sizes of lattice-based
KEMs, such as Kyber [91] or Saber [54]. On the downside, a TLS 1.3
handshake with SIKE takes around 15× the time of the handshake
with Kyber or Saber according to [101], and even 31× according
to [36]. The main problem with SIKE, however, is that it has been
shown to be insecure [22].

5.2 Hybrid post-quantum key exchange
We identified three different approaches to hybrid key exchange
in TLS. The first two run one classical and one post-quantum key
exchange algorithm in parallel, and they differ in how they integrate
the additional post-quantum key share into the overall protocol
flow (Secs. 5.2.1 and 5.2.2). The third approach differs from the other
two in that it uses one classical and 𝑛 ≥ 1 post-quantum algorithms
in parallel (Sec. 5.2.3).

5.2.1 Concatenation. The main idea here is to concatenate the
classical and post-quantum key material (public keys/ciphertexts)
and treat them as single elements in TLS. This is conceptually
similar to the hybrid authentication as described in Sec. 4.2.

More specifically, in the negotiation phase, one classical and
one post-quantum key exchange protocol are negotiated. Then,
in the key exchange phase, the classical and post-quantum key
exchange algorithms are run in parallel on a concatenated input,
the classical and post-quantum parts of which are first decoupled
and then processed individually by the respective algorithms. The
outputs of the two algorithms are concatenated to form the shared
secret, which is then processed as in the usual TLS protocol. We
note, however, that one of the key shares must be of known constant
length to be able to decouple them.

The concatenation approach was first proposed for TLS 1.2
in [16] and later in [15]. The authors of [16] instantiated this ap-
proach with ECDHE and their Ring-LWE-based key exchange al-
gororithm BCNS (Sec. 5.1). Their evaluation results show that the
TLS handshake using this hybrid key exchange takes about 1.7×
the time of the handshake using ECDHE and about 1.4× the time of
the handshake using the purely post-quantum key exchange with
BCNS. The results of [15] show that the handshake using a hybrid
key exchange (ECDHE with NewHope [4]) takes about 1.2× the
time of the handshake with ECDHE and about 1.4× the time of the
handshake using the purely post-quantum key exchange NewHope.

Later, the concatenation approach was also proposed for the
latest version 1.3 of TLS in [60, 97]. The OpenSSL fork from the
Open Quantum Safe (OQS) project implements the concatenation
approach [33, 98] for hybrid key exchange in TLS 1.3. The effi-
ciency of this implementation in various settings was analyzed
in [75, 92, 101]; we summarize their main insights next. First, [75] re-
ports that the performance of a hybrid key exchange with ECDHE

and Kyber in TLS 1.3 is essentially identical to a classical key ex-
change with ECDHE under ideal network conditions. In environ-
ments with a high packet loss, the additional bandwidth require-
ments of post-quantum algorithms make the hybrid key exchange
protocol significantly less efficient than the classical one. Another
main observation made in [75] is that SIKE [55], with key shares
0.4× the size of Kyber, performs significantly worse than Kyber
under ideal network conditions due to its much slower computa-
tions, but in environments with high packet loss, SIKE outperforms
Kyber, since SIKE’s slow computations get negligible compared
to Kyber’s higher bandwidth requirements, which cause a higher
packet retransmission rate.6

Google conducted two hybrid post-quantumTLS experiments [63,
64] that also implemented the concatenation approach. In the first
experiment [63], the authors tested a hybrid key exchange in TLS 1.2
with NewHope [4] and ECDHE, and they concluded that the tested
hybrid post-quantum solution can be considered practical. The
second experiment [64] was conducted in collaboration with Cloud-
flare [62]. It tested two hybrid key exchange configurations in
TLS 1.3 with NTRU [27] and ECDHE, and with SIKE [55] and
ECDHE. The overall result is consistent with the results of [75] (see
above), as the performance of the pair NTRU/ECDHE is similar
to that of the classical ECDHE, while the performance of the pair
SIKE/ECDHE is worse than NTRU/ECDHE under ideal network
conditions, but better under poorer network conditions such as in
mobile communications. In 2022, Google announced that it had im-
plemented this hybrid approach (using ECDHE with NTRU) in its
modified TLS protocol called ALTS [47]. Since August 2023, Google
Chrome 116+ [49] supports post-quantum hybrid key exchange by
a combination of x25519 with Kyber-768 (NIST security level 3).

5.2.2 Separation. An alternative solution to concatenating key
shares by using existing TLS data structures (Sec. 5.2.1) is to mod-
ify messages or to create extensions in order to transport addi-
tional post-quantum key shares in the hybrid key exchange. In this
way, the classical and post-quantum key shares are separated more
clearly in the TLS data structures.

The authors of [32] apply this idea to TLS 1.2 by extending
ClientHellowith a list of supported post-quantum KEMs, ordered
by preference. In order to transport both the classical and the post-
quantum keys, they modify ServerKeyExchange and ClientKey-
Exchange so that the post-quantum key share is embedded in a
newly defined field, while the classical key share is embedded as
in the TLS 1.2 standard. As in the previous approach (Sec. 5.2.1),
the final shared secret is the concatenation of the resulting classical
and post-quantum secrets.

The same approach has been proposed for TLS 1.3 in [89] but
with some technical differences. First, the authors define new group
code points for the post-quantum key exchange algorithms, so
that the hybrid pair of key exchange algorithms can be negotiated
as in standard TLS 1.3. Second, the authors define a new exten-
sion additional_key_share of ClientHello and ServerHello.
While the classic key shares are transported as in the TLS 1.3 stan-
dard, the post-quantum ones are sent using the new extension.

6However, recall from Sec. 5.1 that SIKE has been shown to be insecure after these
experiments.



SoK: Post-Quantum TLS Handshake

Finally, the authors modified the key schedule (i.e., the key deriva-
tion algorithm) in TLS 1.3 to take as input the classical and the
post-quantum shares.

5.2.3 Robust hybrid. The idea of this approach, which we call the
robust hybrid, is to use more than two key exchange algorithms in
parallel to further reduce the attack surface.

In [90], this approach is applied to TLS 1.2. First, the authors
extend ClientHello and ServerHello to negotiate the combina-
tion of multiple (post-quantum) key exchange algorithms and to
transport all public keys. Second, they modify ServerKeyExchange
and ClientKeyExchange to transport the additional ciphertexts in
new dedicated fields. The classical key exchange phase remains
unchanged. Finally, the shared secret is the concatenation of the
classical secret and the additional (post-quantum) secrets.

A similar approach was proposed in [103] for TLS 1.3. The pro-
posal modifies the standard key_share extension to accommo-
date hybrid key sharing, and also defines a new TLS extension
hybrid_extension for ClientHello, which serves as a mapping
between code points in supported_groups and the set of key ex-
change algorithms used in the hybrid key exchange. For example,
if the client wants to use a hybrid key exchange with ECDHE,
Kyber and NTRU, the client selects an unallocated code point in
supported_groups and includes the description of the code point
into hybrid_extension. The public keys are transported in the
key_share extension, except that the KeyShareEntry correspond-
ing to the hybrid code point contains a list of three KeyShareEntry
values representing the public keys. The authors of [103] note that
their modification is interoperable with standard TLS 1.3, since the
modified KeyShareEntry is treated identically to a KeyShareEntry
of an unsupported algorithm in TLS 1.3.

We have not found any publications that analyze the perfor-
mance of this approach. While for one classical and one post-
quantum algorithm, we assume that the performance is the same as
in the concatenation approach, which has been tested extensively
(Sec. 5.2.1), it is not obvious how this approach scales with more
than one post-quantum key exchange algorithm in realistic settings.

5.3 Discussion
We summarize the state of the art and place these findings in a real-
world context. Recall from Sec. 2 that future quantum attackers can,
in particular, undermine the confidentiality of TLS by breaking the
classical key exchange protocol, even of past TLS sessions (“store
now, decrypt later” attacks).

Observation 4. All existing proposals for purely and hybrid post-
quantum key exchange in TLS use KEMs. Using KEMs for key ex-
change requires significant protocol changes, and the security of the
resulting TLS protocol has not yet been formally verified.

This observation, which follows directly from Secs. 5.1 and 5.2,
shows that post-quantum key exchange is more challenging than
post-quantum authentication (Sec. 4), since simply replacing the
classical cryptography (e.g., ECDHE in TLS 1.3) does not work
here. In fact, deploying a different cryptographic concept, namely
KEMs, is the only known approach to efficient post-quantum key
exchange.

From an engineering perspective, using KEMs for key exchange
in TLS requires some adaptions of the handshake protocol, as op-
posed to simply using different signatures for post-quantum au-
thentication.

To our knowledge, the security of the TLS protocol with (ab-
stract) KEMs for key exchange has not yet been formally verified.
Although we assume that the security of the TLS protocol is in
principle preserved, we think that this research problem needs to
be addressed before the modified TLS is used in real world scenar-
ios. To illustrate the importance of a formal analysis, we recall that
during the development of TLS 1.3, researchers formally verified
the security of the drafts and identified subtle issues (see, e.g., [31]).

