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Abstract—A randomness beacon is a source of continuous and
publicly verifiable randomness which is of crucial importance
for many applications. Existing works on distributed random-
ness beacons suffer from at least one of the following draw-
backs: (i) security only against a static/non-adaptive adversary,
(ii) each epoch takes many rounds of communication, or (iii)
computationally expensive tools such as Proof-of-Work (PoW)
or Verifiable Delay Functions (VDF). In this paper, we intro-
duce GRandLine, the first adaptively secure randomness beacon
protocol that overcomes all these limitations while preserving
simplicity and optimal resilience in the synchronous network
setting. We achieve our result in two steps. First, we design
a novel distributed key generation (DKG) protocol GRand

that runs in O(λn2
logn) bits of communication but, unlike

most conventional DKG protocols, outputs both secret and
public keys as group elements. Second, following termination
of GRand, parties can use their keys to derive a sequence of
randomness beacon values, where each random value costs only
a single asynchronous round and O(λn2) bits of communica-
tion. We implement GRandLine and evaluate it using a network
of up to 64 parties running in geographically distributed AWS
instances. Our evaluation shows that GRandLine can produce
about 2 beacon outputs per second in a network of 64 parties.
We compare our protocol to the state-of-the-art randomness
beacon protocols in the same setting and observe that it vastly
outperforms them.
Index Terms—Adaptive Security, Randomness Beacon, Aggre-
gatable PVSS, DKG, Pairing-Based Cryptography

1. Introduction

Distributed randomness plays a crucial role in many
cryptographic and distributed system applications. A ran-
domness beacon [1], [2], [3] is a source of public, unpre-
dictable, and unbiased random values that can be used by

anyone in a secure manner. A well-designed randomness
beacon protocol ensures that random values are generated
in a decentralized and secure manner, preventing a threshold
of t out of n collaborating parties from biasing or predicting
the random outputs. Randomness beacon protocols have
wide-ranging applications in both academia and industry.
In many consensus protocols [4], [5] they are used to
securely choose a leader or a committee among participat-
ing parties (e.g., through a verifiable random function [6])
to perform specific tasks. In this manner, these protocols
can achieve better efficiency and circumvent impossibility
results that apply to their deterministic counterparts. In
mix networks [7], randomness beacons are used to shuffle
messages and thus provide unlinkability between sender and
receiver of a message. In privacy-oriented cryptocurrencies
and voting systems [5], [8], randomness beacons provide
user anonymity and unlinkability to their actions. In re-
cent years, randomness beacons have attracted significant
interest and numerous protocols have been proposed [9],
[10]. However, existing randomness beacon protocols found
in the literature suffer from at least one of the following
drawbacks: (i) they achieve security only against a static,
non-adaptive adversary, (ii) each epoch takes many rounds
of communication, or (iii) they rely on computationally
expensive tools such as Proof-of-Work (PoW) or Verifiable
Delay Functions (VDF). Motivated by this unsatisfactory
state of affairs, we give a novel randomness beacon proto-
col GRandLine which improves upon the-state-of-the-art by
combining, for the first time, all of the following properties:1

• Adaptive Security. We prove GRandLine secure in the
presence of an adaptive adversary.

• One-Round Epoch. Each epoch in GRandLine takes
only a single asynchronous round of communication
and is non-interactive. It only requires synchrony for its

1. In the following, we only compare to adaptively secure protocols.



pre-processing phase. This sets GRandLine apart from
all other protocols but Drand [11].

• Low Communication. GRandLine has O(λn2) bits
communication cost per epoch. This sets GRandLine
apart from BRandPiper [1] and RandShare [12] which
have O(λfn2) and O(λn4) bits communication cost
per epoch, respectively. Here, f ≤ t denotes the actual
number of faults in the system.

• Responsive. Our protocol progresses at the actual speed
of the network and is not bound to a much larger known
upper bound on the network delay. This sets GRandLine
apart from RandRunner [13], BRandPiper [1], and Opt-
Rand [3]. The latter achieves responsiveness only when
there are t < n/4 actual corrupt parties in the system.

• Optimal Resilience. Our protocol has optimal resilience
threshold t < n/2 in the synchronous network. This
sets GRandLine apart from SPURT [2] and Rand-
Share [12] which tolerate only sub-optimal t < n/3.

• No Heavy Tools. Our protocol only uses lightweight
cryptography such as hash functions and pairings. No-
tably, we do not rely on expensive tools such as Proof-
of-Work or VDF. This sets GRandLine apart from
RandChain [14] and RandRunner [13] which rely on
Proof-of-Work and VDF, respectively.

• Subcubic Pre-Processing. Our protocol has a pre-
processing phase with O(λn2

log n) bits communica-
tion cost. This sets GRandLine apart from Drand [11],
OptRand [3], and BRandPiper [1] which all have
O(λn3) bits communication cost for pre-processing.

We achieve our result in two steps. First, we design a novel
distributed key generation (DKG) protocol GRand with
O(λn2

log n) bits communication cost that, unlike most of
the conventional DKG protocols, outputs both secret and
public keys as group elements. It is the first DKG protocol
(in any network setting) that achieves subcubic communica-
tion cost with optimal resilience threshold. Second, we give
a novel construction that allows us to use GRand as setup
for a non-interactive and unique locally verifiable threshold
signature2 from which we naturally derive a simple one-
round randomness beacon. For a detailed comparison of
existing work on randomness beacons, we refer to Table 1.

1.1. Technical Overview

The idea of using a threshold signature scheme with
unique signatures (per message m and public key pk ) and a
non-interactive signing procedure is a well-known approach
to generate one-round distributed randomness. It is most
commonly used in consensus protocols and dates back to
the seminal work of Cachin et al. [15]. For epoch e ≥ 1,
this works as follows:

• Each party Pi non-interactively creates a signature
share σi on the message m ∶= e and sends σi to all
other parties.

2. By “locally verifiable” we mean that the final threshold signature does
not have an efficient verification algorithm, but the partial signatures have.

• Upon receiving t + 1 valid shares {σi}i∈S , a party lo-
cally reconstructs the full signature σ. The randomness
beacon value is then computed as hash Oe ∶= H(σ).

In this manner, one obtains a simple and efficient random-
ness beacon protocol which is also used by many blockchain
and consensus protocols [4], [5]. This construction relies
on a setup in which a secret key sk is (t, n)-secret shared
among all parties. In a fully distributed system, this is
commonly established via a DKG protocol for field el-
ements [21]. Concretely, this means that at the end of
the DKG protocol each party Pi holds a secret key share
sk i ∈ Zp such that sk i = f(i) for a polynomial f ∈ Zp[X]
of degree t. Further, the public key shares pk i = ω

ski
∈ G

are publicly known where G is a prime order p group with
generator ω. Unfortunately, even the most efficient DKG
protocols [22], [23] incur a communication cost of O(λn3)
to generate their keys. So what does that mean for us?

Challenges in Subcubic DKG. A common approach to
generate a secret key sk ∈ Zp shared among a set of n
parties out of which at most t can behave maliciously is as
follows. Each party Pi samples a random value ri ←$ Zp

and shares it among all parties using a VSS scheme for
which ri lies on some polynomial fi ∈ Zp[X] of degree
t. Then, parties agree on a subset I ⊂ [n] of at least
t + 1 dealers whose VSS sharings completed successfully.
Finally, each party Pi combines the shares it received from
dealers in I to obtain a share sk i of the final secret sk .
Crucially, we have the guarantee that the secret key sk
can be reconstructed even when corrupt parties refuse to
participate in the reconstruction. However, the best known
VSS schemes have quadratic communication cost [22], [24],
which leads to cubic communication cost in the overall
protocol. One way to overcome this issue is to let a ran-
domly sampled (and sometimes anonymous) committee of
small size (e.g., in the range of O(λ)) perform the task
of sharing a secret. This technique is commonly used in
consensus protocols to boost its scalability [6], most notably
in the Algorand blockchain. However, in order to achieve
security against an adaptive adversary, these protocols come
with undesirable features such as sub-optimal corruption
threshold of t < (1 − ε)n/3, ε > 0, reliance on secure
erasures of internal states, and impractical primitives such
as fully homomorphic encryption (FHE) [25]. Further, to
sample the committee in the first place, many protocols rely
on an initial seed of common randomness, which creates a
circularity (without assuming some form of trusted setup).

Starting Point: Aggregatable PVSS. Publicly verifiable
secret sharing (PVSS) schemes [26] are VSS schemes with
the additional property that any third party can verify that
the sharing has been done correctly. In particular, this avoids
the need for a complaint phase as is needed in regular VSS
schemes, which greatly simplifies constructions based on
PVSS schemes. Recently, Gurkan et al. [27] introduced a
PVSS scheme that supports aggregation of several PVSS
transcripts while preserving security (called aggregatable
PVSS or simply APVSS). From that the authors design



Table 1: Comparison table of existing distributed randomness beacon protocols.

Protocol Network Resil. Adapt. Unpred. Resp. Rounds Commun. Crypto. Primit. Setup Preproc.

Cachin et al. [15] async 1/3 ✗ ✓ ✓ 1 O(λn2) Uniq. Th. Signature CRS O(λn3)
RandHerd [12] async 1/3 ✗ ✓ ✓ ABA O(λc2 logn) PVSS & Th. Schnorr CRS O(λn3)
Herb [16] sync 1/3 ✗ ✓ ✗ t + 1 O(λn3) Thresh. ElGamal CRS O(λn3)
Drand [11] sync 1/2 ✗ ✓ ✓ 1 O(λn2) Thresh. BLS CRS O(λn3)

SPURT [2] part sync 1/3 ✗ ✓ ✓ 9 O(λn2) PVSS & Pairing CRS ✗
†

Algorand [6] part sync 1/3 ✗ Ω(t) ✗ BC O(λcn) VRF Seed O(λn3)
HydRand [17] sync 1/3 ✗ t + 1 ✗ 3 O(λn2) PVSS Seed O(λn3)
OptRand [3] sync 1/2 ✗ ✓ (✓) 11 O(λn2) PVSS & Pairing q-SDH O(λn3)

RandShare [12] async 1/3 ✓ ✓ ✓ ABA O(λn4) VSS CRS ✗

SPURT [18] part sync 1/3 ✓ ✓ ✓ 9 O(λn2) PVSS & Pairing CRS & AGM ✗
†

RandChain [14] sync 1/2 ✓ O(λ) ✓ ∆PoW O(λn) PoW & VDF CRS ✗
⋄

RandRunner [13] sync 1/2 ✓ t + 1 ✗ ∆VDF O(λn2) Trapdoor VDF Seed O(λn3)
BRandPiper [1] sync 1/2 ✓ ✓ ✗ 11 O(λfn2) VSS q-SDH O(λfn3)
OptRand [18] sync 1/2 ✓ ✓ (✓) 11 O(λn2) PVSS & Pairing q-SDH & AGM O(λn3)
Drand [19] sync 1/2 ✓ ✓ ✓ 1 O(λn2) Thresh. BLS CRS & AGM O(λn3)

GRandLine sync 1/2 ✓ ✓ ✓ 1 O(λn2) PVSS & Pairing CRS & AGM O(λn2
logn)

Resil. denotes the Byzantine resilience threshold. Adapt. denotes adaptive adversary. Unpred. denotes unpredictability. Resp. denotes responsiveness. Asynchronous protocols
are by default responsive. OptRand is responsive only when there are t < n/4 corrupt parties in the system. Rounds denotes the number of (a)synchronous rounds per epoch.
In RandHerd and RandShare, parties run n asynchronous Byzantine agreement (ABA) instances in parallel which leads to expected O(logn) rounds per epoch. Algorand
assumes a broadcast channel BC which leads to t+1 rounds per epoch when implemented with an actual broadcast protocol. In RandChain and RandRunner, each epoch takes
one computational round to evaluate the VDF or PoW which is much larger than a synchronous network round. Comm. denotes the communication cost in bits. In RandHerd
and Algorand, c denotes the average size of a randomly chosen committee. In BRandpiper, f ≤ t denotes the actual number of faults in the system. Crypto. Primit. denotes
the cryptographic primitives in usage. Setup denotes the setup assumption. CRS denotes a common reference string setup. Seed denotes an initial random seed used to run
the protocol. q-SDH denotes the powers-of-tau setup [20]. Preproc. denotes the communication cost for pre-processing. This can either be a DKG, a SMR, or some other
distributed protocol that generates the initial random seed. Since the protocols with an initial seed do not specify how to obtain it (other than by trusted setup), we assume
the most efficient DKG for this task. † SPURT guarantees only a weak form of liveness: t out of n consecutive epochs might fail to produce an output. ⋄ RandChain uses
Nakamoto consensus and also suffers from blockchain-related attacks.

a DKG protocol whose secret and public keys both are
group elements in an underlying pairing group. Crucially,
the authors leverage the property of aggregation from their
APVSS scheme in order to reduce the communication and
computation cost of parties by relying on gossiping tech-
niques rather than all-to-all communication. However, their
techniques only work against a static adversary that corrupts
a mere log n parties maliciously. Additionally, their protocol
assumes a one-round broadcast channel and has critical
robustness issues.3 Is there a way to regain all the desirable
features simultaneously?

Recursion in APVSS to the Rescue. To solve the problem,
we take inspiration from the world of recursive algorithms.
In a recursive algorithm, the function calls itself with smaller
input values in such a way that eventually a base case is
reached which is easy to solve. The result of the function
for the current input is then obtained from simple operations
to the returned value for the smaller input. This technique
has also found application in distributed protocols in order to
improve communication cost. For this, we briefly recall the
well-known Phase-King protocol [28] for (binary) Byzantine
agreement and its more efficient recursive variant [29].4

(Recursive) Phase-King. The standard, non-recursive
protocol runs over t+1 phases with a different leader (called
the king) in each phase in a round-robin fashion. Each phase
follows the same two-step structure. First, the parties run a

3. It has failure probability of n
−c where c ∈ [4, n/ logn] is some

success parameter chosen before the execution of the protocol.
4. We note that these protocols work in the information-theoretic setting

and therefore assume t < n/3. We only use them for exposition reasons.

weak form of Byzantine agreement called graded consensus,
where each party outputs a value vi along with an associated
bit grade gi that reflects the party’s confidence in its output
value. After graded consensus, the leader proposes its own
value to all parties to establish agreement among the honest
parties in case they are split between different values. In
this case, a party accepts the leader’s value only if its own
grade is 0. This approach establishes consensus as soon as
an honest party takes its turn as leader. To provide this
guarantee, the protocol runs for t+ 1 phases which leads to
cubic communication cost. Interestingly, this protocol can be
made more efficient using recursion. In the recursive variant,
the leader is replaced by one half of the entire system,
whose value (that he wishes to propose) is generated by
the recursive invocation of the protocol. Essentially, in this
manner there are only two phases, with the first half of the
system emulating the leader of the first phase and the second
half of the system emulating the leader of the second phase.
Since at least one of these halves has an honest majority (and
thus emulates an honest leader), the protocol terminates after
these two phases. In this manner, the communication cost
of the protocol can be brought down to only quadratic.

Having recalled the (recursive) Phase-King protocol, we
explain how we use a similar idea to design a DKG protocol
whose secret and public keys both are group elements.
Concretely, we want to devise a recursive protocol that
allows parties to agree on an aggregated PVSS transcript
AT with contribution from at least one honest party. From
this transcript AT each party can locally and without any
further interaction derive its share of the secret by a simple



decryption operation (we will explain this in more detail
soon). In order to achieve our goal in an efficient way (with
the hope to not exceed quadratic communication cost), we
carefully put together aggregation properties of PVSS and
recent techniques from the theory of verifiable information
dispersal. In more detail, our protocol works as follows.
We split the system into two halves and run the protocol
recursively and in parallel in both halves separately, so
that each half ends up with a single transcript. In the next
step, for each half, the protocol emulates an efficient single-
sender broadcast protocol for long messages [30] to transmit
its transcript to all parties. For this step, we use recent
techniques from the theory of information dispersal that rely
on erasure codes and cryptographic accumulators. Finally,
all parties aggregate these two transcripts and end up with a
single (aggregated) PVSS transcript AT . Our DKG protocol
GRand has a communication cost of O(λn2

log n) bits and
terminates in O(n) rounds.

From Aggregated PVSS to DKG. For the following dis-
cussion, let e ∶ G1×G2 → GT be an asymmetric pairing of
prime order p groups with generators g ∈ G1 and h ∈ G2.
We elaborate on what we said before. For this, recall that
a PVSS transcript generated by some dealing party P∗
consists of a vector of commitments C = (C1, . . . , Cn)
in G1, a vector of encrypted shares E = (E1, . . . , En) in
G2, and some auxiliary data π which usually includes some
proof. The commitments are generated as Ci = g

f(i) for
all i ∈ [n] where f ∈ Zp[X] is some polynomial of
degree t chosen (randomly) by the dealer P∗, while the
encryptions are computed as Ei = pk

f(i)
i . Here, (pk i, sk i)

is the key pair of party Pi from a plain PKI setup such
that pk i = h

ski
∈ G2. The describing property of a PVSS

scheme is that any subset S of at least t+1 parties can pool
their decrypted shares {Di}i∈S to reconstruct the secret D0

encoded in the transcript, while this remains infeasible with
t or less such shares. By combining several PVSS transcripts
with contribution from at least one honest dealing party, we
have the guarantee that the secret of the aggregated transcript
AT remains hidden from the adversary. In most applications
of PVSS, the transcript AT is used to get one-time random-
ness by direct reconstruction of the secret (and possibly sub-
sequent hashing). We are taking a different, more involved
route. Specifically, we think of the commitments C1, . . . , Cn

as public key shares and of the decryptions D1, . . . , Dn as
secret key shares. That is, each party Pi outputs a secret
key share SK i ∶= Di ∈ G2, a vector of public key shares
(PK 1, . . . ,PKn) where PK j ∶= Cj ∈ G1 for all j ∈ [n],
and a public key PK ∶= C0 ∈ G1 (computed by Lagrange
interpolation in the exponent from C1, . . . , Cn). Thus, our
DKG protocol GRand outputs its secret and public keys in
a group rather than a field.

From One to Infinity: Towards a Simple Randomness
Beacon. Clearly, GRand is different from most DKG proto-
cols found in the literature that output secret keys in a field
rather than a group. However, one of our key insights is
that this setup is enough to generate a stream of one-round

randomness values. Our idea is inspired from the threshold
BLS signature [31] and its application to randomness gener-
ation as introduced by Cachin et al. Specifically, each party
Pi non-interactively creates a threshold BLS signature share
σi ∶= H1(m)ski on the epoch number m ∶= e ∈ Z≥1 with
its secret key share sk i and multicasts (i.e., sends it to all
parties) it. Upon receiving t+1 valid shares {σi}i∈S (which
is checked by a pairing equation e(g, σi) = e(pk i,H1(m))
from Pi’s public key share pk i), a party locally reconstruct
the full signature σ = H1(m)sk by Lagrange interpolation
in the exponent and derives the randomness beacon value
as another hash Oe = H2(σ). With our DKG protocol
GRand that generates keys (PK i,SK i) as group elements,
the operation H1(m)SK i is not possible. However, when
we think of the operation of ”raising the group element
H1(m) to a power of sk i“ as an abstract group action
sk i ⊙ H1(m), we realize that the action5

SK i ⊙ H1(m)
defined as e(H1(m),SK i) ∈ GT is possible. Therefore,
we let each party Pi non-interactively create a share σi as
e(H1(m),SK i). And upon receiving t+1 valid such shares,
each party can locally reconstruct the full signature by La-
grange interpolation in the exponent as σ = e(H1(m),SK ).
Again, the randomness beacon value for epoch e is then
derived as another hash Oe ∶= H2(σ). Intuitively, since the
secret key SK is hidden from the adversary, the signature σ
should remain unpredictable so that Oe gives a random and
unbiased randomness value. However, there is one crucial
issue with this approach: the verification of beacon shares
σi. Previously, it was possible to verify such a (signature)
share by a pairing check, but now the beacon share σi is
an element in the target group GT itself so that there is
possibly no way to verify correctness of e(H1(m),SK i)
without providing additional elements. In fact, σi cannot
even be distinguished from a random element in GT without
breaking the decisional Diffie-Hellman (DDH) assumption
in the group GT .

