
Cryptanalysis of Lattice-Based Sequentiality Assumptions
and Proofs of Sequential Work

Chris Peikert∗ Yi Tang†

December 6, 2023

Abstract

This note describes a total break of the sequentiality assumption (and broad generalizations thereof)
underlying the candidate lattice-based proof of sequential work (PoSW) recently proposed by Lai
and Malavolta at CRYPTO 2023. Specifically, for sequentiality parameter T and SIS parameters
n, q,m = n log q, the attack computes a solution of norm (m+1)logk T (or norm O(

√
m)logk T with high

probability) in depth Õn,q(k logk T), where the integer k ≤ T may be freely chosen. (The Õ notation
hides polylogarithmic factors in the variables appearing in its subscript.)

In particular, with the typical parameterization log q = Õn,T (1), for k = 2 the attack finds a solution
of quasipolynomial norm O(

√
m)log T in only polylogarithmic Õn,T (1) depth; this strongly falsifies the

assumption that finding such a solution requires depth linear in T . Alternatively, setting k = T ε, the
attack finds a solution of polynomial norm O(

√
m)1/ε in depth Õn,T (T

ε), for any constant ϵ > 0.
We stress that the attack breaks the assumption underlying the proposed PoSW, but not the PoSW itself

as originally defined. However, the attack does break a slight modification of the original PoSW, which
has an essentially identical security proof (under the same kind of falsified assumption). This suggests
that whatever security the original PoSW may have is fragile, and further motivates the search for a PoSW
based on a sound lattice-based assumption.

1 Sequentiality Assumption

We recall the lattice-based candidate sequentiality assumption recently proposed by Lai and Malavolta [LM23]
(with some slight differences in the notation). This assumption was used as the foundation for a candidate
proof of sequential work (PoSW); see Section 3 for further details.

Let q be a positive integer modulus and g ∈ Zℓ
q be a suitable “gadget” vector; for concreteness, we use the

standard powers-of-two gadget g = (1, 2, 4, . . . , 2ℓ−1)t for ℓ = ⌈log2 q⌉, but all of our results easily adapt to
other choices of gadgets (see [MP12] for further details). Let g−1 : Zq → Zℓ be the corresponding “(bit)
decomposition” function: g−1(u) is binary and hence “short,” and ⟨g,g−1(u)⟩ = gt · g−1(u) = u for any
u ∈ Zq. Finally, extend the gadget and its decomposition operation to work on matrices (including vectors) as
follows: for any positive integer n, let Gn := In ⊗ gt ∈ Zn×nℓ

q denote the block-wise application of gt to
each ℓ-dimensional column block, and let G−1

n (·) denote the entry-wise application of g−1 on any matrix U
having n rows, so that Gn ·G−1

n (U) = U.
∗University of Michigan, cpeikert@umich.edu.
†University of Michigan, yit@umich.edu.

1

For dimensions n and m = nℓ, matrix A ∈ Zn×m
q , vector u0 ∈ Zn

q , and sequentiality parameter T , Lai
and Malavolta [LM23] consider the following linear system, where G = Gn ∈ Zn×m

q :1
G
A G

A
. . .
. . . G

A G


︸ ︷︷ ︸

AT∈ZTn×Tm
q

·


x1

x2
...
xT


︸ ︷︷ ︸
x∈ZTm

=


u0

0
...
0
0

 ∈ ZTn
q . (1.1)

In [LM23] it is assumed that for sufficiently large q, given random (A,u0), computing a “somewhat short”
solution x ∈ ZTm to Equation (1.1)—specifically, one having Euclidean norm ∥x∥ ≤ O(n)2 log T —requires
Ω(T) sequential time.2 Notice that a “short” binary solution, which has Euclidean norm ∥x∥ ≤

√
Tm, can

be computed in depth proportional to T , as x1 = G−1
n (u0) ∈ Zm and then xi = −G−1

n (Axi−1) ∈ Zm for
i = 2, . . . , T . This works because

Axi−1 +Gxi = Axi−1 −Axi−1 = 0 .

The reason for the gap between the notion of “short” obtained by the above computation, versus “somewhat
short” in the assumption, is the O(n)2 log T “slack factor” in the proof of sequential work from [LM23].
More specifically, the honest prover can use a “short” solution to convince the verifier, but the knowledge
extractor can extract only a “somewhat short” solution from any (possibly malicious) prover that manages to
convince the verifier. The attack described below in Section 2 crucially exploits this gap, using a low-depth
computation to find a solution that is significantly longer than the “short” one, but still below the “somewhat
short” threshold.

