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Abstract. During the standardisation process of post-quantum cryp-
tography, NIST encourages research on side-channel analysis for
candidate schemes. As the recommended lattice signature scheme,
CRYSTALS-Dilithium, when implemented on hardware, has only been
subjected to the side-channel attack presented by Steffen et al. in IACR
ePrint 2022. This attack is not complete and requires excessive traces.
Therefore, we investigate the leakage of an FPGA (Kintex7) implementa-
tion of CRYSTALS-Dilithium using the CPA method, where with a min-
imum of 70000 traces partial private key coefficients can be recovered. As
far as we know, this is the first work that applies power leakage to side-
channel attacks on FPGA implementations of CRYSTALS-Dilithium.
Furthermore, we optimise the attack by extracting Point-of-Interests us-
ing known information due to parallelism (named CPA-Pol) and by iter-
atively utilising parallel leakages (named CPA-ITR). We experimentally
demonstrate that when recovering the same number of key coefficients,
the CPA-Pol and CPA-ITR reduce the number of traces used by up to
16.67 percent and 25 percent, respectively, compared to the CPA method.
When attacking with the same number of traces, the CPA-Pol method
and the CPA-ITR method increase the number of recovered key coeffi-
cients by up to 55.17 percent and 93.10 percent, respectively, compared
to the CPA method. Our experiments confirm that the FPGA implemen-
tation of CRYSTALS-Dilithium is also very vulnerable to side-channel
analysis.

Keywords: CRYSTALS-Dilithium - Power Analysis Attack - FPGA -
Side-Channel Attack - Post-Quantum Cryptography.
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1 Introduction

With quantum computers, the conventional public-key cryptographic algo-
rithms, such as RSA, DSA, etc., can be broken by Shor’s algorithms [17] with-
out much effort. In response to the threats, National Institute of Standards and
Technology (NIST) initiated a post-quantum cryptography (PQC) standardisa-
tion process in December 2016 [12], and finally four algorithms were announced
for standardisation in July 2022, with CRYSTALS-Kyber [1] being selected
as a post-quantum Key Encapsulation Mechanism (KEM), and CRYSTALS-
Dilithium (Dilithium for short) [9], Falcon [10], and SPHINCS+ [4] being selected
as post-quantum signature schemes. Amongst the signature schemes, NIST pri-
marily recommends Dilithium, as it believes this is the primary algorithm for
digital signatures.

Dilithium ensures Strong existential Unforgeability under Chosen Message
Attacks (SUF-CMA), and its security is guaranteed by lattice-based hard prob-
lems. The security of cryptographic algorithms theoretically lies on their math-
ematical structures, but in practice, they are also under threat of side-channel
attacks (SCAs). The importance of side-channel security for post-quantum cryp-
tography is also emphasised in the NIST PQC standardisation process. Exist-
ing side-channel attacks on implementations of Dilithium typically target the
random number generation, Number-Theoretic Transform (NTT), or polyno-
mial multiplication operations. Side-channel leakage from these target operations
has been investigated using various methods, including Simple Power Analysis
(SPA), Correlation Power Analysis (CPA), and profiled attacks. However, cur-
rent research mostly focuses on software implementations, having little concern
on SCA to hardware implementations of Dilithium. In light of this, we study the
security of hardware implementations of Dilithium under side channel attacks.

In this paper, we investigate the vulnerable regions of Dilithium and propose
practical side-channel attacks to recover the private key by analysing a typical
Field-Programmable Gate Array (FPGA) implementation of Dilithium.

1.1 Related Work

Typical implementations of Dilithium is based on ARMs or FPGAs. For ARM-
based implementations, Ravi et al. proposed a non-profiled side-channel attack
targeting polynomial multiplication, by which partial private key was extracted
and utilized to forge signatures [15]. However, they believe that the attack goes
beyond polynomial time. Subsequently, Chen et al. proposed a conservative CPA
method to reduce the key guessing space and a fast two-stage method to further
reduce the guessing space for attacking polynomial multiplication operations [6].
As a result, they were able to fully recover the private key with only 157 power
traces. Qiao et al. [14] proposed a new non-profiled attack method, called Public
Template Attack (PTA), on both unprotected and protected implementations
of Dilithium, targeting the random polynomial y, successfully recovering the
private keys. Non-profiled attacks focus primarily on polynomial multiplication,
while profiled attacks focus primarily on NTT operations. Primas et al. [13]
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proposed a generic method targeting NTT operations that requires establishing
templates for all possible multiplications in butterfly operations, which is costly.
Han et al. [11] employed a machine learning-based method to attack NTT oper-
ations, recovering keys using 60000 power traces. Berzati et al. [5] reconstructed
a given coefficient in a predicted vector to determine if it is zero, thus recovering
the private key using linear algebra methods, with 700000 power traces.

