
Aegis: A Lightning Fast Privacy-preserving Machine Learning Platform against
Malicious Adversaries

Tianpei Lu∗, Bingsheng Zhang∗, Lichun Li† and Kui Ren∗
∗The State Key Laboratory of Blockchain and Data Security,

Zhejiang University, Hangzhou, China, Email: {lutianpei, bingsheng, kuiren}@zju.edu.cn.
†Ant Group Co.,Ltd, Hangzhou, China, Email: lichun.llc@antgroup.com

Abstract—Privacy-preserving machine learning (PPML) tech-
niques have gained significant popularity in the past years.
Those protocols have been widely adopted in many real-world
security-sensitive machine learning scenarios, e.g., medical care
and finance. In this work, we introduce Aegis – a high-
performance PPML platform built on top of a maliciously se-
cure 3-PC framework over ring Z2` . In particular, we propose
a novel 2-round secure comparison (a.k.a., sign bit extraction)
protocol in the preprocessing model. The communication of its
semi-honest version is only 25% of the state-of-the-art (SOTA)
constant-round semi-honest comparison protocol by Zhou et
al. (S&P 2023); both communication and round complexity
of its malicious version are approximately 50% of the SOTA
(BLAZE) by Patra and Suresh (NDSS 2020), for ` = 64.
Moreover, the communication of our maliciously secure inner
product protocol is merely 3` bits, reducing 50% from the
SOTA (Swift) by Koti et al. (USENIX 2021). Finally, the
resulting ReLU and MaxPool PPML protocols outperform
the SOTA by 4× in the semi-honest setting and 10× in the
malicious setting, respectively.

1. Introduction

In the era of big data, privacy protection and compliance
continues to be a matter of paramount concern among
individuals and organizations alike. With the rise of various
privacy regulations, such as GDPR, the need for privacy-
preserving mechanisms has intensified. Privacy-preserving
machine learning (PPML) is an emerging privacy-enhancing
technique that enables secure data mining and machine
learning while maintaining the privacy and confidentiality
of the underlying data.

Secure multi-party computation (MPC) [1], [17], [38]
allows n parties to jointly evaluate certain functions without
revealing their private inputs, and it is a typical crypto-
graphic tool to realize PPML [6], [26], [27], [30], [33],
[35] in the multi-server setting. Most of these protocols [8],
[34] are designed for the semi-honest setting; whereas, the
state-of-the-art (SOTA) maliciously secure PPML protocols
suffer a significant performance overhead. For instance, the
maliciously secure multiplication protocol of [13], [24] is
roughly 2× slower than its semi-honest version.

PPML-friendly MPC protocols usually operate over
rings Z2` to facilitate the fixed point arithmetics. However,
it is more difficult to design maliciously secure MPC over
Z2` than MPC over a prime-order finite field Zp. There have
been a series of works such as [16], [19], [28] implementing
efficient maliciously secure protocols over Zp. Some tech-
niques used in MPC over Zp to achieve malicious security
cannot be directly adopted to the MPC over Z2` as elements
in Z2` may not have an inverse. Some attempts [12], [15],
[21] have been made, but the resulting protocols come with
a 2× communication overhead. Alternatively, another line of
works, such as [13], [24], [30] tries to design maliciously
secure MPC over Z2` from scratch, but their solutions are
still significantly slower than the corresponding semi-honest
protocols.

Another challenge of PPML is that machine learning al-
gorithms often utilize many non-arithmetic functions, which
cannot be efficiently evaluated by MPC. For instance, the
activation functions used in machine learning, such as Rec-
tified Linear Unit (ReLU), and MaxPool, extensively use
secure comparisons. One possible solution [9], [22], [27],
[31] is to mix arithmetic circuits and boolean circuits, eval-
uating multiplication and addition on the arithmetic circuits
and the non-arithmetic functions, e.g., comparison and shift,
on the boolean circuits. However, this approach needs costly
share conversion between arithmetic and boolean fields.
Recently, many SOTA PPML protocols, such as [25], [32],
[34], [35], [40], introduce tailor-made protocols to evaluate
certain non-arithmetic functions, such as comparison and
ReLU, eliminating the need for share conversion.

Our results. In this work, we propose Aegis – a maliciously
secure PPML platform that is based on 3-party computation
(3PC) in an honest majority setting. The underlying share
of our 3PC protocol originates from a variant of the repli-
cated secure sharing [8], and we add IT-secure MAC to
enable fast verification of non-arithmetic functions, such as
ReLU. (cf. Tbl. 2, below). In addition, we follow the batch
verification paradigm proposed by [19], [28] to verify the
correctness of all the multiplication gates at the same time.
In particular, we extend the shared elements over Z2` [3],
[4], [5] to the quotient ring of polynomials Z2` [x]/f(x),
where f(x) is a degree-d irreducible polynomial over Z2 in
order to apply the Lagrange interpolating based dimension

Positive
Verification

Dimension
Reduce

Inner-Product
Verification

Batch
Multiplication

Verification

Sign bit
Verification

Two-round
Sign Bit Extraction

ReLU

MaxPool

Truncation Convolution

Batch
Inner Product
Verification

Figure 1: The roadmap of Aegis

reduction technique [19], which can half the inner product
vector dimension per iteration with a constant overhead. (cf.
Sec. 5.1).

Next, we propose a novel secure comparison (a.k.a. sign
bit extraction) protocol ΠSignBit. The intuition of our secure
comparison is to transfer the sign bit extraction problem
to checking whether a certain coordinate of a list is 0.
More specifically, our protocol lets two parties generate
such a transferred list, and the other party perform the zero
check (cf. Sec. 4). The procedure requires two rounds of
communication in the online phase.

We further design the maliciously secure verification
protocol ΠVSignBit to audit the correctness of our secure
comparison protocol. Our main observation is that the under-
lying replicated share is symmetric, and there is at most one
malicious party among the 3 MPC participants. Following
the dual execution paradigm [23], we perform the check
twice. For each check, we nominate a different party to
play the role of the verifier and let him generate IT-secure
MAC to the share and check the execution correctness. The
comparison result shall be accepted if and only if both
verifications pass (cf. Sec. 5.2).

As shown in Fig. 1, we first design a maliciously secure
inner product verification protocol ΠInnerVerify that can check
the correctness of an inner product gate. We then adapt the
maliciously secure dimension reduction protocol ΠReduce to
the ring setting as mentioned before. After that, we propose
a maliciously secure positive assertion protocol ΠPos that
can assert a shared value is positive, i.e., the sign bit is 0.

Our batch multiplication verification protocol ΠMultVerify

and inner product verification protocol ΠInnerVerify serve the
purpose of batch-verifying the correctness of multiplication
triples and inner product triples. These protocols are built
on top of the aforementioned ΠInnerVerify and ΠReduce. Ad-
ditionally, we also develop a maliciously secure truncation
protocol ΠTrunc with no online communication. Finally, we
built the convolution protocol, the ReLU protocol ΠReLU

and the MaxPool protocol by integrating the above basic
protocols.
Performance. Table 1 depicts the comparison between our
protocols in Aegis and SOTA 3PC-based PPML solutions.

As we can see, Aegis achieves a significant performance
improvement for both multiplication and non-arithmetic
functions, e.g. ReLU and MaxPool. (cf. Table 5 in the
appendix for more details of the communication cost of our
protocols.)

Two-round sign bit extraction. Secure comparison
(a.k.a. sign bit extraction) is essential for PPML. We design
a 2-round comparison protocol that can be further used
to construct the ReLU and MaxPool protocols. Compared
with CrypTFlow [25] (8-round with 6`log` + 14` bits
communication) and Bicoptor [40] (2-round with the
(`∗ + `)(2 + `) bits communication, with error probability
21−`

∗
), our protocol demonstrates significant improvements

(2-round with 4` log ` + 6` communication). Specifically,
our protocol reduces the communication cost by 75%
for the semi-honest setting. Furthermore, in real-world
benchmark tests, our protocol exhibits 4× speedup over
SOTA.

Sign bit verification with IT-secure MAC. To achieve
maliciously secure sign bit extraction, we adopt SPDZ style
IT-secure MAC [14] and dual execution technique [23]. The
resulting protocol only requires a 2-round with 10λ`(log `+
1) + 14` log ` + 16` bits communication while λ is the
statistical security parameter and the soundness error is
2−(λ log `+λ+log `). To the best of our knowledge, our ma-
liciously secure protocol significantly reduces communica-
tion of SOTA constant round solutions. Compared with
BLAZE [30] (5-rounds with 5κ`+6`+κ bits communication
in the offline phase and 4-round and κ` + 6` bits com-
munication in the online phase), our protocol reduces both
the communication and round complexity by 50%, when
` = 64, κ = 128 and λ = 6 (with statistical soundness
error 2−48). In addition, our protocol requires much less
computation than BLAZE which is based on Garble Circuit.

Batch verification for multiplication over ring.
Compared with the prime-order finite field, constructing an
MPC over ring Z2` against malicious adversaries typically
incurs a higher overhead. In this work, we propose a
new maliciously secure 3PC multiplication protocol over
ring Z2` with a logarithmic communication overhead
during batch verification. We conduct benchmarks on the
overhead ratio of the verification step. As illustrated in
Fig. 15 below, the verification cost is insignificant w.r.t.
the total execution time. By employing this technique, the
amortized communication cost of our maliciously secure
multiplication is merely 2 ring elements in the online phase
and 1 ring element in the offline phase per operation.

Compared with SOTA maliciously secure MPC multi-
plication over ring [13], our protocol reduces the overall
communication by 40%. Note that [13] achieves full secu-
rity in the Q3 active adversary setting (t < n/3), while
our protocol achieves security with abort in the Q2 active
adversary setting (t < n/2), where t is the number of
corrupted parties and n is the total number of participants.
Compared with SOTA 3PC multiplication over ring [24], our
protocol reduces the communication by 33% in the online
phase and 67% in the offline phase, respectively. Similarly,
the communication of our inner product protocols is also

TABLE 1: Comparison of 3-PC based PPML. (` is the ring size, `∗ is the security parameter for truncation error 21−`
∗
, n

is the size of the inner product, κ = 128 is the security parameter of GC, and λ = 5 is the statistical security parameter.)

Operation Protocol Offline Online Malicious
Communication (bits) Rounds Communication (bits)

Mult

ABY3 [27] 12` 1 9` X
BLAZE [30] 3` 1 3` X
SWIFT [24] 3` 1 3` X
Ours 1` 1 2` X

Inner Product

ABY3 [27] 12n` 1 9n` X
BLAZE [30] 3n` 1 3` X
SWIFT [24] 3` 1 3` X
Ours 1` 1 2` X

Inner Product
with
Trunction

ABY3 [27] 12n`+ 84` 1 9n`+ 3` X
BLAZE [30] 3n`+ 2` 1 3` X
SWIFT [24] 15` 1 3` X
Ours 7` 1 2` X

ReLU

ABY3 [27] 60` 3 + log ` 45` X
BLAZE [30] 5κ`+ 6`+ κ 4 κ`+ 6` X
SWIFT [24] 21` 3 + log ` 16` X
Falcon [35] 0 5 + log ` 32` X
Bicoptor [40] 0 2 (`∗ + `)(2 + `) ×
Ours (Semi-honest) ` log `+ 4` 2 4` log `+ 8` ×
Ours (Malicious) ` log `+ 4` 2 10λ`(log ` + 1) +

14` log `+ 16`
X

50% of that in SWIFT [24].

2. Preliminaries

Notation. Let P := {P0, P1, P2} be the three MPC parties.
During the PPML execution, we encode the float numbers
as fixed-point structure [27], [30]: for a fixed point value x
with k-bit precision, if x ≥ 0, we encode it as bx · 2kc; if
x < 0, we encode it as 2` + bx · 2kc. This encoding method
utilizes the most significant bit as the sign bit. For a ring
element x, the ith bit from big endian is denoted by x|i. We
denote γ(x) = α · x as the MAC of x where α is the MAC
key. We denote sign(x) as the sign bit of x and rshift(x) as
the arithmetic right shift of x. Our protocol contains four
types of secret sharing as shown in Table 2:

- [·]-sharing: We define [·]-sharing over ring Z2` as [x] :=
([x]1 ∈ Z2` , [x]2 ∈ Z2`) where x = [x]1 + [x]2. Pi for
i ∈ {1, 2} hold share [x]i and P0 holds the plaintext x.

- 〈·〉-sharing: We define 〈·〉-sharing over ring Z2` as
〈x〉 := ([rx],mx ∈ Z2`) where rx is a fresh random
value and mx = rx + x. Pi for i ∈ {1, 2} hold
(mx ∈ Z2` , [rx]i ∈ Z2`) and P0 holds ([rx]1, [rx]2).

- J·Kp-sharing: We define J·Kp over finite field Zp as
JxKp := (JxK1 ∈ Zp, JxK2 ∈ Zp) where x = JxK1+JxK2
(mod p). Pi for i ∈ {1, 2} hold share JxKi and P0 holds
the plaintext x.