2 Attack

Here we describe an attack on the above-described sequentiality assumption from [LM23]. The attack applies
to a broad generalization of the system in Equation (1.1), namely, any one in which the matrix is block
lower-triangular and has “gadget” matrices G (or any other matrices having known trapdoors) as the diagonal
blocks.

Trapdoors. We first recall from [MP12] the notion of a (gadget) trapdoor for a matrix A ∈ ZN×W
q , for any

dimensions N,W . This is any “short” matrix R ∈ ZW×M , where M = Nℓ, for which

AR = GN = IN ⊗ gt ∈ ZN×M
q .

More precisely, R should have suitably bounded spectral norm σ1(R) := maxw ̸=0∥Rw∥/∥w∥.

1For convenience, we have made a slight but immaterial tweak to the system appearing in [LM23], by appending the G matrix in
the bottom-right block, appending the component xT to the solution vector, and requiring the bottom-most block on the right-hand
side to be zero, not chosen by the adversary. It is easy to see that the two systems are equivalent. In addition, [LM23] considers a
more compact and “algebraically structured” version of the system over a certain polynomial ring, where each n-by-n block of A is
the (structured) multiplication matrix of a random ring element. Our attack works for arbitrary A, so for simplicity and generality we
adopt the above presentation.

2In [LM23] the assumption is actually stated in terms of the ℓ∞ norm instead of the Euclidean norm. Our attack is most naturally
analyzed in the Euclidean norm, but it obtains the same bounds in the ℓ∞ norm because the latter is upper bounded by the former.

2

Using such a trapdoor, it is easy to compute, in low depth, a comparably short solution X ∈ ZW×K to
AX = U, for any U ∈ ZN×K

q : simply let X = R ·G−1
N (U). This works because both R and G−1

N (U) are
short, and

AX = AR ·G−1
N (U) = GN ·G−1

N (U) = U .

Recall that G−1
N applies g−1 to each entry of U independently, so X can be computed in depth ÕN,q(1), i.e.,

polylogarithmic in N and q.
More generally, for some relations (including the specific one from [LM23]) it suffices, and will yield

better bounds, to have a “partial” trapdoor with respect to the top n rows, for some n ≤ N . This is a short
matrix R ∈ ZW×m, where m = nℓ, for which

AR =

(
In
0

)
⊗ gt =

(
Gn

0

)
∈ ZN×m

q .

Using such a trapdoor it is easy to compute, in depth only Õn,q(1), a short solutionX = R·G−1
n (U) ∈ ZW×K

to AX = (U0) ∈ ZN×K for any U ∈ Zn×K
q . (Of course, this technique naturally generalizes to any particular

set of rows, or other choices of subspaces.)

2.1 General Attack

The basic idea of the attack is to recursively compute, in fairly low depth, a trapdoor for the block-triangular
matrix of the linear system in question. The trapdoor can then be used to find a particular solution (as
described above) for any desired right-hand side.

The base case of the recursion is where the system’s matrix is Gn for some (typically small) n, or is
some other matrix having a known trapdoor. For the recursive case, suppose that the system’s matrix A has
N = N0 +N1 rows and block lower-triangular form

A =

(
A0

W A1

)
, (2.1)

where A0 and A1 respectively have N0 and N1 rows; typically, one would take N0 ≈ N1. Note that the
matrix AT from the system in Equation (1.1) has this form, where A0 = A1 = AT/2 (for even T , and
similarly for odd T) and W is all zeros except in its upper-rightmost n-by-m block.

Suppose that trapdoorsR0,R1 are known—typically, via parallel recursive calls—forA0,A1, respectively.
Then letting Mb = Nbℓ for b ∈ {0, 1}, a trapdoor R for A is

R =

(
R0

R1

)(
IM0

R′ IM1

)
=

(
R0

R1R
′ R1

)
where R′ = −G−1

N1
(WR0) ∈ ZM1×M0 . (2.2)

This is because

AR =

(
A0R0

WR0 +A1R1R
′ A1R1

)
=

(
GN0

WR0 −WR0 GN1

)
= GN .

Note that R can be computed (given R0,R1,W) in depth ÕN,q(1), and that

σ1(R) ≤ max{σ1(R0), σ1(R1)} · (1 + σ1(R
′)) ,

i.e., the spectral norm of the trapdoor R for A is essentially a σ1(R
′) factor larger than for those of A0,A1.

Because R′ ∈ ZM1×M0 has binary entries, σ1(R′) ≤ M where M = Nℓ. Or, using a randomized,
subgaussian variant of g−1, we get that σ1(R′) = O(

√
M) with high probability.

