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Abstract

Anonymous systems are susceptible to malicious activity. For instance, in anonymous pay-
ment systems, users may engage in illicit practices like money laundering. Similarly, anonymous
federated learning systems decouple user updates to a central machine learning model from
the user’s identity; malicious users can manipulate their updates to poison the model. Today,
compliance with system-generated rules in such systems can be guaranteed at the level of a
single message by utilizing Zero-Knowledge Proofs (ZKP). However, it remains unclear how
to prove compliance for rules that are defined over a collection of a user’s messages, without
compromising the unlinkability of the messages.

To address this challenge, we propose an efficient protocol called Shuffle-ZKP, which enables
users within an unlinkable messaging system to collectively prove their compliance. Our protocol
leverages a distributed and private set equality check protocol along with generic Non-Interactive
Zero-Knowledge (NIZK) proof systems. We also provide an additional attributing protocol to
identify misbehaving users. We theoretically analyze the protocol’s correctness and privacy
properties; we then implement and test it across multiple use cases. Our empirical results show
that in use cases involving thousands of users, each user is able to generate a compliance proof
within 0.2-10.6 seconds, depending on the use case, while the additional communication overhead
remains under 3KB. Furthermore, the protocol is computationally efficient on the server side;
the verification algorithm requires a few seconds to handle thousands of users in all of our use
cases.

1 Introduction

Unlinkability of transactions is an essential property of many systems that protect user privacy;
here, unlinkability means that different transactions originating from the same user cannot be linked
to each other.! In the financial domain, examples of unlinkable payment systems include anonymous
cryptocurrencies (e.g., Zcash [HBH16]) and certain central-bank digital currency (CBDC) de-
signs [ACE+20,VVKD022,KKSQ2]. Another example arises in systems that collect and process user
data, such as federated learning systems; here, shuffling is a process by which users’ messages are
de-identified by intermediaries. Sender metadata is stripped from each user’s data, then raw data is
sent to a central server, thus unlinking data from its sender. Shuffling can be a powerful tool in dis-
tributed private data analytics, including as an enabler for differentially private (DP) pipelines and
as a building block for other cryptographic protocols like Private Information Retrieval and Multi-
Party Computation [IKOS06,ZWL*19, ATVG22, BHNS20, fuc22, LCC*21,GDD*21, CJMP21].
While unlinkability has many important benefits, it can also introduce opportunities for abuse.
For example, users can submit invalid or illegal transactions or data in an effort to steal money,
circumvent regulations [BM19], or poison machine learning models [SKL17]. Hence, an important

!There exist stronger forms of unlinkability, but this notion of source unlinkability is the focus of this work. It is
formally modeled by a shuffling functionality, defined in §2.2.
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Figure 1: The shuffle model. Clients sends their messages to the shuffler, which randomly permutes
the messages and sends them messages to the server.

goal is to design tools to verify that all of a user’s (unlinkable) transactions satisfy some
desired properties. For example:

e In an anonymous payment system, clients can make encrypted payments that are unlinkable.
The service provider (e.g., validators or auditors) may wish to verify that no single user sends
more than $10,000 to a single recipient within some time frame to comply with anti money
laundering (AML) regulations [0T23], without compromising transaction unlinkability.

e In Federated Learning (FL), the central aggregation server may wish to verify that clients’
model updates are bounded in norm to prevent them from backdooring or poisoning the
model [FCJG20, XHCL19]. In practice, client updates may be split into many shares and
anonymized by a shuffler for privacy reasons [GDD 21, BBGN20]. Hence, the bounded-norm
condition should hold for all the shares of a client’s update in aggregate, without compromising
the source unlinkability.

More precisely, we consider an abstract model of these examples as follows. Each client i € [n]
has a vector of m messages denoted x; := (2 1,%;2,...,%im). Now, every client ¢ € [n] sends its
messages x; to the shuffler § (Figure 1). The shuffler applies a random permutation to the union of
all messages, producing an order-insensitive multiset Multiset(x1,...,Xy,) 1= {%ij }icn) jefm)- This
multiset Multiset(x1, ..., Xy) is then forwarded to the untrusted server, who stores the data and/or
uses it to perform downstream tasks, such as statistical analysis or machine learning. Here, each
user’s message x; are anonymous and unlinkable in the sense that they cannot be linked by the
service provider to the message’s creator (e.g., linking x;; to i), or to other transactions by the
same creator (e.g., z;; and x;j cannot be linked to each other when j # k). For example, in
Zcash, users’ transactions are rendered unlinkable through a specific encryption process; several
central bank digital currency (CBDC) proposals involve similar methods of processing unlinkable
transactions [WKDC22, KKS22].

