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Abstract
As privacy-sensitive applications based on zero-knowledge
proofs (ZKPs) gain increasing traction, there is a pressing
need to detect vulnerabilities in ZKP circuits. This paper
studies common vulnerabilities in Circom (the most popular
domain-specific language for ZKP circuits) and describes a
static analysis framework for detecting these vulnerabilities.
Our technique operates over an abstraction called the circuit
dependence graph (CDG) that captures key properties of the
circuit and allows expressing semantic vulnerability patterns
as queries over the CDG abstraction. We have implemented
9 different detectors using this framework and perform an
experimental evaluation on over 258 circuits from popular
Circom projects on Github. According to our evaluation, these
detectors can identify vulnerabilities, including previously-
unknown ones, with high precision and recall.

1 Introduction

Zero knowledge protocols (ZKP) have gained traction as
a mechanism for proving that a statement is true without
providing any other information beyond the correctness of
the statement itself. Since their inception, ZKPs have found
numerous applications in authentication systems [17, 33], on-
line voting [13], privacy-preserving cryptocurrencies [11],
and scaling solutions for blockchains [31].

A particularly attractive zero-knowledge proof protocol
is a so-called zkSNARK (Zero-Knowledge Succinct Non-
Interactive Argument of Knowledge), which allows one party
(the prover) to generate a succinct proof that allows the other
party (the verifier) to efficiently check the correctness of the
proof. What makes zkSNARKs particularly appealing is that
the prover and the verifier can be automatically generated
from a so-called arithmetic circuit describing a set of polyno-
mial equations over a finite field. Hence, given some computa-
tion P on input x, developers of ZK applications only need to
construct an arithmetic circuit C such that y = f (x) if and only
if C(x,y) is true. Then, given such a circuit C, a zkSNARK
proof generator can be used to generate a prover and verifier,

thereby allowing the prover to establish that y = f (x) without
revealing any information about x to the verifier.

Given the importance of arithmetic circuits in the ZKP do-
main, several domain-specific languages, such as Circom [9]
and Leo [16], have emerged to facilitate the construction of
arithmetic circuits. However, despite language and compiler
support, building correct arithmetic circuits remains a chal-
lenge. In particular, given some computation f on input x, the
developer still needs to generate a set of constraints C such
that C(x,y) is true if y = f (x). If the constraints crafted by the
developer do not possess this property, then the resulting ZKP
can allow the verifier to accept a bogus proof that y = P(x)
even though this is actually not the case. Indeed, bugs in arith-
metic circuits can result in catastrophic consequences, such as
allowing attackers to forge signatures [6] or mint counterfeit
cryptocoins [21]. Even worse, attacks on ZK applications are
extremely hard to detect, even once they occur, because the
only information provided by the attacker, namely the proof,
is already accepted as being valid by the application. Hence,
there is a pressing need for developing static (i.e., compile-
time) techniques for ensuring that arithmetic circuits do not
contain subtle vulnerabilities.

Motivated by this problem, this paper describes a static
analysis framework for automatically detecting common vul-
nerabilities in arithmetic circuits written in Circom, which is
currently the most popular domain-specific language for zk-
SNARKs. Based on our manual inspection of real-world vul-
nerabilities in Circom programs, we identify several semantic
patterns that underlie common vulnerabilities and propose
a static analysis framework for detecting such patterns. Our
framework allows describing semantic vulnerability patterns
using a domain-specific language, at the heart of which lies an
abstraction of Circom programs called a circuit dependence
graph. Given a semantic vulnerability pattern expressed in
this DSL, our framework can statically check whether a Cir-
com program exhibits that vulnerability.

We have implemented a library of several vulnerability
checkers on top of this framework and used them to detect
vulnerabilities in 258 arithmetic circuits taken from popular
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Circom projects on Github. Our detectors have high preci-
sion and recall and have collectively uncovered 32 unique
previously-unknown vulnerabilities.

To summarize, this paper makes the following key contri-
butions:

• We present a taxonomy of common vulnerabilities in
Circom arithmetic circuits.

• We introduce a program abstraction called circuit depen-
dence graph (CDG), which is useful for expressing and
detecting vulnerabilities.

• We present a vulnerability description language (VDL)
for expressing semantic vulnerability patterns in arith-
metic circuits.

• We describe a library of static checkers based on this
VDL and evaluate them on 258 arithmetic circuits. Our
evaluation shows that our checkers have a low false pos-
itive rate (16.4%) and collectively detect over 98.6% of
vulnerabilities in these circuits. We also show that our
approach can detect previously unknown vulnerabilities.

2 Background

In this section, we provide some necessary background on
Zero Knowledge Proofs and give an overview of the syntax
and semantics of Circom programs.

2.1 Zero-Knowledge Protocols
A zero-knowledge protocol allows one party, the prover P , to
convince another party, the verifier V , that they know some
secret information without revealing what it actually is. In
more detail, given some computation f that operates over
public inputs x and secret information y, the prover needs to
convince the verifier that some output z corresponds to the
result of f (x,y) without revealing any information whatsoever
about y. What makes such a system zero-knowledge is that
the prover does not reveal anything about y beyond proving
that they have access to it.

While there are several different types of zero-knowledge
protocols, zkSNARK (Zero-Knowledge Succinct Non-
interactive ARgument of Knowledge) protocols have become
increasingly popular due to their succinct proof size and sub-
linear verification time. An appealing property of zkSNARKs
is that a suitable prover and verifier can be automatically
generated from an arithmetic circuit representation of the
computation. Hence, several domain-specific languages, such
as Circom and Leo, have been designed to facilitate the
construction of arithmetic circuits.

An arithmetic circuit is essentially a set of polynomial
equations over a finite field. In particular, an arithmetic circuit
takes some input signals that are values in the range [0, p)

1 pragma circom 2.0.0;
2

3 template Multiplier2(){
4 //Declaration of signals
5 signal input in1;
6 signal input in2;
7 signal output out;
8 out <== in1 * in2;
9 }

10

11 component main {public [in1,in2]} = Multiplier2();

Figure 1: A simple example written in Circom.

and performs additions and multiplications modulo a prime
number p. The output of every addition and multiplication
produces a signal, which is characterized as either an inter-
mediate signal or an output signal, which denotes the final
public output.

2.2 The Circom Language
Because this work primarily targets arithmetic circuits ex-

pressed in Circom, we provide some background on the Cir-
com DSL. At a high level, Circom allows expressing compu-
tations in a manner that is low-level enough to be amenable
to the generation of a zero-knowledge proof system. Given
a program written in Circom, the compiler generates two
artifacts:

• Witness calculator program: Given some input, this pro-
gram computes the values of all the other signals (both
intermediate and output). We refer to the witness generator
as the computation expressed by the Circom program and
denote it by f .

• Rank-1 constraint system (R1CS): Because zkSNARK
protocols operate over Rank-1 constraint systems, the Cir-
com compiler translates the input program into its corre-
sponding R1CS representation. Then, a zkSNARK genera-
tor (e.g., snark-js) is used to automatically produce both the
prover and the verifier. We refer to the R1CS representation
as the arithmetic circuit expressed by the Circom program
and denote it by C f .