A Simple Two-Step Trick. In order to resolve this issue,
we use the following two-step approach. After the DKG
setup, each party Pi locally samples an element αi ←$ Z

∗
p

uniformly at random and sends cmi ∶= (gαi , h
−αiSK i)

to all parties. Correctness of its second component can
be checked via a pairing equation. Crucially, this requires
only a single round of communication (no broadcast in
the sense of consensus is needed!) and therefore does not
add any more overhead. These additional elements allow
parties to verify received beacon shares. Concretely, each
party computes ϑi ∶= (H1(m)αi , σi) along with a non-
interactive zero-knowledge (NIZK) proof of discrete log-
arithm equality πi ∶= Dleq(g, gαi ,H1(m),H1(m)αi) to
prove correctness of H1(m)αi . Upon receiving such a tu-
ple (ϑi, πi), any party can verify the correctness of the
beacon share σi using a pairing equation that involves the
element cmi,2. Having done this, each party can compute
the randomness beacon value Oe for epoch e = m as

5. Note this does not define a group action in the mathematical sense.
Here, we use the term group action only informally to convey the intuition.



described before. Intuitively, security is preserved because
the elements g

αi ,H1(1)αi ,H1(2)αi , . . . do not reveal too
much information about αi, thus making it hard for the
adversary to compute SK i from the (randomized) element
h
−αiSK i (this is a highly simplified argument and the

actual analysis is much more involved). Overall, an epoch
takes only a single round of communication in which each
party Pi sends two group elements ϑi ∶= (H1(m)αi , σi)
and a simple NIZK proof πi to the other parties. Further,
(PK i, cmi) can be thought of as an updated public key
share of Pi which is three group elements, and verification
of a beacon share σi takes two pairing operations (the same
as threshold BLS!) and verification of the NIZK proof πi.

1.2. Organization of this Article

The rest of the paper is organized as follows. In Sec-
tion 2, we define our model and cover relevant preliminaries,
including cryptographic and consensus primitives. In Sec-
tion 3, we design a novel DKG protocol GRand whose secret
and public keys are group elements. In Section 4, we design
a simple one-round randomness beacon GRandLine on top
of GRand. Due to space constraints, we defer the security
and complexity analysis of our construction to Appendix D.
Finally, we implement GRandLine and compare it to the
state-of-the-art randomness beacons in the same setting. In
Appendix A, we give a detailed discussion on existing work
in randomness beacon and DKG protocols. In Appendix B,
we provide definitions for additional cryptographic and con-
sensus primitives. In Appendix C, we design a Byzantine
agreement protocol for use in GRand.

2. Preliminaries and Model

Throughout the paper, we consider a complete network
P of n parties connected by pairwise authenticated channels,
i.e. the receiver of a message is aware of the sender’s
identity. We assume known party identifiers, w.l.o.g. from
P1 to Pn. An unknown subset of these parties is faulty and
controlled by an adversary.

General Notation. Let λ denote the security parameter.
Throughout the paper, we assume that global parameters
par = (G1,G2,GT , p, g, h, e) are fixed and known to all
parties. Here, e ∶ G1 × G2 → GT is a type 3 asymmetric
pairing of prime order p cyclic groups with generators
g ∈ G1, h ∈ G2. That means there is no efficiently com-
putable homomorphism from G1 to G2 and vice versa. For
concrete choices, we will assume λ = 128 and that G1,G2

are instantiated with a 256-bit elliptic curve. We use Ĝ to
denote a group specified by par . For two integers a ≤ b,
we define the set [a, b] ∶= {a, . . . , b}; if a = 1, we write
this set as [b], and if a = 0, we write it as JbK. For an
element x in a set S, we write x ←$ S to mean that x was
sampled from S uniformly at random. All our algorithms
may be randomized (unless stated otherwise) and written in
uppercase letters. By x ← A(x1, . . . , xn) we mean running
algorithm A on inputs (x1, . . . , xn) and uniformly random

coins and then assigning the output to x. If A has oracle
access to some algorithm B during its execution, we write
x ← A

B(x1, . . . , xn). We write G
A to denote the output

of the game G involving algorithm A. Further, we denote
by LC the Reed-Solomon code over Zp of length n and
dimension t + 1 defined as

LC ∶= {(f(1), . . . , f(n)) ∣ f ∈ Zp[X](t)},
where Zp[X](t) denotes the set of all polynomials in Zp[X]
of degree at most t. Its dual code LC⊥ is defined as

LC⊥
∶= {(µ1r(1), . . . , µnr(n)) ∣ r ∈ Zp[X](n−t)},

where µi ∶= ∏j∈[n]\{i} 1/(i− j). We measure the commu-
nication complexity of our distributed protocols in bits.

Public Key Infrastructure. We assume that the parties have
established a public key infrastructure (PKI) via a public
bulletin board. This means that every party Pi has a public-
secret key pair (pk i, sk i), where pk i is known to all parties.
For this, we assume that each party generates its keys locally
(where corrupt parties may choose their keys arbitrarily)
and then makes its public key known to everybody using
a public bulletin board. Further, we assume that the pairs
(pk i, sk i) also (implicitly) include verification-signing key
pairs (vk i, dk i) used for a digital signature scheme to
provide authentication. In particular, we assume that parties
sign each message before they send it to other parties. As
common in this line of work [32], we treat signatures as
information-theoretic objects with perfect unforgeability and
perfect correctness (cf. Appendix B). When we want to
make the signature of party Pi on message m explicit, we
also write ⟨m⟩i for that.

Communication Model. We assume a synchronous com-
munication model, i.e., computation proceeds in compute-
send-receive rounds of a priori known length ∆. When a
correct party sends a message m at the beginning of a
round, the message is guaranteed to be received by the
end of that round. In particular, messages sent by a correct
party cannot be dropped from the network and are always
delivered. Correct parties have local clocks that move at the
same speed and they start the protocol at the same time.

Adversarial Model. We assume an adversary who can take
full control of up to t = ⌈n/2⌉ − 1 out of the n parties
in the network and may cause them to deviate from the
protocol arbitrarily; we call this a t-bounded adversary. The
adversary is adaptive and chooses the faulty parties at any
time during the execution of the protocol. We assume a
strongly adaptive adversary: when it corrupts a party, it
can delete or substitute any undelivered messages that this
party previously sent (while being correct). Furthermore, we
assume that the adversary is in full control over message
delays, subject to the network delay ∆. This means that it
can observe and deliver messages sent to and from correct
parties far quicker than in time ∆. In particular, we assume
the adversary to be rushing: in any synchronous round of
a protocol execution, it can observe the messages of all the



correct parties and then decide on what messages to deliver
to correct parties for that round. We refer to the correct
parties as honest and the faulty parties as corrupt.

Algebraic Group Model. The algebraic group model
(AGM) [33] was introduced as a model in between the
generic group model (GGM) [34] and the standard model.
In the AGM, all algorithms are treated as algebraic. This
means whenever an algorithm outputs a group element, it
must also output a representation of that element relative to
all of the inputs the algorithm has received up to that point.

Definition 1 (Algebraic Algorithm). An algorithm A is
called algebraic (over the group Ĝ) if for all group elements
ζ ∈ Ĝ that A outputs, it additionally outputs a vector
z = (z1, . . . , zm) of integers such that ζ = ∏i g

zi
i , where

(g1, . . . , gm) ∈ Ĝm is the list of group elements A has
received so far.

Computational Assumptions. We rely on the newly intro-
duced co-one-more discrete logarithm (Co-OMDL) assump-
tion [18] that generalizes the ordinary one-more discrete
logarithm (OMDL) assumption to the setting of two prime
order groups for which the challenge is simultaneously given
in both groups with access to a discrete logarithm oracle
in one of them. If both groups coincide, then this is just
the standard OMDL assumption. The authors also provide a
proof of hardness of Co-OMDL in the generic group model
of Shoup. In the following, we denote by DLg an oracle
that on input an element ξ = g

z
∈ G1 returns its discrete

logarithm z in base g.

Definition 2 (Co-One-More Discrete Logarithm Problem).
For an algorithm A and n ∈ N, we define the co-one-more
discrete logarithm experiment n-COMDL

A as follows:
• Offline Phase. Sample (z1, . . . , zn) ←$ Z

n
p uniformly at

random and set ξi ∶= (gzi , hzi) ∈ G1×G2 for i ∈ [n].
• Online Phase. Run A on input (par , ξ1, . . . , ξn). In this

phase, A gets access to the oracle DLg.
• Output Determination. Let (z′1, . . . , z′n) denote the out-

put of A. Return 1 if (i) z
′
i = zi for i ∈ [n], and (ii)

DLg was queried at most n−1 times during the online
phase. Return 0 otherwise.

We say that the co-one-more discrete logarithm problem of
degree n is (ε, T )-hard if for all algorithms A running in
time at most T , Pr[n-COMDL

A
= 1] ≤ ε. Conversely,

we say that an algorithm A (ε, T )-solves the co-one-more
discrete logarithm problem of degree n if it runs in time at
most T and Pr[n-COMDL

A
= 1] > ε.

2.1. Cryptographic Primitives

In this section, we formally define syntax and security
notions of the cryptographic primitives used in the paper.
We defer definitions and security notions for additional
primitives to Appendix B.

(Aggregatable) Publicly Verifiable Secret Sharing. In a
verifiable secret sharing (VSS) scheme, a dealer distributes

shares of a secret among a group of parties such that it
can be reconstructed only if a threshold of these parties
collaborate. In a publicly verifiable secret sharing (PVSS)
scheme, any third party can verify the correctness of the
sharing, thus avoiding the need for a complaint phase as
in VSS schemes. Henceforth, we consider PVSS schemes
that support aggregation of several sharings while preserving
public verifiability (called aggregatable PVSS scheme).

Definition 3 (Aggregatable PVSS Scheme). Let Ĝ be a
cyclic group of prime order p specified by par . A (t, n)-
threshold aggregatable PVSS (APVSS) scheme over Ĝ is
a tuple of algorithms APVSS = (Keys,Enc,Dec,Dist,Agg,
ConId,Ver,Rec) with the following properties:

• Keys: The randomized key generation algorithm takes
as input system parameters par and an identity index
i ∈ [n]. It outputs a public key pk i and a secret key
sk i.

• Enc: The randomized encryption algorithm takes as
input a public key pk i and a message m. It outputs
a ciphertext c.

• Dec: The deterministic decryption algorithm takes as
input a secret key sk i and a ciphertext c. It outputs a
message m (optionally with a proof of correct decryp-
tion). We require that for all messages m,

Pr[Decski
(Encpki

(m)) = m] = 1.

• Dist: The randomized secret sharing algorithm takes as
input a secret key sk i and public keys pk1, . . . , pkn. It
outputs a vector of encrypted shares E = (Encpk1

(S1),
. . . ,Encpkn

(Sn)) and a proof π, where S1, . . . , Sn are
shares of a secret S ∈ Ĝ. We refer to T ∶= (E, π) as
a PVSS transcript.

• Agg: The deterministic aggregation algorithm takes as
input PVSS transcripts (E1, π1), . . . , (Ek, πk), k ∈

N. It outputs an (aggregated) PVSS transcript T ∶=
(E, π).

• ConId: The deterministic contributor identifier algo-
rithm takes as input an (aggregated) PVSS transcript
T = (E, π) and a public key pk i. It outputs 1 (accept)
or 0 (reject). In the first case, we refer to Pi as a
contributor to T .6

• Ver: The deterministic verification algorithm takes as
input public keys pk1, . . . , pkn, and an (aggregated)
PVSS transcript T = (E, π). It outputs 1 (accept) or 0
(reject). In the first case, we call the transcript T valid
(relative to pk1, . . . , pkn); otherwise we call it invalid.

• Rec: The deterministic reconstruction algorithm takes
as input t + 1 shares S1, . . . , St+1. It outputs a secret
S ∈ Ĝ.

Discussion. We defer formal definitions for correctness and
secrecy of an APVSS scheme to Appendix B. Our definition
above (and the ones in the appendix) are based on the
ones from [18]. Essentially, the only difference to their
definitions is the following. Their aggregation algorithm

6. We remark that ConId could return 1 on an invalid transcript.



takes exactly t + 1 transcripts as input, in contrast to ours
that can take any finite number of transcripts as input, even
a single one. In particular, our definition generalizes theirs
and we do not need to explicitly separate anymore between
a standard PVSS transcript and an aggregated one. However,
when we want to emphasize that the transcript was formed
by aggregation of several (possibly themselves aggregated)
transcripts, we will make this explicit and call the transcript
aggregated. Having said this, we appropriately adapted some
other algorithms and security notions to our generalized
setting. Further, for an APVSS scheme, we require the
secrecy notion of aggregated unpredictability as defined
in [18] (slightly adapted). This notion captures malleability
attacks and prohibits any t-bounded (i.e., corrupting at most
t parties) adversary from learning the secret of an aggregated
transcript that has contribution from at least one honest
party (even if the adversary is allowed to contribute to the
aggregation itself).

Linear Erasure and Error Correcting Codes. We use
standard (q, b)-Reed-Solomon (RS) codes. This primitive
allows to encode b data symbols into code words of q
symbols such that b elements of the code word suffice to
recover the original data. In our protocols, we use Reed-
Solomon codes with varying (q, b). Concretely, we use
codes with q being the number of parties in some subset
of parties Q ⊆ P (called committee) and b being ⌈q/2⌉. In
the special case Q = P , we have (q, b) ∶= (n, t + 1).

Definition 4 (Reed-Solomon Code.). A Reed-Solomon code
is a tuple of deterministic algorithms Σ = (Encode,Decode)
with the following properties:

• Encode: The deterministic encoding algorithm takes
as input b data symbols (m1, . . . ,mb). It outputs a
code word (s1, . . . , sq) of length q. Knowledge of any
b elements of the code word uniquely determines the
input message and the remaining of the code word.

• Decode: The deterministic decoding algorithm takes
as input a code word (s1, . . . , sq) of length q. It
outputs b data symbols (m1, . . . ,mb). This algorithm
tolerates up to c errors and d erasures in a code word
(s1, . . . , sq) if and only if q − b ≥ 2c + d.

Cryptographic Accumulator. A cryptographic accumulator
allows to accumulate several elements from some set D into
an accumulated value z. Further, for each element in D it
allows to generate a compact proof of membership in D.
An example of cryptographic accumulators are Merkle trees,
where the root is the accumulator value and the authentica-
tion paths are membership proofs for the leaves. We assume
that it is hard to forge invalid proofs of membership (cf.
Appendix B).

Definition 5 (Cryptographic Accumulator). A cryptographic
accumulator scheme is a tuple of probabilistic polynomial-
time algorithms Σ = (Gen,Eval,Wit,Ver) with the follow-
ing properties:

• Gen: The randomized accumulator key generation al-
gorithm takes as input the security parameter λ and

an accumulation threshold n. It outputs a (public)
accumulator key ak .

• Eval: The deterministic evaluation algorithm takes
as input an accumulator key ak and a set D =

{d1, . . . , dn} of elements to be accumulated. It outputs
an accumulation value z for the set D.

• Wit: The possibly randomized witness creation algo-
rithm takes as input an accumulator key ak , an accu-
mulation value z for D, and an element di. It outputs
⊥ if di ∉ D, and a witness wi otherwise.

• Ver: The deterministic verification algorithm that takes
as input an accumulator key ak , an accumulation value
z for D, a witness wi, and an element di. It outputs 1
(accept) if wi is a valid proof for membership di ∈ D
and 0 (reject) otherwise.

In this paper, we use an accumulator scheme with (non-)
membership proofs and accumulation value each of size
O(λ). This can be implemented using the accumulator
scheme of [35] built upon class groups of unknown order.
Alternatively, one could use standard Merkle trees at the
cost of O(log n) overhead in communication.

2.2. Consensus Primitives

In this section, we formally define syntax and security
notions of the consensus primitives used in the paper.

Byzantine Agreement. A Byzantine agreement (BA) pro-
tocol allows a set of parties, each holding an input vi ∈ V ,
to agree on a common output value v ∈ V . Here, V is
a predefined value set with ∣V ∣ ≥ 2 (that might include a
default value ⊥). We formally define a Byzantine agreement
protocol as follows.

Definition 6 (Byzantine Agreement). Let Π be a protocol
executed by parties P1, . . . , Pn, where each party Pi holds
an input vi ∈ V . We define the following properties for Π:

• Validity. Π is t-valid if the following holds whenever
at most t parties are corrupted: if every honest party
has the same value v as input, then every honest party
outputs v.

• Consistency. Π is t-consistent if the following holds
whenever at most t parties are corrupted: every honest
party that outputs a value outputs the same value v.

• Termination. Π is t-terminating if the following holds
whenever at most t parties are corrupted: every honest
party terminates with an output value v ∈ V ∪ {⊥}.

We say that Π is a t-secure Byzantine agreement protocol
if it is t-valid, t-consistent, and t-terminating.

Distributed Randomness Beacon. A randomness beacon
is a distributed protocol that allows a system of n parties to
generate a sequence of unpredictable and unbiased random
values, one for each epoch. Each party Pi has a local log that
is defined as a write-once array Σi = (Σi[1],Σi[2], . . . )
with Σi[ℓ] being its beacon output at epoch ℓ ≥ 1. Initially,
each value is set to ⊥. We say that party Pi outputs a beacon
value in epoch ℓ if it writes a value on Σi[ℓ]. A secure



randomness beacon has to satisfy the properties of con-
sistency, availability, bias-resistance, and d-unpredictability.
We formally define these security notions as follows.

Definition 7 (d-Secure Randomness Beacon). Let RB be
an epoch-based protocol executed by parties P1, . . . , Pn.
We define the following security properties for RB:

• Consistency. RB is (t, L)-consistent if the following
holds whenever at most t parties are corrupted: if an
honest party outputs a value σℓ ∈ {0, 1}λ in epoch
ℓ ∈ [L], then all honest parties output σℓ in epoch ℓ.

• Availability. RB is (t, L)-available if the following
holds whenever at most t parties are corrupted: for
each ℓ ∈ [L], every honest party outputs a value
σℓ ∈ {0, 1}λ in epoch ℓ.

• Bias-Resistance. RB is (t, ε, T, L)-bias-resistant if it
is (t, L)-available, (t, L)-consistent, and the following
holds for all algorithms A,D such that A is t-bounded
and both A and D run in time at most T . Denote by
ΣA,L the probability distribution induced by the outputs
of an honest party in an execution of RB until epoch
L with A as adversary. Then

∣ Pr
σ←ΣA,L

[D(σ) = 1] − Pr
u←UL

[D(u) = 1]∣ ≤ ε,

where UL denotes the uniform distribution over the L-
fold Cartesian product of {0, 1}λ with itself.

• d-Unpredictability. RB is (t, ε, T, L, qh, d)-unpredict-
able if it is (t, L)-available, (t, L)-consistent, and for
all ℓ ∈ [L] and algorithms A that run in time at most
T and make at most qh random oracle queries, A’s
success probability in the d-unpredictability experiment
defined hereafter is at most ε.

We say that RB is a (t, ε, T, L, qh, d)-secure randomness
beacon protocol if it is (t, ε, T, L)-bias-resistant, (t, ε, T, L,
qh, d)-unpredictable, (t, L)-available, and (t, L)-consistent.

Definition 8 (d-Unpredictability for RB). Let RB be an
epoch-based protocol as defined above. For an algorithm A
and ℓ ∈ [L], we define the d-unpredictability experiment
d-Unpred

A,ℓ
RB,t as follows:

• Offline Phase. For all i ∈ [n], generate keys
as (pk i, sk i) ← Keys(par , i). On input par and
{pk i}i∈[n], A returns an index set C ⊂ [n] of ini-
tially corrupted parties along with updated public keys
{p̂k i}i∈C . Set pk i ∶= p̂k i for all i ∈ C. Initiate an
execution of RB with A controlling parties in C.