- ‖ · ‖p,λi -sharing: We define ‖ · ‖p,λi -sharing over finite
field Zp as ‖x‖p,λ := (JxKp, {JαjKp, Jγ(x)jKp}j∈Zλ).
In our sign-bit verification protocol, one party Pi holds
the plaintext of (x, {αj , γ(x)j}j∈Zλ), and the other
parties Pk for k ∈ {i − 1 (mod 3), i + 1 (mod 3)}
hold the share (JxKk, {JαjKk, Jγ(x)jKk}j∈Zλ).

We use [·]`[x] and 〈·〉`[x] to denote the share in the
polynomial ring Z2` [x]/f(x) where f(x) is a degree-d irre-
ducible polynomial over Z2. For ‖ ·‖p,λi we utilize subscript
i to denote that the plaintext is held by Pi. Note that we
let any two shared values ‖x‖p,λi and ‖y‖p,λi for plaintext
holder Pi use the same MAC key. For simplicity, we use
‖ · ‖, J·K when semantics are clear.

All the aforementioned secret-sharing forms have the
linear homomorphic property, i.e., [x] + [y] = ([x]1 +
[y]1, [x]2 + [y]2) and c · [x] = (c · [x]1, c · [x]2) and
[x] + c = ([x]1 + c, [x]2), where c is a public value. The
same linear operation holds for 〈·〉, J·K, and [·]`[x], 〈·〉`[x].
For ‖ · ‖, we have ‖x‖+‖y‖ = (JxK+ JyK, {JαjK, Jγ(x)jK+
Jγ(y)jK}j∈Zλ), c · ‖x‖ = (c · JxK, {JαjK, c · Jγ(x)jK}j∈Zλ)
and c+ ‖x‖ = (c+ JxK, {JαjK, c · JαjK + Jγ(x)jK}j∈Zλ).

Secret sharing. Let Π[·], ΠJ·K, Π〈·〉, and Π‖·‖ to denote the
corresponding secret sharing protocols. By Π[·](x), we mean
that x is shared by P0; by Π[·], we mean the parties jointly
generate a shared random value. We utilize pseudo-random
generators (PRG) to reduce the communication [39]. In our
protocol description, when we let several parties pick the
same random values together, we mean that these parties
use PRG to locally generate random values with an agreed-
upon seed. The brief sketch of secret sharing schemes are
as follows.

• [x]← Π[·](x):
- P0 and P1 pick random value [x]1 ∈ Z2` ;
- P0 sends x2 = x− [x]1 (mod 2`) to P2.

• [x]← Π[·]:
- P0 and P1 pick random value [x]1 ∈ Z2` ;
- P0 and P2 pick random value [x]2 ∈ Z2` ;
- P0 calculates x = [x]1 + [x]2.

• JxK← Πp
J·K(x):

TABLE 2: The share structure of Aegis. (For ‖ · ‖p,λi , the example in the table depicts the case of ‖ · ‖p,λ0)

JxKp ‖x‖p,λ0 [x] 〈x〉

P0 x (x, {αj}j∈Zλ , {γ(x)j}j∈Zλ) x ([rx]1, [rx]2 ∈ Z2`)

P1 JxKp1 ∈ Zp (JxKp1, {JαjK
p
1, Jγ(x)jK

p
1}j∈Zλ) [x]1 ∈ Z2` ([rx]1,mx = rx + x)

P2 JxKp2 ∈ Zp (JxKp2, {JαjK
p
1, Jγ(x)jK

p
2}j∈Zλ) [x]2 ∈ Z2` ([rx]2,mx = rx + x)

- P0 and P1 pick random value JxK1 ∈ Zp;
- P0 sends JxKp2 = x− JxKp1 (mod p) to P2.

• JxKp ← Πp
J·K:

- P0 and P1 pick random value JxKp1 ∈ Fp;
- P0 and P2 pick random value JxKp2 ∈ Fp;
- P0 calculates x = JxKp1 + JxKp2.

• 〈x〉 ← Π〈·〉(x, Pi):
- All parties perform [rx]← Π[·] in the offline phase;
- Pi send mx = x+ rx to P1 and P2.

• 〈x〉 ← Π`
〈·〉:

- All parties perform [rx]← Π[·] in the offline phase;
- P1 and P2 pick random value mx together.

• ‖x‖ ← Πp,λ
‖·‖ (x, Pi):

- All parties invoke JαjKp ← Πp
J·K for j ∈ Zλ;

- Pi calculates γ(x)j = x · αj for j ∈ Zλ;
- All parties invoke Jγ(x)jKp ← Πp

J·K(γ(x)j) for j ∈
Zλ and JxKp ← Πp

J·K(x).

Π[·] and Π〈·〉 also work for the share [·]`[x], 〈·〉`[x] over the
polynomial ring Z2` [x]/f(x), which are denoted as Π

`[x]
[·] ,

Π
`[x]
〈·〉 .

Robustness of reconstruction. We note that the shared
form 〈·〉 has the reconstruction robustness property against
a single malicious party. To be precise, for shared value
〈x〉, a single active adversary cannot deceive the honest
parties into accepting an incorrect reconstruction result x+e
with a non-zero error e. This is because any two honest
parties can collaboratively reconstruct the secret, and invalid
shares will be detected by the honest parties. In addition, the
shared form ‖ · ‖pi also maintains the robustness when one
of the Pi−1, Pi+1 is malicious. Because Pi can assert the
correctness of share through the MAC check. Formally, the
robust reconstruction protocol ΠRec is described as follows:
• x← ΠRec(〈x〉):

- P0 sends [rx]1 to P2 and [rx]2 to P1;
- P1 sends mx to P0 and [rx]1 to P2;
- P2 sends mx to P0 and [rx]2 to P1;

If the received messages from the other parties are
inconsistent, Pi output abort. Otherwise Pi output
x = mx − [rx]1 − [rx]2.

• x ← ΠRec(〈x〉, Pi): All parties send their shares to
Pi. If the received messages from the other parties are
inconsistent, Pi output abort. Otherwise Pi output x =
mx − [rx]1 − [rx]2.

• x← Πp
Rec(‖x‖, Pi):

- Each party Pk for k 6= i sends its shares
JxKpk, {Jγ(x)jK

p
k}j∈Zλ to Pi;

- Pi reconstructs x and {γ(x)j}j∈Zλ , aborts if any
γ(x)j 6= αj · x for j ∈ Zλ.

For the share 〈·〉`[x] in polynomial ring, Π
`[x]
Rec works analo-

gously as the above.
Preprocessing and postprocessing. We follow the ”pre-
processing” paradigm [2] which splits the protocol into two
phases: the preprocessing/offline phase is data-independent
and can be executed without data input, and the online
phase is data-dependent and is executed after data input.
Specifically, all the items rx of share 〈x〉 of our protocols
can be generated in the circuit-depend offline phase. What
the parties need to do in the online phase is to collaborate in
computing mx for P1 and P2. To achieve malicious security,
we further introduce the postprocessing phase [21] where
batch verification is performed.
Multiplication gate. We adopt the multiplication protocol
of ASTRA [8]. For multiplication z = x · y with input 〈x〉,
〈y〉 and output 〈z〉, all parties first generate [rz]← Π[·](rz)
for the output wire in the offline phase. To calculate mz for
P1 and P2 in the online phase, it can be written as

mz = xy + rz = (mx − rx)(my − ry) + rz

= mxmy −mxry −myrx + rxry + rz .

[Γ′] = mxmy −mx[ry] −my[rx] can be calculated by P1

and P2 locally and [Γ] = [rx ·ry]− [rz] can be secret shared
by P0 to P1 and P2 in the preprocessing phase. In the online
phase, P1 and P2 calculate and reconstruct [mz] = [Γ′]+[Γ].
Multivariate polynomial evaluation. Given a d-degree n-
variate polynomial function F d(x1, . . . , xn) = y, we design
a evaluation protocol 〈y〉 = ΠPolyEvl(F

d, 〈x1〉, . . . , 〈xn〉)
which requires communication of 2` bits in the online phase
and at most ` · (nd−1 − n+ 1) bits in the offline phase. In
particular, plugin the underlying shares, we have

my = F d(mx1 − rx1 , . . . ,mxn − rxn) + ry (1)

Let Ik be the kth item of F d(x1, . . . , xn) =
∑m

k=0 ck ·
Π

xsj∈Ik
xsj . After expanding Eq. 1, we let P0 locally com-

putes all the cross-items Π
xsj∈Ik

rxsj and share them to the

other parties in the offline phase. The offline phase requires
`m bits communication depending on the number of cross-
items, i.e. m. Let Π

`[x]
PolyEvl denote the polynomial evaluation

protocol w.r.t. a polynomial ring Z2` [x]/f(x). Analogously,
it costs 2`d of communication in the online phase and at
most ` · d ·m in the offline phase, for the degree d of f(x).
Security up to additive attacks. As proven in [10], an
replicated secret sharing protocol, such as ΠPolyEvl, is secure
up to additive attacks against malicious adversaries, i.e.,
the adversary’s cheating ability is limited to introducing an
additive error to the output.

3. Security Model

We analyze the security of our protocols in the well-
known Universal Composibility (UC) framework [7], which
follows the simulation-based security paradigm. The adver-
sary A is allowed to partially control the communication
tapes of all uncorrupted machines, that is, it sees all the
messages sent from and to the uncorrupted machines and
controls the sequence in which they are delivered. Then, a
protocol Π is a secure realization of the functionality F ,
if it satisfies that for every PPT adversary A attacking an
execution of Π, there is another PPT adversary S (simulator)
attacking the ideal process that uses F where the executions
of Π with A and that of F with S makes no difference to
any PPT environment Z .

The idea world execution. In the ideal world, the par-
ties P := {P0, P1, P2} only communicate with the ideal
functionality F3pc with the excuted function f . All parties
send their share to F3pc, F3pc calculate and output the result
depend on the adversary S.

F3pc interacts with the parties in P and the adversary S. Let f
denote the functionality to be computed.
Input:
• Upon receiving from (Input, sid, xi) from Pi ∈ P , record xi

and send (Input, sid, Pi) to S.
Execution:
• Upon receiving (Compute, sid) from S, if all xi are

recorded compute (y0, y1, y2) = f(x0, x1, x2).
• For i ∈ [3], send (Output, yi) to Pi via private delayed

channel.

Functionality F3pc

Figure 2: The ideal functionality F3pc.

The real world execution. In the real world, the parties
P := {P0, P1, P2} communicate with each other via secure
channel functionality Fsc for the protocol execution Π. Our
protocols work in the pre-processing model, but, for sim-
plicity, we analyze the offline and online protocols together
as a whole.

Definition 1. We say protocol Π UC-secure realizes func-
tionality F if for all PPT adversaries A there exists a PPT
simulator S such that for all PPT environment Z it holds:

RealΠ,A,Z(1λ) ≈ IdealF,S,Z(1λ)

4. Secure Sign Bit Extraction

In this section, we propose a new sign bit extraction pro-
tocol ΠSignBit. For sign bit extraction function y = sign(x),
protocol ΠSignBit can output 〈y〉 from input 〈x〉. In Sec. 5,
we apply it to the malicious setting.

Let L1 := {s|j}j∈Z` be the list of the individual bits
of the shared value s. One can transfer L1 into another list
L2 := {t|j}j∈Z` such that only one zero-element exists at

P1 and P2 hold a common random seed η ∈ {0, 1}λ.
Input : 〈·〉-shared value of x.
Output : 〈·〉-shared value of z = sign(x).
Preprocessing:
- All parties perform [r′], [rz]← Π[·];
- Pi, for i ∈ {1, 2} generates the same random value

∆ ∈ {0, 1} via PRF with seed η and reveals
[Γ] = ∆ + [r′]− 2∆ · [r′] + [rz] to each other.

- P0 does:
1) calculate r̂x = −rx − sign(−rx) · 2`−1 ∈ Z2`

2) extract 2`−1 − 1− r̂x as {rx,0, . . . , rx,`−1}
3) perform Jrx,jKp ← ΠpJ·K(rx,j) for j ∈ Z∗` , taking the

biggest prime of p ∈ (`, 2log `+1];

Online:
- Pi, for i ∈ {1, 2} does:

1) set m̂x = mx − sign(mx) · 2`−1 and bitexact it as
{m̂x|j ∈ {0, 1}}j∈Z` while

∑`−1
j=0 2`−1−jm̂x|j = m̂x;

2) set m̂x|` = 0 and Jrx,`K = J1K;
3) set JmjKp = m̂x|j + Jrx,jKp − 2m̂x|j · Jrx,jKp for

j ∈ Z∗`+1.
4) pick same random values {wj , w′j ∈ Z∗p}j∈Z∗`+1

via
PRF with seed η;

5) calculate Jm′jK
p =

∑j
k=1JmkKp − 2 · JmjKp + 1 and

JujKp = wj · Jm′jKp + (sign(mx)⊕ m̂x|j ⊕∆) and
Ju′jK

p = w′j(wj · Jm′jKp + 1) for j ∈ Z∗`+1;
6) pick a random permutation π via PRF with seed η and

permute the list {JûjKp}j∈Z∗
`+1

= π({JujKp}j∈Z∗
`+1

)

and {Jû′jK
p}j∈Z∗

`+1
= π({Ju′jKp}j∈Z∗`+1

);

7) reveal {JûjKp}j∈Z∗
`+1

and {Jû′jK
p}j∈Z∗

`+1
to P0;

- P0 sends m′ = sign(−rx)− r′ if ∃ûj = 0 ∧ û′j 6= 0 for
j ∈ Z∗`+1 else m′ = (1⊕ sign(−rx))− r′ to Pi, for
i ∈ {1, 2};

- Pi, for i ∈ {1, 2} sets mz = m′ − 2∆ ·m′ + Γ;
- All parties output 〈z〉 = ([rz],mz).