Hence, given a Circom program, one typically uses the
outputs of the Circom compiler in the following way: One
party, say Alice, uses the witness generator program f and the
prover P to generate a proof that they have correctly computed
f (x,y) = z for some public input x, secret information y, and
output z. To do so, they first use f to compute the values of
all signals s of the corresponding arithmetic circuit C f (x,y,z).
Next, they construct a proof that they performed this computa-
tion by passing s as input to P which in turn generates a short
proof π that z = f (x,y). Then, another party, say Bob, can use
π along with the public input x to check whether x = f (x,y)
without having access to y. This usage scenario is illustrated
in Figure 2.
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Witness Generator 𝒇 Prover 𝑷

All Signals 𝑠

Inputs

Proof 𝜋
Verifier 𝑽

Public Inputs 𝑥

Alice

Bob

Figure 2: Usage of zero-knowledge proof: Alice generates a
proof using witness generator and prover, and Bob verifies
the proof using public inputs.

The crucial point here is that the proof π should only be
accepted by the verifier iff the output z is indeed equal to
f (x,y). However, if there is a bug in the original Circom
program, i.e, the arithmetic circuit C f does not correspond
to the computation f , then the verifier may end up accepting
bogus proofs. In particular, a malicious party can exploit bugs
in the Circom program to produce a bogus witness i.e, one
which cannot be generated by f , and then use the prover to
generate a “proof" that is accepted by the verifier.

Since understanding how bugs can arise in this context
requires some background about Circom syntax and seman-
tics, we provide a brief Circom tutorial that is needed for
understanding the rest of the paper.

Circom signals. Circuits operate over signals, which are
finite field elements (or arrays thereof) and are declared us-
ing the keyword signal. Signals can be qualified as input or
output, and any signals without input or output annotations
are considered to be intermediate signals. Given an input sig-
nal, the witness generator produced by the Circom compiler
computes the values of all intermediate and output signals.

Circom operators. Because the Circom compiler is used
to generate both the witness calculator program as well as the
R1CS constraints, it provides operators that can be used to
express both computation (for witness calculation) as well
as constraint generation. In particular, the Circom operators
<-- and --> are used for signal assignment and are crucial
for witness generation. In contrast, the === operator is used
for constraint generation; for example, the statement x ===
y tells the Circom compiler to generate a circuit that only
accepts signals where the value of x is equal to that of y. In
practice, however, there is a close corrrespondence between
witness computation and constraint generation: typically, one
needs to add a constraint whenever they use the assignment

operator. For this reason, Circom also provides two additional
operators, namely <==, ==>, to perform both assignment and
constraint generation simultaneously. But there is one key
complication: the operands of === must obey certain restric-
tions (e.g., involving only quadratic expressions) in order to
facilitate the generation of a Rank-1 constraint system. Hence,
it is not always possible to emulate every assignment in Cir-
com directly using the <== operator. This introduces one of
the challenges of expressing computation in Circom.

Templates. Generic circuits in Circom are referred to as
templates, and their parametric values must be instantiated
when the template is used. Templates can be instantiated
using the keyword component and by providing the necessary
parameters like so:

1 component c = templateId(v1,...,vn);

As an example, consider the Circom program shown in Fig-
ure 1. First, we use the reserved keyword template to define
a generic circuit Multiplier2. This circuit contains two in-
put signals in1 and in2 and a public output signal called out.
In line 8, we use <== to set the value of out to be the result
of multiplying the values of in1 and in2. Equivalently, we
could have also used the operator ==>, e.g., in1 * in2 ==>
out. Finally, the values of in1 and in2 are public through the
instantiation of the component in line 11.

2.3 Threat Model
Since we focus on vulnerabilities in the design and imple-
mentation of ZK circuits, we make no assumptions about
the quality and robustness of their underlying codebase. For
attacks on ZK circuits, we consider a trustless set-up where
an attacker can access all public information, including but
not limited to (a) on-chain blockchain states such as blocks,
transactions, accounts, and balances; (b) deployed smart con-
tract bytecode that interacts with ZK circuits; (c) source code
of ZK circuits. Furthermore, beyond directly interacting with
the victim ZK applications themselves, we assume attack-
ers can deploy their own contract and ZK application on the
blockchain, which can in turn invoke public transactions of
the target victim contract and circuits.

3 Taxonomy of Circom Vulnerabilities

Since our goal in this work is to understand common Cir-
com vulnerabilities and develop effective techniques to ad-
dress them, we started out by studying dozens of existing
vulnerabilities in Circom programs. As a result of this man-
ual inspection, we were able to come up with a taxonomy of
different vulnerability patterns, which we classify into three
main classes:

• Nondeterministic signals, where the input or output
signals of a circuit are not properly constrained,
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1 template ArrayXOR(n) {
2 signal input a[n];
3 signal input b[n];
4 signal output out[n];
5 for (var i = 0; i < n; i++) {
6 out[i] <-- a[i] ^ b[i];
7 }
8 }
9 component main = ArrayXOR(2);

Figure 3: A code snippet demonstrating an underconstrained
circuit caused by nondeterministic signals in array out.

• Unsafe component usage, where signals of a component
are not used correctly,

• Constraint-computation discrepancies, where there is
a divergence between the witness generation code and
the generated constraints.

Based on our manual inspection, we conjecture that these
three classes cover over 90% of existing vulnerabilities in
Circom programs. In the remainder of this section, we explain
each vulnerability class in more detail and provide examples.

3.1 Nondeterministic Signals
We found that many bugs in Circom programs are caused
by non-deterministic signals. We say that a signal x is non-
deterministic if it can take multiple values for a given as-
signment to the input signals. Intuitively, if a signal is non-
deterministic, the Rank-1 constraint system generated by the
compiler will not properly constrain its value, often causing
it to accept bogus proofs.

A common source of non-determinism is due to signals
that are unconstrained, meaning that the signal is not even
mentioned in the generated Rank-1 constraint system. If such
an unconstrained signal corresponds to an output, this is guar-
anteed to be a bug.

For example, Figure 3 shows an example from the
circom-pairing1 library which implements core crypto-
graphic pairing algorithms and their corresponding compu-
tational infrastructure to support signature verification. The
ArrayXOR template can be instantiated to compute the exclu-
sive disjunction of pairs of signals from the two input arrays,
a and b. However, the circuit does not generate a constraint for
out[i] in line 6: In particular, because the operator <-- only
performs signal assignment, the circuit ends up not constrain-
ing the value of the output signal, thereby allowing attackers
to forge signatures for potential malicious behavior.

In addition to output signals, input and intermediate signals
that are declared but never used in the constraints are often
also problematic. For example, Figure 4 shows a code snippet
from Hermez Network2 with unused input signals, where

1https://github.com/yi-sun/circom-pairing
2https://github.com/hermeznetwork/circuits

1 template BitsCompressed2AySign(){
2 signal input bjj[256];
3 signal output ay;
4 signal output sign;
5 component b2nAy = Bits2Num(254);
6 var i;
7 for (i = 0; i < 254; i++) {
8 b2nAy.in[i] <== bjj[i];
9 }

10 ay <== b2nAy.out;
11 sign <== bjj[255];
12 }
13 component main {public bjj}
14 = BitsCompressed2AySign();

Figure 4: A code snippet demonstrating a circuit that vio-
lates functional correctness due to an unused circuit signal
bjj[254].

an array bjj is declared in line 2 but one of its elements,
namely bjj[254], is not used. Such unused input signals could
indicate functional correctness issues but can also result in
vulnerabilities in the application that verifies the proof. This is
the case because, to verify a circuit, one must provide the set
of outputs and public input signals that were used to generate
the proof. But, in cases where a public input is completely
unused, any input could be used to verify the proof regardless
of the value provided to the prover. For the code in Figure 4,
this means that a user can generate a proof where bjj[254] is
0 and still verify the resulting proof with a non-zero value for
bjj[254].