3

Larger arity. More generally, suppose that we can split A into k ≥ 2 row and column blocks, as

A =


A0

W1,0 A1
...

... . . .
Wk−1,0 Wk−1,1 · · · Ak−1

 , (2.3)

where Ai has Ni rows. Also suppose that a trapdoor Ri for Ai is known (typically, via recursion). Then it
can be verified that a trapdoor for A is

R =


R0

R1

. . .
Rk−1




IM0

R′
1,0 IM1

...
... . . .

R′
k−1,0 R′

k−1,1 · · · IMk−1


where

R′
i,j = −G−1

Ni

(
Wi,jRj +

∑
j<j′<i

Wi,j′Rj′R
′
j′,j

)
.

These blocks can be computed in k − 1 sequential stages, in parallel over all j = 0, . . . , k − 1, by computing
R′

i,j for i = j + 1, . . . , k− 1. So, R can be computed in depth ÕN,q(k). And similarly to above, the spectral
norm of R is bounded by maxi σ1(Ri) · (1 +M), and the 1 +M factor can be replaced by O(

√
M) with

high probability using a randomized g−1.

2.2 Optimization with Partial Trapdoors

For the specific relation from [LM23] (see Equation (1.1)), it suffices to compute a partial trapdoor with
respect to just the top n rows (regardless of the total number of rows N), which yields better bounds on the
spectral norms and computation depths. This can be done by a simple optimization of the above approach.

Suppose that A is as in Equation (2.1), that only the top n rows of W, denoted Wn, are possibly nonzero
(which is indeed the case in Equation (1.1)), and that partial trapdoors R0,R1 with respect to the top n rows
of A0,A1 (respectively) are known. Then letting m = nℓ, a partial trapdoor with respect to the top n rows
of A is

R =

(
R0

R1

)(
Im
R′

)
=

(
R0

R1R
′

)
where R′ = −G−1

n (WnR0) ∈ Zm×m . (2.4)

This follows from a similar calculation as the one above, and the fact that

A1R1 ·G−1
n (WnR0) =

(
Gn

0

)
·G−1

n (WnR0) =

(
WnR0

0

)
= WR0 ,

where the last equality holds because only the top n rows of W are possibly nonzero.
Similarly to above, R can be computed in depth Õn,q(1); note that here N is replaced by n, because R1 has

only m = nℓ (not M = Nℓ) columns. And just as above, σ1(R) ≤ max{σ1(R0), σ1(R1)} · (1 + σ1(R
′)).

However, because R′ ∈ Zm×m—unlike above, its dimension does not grow with the size of A or the level of
the recursion—a better bound σ1(R

′) ≤ m holds, and σ1(R
′) = O(

√
m) holds with high probability when

using a randomized g−1. Finally, a similar optimization also works when splitting A into k ≥ 2 row and
column blocks, as detailed above.

4

2.3 Analysis of the Full Attack

Suppose that the matrix A has the required block lower-triangular form, with Gn blocks along the diagonal
and a total of T row blocks, hence N = Tn rows.

• By recursively applying the approach from Section 2.1 with arity k = 2 and N0 = ⌊N/2⌋, a
computation of total depth ÕN,q(log T) = Õn,q,T (1) yields a trapdoor having spectral norm bounded
by (M + 1)⌈log T ⌉ where M = Nℓ, or O(

√
M)⌈log T ⌉ with high probability using a randomized g−1.

• In particular, the system from Equation (1.1) has the required form, and to find a short solution it
suffices to have only a partial trapdoor with respect to the top n rows. So, using the optimized approach
from Section 2.2, a computation of total depth Õn,q(log T) = Õn,q,T (1) yields such a trapdoor with
spectral norm (m+ 1)⌈log T ⌉ where m = nℓ, or O(

√
m)⌈log T ⌉ with high probability.

• Using arity k ∈ [2, T], a computation of total depth ÕN,q(k logk T) yields a trapdoor of spectral norm
(M + 1)⌈logk T ⌉ in general, and for the particular system in Equation (1.1), a computation of total depth
Õn,q(k logk T) yields a trapdoor of spectral norm (m + 1)⌈logk T ⌉. For example, by setting k = T ε

for an arbitrarily small constant ε > 0, in depth Õn,q(T
ε) we get a trapdoor of polynomially bounded

spectral norm (m+ 1)⌈1/ε⌉ for the system in Equation (1.1).

Finally, in the typical instantiation where log q = Õn,T (1), the q subscripts in the above Õ expressions can be
replaced by (or absorbed into the preexisting) n, T .