In FPGA-based implementations, Steffen et al. [18] proposed the first side-
channel attack targeting polynomial multiplication in Dilithium using electro-
magnetic analysis. They analyzed two polynomial multiplication operations: ctq
and ¢s; (where ¢ty does not affect the security of the Dilithium scheme). How-
ever, in their analysis of ¢s1, they only provided results for one key coefficient,
and under 1000000 electromagnetic traces, the Pearson correlation coefficient for
the correct key was not significant. Additionally, they also performed profiled
analysis on NTT operations and successfully recovered the private key using
700000 electromagnetic traces. However, the capabilities of the adversary set in
their experiment were excessively strong.

Among the mentioned works, only Steffen et al. [18] conducted attacks on an
FPGA-based implementation of Dilithium, but they did not analyse more key
coefficients. Moreover, due to the high cost of establishing templates in profiled
attacks, this paper only focuses on non-profiled attacks.

1.2 Contributions

The contributions of this paper are summerised as follows:

— An analysis of the characteristics of Dilithium hardware implementation has
been conducted, showing the CPA side-channel attacks on polynomial multi-
plication, providing the first results of using power leakages for side-channel
analysis on it. In this analysis, it has been demonstrated that it is possible
to recover partial keys with a minimum usage of 70000 power traces.

— By extracting Point-of-Interests (Pols) from known information about the al-
gorithm execution, we propose the CPA-Pol method. Compared to the CPA
attack, it reduces the algorithm’s complexity and also decreases the number
of power traces required for the attack, with a reduction of up to 16.67%.
Its average Guessing Entropy is lower than that of the CPA method. When
attacking with the same number of power traces, the number of recovered
key coefficients is increased by up to 55.17%.

— Taking advantage of the highly parallelized implementation in FPGA, we
propose a better characterization of leakage features with the CPA-ITR
method. Compared to the CPA method, this method reduces the number of
power traces used by up to 25%. At the same time, when attacking with the
same number of power traces, the number of recovered key coefficients can
be improved by up to 93.10%.
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1.3 Organisations

The structure of this paper is as follows: Section 2 provides notations involved
in this paper, and gives a brief introduction to Dilithium v3.1 signature scheme.
It also introduces the target FPGA implementation and Correlation Power Anal-
ysis. Section 3 provides a detailed description of target operation and methods
proposed in this paper. Section 4 introduces the experimental setups and anal-
yses the experimental results of our attacks. Finally, conclusions are given in
Section 5.

2 Preliminaries

2.1 Notations

Let n and ¢ be two integers, where n = 256 and ¢ = 8380417 = 223 — 213 4 1.
We use R, to denote the polynomial ring Z[z]/(z™ 4 1), the infinity norm ||z||
denotes the maximum absolute value among all coefficients of a polynomial .
For a polynomial vector, this norm is defined as the maximum infinity norm of
all polynomials in the vector. Therefore, S, denotes the set of polynomials in
R, with infinity norm equal to b, while Sy denotes the same set but excluding
coefficients with value —b. Additionally, the set of polynomials in R, with exactly
7 nonzero coefficients and infinity norm equal to 1 is denoted as B.. We use bold
lowercase letters to denote vectors (e.g. v), and bold uppercase letters to denote
matrices (e.g. A). Polynomials in the NTT domain are denoted with a hat (e.g.
¢, ¢ = NTT(c)). This notation is transitive, so § denotes each polynomial in s
being individually transformed into the NTT domain. Finally, we use o to denote
pointwise multiplication. HD(aob)[i] denotes the value of the Hamming distance
after calculating the i-th cocfficient of the register storing the computation result
of aob.

2.2 CRYSTALS-Dilithium

Dilithium consists of three algorithms: key generation, signature generation, and
signature verification. Because the signature verification is unrelated to the at-
tacks mentioned in this paper, it will not be further introduced here.