3.2 Unsafe Component Use
Recall that a component is an instantiated template that can be
used like a function. In practice, many templates are written
in such a way that they expect callers to constrain their inputs
and outputs. Hence, if a component is invoked without any
constraints on their inputs or outputs, this usage pattern is
highly suspicious.

For instance, Figure 5 shows an unsafe component use
where the template input is unconstrained. Here, hash is in-
stantiated from the template HashMsg from the MACI3 project
at line 7. In order to correctly verify the hash of the cur-
rent message msg, the call to the hash component requires
its input signal in to be properly constrained. However, as
discussed earlier in Section 2, the assignment operator <--

used at line 8 only performs assignment without introducing
a constraint. Thus, the input to the hash computation is com-
pletely constrained, resulting in an underconstrained output
signal msgHash, which can in turn cause the acceptance of an
arbitrary message.

Just as unconstrained inputs often correlate with bugs, un-
constrained component outputs are also very suspicious, as
most templates are written in a way that expects their users
to constrain the output signal at the call site. For instance,

3https://github.com/privacy-scaling-explorations/maci
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1 template ProcessMessages(msgBits) {
2 signal input msg;
3 signal input secretKey;
4 signal output msgHash;
5 component msgChecker = Num2Bits(msgBits);
6 msgChecker.in <== msg;
7 component hash = HashMsg(msgBits);
8 hash.in <-- msg;
9 hash.secretKey <== secretKey;

10 msgHash <== hash.out;
11 }
12 component main = ProcessMessages(64);

Figure 5: A code snippet showing a bug caused by an uncon-
strained component input hash.in, which causes acceptance
of arbitrary msg.

1 template CoreVerifyPubkeyG1(n, k){
2 // ...
3 component lt[10];
4 for(var i=0; i<10; i++){
5 lt[i] = BigLessThan(n, k);
6 for(var idx=0; idx<k; idx++)
7 lt[i].b[idx] <== q[idx];
8 }
9 for(var idx=0; idx<k; idx++){

10 lt[0].a[idx] <== pub[0][idx];
11 // ...
12 }
13 // ...: lt.out is not used
14 }
15 component main = CoreVerifyPubkeyG1(55, 7);

Figure 6: A code snippet that contains unused component out-
put signals lt[i].out, which causes the absence of constraint
for restricting inputs lt[i].a and lt[i].b, thus making the
circuit underconstrained.

Figure 6 shows an example of an unused component output
vulnerability in circom-pairing, a Circom implementation
of elliptic curve pairings for the widely-adopted BLS12–381
curve. This bug is caused by using the BigLessThan template
incorrectly. In particular, note that each lt[i] in this example
is a component instantiating BigLessThan at line 5. Because
the BigLessThan template requires the caller to explicitly con-
strain its output signal lt[i].out in order to properly com-
pare its two inputs lt[i].a and lt[i].b, lt[i].out is uncon-
strained at the call site. As a result, lt[i].a and lt[i].b can
take arbitrary values, causing the whole circuit to be under-
constrained.

3.3 Constraint-Computation Discrepancies
Recall that Circom programs are simultaneously used for
generating witness calculation programs as well as a Rank-1
constraint system. However, even though these two aspects
are intermingled in Circom code, there could nonetheless be
unintended discrepancies between the two aspects. For ex-
ample, certain operators that are valid for witness generation
are actually often invalid for constraint generation. Similarly,
recall that not every computation can be directly expressed

1 template Edwards2Montgomery() {
2 signal input in[2];
3 signal output out[2];
4 out[0] <-- (1 + in[1]) / (1 - in[1]);
5 out[1] <-- out[0] / in[0];
6 out[0] * (1-in[1]) === (1 + in[1]);
7 out[1] * in[0] === out[0];
8 }
9 component main = Edwards2Montgomery();

Figure 7: A code snippet showing a bug caused by an ex-
cepetion case when using a sensitive operator /. Here (1 -
in[1]) and in[0] are creating a discrepancy between the wit-
ness and constraint generation.

as a constraint; hence, two expressions that are intended to
express the same value in two syntactically different ways
may actually end up being semantically different, causing
discrepancies between witness computation and constraint
generation.

To gain more insight about such vulnerabilities, consider
the Edwards2Montgomery circuit in Figure 7, which is taken
from circomlib4, one of the most popular libraries for con-
structing zero-knowledge protocols. This circuit is intended to
convert a point in an Edwards curve to one in a Montgomery
curve. Observe that lines 4 and 5 use the multiplicative inverse
operator in the right hand side of the assignment, while lines 6
and 7 try to introduce a constraint that “emulates" this compu-
tation. Note that the code cannot combine the assignment and
constraint generation via the use of the <== operator because
R1CS constraints cannot contain multiplicative inverse oper-
ations. Hence, lines 6 and 7 try to introduce constraints that
mimic the computation. However, there is a subtle bug: the
constraints generated allow the inverted signal in[0] to be 0
and still satisfy the constraints. While the witness generator
will never generate witness with in[0] == 0, since the mul-
tiplicative inverse is undefined in those cases, the constraints
introduced at lines 6 and 7 actually accept those undefined
values. This makes the overall circuit underconstrained since
any assignment to out[1] will satisfy the constraints when
when in[0] == 0 and out[0] == 0.

As another example of constraint-computation discrepan-
cies, consider the buggy circuit in Figure 8. As in the previous
example, line 6 tries to introduce a constraint that emulates
the computation from line 5 since the R1CS representation
does not permit the integer divison operation \ in the con-
straints. However, because the assignment at line 5 ignores
the possible remainder of the division, there is a discrepancy
between lines 5 and 6. In this case, the circuit is more con-
strained than the computation as the computation will accept
arbitrary inp values, while the constraint will only be satisfied
when inp is a multiple of gwei.

4https://github.com/iden3/circomlib

5



1 template Reward() {
2 signal input inp;
3 signal output out;
4 var gwei = 10 ** 6;
5 out <-- inp \ gwei;
6 out * gwei === inp;
7 }
8

9 component main = Reward();

Figure 8: A code snippet showing a witness assignment (line
5) that has different semantic meaning than its counterpart in
constraint generation (line 6). Such a discrepancy leads to a
violation of function correctness in the circuit.

3.4 Key Lessons
Because the goal of our manual inspection is to make it
possible to automatically detect common vulnerabilities, we
conclude this section by summarizing some key take-away
lessons that motivate the design of our static checking frame-
work.

The role of semantic analysis. One of the key lessons from
our manual inspection is that detecting many real-world vul-
nerabilities requires reasoning about the semantics of Circom
code. For example, to detect discrepancies between the com-
putation and the generated constraints, we need to understand
the semantics of the code, at least to some extent.