For log q = o(n) and hence m = o(n2), the above falsifies (even a major weakening of) the assumption
made in [LM23], which posits that computing a solution of norm O(n)2 log T requires depth Ω(T) (or in
weaker form, depth Ω(T ε) for some constant ε > 0).

3 Is the Proof of Sequential Work Insecure?

Lai and Malavolta [LM23] also gave a candidate proof of sequential work (PoSW) protocol, and proved its
security based on the sequentiality assumption stated in Section 1. While the attack from Section 2 falsifies
this assumption, and thus renders the security proof vacuous, it does not immediately follow that the PoSW
itself is broken.

So far, our attempts to attack the PoSW have led to a curious state of affairs. On the one hand, we have
not been able to break the PoSW as originally defined in [LM23]. However, our techniques do break a slight
modification of the original PoSW, which has an essentially identical security proof under the same kind of
(false) sequentiality assumption. This suggests that whatever security the original PoSW may have is fragile,
and not due to any intentional design choice or technique in the security proof. Additional ideas might lead
to a successful attack against the original PoSW; alternatively, it might actually be secure, perhaps with a
different security proof under some other plausible assumption. We leave these topics for future work.

In Section 3.1 below, we summarize the main challenges we encountered in our attempt to attack the
original PoSW. Then in Section 3.2 we describe a slight variant of the PoSW, note why it has an essentially
identical security proof, and explain how the attack from Section 2 breaks it.

3.1 Challenge in Attacking the PoSW

Structure of the PoSW. In the PoSW, the prover computes a short solution x to Equation (1.1), then
engages in an interactive public-coin protocol to convince the verifier that it knows such a solution. (The

5

protocol can be made non-interactive in the usual way via the Fiat–Shamir transform.) To do this, it uses a
small random challenge from the verifier to linearly “fold” the first and second halves of x together, which
yields a somewhat longer solution of half the dimension, then recursively proves knowledge of this folded
solution.

More precisely, consider a “truncated” version of Equation (1.1) without the final component xT or the
rightmost column block of the matrix, so that the final component −uT−1 on the right-hand side is typically
nonzero. The prover first announces this uT−1 (or equivalently, xT) as its claimed result of the sequential
computation. Then it gives a proof of knowledge of a solution to the truncated system: it announces xT/2

(assume that T is even for simplicity), which the verifier checks is short enough, and the verifier announces a
small random challenge r. Observe that the remaining halves of x form two solutions to reduced-dimension
instances of the truncated Equation (1.1), with known right-hand sides of the appropriate form. So, the prover
linearly combines these solutions using r, and the resulting (somewhat longer) solution is proved recursively
in the same manner, until the dimension is small enough to simply reveal and check the solution. Note that
with each successive stage of the recursion, the verifier must apply a more relaxed norm check (by some
multiplicative factor) on the prover’s announced short value, because folding increases the solution norm.

The difficulty. The key issue in attacking the PoSW seems to be as follows: (1) the prover must first
announce some uT−1 (or xT) to the verifier; (2) the prover can know at most one short solution for whatever
value it announces; and (3) the only way we see to convince the verifier is by knowing a solution that is nearly
as short as what the honest prover would compute. We elaborate on each of these points next.

The announced value of uT−1 represents the claimed final result of the computation of depth ≈ T that
the prover supposedly performed to get a solution to (truncated) Equation (1.1). It is a straightforward
exercise to show that computing distinct short solutions, for any fixed and possibly adversarially chosen
right-hand side, is at least as hard as solving the SIS problem for the random matrix A. So, under the standard
assumption that SIS is intractable (see, e.g., [Ajt96, MR04]), once an efficient prover (of any depth) reveals
some uT−1, it can know at most one short solution. The same goes for the later stages of the recursive
protocol with lower-dimensional instances of (truncated) Equation (1.1), where the first and last components
of the right-hand side are determined by the previous stages.3

From this point, the only way we see to convince the verifier is by proceeding exactly as the honest
(specified) prover would, using a single known solution. Because of how the solution norm expands under
“folding,” and in particular because the verifier’s challenge is multiplied by the second half of the solution,
it appears that convincing the verifier requires starting from a solution that is nearly as short—at least in
its second half—as what the honest prover would compute. We do not see a way to generate such a short
solution in depth significantly less than T . Again we stress that the attack from Section 2 achieves low depth
by exploiting the moderately large slack factor; in particular, the solution is merely “somewhat short” in its
second half (and final quarter, etc.), and need not be as short as what the honest prover computes.