Key Generation The key generation process generates a private key for signature
generation and a public key for verification, as shown in Algo. 1. From this, it can
be seen that finding the private key from the public key is essentially equivalent
to solving the M-LWE problem. Additionally, once an attacker obtains either
value s1 or sg , they can derive the other value directly since A and t are public
values. The Power2Round function is used to split the M-LWE problem instance
t into high and low bits in order to compress the size of the public key.
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Algorithm 1 Key Generation

2 ¢+ {0,1}%

: (P, p/,K) € {07 1}256 X {07 1}512 X {07 1}256 ::H(C)
A € R :=ExpandA(p)

: (s1,82) € Sf x S := ExpandS(p’)

t .= ASl + so

: (t1,t0) := Power2Round,(t, d)

tr € {0,1}%%¢ := H(p||t1)

: return (pk = (p, t1), sk = (p, K, tr,s1,82,t0))

Signature Generation The signature generation process is shown in Algo. 2.
It begins by recomputing A and hashing the message M along with the hash
value of the public key tr. The loop is terminated by generating noise y €
Sf,yﬁl) using the ExpandMask function. Compress the w = Ay to w; using the
HighBits function. The hint h allows the verifier to recompute wy. The hash
function H instantiates the random oracle required in the proof. It returns a
sparse ternary polynomial ¢ € Bgp, which has a Hamming weight of 60 and all
non-zero coefficients equal to +1 or —1. The Decompose function returns both
HighBits and LowBits of its input. Finally, the check is performed to determine
if the current signature is rejected, and if so, it is recomputed. Otherwise, the
signature o = (¢, z, h) is generated.

Dilithium Parameters The first submission [8] to the PQC competition under-
went several parameter modifications during the NIST PQC standardisation
process. The current version can be found in [2], and compared to the previous
submission [7], the main adjustments were made to the k and ¢ dimensional pa-
rameters in order to better comply with NIST’s security levels. The parameters
of the current version 3.1 can be seen in the Table 1.

Table 1: Dilithium Parameters for version 3.1 (Dilithium v3.1)

Parameter Set Value
Security Level 2 3 5
T [# of £1’s in (] 39 49 60

w [max # of s in hint h] 80 55 74
(k, ¢) [Dimensions of A] (4,4) (6,5) (8,7)
7 [secret key range] 2 4 2
q [Modulus] 8380417
d [dropped bits from t] 13
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Algorithm 2 Signature Generation

1: Ae Rf}'xe := ExpandA(p)

2: p € {0,1}°12 := H(tr|| M)

3: k:=0,(z,h):=1

4 o€ {0, 11512 = H(K|u)

5: while (z,h) = 1 do

y € 5%, := ExpandMask(p/, x)
w:= Ay

w1 := HighBits (w, 272)

9: &€ {0,1}*° := H(y||w1)

10: ¢ € B, := SampleInBall(¢)

11: zZ:=Yy+csy

12: ro := LowBits,(w — ¢s2,272)
13: if [|z]lec 271 — B or [Irollec > 72 — B then

14: (z,h) := 1

15: else

16: h := MakeHint,(—cto, w — cs2 + cto, 27v2)
17: if ||ctolloc > 2 or > hi >w then

18: (z,h) := L1

19: end if

20: end if

21: K:=k+1{
22: end while
23: return o = (¢, z,h)

p — ExpandA 4 _ 4
—l tr,M,K 4 tr, MK

v
tr,M,K—> Algo. 2 steps2 — 7 ﬂ‘t stage 0: Algo. 2 steps5 — 7 w,y L» stage 0: Algo. 2 steps5 — 7

S1,S2,tg— Decode and NTT stage 1: Algo. 2 steps8 — 21 o

4
— — stage 1: Algo. 2 steps8 — 211,
51,52 % 3,.8:,.%

precomputation rejection loop rejection loop cycies

Fig. 1: The architecture of the target FPGA implementation of Dilithium.
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2.3 Target FPGA Implementation of Dilithium

Our attacks are conducted on the hardware implementation Dilithium by Bech-
with et al. [3]. Tt is known for its good performance as an FPGA implementation
with high speed. The algorithm of the signature generation is shown in Fig. 1,
which is divided into pre-computation phase and rejection loop phase. During
the pre-computation phase, the key is decoded and transformed into the NTT
domain. At the same time, the calculations for w and y, which are required
in the rejection loop (Line 5 to 22 in Algo. 2), are computed in advance, and
the calculation results are directly provided to generate the signature in the
rejection loop. The calculation in the rejection loop is divided into two-stage
pipelines, Stage-0 and Stage-1. Stage-0 prepares for the next Stage-1 calcula-
tion. If the generated signature o passes in Stage-1, it is output as the signature
without performing the calculations within the red dashed line. If it fails, the
loop continues until a valid signature is generated.