• Random Oracle Queries. At any point of the experi-
ment, A gets access to an oracle of the following type:
When A submits a query m, check if H[m] = ⊥. In
this case, set H[m] ← {0, 1}λ. Return H[m].

• Online Phase. Run RB with A. When A outputs a value
(σ′e, e) for an e > ℓ, the experiment ends with output 0
in case there is an honest party that has output a value
σℓ+1 for epoch ℓ+1. Continue the execution of RB for
another e − ℓ epochs.

• Corruption Queries. During the online phase, A may
corrupt a party Pi by submitting an index i ∈ [n] \ C.

In this case, return the internal state of Pi and set
C ∶= C ∪ {i}. Henceforth, A fully controls Pi.

• Output Determination. Return 1 if ∣C∣ ≤ t, e ≥ ℓ + d,
L ≥ e, and σ

′
e = σe. Otherwise, return 0.

Discussion. We briefly elaborate on the security notions
defined above. Consistency and availability guarantee that
each honest party outputs the same value σe ∈ {0, 1}λ
in each epoch e ≥ 1. Bias-resistance guarantees that the
beacon outputs are indistinguishable from uniformly random
numbers. This property ensures that the adversary has no
power in biasing the beacon output, even when controlling
up to t parties in the system. On the other hand, this
notion does not prohibit the adversary from learning the
beacon output some epochs ahead of the honest parties.
That is ensured by the notion of d-unpredictability, which
states that the adversary does not learn the beacon output d
epochs before the honest parties. Conversely, an adversary
could predict the beacon output some epochs ahead of the
honest parties, e.g. by corrupting the next t leaders whose
previously committed values determine the next t beacon
outputs as in GRandPiper [1] or HydRand [17], without
actually having the power to bias it.

3. Distributed Key Generation

In this section, we design a novel distributed key gen-
eration (DKG) protocol whose secret and public keys both
are group elements. This is different from most conventional
DKG protocols that output secret keys in a field rather than
a group. One of our key insights, however, is that this setup
is enough to generate a (pairing-based) unique threshold
signature from which we naturally derive our one-round
randomness beacon. We first define a DKG protocol in our
context. Recall our notation g ∈ G1 and h ∈ G2.

Definition 9 (DKG Protocol). Let Π be a protocol executed
by parties P1, . . . , Pn, where for all i ∈ [n], Pi outputs
a secret key share SK i, a vector of public key shares
(PK 1, . . . ,PKn), and a public key PK . We define the
following properties for Π:

• Consistency. Π is t-consistent if the following holds
whenever at most t parties are corrupted: all honest
parties output the same public key PK and the same
vector of public key shares (PK 1, . . . ,PKn).

• Correctness. Π is t-correct if the following holds when-
ever at most t parties are corrupted: there exists a
polynomial f ∈ Zp[X] of degree t such that ∀i ∈ [n],
SK i = h

f(i) and PK i = g
f(i). Moreover, PK = g

f(0).
• Termination. Π is t-terminating if the following holds

whenever at most t parties are corrupted: if all honest
parties start the protocol, then they all terminate with
an output.

• Secrecy. Π is (t, ε, T )-secret if for all algorithms A
that run in time at most T , the success probability in
the following experiment is at most ε.
– Offline Phase. Initialize a corruption index set C ∶=
∅ and let H ∶= [n] \ C. Run A on input par .



– Corruption Queries. At any point of the experiment,
A may corrupt a party by submitting an index i ∈ H.
In this case, return the internal state of Pi and set
C ∶= C ∪ {i}. Henceforth, A fully controls Pi.

– Online Phase. Initiate an execution of Π with A
having full control over parties in C. Let y = g

x
← Π

be the public key output by Π.
– Output Determination. Let s

′ denote the output of
A. Then, A is considered successful if and only if
∣C∣ ≤ t and s

′
= h

x (which is the secret key).
We say that Π is a (t, ε, T )-secure DKG protocol if it is
t-consistent, t-correct, t-terminating, and (t, ε, T )-secret.

3.1. Components of our DKG Protocol

In the following two sections, we design a novel DKG
protocol, called GRand, with a communication complexity
of O(λn2

log n). At the heart of GRand lies a recursive
protocol that allows to aggregate PVSS transcripts from an
underlying APVSS scheme. Further, GRand makes use of a
Byzantine agreement protocol BA and an algorithm Deliver
that allows to efficiently propagate long messages. In the
following, we describe the components of GRand.

Aggregatable PVSS Scheme. Our APVSS scheme is sim-
ilar to the one of Bhat et al. [3] which is essentially (the
pairing-based version of) SCRAPE augmented with a signed
NIZK proof of knowledge of discrete logarithm for ζ = g

α

where α ∶= f(0) for a randomly chosen degree-t polyno-
mial f ∈ Zp[X]. The difference between our schemes is
that the reconstructed secret of our scheme is h

α, while
the reconstructed secret in their scheme is e(ĝ, hα) where
ĝ ∈ G1 is an additional generator. The reason for this is
their security proof which crucially relies on that design and
the additional generator. However, since in our randomness
beacon we never explicitly reconstruct the secret, it does
not make much of a difference for our security proof and
thus we can sidestep the need for a further generators in
the source groups. We provide a formal description of our
APVSS scheme in Figure 1 below.

Deliver Protocol. The protocol design was introduced in [1]
and is based on erasure codes and cryptographic accumu-
lators. Deliver is a two-round protocol that is invoked by a
party Pi that wants to efficiently broadcast a long message
m to all parties in some set Q. Contrary to [1], we make use
of Deliver for sets of varying sizes. We parameterize Deliver
by a set Q of q parties among which it is executed. It is
invoked by a party Pi ∈ Q and takes as input a long message
m, the accumulation value z for an encoding of m, and Q
along with implicit parameters q = ∣Q∣ and b = ⌈q/2⌉. For
this, Pi first splits m into b data symbols and encodes these
into q code words using an (q, b)-erasure code RS. Then, Pi

sends the j-th code word, the accumulation value z for the
set of q code words along with a witness to Pj ∈ Q. Upon
receiving a valid triple of this type, Pj forwards it to all other
parties in Q. Finally, upon receiving b valid code words
corresponding to the accumulation value z, Pj reconstructs

the full message m using the decoding algorithm. In this
way, message m can efficiently reach all honest parties in
Q when the sender Pi was honest. We provide a formal
description of Deliver in Figure 2 below.

Byzantine Agreement. For this task, we use a variant of
the recursive Phase-King protocol as given by Momose and
Ren [36].7 The protocol uses compact certificates of size
O(λ) that prove knowledge of a threshold of signatures from
other parties on the same message. We implement these cer-
tificates with succinct non-interactive arguments of knowl-
edge (SNARK, cf. Appendix B) that do not require trusted
setup. Efficient examples of such transparent SNARKs are
well-known and given in [37], [38]. On the other hand, when
the network of parties is of small size n ∈ O(λ), we can
instead resort to an aggregatable signature such as standard
BLS by simply adding the n-bit long vector of signers to
the aggregated signature. Crucially, the protocol (in either
regime) has a communication complexity of O(λn2) and
terminates in a linear number of rounds. We provide the
protocol description along with a discussion on its security
and complexity in Appendix C.

Recursive PVSS Aggregation. We give an intuitive de-
scription of the protocol GenAPVSS (cf. Figure 3). The
protocol is parameterized by a set Q of q parties among
which it is executed. At the end, each party outputs the same
PVSS transcript AT where possibly AT = ⊥. The protocol
begins by dividing Q into two equally-sized disjoint subsets
Q = Q1 ⊔Q2 (each called a committee) among which the
protocol GenAPVSS is executed recursively. Upon termina-
tion of both recursive calls l ∈ [2], parties Pi ∈ Ql output a
transcript Tl. Now the main part of the protocol begins. The
idea is for parties from Ql to send their transcript Tl to the
other committee Q1−l’s members in an efficient and secure
way. If we let each party from respective committee simply
send its transcript to the other committee, then that would
lead to cubic or higher communication which is not what we
want. To resolve this issue, we follow a four-step approach.
First, each party Pi ∈ Ql generates an accumulation value
zl of small size for its (large-sized) transcript Tl and sends
it to all parties in the larger system Q. Here, another party
Pj ∈ Q only accepts zl (with implicit committee assignment
zl → Ql) if it was received from a majority of parties from
Ql. Following this, all parties (in the system Q) establish
consensus on both accumulation values z1 and z1, each
being assigned to the respective committee, by running
two instances of the Byzantine agreement protocol BA in
parallel. As a result, each party keeps the same values
z1 and z2 with implicit committee assignments z1 → Q1

and z2 → Q2, respectively. In the second step, each party
Pi ∈ Ql propagates its transcript Tl to all parties in Q using
Deliver on input (Q, Tl, zl). This ensures efficient delivery
of the large-sized transcript Tl to all other parties. To re-
tain security, as an adversarial-controlled committee could

7. The recursive Phase-King protocol is defined in the information-
theoretic setting and therefore assumes t < n/3. Momose and Ren [36]
design a computationally secure variant with optimal resilience t < n/2.



Let e ∶ G1 × G2 → GT be a pairing with generators g ∈ G1, h ∈ G2, and let (pk i, sk i) be the key pair of party Pi

where pk i = h
ski . The secret sharing algorithm Dist (invoked by some dealing party PL) takes as input a secret key

skL and public keys pk1, . . . , pkn. It outputs a PVSS transcript TL ∶= {C,E, π} as follows.
(1) Sample a polynomial f(X) = α + α1X + . . . + αtX

t
∈ Zp[X] of degree t uniformly at random.

(2) Set the commitments Ci ∶= g
f(i)

∈ G1 and encrypted shares Ei ∶= pk
f(i)
i ∈ G2 for all i ∈ [n].

(3) Compute a NIZK proof of knowledge θ = (c, r) of discrete logarithm for ζ ∶= g
α. Set π ∶= ⟨ζ, θ⟩L.

The aggregation algorithm Agg takes as input k ≥ 1 transcripts {Ci,Ei, πi}i∈[k] and outputs a transcript T ∶= {C,E, π}.
Let µ1, . . . , µt+1 denote the Lagrange coefficients for the set {1, . . . , t + 1} at the point x = 0.
(4) Set Ci ∶= C1,i ⋅ . . . ⋅Ck,i and Ei ∶= E1,i ⋅ . . . ⋅ Ek,i for all i ∈ [n]. Further, set π ∶= (π1, . . . , πk). Publish the

(aggregated) transcript T ∶= {C,E, π} where C = (C1, . . . , Cn) and E = (E1, . . . , En).
The contributor identifier algorithm ConId takes as input a transcript T ∶= {C,E, π} and a public key pk i.
(5) Sparse π as (π1, . . . , πk). For all j ∈ [k], check if the signature on πj verifies using pk i. If one of these checks

succeeds, output 1 (contribution from Pi). Otherwise, output 0 (no contribution from Pi).
The verification algorithm Ver takes as input public keys pk1, . . . , pkn and a transcript T = {C,E, π}. It outputs 1
(accept) or 0 (reject). Let LC be the linear code as defined in Section 2 and let LC⊥ be its dual code.
(6) Sample (ν1, . . . , νn) ←$ LC

⊥ and check if Cν1

1 ⋅ . . . ⋅ Cνn
n = 1. For all i ∈ [n], check if e(g,Ei) = e(Ci, pk i).

(7) Sparse π as (π1, . . . , πk) and check if ζ1 ⋅ . . . ⋅ ζk = C0 (obtained by Lagrange interpolation in the exponent from
C). Further, check if the NIZK proofs θi and signatures on πi (using pk i) for all i ∈ [k] verify.

(8) If one of the above checks fails, output 0 (invalid transcript). Otherwise, output 1 (valid transcript).
The decryption algorithm Dec (on input encrypted shares E = (E1, . . . , En)) and the reconstruction algorithm Rec.

(9) On input a secret key sk i, compute the secret share Si = E
1/ski

i . A secret share Sj (with corresponding index j)
is considered valid if e(Cj , h) = e(g, Sj). Otherwise, the share is considered invalid.

(10) On input t + 1 valid secret shares {Si}i∈I , reconstruct the secret S by Lagrange interpolation in the exponent for
the set I . Concretely, the reconstructed secret is of the form S = h

f(0)
∈ G2.

Figure 1: Description of the algorithms of our aggregatable PVSS scheme.

Let Q ⊆ P be a set of q parties and let b ∶= ⌈q/2⌉ be the decoding threshold for a (q, b)-Reed-Solomon code RS =

(Encode,Decode). Further, let AC = (Gen,Eval,Wit,Ver) be an accumulator scheme, and let z ← Eval(ak ,Encode(m))
be the accumulation value for a predefined encoding of message m.

• Round 1. Split m into b data symbols (m1, . . . ,mb) as per a predefined policy. Run Encode on input (m1, . . . ,mb)
to obtain q code words (s1, . . . , sq). For all j ∈ [q], compute a witness wj ← Wit(ak , z, sj) and send ⟨sj , wj , z⟩i
to party Pj ∈ Q.

• Round 2. Any party Pj ∈ Q does the following. Upon receiving the first valid code word ⟨sj , wj , z⟩∗ for z,
forward this code word to all parties in Q. // This step happens for party Pj only if it knows z.

• Local Output. Upon receiving b valid code words for z, run Decode on these code words to obtain m.

Figure 2: Description of the Deliver protocol on input (Q,m, z) invoked by party Pi.

simply refuse to deliver its transcript, parties in Q need to
decide on whether the previous step succeeded. For this, all
parties run two instances of BA in parallel. If the output of a
particular instance is 1, then at least one honest party thinks
that the previous step succeeded and it has obtained the
respective transcript. The fourth step proceeds with another
invocation of Deliver to ensure that each honest party in
the whole system Q obtains the transcripts {T1, T2} for
which the respective instance of BA output 1 (for the other,
parties can set Ti ∶= ⊥). Finally, each party aggregates both
transcripts and outputs AT ← Agg(T1, T2). Aggregation of
(⊥,⊥) outputs ⊥. Overall, the protocol outputs a transcript
AT among all parties. We provide a formal description of
GenAPVSS in Figure 3 below.

3.2. Design of our DKG Protocol

In the following, we describe our DKG protocol GRand.
Essentially, it generates an aggregated PVSS transcript
through an execution of GenAPVSS from which parties can
locally derive their secret key shares without any further
communication among them.

Our DKG Protocol. A formal description of the protocol
GRand is given in Figure 4. The protocol consists of
two simple steps. First, parties in P execute the protocol
GenAPVSS to establish consensus on an aggregated
PVSS transcript AT ∶= {Cj , Ej , π}j∈[n] (which has
contribution from at least one honest party by design
and thus is secure from the adversary). Then, each party



Let Q ⊆ P be a set of q parties and let b ∶= ⌈q/2⌉. Partition Q into two disjoint subsets Q = Q1 ⊔Q2 (each called a
committee) of size q1 ∶= ⌈q/2⌉ and q2 ∶= ⌊q/2⌋, respectively. Let l ∈ {1, 2} be such that Pi ∈ Ql. We use the notation
m

† ∶= Encode(m1, . . . ,mb) for a (q, b)-Reed-Solomon code RS = (Encode,Decode) and where (m1, . . . ,mb) is a
partition of m as per a predefined policy.

• Initialization Phase. Let ⊥ denote a default value. Initialize variables v1, v2 ∶= ⊥ and sets W1,W2 ∶= ∅.
• Recursion Phase. Run GenAPVSS(Ql) among all parties in Ql and let Tl denote the output. If ∣Ql∣ = 1, obtain
Tl by executing Tl ← Dist(sk i, (pk1, . . . , pkn)). // Each committee recursively executes the protocol to obtain a
PVSS transcript each. Both committees do this step in parallel (and not sequential).

• Accumulator Proposal. Generate an accumulation value zl for Tl by executing zl ← Eval(ak , T †
l ) and send

⟨accum, zl⟩i to all parties in Q. Upon receiving the same value z̃j (of type accum, with valid signature) from
⌊qj/2⌋+1 distinct parties in Qj (a majority set of parties), update the variable vj ∶= z̃j for each j ∈ {1, 2} at most
once. // Parties in the larger system Q only accept the majority value zj received from each committee Qj .

• Accumulator Agreement. For each j ∈ {1, 2}, run an instance BAj of Byzantine agreement on input vj (with
implicit index) among all parties in Q. Update vj as the output of BAj . // Parties run both Byzantine agreement
instances in parallel for j ∈ {1, 2}. This step is done to have consensus on the accumulation value zj assigned to
each committee Qj .

• Transcript Delivery. Let Qual ∶= {j ∈ [2] ∣ vj ≠ ⊥}. Only if zl = vl and l ∈ Qual , propagate Tl among all
parties in Q by executing Deliver(Q, Tl, zl). Upon decoding a valid transcript T̃j (with accumulation value vj) for
which j ∈ Qual , update the respective set Wj ∶= {T̃j} at most once. // Parties that have the correct Tj for the
agreed-upon accumulation value vj , deliver it to all parties in the whole system Q.

• Committee Selection. For each j ∈ Qual , run an instance BAj of Byzantine agreement on input ∣Wj∣ ∈ {0, 1}
(input is 0 if Wj is empty, and 1 otherwise) among all parties in Q. Let bj ∈ {0, 1} be the output bit, and update
Qual ∶= Qual ∩ {j ∣ bj = 1}. // Parties decide on whether a (qualified) committee Qj has correctly delivered its
initial transcript Tj .

• Transcript Agreement. For each j ∈ Qual , do as follows: only if Wj ≠ ∅, propagate T̃j ∈ Wj among all parties
in Q by executing Deliver(Q, T̃j , vj). On the other hand, upon decoding a transcript T̃j for which j ∈ Qual and
Wj = ∅, update the respective set Wj ∶= {T̃j} at most once. // Since a committee is selected from the previous
step only if (!) at least one honest party has Tj , this step ensures that Tj reaches all honest parties in Q.

• Final Aggregation. For each j ∈ {1, 2}, do as follows: only if Wj = ∅, update Wj ∶= ⊥ as default value. Generate
a PVSS transcript AT by executing AT ← Agg(W1,W2) and output AT . // Parties aggregate both transcripts and
terminate.

Figure 3: Description of the recursive PVSS transcript generation protocol GenAPVSS for the set Q ⊆ P from the view of party Pi ∈ Q.

Pi computes its secret share Di ∶= Decski
(Ei) and

terminates. The public key shares of GRand are defined
as (PK 1, . . . ,PKn) ∶= (C1, . . . , Cn) with the secret key
shares being (SK 1, . . . ,SKn) ∶= (D1, . . . , Dn). Using the
specific APVSS scheme described in Figure 1, the public
key shares of GRand are PK i = g

f(i) and the secret key
shares are SK i = h

f(i), where f ∈ Zp[X] is the hidden
degree-t polynomial encoded in the APVSS transcript AT .
We note that even though Pi knows hf(i), it has (almost) no
knowledge on f(i). In particular, this DKG protocol is very
different from most DKG protocols in the literature where
the hidden polynomial itself is distributed among the parties.

In the following theorem, we show that GRand is a
secure DKG with almost quadratic communication complex-
ity and linear round complexity. The security of the proto-
col follows from the security of the underlying Byzantine
agreement protocol and the aggregated unpredictability of
the APVSS scheme. Further, we derive the communication
and round complexity from recursive formulas. We provide
a formal proof for the following theorem in Appendix D.1.

Theorem 1. If APVSS is (t, εA, TA, qs, qh)-aggregated un-
predictable in the ROM and BA is t-secure, then GRand (cf.
Figures 3 and 4) is a (t, ε, T )-secure DKG protocol, where
ε ≤ εA+(qs+qh)/p and T ≥ TA+O(n2). Further, GRand
has a communication complexity of O(λn2

log n) bits and
terminates in O(n) rounds.

4. Our 1-Round Randomness Beacon

In this section, we design our efficient and simple ran-
domness beacon protocol GRandLine.