A specific open question that needs to be answered is whether
the weaker notion of IND-CPA or the stronger (and commonly
used) notion of IND-CCA secure KEMs is sufficient to preserve
the security of the current TLS 1.3 standard. Since in some early
works [15, 16], the proposed KEMs are only secure against chosen
plaintext attacks (IND-CPA), the authors of these papers changed
the protocol flow of TLS 1.2, as otherwise the security of the result-
ing protocol could not be guaranteed (Sec. 5 in [16]). Essentially,
in the modified version, the server signs the transcript at a later
stage, so that it also contains the client’s public key. Since in TLS 1.3,
the server already signs the transcript in this way, it appears that
IND-CPA secure KEMs could be used in TLS 1.3 without further
modification to improve efficiency.

Observation 5. Both purely and hybrid post-quantum key ex-
change can be implemented efficiently.

Let us first summarize the state of the art for purely post-quantum
key exchange in TLS (Sec. 5.1); see Tab. 5 for the sizes of the most
relevant post-quantum KEMs and their TLS performance. We find
that the lattice-based KEMs FrodoKEM, Kyber and NTRU Prime,
and the code-based KEMs HQC and BIKE are the most promising
proposals so far for post-quantum key exchange in TLS. These
KEMs are practically efficient, albeit to varying degrees, and based
on reasonable hardness assumptions. In contrast, the security of
NewHope relies on Ring-LWE, which may be significantly easier
to solve than the hardness assumptions of the other lattice-based
schemes, and the underlying hardness assumption of Saber is not
yet sufficiently well understood. Since SIKE has been shown to be
insecure, this KEM should not be used.

We have also seen that the concatenation approach for hybrid
post-quantum key exchange (Sec. 5.2.1) provides a practical option,
for example for the Kyber/ECDHE pair. Although, as to the best
of our knowledge, the performance of the separation approach
(Sec. 5.2.2) has not yet been studied in the literature, we assume
that its overall efficiency is the same as that of the concatenation
approach, since the cryptographic content is the same, only trans-
ferred in different places. As we already noted in Sec. 5.2.3, it is
still an open research question to study the performance of using
multiple post-quantum KEMs for higher robustness.

Observation 6. While the concatenation approach to hybrid key
exchange has received more attention, both the concatenation and sep-
aration approaches provide reasonable solutions with slightly different
characteristics.



Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

Unlike the separation approach (Sec. 5.2.2), the concatenation
approach (Sec. 5.2.1) is the only hybrid key exchange approach
that has been implemented and tested in various TLS libraries (e.g.,
OpenSSL [98], s2n [6]). Furthermore, the concatenation approach is
currently an active IETF draft [97], while the IETF drafts of the other
two approaches have expired, namely [32, 89] for the separation
approach and [90, 103] for the robust hybrid approach.

We find that, from an engineering perspective, the separation
approach is “cleaner”, since it uses the TLS extension framework
and clearly separates the cryptographic material, as opposed to
the concatenation approach. On the other hand, the separation
approach requires to modify the TLS key schedule for deriving the
shared secrets (Sec. 5.2.2), whereas the concatenation approach can
use the standard TLS key schedule, as described in the current IETF
draft [97]. Overall, apart from these marginal differences, these two
approaches are similarly challenging to realize.

We are not convinced that the robust hybrid approach (Sec. 5.2.3),
which enables one to use more than two KEMs in parallel, offers any
significant advantages in practice. We find that using one classical
and one post-quantum KEM, not only provides a high level of
security, but it is also sufficient to address possible legal restrictions
(Sec. 4.3). Therefore, the limited added value of using more than
two KEMs does not justify the computational overhead.

6 POST-QUANTUM AUTHENTICATED KEY
EXCHANGE

We describe and discuss those proposals that simultaneously guar-
antee authenticity and secrecy of the TLS handshake, unlike the
proposals in the previous two sections, which provide exactly one
of these two properties.

6.1 KEMTLS
KEMTLS [92] uses post-quantum KEMs to provide post-quantum
authenticated key exchange (AKE) in TLS 1.3 without signing mes-
sages.7 The main idea of KEMTLS is based on the observation that
signing messages between the client and server is sufficient but not
necessary for authentication. In fact, the handshake can be more
efficient using a KEM instead of signatures. This is done by using
a KEM to prove to the client that the server knows a secret key
corresponding to its public verification key.

While KEMTLS is conceptually similar to the “TLS 1.3 candidate”
OPTLS [61], which uses DH for AKE without signatures, KEMTLS
is the first work that realizes this idea with post-quantum KEMs.

In the usual TLS 1.3 setup with unilateral authentication, the
server has a static signature key pair and a certificate binding the
signature public key to the server. In the corresponding KEMTLS
setup, the server has a static KEM key pair and a certificate binding
the static KEM public key to the server.

Description. We now describe the KEMTLS handshake protocol.
Since KEMTLS is a modification of the standard TLS 1.3 protocol
(App. B.1), we only present the modifications.

(1) Client→ Server: The client sends ClientHello with KEM
algorithms selection and corresponding ephemeral KEM
public keys.

7KEMTLS still uses digital signatures for certificates.

(2) Server→ Client: The server selects the KEM algorithm and
runs encapsulation using the client’s public key. The result-
ing KEM ciphertext is the server’s key share in ServerHello
and the shared secret is fed into the key schedule. The
server’s Certificate message contains a certificate with
its static KEMpublic key. CertificateVerify is never sent.
Finished is delayed and sent in the next message flow.

(3) Client→ Server: The client decapsulates the KEM cipher-
text from ServerHello and the resulting shared secret is
fed into the key schedule. The client runs encapsulation
using the server’s static public key. The client sends a new
KEMTLS message ClientKemCiphertext which contains
the resulting KEM ciphertext. The resulting (second) shared
secret is also fed into the key schedule. The client sends its
Finished message.

(4) Server→ Client: The server decapsulates the KEM cipher-
text from ClientKemCiphertext and inputs the shared se-
cret into the key schedule. The server sends its Finished
message. Note that this message flow is extra compared to
TLS 1.3.8

After the client receives the server’s Finished message, the
handshake is concluded. Note that compared to TLS 1.3, the Finished
messages are computed using HMAC keys which are derived from
the initial ephemeral key exchange and the static key exchange.

The modifications can be summarized as follows: the ephemeral
key exchange uses KEMs instead of DH, the client sends ClientKem-
Ciphertext instead of the server sending CertificateVerify,
the server delays its Finished message and the TLS key schedule
includes an extra round.

Asmentioned above, themain concept of KEMTLS is to use KEMs
instead of signatures for AKE, whereby KEMTLS trades the cost of
creating and verifying one signature for the cost of encapsulating
and decapsulating one message (plus a practically negligible key
scheduling round).

Performance. The main advantage of KEMTLS is its smaller commu-
nication size, due to the fact that post-quantum KEMs have typically
smaller bandwidth requirements than post-quantum signatures in
those protocols presented in Sec. 4.

For example, [92] reports that a KEMTLS handshake with Ky-
ber [91] as KEM and Dilithium [65] as the signature scheme for
certificates is about 0.85× the size of the TLS 1.3 handshake using
post-quantum authentication with Dilithium (as in Sec. 4.1) and
post-quantum key exchange with Kyber (as in Sec. 5.1). In another
example, [92] states that the size of the KEMTLS handshake is about
0.71× the size of the corresponding post-quantum TLS handshake
when SIKE [55] is used as the KEM and Falcon [81] and XMSS [51]
are used to create certificates.

Therefore, overall, the KEMTLS handshake can be faster in cer-
tain settings, as reported in [24, 92]. While the performance of
KEMTLS is essentially the same as the separate post-quantum ap-
proach for the Kyber/Dilithium pair, the KEMTLS handshake takes
0.98× the the time of a TLS 1.3 handshake when used with the
NTRU/Falcon pair. On the other hand, when KEMTLS is used with
a computationally expensive KEM such as SIKE, it can take up

8The client can still send its application data together with the Finished message.



SoK: Post-Quantum TLS Handshake

to 1.36× the time of the corresponding separate post-quantum ap-
proach. The performance of KEMTLSwas also studied on embedded
devices in [46], which reports that “KEMTLS can reduce handshake
time by up to 38%, can lower peak memory consumption and can
save traffic volume compared to TLS 1.3”.

Extensions. While the original KEMTLS paper [92] focuses on uni-
lateral authentication, it also describes in its appendix how to
achieve mutual authentication by adding an extra round trip.

In [93], a modification of KEMTLS with pre-distributed keys is
proposed, called KEMTLS-PDK. Pre-distributed keys are similar
to pre-shared keys in TLS 1.3, except that pre-shared keys are
symmetric keys, while pre-distributed keys are public keys.

While the original KEMTLS paper [92] only mentions the pos-
sibility of using hybrid KEMs to achieve hybrid AKE, this option
was implemented in [45], which demonstrated that the overhead
of using hybrids is small (about 8%) and that hybrid KEMTLS is
therefore a realistic option.

Security. We note that, as pointed out in [92], the KEMs in KEMTLS
need to be IND-CCA secure. In addition to its original pen-and-
paper proof, the KEMTLS(-PDK) protocol was formally verified
using Tamarin [25] and SAPIC+ [29].

Related work. A recent paper [20] proposes an alternative instan-
tiation of OPTLS [61] using CSIDH [23] to provide post-quantum au-
thenticated key exchange. Although conceptually similar to KEMTLS,
the performance of this proposal is much worse than KEMTLS: in
particular, the handshake of this protocol takes at least 117× the
time of KEMTLS (using Kyber). Another disadvantage is that the
security of CSIDH is questionable [78].