In the implementation, polynomial multiplication (including NTT), addition,
and multiplication are implemented through polynomial arithmetic units. It uti-
lizes four butterfly units to process four coefficients in parallel for all operations.
For the multiplication, reduction of the computed result is required. The hard-
ware implementation uses Barrett reduction, which can be implemented using
only shifting and addition operations.

Therefore, when analysing the implementation of polynomial multiplication,
the rejection loop and the polynomial arithmetic units bears a high degree of
parallelism, resulting in a large amount of algorithmic noise during side-channel
analysis, which affects the attacking results.

2.4 Correlation Power Analysis

Side-channel analysis utilizes the power consumption or electromagnetic infor-
mation generated by the execution of a cryptographic algorithm on a device in
order to extract sensitive information. Correlation Power Analysis (CPA) is one
of the methods used in side-channel analysis. It is essentially an improvement of
DPA. In practical attacks, the classical CPA typically involves five steps:

— Select an appropriate intermediate value as the attack position. The calcula-
tion function of this intermediate value takes the key (or a fixed value from
which the key can be derived) and known variables as inputs.

— Collect the power traces of the targeted operation. Execute the signing pro-
cess n times and store the power traces of each collection, with each trace
consisting of m data points, in the matrix T}, x .

— Compute the intermediate value matrix V,,« for the guessed key. Based on
the range of key coefficient values, the size of key guessing space k can be
determined. Using the assumed key and known variables, the intermediate
values of the targeted operation can be calculated.

— Using an appropriate power consumption model, map the values of the in-
termediate value matrix V,,«x to the assumed power consumption matrix
H,,«j. one-to-one.
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— Compute the correlation coefficients between the assumed power consump-
tion matrix H,« and the actual power consumption matrix T}, «,, for each
column, and record them in the correlation matrix Rjyx.,. The calculation
of correlation coefficients can be done using Pearson’s correlation coefficient
formula, as shown in Eq. 1.

R . = Zg:l(H%i — Fz) ) (Tx,j - Tj)
i = = — - —
S (Hes — T2 S (T - T2

(1)

The index of the maximum value in matrix R corresponds to the leakage
point and the key used in the targeted operation.

3 The Proposed Side Channel Attacks

3.1 Vulnerable Region

In the process of Dilithium signature generation, polynomial multiplications are
calculated many times. The calculations of ¢s; and ¢ss involve the public variable
¢, while s; and so are both parts of the private key, making them suitable for
CPA. This paper focuses on attacking the hardware implementation of ¢sy. In the
context of Dilithium, ¢ is a polynomial with n = 256 coefficients, each ranging
from —1 to 1. s; is a polynomial vector consisting of / polynomials, with a total
of ¢ x n coefficients, each ranging from —n to 7. To speed up the computation
of polynomial multiplication, Dilithium algorithm introduces NTT. Therefore,
before performing polynomial multiplication, the polynomials are mapped to the
NTT domain and then multiplied using point-wise multiplication, as shown in
Eq. 2.

sy = INTT (NTT (c) o NTT (sy)) (2)

In the FPGA implementation [3], the polynomial arithmetic unit is respon-
sible for polynomial multiplication (including NTT), addition, and subtraction.
The design utilises a 2x2 butterfly structure, which is applied to all polynomial
arithmetic operations, enabling parallel processing of four coefficients. Barrett
reduction is used for multiplication, which involves fewer multiplications than
that of Montgomery reduction.

To avoid leaking the private key, Dilithium employs rejection sampling (Step
5 to 22 in Algo. 2), with the loop repetitions of 4.25. The parallelised pipeline
design accelerates signature generation. However, it also introduces additional
noise during side-channel analysis due to the simultaneously executed operations
such as y = ExpandMask(p’, k), which involves the keccak function, in the cal-
culation of (¢o0§1). As shown in Fig. 2, different colors are used in the figure to
indicate the different states during the execution of keccak. This noise can affect
the effectiveness and efficiency of the attack.
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=3 shake_process E== reset
shake_output_wait o jdle

EEEE  finalization_SHAKE process_last_block

(6°§1) .

keccak:

cycles

Fig. 2: The overlapping of keccak and (¢ o §;) in the time domain.