Protocol ΠSignBit(〈x〉)

Figure 3: The Sign Bit Extraction Protocol.

the position corresponding to the first non-zero bit of L1.
Namely, t|j =

∑j
k=0 s|k − 2 · s|j + 1 mod p for j ∈ Z`,

where p ≥ `. We denote this transform as φ. The intuition
of our sign bit extraction is as follows.

Let mx := sign(mx)||m̂x and −rx := sign(−rx)||r̂x.
Instead of extracting the sign bit, we evaluate sign(x) :=
(m̂x + r̂x ≥ 2`−1) ⊕ sign(−rx) ⊕ sign(mx). To calcuate

m̂x+ r̂x ≥ 2`−1, we evaluate m̂x

?
> 2`−1−1− r̂x (It works

due to 2`−1−1 ≥ r̂x). If we consider m̂x and 2`−1−1− r̂x
as a pair of XOR shares of m, the first non-zero bit (denoted
its index as ind) of the m corresponds to the first differing
bit between m̂x and 2`−1 − 1 − r̂x, which indicates the
position where the two values diverge. We have m̂x|ind =

m̂x

?
> 2`−1 − 1− r̂x.
Following this intuition, we apply {m′j}j∈Z` =

φ({m|j}j∈Z`) to identify the first nonzero bit. As φ operates
over field Zp, we first transfer {m|j}j∈Z` to shares over

Input : N triples of 〈·〉-shared multiplication.
Output : One triple of N -dimension 〈·〉`[x]-shared inner
product.
Preprocessing:

- All parties invoke 〈r〉`[x] ← Π
`[x]
〈·〉 locally;

Online:
- All parties reconstruct r with ΠRec and calculate ri for all
i ∈ ZN ;

- All parties transfer 〈·〉 to 〈·〉`[x] locally by setting the
constant term of 〈·〉`[x] to 〈·〉;

- All parties set 〈z〉`[x] :=
∑N−1
i=0 ri · 〈zi〉`[x], and

〈x′i〉`[x] := ri · 〈xi〉`[x] for all i ∈ ZN ;
- All parties output {〈x′i〉`[x], 〈yi〉`[x]}i∈ZN ; 〈z〉`[x].

Protocol ΠTrans({〈xi〉, 〈yi〉, 〈zi〉}i∈ZN)

Figure 4: Compression of Multiplication Triples.

Zp. To further compute m̂x|ind, we add vector {m′j}j∈Z` to
{m̂x|j}j∈Z` , denote the resulting new vector as {uj}j∈Z` .
There are two possible situations: (i) {uj}j∈Z` does not
contain 0, means that m̂x|ind = 1; (ii) {uj}j∈Z` contains
0, means that the 0 is derived from m̂x|ind = 0 or m̂x|ind =
1 ∧m′j = −1. If we exclude the situation of m′j = −1, we
can determine the sign bit by checking whether {uj}j∈Z`
contains 0. Our protocol let P1 and P2 generate {uj}j∈Z` ,
and let P0 check whether {uj}j∈Z` contains 0. To protect
the privacy, we let P1 and P2 locally permute the {uj}j∈Z`
list and mask m̂x|ind with a random bit ∆. Considering
sign(x) := (m̂x + r̂x ≥ 2`−1)⊕ sign(−rx)⊕ sign(mx), we
make m̂x|ind further XOR sign(mx). Finally, we utilize list
{u′j}j∈Z` to exclude the situation of m′j = −1. Formally,
our protocol is described in Fig. 3. The procedures are as
follows:
• P1 and P2 set JmjKp, where mj represents the j-th

bit of m̂x ⊕ (2`−1 − 1 − r̂x). The transformation can
be locally performed as outlined in Fig. 3 (Steps 1-
3). Moreover, we set m̂x|` = 0 and Jrx,`K = J1K to
ensure that protocol output equals to 0 when m̂x+r̂x =
2`−1 − 1.

• P1, P2 transfer JmjKp to Jm′jKp via the aforementioned
transformation φ and calculate JujKp = wj · Jm′jKp +
(sign(mx) ⊕ m̂x|j ⊕ ∆) with the random list wj and
the masked value sign(mx)⊕ m̂x|j ⊕∆.

• P1, P2 open {uj}j∈|`| to P0, and P0 can draw conclu-
sions based on observations of {uj}j∈|`|.
– If there exist j that uj = 0, then either sign(mx)⊕
m̂x|j⊕∆ = 0 or (sign(mx)⊕m̂x|j⊕∆ = 1)∧ (wj ·
Jm′jKp = p− 1).

– If there @j such that uj = 0, then sign(mx)⊕m̂x|j⊕
∆ = 1.

• Next, we exclude the cases where wj ·Jm′jKp = p−1 as
follows. P1 and P2 calculate Ju′jKp = w′j ·(wj ·Jm′jKp+
1) and open u′j to P0. (Note that u′j = 0 if wj ·Jm′jKp =
p−1.) P0 then can set sign(mx)⊕m̂x|j⊕∆ as: if there
exist j that uj = 0 ∧ u′j 6= 0, then sign(mx)⊕ m̂x|j ⊕

Input : N -dimension 〈·〉`[x]-shared inner product.
Output : N/2-dimension 〈·〉`[x]-shared inner product.
Execution:
- For i ∈ ZN/2, all parties set

– 〈fi(0)〉`[x] = 〈x2·i〉`[x];〈fi(1)〉`[x] = 〈x2·i+1〉;
〈fi(2)〉`[x] = 2 · 〈fi(1)〉`[x] − 〈fi(0)〉`[x];

– 〈gi(0)〉`[x] = 〈x2·i〉`[x];〈gi(1)〉`[x] = 〈x2·i+1〉`[x];
〈gi(2)〉`[x] = 2 · 〈gi(1)〉`[x] − 〈gi(0)〉`[x];

– 〈h(0)〉`[x] =
∑
〈fi(0)〉`[x] · 〈gi(0)〉`[x];〈h(1)〉`[x] =

〈z〉`[x] − 〈h(0)〉`[x];
〈h(2)〉`[x] =

∑
〈fi(2)〉`[x] · 〈gi(2)〉`[x];

- All parties invoke 〈ζ〉`[x] ← Π
`[x]
〈·〉 and reveal 〈2 · ζ〉`[x];

- All parties calculate
– 〈h(ζ)〉`[x] =

∑2
i=0((Π2

j=1,j 6=i
ζ−j
i−j) · 〈h(i)〉`[x]);

– 〈fi(ζ)〉`[x] = ζ · 〈fi(1)〉`[x] − (ζ − 1)〈fi(0)〉`[x];
– 〈gi(ζ)〉`[x] = ζ · 〈gi(1)〉`[x] − (ζ − 1)〈gi(0)〉`[x];

- All parties output
{〈fi(ζ)〉`[x], 〈gi(ζ)〉`[x]}i∈ZN/2 ; 〈h(ζ)〉`[x].

Protocol ΠReduce({〈xi〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x])

Figure 5: The Inner Product Dimension Reduction Protocol

∆ = 0, otherwise sign(mx)⊕ m̂x|j ⊕∆ = 1.
• Now, P0 holds sign(mx)⊕ m̂x|j ⊕∆. P1 and P2 hold

∆ ⊕ sign(−rx). We further introduce [r′] where r′ is
known to P0 to transfer {sign(mx) ⊕ m̂x|j ⊕∆,∆ ⊕
sign(−rx)} to 〈z〉. Specifically, we first let P1 and P2

reveal [Γ] = ∆ + [r′]− 2∆ · [r′] + [rz] to each other in
the offline phase. Thanks to random r′, P1 and P2 learn
nothing about rz . After that, P0 sends m′ = sign(mx)⊕
m̂x|j ⊕∆⊕ sign(−rx)− r′ to both P1 and P2. P1 and
P2 then locally calculate mz = m′−2∆m′+Γ. We can
verify that mz−rz = (m̂x+ r̂x ≥ 2`−1)⊕sign(−rx)⊕
sign(mx) = sign(x).

Our sign bit Extract protocol ΠSignBit costs 1 round with
communication of ` log `+ 3` bits in the offline phase and
requires 2 rounds with communication of 4` log `+ 6` bits
in the online phase.

Security. We analyze the security of our sign-bit extraction
protocol in the UC framework. The functionality FSignBit for
sign bit extraction is defined as follows. As an instantiation
of F3pc depicted in Fig. 2, FSignBit receives (Input,sid,rx)
from P0, (Input,sid,mx) from P1, (Input,sid,mx) from P2.
It calculates z = sign(mx− rx). If P0 is corrupted, FSignBit

obtains [rx]1 and [rx]2 from S. If Pi for i = 1 or i = 2 is
corrupted, FSignBit obtains [rx]i from S and picks random
value [rz]3−i ∈ Z2` ; FSignBit sets mz = z + [rz]1 + [rz]2
and sends (Output, [rz]1, [rz]2) to P0, (Output, [rz]1,mz)
to P1, (Output, [rz]2,mz) to P2.

Theorem 1. Let PRF(Zp)p ,PRFZp and PRFZ
2` be the secure

pseudo-random functions. The protocol ΠSignBit as depicted
in Fig. 3 UC realizes FSignBit against semi-honest PPT
adversaries who can statically corrupt up to one party.

Input : A N -dimension 〈·〉`[x]-shared inner product pair.
Output : z

?
=

∑N
i=1 xi · yi.

Execution:
- All parties invoke 〈α〉`[x] ← Π

`[x]
〈·〉 ;

- All parties calculate
〈∆〉`[x] = 〈α〉`[x] · (

∑N
i=1〈xi〉`[x] · 〈yi〉`[x] − 〈z〉`[x]) with

Π
`[x]
PolyEvl;

- All parties call ∆ = Π
`[x]
Rec (〈∆〉`[x]);

- All parties output 1 if ∆ = 0, otherwise 0.

Protocol ΠInnerVerify({〈xi〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x])

Figure 6: The Inner Product Verification Protocol

Proof. See Appendix A.1.

5. Achieving Malicious Security

Aegis uses the postprocessing verification procedure to
detect any potential malicious behavior. In this section, we
first present our batch verification protocol for multiplication
and then introduce our verification protocol for the correct-
ness of sign bit extraction.

5.1. Batch Multiplication Verification

We would like to reduce the task of verifying N triples
of multiplication {〈xi〉, 〈yi〉, 〈zi〉}i∈ZN to the task of veri-
fying the inner product ∆ =

∑N
i=0〈ri · xi〉 · 〈yi〉 − 〈ri · zi〉

equals to 0, where r is a fresh random challenge. However,
there are two issues with this naive approach. The first
issue is that the adversary is aware of the additive error in
〈zi〉, allowing her to cancel out the error when computing
∆ to fabricate ∆ = 0. The second issue arises from the
irreversible multiplication over the ring, where the adversary
can intentionally introduce a specific error e in zi, leading
to a high probability of e·ri = 0 to pass the verification. For
instance, the adversary can introduce an error e = 2`−1 in
such a way that the equation ri · (zi+e) = ri ·zi holds with
a probability of 1/2 in the case where r is an even number.

To address the former issue, we let all parties evaluate
∆ = 〈α〉 · (

∑N
i=0〈ri · xi〉 · 〈yi〉 − 〈ri · zi〉) (using ΠPolyEvl)

with random share 〈α〉. Since ΠPolyEvl is secure up to
additive attack [10], the adversary can only introduce an
input-independent additive error e′ of ∆. Therefore, the
adversary has to guess e′ = e · α to make ∆ = 0 with the
probability 2−`. To resolve the latter issue, we perform ∆
over the extension ring Z2` [x]/f(x), where f(x) is a degree-
d irreducible polynomial over Z2 [3]. (This can be done by
putting the original share over Z2` to be the free coefficient
and adding random d elements to the other coefficients.) The
probability that a N-degree non-zero polynomial ∆(r) = 0

with a randomly chosen r is at most 2(`−1)dN+1
2`d

≈ N
2d

by
the Schwartz-Zippel Lemma. We further apply the dimen-
sion reduction technique of [19] to our ring setting which
reduces the Θ(N) communication of batch verification to

Input : N pairs of 〈·〉-shared multiplication.
Output : zi

?
= xi · yi for all i ∈ ZN .