4.1. Construction of GRandLine

In the following, we give an informal description of
our randomness beacon protocol. A formal description of
GRandLine is given in Figure 5. Let H1 and H2 be hash func-
tions modeled as random oracle and denote gr ∶= H1(r) for
all r ∈ N. Parties begin by executing GRand upon which ev-
ery party Pi obtains a public-secret key pair (PK i,SK i) ∶=
(gf(i), hf(i)) for a hidden polynomial f ∈ Zp[X] of degree
t. The idea now is to use ϑi ∶= e(gr,SK i) ∈ GT as a partial



Let P = {P1, . . . , Pn}. The protocol outputs a vector of secret key shares (SK 1, . . . ,SKn) ∈ Gn
2 where SK j is known

only to Pj , a vector of public key shares (PK 1, . . . ,PKn) ∈ Gn
1 , and a public key PK ∈ G1.

• Transcript Generation. Run GenAPVSS(P) among all parties in P and obtain a PVSS transcript AT ∶= {C,E, π}
from the execution. // This step generates an agreed-upon PVSS transcript AT for all parties in P .

• Key Derivation. Compute your secret share Di by executing Di ← Decski
(Ei). Terminate with output

(PK 1, . . . ,PKn) ∶= (C1, . . . , Cn) and SK i ∶= Di. // Parties derive their secret key shares directly from AT
without further communication. These key shares interpolate a degree-t polynomial f ∈ Zp[X] in the exponent.

Figure 4: Description of the DKG protocol GRand from the view of party Pi.

Let e ∶ G1 × G2 → GT be a pairing with generators g ∈ G1, h ∈ G2. Let H1 ∶ {0, 1}∗ → G1 and H2 ∶ GT → {0, 1}λ
be two cryptographic hash functions modeled as random oracle. Hereafter, let gr ∶= H1(r) for all r ∈ N.

• Setup Phase. Parties execute the DKG protocol GRand and obtain a vector of secret key shares (SK 1, . . . ,SKn) ∈
Gn

2 , a vector of public key shares (PK 1, . . . ,PKn) ∈ Gn
1 , and a public key PK ∈ G1. // This serves as setup for

the randomness beacon which starts following a one-time, one-round commitment phase.
• Commitment Phase. Initialize a local set G ∶= ∅. Sample αi ←$ Z

∗
p uniformly at random and multicast (send to

all parties) cmi ∶= (gαi , h
−αiSK i). Upon receiving cmj ∶= (cmj,1, cmj,2) from party Pj , check if e(PK j , h) =

e(cmj,1, h) ⋅ e(g, cmj,2). Only if the check verifies, update G ∶= G∪ {Pj}. // This step is done only once, and each
party stores the commitments cmj it received from other parties.

• Beacon Epoch r. Compute σi ∶= (gαi
r , e(gr,SK i)) along with πi ∶= Dleq(g, gαi , gr, g

αi
r ), and multicast (σi, πi).

Upon receiving (σj , πj) from party Pj ∈ G, check if πj verifies using cmj,1 and σj,1. Further, check if σj,2 =

e(gr, cmj,2) ⋅ e(σj,1, h).
• Reconstruction Phase. Upon receiving t + 1 valid tuples {(σj , πj)}j∈S from distinct parties in G, compute σ ∶=
e(gr,SK ) by Lagrange interpolation in the exponent from {σj,2 = e(gr,SK j)}j∈S . // Only local computation.

• Beacon Output. Upon reconstruction of σ in epoch r, output the beacon value ϱr ∶= H2(σ) ∈ {0, 1}λ. // The
beacon value is output responsively as soon as t + 1 valid tuples are received.

Figure 5: Description of the randomness beacon protocol GRandLine from the view of party Pi.

signature on the epoch number r ∈ N, obtain the full signa-
ture ϑ ∶= e(gr,SK ) via Lagrange interpolation in the expo-
nent from enough shares, and derive the randomness beacon
value as H2(ϑ) ∈ {0, 1}λ. However, the problem with a
naive implementation of this approach is that no party can
verify the correctness of a received share ϑi = e(gr, h)f(i).
In order to resolve this issue, we augment the signature
shares with additional elements from which its correctness
can be checked via pairing equations. For this, we follow an
economical two-step approach. After DKG setup, each party
Pi locally samples an αi ←$ Z

∗
p uniformly at random and

multicasts (i.e., sends to all parties) cmi = (gαi , h
−αiSK i).

Correctness of its second component can be checked via a
pairing equation. After this commitment phase, the actual
randomness beacon starts. For epoch r ≥ 1, each party
computes σi ∶= (gαi

r , ϑi) along with a NIZK proof of
discrete logarithm equality πi ∶= Dleq(g, gαi , gr, g

αi
r ) to

prove correctness of g
αi
r . Upon receiving such a tuple, any

party can verify the correctness of the partial signature
ϑi using a pairing equation. Having done this, each party
can compute the randomness beacon value for epoch r
as described above. Overall, partial signatures consist of
two group elements along with a simple proof of discrete
logarithm equality. And verification of a share takes a single
pairing equation with two pairing operations (as for the
regular BLS signature!).

4.2. Security and Complexity Analysis of GRand-
Line in the AGM & ROM

In the following, we give a formal security analysis for
our randomness beacon protocol GRandLine. On an intuitive
level, security follows from the uniqueness and unforge-
ability of our locally-verifiable threshold signature. In more
detail, we give a security reduction from the hardness of
n-COMDL to the unforgeability of the threshold signature.
Further, we provide a complexity analysis of GRandLine.
For the full analysis, we refer to Appendix D.2.

Theorem 2. If n-COMDL is (εA, TA)-hard in the AGM
and BA is t-secure, then GRandLine (cf. Figure 5) is a
(t, ε, T, L, qh, 1)-secure randomness beacon protocol in the
AGM + ROM, where

ε ≤ Ln (12εA + (q2h + qh)/p) , T ≥ TA +O(Ln2).

GRandLine has a communication complexity of O(λn2) bits
per epoch, is responsive, and each epoch takes one round.

5. Implementation & Evaluation

In this section, we evaluate the performance of our
protocol at various system sizes. We evaluate GRandLine’s
throughput, i.e., the number of beacon values emitted per



second, and compare it to existing state-of-the-art random-
ness beacons: OptRand [3], BRandPiper [1], Drand [11].
Although we developed our code to be agnostic to the choice
of a pairing-friendly curve, we have used BLS12-381 for our
instantiation. In particular, we have used the implementation
of bls12-381 by arkworks [39] for primitive elliptic curve
operations.

5.1. Implementation Details

We have implemented our prototype of GRandLine using
the Rust programming language and the arkworks ecosys-
tem [39]. We use a custom, optimized APVSS scheme
implementation for our underlying cryptographic opera-
tions [40], ed25519-dalek [41] for constant-time signing of
NIZK proofs and tokio [42] for networking. The implemen-
tation follows strictly the description in Figure 5 and it is
publicly available for review at our Github repository [43].

Instantiation. We instantiate pairings with the BLS12-381
pairing-friendly family of elliptic curves. For efficiency, we
use in our implementation G1 as the group for encrypted
shares of the underlying APVSS scheme and G2 as the
group for commitment shares. For our group generators
g1 ∈ G1 and g2 ∈ G2, we use fixed generators of unknown
exponent. We simulate our protocol’s setup phase by pre-
computing and using config files with the PVSS public keys
and BLS12-381 public keys for Schnorr digital signatures.

5.2. Experimental Setup

We demonstrate the efficiency of GRandLine by eval-
uating our implementation with a varying total number of
nodes, i.e., 4, 8, 16, 32, and 64. All experiments were con-
ducted over Amazon EC2 where each replica was executed
on a t3.medium instance. Each instance has 2 vCPUs, all
cores sustained a Turbo CPU clock speed of up to 3.1GHz.
The machines have up to 5 Gbps bandwidth, 4GB memory
and run Ubuntu 22.04 LTS.

Network. To simulate execution over the Internet and to
ensure comparability with other proposals, all of our ex-
periments were conducted over Amazon EC2 where each
replica was executed on a t3.medium instance across 8
regions: N. Virginia (us-east-1), Ohio (us-east-2), N. Califor-
nia (us-west-1), Oregon (us-west-2), Stockholm (eu-north-
1), Frankfurt (eu-central-1), Tokyo (ap-northeast-1), Sydney
(ap-southeast-2). For any choice of total number of nodes,
we distribute the nodes evenly across all eight regions. For
our runs with 4 nodes we used the following regions: N. Vir-
ginia (us-east-1), N. California (us-west-1), Frankfurt (eu-
central-1), Tokyo (ap-northeast-1). In all cases, we create
an overlay network among nodes where all nodes are pair-
wise connected in a complete graph.

Baselines. We compare the performance of our implementa-
tion to three state-of-art publicly available implementations:
BRandPiper [44], Drand [11] and OptRand [45]. Our choice

is motivated by the fact that all of these schemes are adap-
tively secure, have optimal resilience threshold t < n/2, and
do not use heavy tools such as proof-of-work or (trapdoor)
VDFs.

5.3. Evaluation Results

Each experiment is run 3 times and each data point rep-
resents the average. We report the throughput of GRandLine
as the number of beacon outputs per second in Figure 6.

Figure 6: Performance of randomness beacon protocols: Drand,
BRandPiper and OptRand in contrast to GRandLine.

GRandLine. Compared to all three baselines, GRandLine
emits beacons at significantly higher rates. In particular,
our evaluation results illustrate that with 4, 8, 16, 32, and 64
nodes, GRandLine on average can generate 11, 8, 7, 4, and 2
beacons per second, respectively. The average time between
generating two consecutive beacons is: 87.19ms, 117.37ms,
133.29ms, 249.65ms, and 489.89ms, respectively.

OptRand. We test against OptRand’s optimistically respon-
sive variant. Moreover, we do not consider OptRand’s non-
optimistic variant, as it performs comparably to BRandPiper
(cf. [3]). OptRand is leader-based, has many rounds of
communication per epoch, and the epoch leader has to
carry most of the computation which leads to a bottle-
neck for higher values of n. This results in significantly
lower throughput per second across the board. Moreover,
OptRand’s reference implementation is instantiated with the
BN128 pairing-friendly curve from libff [46]. Unfortunately,
while this curve allows OptRand to benefit from more
efficient modular operations, it is below acceptable security
standards [47]. By instantiating GRandLine with arkworks’
ark-bn254 crate [48], we estimate that our protocol is ca-
pable of generating roughly twice the number of beacons
compared to what is shown in Figure 6. Our experiments
for OptRand yield slightly worse performance than what is
reported in their paper [3], but this could be attributed to
running tests on different AWS regions.



BRandPiper. BRandPiper assumes a synchronous network.
Their throughput is tied to a monotonically non-decreasing
function F (∆) of the maximum estimated network de-
lay parameter ∆. A higher estimate for ∆ leads to in-
creased security but harms performance and vice versa. For
BRandPiper, we first look for the smallest value for ∆
that does not break their implementation and then measure
throughput with this value for the delay parameter. Like
OptRand’s non-optimistic, synchronous variant, BRandPiper
outputs beacons every 11∆. BRandPiper suffers from in-
creased overheads incurred by both synchronization as well
as cryptographic operations due to its round-robin leader
election nature. In particular, our results illustrated in Figure
6 confirm that BRandPiper’s throughput is severely limited
by the presence of a single slow node in the system.
Drand. Similarly, Drand assumes a synchronous network
but relies on a period parameter. In each period, a single
beacon is emitted and the actual deployment of Drand sets
this parameter to 30 seconds. As such, Drand is also limited
by the speed of a conservatively chosen estimated network
delay. We note that we were only able to evaluate Drand’s
throughput for up to 32 nodes, as in our experiments,
Drand’s DKG initialization step keeps failing for 64 or
more nodes, even for large estimates of the network delay.
Similarly to BRandPiper, we took our time measurements
after the initial setup was done because there is a small
startup delay for setting up the network.
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Appendix A.
Related Work

In this section, we provide a detailed discussion on
existing works for randomness beacon and distributed key
generation protocols. For an excellent discussion of existing
randomness beacons, we refer to [9], [10].

Randomness Beacons. We categorize randomness beacons
found in the literature and practical applications according
to their assumptions and reliance on cryptographic tools.
Threshold Secret Sharing. The protocol of this type employ
threshold cryptography in order to generate randomness.
For this, there are two approaches. In the first one [11],
[15], [12], [49], [16], parties generate a (t, n)-threshold key

(sk1, . . . , skn) by running a DKG protocol from which the
randomness beacon value is derived as a unique threshold
signature on some message (typically the hash of the current
epoch number). In more detail, there are the following pro-
tocols. Cachin et al. [15] works in asynchrony, but does not
specify the threshold signature nor the DKG protocol. Dfin-
ity works in partial synchrony and uses the threshold BLS
signature together with the non-interactive DKG protocol
of Groth [50] (it assumes a broadcast channel). Drand [11]
works in synchrony and uses threshold BLS together with
Gennaro et al.’s DKG [51]. Herb works in synchrony and
uses the threshold ElGamal signature, and RandHerd works
in asynchrony and uses the threshold Schnorr signature [52].
The setup phase of these protocols have a communication
complexity of O(λn3) or higher due to the use of a DKG
protocol for field elements. On the other hand, once the setup
phase has terminated, these protocols achieve an improved
communication complexity of O(λn2) per beacon output
within optimal one round. The second approach works
through (P)VSS [12], [14], [13], [1], [3], [17], [2], [53], [54].
Notable randomness beacons here are SPURT [2], BRand-
Piper [1], and OptRand [3]. The idea of this approach is to
generate a new random value at each epoch by combining
secret sharings from at least t + 1 parties. This ensures
that the combined secret has contribution from at least one
honest party that chose its secret uniformly at random so
the randomness beacon value also inherits that property.
Let us elaborate in more detail on some of the protocols.
SPURT works in partial synchrony and has a communication
complexity of O(λn2) bits per beacon output. It relies on a
pairing-based PVSS scheme. BRandPiper is a protocol from
the family of RandPiper protocols. It works in synchrony
and achieves a communication complexity of O(λfn2) bits
per beacon output, where f ≤ t is the actual number of
faults in the system. It relies on an efficient VSS scheme
and the RandPiper SMR protocol. In BRandPiper, the leader
of an epoch shares n secrets at once and for the beacon
output parties reconstruct a random value accumulating
secrets from t + 1 different (previous) leader parties. Most
of these protocols assume a setup phase that when actually
implemented incurs cubic or higher communication cost.
Further, protocols of this type have a computation-heavy
epoch where most of the computation is carried by one
single party (epoch leader). Some protocols here have a
communication complexity of O(λn2) per epoch, while oth-
ers have cubic or higher. Finally, HashRand [55] is a recent
randomness beacon in asynchrony that achieves adaptive
security without the use of a threshold cryptographic setup.
Their randomness beacon is based on a (small) committee
selection from which the secret shares of a AVSS scheme
are reconstructed. However, their technique relies on secure
erasures of secret states (which are hard to implement in
practice) and without that their protocol has a communi-
cation complexity of O(λn3

log n) per epoch. Further, the
technique of committee-selection is only meaningful when
n is much larger than λ. One advantage of their protocol is
that it provides post-quantum security.
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Specialized Tools. The protocols in this category employ
verifiable delay functions (VDFs) [56], [57] or Proof-of-
Work (PoW) [58] in order to generate randomness [14],
[59], [13], [60], [61], [57]. VDFs are functions that require
a certain amount of time to compute but can be verified
quickly. Solana uses VDFs in its Proof-of-History consensus
protocol to establish a global source of time and generate
random values. While VDF-based protocols can offer strong
security guarantees and quadratic communication complex-
ity, they require specialized hardware to compute the VDFs
efficiently, which might not be accessible to all participants.
The same applies to PoW-based protocols that rely on the
assumption that the adversary has less computational hash
power than the honest parties. In general, these primitives
are computationally expensive tools with specialized hard-
ware and are highly energy-consuming. We elaborate on
some of these protocols. RandRunner [13] works in syn-
chrony and uses a trapdoor VDF. Such a trapdoor VDF
can generate unique function values efficiently with the
knowledge of the trapdoor, but takes some high specified
time T otherwise. RandRunner achieves a communication
complexity of O(λn2) bits per beacon output. However, it
only achieves (t+ 1)-unpredictability, since an adaptive ad-
versary can simply corrupt the next t leaders and thus learn
the beacon values for the next t epochs. RandChain [14] uses
a combination of PoW, VFD, and Nakamoto Consensus,
and achieves a communication complexity of O(λn) bits
per beacon output. One crucial drawback is that the beacon
output is only guaranteed to be 1/5-fair. And it also suffers
from problems concerning blockchain-oriented attacks.

Distributed Key Generation. Most of the DKG protocols
found in the literature are in synchrony [21], [50], [27],
[62], [63], [22]. Among these protocols, only the ones of
Canetti et al. [21] and Jarecki and Lysyanskaya [62] provide
adaptive security, but at the cost of heavy tools such as non-
committing encryption or reliable erasure of secret states.
All of these synchronous protocols with the exception of
Shrestha et al. [22] assume the existence of an one-round
broadcast channel. When instantiating the broadcast channel
with the adaptively secure Byzantine broadcast protocol in
our work (Byzantine agreement and Byzantine broadcast are
equivalent in the honest majority setting), all these protocols
have cubic or higher communication complexity. Crucially,
none of them achieves subcubic communication complexity.
DKG protocols in asynchrony have only gained attention
very recently by the works in [64], [23], [65], [66], [67].
All these constructions have cubic or higher communication
complexity, and the one of Abraham et al. [23] relies on a
universal powers-of-tau setup in order to obtain termination
in expected constant rounds.

Appendix B.
Formal Definitions and Security Notions

In this section, we provide formal definitions and secu-
rity notions for additional primitives used in the main body.
This is an extension of the primitives defined in Section 2.

B.1. Cryptographic Primitives

Digital Signature Scheme. A digital signature scheme pro-
vides a user with a verification-signing key pair (vk , dk),
where the signing key is only known to the user but the
verification key is public. The signing key allows the user
to sign any message of its choice, while any third party that
knows vk can verify that the message was indeed signed by
that particular user. We formally define this as follows.

Definition 10 (Digital Signature Scheme). A digital signa-
ture scheme is a tuple of algorithms DS = (SKey, Sign,Ver)
with the following properties:

• SKey: The randomized key generation algorithm takes
as input system parameters par and an identity index
i ∈ [n]. It outputs a verification key vk i and a signing
key dk i.

• Sign: The possibly randomized signing algorithm takes
as input a signing key dk i and a message m. It
outputs a signature σ. We also write ⟨m⟩i to de-
note the message-signature pair (m,σ) where σ ←
Sign(dk i,m).

• Ver: The deterministic verification algorithm takes as
input a verification key vk i, a message m, and a
signature σ. It outputs 1 (accept) or 0 (reject). In the
first case we call the signature σ valid (relative to vk i);
otherwise we call it invalid.

For a secure digital signature scheme, we require that
an adversary (not knowing the signing key) cannot create
a signature on a new message, even after obtaining many
signatures on messages of its choice.

Definition 11 (Unforgeability Under Chosen Message At-
tack). Let DS = (SKey, Sign,Ver) be a digital signature
scheme. For an algorithm A, define the unforgeability under
chosen message experiment UF-CMA

A
DS as follows:

• Offline Phase. Run SKey on input (par , i) to obtain
a key pair (vk i, dk i). Run A on input (par , vk i).
Initialize M ∶= ∅.

• Signing Oracle Queries. At any point of the experiment,
A gets access to an oracle that answer queries of the
following type: When A submits a message m, return
σ ← Sign(dk i,m) and update M ∶= M ∪ {m}.