6.2 Mutually authenticated key exchange
While KEMTLSwas primarily designed for unilateral authentication
in TLS, where the server authenticates itself to the client, other
works proposed post-quantum solutions for mutually authenticated
key exchange in TLS, where the server and the client authenticate
themselves to each other.We identified three different approaches in
this group: (Specific) Ring-LWE AKE, password-authenticated key
exchange (PAKE), and identity-based encryption (IBE). The security
of all presented proposals reduces to the Ring-LWE problem.

6.2.1 Ring-LWE authenticated key exchange. The authors of [44]
proposed a modification of the lattice-based AKE of [106] for use
in TLS 1.2. They define a ciphersuite for this primitive, but they do
not specify exactly how this ciphersuite is integrated into TLS 1.2;
for example, they do not define which TLS messages transport the
public keys. In short, [44] focuses on the cryptographic aspects
rather than on the protocol itself.

Since the underlying AKE protocol [106] is designed for mutual
authentication, employing it in TLS requires static keys for both
parties, which need to either be pre-shared or part of a certificate.
The distribution of these static keys not discussed in [44].

The authors of [44] compare the performance of their AKE in
TLS 1.2 with two classical ciphersuites (FFDH with RSA and ECDH
with RSA) and with the Ring-LWE key exchange protocol [16]
(Sec. 5.1) in combination with RSA and ECDSA for authentication.
The authors report that their AKEwith a parameter set (supposedly)

providing 80-bit security is faster than the 1024-bit FFDHwith 2048-
bit RSA, and their AKE with a 256-bit parameter set is slower than
ECDH with a 256-bit parameter set and 2048-bit RSA. They also
compared their AKE with [16] (combined with RSA/ECDSA) and
observed that the TLS handshake with their AKE takes 1.12− 1.18×
the time. We note, however, that these comparisons should be taken
with a grain of salt, as the AKE provides mutual authentication and
the other solutions provide one-way authentication.

6.2.2 Password-authenticated key exchange. Another paper [43]
proposed to employ the PAKE protocol of [35] in TLS 1.2. Un-
like standard AKE protocols, such as the one above, which uses
pre-shared keys, PAKE protocols rely on pre-shared passwords for
higher efficiency in exchange for weaker security.

The only performance data provided in [43] shows that the
handshake with their PAKE takes on average about 4.9ms, when
both the server and the client are on the same machine, which is
an unrealistic setting. The authors also state that the size of the
PAKE key exchange messages is about 2 − 3× the size of classical
(EC)DHE/RSA key exchange messages.

6.2.3 Identity-based encryption. The authors of [7] took a com-
pletely different approach. They proposed to use an identity-based
encryption (IBE) scheme together with a KEM for a mutually au-
thenticated key exchange in TLS 1.3. In IBE schemes, the individual
public key of each user can be publicly derived from a master public
key and the user’s identity. The master public key is generated by
a trusted authority, which also distributes the individual private
keys to the users. The main idea of [7] is to have the CA of the
PKI create a master public key and then distribute the individual
private keys to the clients and servers. The authors claim that this
avoids the need for certificates. The authors of [7] implemented
their approach in TLS 1.3 using a Ring-LWE IBE scheme in com-
bination with NewHope [4] as the KEM (Sec. 5). They stated that
their approach was about 4.5× more efficient in terms of size and
time than alternative certificate-based solutions, without specifying
which solutions they were referring to.

6.3 Discussion
We summarize the state of the art and place these findings in a
real-world context.

Observation 7. The application scenarios of the KEMTLS and of
the AKE approaches are realistic, whereas those of the PAKE and the
IBE approaches are not.

The assumptions made by KEMTLS and AKE are those com-
monly considered for TLS: server certificates (KEMTLS only), pre-
shared keys between clients and servers, or server and client cer-
tificates (KEMTLS & AKE). On the contrary, we are not convinced
that the PAKE and IBE approaches make reasonable assumptions.
First, the use of pre-shared passwords, as required by PAKE, is not
common in TLS applications. Second, the IBE approach places too
much trust in the CA, which not only holds a master secret key
to authenticate users, as in standard TLS, but can also exploit this
knowledge to read all users’ messages.

For these reasons, we will restrict our attention to the KEMTLS
and AKE approaches in the following.



Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

Observation 8. Various post-quantum instantiations of KEMTLS
and one specific instance of the AKE approach have been shown to be
practically efficient.

As mentioned in Sec. 6.1, the original KEMTLS paper presented
detailed benchmarks of KEMTLS with various reasonable post-
quantum instantiations, and [45] showed that hybrid KEMTLS
is also efficient. In contrast, the AKE approach has so far been
instantiated only with a Ring-LWE primitive, whose performance
has indeed been tested, but it remains an open question how the
overall TLS handshake with that primitive performs in realistic
network settings.

Observation 9. While KEMTLS is well defined, well studied with
different instantiations, and well analyzed at both cryptographic
and protocol levels, the focus of the AKE approach is reduced to the
cryptographic details of a single specific instance.

This observation follows directly from our descriptions in Secs. 6.1
and 6.2.1 and implies that KEMTLS is so far the only viable and
trustworthy solution for non-separate post-quantum AKE in TLS.

7 CONCLUSION
Based on our findings from Secs. 4, 5 and 6, we elaborate on the
(research) problems that have been solved and those that are still
open or need more attention.

7.1 Solved problems
The first major finding of our systematic review is a very positive
one: there are a number of reasonable ways to prepare TLS for
the era of quantum attackers. Since the TLS record layer can be
adapted by changing the security parameters of the ciphers and
hash functions (App. C), the main focus is on the TLS handshake.

Efficient purely post-quantum solutions. We have learned that there
exist reasonably secure and efficient purely post-quantum solutions
for authentication (Sec. 4.1), for key exchange (Sec. 5.1), and for
AKE (Sec. 6.1) in TLS. Our extensive benchmarks (see App. A for
full details) refine and confirm the results of previous performance
studies. We observed all reasonable solutions for post-quantum key
exchange (in the literature) use KEMs for this purpose.

Recall that there are two ways to build a purely post-quantum
TLS handshake: first, by combining separate post-quantum solu-
tions for authentication and key exchange; and second, by using
a post-quantum solution that provides AKE directly. For the first
approach, there exist several secure and efficient combinations
(Secs. 4.3 and 5.3), while for the second approach, we found out
that KEMTLS is the only reasonable solution to date (Sec. 6.3).

Efficient hybrid post-quantum solutions. We have seen that there
also exist efficient hybrid post-quantum solutions for authentication
(Sec. 4.2), for key exchange (Sec. 5.2), and for AKE (Sec. 6.1) in TLS.
Although these proposals have some overhead, their efficiency is
not much lower than that of purely post-quantum solutions.

We think that the benefits of hybrid solutions outweigh their
practically limited performance overhead. First, it reduces a risk
that should not be neglected by maintaining classical cryptographic
components as a fallback mechanism. In fact, many post-quantum
schemes and their underlying hardness assumptions are quite young,

and it may well be that some of them turn out to be less secure than
currently thought. For example, SIKE reached the fourth round of
the NIST standardization process before it was shown to be com-
pletely insecure. Second, as we argued in Sec. 4.3, hybrid solutions
using classical cryptographic building blocks may be advantageous
in the transition to the quantum era because of their backward
compatibility and compliance with current regulations.

However, to reduce the number of possible classical/post-quantum
combinations, we recommend limiting the number of post-quantum
algorithms supported in hybrid post-quantum TLS.

High-quality implementations. The development of post-quantum
TLS has largely been driven by a few flagship projects, most notably
theOpenQuantum Safe (OQS) project, which published high quality
implementations of post-quantum TLS. The OQS implementation
is not only the most comprehensive, offering both post-quantum
(hybrid) authentication and key exchange, but also provides easy-
to-use benchmarking facilities. AWS’s implementation of TLS with
post-quantum key exchange [6] is another notable publication.

7.2 Open problems
We identified the following three major open problems.

Formal analysis. As we already noted in Sec. 5.3, it is crucial to
assure that not only the PQC building blocks are secure but also
the overall TLS protocol that needs to be adopted. Stringent proofs
in formal frameworks are the accepted method for ensuring this.

Except for the approaches for purely post-quantum authenti-
cation (Sec. 4.1), which do not change the TLS protocol, all other
approaches require adapting the TLS protocol. However, to the best
of our knowledge, KEMTLS is the only post-quantum TLS approach
which has been formally analyzed, namely in symbolic frameworks
with computer-aided tools [25, 29] and in a cryptographic frame-
work with “pen-and-paper proofs” [92]. In particular, it is still an
open research problem to formally analyze TLS with (two) KEMs
for (hybrid) key exchange, as required by all post-quantum key
exchange solutions (Sec. 5), and TLS with parallel signatures, as
required by hybrid post-quantum authentication solutions (Sec. 4.2).

Increasing diversity. As we observed above, there are reasonable
solutions for post-quantum TLS, but their performance in low-
bandwidth environments with significant packet loss is much worse
than that of current TLS due to their larger sizes. Since SIKE was
the only post-quantum proposal with a demonstrably better perfor-
mance in such environments but it turned out to be insecure, it is
desirable to develop alternative post-quantum solutions with low
communication cost.