3.2 CPA on Polynomial Multiplication

In the C reference implementation of Dilithium, the NTT operation omits the
reduction operation to reduce the computational load. After 8 levels of recursive
butterfly calculations, a 256-dimensional polynomial yields coefficients in the
NTT domain ranging from [—n—8(q—1),n+8(q—1)]. At security level 2, where
n=2and ¢ = 223 — 213 4 1, the size of key guessing space in a CPA is close to
227 This leads to a relatively large computational complexity when performing
CPA on the Dilithium implementation..

However, in the target implementation, Barrett reduction is applied after the
butterfly multiplication, which limits the range of polynomial coefficients in the
NTT domain to [0, ). Therefore, in the attack on Dilithium, the key guessing
space used by the attacker is [0, q).

For software implementations, it is difficult to analyse the continuous nu-
merical processing on the bus, so the Hamming weight of the targeted variable
is often used as a leakage model [6], [14]. For hardware implementations, it is
possible to analyse the previous reference value of the operation by examining
registers, hence the Hamming distance model is commonly used to model the
power consumption generated by the targeted operation [18]. The actual power
consumption L can be expressed as the Hamming distance between the values
before and after (Note: the coefficient index is ) the register is assigned a value,
as shown in Eq. 3.

L=axHD(¢os)[i]+ N (3)

where o denotes the scaling factor, and N refers to the noise.

From Section 2.4, we learn that the number of points in an power trace
directly affects the complexity of calculating the correlation coefficient matrix. In
hardware implementation, the value of a register can only change once per clock
cycle. Therefore, assuming no clock delay, the variations in register values are
closely related to the intervals between points on the power trace in consecutive
clock cycles. Specifically, the number of sample points within one clock cycle can
be calculated by dividing the sampling rate by the clock frequency. During an
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attack, the power trace can be sliced to obtain leakage points more accurately.
This can be done by adding the current sample point index to the product of
the number of sample points and the clock interval for register value changes, in
order to determine the location of the leakage point. These leakage points can
then be used to replace the entire segment of the power trace, to construct the
correlation coefficient matrix.

It should be noted that the above description is based on ideal conditions.
However, in practical applications, there is often some delay in the data. There-
fore, the selected leakage points during the attack process will be adjusted by
plus or minus 15 from their original positions to ensure that the leakage points
fall within the selected sample points for the attack.

3.3 CPA-Pol on Polynomial Multiplication

In the attack on cs; by Steffen et al. [18], a million electromagnetic traces were
utilised. Even when using a million power traces for the attack, the computation
scale of the Pearson correlation is still enormous, even with the aforementioned
CPA method. In CPA, if Pols can be accurately selected, it not only reduces
the computational scale of the correlation coefficient matrix but also enables a
more direct determination of the location of information leakage. Therefore, we
first select points by locating the leakage point, and then proceed with the CPA
method for the attack, we refer to this attack method as CPA-with-Pol (abbr.
CPA-Pol).

In side-channel analysis, any points in the power trace that exhibit signifi-
cant differences are considered as Pols. In profiled attacks, the selection of the
number of Pols directly affects the size of the Pearson correlation. Therefore,
it is necessary to identify the Pols in order to reduce the size of the templates.
Similarly, in CPA, if the Pols can be accurately selected, it not only reduces the
computational complexity of the correlation coefficient matrix but also allows
for more direct localization of the leakage position, minimizing the impact of
noise.

In the same clock cycle, the timing of value changes for different registers
may overlap. This overlap can result in partial repetition or overlap of Pols in
the power traces. Therefore, Pols of the target operation may coincide with Pols
of other operations. By observing the implemented architecture, it is found that
during the computation of (¢ o0$;)[i], the ¢ needed for subsequent calculations is
fetched in advance, thereby generating power consumption. Additionally, due to
the 2x2 butterfly structure, there are four consecutive indices of ¢ coefficients
that can be processed in parallel. The figures obtained by calculating the Pearson
correlation using ¢, (¢o81)[i], and the power traces are shown in Fig. 3. It can be
seen that the challenge ¢ coincides with the Pols of the key in the power trace,
and the correlations with ¢ are high. Since ¢ is known, it can be used to extract
Pols.