Execution:
- All parties invoke ΠTrans({〈xi〉, 〈yi〉; 〈zi〉}i∈ZN) to get
{〈xi〉`[x], 〈yi〉`[x]}i∈ZN ; 〈z〉`[x];

- For k = 1, . . . , R, all parties perform:
– {{〈xi〉`[x], 〈yi〉`[x]}i∈Z

N/2k
; 〈z〉`[x]} ←

ΠReduce({〈xi〉`[x], 〈yi〉`[x]}i∈Z
N/2k−1

; 〈z〉`[x]);

- All parties invoke
b = ΠInnerVerify({〈xi〉`[x], 〈yi〉`[x]}i∈Z

N/2R
; 〈z〉`[x]);

- All parties output b.

Protocol ΠR
MultVerify({〈xi〉, 〈yi〉, 〈zi〉}i∈ZN)

Figure 7: The Batch Multiplication Verification Protocol

Θ(logN · d). Following this idea, we construct our batch
multiplication verification protocol as follows.
Compression of multiplication triples. We first design a
subprotocol ΠTrans (Fig. 4) which can convert N multipli-
cation triples over Z2` to be verified to an N -dimension
inner product over polynomial ring Z2` [x]/f(x). We first
transform the multiplication triples {〈xi〉, 〈yi〉, 〈zi〉}i∈ZN to
the polynomial ring {〈xi〉`[x], 〈yi〉`[x], 〈zi〉`[x]}i∈ZN locally.
In this transformation, the free coefficient of the shares
over Z`[x]/f(x) is set to the original shares and other
coefficients are padded with random values. Then, all parties
generate a random challenge r ∈ Z2` [x]/f(x) by invoking
〈r〉`[x] ← Π

`[x]
〈·〉 and reconstructing it via ΠRec. All parties

locally calculate 〈z〉`[x] =
∑N

i=0 r
i · 〈zi〉`[x], and 〈x′i〉`[x] =

ri · 〈xi〉`[x] for all i ∈ ZN and return the N -dimension inner
product tuple as ({〈x′i〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x]).

Lemma 1. Suppose protocol ΠTrans depicted in Fig. 4
take input as {〈xi〉, 〈yi〉, 〈zi〉}i∈ZN , and it outputs
{〈x′i〉`[x], 〈yi〉`[x]}i∈ZN ; 〈z〉`[x]. The probability that the fol-
lowing two conditions hold is at most N

2d
, where d is the

degree of f(x) w.r.t. Z2` [x]/f(x):
• z =

∑N
i=0 x

′
i · yi

• ∃i ∈ ZN s.t. zi 6= xi · yi
Proof. See Appendix A.2.

Dimension reduction. We extend the dimension reduc-
tion technique of [19] to our 3PC over ring setting.
As shown in Fig. 5, protocol ΠReduce takes input as a
shared triple ({〈xi〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x]) and outputs
the shared triple ({〈x′i〉`[x], 〈y′i〉`[x]}i∈ZN/2 , 〈z′〉`[x]). ΠReduce

ensures that
∑N

i=0 xi ·yi = z if and only if
∑N/2

i=0 x
′
i ·y′i = z′

except for a negligible probability. At a high level, for the in-
ner product input {xi}i∈ZN and {yi}i∈ZN , we can utilize x2i
and x2i−1 to interpolate N/2 linear functions {fi(·)}i∈ZN/2
at the point 0 and 1, and similarly interpolate {gi(·)}i∈ZN/2
by {yi}i∈ZN . Considering the correct output z, we have
z =

∑N/2
i=0 fi(0) · gi(0) + fi(1) · gi(1). Denote h(·) =∑N/2

i=0 fi(·) · gi(·). The above equation can be written as

Input : 〈·〉-shared value of x.
Output : 1 if the sign bit of x is 0, 0 otherwise.
Execution:
- Parse 〈x〉 := {mx, [rx]1, [rx]2} as {x0,−x1,−x2} where
Pk hold xk and x0 + x1 + x2 = x;

- The verifier Pi calculates
r = xi−1 + xi+1 − sign(xi−1 + xi+1) · 2`−1. Then Pi
chops 2`−1 − 1− r as {r0, . . . , r`−1}, and sets r` = 1;

- All parties performs ‖rj‖ ← Πp‖·‖(rj , Pi) for j ∈ Z∗`+1,
taking the biggest prime of p ∈ (`, 2log `+1];

- Pi−1 and Pi+1 do:
1) pick random list wj , w′j ∈ Zp for j ∈ Z`+1;
2) generate a random shift π together;
3) set mσ = xi − sign(xi) · 2`−1, bitexact it as
{mσ|j}j∈Z` and set mσ|` = 0;

4) calculate ‖mj‖ = mσ|j + ‖rj‖ − 2mσ|j · ‖rj‖ and
‖m′j‖ =

∑j
k=0 ‖mk‖ − 2 · ‖mj‖+ 1 for j ∈ Z∗`+1;

5) calculate ‖uj‖ = π(wj · ‖m′j‖+mσ|j ⊕ sign(xi)) and
‖u′j‖ = π(w′j(wj · ‖m′j‖ − (p− 1))) for j ∈ Z∗`+1;

- All parties invoke uj = ΠpRec(‖uj‖, Pi),
u′j = ΠpRec(‖u′j‖, Pi). Consequently, Pi holds uj ,u′j for
j ∈ Z∗`+1;

- Pi output 1⊕ sign(xi−1 + xi+1) if ∃uj = 0 ∧ u′j 6= 0 for
j ∈ Z`+1.

Protocol Πλ
Pos(〈x〉, Pi)

Figure 8: Positive Verification Protocol Verified by Pi.

h(1) = z−h(0). ΠReduce evaluates h(0) =
∑N/2

i=0 fi(0)·gi(0)

and h(2) =
∑N/2

i=0 fi(2)·gi(2); in addition, h(1) = z−h(0).
Subsequently, ΠReduce utilizes h(0), h(1) and h(2) to in-
terpolate the resulting polynomial h(x). Finally, we let all
parties select a random point ζ, and output the new shared
triple ({〈fi(ζ)〉`[x], 〈gi(ζ)〉`[x]}i∈ZN/2 , 〈h(ζ)〉`[x]) which in-
heres the inner product relationship if and only if z =∑N/2

i=1 fi(0) · gi(0) + fi(1) · gi(1).
Note that points 0, 1, 2 refer to the ring elements with

free coefficient of 0, 1, and 2 in Z2` [x]/f(x). It is easy to see
that ΠReduce requires one round communication of 8` ·d bits
in the online phase and one round communication of `·d bits
in the offline phase. We perform R times ΠReduce to reduce
the inner product to dimension N/2R, and the resulting
vectors are verified as

∑N/2R

i=0 〈fi(ζ)〉`[x] · 〈gi(ζ)〉`[x] =
〈h(ζ)〉`[x]. We prove the soundness error of the ΠReduce is

1
2d−1 in Lemma 2.

Lemma 2. Suppose protocol ΠReduce depicted in Fig. 5
take input as ({〈xi〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x]), and it outputs
({〈x′i〉`[x], 〈y′i〉`[x]}i∈ZN/2 , 〈z′〉`[x]). The probability that the
following two conditions hold is at most 1

2d−1 , where d is
the degree of f(x) w.r.t. Z2` [x]/f(x):

• z′ =
∑N/2

i=0 x
′
i · y′i

• z 6=
∑N

i=0 xi · yi

Proof. See Appendix A.3.

Input : 〈·〉-shared value.
Output : 〈·〉-shared value of z = sign(x).
Execution:
- All parties perform 〈z〉 ← ΠSignBit(〈x〉);
Postprocessing:
For N pairs evaluation result {〈xi〉, 〈zi〉}i∈ZN , all parties do:
- Calculate 〈x′i〉 = 〈xi〉 − 2`〈zi〉
- Perform ΠRMultVerify({〈zj〉, 〈zj〉; 〈zj〉}j∈ZN);
- Call ΠPos({〈x′i〉}i∈ZN , P0) and ΠPos({〈x′i〉}i∈ZN , P1)

simultaneously;
- All parties output 1 if both P0, P1 output 1.

Protocol ΠVSignBit(〈x〉)

Figure 9: The Malicious Sign Bit Extraction Protocol.

Inner product verification. Our inner product verification
ΠInnerVerify (Fig. 6) verifies the inner product relationship
of shared values over polynomial ring Z2` [x]/f(x). For
verification of

∑N
i=0〈xi〉`[x] · 〈yi〉`[x] = 〈z〉`[x], ΠInnerVerify

turns to verify 〈α〉`[x] · (
∑N/2R

i=0 ·〈xi〉`[x] · 〈yi〉`[x] − 〈zi〉`[x])
equal to zero. We prove soundness error of the ΠInnerVerify

is 1
2d

in Lemma 3.

Lemma 3. Let ({〈xi〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x]) be the input
of protocol ΠInnerVerify depicted in Fig. 6. The probability
that ΠInnerVerify outputs 1 and z 6=

∑N
i=0 xi · yi is at most

1
2d

, where d is the degree of f(x) w.r.t. Z2` [x]/f(x).

Proof. See Appendix A.4.

Our batch multiplication verification protocol ΠMultVerify

in Fig. 7 integrates the above three subroutines, which
requires one round communication of (R+ 3N/2R + 1)` ·d
bits in the offline phase and R+ 2-round communication of
(10R+ 8)` · d bits in the online phase for N multiplication
triples. We prove soundness error of ΠMultVerify is N

2d−R−2

in Thm. 2.

Theorem 2. Let {〈xi〉, 〈yi〉, 〈zi〉}i∈ZN be the input of proto-
col ΠR

MultVerify depicted in Fig. 7. The probability ΠR
MultVerify

outputs 1 and ∃i ∈ ZN s.t. zi 6= xi · yi is at most N
2d−R−2 ,

where d is the degree of f(x) w.r.t. Z2` [x]/f(x).

Proof. See Appendix A.5.

5.2. Sign Bit Extraction Verification Protocol

We upgrade the sign bit extraction ΠSignBit to the mali-
cious setting throughout the verification protocol ΠVSignBit.
For a sign bit extraction pair {〈x〉, 〈z〉}, the malicious adver-
sary can introduce arbitrary errors to make sign(x) 6= b. As
shown in Fig. 9, we design the verification protocol ΠVSignBit

to verify the correctness of the sign bit extraction pair.
Specifically, the verification consists of two steps: (i)

z is validated to be either 0 or 1, (ii) x − 2` · z is pos-
itive. The former check can be realized by employing a
maliciously secure multiplication protocol to confirm that

Input : 〈·〉-shared value x, y.
Output : 〈·〉-shared value z where z = x · y.
Preprocessing:
- All parties prepare [rz]← Π[·] locally;
- P0 calculates Γ = rx · ry + rz and shares it with Π[·](Γ);

Online:
- Pj for j ∈ {1, 2} calculates

[mz]j = (j − 1)mx ·my −mx[ry]j −myi [rx]j + [Γ] and
mutually exchange their shares to reconstruct mz .

Postprocessing:
- For all multiple gate wire value {〈xi〉, 〈yi〉, 〈zi〉}i∈ZN , all

parties call ΠMultVerify({〈xi〉, 〈yi〉; 〈zi〉}i∈ZN , R) to verify
correctness.

Protocol ΠMult(〈x〉, 〈y〉)

Figure 10: The Multiplication Protocol

its square matches itself, i.e., z · z = z on the ring Z2` , as
z2− z = 0 only has the roots of 0 and 1 over ring Z2` . For
this check, we directly utilize the aforementioned protocol
ΠMultVerify(〈z〉, 〈z〉, 〈z〉).

For the latter check, we first design the positive assertion
protocol ΠPos which nominates a verifier Pi to verify the
positive of a shared value. ΠPos has the property that the
honest verifier outputs the correct verification result against
one malicious adversary corrupting one of the other two
parties. Our protocol is designed for static corruption. To
resolve the case where the nominated verifier is malicious,
we adopt the dual-execution paradigm [20], [23] to invoke
ΠPos twice with two distinct parties to play the role of
the verifier. As the malicious adversary can only statically
corrupt one party, we can ensure that the shared value is
positive if both two verifications pass.

Positive assertion protocol ΠPos. As depicted in Fig. 8,
the positive assertion protocol ΠPos let verifier Pi (any
i ∈ {0, 1, 2}) take input as shared value 〈x〉, and the verifier

outputs a bit indicating whether x
?
< 2`. Specifically, we

introduce the IT-secure MAC to detect malicious behavior
of Pi−1 and Pi+1. We observe that the chopped shared bit
Jrx,jK in ΠSignBit can be replaced by ‖rx,j‖. We let the pre-
sumably honest verifier Pi locally calculate the MAC of rx,j
and secret share it to the other two parties Pi−1 and Pi+1.
Later, when Pi−1 and Pi+1 send back the opened vector
{‖uj‖}j∈Z` and {‖u′j‖}j∈Z` , Pi can check the correctness
of them by the corresponding MAC.