Adaption of standards. The most important step towards large-scale
deployment of post-quantum TLS is the adaptation of the relevant
standards. Specifically, we recommend that the next version of
the TLS standard should provide the ability to use KEMs for key
exchange to ensure post-quantum confidentiality. It should also
allow more than one signature or key exchange protocol to be used
in parallel to enable hybrid quantum-security. Again, to avoid subtle
security issues, a formal analysis of future drafts will be crucial.



SoK: Post-Quantum TLS Handshake

ACKNOWLEDGEMENTS
The research work by Nouri Alnahawi has been funded by the
German Federal Ministry of Education and Research and the Hes-
sian State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center for Ap-
plied Cyber-Security ATHENE. Johannes Müller was supported by
the Luxembourg National Research Fund (FNR), under the CORE
Junior project FP2 (C20/IS/14698166/FP2 /Mueller). Jan Oupický
was supported by the industrial partnership project between the
interdisciplinary research center SnT and LuxTrust.

REFERENCES
[1] Referat KM 21. 2021. Migration to Post Quantum Cryptography. Technical

Report. German Federal Office of Information Security.
[2] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, and Yi-Kai Liu. 2022. Status Report on the
Third Round of the NIST Post-Quantum Cryptography Standardization Process.
Technical Report NISTIR 8413. National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.IR.8413-upd1

[3] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, VarunMaram, Info vonMaurich, Rafael Misoczki, Ruben Niederha-
gen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen
Wang. 2022. Classic McEliece – Submission to Round 3 of the NIST Post-
Quantum Project.

[4] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-
Quantum Key Exchange - A New Hope. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016, Thorsten Holz and
Stefan Savage (Eds.). USENIX Association, 327–343.

[5] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Phillipe Gaborit, Shay Gueron, Tim Guneysu, Car-
los Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier,
Jean-Pierre Tillich, Gilles Zemor, Valentin Vasseur, Santosh Ghosh, and Jan
Richter-Brokmann. 2022. BIKE – Submission to Round 3 of the NIST Post-
Quantum Project.

[6] AWS. 2023. Github S2n-TLS/PQ-Crypto. https://github.com/aws/s2n-tls/tree/
main/pq-crypto.

[7] Utsav Banerjee and Anantha P. Chandrakasan. 2020. Efficient Post-Quantum
TLS Handshakes Using Identity-Based Key Exchange from Lattices. In ICC
2020 - 2020 IEEE International Conference on Communications (ICC). 1–6. https:
//doi.org/10.1109/ICC40277.2020.9148829

[8] Elaine Barker. 2020. Recommendation for Key Management Part 1: General.
Technical Report NIST SP 800-57pt1r5. National Institute of Standards and
Technology. https://doi.org/10.6028/NIST.SP.800-57pt1r5

[9] Daniel J. Bernstein. 2009. Cost Analysis of Hash Collisions: Will Quan-
tum Computers Make SHARCS Obsolete? https://cr.yp.to/hash/collisioncost-
20090823.pdf.

[10] Daniel J. Bernstein, Billy Bob Brumley,Ming-Shing Chen, Chitchanok Chuengsa-
tiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri, Christine
van Vredendaal, and Bo-Yin Yang. 2022. NTRU Prime – Submission to Round 3
of the NIST Post-Quantum Project.

[11] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri.
2022. OpenSSLNTRU: Faster Post-Quantum TLS Key Exchange. In 31st USENIX
Security Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022,
Kevin R. B. Butler and Kurt Thomas (Eds.). USENIX Association, 845–862.

[12] Ward Beullens. 2022. Breaking Rainbow Takes a Weekend on a Laptop. In
Advances in Cryptology – CRYPTO 2022 (Lecture Notes in Computer Science).
Springer Nature Switzerland, 464–479. https://doi.org/10.1007/978-3-031-
15979-4_16

[13] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa, Harun
Polat, Jefferson E. Ricardini, and Gustavo Zanon. 2019. qTesla – Submission to
Round 2 of the NIST Post-Quantum Project.

[14] Nina Bindel, Udyani Herath,MatthewMcKague, andDouglas Stebila. 2017. Tran-
sitioning to a Quantum-Resistant Public Key Infrastructure. In Post-Quantum
Cryptography: 8th International Workshop, PQCrypto 2017, Utrecht, the Nether-
lands, June 26-28, 2017, Proceedings 8. Springer, 384–405.

[15] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Valeria
Nikolaenko, Ananth Raghunathan, and Douglas Stebila. 2016. Frodo: Take off
the Ring! Practical, Quantum-Secure Key Exchange from LWE. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 1006–1018. https://doi.org/10.1145/2976749.2978425

[16] Joppe W Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. 2015. Post-
Quantum Key Exchange for the TLS Protocol from the Ring Learning with
Errors Problem. In 2015 IEEE Symposium on Security and Privacy. IEEE, 553–
570.

[17] Gilles Brassard, Peter Hoyer, and Alain Tapp. 1998. Quantum Algorithm for
the Collision Problem. https://arxiv.org/abs/quant-ph/9705002. , 163–169 pages.
https://doi.org/10.1007/BFb0054319 arXiv:quant-ph/9705002

[18] BSI. 2023. Cryptographic Mechanisms: Recommendations and Key Lengths.
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-1.pdf.

[19] Kevin Bürstinghaus-Steinbach, Christoph Krauß, Ruben Niederhagen, and
Michael Schneider. 2020. Post-Quantum TLS on Embedded Systems: Inte-
grating and Evaluating Kyber and SPHINCS+ with Mbed TLS. In Proceed-
ings of the 15th ACM Asia Conference on Computer and Communications Secu-
rity (ASIA CCS ’20). Association for Computing Machinery, 841–852. https:
//doi.org/10.1145/3320269.3384725

[20] Fabio Campos, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez, Michael Meyer,
Krijn Reijnders, Francisco Rodríguez-Henríquez, Peter Schwabe, and Thom
Wiggers. 2023. On the Practicality of Post-Quantum TLS Using Large-Parameter
CSIDH. https://eprint.iacr.org/2023/793.pdf.

[21] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryck-
eghem. 2022. GeMSS – Submission to Round 3 of the NIST Post-Quantum
Project.

[22] Wouter Castryck and Thomas Decru. 2023. An Efficient Key Recovery Attack on
SIDH. In Advances in Cryptology – EUROCRYPT 2023 (Lecture Notes in Computer
Science). Springer Nature Switzerland, 423–447. https://doi.org/10.1007/978-3-
031-30589-4_15

[23] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. 2018. CSIDH: An Efficient Post-Quantum Commutative Group Action.
InAdvances in Cryptology – ASIACRYPT 2018 (Lecture Notes in Computer Science).
Springer International Publishing, 395–427. https://doi.org/10.1007/978-3-030-
03332-3_15

[24] Sofía Celi, Armando Faz-Hernández, Nick Sullivan, Goutam Tamvada, Luke
Valenta, Thom Wiggers, Bas Westerbaan, and Christopher A. Wood. 2021. Im-
plementing and Measuring KEMTLS. In Progress in Cryptology – LATINCRYPT
2021 (Lecture Notes in Computer Science). Springer International Publishing,
88–107. https://doi.org/10.1007/978-3-030-88238-9_5

[25] Sofía Celi, Jonathan Hoyland, Douglas Stebila, and Thom Wiggers. 2022. A
Tale of Two Models: Formal Verification of KEMTLS via Tamarin. In Computer
Security – ESORICS 2022 (Lecture Notes in Computer Science). Springer Nature
Switzerland, 63–83. https://doi.org/10.1007/978-3-031-17143-7_4

[26] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. 2017.
Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 1825–1842. https://doi.org/10.1145/3133956.3133997

[27] Cong Chen, OussamaDanba, JeffreyHoffstein, Andreas Hulsing, Joost Rijneveld,
John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang, Tsunekazu
Saito, Takashi Yamakawa, and Keita Xagawa. 2022. NTRU – Submission to
Round 3 of the NIST Post-Quantum Project.

[28] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner,
and Daniel Smith-Tone. 2016. Report on Post-Quantum Cryptography. Technical
Report NIST IR 8105. National Institute of Standards and Technology. https:
//doi.org/10.6028/NIST.IR.8105

[29] Vincent Cheval, Charlie Jacomme, Steve Kremer, and Robert Künnemann. 2022.
SAPIC+: Protocol Verifiers of the World, Unite!. In 31st USENIX Security Sym-
posium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022. USENIX
Association, 3935–3952.

[30] David A. Cooper, Daniel C. Apon, QuynhH. Dang, Michael S. Davidson, Morris J.
Dworkin, and Carl A. Miller. 2020. Recommendation for Stateful Hash-Based
Signature Schemes. Technical Report NIST SP 800-208. National Institute of
Standards and Technology. https://doi.org/10.6028/NIST.SP.800-208

[31] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. 2016. Auto-
mated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed
Authentication. In IEEE Symposium on Security and Privacy, SP 2016, San Jose,
CA, USA, May 22-26, 2016. IEEE Computer Society, 470–485.