To prevent abuse, the service provider may require a compliance rule for clients’ data (e.g., the
sum of financial transaction to a given destination is < $10,000), which can be formally represented
as a relation R on the collection of the client’s data: R(x;) = 1 iff the client’s data comply with
the rule. However, this is challenging in unlinkable systems.



How can the server verify that all messages from a user are compliant, without breaking unlinka-
bility ?

An inefficient strawman solution. This problem can be solved with a large instance of secure
multiparty computation (MPC), where each client’s anonymous messages are the secret inputs and
all clients collaboratively compute a generic NIZK proof. This solution is known as collaborative
ZK, proposed by Ozdemir and Boneh [OB22] and also by Dayama et al. [DPP'22]. However, this
approach is impractical in terms of both computation and communication, as the number of parties
and the amount of data can be very large. For example, the witness in this case (i.e., knowledge
of the partition of S) is distributed across all n participants, which gives communication (and
computation) costs that scale at least as Q(n?) and high concrete costs.

This Paper. We propose the Shuffle-ZKP protocol for privacy-preserving compliance checking in
the shuffle model. The protocol has two parts: (1) The server detects if any client is non-compliant;
(2) If the server detects non-compliance, a second attribution protocol determines which client(s)
misbehaved. The main technical challenge is that the clients should provide a distributed zero-
knowledge argument that the partition of the transaction set S is collectively known by the clients;
however, clients cannot directly communicate, so each client only sees their local data.

(1) Non-compliance detection: Our key insight for non-compliance detection involves designing
a distributed and private version of a polynomial-based set equality check [CBBZ23, BM14] to
ensure consistency between the clients’ messages and the server’s view on the shuffled sets. Each
client masks their polynomial evaluation with masking messages and sends them to the shuffler. The
central server receives the union set of masking messages. To break anonymity, the server must find
a partition over the (shuffled) set of clients’ messages and masking messages, such that each subset
in the partition corresponds to a different client’s messages and masking messages. By choosing the

number of masking messages judiciously, we can prove statistical unlinkability guarantees. Due to

A
logn

an elegant analysis in Balle et al. [BBGN20], each client only needs O (1 + masking messages.

Here, X is the security parameter.

(2) Non-compliance attribution: Our attribution sub-protocol ensures that if a compliance
violation was detected in Phase 1, at least one misbehaving client will be identified and no honest
client will be blamed, except with negligible probability. Since all clients mask their evaluations
with masking messages, the server cannot directly identify a bad client if the joint polynomial
evaluation comparison fails. To catch the corrupted clients, we introduce an extra round of an
attribution protocol. Each client will privately download membership proofs for their messages
and show them to the server with zero-knowledge proofs. We also include a privacy-preserving
cross-checking step to identify those corrupted clients who illegally reuse membership proofs.

Our contributions in this work are threefold:

1. We formulate the compliance checking problem for multi-message unlinkable systems, and
propose a two-round protocol, Shuffle-ZKP, in the honest-but-curious adversary model with

0] (1 + 102 n) per-client communication complexity.”? We provide an extension that tolerates

a malicious server.

2. We provide an additional non-compliance attribution protocol to catch non-compliant clients.
The protocol combines efficient membership proofs and a privacy-preserving repeated message
detection mechanism.

2The common reference string (CRS) is not included here.



3. We implement our protocol on three use cases: a shuffle-DP summation protocol, a secure
vector summation protocol and and an AML regulation protocol on a simple anonymous
transaction system. In experiments with 1000 users, each client has less than 3 KB commu-
nication cost. The per-client computation time ranges between 0.2-10.6s on different tasks
and the amortized server time are only a few milliseconds. The implementation can be found
at https://github.com/shufflezkp/shuffle-zkp-open.