• Output Determination. When A outputs a mes-
sage m

∗ and a signature σ
∗, do the following. If

Ver(vk i,m
∗
, σ

∗) = 1 and m
∗
∉ M, return 1. Oth-

erwise, return 0.
We say that DS is (ε, T, qs)-unforgeable under chosen mes-
sage attacks (UF-CMA) if for all algorithms A that run
in time at most T and make at most qs signing oracle
queries, Pr[UF-CMA

A
DS = 1] ≤ ε. Conversely, we say

that A (ε, T, qs)-breaks unforgeability of DS under chosen
message attacks if it runs in time at most T , makes at most
qs signing oracle queries, and Pr[UF-CMA

A
DS = 1] > ε.

Cryptographic Accumulator. We continue with the notion
of a collision-resistant accumulator scheme, which is the
notion of security we require for an accumulator scheme.



Table 2: Comparison table of existing distributed key generation protocols.

Protocol Network Resil. Adapt. Commun. Rounds Field Crypto. Prim. Setup

Kokoris et al. [64] async 1/3 ✓ O(λn4) O(n) ✓ AVSS CRS
Abraham et al. [65] async 1/3 ✗ O(λn3

logn) O(1) ✗ PVSS, Pairing CRS
Bingo [23] async 1/3 ✓ O(λn3) O(1) ✓ AVSS, Pairing q-SDH, AGM
Das et al. [67], [66] async 1/3 ✗ O(λn3) O(logn) ✓ AVSS CRS

Shrestha et al. [22] sync 1/2 ✗ O(λn3) O(n) ✓ VSS q-SDH
Gennaro et al. [51] sync 1/2 ✗ O(λn3) O(n) ✓ VSS CRS
Gurkan et al. [27] sync logn ✗ O(λn3) O(n) ✗ PVSS, Pairing CRS
Canetti et al. [21] sync 1/2 ✓ O(λn3) O(n) ✓ VSS, Erasures CRS
Jarecki et al. [21] sync 1/2 ✓ O(λn3) O(n) ✓ PVSS, NC Enc. CRS

GRand [our work] sync 1/2 ✓ O(λn2
logn) O(n) ✗ PVSS, Pairing, SNARK† CRS, AGM

Resil. denotes the Byzantine resilience threshold. Adapt. denotes adaptive adversary. Unpred. denotes unpredictability. Comm. denotes the communication
cost in bits. Rounds denotes the number of (a)synchronous rounds to terminate. For asynchronous protocols, this is the expected number of rounds (since
these protocols are randomized). Field denotes if the secret key is a field element or not. Crypto. Primit. denotes the cryptographic primitives in usage.
Canetti et al. relies on secure erasure of secret states, while Jarecki-Lysyanskaya uses non-committing encryption. Setup denotes the setup assumption. †
GRand only requires SNARKs when n is much larger than λ.

Definition 12 (Collision-Resistant Accumulator). Let Σ =

(Gen,Eval,Wit,Ver) be a cryptographic accumulator
scheme. For set size n and an algorithm A, define the
collision-resistance experiment CR

A
Σ(λ, n) as follows:

(1) Offline Phase. Run the accumulator key generation
algorithm to get ak ← Gen(λ, n).

(2) Online Phase. On input par and (n, ak), A returns a
tuple ({d1, . . . , dn}, d′, w′).

(3) Output Determination. Compute the accumulation
value z ← Eval(ak , {d1, . . . , dn}). Return 1 if
Ver(ak , z, w′, d′) = 1 and d

′
∉ {d1, . . . , d′}. Return

0 otherwise.
We say that Σ is collision-resistant or secure if for all PPT
algorithms A and any n, Pr[CR

A
Σ(λ, n) = 1] ≤ negl(λ).

Aggregatable PVSS Scheme. In the following, we define
the correctness and security notions for an APVSS schemes.
We start with correctness and public verifiability of (aggre-
gated) transcripts as follows:

• Correctness. We say that APVSS is correct if for all
key pairs (pk1, sk1), . . . , (pkn, skn) ∈ Keys(par) and
all i ∈ [n],
Pr[Ver((pk j)j∈[n], T ) = 1 ∧ ConId(pk i, T ) = 1] = 1,

where the probability is taken over all transcripts T
output by Dist(sk i, (pk i)i∈[n]).

• Public Verifiability. We say that APVSS
is publicly verifiable if for all key pairs
(pk1, sk1), . . . , (pkn, skn) ∈ Keys(par) and all
(E, π) such that Ver((pk1, . . . , pkn), (E, π)) = 1,
there exists a unique S ∈ Ĝ such that

Rec({Decski
(Ei)}i∈I) = S ∀I ⊂ [n], ∣I∣ = t + 1.

We would also like to guarantee that the secret reconstructed
from an aggregated transcript T = Agg(T1, . . . , Tk) corre-
sponds to the sum of the secrets Si that can be reconstructed
from Ti. Additionally, we would like to ensure that the set
of contributors to T consists of the contributors to the single

transcripts Ti. These properties are captured in the following
definitions.

Definition 13 (Correctness of Aggregation). Let
APVSS = (Keys,Enc,Dec,Dist,Agg,ConId,Ver,Rec)
be a publicly verifiable APVSS scheme over Ĝ. We
say that APVSS is correctly aggregatable if for all
(pk1, sk1), . . . , (pkn, skn) ∈ Keys(par), all k ∈ N, and all
transcripts (E1, π1), . . . , (Ek, πk) the following is true. If
for all i ∈ [k], we have Ver((pk1, . . . , pkn), (Ei, πi)) = 1,
then for all I ⊂ [n], ∣I∣ = t+1, the (aggregated) transcript
(E′, π′) ∶= Agg((E1, π1), . . . , (Ek, πk)) satisfies

Rec({Decski
(E′i)}i∈I) = ∏

j∈[k]
Rec({Decski

(Ej,i)}i∈I),

where we write Ej = (Ej,1, . . . ,Ej,n). Additionally, we
require that ConId(pk i, T ) = 1 for an i ∈ [n] if and only
if there is an j ∈ [k] such that ConId(pk i, Tj) = 1.

We recall the newly introduced security notion for
APVSS schemes called aggregated unpredictability as de-
fined in [18]. This notion captures malleability attacks and
prohibits any t-bounded (i.e., corrupting at most t par-
ties) adversary from learning the secret of an aggregated
transcript that has contribution from at least one honest
party (even if the adversary is allowed to contribute to the
aggregation itself).

Definition 14 (Aggregated Unpredictability of APVSS
Scheme). Let APVSS = (Keys,Enc,Dec,Dist,Agg,ConId,
Ver,Rec) be a publicly verifiable APVSS scheme over Ĝ.
For an algorithm A, we define the aggregated unpredictabil-
ity experiment AggPred

A
APVSS,t as follows:

• Offline Phase. Initialize T ∶= ∅. For all i ∈ [n], run
Keys on input (par , i) to generate keys (pk i, sk i) ←
Keys(par , i). On input par and {pk i}i∈[n], A returns
an index set C ⊂ [n] of initially corrupted parties along
with updated public keys {p̂k i}i∈C . Set pk i ∶= p̂k i for
all i ∈ C.



• Corruption Queries. At any point of the experiment, A
may corrupt a party by submitting an index i ∈ [n]\C.
In this case, return the secret key sk i and set C ∶=
C ∪ {i}.

• Transcript Queries. At any point of the experiment, A
gets access to an oracle of the following type: When A
submits a request (givePVSS, i) for an i ∈ [n] \ C, do
the following. On behalf of dealer Pi, run Dist on input
sk i and pk1, . . . , pkn. Return the output T = (E, π)
and set T ∶= T ∪ {(T, i)}.

• Output Determination. When A outputs an aggregated
transcript (E′, π′) and an element S∗ ∈ Ĝ, proceed as
follows:
– Return 1 if ∣C∣ ≤ t, Ver((pk1, . . . , pkn), (E′, π′)) =

1, S∗ = Rec({Decski
(E′i)}i∈[t+1]), and there is an

index i ∈ [n]\C such that ConId((E′, π′), pk i) = 1.
– Return 0 otherwise.

We say that APVSS is (t, ε, T, qs)-aggregated unpredictable
if for all algorithms A that run in time at most T and make
at most qs transcript queries, Pr[AggPred

A
APVSS,t = 1] ≤

ε. Conversely, we say that A (t, ε, T, qs)-breaks aggregated
unpredictability of APVSS if it runs in time at most T , makes
≤ qs transcript queries, and Pr[AggPred

A
APVSS,t = 1] > ε.

Succinct Non-Interactive Argument of Knowledge. We
continue with the notion of a succinct non-interactive argu-
ment of knowledge (SNARK) as defined by Groth [68]. A
non-interactive argument enables a prover Prove to convince
a verifier Ver that a statement x is in an NP language L such
that no interaction is required. The prover outputs only one
message, called an argument, which convinces the verifier of
the truth of the statement. When the argument is of small
size and low verification complexity, the system is called
succinct. We formally define this as follows.

Definition 15 (Non-Interactive Argument System). Let R be
a relation generator that on input the security parameter λ
outputs an efficiently decidable binary relation R. For pairs
(x,w) ∈ R, we call x the statement and w the witness.
The relation generator may also output some auxiliary
information z which is given to the adversary. An efficient
publicly verifiable non-interactive argument of knowledge
for R is a tuple of probabilistic polynomial-time algorithms
Σ = (Setup,Prove,Ver) with the following properties:

• Setup: This is a randomized parameter generation al-
gorithm that takes as input a polynomial-time decidable
binary relation R. It outputs public parameters par . All
other algorithms implicitly take par as input.

• Prove: This is a randomized prover algorithm that
takes as input a polynomial-time decidable binary re-
lation R, a statement x, and a witness w. It outputs an
argument π.

• Ver: This is a deterministic verification algorithm that
takes as input a statement x, and an argument π. It
outputs 1 (accept) if the argument is valid and 0 (reject)
otherwise.

We continue with the standard security notions for
a non-interactive argument system: perfect completeness,
knowledge-soundness, and succinctness.

Definition 16 (Perfect Completeness). Let
Σ = (Setup,Prove,Ver) be a non-interactive argument
system as defined above. We say that Σ has perfect
completeness if for all (x,w) ∈ R, par ← Setup(R),
π ← Prove(R, par , x, w), it holds Ver(par , x, π) = 1.

Definition 17 (Knowledge-Soundness). Let Σ be as above.
We say that Σ has knowledge-soundness if the following
holds. For any probabilistic polynomial-time (PPT) prover
A, there exists a PPT extractor X such that when A outputs
a valid argument π for a statement x, then X can compute
a witness w with (x,w) ∈ R. Here, the extractor gets full
access to the prover’s state, including any random coins.

Definition 18 (Succinctness). Let Σ be a knowledge-sound
non-interactive argument system as defined above. We say
that Σ is succinct if the proof size is linear in λ.

B.2. Consensus Primitives

We begin with the notion of graded Byzantine agreement
(also called graded consensus), which is a weak form of
Byzantine agreement.

Graded Byzantine Agreement. A graded Byzantine agree-
ment (GBA) protocols is a weak form of Byzantine agree-
ment whose purpose is to test for pre-existing agreement
among the honest parties. In a graded Byzantine agreement
protocol each party outputs a value v with a grade bit g
that reflects the party’s confidence in its output value. We
formally define a graded Byzantine agreement protocol as
follows.

Definition 19 (Graded Byzantine Agreement). Let Π be a
protocol executed by parties P1, . . . , Pn, where each party
Pi begins holding an input vi ∈ V . Each party Pi terminates
upon outputting a tuple (v, g) where g ∈ {0, 1} is a grade.
We define the following security and correctness properties
for Π:

• Graded Validity. Π is t-graded valid if the following
holds whenever at most t parties are corrupted: if every
honest party has the same value v as input, then every
honest party outputs (v, 1).

• Graded Consistency. Π is t-graded consistent if when-
ever at most t parties are corrupted: if an honest party
outputs (v, 1), then all honest parties output (v, ⋅).

• Termination. Π is t-terminating if whenever at most t
parties are corrupted: every honest party terminates
with a graded output value (v, g) where v ∈ V and
g ∈ {0, 1}.

If Π is t-graded valid, t-graded consistent, and t-
terminating, we say it is t-secure.



Let Q ⊆ P be a set of q parties among which the protocol is executed and let b ∶= ⌊q/2⌋ + 1. We denote by πb(m) a
compact certificate on m with threshold b, i.e., a proof of knowledge of b signatures on m from different parties.

• Echo Phase. Initialize sets W,C1, C2 ∶= ∅, grade g ∶= 0, and variable sent ∶= 0. Send ⟨echo, vi⟩i to all parties.
• Forward Phase. Upon receiving b valid echo messages ⟨echo, v⟩j on the same value v from different parties,

update W ∶= W ∪ {(v, πb(echo, v))}. Once W ≠ ∅, send ⟨v, πb(v)⟩i ∈ W to all parties and update sent = 1.
• First Vote Phase. If sent = 1 and did not receive a valid tuple (ṽ, πb(ṽ)) for a different value ṽ ≠ v, send
⟨vote1, v⟩i to all parties. Upon receiving b valid votes ⟨vote1, w⟩j on the same value w from different parties,
update C1 ∶= C1 ∪ {(w, πb(vote1, w))}.

• Second Vote Phase. Once C1 ≠ ∅, send ⟨vote2, w⟩i along with ⟨w, πb(vote1, w)⟩i ∈ C1 to all parties.
• Output Generation. Upon receiving b valid votes ⟨vote2, u⟩j on the same value u from different parties, update
C2 ∶= C2 ∪ {(u, πb(vote2, u))}. If C1 ≠ ∅, set vi ∶= ṽ ∈ C1. If further ṽ ∈ C2, set g ∶= 1. Terminate with (vi, g).

Figure 7: Graded Byzantine agreement protocol GBA described from the view of party Pi on input (Q, vi).

Let Q ⊆ P be a set of q parties and let b ∶= ⌊q/2⌋+ 1. Partition Q into two disjoint subsets Q = Q1 ⊔Q2 (each called
a committee) of size q1 ∶= ⌈q/2⌉ and q2 ∶= ⌊q/2⌋, respectively. Let l ∈ {1, 2} be such that Pi ∈ Ql and fix some small
constant const ∈ Z≥1.

• Graded Consensus. Execute GBA(Q, vi) among all parties in Q. Let (vi, gi) denote the output.
• First Recursion. If l = 1, execute BA(Q1, vi) among parties in Q1. Let v denote the output. In case ∣Q1∣ ≤ const ,

parties can execute any Byzantine agreement protocol to obtain v.
• Proposal Phase. If l = 1, send ⟨propose, v⟩i to all parties in Q. Upon receiving the same proposal value v from
⌊q1/2⌋ + 1 different parties in Q1 (a majority) and if gi = 0, update vi = v.

• Graded Consensus. Execute GBA(Q, vi) among all parties in Q. Let (vi, gi) denote the output.
• Second Recursion. If l = 2, execute BA(Q2, vi) among parties in Q2. Let v denote the output. In case ∣Q2∣ ≤ const ,

parties can execute any Byzantine agreement protocol to obtain v.
• Proposal Phase. If l = 2, send ⟨propose, v⟩i to all parties in Q.
• Output Generation. Upon receiving the same proposal value v from ⌊q2/2⌋+1 different parties in Q2 (a majority)

and if gi = 0, update vi = v. Terminate with output vi.

Figure 8: Recursive Byzantine agreement protocol BA described from the view of party Pi on input vi.

Appendix C.
Byzantine Agreement Protocol

In this section, we explain how to modify the Byzantine
agreement protocol from Momose and Ren [36]. Their pro-
tocol has a communication cost of O(λn2) bits and relies
on threshold key setups. Concretely, the protocol recursively
calls itself two times on each half and uses a threshold key
setup for each half. The threshold keys are are used (at each
level of the recursion) in order to provide a compact proof
(i.e., a compact certificate) for the statement that the prover
knows a threshold of signatures from different parties on
the same message. We observe that a threshold key is a
more powerful primitive and not needed for this function-
ality. Instead, we implement the compact certificates with
succinct non-interactive arguments of knowledge (SNARKs)
that do not require trusted setup [37], [38]. In particular, the
communication cost of the Byzantine agreement protocol
stays O(λn2). In the following, we will define the relation
that specifies these SNARKs. For simplicity, we will define
a relation for each level of the recursion. We note that one
could implement the certificates also with the recent inner
product argument based threshold signatures from Das et
al. [69]. Their scheme requires a universal powers-of-tau
setup and plain PKI. It generates constant-sized threshold

signatures and supports arbitrary thresholds. Further, the
authors provide an adaptive security proof of their scheme
in the AGM. We emphasize that their threshold signature is
not unique and thereby not suitable for randomness beacons.

Compact Certificates. In the following, we define the
relation that specifies the SNARK used by parties in order
for them to prove knowledge of a threshold of signatures
on the same message they have received. We define the
relation relative to a hash function Hash and a tuple of
numbers (ℓ, i) where ℓ ∈ Jlog nK, i ∈ [2ℓ] that specifies a
set Q(ℓ, i) ⊆ [n] of parties with public keys pk i1

, . . . , pk iq
where q ∶= ∣Q(ℓ, i)∣. A tuple (x,w) is in the relation
R(ℓ, i) if the following holds:

• The statement x is of the form (r, z) where r ∶=
⌊q/2⌋ + 1 and z is a hash value.

• The witness w is of the form (S,m) where S is a list
of r signatures and m is a message such that (i) for all
k ∈ [r], S(k) is a signature on m that verifies with
respect to pk ik

, and (ii) z = Hash(pk i1
, . . . , pk iq

).
In our Byzantine agreement protocol, the protocol will
call itself on each half of the whole system of n parties
{P1, . . . , Pn}. And this will define a particular set of parties
Q(ℓ, i) for each pair (ℓ, i) such that ℓ ∈ Jlog nK specifies
the level of the recursion and i ∈ [2ℓ] the i-th committee



among all 2ℓ committees at that level. That means for each
such ℓ, we have a disjoint union Q = ⨆i≤2ℓ Q(ℓ, i). The
above relation then simply says that a prover has knowledge
of a majority ⌊∣Q(ℓ, i)∣/2⌋+ 1 of signatures from different
parties in the committee Q(ℓ, i) on the same message m.
Graded Consensus Protocol. A formal description of the
graded consensus protocol GBA is given in Figure 7. The
protocol is parameterized by a subset Q ⊆ P of q ∶= ∣Q∣
parties among which the protocol is executed. Each party
Pi has an input value vi and sets its grade bit gi ∶= 0.
First, every party sends its signed value vi to all parties in
Q. After receiving the same value v from b ∶= ⌊q/2⌋ + 1
distinct parties (if at all), a party builds an echo certificate
using a (q, b)-threshold signature and sends it to all parties.
Following this, a party votes for v via a signed (vote1, v)
message if it has received an echo certificate for v and for
no other value. Parties repeat the last two steps applied to
vote1 messages (instead of echo messages) to prevent the
formation of vote1 certificates on different values. Once a
party receives a vote1 certificate on v, it sends the certificate
along with a signed (vote2, v) message to all parties. For
output generation, a party sets vi ∶= v if it received a vote1
certificate on v and gi ∶= 1 if it additionally received b vote2
messages on v from different parties.
Byzantine Agreement Protocol. The protocol recursively
calls itself two times on each half Q1 and Q2. Here, the
set of all parties Q = {P1, . . . , Pn} is partitioned into a
disjoint union Q1⊔Q2 of two halves/committees of roughly
equal size. The idea of the protocol is that each half calls
BA itself and then emulates a single party that proposes a
value (each committee basically emulates a king as defined
in the familiar Phase-King protocol). At the lowest level of
the recursion when committees fall below a predefined size
const , parties can run any Byzantine agreement protocol
since efficiency is no concern for constant-sized committees.
We briefly elaborate on the structure of the Phase-King
protocol. First, all parties execute an instance of the graded
consensus protocol GBA. Then, a designated party called
king (in our protocol it is emulated by a committee), whose
role is to establish agreement among honest parties in case
they are split between different values, proposes its own
value to all parties. Now a party adopts the king’s proposed
value only if its own grade bit is gi = 1; the grade determines
if a party sticks to its value output by the graded consensus
or if it adopts the value proposed by the king. In our
protocol, a party only considers a proposed value received
from a majority of the committee’s parties. A simple obser-
vation shows that honest parties reach agreement once an
honest king proposes. Thus, since at least one of the two
committees that we consider has an honest majority, the
protocol terminates with all honest parties agreeing on the
same value v.