Based on this idea, after using the power trace segmentation method in the
aforementioned CPA, the segmented power traces can be further correlated with
the known ¢ to extract Pols more accurately.
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(b) The Pearson correlation between the HDs of (¢ o §1)[i] and the traces.

Fig. 3: The Pearson correlation between the hypothetical leakages related to csy
and the traces.

3.4 CPA-ITR on Polynomial Multiplication

In CPA, the Hamming distance of a coefficient’s target operation is used as an
assumed power consumption. In the FPGA implementation of Dilithium, poly-
nomial multiplication involves the simultaneous use of 2x2 butterfly structures,
as shown in Fig. 4. The values within the square brackets in the figure denote
the coefficient indices of ¢ and §;. A good power consumption model can help
an attacker accurately identify, extract, or infer sensitive information from the
target device. According to Eq. 3, for the actual power consumption L generated
by the same power trace, the smaller the noise N, the closer the assumed power
consumption (¢ o §;) [i] is to H. In this case, the attack achieves the best results.
A single coefficient’s assumed power consumption may not be sufficiently close
to the actual power consumption.

At the same moment, the coefficients being processed have indices i, i + 1,
i+ 2 and ¢ + 3, if only the operation with the coefficient index 7 is attacked, the
other coeflicients are considered as part of the noise N, resulting in higher noise
levels. Meanwhile, in the scenario of parallel attack on all four coefficients, the
size of key guessing space has changed from ¢ to ¢*, making the attack more
difficult.

In practical attacks, for parallel computations occurring at the same moment,
they are usually attacked in the order of their indices. This means that when
attacking the operation with index ¢+ 1, the related value for the operation with
index i is already known. Therefore, after recovering the key coefficient with
index ¢ using the CPA method (using Eq. 4 as the assumed power consump-
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Fig. 4: The value of the 2x2 butterfly operation’s registers at adjacent cycles.

tion), Eq. 5 can be used as the assumed power consumption to recover the key
coefficient with index i+ 1, considering that Eq. 4 is known. This process can be
repeated sequentially, modifying the assumed power consumption model (Eq. 6,
Eq. 7), to better model the leakage and reduce the noise levels.

wy = a x HD (¢0 &) [i] (4)
wy = wy +a x HD (¢0 &) [i + 1] (5)
ws = ws +a x HD (¢08) [i + 2] (6)
wy = ws +a x HD (¢0 &) [i + 3] (7)

where o denotes scaling factors.

Here, due to the parallel nature of the target operation, we store the infor-
mation obtained from previous attacks and combine it with the assumed power
consumption model for subsequent attacks, in order to reduce noise. We refer to

the method of dynamically overlaying the assumed power consumption model in
CPA attacks as CPA-with-Iteration (abbr. CPA-ITR).

4 Experimental Results

Setup The power traces of polynomial multiplication execution in Dilithium are
collected on the SAKURA-X development board for side-channel evaluation.
The setup is shown in Fig. 5, which consists of a ROHDE & SCHWARZ PA303
30dB pre-amplifier, PicoScope 3206D oscilloscope, and SAKURA-X FPGA de-
velopment board with Xilinz Kintex7 XC7K160T chip. The chip runs at 4MHz.
The oscilloscope can simultaneously use two channels to sample with a 4ns in-
terval (i.e. sampling rate 250MS/s). One channel is used for collecting traces of
instant power consumption, and the other is used to trigger for sampling.
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Fig. 5: The setup of our experiments.

Target FPGA Implementation Our target implementation is the FPGA imple-
mentation of Dilithium v3.1 in [3]. For the purpose of analysis, the security level
is set to 2 (increasing the security level will increase the number of key coeffi-
cients but will not make the attack more difficult). It is implemented using both
Verilog and VHDL languages. This introduces an delay-optimised FPGA design
and covers the three security levels of Dilithium. We programme the signature
generation of Dilithium into the SAKURA-X target board and send the message
and its length from the PC to the target board for signing. We use the ISE-14.7
Design Suite to programme the Kintex7 XC7K160T chip.