[32] Eric Crockett and Matt Campagna. 2021. Internet-Draft: Hybrid Post-Quantum
Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2 (TLS).
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-07.

[33] Eric Crockett, Christian Paquin, and Douglas Stebila. 2019. Prototyping Post-
Quantum and Hybrid Key Exchange and Authentication in TLS and SSH. In
NIST 2nd PQC Standardization Conference.

[34] Alfonso Francisco De Abiega-L’Eglisse, Kevin Andrae Delgado-Vargas, Fer-
nando Quetzalcoatl Valencia-Rodriguez, Victor Gerardo Gonzalez-Quiroga,
Gina Gallegos-Garcia, and Mariko Nakano-Miyatake. 2020. Performance of
New Hope and CRYSTALS-Dilithium Postquantum Schemes in the Trans-
port Layer Security Protocol. IEEE Access 8 (2020), 213968–213980. https:
//doi.org/10.1109/ACCESS.2020.3040324

https://doi.org/10.6028/NIST.IR.8413-upd1
https://github.com/aws/s2n-tls/tree/main/pq-crypto
https://github.com/aws/s2n-tls/tree/main/pq-crypto
https://doi.org/10.1109/ICC40277.2020.9148829
https://doi.org/10.1109/ICC40277.2020.9148829
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://cr.yp.to/hash/collisioncost-20090823.pdf
https://cr.yp.to/hash/collisioncost-20090823.pdf
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1007/978-3-031-15979-4_16
https://doi.org/10.1145/2976749.2978425
https://arxiv.org/abs/quant-ph/9705002
https://doi.org/10.1007/BFb0054319
https://arxiv.org/abs/quant-ph/9705002
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.pdf
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725
https://eprint.iacr.org/2023/793.pdf
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-88238-9_5
https://doi.org/10.1007/978-3-031-17143-7_4
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.IR.8105
https://doi.org/10.6028/NIST.SP.800-208
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid-07
https://doi.org/10.1109/ACCESS.2020.3040324
https://doi.org/10.1109/ACCESS.2020.3040324


Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

[35] Jintai Ding, Saed Alsayigh, Jean Lancrenon, Saraswathy Rv, and Michael Snook.
2017. Provably Secure Password Authenticated Key Exchange Based on RLWE
for the Post-Quantum World. In Topics in Cryptology – CT-RSA 2017. Vol. 10159.
Springer International Publishing, 183–204. https://doi.org/10.1007/978-3-319-
52153-4_11

[36] Ronny Döring and Marc Geitz. 2022. Post-Quantum Cryptography in Use:
Empirical Analysis of the TLS Handshake Performance. In NOMS 2022-2022
IEEE/IFIP Network Operations and Management Symposium. 1–5. https://doi.
org/10.1109/NOMS54207.2022.9789913

[37] Douglas Stebila and Michele Mosca. 2023. Open Quantum Safe Benchmark-
ing, KEM Performance. https://web.archive.org/web/20230630133536/https:
//openquantumsafe.org/benchmarking/visualization/speed_kem.html.

[38] Douglas Stebila and Michele Mosca. 2023. Open Quantum Safe Benchmarking,
TLS Handshake Performance. https://web.archive.org/web/20230630104243/
https://openquantumsafe.org/benchmarking/visualization/handshakes.html.

[39] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. 2015.
A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, Denver, CO, USA, October 12-16, 2015, Indrajit Ray, Ninghui Li,
and Christopher Kruegel (Eds.). ACM, 1197–1210.

[40] ETSI. 2017. Limits to Quantum Computing Applied to Symmetric Key Sizes.
Technical Report ETSI GR QSC 006. ETSI.

[41] ETSI. 2021. Electronic Signatures and Infrastructures (ESI); General Policy Re-
quirements for Trust Service Providers. Technical Report EN 319 401 V2.3.1.
ETSI.

[42] FrodoKEM submitters. 2023. FrodoKEM website. https://frodokem.org/.
[43] Xinwei Gao, Jintai Ding, Lin Li, Saraswathy RV, and Jiqiang Liu. 2018. Efficient

Implementation of Password-Based Authenticated Key Exchange from RLWE
and Post-Quantum TLS. Vol. 20. International Journal of Network Security,
923–930. https://doi.org/10.6633/IJNS.201809_20(5).14)

[44] Xinwei Gao, Lin Li, Jintai Ding, Jiqiang Liu, R. V. Saraswathy, and Zhe Liu. 2017.
Fast Discretized Gaussian Sampling and Post-Quantum TLS Ciphersuite. In
Information Security Practice and Experience. Vol. 10701. Springer International
Publishing, Cham, 551–565. https://doi.org/10.1007/978-3-319-72359-4_33

[45] Alexandre Augusto Giron, João Pedro Adami do Nascimento, Ricardo Custódio,
and Lucas Pandolfo Perin. 2022. Post-Quantum Hybrid KEMTLS Performance
in Simulated and Real Network Environments. https://eprint.iacr.org/2022/1639.
pdf.

[46] Ruben Gonzalez and Thom Wiggers. 2022. KEMTLS vs. Post-quantum TLS:
Performance on Embedded Systems. In Security, Privacy, and Applied Cryptog-
raphy Engineering (Lecture Notes in Computer Science), Lejla Batina, Stjepan
Picek, and Mainack Mondal (Eds.). Springer Nature Switzerland, Cham, 99–117.
https://doi.org/10.1007/978-3-031-22829-2_6

[47] Google. 2022. Why Google Now Uses Post-Quantum Cryptography for Inter-
nal Comms. https://cloud.google.com/blog/products/identity-security/why-
google-now-uses-post-quantum-cryptography-for-internal-comms.

[48] Google. 2023. General-purpose machine family for Compute Engine. https:
//cloud.google.com/compute/docs/general-purpose-machines.

[49] Google. 2023. Protecting Chrome Traffic with Hybrid Kyber KEM. https:
//blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html.

[50] Lov K Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing. 212–219.

[51] Aneas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz
Mohaisen. 2018. XMSS: eXtended Merkle Signature Scheme. https://datatracker.
ietf.org/doc/rfc8391. https://doi.org/10.17487/RFC8391

[52] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja
Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas West-
erbaan, and Ward Beullens. 2022. SPHINCS+ – Submission to Round 3 of the
NIST Post-Quantum Project.

[53] ITU. 2019. Recommendation ITU-T X.509 (2019) | ISO/IEC 9594-8:2020, Informa-
tion Technology – Open Systems Interconnection – The Directory: Public-key
and Attribute Certificate Frameworks.

[54] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Ver-
cauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and Andrea
Basso. 2022. SABER – Submission to Round 3 of the NIST Post-Quantum
Project.

[55] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De
Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMacchia, Patrick Longa,
Michael Naehrig, Joost Renes, Vladimir Soukharev, David Urbanik, Geovandro
Pereira, Koray Karabina, and Aaron Hitchinson. 2022. SIKE – Submission to
Round 3 of the NIST Post-Quantum Project.

[56] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin Yang,
Matthias Kannwischer, and Jacques Patarin. 2022. Rainbow – Submission to
Round 3 of the NIST Post-Quantum Project.

[57] Daniel Kales and Greg Zaverucha. 2020. An Attack on Some Signature Schemes
Constructed from Five-Pass Identification Schemes. In Cryptology and Network
Security (Lecture Notes in Computer Science), Stephan Krenn, Haya Shulman,
and Serge Vaudenay (Eds.). Springer International Publishing, 3–22. https:
//doi.org/10.1007/978-3-030-65411-5_1

[58] Panos Kampanakis, Peter Panburana, Ellie Daw, and Daniel Van Geest. 2018. The
Viability of Post-quantum X.509 Certificates. https://eprint.iacr.org/2018/063.

[59] Panos Kampanakis and Dimitrios Sikeridis. 2019. Two PQ Signature Use-cases:
Non-issues, Challenges and Potential Solutions. https://eprint.iacr.org/2019/
1276.

[60] Franziskus Kiefer and Kris Kwiatkowski. 2018. Hybrid ECDHE-SIDH Key
Exchange for TLS. https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-
sidh-00.

[61] Hugo Krawczyk and Hoeteck Wee. 2016. The OPTLS Protocol and TLS 1.3. In
IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016. IEEE, 81–96.

[62] Kris Kwiatkowski and Luke Valenta. 2019. The TLS Post-Quantum Experiment.
https://blog.cloudflare.com/the-tls-post-quantum-experiment/.

[63] Adam Langley. 2016. ImperialViolet - CECPQ1 Results. https://www.
imperialviolet.org/2016/11/28/cecpq1.html.

[64] Adam Langley. 2018. ImperialViolet - CECPQ2. https://www.imperialviolet.
org/2018/12/12/cecpq2.html.

[65] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrede Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. 2022. CRYSTALS-Dilithium – Sub-
mission to Round 3 of the NIST Post-Quantum Project.

[66] Dominik Marchsreiter and Johanna Sepúlveda. 2022. Hybrid Post-Quantum
Enhanced TLS 1.3 on Embedded Devices. In 2022 25th Euromicro Conference on
Digital System Design (DSD). 905–912. https://doi.org/10.1109/DSD57027.2022.
00127

[67] John Mattsson, Ben Smeets, and Erik Thormarker. 2021. Quantum Technology
and Its Impact on Security in Mobile Networks. Ericsson Technology Review
(2021).