Appendix D.
Security and Complexity Analysis of DKG and
Randomness Beacon

In this section, we provide a security and complexity
analysis of our protocols, that includes the DKG protocol

GRand (cf. Figure 4) which establishes threshold public-
secret key pairs for parties (where both the public and
the secret keys are group elements) and the subsequent
randomness beacon protocol GRandLine (cf. Figure 5). In
order to have a more thorough overview of the proofs,
we proceed as follows. In the first subsection, we give a
security analysis of GRand along with a communication and
round complexity analysis. Here, the security analysis shows
correctness and secrecy in the presence of an adversary that
corrupts up to t < n/2 parties. For this, we show that at the
end of the protocol each party holds a secret key share along
with public key shares of all parties. Further, we show that
the final aggregated transcript AT (from which the keys are
derived locally) has contribution from at least one honest
party. Having done this, it follows immediately that the
DKG protocol is secret as long as the underlying APVSS
scheme is aggregated unpredictable (the secrecy definition
is in line with aggregated unpredictability of the APVSS).
In the second subsection, we then provide a full security and
complexity analysis of our randomness beacon GRandLine
that has GRand as a pre-processing phase.

D.1. Analysis of our DKG GRand

Here, we provide a full proof of Theorem 1. We divide
our proof as follows. First, we show that all honest parties
terminate the recursive part GenAPVSS of the protocol with
the same valid (aggregated) PVSS transcript AT that has
contribution from at least one honest party. From this, the
correctness properties of the DKG protocol directly follow,
as the rest involves only local computation without any fur-
ther interaction. Concretely, each party Pi derives its secret
key share SK i from the transcript AT ∶= {Cj , Ej , π}j∈[n]
as the decrypted share SK i = Decski

(Ei) and the public
key shares (PK 1, . . . ,PKn) are simply the commitments
(C1, . . . , Cn). Second, we provide a communication and
round complexity of the recursive part GenAPVSS of the
protocol. Concretely, we derive the communication and
round complexity through recursive formulas that we estab-
lish from the analysis of a recursion level of GenAPVSS.

Proof. We begin with the proof. Before we delve into the
analysis, we recall the protocol. To understand the recursive
protocol better, we give an explanation of it that starts at the
very beginning. For the subsequent discussion, we assume
for the sake of presentation that the number n of parties in
the system is a power of two n = 2

k. Recall the notation
P = {P1, . . . , Pn} for the whole system of parties. At
the beginning of the protocol, each party Pi ∈ P locally
generates a random (t, n)-threshold PVSS transcript via
Ti ← Dist(sk i, (pk1, . . . , pkn)). Essentially, this transcript
encodes a random degree-t polynomial fi ∈ Zp[X] in the
exponent and comes with a signature (concretely, a signed
NIZK proof θ of knowledge of fi(0)) that bounds the
transcript to party Pi). We split the whole system P of



n parties into disjoint sets of neighboring parties (that we
call committees) as Qi ∶= {P2i−1, P2i} for all i ∈ [n/2].
Concretely, that means that

Q1 = {P1, P2}, Q2 = {P3, P4}, . . . , Qn/2 = {Pn−1, Pn}.
The goal now is for the parties in each committee to interact
with each other (but only within its own committee) in
order to exchange their (local) PVSS transcripts and finally
aggregate them into a single (aggregated) transcript. For
now, consider a single committee Qi (each committee
executes the same instructions). Each party first generates
an accumulation value for its PVSS transcript and sends
it to the other party in the same committee. Then both
parties execute two instances of Byzantine agreement
in order to have agreement on these two accumulation
values that we label z2i−1 and z2i. Having done this, each
party sends its local PVSS transcript to the other party
by usage of the efficient Deliver algorithm (since they
have already agreed on the accumulation value for each
transcript, this step makes sense at this point). Afterwards,
parties in the committee execute two instances of binary
Byzantine agreement in order to determine if the other
party has delivered its PVSS transcript correctly. Finally,
parties locally aggregate the two PVSS transcripts (in
case everything was done correctly) and obtain a single
(aggregated) transcript that both have. In this way, both
parties have established a new PVSS transcript and can
progress to the next stage of the iteration. This idea
generalizes to higher levels ℓ ∈ [log n] of the iteration also
in which two (neighboring) committees Q2i−1 and Q2i of
size q/2 = 2

ℓ−1 each interact with each other to exchange
their previously generated PVSS transcripts from one level
lower. To argue on the security of our protocol GRand, we
will need to show that at the end of the recursive protocol
GenAPVSS all honest parties have obtained the same
(aggregated) PVSS transcript AT from which they then
locally derive their own secret key shares and all public
key shares of GRand.

Since we assume t < n/2 for our protocols, we
know that at least one of the two committees Q1 and Q2

from the first step of the recursion is honest (i.e., has an
honest majority of parties). Let us assume without loss of
generality that the first committee Q1 is honest. Further, we
assume that parties in Q1 have already generated a PVSS
transcript T1 and agreed on it. Once we show that after
the interaction between parties in the parent committee
Q ∶= Q1 ∪Q2 (which is the whole system of n parties in
this case, but we will simply keep the general notation and
label it by Q, as the whole discussion then also applies to
any set Q with honest majority) that all honest parties have
obtained two transcripts {T1, T2}, where possibly T2 = ⊥
and Ti corresponds to committee Qi for i ∈ [2], then it
will follow by simple induction (or an iterative argument)
that the final transcript AT output by GenAPVSS is an
aggregation of several single PVSS transcripts (generated
by individual parties at the bottom level of the recursion)
from which at least one was generated by an honest party.

The reason is that in an honest committee Q1, there was
at least one honest child committee that it was formed
from and at the bottom parties sampled their transcripts
locally. So let parties in committee Q1 have their transcript
T1 and for parties in committee Q2 we do not assume
anything (since it could have majority corrupt parties and
the adversary could let different honest parties in Q2 output
anything). In the first step of the protocol, all parties in
Q1 generate an accumulation value z1 for a deterministic
and predefined encoding of their transcript T1 and then
multicast it to all parties in the parent committee Q. Since
Q1 has honest majority and we assume that all messages
are signed by a party before it sends it, all parties in Q1 will
set their local accumulation buffer V1 for committee Q1 to
V1 ∶= {z1}. For the accumulation buffer V2 for committee
Q2 we do not assume anything and all honest parties could
have a different value set V2 (as the majority corrupt parties
in Q2 could send different accumulation values to different
honest parties in Q). Since there is possible disagreement
on the received accumulation values V1 and V2 among
the parties and honest parties do not know which of the
committees is honest (if at all), two instances BA1,BA2 of
the Byzantine agreement protocol BA are executed among
the parties on input the received accumulation values (note
that the input/output ⊥ is possible). Since there is an honest
majority of honest parties in the system Q1 ∪Q2 = Q, the
guarantees of the Byzantine agreement protocol tell us that
all honest parties in Q output the same values z̃1 and z̃2
from the executions of BA1,BA2 (agreement) and further
that z̃1 = z1 is the accumulation value for committee Q1

that all honest parties in Q did input into BA1 (validity).
To avoid cumbersome notation, we simply use the labels
z1 and z2 for the output values. In the next step, each
party in Q1 sends its transcript T1 to all other parties in
Q using the Deliver protocol. Since the deliver protocol at
this stage uses Reed-Solomon codes with a reconstruction
threshold of q/2 + 1 (majority threshold) and there are at
least q/2+1 honest parties in Q (by assumption that Q has
honest majority), all honest parties in the parent committee
Q will be able to reconstruct the transcript T1 after this
step. On the other hand, we cannot say anything regarding
a hypothetical transcript T2 with accumulation value z2
coming from the other committee Q2. It could be that
corrupt parties in Q2 (which can form the majority in that
committee) send a valid transcript T2 to only some honest
parties in Q or even none so that not all honest parties
might be able to reconstruct the full message. Therefore,
in the next step, parties execute two instances 2BA1, 2BA2

of binary Byzantine agreement on input 1 if it was able to
reconstruct a transcript Ti with accumulation value zi and
on input 0 otherwise. The security guarantees of Byzantine
agreement now have the following implications. If the
output for say Bi is 1, then there must have been at least
one honest party that provided the input 1 into the protocol.
In particular, that honest party was able to reconstruct a
transcript Ti with accumulation value zi from the previous
step. If the output for Bi is 0, then we cannot say anything
further (as it could be that some honest parties have input 0



and others 1). But since all honest parties in Q were able to
reconstruct the full transcript T1 coming from the (honest)
committee Q1, we know that all honest parties input 1 into
B1 and therefore by validity of Byzantine agreement they
all output 1. In the final step of the protocol, all parties
that have a transcript Ti with accumulation value zi send
it to all other parties in Q using the Deliver protocol. If
the output of Bi was 0, then parties simply ignore any
transcript Ti delivered by any party. If the output of Bi was
1, then all honest parties will reconstruct Ti, as there was
at least one honest party that invoked the deliver protocol
on Ti by the properties of BA as already clarified. As B1

has output 1, we know that all honest parties will have the
same transcript T1 at the end of this step. Further, if B2

has also output 1, then likewise all honest parties will have
the same transcript T2 at the end of this step. If B2 has
output 0, then we know that all honest parties will simply
ignore any transcript T2 delivered by any party and thus all
honest parties will agree on T2 = ∅ simply. Having said
all this, we have shown that in case the committee Q has
honest majority, then all honest parties will end up with
the same transcripts T1 and T2 (coming from the children
committees Q1 and Q2) where at least one of them is a
valid and true PVSS transcript Ti ≠ ∅. As a result, after the
local aggregation step of {Ti}i∈[2], all honest parties obtain
the same transcript AT ∶= Agg(T1, T2). This concludes our
discussion on our initial goal to show that all honest parties
terminate GenAPVSS with the same aggregated transcript
that has at least one honest contribution. Termination of the
protocol is clear, as all building blocks are deterministic
and run in a finite number of rounds. Finally, secrecy of
the protocol by definition follows from the aggregated
unpredictability of the underlying APVSS. By a typical
game hops argument in which the reduction aborts when the
adversary forges a NIZK proof (with statistical soundness)
with a total of at most qs + qh tries, we directly find the
bound ε ≤ εA + (qs + qh)/p. The bound on the running
time is also clear. Therefore, it follows that GRand is
a (t, ε, T )-secure DKG protocol with the given bounds.
That concludes the discussion on the security of the DKG
protocol based on the aggregated unpredictability of the
underlying APVSS.

In the following, we measure the communication
and round complexity of GRand. We begin with the
communication complexity by focusing one particular level
of the recursive protocol GenAPVSS and then sum over
the total number of log n levels. For this, let us consider
the level ℓ ∈ [log n] of the recursion tree (ℓ = 1 denotes
the bottom level in which parties form committees of size
2) with Q1 and Q2 each of size 2

ℓ−1 that merge into Q
which is of size q ∶= 2

ℓ. We count the communicated
bits among honest parties in the committee Q and then
multiply this with the number n/q of parent committees at
that particular level ℓ. However, in contrast to the previous
analysis we do not now assume that Q has honest majority.
The reason for this is that even though our protocol is
deterministic, it could be possible that in a corrupt majority

committee the honest parties communicate much more bits
(e.g., O(λq3) bits) than in an honest majority committee
which would have devastating consequences for the overall
communication complexity. Therefore, we do not make any
assumptions on Q and its children committees Q1,Q2. We
begin with the analysis assuming the worst-case scenario
in which both committees are corrupt and all honest parties
in both committees start each with a different transcript. In
the first stage, each party in Q multicasts an accumulation
value of size O(λ) to all other parties in Q. Thus, this step
takes a total communication of O(λq2) bits, as the number
of parties in Q is q. In the next stage, the parties execute
two instances of the Byzantine agreement protocol BA
which itself has a communication complexity of O(λq2)
bits (cf. Appendix C). Here, we assume the scenario
where the adversary lets the honest parties agree all on
a different accumulation value which is the one from its
own local PVSS transcript. Afterwards, parties invoke the
deliver protocol on their PVSS transcript which is of size
O(λn). By definition of the deliver, each party splits its
transcript into chunks of size O(λn/q) and sends its chunk
to one particular party. Therefore, the total communication
complexity of this step is q ⋅O(λn/q ⋅ q) = O(λnq) bits. In
the next step of the deliver protocol, each party multicasts
a chunk it received from a different party only in case
the augmented accumulation value corresponds to its own
accumulation value and it does so only once in total. Hence,
this step also incurs the same number of communicated
bits which is O(λnq). Following this, the next two steps
of the recursive protocol are identically to the preceding
two steps: two instances of (binary) Byzantine agreement
followed by an invocation of the deliver protocol. As a
result, we can bound the total communication complexity of
honest parties in the committee Q of size q by O(λnq) bits
because q ≤ n. Since there are n/q such parent committees
at each level, we get a communication complexity of
n/q ⋅ O(λnq) = O(λn2) bits for one particular level.
Since there are exactly log n levels of the recursion
tree, we obtain the total communication complexity of
O(λn2

log n) bits. This concludes our discussion on the
communication complexity of GRand. We proceed with the
round complexity.

In the following, we compute the round complexity of
our protocol GRand which is the same as the one of the re-
cursive protocol GenAPVSS. For this, we first give a formula
for the round complexity of our Byzantine agreement pro-
tocol in Appendix C. Denote by r(n) the round complexity
of the protocol that consists of two sequential executions of
the four-round graded Byzantine agreement protocol GBA
with two rounds of proposal phases and two sequential
executions of the Byzantine agreement protocol recursively
on committees of size n/2. From this observation, we easily
derive the recursive formula

r(n) = (4 + r(n/2) + 1) + (4 + r(n/2) + 1)
= 2r(n/2) + 10,



where at the lowest level of the recursion we have r(1) = 0,
since a Byzantine agreement protocol involving a single
party is trivial. It can easily be seen that r(n) = 10n−10 is
the correct solution for this recursive formula. We use this
now to establish a formula for the round complexity of our
recursive protocol GenAPVSS. The protocol consists of the
following steps: two parallel executions of the protocol itself
with committees of size n/2, a one-round accumulator pro-
posal step, two parallel executions of Byzantine agreement
protocol, an invocation of the two-round deliver protocol,
again two parallel executions of Byzantine agreement, and
finally again an invocation of the two-round deliver protocol.
From this observation, we derive for the round complexity
R(n) of GenAPVSS the following recursive formula

R(n) = (R(n/2) + 1) + (r(n) + 2) + (r(n) + 2)
= R(n/2) + 2r(n) + 5

= R(n/2) + 20n − 15,

where at the lowest level of the recursion we trivially
have R(1) = 0. Again this can be solved using standard
techniques, which gives us the solution R(n) = 40n −
15 log n − 2−40. This concludes our security and complex-
ity analysis of GRand.

D.2. Analysis of Randomness Beacon GRandLine

Here, we provide a full proof of Theorem 2.

Proof. In the following, we prove 1-unpredictability and
bias-resistance of our randomness beacon GRandLine. We
do this by showing that it is hard for an algebraic adversary
to output a future randomness beacon value that is valid.
Since our randomness beacon values are derived as a unique
(deterministic) threshold signature from distributed keys
output by GRand, it is enough to show that the adversary
cannot produce a forged signature for a future epoch. Since
we hash the final epoch signature through a random oracle
H2, the 1-unpredictability and bias-resistance of GRandLine
follows. Having said that, let A be an algebraic algorithm
that (t, ε, T, L, qh, 1)-breaks unpredictability of GRandLine,
and let ξ = (ξ1, . . . , ξn) ∈ (G1 ×G2)n be the co-one-more
discrete logarithm challenge of degree n with corresponding
oracle DLg where ξi = (ξi,1, ξi,2) = (gzi , hzi) for all
i ∈ [n]. Without loss of generality, we assume that A
queries the random oracle H2 before producing its prediction
ϱr ∶= H2(σ) for some round r ∈ [L]. Further, we assume
that all parties are honest prior to the execution of the
protocol. It is straightforward how to adjust the proof to
the general case. Hereafter, let C ⊂ [n] be the dynamically
changing set of corrupt parties and H ∶= [n] \ C the set of
honest parties. Initially, we have C = ∅. We consider the
following sequence of games with A as adversary.
GAME G0: This is the real game. Generate the system
parameters par = (G1,G2,GT , p, g, h, e) where e ∶ G1 ×
G2 → GT is an asymmetric type 3 pairing of prime
order p cyclic groups with generators g ∈ G1, , h ∈

G2. For all indices i ∈ [n], generate the key pairs as
(pk i, sk i) ← Keys(par , i) such that pk i = h

ski . Whenever

A decides to corrupt a party Pi, return the internal state
of that party and set C ∶= C ∪ {i}. Thereafter, A gets
full control over Pi. Execute the DKG protocol GRand on
behalf of the honest parties and let (PK 1, . . . ,PKn) and
(SK 1, . . . ,SKn) be the vector of public and secret key
shares, respectively. For all i ∈ H, execute the commitment
phase by sampling αi ←$ Z∗p uniformly at random and
publishing cmi = (gαi , h

−αiSK i). Answer random oracle
queries ri to H1 by sampling γi ←$ Zp and returning
H1[ri] ∶= g

γi
∈ G1. Answer random oracle queries si to

H2 by sampling ϱi ←$ {0, 1}λ and returning H2[si] ∶= ϱi.
For all i ∈ H and epoch numbers r ≥ 1, compute the beacon
share σi of party Pi as (gαi

r , e(gr,SK i)) along with a proof
of discrete logarithm equality πi ∶= Dleq(g, gαi , gr, g

αi
r )

certifying the correctness of g
αi
r and publish it. Output

the beacon value ϱr ∶= e(gr,SK ) for epoch r (either by
Lagrange interpolation in the exponent from beacon shares
{e(gr,SK i)}S or directly from the knowledge of the secret
key SK ). At any point of the game, say in epoch r, A
outputs a prediction (ϱ∗ℓ , ℓ) for an epoch ℓ ∈ [L]. The
adversary wins the game if ℓ > r and ϱ

∗
ℓ = ϱℓ where

ϱℓ ∶= H2(e(gℓ,SK )). Clearly, A’s advantage in winning
the game is per definition given by

Pr[G0 = 1] = ε.

GAME G1: This game is identical to the previous game,
except that we add an abort condition. Before the execution
of the game, sample ℓ

∗
←$ [L] uniformly at random. Then,

execute the game as before and abort the game if ℓ ≠ ℓ
∗.

Since the choice of ℓ∗ remains hidden from A and does not
affect the subsequent execution of the game, we bound the
winning probability of this game as

Pr[G1 = 1] ≥ Pr[G0 = 1]/L.
GAME G2: This game is identical to the previous game,
except that we reprogram the random oracle H1 on input
ℓ differently (note that ℓ = ℓ

∗ is the epoch for which
A provides a prediction, i.e., a forgery for the underlying
threshold signature). To this end, program H1 on input ri
as follows. For ri ≠ ℓ, sample γi ←$ Zp uniformly at
random and return H1[ri] ∶= g

γi . For ri = ℓ, however,
return H1[ℓ] ∶= ξ1,1 where ξ = (ξ1, . . . , ξn) is the COMDL
challenge. Clearly, this game is perfectly indistinguishable
from the previous one so that there is no change in the
winning probability of the game, i.e.