2 Problem Definition and Use Cases

We first introduce the problem definition, and show multiple use cases for this definition. We
consider a setup with an untrusted server, n clients, and a trusted shuffler S, which enables clients
to send anonymous messages to the server. Each client ¢ € [n] has a vector of m messages denoted
X; = (2i1,%i2,...,Tim). Every client ¢ € [n] sends its messages x; to the shuffler S. The
shuffler applies a random permutation to the union of all messages, producing an order-insensitive
multiset Multiset(X1, ..., Xn) := {Zi;}ic[n] je[m]- The multiset Multiset(x1, ...,Xy) is forwarded to
the untrusted server. 3

Moreover, there is a compliance check over each client’s data and the server wants to verify
that the data submitted by every client passes the compliance check. We model the compliance
check as an NP relation R;(x;,w;) = 1 where w; is a private witness known to client i.* Then, the
server and the clients engage in an interactive protocol in which the clients prove they have a valid
input vector x; and a valid witness w; to the relation R;. If such an interactive protocol satisfies
the following properties, it is called a Shuffle-ZKP protocol:

e Completeness: If all the clients hold a valid x; and a w; that R;(x;, w;) = 1, then the protocol
should output 1 except with negligible probability.

e Soundness: Even if all clients are malicious, if any client does not hold a valid x; or a w;, then
the protocol aborts or outputs 0, except with negligible probability.

e t-zero-knowledge: Assuming the server and t out of n clients are corrupted by an adversary, the
adversary still learns nothing from the protocol, except that all the honest clients hold valid
inputs and witnesses.

If possible, we also aim to achieve:

o Misbehavior Identifiability: If the protocol aborts or outputs 0, the server can report at least one
misbehaved client, and no honest client will be reported, except with negligible probability.

We formalize these properties in Section 2.2.

2.1 Example Use Cases

Input Validation for Private Data Analytics. Shuffling is an important primitive for private
data analytics [[KOS06,BEM*17,CSUt19, EFM*19,FMT22,BBGN20,GGK 21, Wan23,ZSCM23].
We consider summation [[KOS06, BBGN20] and histogram computation [GGK™'21], which are used
in private telemetry, federated analytics/learning, and anonymous voting.

3The server may have side information about the messages. For example, the server may know the order of
anonymized transactions due to the ordering in a public ledger. The privacy requirement is that the server cannot
learn any additional information at the end of the protocol.

“Note that the compliance check R; can, in general, be different for each client (e.g., client-specific spending
limits).
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e Summation: Each client holds a secret value z; and the server wants to learn the sum Zie[n] ;.
Ishai et al. [IKOS06] proposed that each client ¢ can additively split its value to a vector of
m = Q(Alogn) values x; = (2;1,...,%;m) such that x; 1 + -+ + 2, = x;. All the values are
randomly permuted by the shuffler and the server sums the shuffled values. The server wants to
verify that each client’s input value is within a predefined range, L. We define the NP relation
R(xi) =1onlyif 3 ;e @ij € L.

e Histogram: Each client holds a vector of different item indices x; = (x;1,...,%;m) from some
domain D and the server wants to compute the frequency for each item in D. Each client sends
all the indices to the shuffler and the server computes the frequencies from the shuffled set. The
server wants to ensure that no client sends two identical indices to the shuffler, which can bias
the outcome (e.g., voting twice for a candidate). We define the local relation to be R;(x;) = 1
iff ;1,...,2;m are unique.

Anti-Money Laundering (AML) Compliance in Private Payment Systems. Many pri-
vate payment system designs, including CBDCs [eur23, KKS22, WKDC22, TBA*22] and private
consortium blockchains [CZJ17], aim to protect user privacy without sacrificing compliance. Sup-
pose each time a user makes a transaction, some metadata (e.g. the hash) is shared with a regulator,
which does not learn the sender/receiver ID or the amount. The regulator requires each user (or
bank) to prove that they satisfy AML requirements. We define the plaintext transactions of a user
to be the witness w; = (wj 1, ..., w; n), whereas the message vector x; = (1, .., m) contains the
hashes of the transactions. Define the relation: R;(x;,w;) = 1 only if all the hashes are computed
correctly and all the transactions pass the AML compliance rule. This use case can be extended to
private consortium blockchains (e.g., [CZJT17]) where each participating bank provides proofs on
behalf of multiple clients.