To support dual execution of ΠPos with different parties
playing the role of the verifier, we need to convert the
underlying shares accordingly. That is, we express the 〈·〉
shared value in the form of replicated secret sharing, which
is {x0 = mx, x1 = −[rx]1, x2 = −[rx]2}. Following that
all parties perform same operation in ΠSignBit which replace
Jrx,jK with ‖rx,j‖ to generate the the vector {‖uj‖}j∈Z` and
{‖u′j‖}j∈Z` . Since sign(x) = 0 is public knowledge rather
than a secret, we do not need to mask the sign bit at the

Input : N pairs of inner product.
Output : Output if z(j) =

∑n
i=1 x

(j)
i · y(j)i held for all j ∈

ZN .
Execution:
- All parties transfer all shares 〈·〉 to 〈·〉`[x] locally;
- All parties invoke 〈r〉`[x] ← Π

`[x]
〈·〉 an call ΠRec to

reconstruct r ∈ Z2` [x];
- All parties set 〈z〉`[x] :=

∑
rj · 〈z(j)〉`[x] and

〈x(j)i 〉
`[x] := rj · 〈x(j)i 〉

`[x] for each i ∈ Znj , j ∈ ZN ;
- All parties consolidate the original pairs into a single pair
{〈xi〉`[x], 〈yi〉`[x]}i∈ZN ; 〈z〉`[x] where N =

∑N−1
j=0 nj ;

- For k = 1, . . . , R, all parties do:
– {〈xi〉`[x], 〈yi〉`[x]}i∈ZN/2k , 〈z〉

`[x] ←
ΠReduce({〈xi〉`[x], 〈yi〉`[x]}i∈ZN/2k−1

, 〈z〉`[x]);

- All parties call
b = ΠInnerVerify({〈xi〉`[x], 〈yi〉`[x]}i∈ZN/2R , 〈z〉

`[x]);
- All parties output b.

Protocol ΠR
BIVerify({{〈x(j)i 〉, 〈y

(j)
i 〉}i∈Znj , 〈z

(j)〉}j∈ZN)

Figure 11: The Batch Inner Product Verification Protocol

end. Subsequently, Pi reconstruct uj , u′j with MAC check,
and verify the aforementioned predicate ∃uj = 0 ∧ u′j 6= 0.
The soundness error of Πp,λ

Pos is 1
2λ log `+λ+log ` .

Theorem 3. Let 〈x〉` be the input of the protocol Πp,λ
Pos

depicted Fig. 8. The probability that Πp,λ
Pos outputs 1 and

sign(x) = 1 is at most 1
2λ log `+λ+log ` .

Proof. See Appendix A.6.

Our Sign bit extraction protocol ΠVSignBit requires amor-
tized 2-round communication of 10λ`(log `+1)+14` log `+
16` bits, where λ is MAC key number of ‖ · ‖.

6. The Aegis PPML Plaform

In this section, we present our privacy-preserving ma-
chine learning platform Aegis. We start with the construction
of our maliciously secure multiplication protocol, such as
inner product and convolution. We then utilize the sign bit
extraction protocol to construct maliciously secure ReLU
and Maxpool protocols.
Multiplication. Our maliciously secure multiplication pro-
tocol is shown in Fig. 10. ΠMult ensures the correctness
of multiplication by invoking batch verification protocol
ΠMultVerify in the post-processing phase. When handling a
substantial volume of data, our protocol exhibits an amor-
tized communication of ` bits in the preprocessing phase and
2` bits in the online phase for each multiplication operation.
Inner product and convolution. Our maliciously secure
inner product protocol ΠInner is shown in Fig. 12. Its semi-
honest version is the special case of ΠPolyEvl for 2-degree
n-variate polynomial which requires one round communi-
cation of ` bits in the preprocessing phase and one round
communication of 2` bits in the online phase. To extend it to

Input : 〈·〉-shared value list of xi and yi.
Output : 〈·〉-shared value of z where z =

∑n
i=1 xi · yi.

Preprocessing:
- All parties prepare [rz]← Π[·] locally;
- P0 calculates Γ =

∑n
i=1 rxi · ryi + rz and shares it with

Π[·](Γ);

Online:
- Pj for j ∈ {1, 2} calculates [mz]j =∑n

i=1(j − 1)mxi ·myi −mxi [ryi]j −myi [rxi]j + [Γ]j
and mutually exchange their shares to reconstruct mz .

Postprocessing:
- For N pairs inner product result
{{〈x(j)i 〉, 〈y

(j)
i 〉}i∈Znj ; 〈z(j)〉}j∈ZN , all parties call

ΠRInnerVerify({{〈x(j)i 〉, 〈y
(j)
i 〉}i∈Znj ; 〈z(j)〉}j∈ZN) to verify

correctness.

Protocol ΠInner(〈x1〉, . . . , 〈xn〉, 〈y1〉, . . . , 〈yn〉)

Figure 12: The Inner Product Protocol

the malicious setting, we employ batch verification protocol
ΠR

InnerVerify (Fig. 11) to ensure the correctness of the inner
products with a similar manner of multiplication. Analo-
gously, in ΠR

InnerVerify, all parties transform the verification
of inner product triples over ring Z2` to the verification
of a single inner product triple over the polynomial ring
Z2` [x]/f(x). Following that, all parties invoke ΠReduce to
reduce the dimension of the vector that needs to be verified.
When handling a substantial volume of data, on average, our
protocol exhibits an amortized communication of ` bits in
the preprocessing phase and 2` bits in the online phase for
each inner product operation. In the application of machine
learning, we view the m-dimensional output convolution
and matrix multiplication as m separate inner products. We
implement these two types of operations by invoking ΠInner

a total of m times.
Truncation. The multiplication of two fixed-point values
with our encoding will lead to a double scale of 2k for
the fractional precision k. An array of protocols [24], [27],
[30] using the probabilistic truncation protocol to reduce
the additional 2k scaler. Their protocols introduce a one-bit
error which is caused by the carry bit of truncated data.
In addition, the probabilistic truncation protocol makes an
error with a certain probability (assuming that the valid
range of data is `x and the error probability is 2`x−`+1).
As shown in Fig. 13, we also design a maliciously secure
probabilistic truncation protocol Πt

Trunc for the truncation bit
size t. Our idea is similar to SWIFT [24] which generates
correct truncation pair via maliciously secure inner product
protocol. However, in contrast to SWIFT [24], we directly
generate rz = rshift(rx, d), which allows the parties locally
truncate mz = rshift(mx, d) in the online phase without
communication. Although SWIFT [24] eliminates commu-
nication by combining truncation with multiplication, they
still need 2` online communication in the online phase of
the standalone truncation protocol. Specifically, we let P0

Input : 〈·〉-shared value.
Output : 〈·〉-shared value of z = rshift(x, t).
Preprocessing:
- P0 and Pi pick random bit list {bi,j}j∈Z` ← Z`2 together,

for i ∈ {1, 2};
- All parties set

- 〈b1,j〉 := (mb1,j , [rb1,j]1, [rb1,j]2) := (0, b1,j , 0);
- 〈b2,j〉 := (mb2,j , [rb2,j]1, [rb2,j]2) := (0, 0, b2,j) for
j ∈ Z`;

- All parties invoke ΠInner to calculate
– 〈rx〉 =

∑`−1
j=0 2j(〈b1,j〉+ 〈b2,j〉 − 2〈b1,j〉 · 〈b2,j〉);

– 〈rz〉 =
∑`−t−1
j=0 2j(〈b1,j+t〉+ 〈b2,j+t〉 − 2〈b1,j+t〉 ·

〈b2,j+t〉) +
∑`−1
j=`−t−1 2j(〈b1,`−1〉+ 〈b2,`−1〉 −

2〈b1,`−1〉 · 〈b2,`−1〉);

- P0 set rx =
∑`−1
j=0 2j · (b1,j ⊕ b2,j), rz =∑`−t−1

j=0 2j ·(b1,j⊕b2,j)+
∑`−1
j=`−t−1 2j ·(b1,`−1⊕b2,`−1);

- Pi for i ∈ {1, 2} set [rx] = mrx − [rrx],
[rz] = mrz − [rrz];

Online:
- Pi for i ∈ {1, 2} set mz = rshift(mx, t);
- All parties output 〈z〉 := ([rz],mz).

Protocol Πt
Trunc(〈x〉)

Figure 13: The maliciously secure truncation protocol

and P1 pick random bit list {b1,j}j∈Z` together; P0 and P2

pick random bit list {b2,j}j∈Z` together. We utilize these
lists to calculate that rx =

∑`−1
j=0 2j · (b1,j ⊕ b2,j) and rz =∑`−t−1

j=0 2j · (b1,j ⊕ b2,j) +
∑`−1

j=`−t−1 2j · (b1,`−1 ⊕ b2,`−1)
which keeps the relationship rz = shift(rx, t). We can
evaluate rx and rz under 〈·〉-sharing to realize malicious
security. To transform b1,j and b2,j to the 〈·〉-sharing locally,
we let 〈b1,j〉 = (0, b1,j , 0) and 〈b2,j〉 = (0, 0, b2,j) which set
the other secret shard to be 0. For the result 〈rx〉 and 〈rz〉,
since rx and rz is known by P0, P1 and P2 can be locally
calculate [rx] = mrx−[rrx] and [rz] = mrz−[rrz]. Note that
ΠTrunc requires assigning rx of the input wire, we let it be
executed preferentially to provide rx for the other gate. Our
maliciously secure protocol ΠTrunc requires 1 rounds and
communication of 6` bits in the offline phase and requires no
communication in the online phase. The semi-honest version
of truncation is provided in Appendix B.1
ReLU. The ReLU of x is calculated by w = x · (1 −
sign(x)) = x − x · sign(x), which can be implemented
by combining ΠMult with ΠSignBit. However, it requires an
additional round for multiplication. We observe that the
additional round can be eliminated by executing multiplica-
tion at the same round of sending back m′ in ΠSignBit. We
construct the semi-honest ReLU protocol ΠReLU (Fig. 14)
from ΠSignBit. Considering 〈z〉 = ΠSignBit(〈x〉) and 〈w〉 =
ΠMult(〈x〉 · 〈z〉), we have:

mw = mxmz +mxrz +mzrx + rxrz − rw
= mxmz +mxrz + (m′ − 2∆m′ + Γ)rx + rxrz − rw
= mxmz +mxrz + (1− 2∆)(m′rx + r′′) + Γ′

Input : 〈·〉-shared value of x.
Output : 〈·〉-shared values of z = sign(x) and w = ReLU(x).
Preprocessing:
- All parties perform [r′′], [r′], [rz], [rw]← Π[·];
- Pi, for i ∈ {1, 2} pick ∆ ∈ {0, 1} and reveal

[Γ] = ∆ + [r′]− 2∆ · [r′] + [rz] to each other;
- Pi, for i ∈ {1, 2} calculate

[Γ′] = Γ · [rx]− (1− 2∆)[r′′] + [rx · rz]− [rw];
- P0 does:

1) calculate r̂x = −rx − sign(−rx) · 2`−1 ∈ Z2` ;
2) extract 2`−1 − 1− r̂x as {rx,0, . . . , rx,`−1};
3) perform Jrx,jKp ← ΠpJ·K(rx,j) for j ∈ Z∗` , taking the

biggest prime of p ∈ (`, 2log `+1];
4) perform [rx · rz]← Π[·](rx · rz);

Online:
- Pi, for i ∈ {1, 2} does:

1) set m̂x = mx − sign(mx) · 2`−1 and bitexact it as
{m̂x|j ∈ {0, 1}}j∈Z` while

∑`−1
j=0 2`−1−jm̂x|j = m̂x;

2) set m̂x|` = 0 and Jrx,`K = J1K;
3) set JmjKp = m̂x|j + Jrx,jKp − 2m̂x|j · Jrx,jKp for

j ∈ Z∗`+1.
4) pick same random values {wj , w′j ∈ Z∗p}j∈Z∗`+1

via
PRF with seed η;

5) calculate Jm′jK
p =

∑j
k=1JmkKp − 2 · JmjKp + 1 and

JujKp = wj · Jm′jKp + (sign(mx)⊕ m̂x|j ⊕∆) and
Ju′jK

p = w′j(wj · Jm′jKp + 1) for j ∈ Z∗`+1;
6) pick a random permutation π via PRF with seed η and

permute the list {JûjKp}j∈Z∗
`+1

= π({JujKp}j∈Z∗
`+1

)

and {Jû′jK
p}j∈Z∗

`+1
= π({Ju′jKp}j∈Z∗`+1

);

7) reveal {JûjKp}j∈Z∗
`+1

and {Jû′jK
p}j∈Z∗

`+1
to P0 and

reveal Γ′′ = mx · [rz] + [Γ′] to each other simultaneously;

- P0 sets m′ = sign(−rx)− r′ if ∃ûj = 0 ∧ û′j 6= 0 for
j ∈ Z∗`+1 else m′ = (1⊕ sign(−rx))− r′;

- P0 sets m′′ = m′ · rx + r′′;
- P0 sends m′ and m′′ to Pi, for i ∈ {1, 2};
- Pi, for i ∈ {1, 2} sets mz = m′ − 2∆ ·m′ + Γ and
mw = mxmz + (1− 2∆)m′′ + Γ′′;

- All parties output 〈z〉 := ([rz],mz) and 〈w〉 := ([rw],mw).