Wide variety of different bugs. While our taxonomy iden-
tifies three main root causes of vulnerabilities, there are sig-
nificant variations in how these vulnerabilities manifest them-
selves in code. Thus, from the perspective of statically finding
vulnerabilities, we may need to write many different detectors
to get a high coverage of all vulnerabilities.

Useful abstractions. Even though different bugs exhibit
different syntactic patterns, there are nonetheless common
semantic abstractions that underlie all of these patterns. For
example, several bugs we have encountered can be understood
by considering the discrepancies between variable dependen-
cies at the computational vs. constraint level.

4 Static Analysis Framework

Drawing inspirations from the key lessons discussed in Sec-
tion 3.4, we describe a static analysis framework we have
developed for practical security analysis of Circom programs.
At the heart of our framework lies a graph representation that
we refer to as Circuit Dependence Graph (CDG). In the re-
mainder of this section, we describe our CDG abstraction,
present a domain-specific language for describing semantic
vulnerability patterns based on this abstraction, and explain
our static analysis for constructing the CDG.

4.1 Circuit Dependence Graphs
As mentioned in Section 3.4, many vulnerabilities arise due to
discrepancies in signal dependencies at the computational vs.
constraint level. Thus, our proposed circuit dependence graph
(CDG) abstraction is designed to encode such dependencies.
Specifically, a CDG is a graph G = (V,Ed ,Ec) where V de-
notes the set of vertices, Ed denotes a set of arcs (i.e., directed
edges) encoding dependencies at the computational level, and
Ec is a set of undirected edges encoding dependencies at the
constraint level.

In more detail, we differentiate between three types of
nodes in the CDG:

• Signal Nodes Vs ∈V : represent signals in the program.

• Constant Nodes Vc ∈V : denote fixed literal value in the
program (such as a concrete field element).

As mentioned previously, we also differentiate between
two types of edges:

• Data Flow Edges Ed: A data flow edge (u,v) ∈ Ed is
a directed edge indicating direct data flow from u to
v, which can be derived from the assignment operators
(e.g., <-- and <==).

• Constraint Edges Ec ∈ E: A constraint edge (u,v) ∈ Ec
is an undirected edge indicating that u and v appear
in the same constraint, which can be derived from the
constraint operators (e.g., === and <==).

At a high level, a data flow edge from u to v labeled by s
indicates that the value of u directly depends on v due to an
assignment to u of an expression s containing v. Similarly, a
constraint edge between u and v labeled s indicates that there
is an equation s directly relating u and v.

4.2 CDG Construction
Given a Circom program, our method constructs the CDG by
first representing the syntax of the program using the predi-
cates shown in Table 1 and then adding new nodes and edges
to the CDG using the (Datalog-style) inference rules shown
in Figure 9. As standard, a rule of the form:

P(x)⇐ P1(x1), . . . ,Pn(xn)

indicates that predicate P(x) is inferred to be true if all the
other predicates P1, . . . ,Pn are also true. We now briefly ex-
plain our CDG construction rules.

Nodes. The first two rules (1) and (2) in Figure 9 create
nodes of the CDG abstraction. In particular, a signal (resp.
constant) v in the Circom program is mapped to a signal node
sNode(v) (resp. constant node cNode(v)).

6



Predicate Indication
sig(v) v is declared as a signal of the circuit.
in(v) v is declared as an input signal of the

circuit.
out(v) v is declared as an output signal of the

circuit.
const(v) v is a constant value.
expr(e) e is an expression.
quad(e) e is a quadratic expression.
contains(e,v) e is an expression that contains signal v.
is(x1,x2) x1 is identical to x2 in source code.
assignedTo(e,v) e is assigned to v.
equivTo(e1,e2) e1 and e2 are in the same constraint.
sigOf(v,c) v is a signal declared in component c.
inOf(v,c) v is an input signal declared in compo-

nent c.
outOf(v,c) v is an output signal declared in compo-

nent c.
exprDiv(e1,e2,e3) e1 is a division expression with e2 as

dividend and e3 as divisor.
exprIte(e1,e2,
e3,e4) e1 is an if-then-else expression with e2

as condition, e3 as then branch and e4 as
else branch.

Table 1: Some of the predicates used for representing the
syntax of Circom programs.

Data flow edges. The next four rules (3)–(6) describe how
data flow edges are constructed. Rule (3) adds data flow edges
to model direct assignments in the Circom program. That is,
given a statement that assigns to v an expression e containing
signal u, we add a data flow edge from u to v and record its
label e using the dLabel predicate, as shown in rule (5). Rule
(4) summarizes the data flow relations between the input and
output of a component. To do so, it constructs the CDG for
this component and checks whether there is a data flow de-
pendency between the input and output. Note that, in this rule,
the notation R+ denotes the transitive closure of relation R.
Since data flow edges for components only summarize data
flow inside components, we label their edges using a special
symbol ·, as shown in rule (6).

Constraint edges. Rules (7)–(12) describe the construction
of constraint edges Ec. According to rules (7) and (10), if
there is a constraint of the form e1 === e2 where e1 and e2
contain expressions u and v respectively, we add a constraint
edge between these two signals and label this edge as e1 ≡ e2.
Rules (8) and (11) are the counterpart of rules (4) and (6) for
components, but handling constraint edges rather than data
flow. In particular, these rules again conceptually construct
the CDG for the relevant component and adds a constraint
edge between the input and output variables if there is any
constraint relating them. As before, such “summary" edges
are labeled using the special symbol ·. Finally, rule (9) and
(12) express that constraint edges are symmetric and add an
edge (u,v) with the same label for each edge (v,u).

sNode(v)⇐ sig(v) (1)
cNode(v)⇐ const(v) (2)

dEdge(u,v)⇐ assignedTo(e,v),contains(e,u) (3)

dEdge(u,v)⇐ inOf(u,c),outOf(v,c),dEdge+(u,v) (4)
dLabel(u,v,e)⇐ assignedTo(e,v),contains(e,u) (5)

dLabel(u,v, ·)⇐ inOf(u,c),outOf(v,c),dEdge+(u,v) (6)

cEdge(u,v)⇐ contains(e1,u),contains(e2,v)
equivTo(e1,e2)

(7)

cEdge(u,v)⇐ inOf(u,c),outOf(v,c),cEdge+(u,v) (8)
cEdge(u,v)⇐ cEge(v,u) (9)

cLabel(u,v,e1 ≡ e2)⇐ contains(e1,u),contains(e2,v)
equivTo(e1,e2)

(10)

cLabel(u,v, ·)⇐ inOf(u,c),outOf(v,c),cEdge+(u,v)
(11)

cLabel(u,v,s)⇐ cLabel(v,u,s) (12)

Figure 9: Datalog style inference rules describing CDG con-
struction, where c is a component, u, v correspond to signals
and constants e corresponds to an expression, and s corre-
spond to a statement. Given relation R, R+ denotes its transi-
tive closure.