2.2 Formal Problem Syntax

We now formally define the syntax of a distributed zero-knowledge proof system for shuffled data,
henceforth denoted Shuffle-ZKP. Recall that each client ¢’s input is x; and w;. The server’s input
is Multiset(x1, . ..,xy,), which is defined as the output of a secure shuffler applied to (x1,...,X,).

Secure Shuffler We use the notation Fyhume to denote an ideal functionality of a secure shuffler.
Assume there are n clients and each client is expected to submit m messages,

e Input: Fihume collects m messages from each client;

e Output: Fihumme outputs an order-insensitive set including all messages it received.

Shuffle-ZKP Syntax The parties engage in an interactive protocol, at the end of which the server
outputs a bit indicating accept or reject. We may also allow a setup algorithm.

Throughout the paper, we use A to denote the security parameter. We assume that the length of
each x; and w; are upper bounded by poly(\) for some fixed polynomial poly(-), and moreover, the
size of the circuit that checks R;(x;, w;) is also upper bounded by poly(\) for some fixed polynomial
poly(-). We also assume that the number of clients n is upper bounded some fixed polynomial in .

Definition 2.1 (Shuffle-ZKP). A Shuffle-ZKP protocol for the NP relations (R1,...,R,) involves
the a randomized algorithm Setup and an interactive protocol IT between the server and the n
clients.



e pp < Setup(1*,n,Ry,...,R,): outputs the public parameters pp.

e {0,1} <+ II(pp,X1,...,Xp,W1,...,Wy,): the server’s input is the Multiset(xy, .. .,x,) and pp, and
each client 4’s input is (x;,w;) and pp. At the end of the protocol, the server outputs either 0
or 1.

Security. Henceforth, given x := (x1,...,x%,), and w := (wy,...,w,), and NP relations R :=
(R1,...,Ry), we use the short-hand R(x,w) = 1 to mean that for every i € [n], R;(x;,w;) = 1.

e Completeness: Completeness requires that for any A\, n € N, for any (x,w) such that R(x,w) =
1,
Pr |pp « Setup(1*,n,R), I(pp,x,w) =1| =1

e Soundness: For any non-uniform probabilistic polynomial-time (PPT) algorithms P = (Pq,...,Py),
there exists a negligible function negl(-) such that for any x for which there does not exist a
valid w such that R(x,w) =1,

Pr [pp + Setup(1*,n, R), TI% (pp,x) = 1| < negl(\)

1P (pp, x) denotes an execution of II in which each client i € [n] runs the algorithm P; that is
not necessarily the honest algorithm, and moreover, the honest server’s input is Multiset(x).

e t-honest-verifier-zero-knowledge: We say that a Shuffle-ZKP scheme for the NP relations (R, ..., Ry)
satisfies t-honest-verifier-zero-knowledge, iff there exists a PPT simulator Sim such that for
any non-uniform PPT adversary A controlling the server and a coalition C C [n] of at most
t clients, the outputs of the following two experiments are computationally indistinguishable
where H := [n]\C:

1. Real:
— pp < Setup(1*,n, R);
— A(1*,n, pp) outputs {x;, w; }ie[n] s well as some state st, where it is required that R;(x;, w;) =
1 for i € [n];
— run the honest protocol IT where the clients’ inputs are {x;, w; };c|,) and pp, and the server’s
input is Multiset({x;}c[,)) and pp;
— output st and the views of C and the server in II.
2. Ideal:
— (pp,7) + Sim(1*,n, R);
— A(1*,n, pp) outputs {x;, w; }ie[n) and st where it is required that R;(x;, w;) = 1 for i € [n];
— run the simulator view < Sim(7, Multiset({x; }ic7), {Xi, w; }iec) which is provided with the
multiset of honest clients’ input items Multiset({x;};c%), and the inputs and witness of
the corrupt clients {x;, w; }iec);
— output st and view.

e t-zero-knowledge: We say that a Shuffle-ZKP scheme for the NP relations (Rq,...,R,) satisfies
t-zero-knowledge, iff there exists a PPT simulator Sim such that for any non-uniform PPT
adversary A controlling the server and a set of at most ¢ clients denoted C C [n], the adversary’s
views in the following two experiments are computationally indistinguishable where H := [n]\C:



1. Real:
— pp < Setup(1*,n, R);
— A(1*,n, pp) outputs {x;,w; }icyy where it is required that R;(x;, w;) = 1 for i € H;
— run the protocol II where A controls C and the server, and honest clients inputs are
{xi, witien;
2. Ideal:
— (pp,7) + Sim(1},n, R);
— A(1*,n, pp) outputs {x;,w; }icyy where it is required that R;(x;, w;) = 1 for i € H;
— A now interacts with the simulator Sim(7, {x; }iey) which is provided only the multiset of
the honest clients’ input items Multiset({x;};c%) but not the witnesses.