3.2 Breaking a Modified PoSW

The above discussion motivates a natural alternative folding operation in the PoSW: multiply the verifier’s
random challenge r by the first, rather than the second, half of the solution. That is, instead of folding a
solution x into the lower-dimensional one x′ = xfirst + r · xlast, use x′ = r · xfirst + xlast. The security proof
from [LM23] (modified in the obvious way) holds equally well for this option, because the two halves are

3This state of affairs is quite different from the context of the attack from Section 2, where the adversary is not bound to any
particular right-hand side of truncated Equation (1.1), and knows short solutions to many different right-hand sides via its trapdoor.

6

treated symmetrically. (As far as we can tell, in [LM23] the choice of folding operation between these two
options was arbitrary.)

Interestingly, with this trivial modification—along with a mild relaxation of the norm checks in the
verifier—the PoSW can be broken by the attack from Section 2. Essentially, this is because the xlast constructed
by the attack is a small factor longer than xfirst, so the two summands r · xfirst,xlast in the modified folding
operation are more “balanced,” and their sum passes the verifier’s (appropriately relaxed) norm checks. To
obtain a complete working attack, we also need to ensure that the revealed xT/2 components (at every stage
of the recursion) are sufficiently short. This is easy to achieve by an appropriate instantiation of the attack,
which makes the final block of the (partial) trapdoor very short at each stage of its recursive construction.

The details. We first instantiate the attack from Section 2, including the optimization from Section 2.2,
so that it recursively constructs trapdoors whose bottom-most blocks of m = nℓ rows are binary. This
instantiation applies to any matrix A that can be expressed as in Equation (2.3), with lower-rightmost
block Ak−1 = Gn (so Nk−1 = n). This is indeed the case for the system from [LM23] as given in
Equation (1.1), and for any other block lower-triangular system with Gn for its diagonal blocks. Observe
that Rk−1 = Im is a trapdoor for Ak−1, so the bottom-most m rows of the constructed trapdoor R for A
have the form Rk−1G

−1(⋆) = G−1(⋆), which is binary as desired. Recursively using, say, k = 3 with
N0 = N1 + 1 = N/2 yields the same asymptotic norm and depth bounds given in Section 2.3.

With the above instantiation, observe that the constructed trapdoors are binary not only in their own
bottom-most row blocks, but also in those of their top halves, their top quarters, and so on. This holds
by induction, because the top half of each trapdoor equals the previously constructed trapdoor (possibly
augmented with an additional zero block).

For a (partial) trapdoor R recursively constructed as above from trapdoors R0,R1, consider the following
proof of knowledge of such a trapdoor, which closely follows and generalizes the above-described PoSW.
(All of the following applies equally well for the PoSW itself, which is merely for a specific right-hand side of
Equation (1.1).) The prover first announces and removes the (binary) T th row block. The proving stage then
works as follows:

• The prover announces and removes the (T/2)th row block, which the verifier checks is short enough.
(Note by the above observation that in the first iteration this block is binary, and hence satisfies the
verifier’s norm check.)

• The verifier announces a small random challenge r.

• The prover applies the alternative folding operation to the halves of the remaining trapdoor, and
recursively proves knowledge of the result. Recall that the verifier must use a larger norm bound (by
some suitable multiplicative factor) with each step of the recursion.

In any iteration, the folded trapdoor (which is the input to the recursive call) has the form R
′
=

R0 · (rI) +R1 ·G−1(⋆), where R0,R1 are respectively the top and bottom halves of input (with its middle
block removed). Its middle block, which will be announced in the next recursive call and needs to be
sufficiently short, has a moderately larger norm than those of the middle blocks of Ri, by a factor given
by r and G−1(⋆). By an inductive argument, these middle blocks have suitably bounded norms, growing
exponentially with the depth of recursion, hence so does their folding. So, as long as the verifier’s norm
bounds grow accordingly throughout the recursion, all of its norm checks will be satisfied, and the verifier
will ultimately accept.

7

References

[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.
Preliminary version in STOC 1996. Page 6.

[LM23] R. W. F. Lai and G. Malavolta. Lattice-based timed cryptography. In CRYPTO, pages 782–804.
2023. Pages 1, 2, 3, 4, 5, 6, and 7.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EUROCRYPT,
pages 700–718. 2012. Pages 1 and 2.

[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004. Page 6.

8

	Sequentiality Assumption
	Attack
	General Attack
	Optimization with Partial Trapdoors
	Analysis of the Full Attack

	Is the Proof of Sequential Work Insecure?
	Challenge in Attacking the PoSW
	Breaking a Modified PoSW