φ ::= node(v1) | sig(v1) | const(v1) | in(v1) | out(v1)
| dEdge(v1,v2) | cEdge(v1,v2)
| dLabel(v1,v2,e1) | cLabel(v1,v2,s1)
| sigOf(v1,c1) | inOf(v1,c1) | outOf(v1,c1)
| matchExp(e, pattern)
| φ, φ | !φ | φ∨φ

r ::= φ :- φ

vi ∈ nodes, ci ∈ components
si ∈ statements, ei ∈ expressions

Figure 10: Vulnerability Description Language

4.3 Vulnerability Description Language

As mentioned in Section 3.4, vulnerabilities in Circom pro-
grams take a variety of different forms despite having a few
underlying root causes. Hence, in order to build a practical
tool that does not suffer from many false positives, it is im-
perative to build detectors that can accurately identify key
semantic vulnerability patterns. To this end, we have designed
an extensible vulnerability description language (VDL) for
expressing semantic patterns over the proposed CDG repre-
sentation.

Figure 10 shows the syntax of our vulnerability descrip-
tion language. At a high level, the vulnerability description
language has Datalog-like syntax and provides a number of
built-in predicates for describing the syntax of the input Cir-
com program as well as properties of the CDG. For example,
the predicate dEdge(v1,v2) (resp. cEdge(v1,v2) denotes a
dataflow (resp. constraint) edge from v1 to v2, and R+(v1,v2)
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denotes the transitive closure of binary relation R. The VDL
also provides a number of additional predicates for checking
signal types and which signals are declared in which compo-
nents. For example, sig(v) checks whether v is a signal and
sigOf(v, c) evaluates to true if signal v is declated in circuit c.
Finally, the construct matchExp allows performing syntactic
pattern matching on expressions labeling the edges of the
circuit dependence graph.

Checking Circom programs against VDL specifications.
We refer to programs in our DSL as anti-patterns or semantic
vulnerability patterns. Given a library L of such anti-patterns
and a Circom program P, our static analysis framework first
constructs the CDG of the program and checks whether P is
an instance of some α∈L . To do so, we first evaluate the truth
value of all ground predicates in the VDL and them as facts
to a Datalog program which also includes the code describing
the anti-patterns. Finally, to check if the program matches
anti-pattern α, we simply issue a Datalog query α(x)?, which
returns all instances of anti-pattern α for program P.

4.4 Detectors based on VDL
Drawing insights from our manual inspection described in
Section 3, we have implemented a library of ZKP anti-patterns
based on our VDL from Section 4.3. In what follows, we
describe our detectors in more detail.

Unconstrained Circuit Output (UCO) As discussed in
Section 3.1, unconstrained outputs of a circuit indicate a seri-
ous vulnerability. In particular, if an output signal is neither
constrained to be a constant nor depends (transitively) on
an input signal, this means it is unconstrained. This can be
described in our VDL using the following anti-pattern:
sigDep(v) :- sig(u), cEdge+(u,v)

isConst(v) :- cEdge+(u,v), const(u), !sigDep(v)
inDep(v) :- in(u), cEdge+(u,v)
UCO(v) :- out(v), !isConst(v), !inDep(v)

Observe that this anti-pattern specification introduces three
auxiliary predicates. First, it defines a predicate sigDep(v)

indicating that v is dependent on some other signal. Second, it
defines a predicate called isConst(v) that evaluates to true if
v is only dependent on a constant (and hence, it must be con-
strained to be a constant). Finally, inDep(v) checks whether
v is dependent on an input signal. Using these predicates, an
output signal is considered unconstrained if it is neither (a)
constrained to be a constant, nor (b) dependent on an input
signal.

Unconstrained Sub-circuit Input (USCI) Recall from Sec-
tion 3.2 that many templates expect callers to constrain their
inputs when instantiated. A component used without any con-
straints on its inputs is then considered to be suspicious. This
can be described in our VDL using the following anti-pattern:

msg secret
Key

msg
Checker

.in

hash
.in

hash.
secret 

Key

hash
.out out

Figure 11: CDG for ProcessMessage example shown in Fig-
ure 5, which has an unconstrained component input hash.in.

exDep(v,c) :- sigOf(v, c), cEdge+(u,v),
!sigOf(u,c)

USCI(v) :- sig(v), inOf(v,c),
!isConst(v), !exDep(v,c)

Here the anti-pattern introduces an extra predicate,
exDep(v,c), which indicates that signal v of component c
has a constraint dependency on a signal outside of c. Using
this predicate, we define the input signal v of component c to
be unconstrained if it is neither constrained to be a constant
nor satisfied the exDep predicate. Observe that the definition
of USCI utilizes the same isConst predicate defined earlier in
the Unconstrained Circuit Output pattern.

Figure 11 shows the CDG for the ProcessMessage example
in Figure 5. Here, solid edges represent data dependencies,
and dashed edges represent constraints. As we can see from
the CDG, the input of component hash is not constrained be-
cause there is no incoming constraint edge to hash.in. Hence,
our USCI detector will flag this circuit as being potentially
vulnerable.

Dataflow-Constraint Discrepancy (DCD) As discussed in
Section 3.3, one of the root causes of vulnerabilities is due
to semantic discrepancies between witness calculation and
constraint generation. Some of these discrepancies manifest
themselves as inconsistencies between the data flow and con-
straint edges in the CDG. Thus, one of our static checkers
looks for the following anti-pattern:

nodeDepOn(v,u) :- sig(u), sig(v), dEdge+(u,v)
nodeCnstBy(v,u) :- sig(u), sig(v), cEdge+(u,v)

DCD(v) :- nodeDepOn(v,u), !nodeCnstBy(v,u)

Here, two additional predicates are introduced to model the
data flow and constraint relations between two signals explic-
itly. nodeDepOn(v,u) returns true if there exists a (recursive)
data dependence from v to u; nodeCnstBy(v,u) returns true if
there exists a (recursive) constraint dependence between v and
u. Thus, we identify a discrepancy on a signal v by checking
whether there exists another signal u such that v (recursively)
depends on u via data flow but is not constrained by u.

Figure 13 shows the CDG for the SingleAssignment0 ex-
ample from Figure 12. Here, signal out depends on a during
witness generation, but it is only constrained by b for con-
straint generation. Hence, there is a discrepancy between the
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1 template SingleAssignment0() {
2 signal input a;
3 signal input b;
4 signal output out;
5 out <-- a + 1;
6 out === b + 1;
7 }
8 component main = SingleAssignment0();

Figure 12: A code snippet showing a bug caused by dataflow-
constraint discrepancy. In particular, the semantics of comput-
ing and constraining out are different.

a out b
a + 1 b + 1

Figure 13: CDG for SingleAssignment0 example shown in
Figure 12.

dataflow and constraint dependencies of v at the CDG level,
causing this example to be flagged as potentially vulnerable.

Type Mismatch (TM) There may be semantic discrepan-
cies between witness calculation and constraint generation
even when the program does not exhibit the DCD anti-pattern.
This is because the CDG is only a coarse abstraction, and
identifying a vulnerability may require reasoning more deeply
about the underlying semantics of the code. Unfortunately,
reasoning precisely about Circom semantics is very challeng-
ing because Circom constraints involve non-linear equations
over finite fields. This poses a problem because more sophisti-
cated static reasoning often requires querying an SMT solver
but solving non-linear equations over large prime fields is
intractable for current SMT solvers. Hence, rather than using
SMT-based techniques for precise reasoning about program
semantics, our approach is pragmatic and looks for certain
common issues that cause a divergence between witness calcu-
lation and constraint generation. Our so-called Type Mismatch
(TM) detector aims to identify one of these patterns.