Pr[G2 = 1] = Pr[G1 = 1].
GAME G3: This game is identical to the previous game,
except that we add another abort condition. The idea of
this hybrid is to guess a party Pi∗ ∈ [n] that contributes
to the keys generated from GRand and that remains honest
until the end of the game. Note that the keys output by
GRand are directly derived from the final APVSS transcript
AT ← GenAPVSS which is just an aggregation of several
initially sampled PVSS transcripts with contribution from at
least one honest party P

∗. Before the execution of the game,
sample i

∗
←$ [n] uniformly at random. Then, execute the



game as before and let P∗
∈ H be the honest party whose

initial PVSS transcript is included in the final aggregated
transcript AT during the execution of GRand. At the end,
abort the game if Pi∗ ≠ P

∗. Since the choice of i∗ remains
information-theoretically hidden from A’s view, we bound
the winning probability of this game as

Pr[G3 = 1] ≥ Pr[G2 = 1]/n.
GAME G4: This game is identical to the previous game,
except that we add another abort condition. Namely, when-
ever an instance of the Byzantine agreement protocol BA
fails to establish consensus, the game aborts. At each level
r ∈ [log n] of the recursive setup phase, there are 4 ⋅ 2r−1

instances of the consensus protocol (each of the 2
r−1 com-

mittees executes two instances of BA to agree on accumu-
lation values and two instances of 2BA to agree on which
PVSS transcripts of the children committees to aggregate).
Summing them up over all levels, we obtain

logn

∑
r=1

4 ⋅ 2
r−1

= 4 ⋅
logn

∑
r=1

2
r−1

≤ 4n.

As each instance of BA fails with probability εB , we can
bound the winning probability of this game as

Pr[G4 = 1] ≥ Pr[G3 = 1] − 4nεB .

GAME G5: This game is identical to the previous game,
except that we add another abort condition. Namely, when-
ever the adversary can forge a NIZK proof of knowledge
of discrete logarithm θ for one of his PVSS transcripts,
the game aborts. As the NIZK proof of our PVSS scheme
has statistical soundness, we may bound the soundness
error simply by 1/p. Since the adversary makes a total
of qh random oracle queries, we can bound the winning
probability of this game as

Pr[G5 = 1] ≥ Pr[G4 = 1] − qh
p .

GAME G6: This game is identical to the previous game,
except that we add another abort condition. Namely, when-
ever the adversary can forge a NIZK proof of discrete
logarithm equality π for one of his partial signatures during
a randomness beacon epoch, the game aborts. As the NIZK
proof of discrete logarithm equality has statistical soundness,
again we may bound the soundness error simply by 1/p.
Since the adversary makes a total of qh random oracle
queries, we can bound the winning probability of this game
as

Pr[G6 = 1] ≥ Pr[G5 = 1] − qh
p .

GAME G7: This game is identical to the previous game,
except that we add another abort condition. Namely, when-
ever the adversary finds a collision among the random oracle
queries to the hash function H1 ∶ {0, 1}∗ → G1, the game
aborts. As the adversary has a total of qh tries and can run
the birthday paradox algorithm, we can bound the winning
probability of this game as

Pr[G7 = 1] ≥ Pr[G6 = 1] − q
2
h

2p
.

As A is an algebraic adversary, at the end of the game it
returns the forgery (ϱℓ, ℓ) where ϱℓ = H2(e(gℓ,SK )) to-
gether with an algebraic representation (w.l.o.g. we assume
that the adversary queries the random oracle on e(gℓ,SK )
before outputting ρℓ)

(a0, {ai,1, . . . , bi,2}ni=1, {bi,3}
qh
i=1, {ri,1, . . . , ri,n}

qs
i=1,

{ci,j,1, . . . , ci,j,3}ni,j=1, {di,1,2, . . . , di,n,2}
qh
i=1,

{ei,1,2, . . . , ei,n,2}qhi=1, {fi,1,2, . . . , fi,n,2}
qh
i=1,

{di,j,1, ei,j,1, fi,j,1}ni,j=1, {si,1,1, . . . , si,n,n}
qs
i=1,

{ti,1,1, . . . , ti,n,n}qsi=1, {ui,1,1, . . . , ui,n,n}qsi=1,
{vi,1, . . . , vi,n}qsi=1)

of elements in Zp such that

e(gℓ,SK )
!
= e(g, h)a0 ⋅

n

∏
i=1

e(g, Yi)ai,1 ⋅ e(g, pk i)
ai,2 ⋅ e(g, cmi,2)ai,3

⋅
n

∏
i=1

e(Ci, h)bi,1 ⋅ e(cmi,1, h)bi,2

⋅
qh

∏
i=1

e(h1,i, h)bi,3 ⋅
qs

∏
i=1

n

∏
j=1

e(σi,j , h)ri,j

⋅
n

∏
i,j=1

e(Ci, Yj)ci,j,1 ⋅ e(Ci, pk j)
ci,j,2 ⋅ e(Ci, cmj,2)ci,j,3

⋅
n

∏
i,j=1

e(cmi,1, Yj)di,j,1 ⋅
qh

∏
i=1

n

∏
j=1

e(h1,i, Yj)di,j,2

⋅
qs

∏
i=1

n

∏
j,k=1

e(σi,j , Yk)si,j,k ⋅
n

∏
i,j=1

e(cmi,1, pk j)
ei,j,1

⋅
qh

∏
i=1

n

∏
j=1

e(h1,i, pk j)
ei,j,2 ⋅

qs

∏
i=1

n

∏
j,k=1

e(σi,j , pkk)
ti,j,k

⋅
n

∏
i,j=1

e(cmi,1, cmj,2)fi,j,1 ⋅
qh

∏
i=1

n

∏
j=1

e(h1,i, cmj,2)fi,j,2

⋅
qs

∏
i=1

n

∏
j,k=1

e(σi,j , cmk,2)ui,j,k ⋅
qs

∏
i=1

n

∏
j=1

e(gi,SK j)vi,j . (1)

Here, the representation is split (from left to right) into
powers of pairing evaluations on combinations of the gener-
ators g, h, the polynomial commitments C1, . . . , Cn and en-
crypted shares Y1, . . . , Yn of the aggregated transcript output
by GenAPVSS (which has contribution from the designated
party P

∗), the public keys pk1, . . . , pkn of parties (these
constitute the setup phase), the auxiliary commitments
cm1, . . . , cmn (these constitute the commitment phase), the
answers to hash queries h1,i ∶= H1(mi), i ∈ [qh], returned
by the random oracle, and the beacon value shares (seen
as partial signatures of the underlying threshold signature
scheme) e(gi,SK j), where i ∈ [qs] and j ∈ [n], along with



the correctness shares σi,j ∶= g
αj

i (recall that gi ∶= H1(i)
by definition). Here, qs is defined as the current epoch in
which the adversary outputs its prediction and thus qs < ℓ by
assumption (as the protocol is deterministic after the setup
phase and parties do output the beacon values in sequence).
Further, we assume w.l.o.g. that mi = i for all i ∈ [qs]. In
the following, we let Qh denote the set [qh]\{ℓ} (recall that
ℓ is the index where the forgery happens). Then the above
equation over GT to base e(g, h) yields

γℓf(0)
!
= a0 +

n

∑
i=1

ai,1f(i)sk i + ai,2sk i + ai,3(−αi + f(i))

+
n

∑
i=1

bi,1f(i) + bi,2αi + ∑
i∈Qh

bi,3γi +
qs

∑
i=1

n

∑
j=1

ri,jγiαj

+
n

∑
i,j=1

ci,j,1f(i)f(j)sk j + ci,j,2f(i)sk j

+ ci,j,3f(i)(−αj + f(j))

+
n

∑
i,j=1

di,j,1αif(j)sk j + ∑
i∈Qh

n

∑
j=1

di,j,2γif(j)sk j

+
qs

∑
i=1

n

∑
j,k=1

si,j,kγiαjf(k)skk +
n

∑
i,j=1

ei,j,1αisk j

+ ∑
i∈Qh

n

∑
j=1

ei,j,2γisk j +
qs

∑
i=1

n

∑
j,k=1

ti,j,kγiαjskk

+
n

∑
i,j=1

fi,j,1αi(−αj + f(j)) + ∑
i∈Qh

n

∑
j=1

fi,j,2γi(−αj + f(j))

+
qs

∑
i=1

n

∑
j,k=1

ui,j,kγiαj(−αk + f(k)) +
qs

∑
i=1

n

∑
j=1

vi,jγif(j)

+ γℓ(bℓ,3 +
n

∑
j=1

dℓ,j,2f(j)sk j +
n

∑
j=1

eℓ,j,2sk j

+
n

∑
j=1

fℓ,j,2(−αj + f(j))).

Note that we have split the terms into those that contain the
ℓ-th term and those that do not. As a result, the terms on
the right-hand side of the equation other than the last one
are independent from the variable γℓ. By rewriting, we get
the simplified identity (♠)

γℓ (bℓ,3 − f(0) +
n

∑
j=1

[dℓ,j,2f(j)sk j + eℓ,j,2sk j + fℓ,j,2(. . . )])

= A,

where A is the negative/minus of the appropriate rest term.
Let us write this equation as γℓ ⋅B = A for the appropriate
B. We consider the following five events:

• E1 defined by the identity B = 0.

• E2 defined by: there is no index i ∈ H such that fi ≠ 0
that are known polynomials in fℓ,1,2, . . . , fℓ,n,2.

• E3 defined by: there is no index i ∈ H such that ei ≠ 0
that are known polynomials in the coefficients output
by A.

• E4 defined by: there is no index i ∈ H such that
dℓ,i,2 ≠ 0 and fℓ,i,2 + si ≠ 0 for known coefficients
si.

• E5 defined by: there is no index i ∈ H s.t. r′i ≠ 0 and
t
′
i ≠ 0 that are known polynomials in the coefficients

output by A.
With this, we obtain the following technical lemma.

Lemma 1. Let G7 and events Ei for i ∈ [5] be defined
as above. Then there exist (algebraic) algorithms Aj for
j ∈ [6] playing in game n-COMDL that run in time at
most T such that:

Pr[n-COMDL
A1

= 1] = Pr[GA
7 = 1 ∧ ¬E1],

Pr[n-COMDL
A2

= 1] = Pr[GA
7 = 1 ∧ E1 ∧ ¬E2],

Pr[n-COMDL
A3

= 1] = Pr[GA
7 = 1 ∧ E1 ∧ E2 ∧ ¬E3],

Pr[n-COMDL
A4

= 1] = 1

2
Pr[GA

7 = 1 ∧ . . . ∧ E3 ∧ ¬E4],

Pr[n-COMDL
A5

= 1] = 1

2
Pr[GA

7 = 1 ∧ . . . ∧ E4 ∧ ¬E5]
Pr[n-COMDL

A6
= 1] = Pr[GA

7 = 1 ∧ E1 ∧ . . . ∧ E5].

Moreover, T ≤ T
′ +O(Ln2).

Proof. Let ξ = (ξ1, . . . , ξn) ∈ Gn with ξi = (gzi , hzi) for
i ∈ [n] be the COMDL instance of degree n. Algorithms
Ai for i ∈ [6] have access to a (perfect) discrete logarithm
oracle DLg in G1 (to base g) which they can query at most
n−1 times. When we say algorithm Ai queries the discrete
logarithm oracle on ξj , we mean that it queries DLg on
the first component of ξj which is a group element in G1.
Before we start with the description of the algorithms Ai,
we describe four different algorithms Simi for i ∈ [4] that
give a perfect simulation of the game G7 to the adversary
A.
SIMULATOR Sim1(ξ, par): On input ξ, Sim1 queries the
discrete logarithm oracle DLg on ξ2, . . . , ξn and gets
(z2, . . . , zn). It generates the public-secret key pairs of
honest parties by sampling sk i ←$ Zp uniformly at random
and publishes pk i ∶= h

ski . Sim1 executes the DKG protocol
GRand on behalf of the honest parties by sampling degree-t
polynomials fi ∈ Zp[X] uniformly at random for all i ∈ H.
At any point of the simulation, Sim1 answers corruption
queries by returning the internal state of the respective party
faithfully. After this setup phase, it executes the commitment
phase by sampling αi ←$ Z∗p uniformly at random for all
i ∈ H and publishes cmi = (gαi , h

−αiSK i). Further, for all
i ≠ ℓ it answers random oracle queries ri to H by sampling
γi ←$ Zp uniformly at random and returning H1[ri] ∶= g

γi .
For ri = ℓ, however, it returns H1[ℓ] ∶= ξ1. It answers
random oracle queries to H2 by lazy sampling as usual.
After the setup phase, the sequential randomness beacon
phase begins. For all epochs r < ℓ, Sim1 computes the
beacon share σi = (gαi

r , e(gr,SK i)) along with the proof



of discrete logarithm equality πi = Dleq(g, gαi , gr, g
αi
r ) for

honest party Pi by simple computation from the knowledge
of αi and SK i. It is clear that this simulation is perfect, since
the simulator follows all steps of the protocol instructions
faithfully and only changes the way how the random group
element gℓ = H1(ℓ) is generated (on which the forgery is
produced).
SIMULATOR Sim2(ξ, par): On input ξ, Sim2 generates the
public-secret key pairs of honest parties by sampling sk i ←$

Zp uniformly at random and publishes pk i ∶= h
ski . Sim2

executes the DKG protocol GRand on behalf of the honest
parties by sampling degree-t polynomials fi ∈ Zp[X]
uniformly at random for all i ∈ H. After this setup
phase, it executes the commitment phase as follows. For
all i ∈ H, it generates the commitment cmi of party Pi

as cmi ∶= (ξi,1, ξ−1i,2SK i) and publishes it. Further, for all
i it answers random oracle queries ri to H by sampling
γi ←$ Zp uniformly at random and returning H1[ri] ∶= g

γi .
It does so also for the random oracle query H1[ℓ]. It answers
random oracle queries to H2 by lazy sampling as usual.
After the setup phase, the sequential randomness beacon
phase begins. For all epochs r < ℓ, Sim2 computes the
beacon share σi = (gαi

r , e(gr,SK i)) along with the proof
of discrete logarithm equality πi = Dleq(g, gαi , gr, g

αi
r ) for

honest party Pi by the identity g
αi
r = ξ

γi

i,1, by computation
e(gr,SK i) from the knowledge of SK i, and πi by honest-
verifier zero-knowledge (HVZK) simulation. At any point of
the simulation, Sim2 answers corruption queries i ∈ H by
calling its discrete logarithm oracle DLg on input ξi to obtain
αi ∶= DLg(cmi) and returning αi along with other internal
data such as sk i (note that αi is the only value for party Pi

that was not generated honestly). Note that this is different
from the previous simulator in that it was able to return
the full internal state without calling its discrete logarithm
oracle. It is clear that this simulation is perfect, since the
simulator only changes the way how the commitments cmi

for i ∈ H are generated (indistinguishable from an honest
generation) and can output beacon shares via random oracle
programming and HVZK simulation.
SIMULATOR Sim3(ξ, par): On input ξ, Sim3 generates the
public-secret key pairs of honest parties as pk i ∶= ξi,2
and publishes them. This implicitly fixes the secret keys
as sk i = zi which is the discrete logarithm value of
ξi. Sim3 executes the DKG protocol GRand on behalf
of the honest parties by sampling degree-t polynomials
fi ∈ Zp[X] uniformly at random for all i ∈ H. After this
setup phase, it executes the commitment phase by sampling
αi ←$ Z

∗
p uniformly at random for all i ∈ H and publishes

cmi = (gαi , h
−αiSK i). Further, for all i it answers random

oracle queries ri to H by sampling γi ←$ Zp uniformly
at random and returning H1[ri] ∶= g

γi . It does so also
for the random oracle query H1[ℓ]. It answers random
oracle queries to H2 by lazy sampling as usual. After the
setup phase, the sequential randomness beacon phase begins.
For all epochs r < ℓ, Sim3 computes the beacon share
σi = (gαi

r , e(gr,SK i)) along with the proof of discrete
logarithm equality πi = Dleq(g, gαi , gr, g

αi
r ) for honest

party Pi as follows: generation of gαi
r and πi are by simple

computation from the knowledge of αi, and generation of
e(gr,SK i) is done via the identity

e(gr,SK i) = e(g,SK i)γi
= e(gf(i), h)γi

= e(PK i, h)γi .

At any point of the simulation, Sim3 answers corruption
queries i ∈ H by calling its discrete logarithm oracle DLg
on input ξi to obtain sk i and returning sk i along with other
internal data such as αi (note that sk i is the only value for
party Pi that was not generated honestly). It is clear that this
simulation is perfect, since the simulator follows all steps
of the protocol instructions faithfully and only changes the
bulletin board keys are generated.
SIMULATOR Sim4(ξ, par): On input ξ, Sim4 queries the
discrete logarithm oracle DLg on ξt+2, . . . , ξn and gets
(zt+2, . . . , zn). It generates the public-secret key pairs of
honest parties by sampling sk i ←$ Zp uniformly at random
and publishes pk i ∶= h

ski . Sim4 executes the DKG protocol
GRand on behalf of the honest parties by sampling degree-
t polynomials fi ∈ Zp[X] uniformly at random for all
i ∈ H\{P∗}. For the designated party P

∗ (that contributes
to the final aggregated PVSS transcript and remains hon-
est), however, it generates the degree-t polynomial fi∗ =

d0 + d1X + . . . + dtX
t
∈ Zp[X] such that gdj

= ξj+1 for
all j ∈ JtK (i.e., the t+ 1 coefficients of the polynomial are
given by the discrete logarithm values of ξ1, . . . , ξt+1). From
this, it can generate the commitments and encrypted shares
of party P

∗’s PVSS transcript by Lagrange interpolation in
the exponent and knowledge of the secret keys sk j of all
parties. In this context, it is important to note the following
crucial and subtle observation: since Sim4 generates the
public keys pk i of honest parties faithfully and the adversary
A is algebraic, it outputs the (updated) public keys of corrupt
parties as a linear combination of known values which
enables Sim4 to compute the respective secret keys from this
linear combination along with the algebraic representation.
At any point of the simulation, Sim4 answers corruption
queries by returning the internal state of the respective
party faithfully. Note that by assumption P

∗ remains honest
and for any other party the simulator follows the protocol
instructions honestly so that it can return the internal state
of the respective party without any discrete logarithm query.
After this setup phase, it executes the commitment phase by
sampling αi ←$ Z∗p uniformly at random for all i ∈ H
and publishes cmi = (gαi , h

−αiSK i). Further, for all i
it answers random oracle queries ri to H by sampling
γi ←$ Zp uniformly at random and returning H1[ri] ∶= g

γi .
It does so also for the random oracle query H1[ℓ]. It answers
random oracle queries to H2 by lazy sampling as usual.
After the setup phase, the sequential randomness beacon
phase begins. For all epochs r < ℓ, Sim4 computes the
beacon share σi = (gαi

r , e(gr,SK i)) along with the proof
of discrete logarithm equality πi = Dleq(g, gαi , gr, g

αi
r ) for

honest party Pi by simple computation from the knowledge
of αi and SK i. It is clear that this simulation is perfect, since
the simulator follows all steps of the protocol instructions
faithfully for all parties except P∗ and only changes the way
the designated party generates its PVSS transcript which is



indistinguishable from an honestly generated transcript.
Having defined the above simulators Simi for i ∈ [4], we
can now describe the algorithms Ai and especially how
they convert the forgery output by A (winning game G7)
into a valid solution to the COMDL instance ξ with high
probability, conditioned on some event happening. Recall
equation (♠) defined as Bγℓ = A for the appropriate terms
A and B. We now describe the algorithms Ai that simulate
the game G7 to the adversary.
Algorithm A1(ξ, par): Algorithm A1 works identical as the
simulator Sim1. In particular, the simulation is perfect and
the only change is the way how the random group element
gℓ = H1(ℓ) is generated on which the forgery is produced.
Suppose that A1 wins the game G7 and that event ¬E1

happens, i.e., B ≠ 0. Then equation (♠) is a non-trivial
equation of degree one in γℓ = DLg(ξ1) (as clarified before,
the terms A and B are completely independent from the
variable γℓ). By simple algebra, this allows A1 to solve
for γℓ = A ⋅ B−1 and thus efficiently output the discrete
logarithm values of the COMDL challenge ξ. Overall, we
obtain

Pr[n-COMDL
A1

= 1] = Pr[GA
7 = 1 ∧ ¬E1].