Protocol ΠReLU(〈x〉)

Figure 14: The 2-round ReLU Protocol.

m′, ∆, Γ are the fresh random values mentioned in
ΠSignBit and it hold mz = m′ − 2∆m′ + Γ in ΠSignBit.
We denote Γ′ = Γ · rx − (1− 2∆)r′′ + rx · rz − rw, where
r′′ is a fresh random introduced to protect the privacy of
rw. We let P1 and P2 calculate [Γ′] = Γ · [rx] − (1 −
2∆)[r′′] + [rx · rz] − [rw] locally in the offline phase. P1

and P2 reveal [Γ′′] = mx · [rz] + [Γ′] to each other in the
first round of ΠSignBit. For item (1 − 2∆)(m′rx + r′′), P0

send m′′ = m′rx + r′′ to P1 and P2. Then P1, P2 locally
calculate mw = mx · mz + Γ′′ + (1 − 2∆)m′′. Note that
reveal m′′ and Γ′′ will not leak any information, since the
P1 and P2 cannot extract additional information of rx, rz , rw
besides of mw, with the fresh random value r′′. Our ReLU
protocol requires 1 rounds and communication of ` log `+4`

(a) LAN (b) MAN
Figure 15: Evaluate the multiplication one by one, the time’s
proportion of the offline, online, and verification phases
under the LAN/MAN setting.

bits in the preprocessing phase and requires 2 rounds and
communication of 4` log `+ 8` bits in the online phase.

The malicious version of ReLU can be achieved through
verifying 〈z〉 = sign(〈x〉) and 〈w〉 = ΠMult(〈x〉, 〈z〉) respec-
tively.
Security. We analyze the security of our ReLU protocol in
the UC framework. The functionality FReLU is defined as an
instantiation of F3pc depicted in Fig. 2; namely, it calculates
w = ReLU(x) and z = sign(x).

Theorem 4. Let PRF(Zp)p ,PRFZp and PRFZ
2` be the secure

pseudo-random functions. The protocol ΠReLU depicted in
Fig. 8 UC realizes FReLU against semi-honest PPT adver-
saries who can statically corrupt up to one party.

Proof. See Appendix A.7.

Maxpool. Our Maxpool scheme is constructed by the com-

parison function great(x, y) = x
?
> y and the maximum

function max(x1, . . . , xn). In the case of signed numbers
x and y, great(x, y) can be implemented by invoking the
ΠVSignBit three times. That is, great(x, y) = (sign(x) ⊕
sign(y)) · sign(y − x) + (1 ⊕ sign(x) ⊕ sign(y)) · sign(y).
For unsigned number x and y which sign(x) = 0 and
sign(y) = 0, we have great(x, y) = sign(y − x). We have
observed that after applying Maxpool in the ReLU layer,
the sign bit of the data becomes 0. Therefore, we only need
to calculate sign(y − x).

There are two approaches to evaluate
max(x1, . . . , xn). One is to evaluate max(x1, . . . , xn)
by max(x1, . . . , xn) =

∑n
i=1(Πn

j=1,j 6=igreat(xi, xj) · xi),
which perform Θ(n2) comparisons in the constant
round. The other is to search for the maximum
value through the binary tree, i.e. reduce n-dimension
maximum to 2-dimension by expending log(n) times
max(x1, . . . , xn) = max(max(x1, x2), . . . , v(xn−1, xn)).
This method requires Θ(log n) rounds to perform a total of
n− 1 times 2-dimension maximum.

We observe that the Maxpool procedure may re-use
some comparison outcomes more than once while per-
forming the aforementioned maximum operation, depending
on the kernel shape and stride. For instance, we assume
zi,j is the result element of performing (2, 2)-kernel shape
and 1-stride Maxpool over an a × b-dimension matrix re-
quires where zi,j = max(xi,j , xi,j+1, xi+1,j , xi+1,j+1) and

(a) LAN. (b) MAN (c) WAN

Figure 16: Overall run-time of multiplication. Comparison with ABY3 [27], SWIFT [24] of ΠMult over LAN, MAN and
WAN. The multiplication depth is logarithmic of the multiplication size.

zi,j+1 = max(xi,j+1, xi,j+2, xi+1,j+1, xi+1,j+2). Both zi,j
and zi,j+1 needs the outcome of great(xi,j+1, xi+1,j+1).
We adopt the binary tree solution for its property to elimi-
nate the repeated comparison due to storing the temporary
comparison result. The 2-dimension maximum max(xi, xj)
can be calculated as (xi − xj) · great(xi, xj) + xj , i.e.
(xi − xj) · sign(xj − xi) + xj . In the previous chapter,
we implemented f(x) = x · sign(x) in two rounds by
introducing 2` bits of communication overhead in the online
phase. We use it to evaluate max(xi, xj) by max(xi, xj) =
xj−f(xj−xi). We apply this approach to evaluate Maxpool,
which requires (n− 1)(` log `+ 4`) bits of communication
cost in the setup phase and (n−1)(4` log `+ 8`) bits in the
online phase.

Analogously, the malicious version of Maxpool can be
achieved through verifying sign bit-exact and multiplication
respectively.

7. Implementation and Benchmarks

In this section, we evaluate our multiplication and non-
arithmetic protocols in both the semi-honest setting and
malicious setting. For the maliciously secure multiplication
protocols, we compare the communication and runtime with
SWIFT [24] and ABY [27]. For the non-arithmetic pro-
tocols, we compare the runtime performance with Bicop-
tor [40], BLAZE [30], SWIFT, and ABY respectively.
Benchmark setting. We take the size of the ring ` = 64
and the polynomial ring degree d = 32. For the fixed-
point value, we utilize 16 bits truncation. Our experiments
are performed in a local area network, using software to
simulate three network settings: local-area network (LAN,
RTT: 0.2ms, bandwidth: 1Gbps), metropolitan-area network
(MAN, RTT: 12ms, bandwidth: 100Mbps), and wide-area
network (WAN, RTT: 160ms, bandwidth: 40Mbps) and ex-
ecuted on a desktop with AMD Ryzen 7 5700X CPU @
3.4 GHz running Ubuntu 18.04.2 LTS; with 8 CPUs, 32
GB Memory and 1TB SSD.
Implementation. We implement all the benchmark proto-
cols based on the Piranha [36] source code [37] which is
a GPU platform for MPC protocols. We incorporate the

NTL (Number Theory Library) to facilitate calculations
involving polynomial rings. We employ the AES encryption
of OpenSSL to perform PRG evaluation. For SWIFT and
BLAZE, we utilize SHA-256 for its hash function and
combine all the messages for each layer into one hash.
Multiplication. We compare our maliciously secure multi-
plication protocol with SOTA. We benchmark the commu-
nication of ΠMult and ΠInner in the Appendix C.1. Fig. 16
depicts the running time of ΠMult. We take the different
sizes of multiplication with the circuit depth which is equal
to the logarithmic of multiplication size. Since the impact
of communication on performance is insignificant in the
LAN setting, our protocol gathers similar performance to
SWIFT in terms of run-time. Meanwhile, influenced by an
additional verification round which is the dominant overhead
in the case of a small volume of data, our protocol is slightly
worse than SWIFT. Considering saturated data, our protocol
achieves 2× the performance improvement compared to
SWIFT and 10× improvement compared to ABY under both
MAN and WAN settings. In Fig. 15, we present a benchmark
that showcases the proportion of running time in each phase
when executing the multiplication protocol in a one-by-
one fashion. This benchmark is conducted after selecting
the appropriate value of R using the method previously
described. Based on this experiment, we have determined
that when the number of rounds required to calculate the
multiplication exceeds 210, the runtime of our verification
phase can be ignored.
Trade-off of the repetition parameter R. While selecting a
larger value for the repetition parameter R for dimension
reduction can minimize the communication volume in batch
verification, it is also essential to consider the impact of ad-
ditional communication rounds in the postprocessing phase
for overall performance. We conduct a practical experi-
mental benchmark to determine the optimal value of R
in different bandwidth and delay scenarios. By simulating
various bandwidths and delays, we can identify the most
suitable value of R for each specific scenario. We describe
the procedure for selecting R in Appendix C.4.

Non-arithmetic functions. The benchmark data in Fig.17
demonstrates the high efficiency of our nonlinear protocol.

(a) LAN (b) MAN (c) WAN

Figure 17: Overall run-time of ReLU in LAN/MAN/WAN setting. Where ours-semi refers to our semi-honestly secure
protocol; ours-mal refers to our maliciously secure protocols (Soundness error 2−48 for λ = 6 and 2−21 for λ = 2);
Bicoptor refers to [40]; BLAZE refers to [30]; Swift refers to [24]; ABY refers to [27].

We compare the overall running time of the ReLU protocol
with SOTA [24], [27], [30], [40] in LAN, MAN, and WAN
settings (For Bicoptor, we take the truncation error param-
eter `∗ = 32). There are little differences in performance
between our ReLU protocol and our Maxpool protocol.
Owing to page limits, we omit comparative benchmarks of
Maxpool against other works in terms of performance. The
input size of evaluation is from 24 to 220. We perform the
protocol 10 times and prepare all random values at once, and
finally calculate the amortized run-time. We benchmark our
maliciously secure ReLU protocol with different security
parameters (λ = 2 for soundness error 2−21 and λ = 6
for soundness error 2−48). Under the semi-honest threat
model and WAN setting, as anticipated, our semi-honest
protocol demonstrates a performance improvement of 4×
compared to the constant round protocol Bicoptor (theoreti-
cally, communication volume has been reduced by 4× on a
64-bit ring). Under the malicious threat model, compared to
the constant round protocol BLAZE, our maliciously secure
version achieves over 10× performance improvement with
a reasonable ReLU size. Since the delay dominates the
execution overhead considering the small amount of data,
our 2-round protocol is much lower than the logarithmic
rounds protocol ABY in terms of time cost. In the above
cases, the performance of our protocol is more than 4×
that ABY, no matter in LAN, MAN, or WAN settings. The
performance of our protocols under a semi-honest setting is
provided in Appendix C.2
The inference of neural network. We further construct the
convolutional neural network (CNN) inference. We imple-
ment three types of models as follows:
• Shallow neural network(S-NN). Our shallow neural

network accepts 28×28 image and involves a convolu-
tion layer(5 kernels with 5×5 shape, the stride of (2,2)),
a ReLU layer, and a fully connected layer(connects the
incoming 5× 13× 13 nodes to the output 10 nodes).

• LeNet. We benchmark the LeNet model which replaces
the sigmoid activation layer with the ReLU layer. The
model accepts 32 × 32 image and contains 2-layer
convolution, 2-layer Maxpool, 4-layer ReLU and 3-

TABLE 3: Run-time and communication cost of NN infer-
ence, under LAN setting. (Com: the communication which
is given in MB. Time: the run-time which is given in ms)

Model Stage Offline Online

Com Time Com Round Time

S-NN Execution 0.05 6.07 0.17 2 13.19

Verification - - 1.75 3 23.52

LeNet Execution 0.65 7.40 2.46 42 104.9

Verification - - 26.1 10 118.2

VGG Execution 10.2 207 39.2 127 8341

Verification - - 414 18 12157

layer full connection.
• VGG-16. We benchmark the VGG-16 model which

takes 64 × 64 image as input and contains 13-layer
convolution, 5-layer maxpool, 13-layer ReLU and 8-
layer full connection.

TABLE 3 depicts the run-time and communication of our
protocol under the LAN setting. Our benchmark contains
the communication cost and the running time of each stage.
In the execution stage, all parties perform offline/online
procedures of the semi-honest protocols. In the verification
stage, all parties perform a postprocessing procedure to
verify the correctness of the shared result. Our platform can
execute CNNs-like LeNet in hundreds of milliseconds. For
the deeper CNNs such as VGG, our platform can complete
the execution within tens of seconds.

8. Conclusion

We propose Aegis, an efficient PPML framework that
achieves malicious security in an honest majority. We apply
the batch multiplication verification protocol on the 3PC
over the ring. We innovate novel semi-honest and mali-
ciously secure sign-bit extraction protocols. We then ex-
pand the sign-bit extraction protocol to applications such as

ReLU, and MaxPool. The experiments show that our various
protocols have significant performance improvements over
the state-of-the-art works, i.e., [24], [27], [30], [40].