The key idea behind the Type Mismatch detector is that
some of the generated constraints enforce that a signal has
a certain type but the witness computation does not, thereby
causing a divergence in their semantics. For example, given
an array of signals representing an integer in base-k represen-
tation, many circuits enforce that the integer representation
of x is in the range [0,N] for some N. However, if there is a
computation that causes x to fall out of this range, it creates
discrepancies between witness calculation and constraint gen-
eration. We can detect this divergence using the following
anti-pattern:

checked(v) :- cLabel(v, _, c), rangeCheck(c).
TM(v) :- dEdge+(v, u), checked(u), !checked(v)

Here, the first line line says that a variable is type-checked,
denoted checked, if it is involved in a constraint that performs

a range check. (We omit the definition of rangeCheck, as it
performs syntactic pattern matching on expressions). Accord-
ing to the TM rule, there is a type mismatch error if there is a
dataflow dependence from v to u where u is type checked but
v is not.

Other Detectors. In addition to the four detectors explained
in detail, ZKAP also implements five other checkers that we
briefly summarize:

• Unconstrained signal (US): This detector checks for any
unconstrained signals in the circuit. While unconstrained
intermediate signals are not necessarily a bug, they can
nonetheless be problematic, so we found it useful to gener-
ate warnings for unconstrained signals.

• Unconstrained sub-circuit output (USCO): This detector
checks for unused component outputs. However, we found
that naively checking unused component outputs results
in too many false alarms, as some components are only
used to constrain their input. Hence, our detector first iden-
tifies components whose output is intended to be checked,
using the following observation: Let ϕ denote the logical
encoding of the circuit in terms of the input and output
signals. If ∃o.ϕ is vacuously true, then the output o must
be constrained at the call site in order for the component
to have any effect on the main circuit. However, since it is
intractable to perform an actual logical validity query, our
detector uses CDG dependencies to over-approximate the
set of relevant outputs.

• Assignment misuse (AM): This detector checks for mis-
uses of the assignment operator. In particular, if an expres-
sion e is allowed as part of the constraint, developers should
use <== instead of the assignment operator (<--).

• Non-deterministic dataflow (NDD): The key observa-
tion behind this detector is that it is extremely difficult to
correctly constrain signals that are conditionally assigned
based on a signal. Most conditionals in Circom are over
template variables that are resolved at compile time and
require no special handling. Conditionals that involve sig-
nals, however, can only be expressed in the computation
and must be properly emulated as constraints, which we
have found to be error-prone. Hence, this detector looks
for conditional assignments that are dependent on a signal.

• Division-by-zero (DBZ): We found that one of the causes
of computation-constraint divergence is due to a potential
division-by-zero issue in assignments. Since assignments
involving division are modeled using non-linear multipli-
cation in the constraints, division-by-zero issues also intro-
duce discrepancies between witness calculation and con-
straint generation. Hence, if the denominator of a division
expression used in an assignment is dataflow-dependent
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on an input signal, our DBZ detector flags the circuit as
potentially vulnerable.

5 Evaluation

In this section, we describe the results of the experimental
evaluation of ZKAP, which refers collectively to the detectors
described in Section 4. Our evaluation is designed to answer
the following key research questions:

• RQ1: How does ZKAP compare against CIRCOMSPECT
(the only other tool for finding bugs in Circom) in terms of
precision, recall, F1 score, and running time?

• RQ2: Is ZKAP effective at finding previously unknown
bugs in Circom programs?

• RQ3: What is the relative importance of the different de-
tectors in terms of finding bugs in real-world ZK circuits?

• RQ4: How do the different detectors compare in terms of
false positive rate?

All experiments are conducted on a Macbook Pro(R) com-
puter with a M1 Pro CPU and 32G of memory running on
macOS 12.5.1.

5.1 Dataset Collection and Statistics
Since there is no available dataset for ZK circuits, we col-
lected our own dataset obtained from 17 different Circom
projects found on Github. We chose these projects based on
popularity (i.e., number of stars on Github) and the avail-
ability of documentation and test cases. Our dataset covers
a wide range of applications such as computational libraries,
curve pairing, machine learning, gaming, and matrix computa-
tion. These projects contain 258 arithmetic circuits, and every
benchmark has at least one test case to instantiate the circuit
templates. We emphasize that these circuits were not used as
part of our initial study. As such, neither our taxonomy nor
our anti-patterns were influenced by these circuits. Table 2
provides statistics about the projects and circuits used in our
evaluation.

5.2 Comparison Against CIRCOMSPECT

In order to answer our first research question (RQ1), we per-
form a comparison against CIRCOMSPECT5, an open-source
static analyzer developed by TrailOfBits, a leading company
in blockchain security. CIRCOMSPECT looks for certain syn-
tactic patterns in the abstract syntax tree and, for example,
flags every use of the <-- and --> operators as a potential bug.

Table 3 shows the result of our comparison between ZKAP
and CIRCOMSPECT in terms of precision, recall, F1 score,

5https://github.com/trailofbits/circomspect

Project #Bench #LOC #Sig #Node
circom-pairing 2 17278 37 1444

circomlib 67 31076 576 8593
circom-ecdsa 16 77092 190 20160
aes-circom 8 1553 75 96092

circom-matrix 12 260 32 233
circom-ml 12 2140 74 8487

darkforest-eth 9 922 148 524
ed25519 27 3033 306 57412

hermez-network 11 2904 485 7076
hydra 3 219 61 790

iden3-core 28 1499 888 5431
keccak256 14 1108 87 37952

maci 34 1735 871 41394
semaphore 1 126 22 99

zk-group-sigs 3 131 38 316
zk-SQL 4 634 102 5100
internal 7 13806 49 2128
Overall 258 155516 4041 293231

Table 2: Statistics of ZKAP’s collected benchmark set. Here,
#LOC means lines of codes, #Sig means declared signals in
the whole project, #Node indicates the total number of CDG
nodes across all benchmarks in the project.

ZKAP CIRCOMSPECT

FP rate 16.4% (8.6%) 41.4%
FN rate 1.4% 2.1%
Precision 70.9% (82.4%) 48.7%
Recall 96.6% 94.8%
F1 Score 0.82 (0.89) 0.64
Time (s) 7.2 0.2

Table 3: Comparison between ZKAP and CIRCOMSPECT. FP
and FN rate indicates the false positive and false negative rates
respectively. The data in parentheses is the value computed
when excluding two specific circuits in circomlib.

and running time. Since calculating recall and precision is
difficult without having access to the ground truth labels, we
estimate these metrics by manually inspecting 140 of the 258
circuits in our benchmark set. In particular, for each of these
140 circuits, we do a manual security audit to identify as many
potential vulnerabilities as we can, and we compute precision
and recall with respect to these manually-curated labels.