The bound on the running time of A1 is obvious.
Algorithm A2(ξ, par): Algorithm A2 works identical as the
simulator Sim2. In particular, the simulation is perfect and
the only change is the way how the commitments cmi are
generated. In this case, we have cmi = (ξi,1, ξ−1i,2SK i) for
all i ∈ H (here, H ⊂ [n] is the set of all honest parties
up to the point in which parties output these commitments)
and thus αi = DLg(ξi). Suppose that A2 wins the game G7

and that event E1∧¬E2 happens, i.e., B = 0 and also there
is an index i ∈ H such that fi ≠ 0 (we will define these
very soon). We let F ∶= fℓ,1,2α1 + . . .+ fℓ,n,2αn and from
B = 0 get the identity

F = bℓ,3 − f(0) +
n

∑
j=1

[dℓ,j,2f(j)sk j + eℓ,j,2sk j + fℓ,j,2f(j)] ,

(♥)

and so all terms on the right-hand side of the equation are
independent from the variables α1, . . . , αn and can also be
concretely computed by A2 as they are known. We consider
the defining equation of F in more detail now. Since the
adversary A is algebraic, it outputs its commitments cmi as
(known) linear combinations of the commitments of the hon-
est parties, since all previously generated elements output by
the simulator Sim2 are generated honestly and thus indepen-
dent from the unknown ξ. For simplicity, we assume for the
remainder of this paragraph that C = [t] and H = [t+1, n].
As a result, there are linear polynomials Fi ∈ Zp[X] for all
i ∈ C such that αi = Fi(αt+1, . . . , αn) = Fi(zt+1, . . . , zn)
that only depend on the outputs by the honest parties.
Therefore, the defining equation for F can be transformed
into

F = f0 + ft+1αt+1 + ft+2αt+2 + . . . + fnαn

for some appropriately defined coefficients
f0, ft+1, . . . , fn ∈ Zp. By assumption we suppose
that A2 wins the game G7 and that event ¬E2 happens,
that means there is an index i ∈ H such that fi ≠ 0. Since
the value of F by equation (♥) can be concretely computed
by A2, in combination with the above equation for F linear
in the variables αt+1, . . . , αn the algorithm A2 proceeds
as follows. It computes all the values αj = DLg(ξj)
by calling its discrete logarithm oracle on input ξj for
j ∈ H \ {i} and then solves for the value αi in the above
linear equation for F . By simple algebra, this allows A2 to
solve for α1, . . . , αn and thus efficiently output the discrete
logarithm values of the COMDL challenge ξ. Overall, we
obtain

Pr[n-COMDL
A2

= 1] = Pr[GA
7 = 1 ∧ E1 ∧ ¬E2].

The bound on the running time of A2 is obvious.
Algorithm A3(ξ, par): Algorithm A3 works identical as
the simulator Sim3. In particular, the simulation is perfect
and the only change is the way the bulletin board keys are
generated. In this case, we have pk i = ξi,2 for all i ∈ H
and thus implicitly sk i = zi which is the discrete logarithm
value of ξi. Suppose that A3 wins the game G7 and the event
E1 ∧ E2 ∧ ¬E3 happens. Recall the E1 defining equation
(♦)

n

∑
j=1

[dℓ,j,2f(j)sk j + eℓ,j,2sk j − fℓ,j,2αj + fℓ,j,2f(j)]

= f(0) − bℓ,3.

Again, let F ∶= fℓ,1,2α1+. . .+fℓ,n,2αn as before. In contrast
to the previous paragraph, now the values αi for all i ∈ C
(here, C ⊂ [n] is the set of all corrupt parties up to the
point in which parties output their commitments cmi) are
known and independent of z1, . . . , zn that are the discrete
logarithm values of ξi. The reason for this is that since
the adversary A is algebraic, it outputs the commitments
cmi,1 = g

αi
∈ G1 with an algebraic representation of

elements in the prime field Zp. However, as the simulator
Sim3 (that defines the algorithm A3) only uses the elements
ξi,2 ∈ G2 in the second source group for its simulation of
the protocol, A is agnostic of the elements ξi,1 ∈ G1 and
therefore has to explicitly provide knowledge of the αi for
i ∈ C through the algebraic representation. This argument
relies on the fact that the underlying pairing is of type 3
and there is no efficient way for A to transform elements
from one source group to the other source group.8 The
same argument also applies to the evaluations of the hidden
degree-t polynomial f(X) ∈ Zp[X], as the adversary
outputs the commitments of its chosen polynomials in the
first source group G1 and therefore independent of the ξi,2
elements. As a result, the values f(0), f(1), . . . , f(n) are
known to A3 and independent from the variables z1, . . . , zn.

8. When working with a pairing of type 1 or 2, this argument has to be
adjusted slightly. Informally, it would involve another reduction/algorithm
that solves for the discrete logarithm of h to base g, since that would be
the only way the algebraic adversary can output an element to base g from
given elements to base h.



Overall, the only variables in the above equation (♦) that
depend on z1, . . . , zn are the secret keys sk1, . . . , skn. We
simplify/update the equation as

n

∑
j=1

êjsk j = f(0) − bℓ,3 +
n

∑
j=1

[fℓ,j,2αj − fℓ,j,2f(j)] , (♦)

where êj = dℓ,j,2f(j) + eℓ,j,2 for all j ∈ [n]. Since A is
algebraic, it outputs its (updated) keys pk i for i ∈ C (up to
the point in which parties publish their keys on the bulletin
board) as linear combinations of the honest parties’ keys.
For simplicity, we assume that C = [t] and H = [t + 1, n].
Thus, let us write

sk i = λ0,i + λt+1,izt+1 + . . . + λn,izn

for all i ∈ C and some coefficients λ0,i, λt+1,i, . . . , λn,i ∈

Zp, since sk i = zi for i ∈ H. If we plug in these identities
into (♦), we obtain

∑
j∈C

êjλ0,j + ∑
j∈H

zj (êj +∑
i∈C

λj,i) = [. . . ]

⟺ ∑
j∈C

êjλ0,j + ∑
j∈H

zj (êj + λj,1 + . . . λj,t) = [. . . ] ,

where [. . . ] is simply identical to the right-hand side of
(♦). From this equation we see that it defines a polynomial
of degree one in the variables zt+1, . . . , zn. We define the
corresponding coefficients of zj for j ∈ H as ej , that
is ej ∶= êj + ∑i∈C λj,i. By assumption we suppose that
A3 wins the game G7 and that event ¬E3 happens, that
means there is an index i ∈ H such that ei ≠ 0. Having
said that, algorithm A3 proceeds as follows. It computes all
the values zj = DLg(ξj) by calling its discrete logarithm
oracle on input ξj for j ∈ H \ {i} and then solves for
the remaining variable zi in the above linear equation. By
simple algebra, this allows A3 to solve for sk1, . . . , skn and
thus efficiently output the discrete logarithm values of the
COMDL challenge ξ that it received. Overall, we obtain

Pr[n-COMDL
A3

= 1] = Pr[GA
7 = 1 ∧ E1 ∧ E2 ∧ ¬E3].

The bound on the running time of A3 is obvious.
Algorithm A4(ξ, par): Algorithm A4 works identical as
the simulator Sim4. In particular, the simulation is perfect
and the only change is the way the final aggregated PVSS
transcript is formed. In this case, the simulator generates the
degree-t polynomial fi∗ = d0+ d1X + . . .+ dtX

t
∈ Zp[X]

such that gdj
= ξj+1 for all j ∈ JtK (i.e., the t+1 coefficients

of the polynomial are given by the discrete logarithm values
of ξ1, . . . , ξt+1). Everything else is generated honestly (in
particular, the bulletin board keys and the PVSS transcripts
of other parties). Without loss of generality, we assume that
the adversary chooses all PVSS transcripts that contribute
to the final aggregated transcript AT ← GenAPVSS output
from the DKG execution except the one from party P

∗.
Further, we assume for simplicity that the final transcript
only consists of two single PVSS transcript (i.e., the con-
tribution vector b ∈ {0, 1}n is of weight two ∣b∣ = 2).

The general case in which there is more than one PVSS
transcript chosen by A works analogously (intuitively, it
does not make a difference if A outputs its PVSS transcripts
separately or aggregated). Now there are two cases that
can happen: (i) A chooses its PVSS transcript dependent
from the transcript T

∗ of the honest party P
∗, and (ii) A

generates its PVSS transcript honestly and independent from
T
∗. However, since parties augment the PVSS transcript

with a (non-interactive) proof od knowledge θ, the idea is
that the reduction can extract the evaluation fi(0) of the
polynomial fi ∈ Zp[X] chosen by A (since the proof of
knowledge comes with an algebraic representation of the
respective hash query for the challenge in the Fiat-Shamir
heuristic) and thereby solve for fi∗(0) in case A chose
fi dependent on fi∗ . This allows the reduction to obtain
the discrete logarithm value z1 = fi∗(0) and thus solve
the COMDL challenge. This intuition is made formal and
explicit in the security reduction of [18]. We omit it here
and directly assume that the adversary chooses its polyno-
mial fi honestly and independent of the honest party’s P

∗

polynomial fi∗ . On the other hand, the adversary has also
the possibility to choose its commitments cmi dependent of
the elements output by the transcript T

∗ (or equivalently
the aggregated transcript AT ), since the transcript includes
terms in both source groups G1 and G2 to base g and
h, respectively. The bulletin board keys, however, remain
independent from the transcript or challenge ξ, as already
clarified in the description of Sim4. We will take these facts
into consideration in our following analysis. Suppose that A4

wins the game G7 and that the event E1 ∧E2 ∧E3 ∧¬E4

happens. From event E1 we recall the equation
n

∑
j=1

[dℓ,j,2f(j)sk j + eℓ,j,2sk j − fℓ,j,2αj + fℓ,j,2f(j)]

= f(0) − bℓ,3.

From event E3 we know that ej = 0 for all j ∈ H where
ej = êj +∑i∈C λj,i = êj (observe that now λj,i = 0 for all
i ∈ C and j ∈ H as the secret keys are independent of the
challenge ξ). It follows that 0 = êj = dℓ,j,2f(j)+eℓ,j,2. The
easy case now is if there is an j ∈ H such that dℓ,j,2 ≠ 0,
as this allows us to rewrite f(j) = −eℓ,j,2/dℓ,j,2 and obtain
a non-trivial equation

−
eℓ,j,2
dℓ,j,2

= z1 + z2j + . . . + zt+1j
t (♡)

in the variables z1, . . . , zt+1 (recall that the reduction A4

chooses the polynomial fi∗ such that its coefficients are the
discrete logarithm values of ξ1, . . . , ξt+1). Further, by calling
its discrete logarithm oracle DLg on inputs ξ2, . . . , ξt+1, it
can solve for z1 in the above equation (♡) and thus effi-
ciently output the discrete logarithm values of the COMDL
challenge ξ. This case in the definition of event ¬E4 is set-
tled and thus for the remainder of this paragraph we assume
dℓ,j,2 = 0 for all j ∈ H. Having said that, the only unknown
terms dependent on z1, . . . , zt+1 in dℓ,j,2f(j)sk j +eℓ,j,2sk j

are the f(j) for j ∈ C. Since ∣C∣ ≤ t, the algorithm A4

proceeds as follows. It calls its discrete logarithm oracle DLg



on inputs g
f(j) for all j ∈ C, thus obtaining t new linearly

independent equations f(j) = z1 + z2j + . . . + zt+1j
t (the

equations written in matrix form give a Vandermonde matrix
which is well-known to have full rank) with known values
f(j). In particular, we can rewrite the above equation from
event E1 as

n

∑
j=1

[dℓ,j,2f(j)sk j + eℓ,j,2sk j − fℓ,j,2αj + fℓ,j,2f(j)]

= f(0) − bℓ,3

which is equivalent to

⟺

n

∑
j=1

[−fℓ,j,2αj + fℓ,j,2f(j)] = f(0) +D

⟺

n

∑
j=1

[f(j) − αj] fℓ,j,2 = f(0) +D, (2)

where D ∈ Zp is the appropriate (known) rest term. Note
that the terms dℓ,j,2f(j)sk j vanish for j ∈ H, the val-
ues eℓ,j,2sk j and bℓ,3 are known, and finally the terms
dℓ,j,2f(j)sk j are also now known for j ∈ C. On the
other hand, when the adversary A outputs its commit-
ments cmi,2 in the second group G2 it outputs them as a
(known) linear combination of the elements h, pk1, . . . , pkn,
cmt+1,2, . . . , cmn,2, and Y1, . . . , Yn. As a result, this gives
an identity for all i ∈ C as follows

f(i) − αi

= r0,i +
n

∑
j=1

rj,isk j + ∑
j∈H

sj,i (f(j) − αj) +
n

∑
j=1

tj,if(j)sk j ,

(4)

where the rj,i, sj,i, tj,i ∈ Zp are known coefficients. We take
the sum of fℓ,i,2(f(i) − αi) over all i ∈ [n] and also use
the equations given by (4) and the one given by (2) above.
This results in

f(0) +D =

n

∑
i=1

fℓ,i,2(f(i) − αi)

= ∑
i∈H

fℓ,i,2(f(i) − αi) + r0 +
n

∑
j=1

rjsk j

+ ∑
j∈H

sj(f(j) − αj) +
n

∑
j=1

tjf(j)sk j

= r0 +
n

∑
j=1

rjsk j +
n

∑
j=1

tjf(j)sk j

+ ∑
j∈H

(fℓ,j,2 + sj)(f(j) − αj), (♣)

where we define

r0 ∶= ∑
i∈C

fℓ,i,2r0,i, rj ∶= ∑
i∈C

fℓ,i,2rj,i,

sj ∶= ∑
i∈C

fℓ,i,2sj,i, tj = ∑
i∈C

fℓ,i,2tj,i.

Now the other case of ¬E4 applies, which means that there
is an index i ∈ H such that fℓ,i,2 + si ≠ 0. In that case,
we could let A4 instead work identical as simulator Sim2.
In particular, the simulation is perfect and the only change
is the way how the commitments cmi are generated. In
this case, we have cmi = (ξi,1, ξ−1i,2SK i) for all i ∈ H
and thus αi = DLg(ξi). Analogously, we can derive the
same (general) equation (♣), where D only depends on
f(j) and sk j for j ∈ [n] and is independent of αj for
j ∈ H. As a result, this equation gives a linear polynomial
in the variables {αj}j∈H and there is a non-zero coefficient
fℓ,i,2+si ≠ 0 of αi for that particular i given by event ¬E4

happening. As for algorithm A2, the algorithm A4 proceeds
as follows. It computes all the values αj = DLg(ξj) by call-
ing its discrete logarithm oracle on input ξj for j ∈ H \ {i}
and then solves for the value αi given the above linear
equation (♣). By simple algebra, this allows A4 to solve for
α1, . . . , αn and thus efficiently output the discrete logarithm
values of the COMDL challenge ξ. Finally, we let algorithm
A4 choose the simulation strategies Sim2 and Sim4 each with
probability 1/2 at the beginning of its execution. Since, this
choice remains completely hidden from the adversary A’s
view, we obtain

Pr[n-COMDL
A4

= 1] = 1

2
Pr[GA

7 = 1 ∧ . . . ∧ E3 ∧ ¬E4].

The bound on the running time of A4 is obvious.
Algorithm A5(ξ, par): Before we proceed with the de-
scription of algorithm A5, we give a brief summary of the
identities we have so far. From event E1 in its very plain
form, we have the equation

n

∑
j=1

[dℓ,j,2f(j)sk j + eℓ,j,2sk j − fℓ,j,2αj + fℓ,j,2f(j)]

= f(0) − bℓ,3.

Together with event E4, we have as before

f(0) +D = r0 +
n

∑
j=1

rjsk j +
n

∑
j=1

tjf(j)sk j ,

where by event E3 now

D = −(bℓ,3 +∑
j∈C

[dℓ,j,2f(j)sk j + eℓ,j,2sk j]) .

Taking these together, we get

f(0) − (r0 + bℓ,3) =
n

∑
j=1

r
′
jsk j +

n

∑
j=1

t
′
jf(j)sk j (♢)

for appropriate (known) coefficients r′j and t
′
j . This equation

has the same form as the one that algorithm A3 started
with. From this observation, we let algorithm A5 choose the
simulation strategies Sim3 and Sim4 each with probability
1/2 at the beginning of its execution. This choice remains
completely hidden from the adversary A’s view. Therefore,
the same calculations as for A3 and A4 with our new
coefficients and just adjusted event ¬E5 (which is basically



just an adaption of events ¬E3 and the first case of event
¬E4), A5 can derive a solution for the COMDL challenge
ξ with probability 1/2. We omit the whole calculation here
again and simply proceed with the next event. Overall, we
obtain

Pr[n-COMDL
A5

= 1] = 1

2
Pr[GA

7 = 1 ∧ . . . ∧ E4 ∧ ¬E5].
The bound on the running time of A5 is obvious.
Algorithm A6(ξ, par): Algorithm A6 works identical as
the simulator Sim4. In particular, the simulation is perfect
and the only change is the way the final aggregated PVSS
transcript is formed. In this case, the simulator generates the
degree-t polynomial fi∗ = d0+ d1X + . . .+ dtX

t
∈ Zp[X]

such that g
dj

= ξj+1 for all j ∈ JtK (i.e., the t + 1
coefficients of the polynomial are given by the discrete log-
arithm values of ξ1, . . . , ξt+1). Everything else is generated
honestly (in particular, the bulletin board keys and the PVSS
transcripts of other parties). As clarified before, we make
the assumptions as in the fourth algorithm description A4.
That is, we assume that the adversary chooses its polynomial
independent of the honest party P

∗’s transcript and thus we
may also assume directly that the aggregated transcript hides
the polynomial f = fi∗ ∈ Zp[X] (i.e., we ignore the shift
caused by the adversary’s polynomials). We suppose that A6

wins the game G7 and that the event E1∧ . . .∧E5 happens.
Then the above equation (♢) simplifies into the following

f(0) − (r0 + bℓ,3) =
n

∑
j∈C

r
′
jsk j +

n

∑
j∈C

t
′
jf(j)sk j

⟺ f(0) = r0 + bℓ,3 +
n

∑
j∈C

r
′
jsk j +

n

∑
j∈C

t
′
jf(j)sk j .

Having computed that, the only unknown terms dependent
on z1, . . . , zt+1 on the right-hand side of this equation are
the f(j) for j ∈ C. Since ∣C∣ ≤ t, the algorithm A6 proceeds
as follows. It calls its discrete logarithm oracle DLg on

inputs g
f(j) for all j ∈ C, thus obtaining t new linearly

independent equations f(j) = z1 + z2j + . . . + zt+1j
t (the

equations written in matrix form give a Vandermonde matrix
which is known to have full rank) with known values f(j).
Finally, the above equation allows A6 to compute f(0) = z1
and thus obtain in total t + 1 points on the polynomial
f ∈ Zp[X] of degree t. Hence, it can efficiently solve for
the discrete logarithm values of the COMDL challenge ξ.
Overall, we obtain

Pr[n-COMDL
A6

= 1] = Pr[GA
7 = 1 ∧ . . . ∧ E4 ∧ E5].

The bound on the running time of A6 is obvious.

To end the proof, consider algorithm B playing in
n-COMDL as follows: B samples i

∗
←$ [6] and then

internally emulates Ai∗ . Clearly, B is an algebraic algo-
rithm running in time at most T (the running time of Ai,
1 ≤ i ≤ 6). An application of the law of total probability
yields the following

Pr[n-COMDL
B
= 1]

=
1

6

6

∑
i=1

Pr[n-COMDL
Ai

= 1]

≥
1

12
⋅ Pr[GA

7 = 1]

≥
1

12
( ε

Ln
− 4nεB −

qh
p −

q
2
h

2p
) .

As we assume perfect security of the underlying Byzantine
agreement protocol, we obtain εB = 0 and thus finally

ε ≤ Ln(12εA +
q
2
h + qh
2p

) .

This concludes the proof of Theorem 2.
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