References

[1] Donald Beaver. Efficient multiparty protocols using circuit random-
ization. In CRYPTO, 1991.

[2] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.
Semi-homomorphic encryption and multiparty computation. In EU-
ROCRYPT, 2011.

[3] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and
Yuval Ishai. Zero-knowledge proofs on secret-shared data via fully
linear pcps. In CRYPTO, 2019.

[4] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical
fully secure three-party computation via sublinear distributed zero-
knowledge proofs. In CCS, 2019.

[5] Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Sublinear gmw-
style compiler for mpc with preprocessing. In Advances in Cryptology
– CRYPTO 2021, 2021.

[6] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. Flash:
Fast and robust framework for privacy-preserving machine learning.
In PoPETs, 2020.

[7] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, 2001.

[8] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh.
Astra: High throughput 3pc over rings with application to secure
prediction. In CCSW, 2019.

[9] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Trident: Efficient
4pc framework for privacy preserving machine learning. In NDSS,
2020.

[10] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority mpc
for malicious adversaries. In CRYPTO, 2018.

[11] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority mpc
for malicious adversaries. In CRYPTO, 2018.

[12] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and
Chaoping Xing. Spdz2k: Efficient MPC mod 2k for dishonest
majority. In CRYPTO, 2018.

[13] Anders Dalskov, Daniel Escudero, and Ariel Nof. Fast fully secure
multi-party computation over any ring with two-thirds honest major-
ity. In CCS, 2022.

[14] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption. In
CRYPTO, 2012.

[15] Ivan Damgård, Claudio Orlandi, and Mark Simkin. Yet another
compiler for active security or: Efficient mpc over arbitrary rings.
In CRYPTO, 2018.

[16] Daniel Escudero and Vipul Goyal. Turbopack: Honest majority mpc
with constant online communication. In CCS, 2022.

[17] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game. In STOC, 1987.

[18] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, and Antigoni Polychroni-
adou. Atlas: Efficient and scalable mpc in the honest majority setting.
In CRYPTO, 2021.

[19] Vipul Goyal and Yifan Song. Malicious security comes free in honest-
majority mpc. Cryptology ePrint Archive, Paper 2020/134, 2020.

[20] Carmit Hazay, Abhi Shelat, and Muthuramakrishnan Venkitasubrama-
niam. Going beyond dual execution: Mpc for functions with efficient
verification. In PKC, 2020.

[21] Eerikson Hendrik, Keller Marcel, Orlandi Claudio, Pullonen Pille,
Puura Joonas, and Simkin Mark. Use your brain! arithmetic 3pc for
any modulus with active security. In ITC, 2020.

[22] Wilko Henecka, Stefan K ögl, Ahmad-Reza Sadeghi, Thomas Schnei-
der, and Immo Wehrenberg. Tasty: Tool for automating secure two-
party computations. In CCS, 2010.

[23] Yan Huang, Jonathan Katz, and David Evans. Quid-pro-quo-tocols:
Strengthening semi-honest protocols with dual execution. In S&P,
2012.

[24] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. Swift:
Super-fast and robust privacy-preserving machine learning. In
USENIX, 2021.

[25] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta,
Aseem Rastogi, and Rahul Sharma. Cryptflow: Secure tensorflow
inference. In S&P, 2020.

[26] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Ver-
cauteren. Epic: Efficient private image classification (or: Learning
from the masters). In CT-RSA, 2019.

[27] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol frame-
work for machine learning. In CCS, 2018.

[28] Peter Sebastian Nordholt and Meilof Veeningen. Minimising com-
munication in honest-majority mpc by batchwise multiplication ver-
ification. In ACNS, 2018.

[29] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame.
Aby2. 0: Improved mixed-protocol secure two-party computation. In
USENIX, 2021.

[30] Arpita Patra and Ajith Suresh. BLAZE: blazing fast privacy-
preserving machine learning. In NDSS, 2020.

[31] Mohassel Payman and Zhang Yupeng. Secureml: A system for
scalable privacy-preserving machine learning. In S&P, 2017.

[32] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chan-
dran, Divya Gupta, Aseem Rastogi, and Rahul Sharma. Cryptflow2:
Practical 2-party secure inference. In CCS, 2020.

[33] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,
Ebrahim M. Songhori, Thomas Schneider, and Farinaz Koushanfar.
Chameleon: A hybrid secure computation framework for machine
learning applications. In ASIACCS, 2018.

[34] Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: 3-
party secure computation for neural network training. In PoPETs,
2019.

[35] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz,
Prateek Mittal, and Tal Rabin. Falcon: Honest-majority maliciously
secure framework for private deep learning. In PoPETs, 2021.

[36] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha: A
gpu platform for secure computation, 2022.

[37] Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. Piranha
source code, 2022.

[38] Andrew C. Yao. Protocols for secure computations. In SFCS, 1982.

[39] Lindell Yehuda and Nof Ariel. A framework for constructing fast
mpc over arithmetic circuits with malicious adversaries and an honest-
majority. In CCS, 2017.

[40] Lijing Zhou, Ziyu Wang, Hongrui Cui, Qingrui Song, and Yu Yu. Bi-
coptor: Two-round secure three-party non-linear computation without
preprocessing for privacy-preserving machine learning. In S&P, 2023.

Appendix A.
Security Proofs

A.1. The proof of Theorem 1.

Theorem 1. Let PRF(Zp)p ,PRFZp and PRFZ
2` be the secure

pesudo-random functions. The protocol ΠSignBit as depicted

in Fig. 3 UC realizes FSignBit against semi-honest PPT
adversaries who can statically corrupt up to one party.

Proof. To prove Thm. 1, we construct a PPT simulator
S, such that no non-uniform PPT environment Z can dis-
tinguish between the ideal world and the real world. We
consider the following cases:

Case 1: P0 is corrupted.
Simulator: The simulator S internally runs A, forward-

ing messages to/from Z and simulates the interface of
honest P1, P2. S simulates the following interactions with
A.
• Upon receiving {Jrx,jKp1}j∈Z∗` , [r

′]1 form corrupted P0

to P1, and {Jrx,jKp2}j∈Z∗` , [r
′]2 form corrupted P0 to P2,

S extracts r̂x = 2`−1 − 1 −
∑`−1

j=1(Jrx,jK
p
1 + Jrx,jK

p
2)

and r′ = [r′]1 + [r′]2;
• S picks random list {û′j}j∈Z∗`+1

where û′j ∈ Zp and
sets another list {ûj}j∈Z∗`+1

as following steps:

– For each j where û′j = 0, set ûj ← {p− 1, 0}.
– For each j where û′j 6= 0, set ûj ← Z∗p.
– If ∃j such that û′j 6= 0, select random one of j to

set ûj ← Z2.
– sends {û′j}j∈Z∗`+1

and {û′j}j∈Z∗`+1
to P0.

• Upon receiving m′ from corrupted P0 to P1 and P2, S
does:
– If ∃ûj = 0∧ û′j 6= 0, set sign(−rx) = (m′+r′), else

set sign(−rx) = (m′ + r′)⊕ 1.
– Calculate rx = −r̂x − sign(−rx) · 2`−1.
– Send (Input, rx) to FSignBit.
– Generate [rz]1, [rz]2 with seed and send to FSignBit.

Indistinguishability. The indistinguishability is proven
through a series of hybrid worlds H0,H1.

Hybrid H0: It is the real protocol execution
RealΠSignBit,A,Z(1λ).

Hybrid H1: It is same as H0 except that in H1, list ûj
and û′j are picked uniformly random instead of calculating
from wj ·m′j +(sign(mx)⊕m̂x|j⊕∆) and w′j(wj ·m′j +1).

Claim 1. If PRFZp and PRF(Zp)p are the secure pseudoran-
dom functions with adversarial advantage AdvPRFZp (1λ,A)
and AdvPRF(Zp)p (1λ,A), then H1 and H0 are indistin-
guishable with advantage ε < 2 · ` · AdvPRFZp (1λ,A) +
AdvPRF(Zp)p (1λ,A).

Case 2: P1(or P2) is corrupted.
Simulator: The simulator S internally runs A, forward-

ing messages to/from Z and simulates the interface of
honest P0, P2. S simulates the following interactions with
A.
• S generate ∆, [rz]1 with the seed and sends [rz]1 to
FSignBit.

• S picks Jrx,jK1 ← Zp and acts as P0 to send it to P1.
• S picks [Γ]2 ← Z2` and acts as P2 to send it to P1.
• Upon receiving [Γ]1 from P1, S calculates Γ = [Γ]1 +

[Γ]2.

• Upon receiving {JûjK1}j∈Z∗`+1
and {Jû′jK1}j∈Z∗`+1

from
corrupted P1 to P0, S does.
– invoke PRF with η to generate permutation π.
– invoke PRF with η to generate wj , w′j ∈ Z∗p for j ∈
Z∗`+1.

– invoke PRF with η to generate ∆ ∈ Z2.
– calculate {JujK1}j∈Z∗`+1

= π−({JûjK1}j∈Z∗`+1
) and

{Ju′jK1}j∈Z∗`+1
= π−({Jû′jK1}j∈Z∗`+1

).
– calculate m̂x|j via {Ju′jK1}j∈Z∗`+1

, wj , w
′
j and

Jrx,jK1.
– calculate sign(mx) via ∆, m̂x|j and {JujK1}j∈Z∗`+1

.
– calculate mx = sign(mx)·2`−1+

∑`
j=1 2`−j−1 ·m̂x|j

• S sends (Input,mx) to FSignBit and receives
(Output,mz, [rz]1).

• S acts as P0 to send m′ = (mz − Γ)/(1− 2∆) to P1.
Indistinguishability. The indistinguishability is proven

through a series of hybrid worlds H0,H1.
Hybrid H0: It is the real protocol execution

RealΠSignBit,A,Z(1λ).
Hybrid H1: It is same as H0 except that in H1, Jrx,jK1,

[Γ]1 and m′ are picked uniformly random instead of cal-
culating from rx,j , ∆ + [r′]2 − 2∆ · [r′]2 + [rz]2 and
sign(−rx)− r′.

Claim 2. If PRFZp and PRFZ
2` are the secure pseudoran-

dom functions with adversarial advantage AdvPRFZp (1λ,A)
and Adv

PRF
Z
2`

(1λ,A), then H1 and H0 are indistin-
guishable with advantage ε = ` · AdvPRFZp (1λ,A) +
2Adv

PRF
Z
2`

(1λ,A).

Proof. We replace the ` PRFZp outputs and 2 PRFZ
2`

outputs to uniformly random number; therefore,the overall
advantage is ε = ` · AdvPRFZp (1λ,A) + 2Adv

PRF
Z
2`

(1λ,A)
by hybrid argument via reduction.

This concludes the proof.

A.2. The proof of Lemma 1.

Lemma 1. Suppose protocol ΠTrans depicted in Fig. 4
take input as {〈xi〉, 〈yi〉, 〈zi〉}i∈ZN , and it outputs
{〈x′i〉`[x], 〈yi〉`[x]}i∈ZN ; 〈z〉`[x]. The probability that the fol-
lowing two conditions hold is at most N

2d
, where d is the

degree of f(x) w.r.t. Z2` [x]/f(x):
• z =

∑N
i=0 x

′
i · yi

• ∃i ∈ ZN s.t. zi 6= xi · yi

Proof. It is sufficient to show that r is uniformly random if
ΠRec is not abort. The adversary tries to make

∑N
i=0 r

i−1 ·
zi =

∑N
i=0 r

i−1 · xi · yi where zi = xi · yi + ei for i ∈ ZN
with an error list {ei}i∈ZN . It can be written as

∑N
i=0 r

i−1 ·
xi ·yi =

∑N
i=0 r

i−1 · (xi ·yi+ ei). The condition that makes
the equation hold is the random value r is the root of f(x) =∑N

i=0 x
i−1 ·ei. Since the size of roots of N−1-degree f(x)

over Z2` [x] is 2(`−1)dN + 1, the probablity that uniformly
random value r match the root is 2(`−1)dN+1

2`d
≈ N

2d
.

A.3. The proof of Lemma 2.