As we can see from Table 3, ZKAP outperforms CIRCOM-
SPECT in terms of all metrics except for running time. Notably,
ZKAP has an F1 score of 0.82 compared to 0.64 for CIRCOM-
SPECT, and ZKAP’s false positive rate is significantly lower
(16.4% vs 41.4%). The only metric where CIRCOMSPECT
performs better on is with respect to running time: On average,
ZKAP takes a median of 7.2 seconds to analyze a benchmark,
whereas the median running time of CIRCOMSPECT is 0.2
seconds. This result is expected because CIRCOMSPECT only
performs checks at the syntax level. However, since 7 sec-
onds per benchmark is likely to be quite acceptable in the
intended usage scenario of ZKAP, we believe this additional
analysis time is more than justified by the huge reduction in
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the number of false positives.
When investigating the sources of false positives, we found

two commonly used circomlib templates, namely isZero and
BabyAdd, which match the non-deterministic dataflow and
division-by-zero vulnerability patterns but are nevertheless
bug free. These templates are frequently used as components
in other templates and, as a result, produce many duplicate
false positives. To show a more accurate result, we recom-
puted the false positive rate while excluding the warnings
reported from those two circuits and present the new rate in
parentheses in Tables 3 and 4. As we can see in Table 3, the
false positive rate of ZKAP is only around 9% if we exclude
those circuits, making precision 82% and increasing the F1
score to 0.89.

5.3 Detecting Unknown Vulnerabilities
To answer RQ2, we inspected all vulnerabilities reported by
ZKAP. In our evaluation on 258 circuits, ZKAP reported a
total of 405 warnings. However, many of these warnings have
the same root cause because multiple circuits in one project
invoke the same buggy component. Hence, ZKAP identifies
a total of 34 unique problems. Among these, 32 of them are
previously unknown vulnerabilities.

To give readers some intuition about the severity of the
vulnerabilities uncovered by ZKAP, we briefly describe two
vulnerabilities and explain their consequence.

Vulnerability 1: One of the vulnerabilities found by ZKAP
is in the ed25519-circom6 project, which is used to perform
curve operations and signature verification for the Ed25519
digital signature scheme. Since this project serves as infras-
tructure for other Circom circuits, it is quite security-critical.
ZKAP detected a previously unknown unconstrained output
signal in one of the key circuits used in this project.

Figure 14 shows the template of the PointCompress circuit,
which implements a compression algorithm to reduce the size
of the public key. The public key is represented as the input
signal P[4][3], which is a point on the Ed25519 curve. The
output signal is declared as an array of size 256 and represents
the compressed public key.

ZKAP detected a previously unknown bug located at lines
16-17. The intention of the developer here is to constrain
out[255] to be the parity of signal mod_x.out[0]. However,
line 17 only constrains out[255] to be binary, but it remains
unconstrained by mod_x.out[0]. Therefore, a malicious user
can convince the verifier that signal mod_x.out[0] is odd when
it is even (and vice versa). According to the project’s docu-
mentation, this template implements a crucial optimization
that is directly applied to two inputs of the overall algorithm.
Thus, the vulnerability found by ZKAP exposes a substan-
tial attack surface for the whole system. To fix this prob-
lem, the developer must first obtain the binary representation

6https://github.com/Electron-Labs/ed25519-circom

1 template PointCompress(){
2 signal input P[4][3];
3 signal output out[256];
4 ...
5 component modinv_z = BigModInv51();
6 component mod_x = ModulusWith25519Chunked51(6);
7 component mod_y = ModulusWith25519Chunked51(6);
8

9 for(i=0;i<3;i++){
10 modinv_z.in[i] <== P[2][i];
11 }
12 ...
13 component bits_x = Num2Bits(85);
14 bits_x.in <== mod_x.out[0];
15 ...
16 out[255] <-- mod_x.out[0] & 1;
17 out[255] * (out[255] - 1) === 0;
18 }

Figure 14: An unconstrained output signal found in ed25519-
circom project.

of mod_x.out[0] (via circomlib’s Num2Bits for instance) and
then constrain out[255] to be the least significant bit.

Vulnerability 2: ZKAP’s Type Mismatch (TM) detector
also detected a bug in a core circuit of the iden3 protocol7.
The iden3 protocol is a ZK-based access control system.
Hence, vulnerabilities in the core circuits can potentially lead
to privacy leaks in the protocol.

The vulnerability detected by ZKAP originates in template
verifyExpirationTime, which is shown in Figure 15. The
verifyExpirationTime template is responsible for validating
that a claim (line 2) was submitted prior to its expiration
date. The expiration of the claim is inferred from the claim

input signal (lines 9-11), whereas the submission time is rep-
resented by input signal timestamp (line 3). To validate that
a claim was submitted on time, verifyExpirationTime adds
adequate constraints to check that timestamp is less than or
equal to the claim’s expiration (lines 9-15).

ZKAP reported line 14 as vulnerable because of a missing
range check on input signal timestamp. To see why this is
vulnerable, we first need to dive into template LessEqThan,
circom-lib’s circuit that implements the ≤ operator for two
signals. Specifically, for template LessEqThan to work cor-
rectly, both of its inputs must be represented using at most
N bits, where N is the template’s parameter provided dur-
ing instantiation. For the instantiation of LessEqThan on
line 14, the verifyExpirationTime template must ensure that
both timestamp and expirationComp.expiration fit in 252

bits. However, only the latter constraint is enforced (via
getClaimExpiration’s implementation), but the timestamp

signal is left completely unconstrained. Moreover, we have
already identified instantiations of verifyExpirationTime in
iden3 that also omit the range check on signal timestamp.
Therefore, malicious users can easily bypass this check by
providing signals that fall out of the expected range. To fix

7https://github.com/iden3/circuits
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1 template verifyExpirationTime() {
2 signal input claim[8];
3 signal input timestamp;
4

5 component header = getClaimHeader();
6 for (var i=0; i<8; i++) {
7 header.claim[i] <== claim[i]; }
8

9 component expirationComp = getClaimExpiration();
10 for (var i=0; i<8; i++) {
11 expirationComp.claim[i] <== claim[i]; }
12

13 component lt = LessEqThan(252);
14 lt.in[0] <== timestamp;
15 lt.in[1] <== expirationComp.expiration;
16 ...
17 }

Figure 15: A type mismatch issue found in Circom core li-
brary.

this, the developer must either perform data validation within
the verifyExpirationTime template or ensure that all users
of verifyExpirationTime pass inputs in the expected range.

5.4 Effectiveness of Different Detectors
To answer RQ3 and RQ4, we present a more detailed break-
down of the results for each individual detector. The results
of this evaluation are shown in Table 4. Here, the first col-
umn shows the abbreviated name of the detector, and the
next column shows the percentage of real bugs uncovered
by each detector.8 The next two columsn, TP and FP, report
the true positive and false positive rate respectively, and the
last column show the number of vulnerabilities uncovered
by each checker. In what follows, we summarize some key
observations.

Interestingly, around 40% of the vulnerabilities are de-
tected by the Division-by-Zero (DBZ) checker. The other
checkers that uncover more than 10% of the vulnerabilities
include Dataflow-Constraint Discrepancy (DCD) checker, Un-
constrained Circuit Output (UCO) detector, unconstrained sig-
nal (US) checker, assignment misuse (AM) analysis, and the
type mismatch (TM) detector. While the remaining checkers
also find bugs in our benchmarks, they each contribute to less
than 5% of the uncovered vulnerabilities.

As we can see from Table 4, after excluding the warnings
reported from two specific circuits mentioned in Section 5.2,
the USCO detector has a surprisingly high false positive rate.
Recall from Section 4.4 that the USCO detector needs to
identify circuits whose output is intended to be constrained
at the call site. However, doing this precisely requires logical
reasoning about a quantified formula, which is very expensive
and even intractable for existing solvers. Instead, our analysis
uses heuristics to identify circuits whose output should be
checked at call sites. This strategy results in a large number of

8Note that these numbers do not add up to 100%, as some bugs are flagged
by multiple detectors.