Some Settings The power traces collected for the polynomial multiplication on
cs1 are shown in Fig. 6, where a clear periodicity can be observed. Using these
traces, an attacker can analyse the key coefficients sequentially. Due to the paral-
lel execution of the keccak function during the polynomial multiplication process,
as shown in Fig. 2, each state generates different algorithmic noise, which af-
fects the attacks differently. In order to evaluate and compare the results of
the attack experiments, we obtained the state of the keccak function execution
for each clock cycle through timing simulation and conducted separate attack
experiments accordingly. Fig. 7 shows the correlation trend of the most likely
key guesses for 16761 (i.e. [33835177) under the six states of the keccak function,
based on different numbers of traces. The correct key guess is indicated in red,
where the correct key guesses are marked in red and standing out with more
traces. From the graph, it can be observed that a significant correlation is only
observed after 700000 power traces for the shake_process and process_last_block
states, which leads to a longer attack time. Therefore, in the experimental pro-
cess of this paper, not all key coefficients were targeted for attack, but only a
selected few were chosen based on the target operations present in each state
of keccak. For reset and finalization_SHAKE states, there are a total of 8 and 24



14 W. Author et al.
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Fig. 6: Power traces of FPGA implementation of Dilithium in our setting.
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parallel target operations respectively, so all coefficients were chosen for attack.
For shake_output_wait and idle states, which have a larger number of parallel tar-
get operations, 64 were selected as reference. Due to the excessively long attack
time, only 32 were chosen as reference for the shake_process and process_last_block
states.

4 6 8 10 12 0 2 4 3 8 10 12 1 2 3 4 5 6 7 8 9
Number of traces 10¢ Number of traces e Number of traces 10®

(a) reset (b) idle (c) process_last_block

01 " " " 0.02 008

orrelation

78 9 0 2 10 12

4 6 8 10 12 1 2 3 4 5 6 4 6 8
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(d) finalization.SHAKE (e) shake_process (f) shake_output_wait

Fig. 7: Absolute correlation values for 16761 most likely key guesses with different
numbers of traces.

4.1 Results of the CPA Method

First, the CPA method is executed, using the power trace segmentation method
for the attack. The calculation complexity at this stage is N x P X ¢, where N
denotes the number of power traces used and P corresponds to the number of
sampling points selected per power trace, which is set to 31.

The experimental results of using different power traces for the attack are
shown in Table 2. The critical number of power traces required to fully recover
the key coefficients is the threshold, and the average Guessing Entropy (GE)
is the mean of the initial Guessing Entropy for incorrectly recovered key co-
efficient guesses. For the shake_output_wait state, recovering 64 key coefficients
requires 120000 power traces. For the finalization . SHAKE state, recovering 24
key coefficients requires 80000 power traces. For the reset state, recovering the
group key coefficient requires 70000 power traces. For the idle state, recovering
64 key coefficients requires 110000 power traces. Lastly, for the shake_process
and process_last_block states, recovering 32 key coefficients requires 980000 and
880000 power traces, respectively. The number of powewr traces required to re-
cover the key coefficients is consistent with the trend shown in Fig. 7, with a
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Table 2: The results of key recovery using different methods in different states

ethod| CPA |CPA-Pol |CPA-ITR| CPA |CPA-Pol[CPA-ITR| CPA
traces(x10%) 6 6 6 7 7 7 /
reset recovery ratio | 5/8 6/8 8/8 8/8 8/8 8/8 /
average GE [ 23/3| 4/2 - - - - /
traces(x10T) [ 9 9 9 11 11 11 /
idle recovery ratio [29/64| 45/64 56/64 [64/64| 64/64 64/64 /
average GE  [226/3] 27/2 7 - - - /
traces(x10T) | 7 7 7 8 8 8 /
finalization SHAKE| recovery ratio [20/24| 22/24 23/24 [24/24| 24/24 24/24 /
average GE | 87/4| 13/2 4 - - - /
traces(x10") [ 9 9 9 10 10 10 12

shake_output_wait | recovery ratio [49/64| 63/64 64/64 [61/64| 64/64 64/64 [64/64
average GE | 7/3 4 - 4/2 - - -
traces(x10") [ 80 80 80 83 83 83 88

process_last_block | recovery ratio [22/32| 26/32 26/32 [22/32| 32/32 32/32 |32/32
average GE | 10/2 2 2 6/2 - - -
traces(x10%) [ 80 80 80 87 87 87 98

shake_process recovery ratio [21/32] 29/32 32/32 [28/32| 32/32 32/32 [32/32
average GE | 17/3 2 - 11/2 - - -

a

! recovery ratio: For example, & denotes attacking key coefficients of b and successfully recovering
a.