Lemma 2. Suppose protocol ΠReduce depicted in Fig. 5
take input as ({〈xi〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x]), and it outputs
({〈x′i〉`[x], 〈y′i〉`[x]}i∈ZN/2 , 〈z′〉`[x]). The probability that the
following two conditions hold is at most 1

2d−1 , where d is
the degree of f(x) w.r.t. Z2` [x]/f(x):
• z′ =

∑N/2
i=0 x

′
i · y′i

• z 6=
∑N

i=0 xi · yi
Proof. For the convenience of description, we denote
h′(k) =

∑N/2
i=0 fi(k) · gi(k). The adversary tries to make

h(ζ) = h′(ζ) when h(0) + h(1) = h′(0) + h′(1) + e
(we denote e the error introduced in z). At the same time,
the adversary can introduce new errors e1, e2 when calcu-
lating h(0) and h(2) so that h(0) = h′(0) + e1, h(1) =
h′(1) + e − e1, h(2) = h′(2) + e2. Considering h(ζ) =∑2

i=0((Π2
j=1,j 6=i

ζ−j
i−j) · h(i)) = (ζ−1)·(ζ−2)

2 · h(0) + ζ · (2−
ζ) · h(1) + (ζ−1)∗ζ

2 · h(2), to make it equal to h′(ζ) =
(ζ−1)·(ζ−2)

2 ·h′(0) + ζ · (2− ζ) ·h′(1) + (ζ−1)∗ζ
2 ·h′(2), is to

make (ζ−1)·(ζ−2)
2 ·e1+ζ ·(2−ζ)·(e−e1)+ (ζ−1)·ζ

2 ·(e2) = 0
for random picked ζ ∈ Z2` [x]. The probability that the
adversary deliberately chooses e, e1, e2 to make the equation
hold is to make ζ be the root of 2-degree polynomial
f(x) = (x−1)·(x−2)

2 ·e1 +x · (2−x) · (e−e1)+ (x−1)·x
2 · (e2)

over Z2` [x], which is at most 22(`−1)d + 1. So we have the
soundness error 2(`−1)d+1+1

2`d
≈ 1

2d−1

A.4. The proof of Lemma 3.

Lemma 3. Let ({〈xi〉`[x], 〈yi〉`[x]}i∈ZN , 〈z〉`[x]) be the input
of protocol ΠInnerVerify depicted in Fig. 6. The probability
that ΠInnerVerify outputs 1 and z 6=

∑N
i=0 xi · yi is at most

1
2d

, where d is the degree of f(x) w.r.t. Z2` [x]/f(x).

Proof. Since α is uniformly random and unknown to the
adversary, for z =

∑N
i=0 xi · yi + e, we have ∆ = α · e +

e1 where e1 is introduced when evaluating ΠPolyEvl. Since
ΠPolyEvl is secure up to additive attack, e1 is independent
of α, so that polynomial f(x) = e · x+ e1 over Z2` [x] has
2(`−1)d+1 roots. The probability the adversary deliberately
chooses e, e1 to make ∆ = 0 is 2(`−1)d+1

2`d
≈ 1

2d
.

A.5. The proof of Theorem 2.

Theorem 2. Let {〈xi〉, 〈yi〉, 〈zi〉}i∈ZN be the input of proto-
col ΠR

MultVerify depicted in Fig. 7. The probability ΠR
MultVerify

outputs 1 and ∃i ∈ ZN s.t. zi 6= xi · yi is at most N
2d−R−2 ,

where d is the degree of f(x) w.r.t. Z2` [x]/f(x).

Proof. From Lemma. 1, Lemma. 2 and Lemma. 3, we
know that the adversary has R chances with probability

1
2d−1 and one chance with probability N

2d
and one chance

with probability 1
2d

to pass the verification. Therefore the
probability that the adversary success is 1 − (1 − 1

2d−1)R ·
(1− N

2d
) · (1− 1

2d
) ≈ N

2d−R−2 .

A.6. The proof of Theorem 3.

Theorem 3. Let 〈x〉` be the input of the protocol Πλ
Pos

depicted Fig. 8. The probability that Πλ
Pos outputs 1 and

sign(x) = 1 is at most 1
2λ log `+λ+log ` .

Proof. For each illegel uj in Πλ
Pos, the probability that

malicious Pi for i ∈ {1, 2} make it pass the MAC check
is 1

2(log `+1)λ w.r.t. the MAC key space Zλp (taking p ≈
2(log `+1)). To persuade the verifier to accept the result,
the adversary also needs to guess the position of the first
non-zero bit and flip the coin with probability 1

` . So the
soundness error is 1

2(log `+1)λ`
= 1

2λ log `+λ+log ` .

A.7. The proof of Theorem 4.

Theorem 4. Let PRF(Zp)p ,PRFZp and PRFZ
2` be the secure

pesudo-random functions. Let ` = poly(λ). The protocol
ΠReLU depicted in Fig. 8 UC realizes FSignBit against semi-
honest PPT adversaries who can statically corrupt up to
one party.

Proof. The proof of Theorem 4 is similar to the proof of
Theorem 1. To be brief, compared to ΠSignBit, ΠReLU sends
Γ′′, m′′ to corrupted P1 (or P2) and introduce the PRF
outputs r′′, rw to make Γ′′, m′′ uniformly random, where
make the indistinguishable advantage of corrupted P1 equal
to ε = ` · AdvPRFZp (1λ,A) + 2Adv

PRF
Z
2`

(1λ,A)

Appendix B.
Other semi-honest protocol

B.1. Semi-honest secure truncation

Our truncation protocol Πsemi-trunc under the semi-honest
threat model is shown in Fig. 18, which only requires one
round and communication of ` bits in the offline phase.

Input: 〈·〉-shared value.
Output: 〈·〉-shared value of z = rshift(x, t).
Preprocessing:
- P0 pick random value rx which satisfy

rshift(rx, t) = rshift([rx]1, t) + rshift([rx]2, t).
- All parties perform [rx]← Π[·](rx).
- All parties set [rz]i = rshift([rx]i, t) for i ∈ {1, 2}

Online:
- Pi for i ∈ {1, 2} set mz = rshift(mx, t)
- All parties output 〈rz〉 = ([rz],mz)

Protocol Πt
semi-trunc(〈x〉)

Figure 18: The semi-honest truncation protocol

(a) Online com. of MUL (b) Total com. of MUL

(c) Online communication of
Inner Product with Trunction

(d) Overall communication of
Inner Product with Trunction

Figure 19: Communication overhead comparison with
ABY3 [27], BLAZE [30], SWIFT [24] of muliplication and
inner product.

Appendix C.
Benchmarks

C.1. Multiplication communication comparison

Fig. 19 shows our communication overhead compared
with ABY, BLAZE, and SWIFT. We take the vector di-
mension 1024 when evaluating the inner product. Since
our protocol requires logarithmic additional communication
of (10R + 8)` · d (take R = logN), it requires more
communication than SWIFT given the small N . When N is
large enough, the logarithmic scaler R makes the additional
term ignorable. With a considerable amount of input size,
the increase in communication volume of our protocol is
2× of SWIFT and 7× of ABY for multiplication and 2× of
SWIFT and 7168× of ABY for the 1024-dimension inner
product with truncation.

C.2. Non-arithmetic protocol benchmark in semi-
honest setting

Our non-arithmetic protocol benchmark in the semi-
honest setting is illustrated in TABLE 4.

C.3. The communication of our protocols

We summarize the overhead of our protocols of Mul-
tiplication, Inner Product, Truncation, Sign-bit Extraction,
ReLU, and MaxPool which is depicted in TABLE 5.

C.4. Determination of R

We determine the R of multiplication verification in
different environments through experiments. The data pre-
sented in Fig. 20 illustrates the time required for different

numbers of triples for verification using two methods: the
scheme that involves calling ΠReduce to reduce dimension-
ality to 1, and the scheme that directly employs ΠInnerVerify.
These measurements were conducted in three distinct net-
work environments. To determine the optimal value of R,
the process involved finding the point of intersection (P)
between the gradients of the two schemes in the figure. Once
P is identified, the dimension is reduced to a value less than
P using the ΠReduce operation performed minimum R times
(As shown in Fig. 20, we take P = 211 in LAN, P = 215

in MAN and P = 216 in WAN).

Appendix D.
Related work

In the honest-majority setting, several works such as
[11], [13], [15], [16], [18], [39] have designed protocols
for efficient secure multi-party computation against the ma-
licious adversary. However, compared to the semi-honest
case, previous work requires significantly higher additional
overhead. For instance, [39] presents two sets of schemes
that require a communication overhead of either 42 · n or
5(n2 − n) ring elements for each multiplication, where n
represents the number of parties. [11] reduces the commu-
nication overhead to 42·n. [18] introduces batch verification
and a series of other optimization techniques. These proto-
cols by [18] require a two-round communication overhead of
2n field elements or a one-round communication overhead
of 3n field elements. However, it should be noted that [18]’s
protocol can only run on the field. In contrast, [16] achieves
a constant online phase communication overhead of 12
field elements by utilizing packed secret sharing technology.
Lastly, the work by [13] refocuses on secure multi-party
computation in a ring setting. It achieves a communication
overhead of 1 1

3 ring elements with two rounds of commu-
nication or 1 2

3 ring elements with one round of commu-
nication. With the advancement of the maliciously secure
multiplication protocol, practical maliciously secure privacy-
preserving machine learning becomes attainable. [6], [8],
[8], [9], [24], [27], [30], [31], [35] realize privacy-preserving
machine learning protocols under the malicious threat model
in an honest majority. In the semi-honest setting, protocols
such as [8], [27], [29], [30] are all based on three par-
ties replicated secret sharing, which only request 3 ring
elements communication each multiplication. The online
phase communication overhead of 2 ring elements can be
achieved by handing over part of the communication to a
circuit-dependent offline phase [8]. In the malicious setting,
different from the overhead of 21 ring elements (12 in the
offline phase) [27], a series of optimizations [8], [24], [30]
reduced the multiplication overhead to 6 ring elements (3 in
the offline phase) in the three-party setting. To evaluate non-
linear functions such as ReLU and Maxpool, protocols like
[24], [27], [29] employ a conversion process that transforms
arithmetic secret sharing into boolean secret sharing. Sub-
sequently, they utilize this boolean secret-sharing scheme to
evaluate corresponding non-linear functions. The disadvan-
tage of this approach is the need to introduce log ` rounds

TABLE 4: Runtime and communication cost of each non-arithmetic protocol evaluation in semi-honest, MAN setting.

Operation Input
Size

Communication Time.(ms) Throughput.
(ops/s)

Offline Online Offline Online

Sign
24 1.1 KB 4.2 KB 11.52 19.41 516

28 16.6 KB 66.4KB 11.96 19.99 8050

216 4.2MB 17.0MB 77.59 249.58 200415

ReLU
24 1.3KB 5.2KB 11.67 19.47 513

28 20.7KB 83.1KB 11.96 20.01 8007

216 5.3MB 21.2MB 77.71 262.12 192849

MaxPool
24 1.1KB 5.1KB 11.75 36.38 333

28 20.6KB 82.8KB 11.86 73.28 3006

216 5.3MB 21.2MB 76.04 564.42 102326

TABLE 5: The communication cost of our protocols. (Offline.Com./Online.Com./Com.: the communication cost of of-
fline/online/verification phase. Rounds: the communication rounds of the online phase. ` is the ring size. λ:the statistical
security parameter. n:the MaxPool size. R:the dimension reduction times. N :the data size. M :the inner product dimension.)

Operation
Execution(Semi-honest) Verification

Offline.Com.(bit) Rounds Online.Com.(bit) Rounds Com.(bit)

Multiplication ` 1 2` R+ 1 (11R+ 3N/2R + 9)` · d

Inner Product ` 1 2` R+ 1 (11R+ 3N ·M/2R + 9)` · d

Truncation ` 0 0 R+ 1 (11R+ 6N/2R + 9)` · d

Sign-bit Extraction `(1 + log `) + 2` 2 4`(log `+ 1) + 2` 2 10λ`(log `+ 1) + 14` log `+ 16`

ReLU `(1 + log `) + 3` 2 4`(log `+ 1) + 4` 2 10λ`(log `+ 1) + 14` log `+ 18`

MaxPool (n− 1)(4`+ ` log `) logn (n− 1)4`(log `+ 2) logn (n− 1)`((10λ+ 14)(log `+ 1) + 4`)

(a) LAN. (b) MAN (c) WAN

Figure 20: Total runtime comparison of two types batch verification over LAN(0.1ms RTT and 1Gbps bandwidth), MAN(6ms
RTT and 100Mbps bandwidth) and MAN(80ms RTT and 40Mbps bandwidth).

of communication. Furthermore, in protocols such as [8],
[27], [30], garbled circuits are employed for evaluating non-
linear functions. While these protocols exhibit a constant
number of communication rounds, the use of garbled circuits
introduces a significant amount of additional communication
overhead, particularly in the presence of a malicious threat
model. In contrast, the protocols described in [25], [34]
tackle the sign-bit extraction problem with a constant round
communication overhead. They achieve this by converting
the highest bit problem into the least significant bit problem.

However, when evaluating protocols such as ReLU, they
require a substantial communication overhead of 10 rounds,
which can be even larger than log ` rounds when ` is small.
On the other hand, [40] implements comparison through a
truncation protocol. Their approach performs local trunca-
tion ` times, followed by involving a third party to verify
if the result contains zero items. This scheme realizes two
rounds of `2 bits communication. However, this approach
has not been applied to malicious threat models.