[68] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Edoardo Persichetti, Gilles
Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc Robert, and Pascal
Veron. 2022. HQC – Submission to Round 3 of the NIST Post-Quantum Project.

[69] Dustin Moody, Gorjan Alagic, Daniel C Apon, David A Cooper, Quynh H Dang,
JohnM Kelsey, Yi-Kai Liu, Carl AMiller, Rene C Peralta, Ray A Perlner, Angela Y
Robinson, Daniel C Smith-Tone, and Jacob Alperin-Sheriff. 2020. Status Report
on the Second Round of the NIST Post-Quantum Cryptography Standardization
Process. Technical Report NIST IR 8309. National Institute of Standards and
Technology. https://doi.org/10.6028/NIST.IR.8309

[70] Michele Mosca and Marco Piani. 2022. 2022 Quantum Threat Timeline Report.
Technical Report. Global Risk Institute.

[71] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook,
Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko, Christopher
Peikert, Anath Raghunathan, andDouglas Stebila. 2022. FrodoKEM - Submission
to Round 3 of the NIST Post-Quantum Project.

[72] NIST. 2016. Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process. https://csrc.nist.rip/groups/
ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf.

[73] NIST. 2022. Call for Additional Digital Signature Schemes for the Post-Quantum
Cryptography Standardization Process. https://csrc.nist.gov/csrc/media/
Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf.

[74] NSA. 2022. Commercial National Security Algorithm Suite 2.0.
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_
2.0_ALGORITHMS_.PDF.

[75] Christian Paquin, Douglas Stebila, and Goutam Tamvada. 2020. Benchmarking
Post-quantum Cryptography in TLS. In Post-Quantum Cryptography (Lecture
Notes in Computer Science), Jintai Ding and Jean-Pierre Tillich (Eds.). Springer
International Publishing, 72–91. https://doi.org/10.1007/978-3-030-44223-1_5

[76] Sebastian Paul, Yulia Kuzovkova, Norman Lahr, and Ruben Niederhagen. 2022.
Mixed Certificate Chains for the Transition to Post-Quantum Authentication
in TLS 1.3. In Proceedings of the 2022 ACM on Asia Conference on Computer and
Communications Security (ASIA CCS ’22). Association for ComputingMachinery,
727–740. https://doi.org/10.1145/3488932.3497755

[77] Sebastian Paul, Felix Schick, and Jan Seedorf. 2021. TPM-Based Post-Quantum
Cryptography: A Case Study on Quantum-Resistant and Mutually Authenti-
cated TLS for IoT Environments. In Proceedings of the 16th International Confer-
ence on Availability, Reliability and Security (ARES 21). Association for Comput-
ing Machinery, 1–10. https://doi.org/10.1145/3465481.3465747

[78] Chris Peikert. 2020. He Gives C-Sieves on the CSIDH. In Advances in Cryptology
– EUROCRYPT 2020 (Lecture Notes in Computer Science). Springer International
Publishing, 463–492. https://doi.org/10.1007/978-3-030-45724-2_16

[79] Thomas Poppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and Nigel P.
Smart. 2019. NewHope – Submission to Round 2 of the NIST Post-Quantum

https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1109/NOMS54207.2022.9789913
https://doi.org/10.1109/NOMS54207.2022.9789913
https://web.archive.org/web/20230630133536/https://openquantumsafe.org/benchmarking/visualization/speed_kem.html
https://web.archive.org/web/20230630133536/https://openquantumsafe.org/benchmarking/visualization/speed_kem.html
https://web.archive.org/web/20230630104243/https://openquantumsafe.org/benchmarking/visualization/handshakes.html
https://web.archive.org/web/20230630104243/https://openquantumsafe.org/benchmarking/visualization/handshakes.html
https://frodokem.org/
https://doi.org/10.6633/IJNS.201809_20(5).14)
https://doi.org/10.1007/978-3-319-72359-4_33
https://eprint.iacr.org/2022/1639.pdf
https://eprint.iacr.org/2022/1639.pdf
https://doi.org/10.1007/978-3-031-22829-2_6
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://blog.chromium.org/2023/08/protecting-chrome-traffic-with-hybrid.html
https://datatracker.ietf.org/doc/rfc8391
https://datatracker.ietf.org/doc/rfc8391
https://doi.org/10.17487/RFC8391
https://doi.org/10.1007/978-3-030-65411-5_1
https://doi.org/10.1007/978-3-030-65411-5_1
https://eprint.iacr.org/2018/063
https://eprint.iacr.org/2019/1276
https://eprint.iacr.org/2019/1276
https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00
https://datatracker.ietf.org/doc/html/draft-kiefer-tls-ecdhe-sidh-00
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://doi.org/10.1109/DSD57027.2022.00127
https://doi.org/10.1109/DSD57027.2022.00127
https://doi.org/10.6028/NIST.IR.8309
https://csrc.nist.rip/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.rip/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1145/3488932.3497755
https://doi.org/10.1145/3465481.3465747
https://doi.org/10.1007/978-3-030-45724-2_16


SoK: Post-Quantum TLS Handshake

Project.
[80] Thomas Pornin. 2019. New Efficient, Constant-Time Implementations of Falcon.

https://eprint.iacr.org/2019/893.
[81] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, WilliamWhyte,
and Zhenfei Zhang. 2022. Falcon – Submission to Round 3 of the NIST Post-
Quantum Project.

[82] The HAPKIDO project. 2023. HAPKIDO: For Quantum-Safe Public Key Infras-
tructures. https://hapkido.tno.nl/.

[83] The OpenSSL project. 2023. Github repository: OpenSSL. https://github.com/
openssl/openssl.

[84] The Open Quantum Safe project. 2023. Github repository: OQS liboqs library.
https://github.com/open-quantum-safe/liboqs.

[85] The Open Quantum Safe project. 2023. Github repository: OQS OpenSSL 3
provider. https://github.com/open-quantum-safe/oqs-provider.

[86] The Open Quantum Safe project. 2023. Github repository: OQS OpenSSL fork.
https://github.com/open-quantum-safe/openssl.

[87] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
https://datatracker.ietf.org/doc/rfc8446. https://doi.org/10.17487/RFC8446

[88] Simona Samardjiska, Ming-Shing Chen, Andreas Hulsing, Joost Rijneveld, and
Peter Schwabe. 2019. MQDSS – Submission to Round 2 of the NIST Post-
Quantum Project.

[89] John M. Schanck and Douglas Stebila. 2017. A Transport Layer Security (TLS)
Extension For Establishing An Additional Shared Secret. https://datatracker.
ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00.

[90] John M. Schanck, William Whyte, and Zhenfei Zhang. 2016. Quantum-Safe
Hybrid (QSH) Ciphersuite for Transport Layer Security (TLS) Version 1.2. https:
//datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-02.

[91] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,
and Jintai Ding. 2022. CRYSTALS-Kyber – Submission to Round 3 of the NIST
Post-Quantum Project.

[92] Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2020. Post-Quantum
TLS Without Handshake Signatures. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’20). Association for
Computing Machinery, 1461–1480. https://doi.org/10.1145/3372297.3423350

[93] Peter Schwabe, Douglas Stebila, and Thom Wiggers. 2021. More Efficient Post-
quantum KEMTLS with Pre-distributed Public Keys. In Computer Security –
ESORICS 2021 (Lecture Notes in Computer Science), Elisa Bertino, Haya Shulman,
and Michael Waidner (Eds.). Springer International Publishing, 3–22. https:
//doi.org/10.1007/978-3-030-88418-5_1

[94] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. As-
sessing the Overhead of Post-Quantum Cryptography in TLS 1.3 and SSH. In
Proceedings of the 16th International Conference on Emerging Networking EXper-
iments and Technologies (CoNEXT ’20). Association for Computing Machinery,
New York, NY, USA, 149–156. https://doi.org/10.1145/3386367.3431305

[95] Dimitrios Sikeridis, Panos Kampanakis, and Michael Devetsikiotis. 2020. Post-
Quantum Authentication in TLS 1.3: A Performance Study. In Proceedings
2020 Network and Distributed System Security Symposium. Internet Society.
https://doi.org/10.14722/ndss.2020.24203

[96] N Smart, M Abdalla, E Bjørstad, C Cid, and B Gierlichs. 2018. Algorithms,
Key Size and Protocols Report (2018). ECRYPT—CSA, H2020-ICT-2014—Project
645421 (2018).

[97] D. Stebila, S. Fluhrer, and S. Gueron. 2023. Internet-Draft: Hybrid Key Exchange
in TLS 1.3. https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-06.
html.

[98] Douglas Stebila and Michele Mosca. 2016. Post-Quantum Key Exchange for the
Internet and the Open Quantum Safe Project. In Selected Areas in Cryptography –
SAC 2016 (Lecture Notes in Computer Science). Springer International Publishing,
Cham, 14–37. https://doi.org/10.1007/978-3-319-69453-5_2

[99] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. 2021. Efficient Key Recovery
for All HFE Signature Variants. In Advances in Cryptology – CRYPTO 2021
(Lecture Notes in Computer Science). Springer International Publishing, 70–93.
https://doi.org/10.1007/978-3-030-84242-0_4

[100] George Tasopoulos, Jinhui Li, Apostolos P. Fournaris, Raymond K. Zhao, Amin
Sakzad, and Ron Steinfeld. 2022. Performance Evaluation of Post-Quantum TLS
1.3 on Resource-Constrained Embedded Systems. In Information Security Prac-
tice and Experience (Lecture Notes in Computer Science), Chunhua Su, Dimitris
Gritzalis, and Vincenzo Piuri (Eds.). Springer International Publishing, 432–451.
https://doi.org/10.1007/978-3-031-21280-2_24

[101] D. L. Weller. 2020. Incorporating Post-Quantum Cryptography in aMicroservice
Environment. https://rp.os3.nl/2019-2020/p13/report.pdf. , 36 pages.