2 GE denotes the Guessing Entropy, which refers to the sequence number of the correct key in
the order of correlation coefficients among all key guesses.

3 average GE: For example, in the context of %> where b denotes the number of initial recovery
errors in the key coefficients, the sum of their GE is a.

3 /: Indicates that the number of target key coefficients has been fully recovered.

4_: This indicates that the guessed entropy for all key coefficients is 1.
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drastic increase in the number of power traces during the shake_process and pro-
cess_last_block states, indicating a higher level of algorithmic noise during these
states.

4.2 Results of the CPA-Pol Method

Based on the CPA method, the CPA-Pol method was adopted to more accu-
rately locate the Pols. When selecting the Pols, we used the Hamming distance
parameter ¢ and selected 3 points. The calculation complexity in this case is
N x P x g, where P is 3. Compared to the CPA method, the CPA-Pol method
has a reduced calculation complexity.

According to the results in Table 3, compared to the CPA method, the
CPA-Pol method reduces the number of power traces required to fully recover
the target key coefficients by [0, 16.67%]. Even when the number of power traces
is not reduced, the average GE of the CPA-Pol method is generally lower than
that of the CPA method, which indicates that the effect of the CPA-Pol method
can be observed by further refining the number of power traces used in the
attack.

In cases where the CPA method has not fully recovered the target key co-
efficients coefficients, when attacking with the same number of power traces,
the CPA-Pol method significantly increases the number of recovered key coeffi-
cients, with an improvement range between [10%, 55.17%)]. This indicates that,
with the same number of power traces, the CPA-Pol method can recover more
key coefficients and achieves better results compared to the CPA method.

Table 3: Comparison of results from attacks using different methods in different
states

W traces used by CPA number of key coefficients |traces used by |[number of key coefficients
recovered by CPA CPA-Pol recovered by CPA-ITR
method CPA-PoI| CPA-ITR [CPA-Pol| CPA-ITR CPA-ITR CPA-ITR

reset 0 14.28% 20% 60% 14.28% 33.33%

idle 0 0 55.17% 93.10% 0 24.44%
finalization SHAKE 0 0 10% 15% 0 4.54%
shake_output_wait 16.67% 25% 28.57% 30.61% 10% 1.58%

process_last_block 5.68% 5.68% | 45.45% 15.45% 0 0

shake_process 11.22% | 18.36% | 38.09% 52.38% 8.05% 10.34%

4.3 Results of the CPA-ITR Method

Based on the CPA method, we employed the CPA-ITR method to effectively
leverage parallelization for information leakage. By comparing the experimental
results with the CPA and CPA-Pol methods, we derived Table 3.

From Table 3, it can be seen that compared to the CPA method, the CPA-
ITR method reduces the number of power traces required to fully recover the
target key coefficients by [0, 25%)], and compared to the CPA-Pol method, it
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reduces the number by [0, 14.28%)]. Additionally, the CPA-ITR method signifi-
cantly decreases the average GE, which is close to that of the CPA-Pol method.
When attacking with the same number of power traces, the CPA-ITR method
improves the number of recovered key coefficients compared to the CPA method
by [15%, 93.10%]. In comparison to the CPA-Pol method, the improvement
range is [0, 33.33%)]. Overall, the CPA-ITR method demonstrates significant im-
provement compared to the CPA method and offers certain advancements over
the CPA-Pol method as well.

It is important to note that in the CPA-ITR attack, if the first attacked key
coefficient is incorrectly recovered, it may cause interference in the attacks on
the other three key coefficients in parallel. However, during our experiments, we
observed that the recovery of the first coefficient was generally easier to achieve
in our implementation.

5 Conclusion

The paper presents a practical attack on an FPGA implementation of Dilithium,
This is the first work to attack a FPGA implementation of Dilithium using power
leakages. We take advantage of the parallelism on FPGAs and propose CPA-Pol
and CPA-ITR. The experimental results show that the proposed attack methods
use fewer power traces compared to the classical CPA, and can recover more
key coefficients with the same number of power traces. Our work demonstrates
the feasibility of side-channel attack to polynomial multiplication operations on
highly parallelised hardware. Due to the large key guessing space and the impact
of algorithm noise, the attacks take a long time. In future work, we aim to find
better attack strategies to efficiently recover the private key with less time.
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