Detector Contribution FP #Vul
UCO 16% 0% 9
USCI 4% 0% 2
DCD 12% 0% 7
TM 21% 37% 12
US 24 % 30% 14

USCO 4% 93% 2
AM 14% 27% 8

NDD 5% 90% (25%) 3
DBZ 41% 25% (11%) 24

Table 4: Performance of ZKAP across different detectors.
Contribution shows the percentage of real bugs uncovered by
each checker. Here, #Vul means how many benchmarks are
detected and their vulnerable patterns are confirmed leading to
an issue by our manual review. The data in parentheses is the
refined data after excluding two specific circuits in circomlib.

false positives but is still meaningful to exhaustively expose
potential vulnerabilities.

6 Related Work

In this section, we survey the closest related work that are
relevant to our proposed approach.

ZK programming languages and compilers. Due to the
growing demand for zero-knowledge proofs in many appli-
cation domains, there have been several proposals for new
domain-specific languages for ZKPs. While our proposed
approach is primarily intended for Circom, there are other
DSLs, such as Leo [16], Zokrates [19], Zinc [26], Snarky [27],
and CirC [28], for facilitating the construction of zk-SNARK
proofs [12]. Since most of these languages operate over arith-
metic circuits, similar approaches to the one proposed here
could be applied to other zkSNARK languages.

As mentioned earlier, zkSNARKs are one of several zero-
knowledge protocols, and a popular alternative is the so-
called zk-STARK proof system [10], which stands for Scal-
able Transparent ARgument of Knowledge. There are also
other programming languages targeting zkSTARKs, the most
popular of which is Cairo [24], a Turing complete language
that allows general computation. Cairo is quite different than
zkSNARK languages and is based on Algebraic Intermedi-
ate Representation (AIR) rather than R1CS. Hence, the tech-
niques proposed in this paper are not intended for DSLs tar-
geting zkSTARK proof systems.

Bug detection for cryptography There is a large body of
work on finding bugs in cryptographic APIs and protocols.
For example, the technique proposed by Manuel et al. [20]
aims to find bugs in cryptography libraries for Android appli-
cations. Later work by Rahaman et al. [32], Luca et al. [30],
and Rumen et al. [29] propose more sophisticated and higher-
precision techniques aimed at finding crytography API mis-
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uses in Java and Android applications. Recent work by Amit
et al. [4] systematically evaluates cryptographic misuse de-
tection tools and provides some insights on improving the
state-of-the-art in this domain.

There is also is a substantial body of work that tries to for-
mally verify cryptographic protocols and APIs [3, 5, 8, 14]. In
particular, Almedia et al. developed EasyCrypt [3], a tool to
specify and check functional correctness of cryptographic
protocols, and used it to write machine checked proof of
RSA-OESP. Likewise, Appel et al. [5] generated a machine
checkable proof of the correctness of OpenSSL’s SHA-256
implementation.

Despite an extensive body of work on verifying and finding
bugs in cryptographic applications [7], there is relatively little
work on finding bugs in domain-specific languages for ZKPs.
To the best of our knowledge, the only existing tool for finding
bugs in arithmetic circuits is the CIRCOMSPECT tool [18],
which is an open-source tool developed by a leading security
auditor. As mentioned earlier, CIRCOMSPECT flags all uses of
the assignment operator (<--) as a potential bug and therefore
has a high false positive rate. Our approach is guided by a
manual study of existing bugs in Circom programs and aims
for a pragmatic and extensible framework to catch common
vulnerabilities with high precision and recall. However, our
approach is neither sound nor complete, and more sophisti-
cated techniques for precise reasoning about Circom would
likely require advances in SMT solvers for reasoning about
non-linear equations over finite fields.

Program abstractions for bug detection There is a rich
body of work on using graph abstractions of programs to catch
bugs. Some of these graph abstractions are quite general and
domain-agnostic, such as program dependence graphs [23],
callgraphs [1], data flow graphs [2] etc. These graph abstrac-
tions have found numerous applications for finding security
vulnerabilities. As one example, Boyuan et al. [25] use pro-
gram dependence graphs to detect SSL/TLS vulnerabilities in
Ubuntu applications. However, many other techniques aimed
at finding security vulnerabilities use domain-specific pro-
gram abstractions. For example, Mu et al. propose [36] pro-
pose a weighted contextual API dependency graph to detect
Android malware instances. Similarly, Feng et al. [22] uti-
lize an Android-specific graph abstraction called an inter-
component call graph (ICCG) to detect Android applications
that match semantic malware signatures. Similarly, our pro-
posed circuit dependence graph abstraction is fairly specific
to Circom programs, but it is effective for expressing and
detecting semantic vulnerability patterns.

Extensible bug detection frameworks. In this paper, we
use a Datalog-like domain-specific language for expressing
common vulnerability patterns. The key advantage of this
approach is to make the framework extensible by building
different detectors on top of a common abstraction. There

is a rich history of using declarative languages for writing
extensible bug detectors in the program analysis literature. For
example, systems like bddbddb [34], Saturn [35], Doop [15]
etc. all provide declarative Datalog-like interfaces for writing
extensible static checkers. There is also prior security analysis
frameworks that are based on Datalog-style domain-specific
languages. For example, PQL is a program query language
for expressing several classes of security vulnerabilities, such
as SQL injections, leaked file handlers etc. In the same vein,
Apposcopy [22] provides a Datalog-like language for writing
semantic malware signatures. Similar to this prior body of
work, we propose an extensible framework for building static
checkers by writing semantic vulnerability patterns.

7 Discussion

While designing ZKAP, we strived to achieve a good trade-off
between expressiveness and scalability. For complex arith-
metic semantics that are hard to express precisely, our current
static analysis leverages data- and constraint-dependencies to
over-approximate the actual semantics, which in theory, can
lead to false alarms. However, as discussed in Section 5, our
tool achieves a low false positive rate despite our abstraction.

Our study in this paper focuses on Circom, the most preva-
lent language for writing ZK circuits. While ZKAP was de-
signed based on common vulnerabilities in Circom, many
DSLs for zkSNARKS are quite similar in that they provide
mechanisms for witness computation and constraint genera-
tion. Hence, we believe that similar insights could be used for
designing and building static checkers for other zkSNARK
languages.

8 Conclusion

We presented ZKAP, the first semantics-based tool for de-
tecting common vulnerabilities in Circom, which is the most
popular DSL for constructing ZKP circuits. The design of
ZKAP was guided by a manual study of existing Circom vul-
nerabilities, which allowed us to categorize root causes of
Circom bugs into three main classes. Based on the results of
this study, we proposed the circuit dependence graph (CDG)
abstraction of Circom programs for expressing and checking
semantic vulnerability patterns. Our proposed framework al-
lows implementing static checkers by writing anti-patterns
in our Datalog-style vulnerability description language. Us-
ing this framework, we implemented a total of nine different
detectors and evaluated them on 258 circuits from popular
Circom projects on Github. Our evaluation shows that these
detectors can identify vulnerabilities, including previously-
unknown ones, with high precision and recall.
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