[102] Bas Westerbaan. 2022. NIST’s Pleasant Post-Quantum Surprise. https://blog.
cloudflare.com/nist-post-quantum-surprise/.

[103] W. Whyte, Z. Zhang, S. Fluhrer, and O. Garcia-Morchon. 2017. Internet-Draft:
Quantum-Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS)
Version 1.3. https://tools.ietf.org/html/draft-whyte-qsh-tls13-06.

[104] Christof Zalka. 1999. Grover’s Quantum Searching Algorithm Is Optimal. Phys-
ical Review A 60, 4 (Oct. 1999), 2746–2751. https://doi.org/10.1103/PhysRevA.
60.2746 arXiv:quant-ph/9711070

[105] Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, Jonathan
Katz, Xiao Wang, Vladmir Kolesnikov, and Daniel Kales. 2022. Picnic – Submis-
sion to Round 3 of the NIST Post-Quantum Project.

[106] Jiang Zhang, Zhenfeng Zhang, Jintai Ding, Michael Snook, and Özgür Dagdelen.
2015. Authenticated Key Exchange from Ideal Lattices. InAdvances in Cryptology
- EUROCRYPT 2015 (Lecture Notes in Computer Science). Springer, 719–751.
https://doi.org/10.1007/978-3-662-46803-6_24

A OUR POST-QUANTUM TLS 1.3 EXPERIMENT
We conducted our own post-quantum TLS 1.3 experiment to mea-
sure the performance of purely post-quantum authentication (Sec-
tion 4.1) and purely post-quantum key exchange (Section 5.1).While
our main results were already presented in Table 4 and Table 5, we
provide more extensive results and details about our methodology
in this section.

A.1 Methodology
Hardware. Weused two e2-highcpu-16machines hosted onGoogle
Cloud, one for the server and one for the clients. These machines
have a 16-core x86 CPU (AMD/Intel based on availability [48]) with
16GB of RAM. The RTT was 7ms and the bandwidth was 1.08Gb/s.

Software. The OS was Ubuntu 22.04.3 LTS. We used the modified
OpenSSL libraries from the Open Quantum Safe project [98]. Specif-
ically, we used the oqsprovider [85] in combination with OpenSSL
3.2 alpha 2 [83]9 For benchmarking signatures, we used the latest
oqsprovider 0.5.2 (compiled with liboqs 0.9.0 [84]). For benchmark-
ing KEMs we had to use an older version (0.4.0) of the oqsprovider
(compiled with liboqs 0.7.2) because the newest version only sup-
ports the algorithms which are still in the NIST PQC competition.
Liboqs was compiled with default (auto) optimization target.

Measurement and instantiation. We measured the TLS performance
using the command openssl s_time, which outputs the number of
connections per second. Each server process was established using
the openssl s_server command. We ran 32 of these processes in
parallel (32 servers and 32 clients) with 10 repetitions and s_time
duration of 60s. When benchmarking signatures, the certificate
chain length was 2 and the key exchange algorithm was x25519.
When benchmarking key exchange, the certificate chain length was
2 and the signature algorithm was ECDSA with prime256v1.

A.2 Results
The TLS slowdown coefficient is defined as 𝑡𝑝𝑞

𝑡𝑐
, where 𝑡𝑝𝑞 is the

mean of connections per second of the post-quantum scheme and
𝑡𝑐 is the mean of connections per second of x25519 (for KEMs) or
Ed25519 (for signatures). The specific parameter set is noted in
parentheses, such as the security level and possibly other details.

The results of our evaluation of signatures in TLS 1.3 are pre-
sented in Tab. 6. These results are visualized in Fig. 4.

The results of our evaluation of KEMs in TLS 1.3 are presented in
Tab. 7. These results are visualized in Fig. 3. Note that we excluded

9We used the alpha version because it allows to benchmark post-quantum signatures in
TLS 1.3 with the oqsprovider. Otherwise, it is necessary to use the deprecated OpenSSL
1.1.1 fork that is available at [86].

https://eprint.iacr.org/2019/893
https://hapkido.tno.nl/
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/oqs-provider
https://github.com/open-quantum-safe/openssl
https://datatracker.ietf.org/doc/rfc8446
https://doi.org/10.17487/RFC8446
https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-schanck-tls-additional-keyshare-00
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-02
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-02
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1145/3386367.3431305
https://doi.org/10.14722/ndss.2020.24203
https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-06.html
https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-06.html
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-030-84242-0_4
https://doi.org/10.1007/978-3-031-21280-2_24
https://rp.os3.nl/2019-2020/p13/report.pdf
https://blog.cloudflare.com/nist-post-quantum-surprise/
https://blog.cloudflare.com/nist-post-quantum-surprise/
https://tools.ietf.org/html/draft-whyte-qsh-tls13-06
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.1103/PhysRevA.60.2746
https://arxiv.org/abs/quant-ph/9711070
https://doi.org/10.1007/978-3-662-46803-6_24


Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

Table 6: Post-quantum signatures TLS performance

Algorithm Connections/s TLS slowdown
(sec. level and params.) [mean ± st. dev.] coefficient

Falcon (L1) 892.63 ± 20.38 0.98
Ed25519 (control) 875.83 ± 17.64 1.00
Dilithium (L2) 854.54 ± 18.01 1.02
ECDSA (prime256v1) 839.76 ± 16.99 1.04
Falcon (L5) 809.83 ± 14.26 1.08
Dilithium (L3) 782.14 ± 17.19 1.12
Dilithium (L5) 734.33 ± 15.11 1.19
SPHINCS+ (L1, s, SHA-2) 553.04 ± 47.68 1.58
SPHINCS+ (L1, f, SHA-2) 390.84 ± 5.8 2.24
SPHINCS+ (L5, s, SHA-2) 390.29 ± 31.09 2.27
SPHINCS+ (L5, f, SHA-2) 296.22 ± 5.65 2.99

from our results two NTRU level 5 parameter sets (NTRU-HPS-
4096-1229, NTRU-HRSS-1373) because liboqs provides only their
non-optimized implementation (compared to the rest).

B DESCRIPTION OF TLS
In this section, we briefly describe the TLS protocol so that the
reader can follow our presentation of post-quantumTLS approaches
in Secs. 4–6. App. B.1 focuses on the latest version, TLS 1.3, whereas
App. B.2 describes the differences between TLS 1.3 and TLS 1.2 to
which some of the post-quantum approaches refer.

B.1 TLS 1.3
TLS is a protocol for establishing a secure channel between two
peers, called the client and the server. The security features of
TLS are confidentiality, authenticity and integrity of the messages
transmitted. Our description and notation of TLS 1.3 follows the
IETF specification [87].

Overview. TLS consists of two sub-protocols. In the handshake pro-
tocol, the peers authenticate themselves, negotiate cryptographic
parameters and establish a shared secrets. In the record protocol,
the peers use these parameters and secrets to securely transmit the
sensitive data.

Cryptographic building blocks. TLS employs the following crypto-
graphic building blocks: Cryptographic hash functions, digital signa-
tures, message authentication codes (MACs), key exchange protocols,
and symmetric encryption schemes. We assume that the reader is
familiar with these basic cryptographic concepts and their security
notions. Note that the only key exchange protocol supported by
the TLS 1.3 standard [87] is (ephemeral) Diffie-Hellman.

Handshake protocol. Belowwe describe themost common variant of
the TLS 1.3 handshake, i.e., where the peers do not have pre-shared
keys (non-PSK), with a single roundtrip (1-RTT ) and unilateral or
mutual authentication with X.509 certificates [53]. This handshake
is illustrated in Fig. 5.

The client starts the handshake by sending ClientHello, which
essentially includes the cryptographic algorithms and parameters
that the client supports:

Table 7: Post-quantum KEMs TLS performance

Algorithm Connections/s TLS slowdown
(sec. level and params.) [mean ± st. dev.] coefficient

x25519 (control) 829.57 ± 15.48 1.00
Kyber (L1) 782.80 ± 14.03 1.06
Saber (L1) 776.79 ± 14.36 1.07
Kyber (L3) 760.13 ± 13.93 1.09
NTRU Prime (L1, LPR) 745.84 ± 15.26 1.11
NTRU Prime (L2, LPR) 746.60 ± 14.57 1.11
Saber (L3) 743.02 ± 14.89 1.12
Kyber (L5) 733.00 ± 15.24 1.13
NTRU (L1, HPS) 734.14 ± 13.45 1.13
Saber (L5) 733.30 ± 12.69 1.13
NTRU Prime (L3, LPR) 728.22 ± 14.31 1.14
NTRU Prime (L5, LPR) 720.67 ± 14.25 1.15
NTRU (L3, HPS) 700.24 ± 12.31 1.18
NTRU (L3, HRSS) 687.05 ± 13.80 1.21
HQC (L1) 676.69 ± 11.73 1.23
NTRU (L5, HPS) 661.54 ± 12.81 1.25
x448 582.92 ± 9.10 1.42
NTRU Prime (L1, S) 572.24 ± 10.83 1.45
HQC (L3) 553.22 ± 9.20 1.50
NTRU Prime (L2, S) 543.28 ± 8.47 1.53
NTRU Prime (L3, S) 488.73 ± 6.80 1.70
HQC (L5) 420.72 ± 7.95 1.97
NTRU Prime (L5, S) 347.78 ± 4.39 2.39
FrodoKEM (L1, AES) 328.00 ± 3.59 2.53
BIKE (L1) 325.66 ± 3.42 2.55
FrodoKEM (L3, AES) 222.30 ± 2.53 3.73
FrodoKEM (L5, AES) 141.68 ± 1.59 5.86
BIKE (L3) 133.63 ± 1.01 6.21
BIKE (L5)∗ - 15.26

∗ BIKE security level 5 ciphersuite is not present in the older versions of liboqs [84].
Therefore, we only present the slowdown coefficient which was computed from our
other experiment which used the latest version (0.9.0).

• The supported TLS cipher suites (consisting of an authenti-
cated (symmetric) encryption scheme and a hash function)
are included in the cipher_suites field using code points.
A code point is an identifier of a cryptographic algorithm
used in TLS.

• The supported signature algorithms are listed in the
signature_algorithms extension.

• The supported Diffie-Hellman (DH) groups for the key ex-
change protocol (EC)DHE are in the extension supported_groups.

• The client generates a key pair for each DH group and in-
cludes these public keys in the extension key_share. A key
share is a public key that is exchanged between participants
and is used to compute a shared secret.

• Optionally, the client can send an additional list of signature
algorithms in the signature_algorithms_cert extension
for certificate signatures.



SoK: Post-Quantum TLS Handshake

Figure 3: TLS slowdown coefficient for post-quantum KEMs.

Figure 4: TLS slowdown coefficient for post-quantum signatures.



Nouri Alnahawi, Johannes Müller, Jan Oupický, and Alexander Wiesmaier

Client Server

ClientHello

ServerHello
EncryptedExtensions

CertificateRequest*
Certificate
CertificateVerify
Finished

Certificate*
CertificateVerify*
Finished

Handshake finished

Application data

Figure 5: Typical TLS 1.3 handshake. Messages marked with
* are optional depending on the authentication mode.

The server computes the (unauthenticated) DH shared secret,
which is used to derive subsequent symmetric keys for the record
protocol, and responds with the following messages:

• ServerHello contains the server’s choice of the parameters
from ClientHello. The server generates its own key pair
for the selected DH group and inserts the public key into
the key_share extension.

• EncryptedExtensions contains extensions, which can be
encrypted using the derived keys, such as supported_groups.

• If the server wants the client to also authenticate itself, it
sends the optional CertificateRequest message.

• Certificate contains the server’s certificate chain. The
server’s certificate must contain a public key for one of
the signature schemes from signature_algorithms. If the
client sent the extension signature_algorithms_cert,
the certificates in the chain need to be signed with one
of the signature algorithms listed in the extension.

• CertificateVerify contains a signature over the hash of
all handshake messages up to that point. The private key
used to compute the signature corresponds to the public
key in the server’s certificate.

• Finished contains a MAC over the hash of all handshake
messages up to that point. The MAC algorithm is HMAC
using the hash function from the negotiated cipher suite.

If the server sent the CertificateRequest message, the client
responds with its own Certificate and CertificateVerifymes-
sages. The final handshake message from the client is Finished,
which includes a MAC over the entire handshake transcript.

After each side has received the Finished message and success-
fully verified all MACs and signatures, the handshake protocol is

complete and the peers can start sending application data protected
by the AEAD algorithm. TLS 1.3 derives the symmetric keys used
in the AEAD/HMAC algorithms with a key derivation function
called key schedule, which is determined by the negotiated hash
function and takes the shared DH secret as input.

B.2 TLS 1.2
We present the differences between TLS 1.2 and 1.3 that are relevant
to the work at hand.

• When (EC)DHE is used in TLS 1.2, the client does not send
any public keys in the ClientHellomessage. The server is
the first party to generate an ephemeral key pair and send
its public key to the client. The client responds with its own
public key.10

• The meaning of a ciphersuite is different in TLS 1.2 and
1.3. In TLS 1.2, a ciphersuite consists of a key exchange
algorithm, a signature algorithm, a symmetric cipher and
a hash function. In TLS 1.3, the ciphersuite consists only
of a symmetric cipher and a hash function because the key
exchange algorithm is fixed and the groups and signatures
are negotiated using extensions.

• While TLS 1.2 also includes the signature_algorithms
extension, it does however not include
signature_algorithms_cert. Hence, the interpretation
of the signature_algorithms extension is different from
TLS 1.3.

C SYMMETRIC PRIMITIVES IN
POST-QUANTUM TLS

In this section, we discuss the quantum security of the symmetric
ciphers and hash functions used in TLS 1.3. While all other publica-
tions on post-quantum TLS focused on the public-key cryptography
in TLS, there has been no explicit evaluation of the quantum secu-
rity of the symmetric ciphers and hash functions used in TLS 1.3.

C.1 Symmetric ciphers
TLS 1.3 [87] supports three symmetric ciphers: AES-128 (128-bit
keys), AES-256 (256-bit keys), and ChaCha20 (256-bit keys).

Quantum security of symmetric key sizes. Grover’s quantum search
algorithm [50] provides a quadratic speedup over classical exhaus-
tive key search attack against symmetric ciphers such as AES, i.e., if
a classical key search requires 2128 classical operations, a quantum
key search requires

√
2128 = 264 quantum operations.

Although algorithms that can be broken in 264 operations are
usually considered insecure [8, 18, 96], notable works [18, 67, 72,
102] still consider AES-128 to be quantum-secure because it is
difficult to parallelise Grover’s algorithm [104] and thus exploit its
full theoretical power.

On the other hand, ETSI recommends the use of symmetric ci-
phers with 256-bit keys, since these primitives “will withstand quan-
tum computer attacks until way after 2050. For these primitives, it
is not necessary to look for alternatives with the same urgency as

10Consequently, when a KEM is used for a key exchange (Sec. 5), the client and the
server perform different KEM operations in TLS 1.2 and 1.3.



SoK: Post-Quantum TLS Handshake

the search for quantum-safe asymmetric primitives.” [40]. The NSA
also recommends the use of AES-256 [74].

Conclusion. While symmetric ciphers with 128-bit keys are not as
easily broken by Grover’s algorithm as it might first appear, the
conservative recommendation is to use 256-bit keys.

This means that all ciphers supported in TLS 1.3 can be con-
sidered quantum-secure, but it makes sense to use a symmetric
cipher together with public key cryptographic primitives (KEMs,
signatures) with similar security levels. Specifically, we recommend
using AES-128 with post-quantum KEMs or signature schemes
with NIST security level 1, and AES-256 or ChaCha20 for those
primitives with NIST security level ≥ 2.

C.2 Hash functions
TLS 1.3 [87] supports two different hash functions: SHA-256 and
SHA-384.

Quantum security of SHA-256 and SHA-384. The quantum security of
hash functions is similar to the security of symmetric ciphers, since
all known quantum attacks are based on Grover’s algorithm [50].

There are two types of attacks on hash functions that are im-
proved by Grover’s algorithm. First, while finding the pre-image
of a hash function (with output size of 𝑛 bits) using bruteforcing
requires 2𝑛 operations on a classical computer, Grover’s quantum
algorithm can reduce this complexity to 2

𝑛
2 . Second, while finding

a collision requires on average 2
𝑛
2 classical operations, the BHT

quantum algorithm [17] can reduce the complexity to 2
𝑛
3 ; however,

the practical efficiency of the BHT algorithm is questionable since,
according to [9], the BHT algorithm has “fundamentally worse
price-performance ratio” than classical collision search algorithms.

Conclusion. Both hash functions, SHA-256 and SHA-384, can be
considered quantum-secure. Indeed, they correspond to the NIST
security levels 2 and 4, respectively, [72].


	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Overview
	1.3 Related work

	2 Quantum threat analysis of TLS
	3 Post-quantum cryptography
	4 Post-quantum authentication
	4.1 Purely post-quantum authentication
	4.2 Hybrid post-quantum authentication
	4.3 Discussion

	5 Post-quantum key exchange
	5.1 Purely post-quantum key exchange
	5.2 Hybrid post-quantum key exchange
	5.3 Discussion

	6 Post-quantum authenticated key exchange
	6.1 KEMTLS
	6.2 Mutually authenticated key exchange
	6.3 Discussion

	7 Conclusion
	7.1 Solved problems
	7.2 Open problems

	References
	A Our post-quantum TLS 1.3 experiment
	A.1 Methodology
	A.2 Results

	B Description of TLS
	B.1 TLS 1.3
	B.2 TLS 1.2

	C Symmetric primitives in post-quantum TLS
	C.1 Symmetric ciphers
	C.2 Hash functions