Extension: Shuffle-ZKP with misbehavior identifiability. We also define the misbehavior
identifiability of Shuffle-ZKP protocol as following. In this case, we augment the protocol’s output.
First, if the protocol II aborts, we let the default output as 0. Also, whenever the protocol IT
outputs 0, it also outputs a list of indices Z C [n], indicating the misbehaved clients identified by
the server.

We say the protocol satisfies misbehavior identifiability if the following statement holds. Suppose
any non-uniform PPT adversary A controls a set of ¢ clients, denoted C C [n]. Denote the honest
client set as H = [n]/C. Assume each honest client i € H has a valid input (x;, w;) such that
Ri(x;, w;) = 1 and denote their inputs as xy. H'A(pp7 x% ) denotes an execution of II in which A
controls the clients in C and the honest clients have input x3. Then,

Pr [pp « Setup(1*,n, R), I (pp, x3) = (0,Z) : |Z| > LAZ C C| > 1 — negl(\).

3 Overview

We first provide an intuitive overview of the Shuffle-ZKP protocol. The protocol has two phases: (1)
Non-compliance detection, and (2) non-compliance attribution. In Phase 1, clients submit
proofs that allow the server to determine if any of them has violated the compliance condition. If
a violation is detected In Phase 1, Phase 2 is run, in which the server can identify which client was
responsible for the violation. The protocol is formally specified in §5 (non-compliance detection)
and §6 (non-compliance attribution).

A straightforward idea to detecting and attributing non-compliance would be for every client
to directly submit a NIZK proof, which proves that the client holds valid local inputs/messages
x; and a valid witness w; to the local relation R;. However, if we choose the local messages x;
as public witnesses, the unlinkability of those messages will be broken. On the other hand, if we
make them private witnesses, the client can cheat by replacing the actual messages with arbitrary
messages when producing the proof. This violates consistency of the messages: that is, we want
clients to use the same messages to produce a proof as the ones they send to the shuffler. The
challenge remains how to solve the consistency issue efficiently.

3.1 Phase 1: Non-Compliance Detection

Straw Man: Cryptographic accumulators. One natural attempt is to use cryptographic
accumulators (e.g. Merkle Trees or RSA accumulators). The server would accumulate all the
messages it receives from the shuffler and share the accumulated result to the clients. Then, clients



would need to prove that the messages used in their proving process have valid membership proofs
to the accumulator. This solution has two problems: 1) fetching the membership proofs privately
incurs significant additional cost; 2) clients could reuse membership proofs and thus still violate
consistency.

Proposed approach. Instead, we use polynomial-based set equality checks [CBBZ23, BM14]
(also known as a permutation check). Suppose we want to verify the equality of two sets Sp,S2 C F.
We can construct two polynomials f(r) = [[,cq, (* — 1), 9(r) = [[eg,(* — 7). When the two sets
are equal, the two polynomials are simply equal. When the two sets are not equal, by the Schwartz-
Zippel lemma [Sch80], when we pick a random evaluation point 7 from FF, the two polynomials will
have the same evaluation only with probability %. As long as the field size is exponentially
large, comparing the polynomial evaluations is a reliable way to test set equality.

We are now checking the equality between the message set collected by the server and the set of
messages that those clients use to generate their proofs. The server can construct the polynomial
itself from the set of messages received from the shuffler. Each client can construct their local
polynomials from their local sets of messages and the product of the clients’ polynomials will
be exactly the polynomial the server constructs due to the commutative property of the field’s
multiplication. Thus, the clients can first commit to their local x;, then given a random point,
each client provides the evaluation of || jepm] (x;; —r) and proves the correctness of the evaluation
alongside with the actual compliance check using generic NIZK.

Reduce leakage with dummy messages. Vanilla polynomial checks in our setup leak infor-
mation. Consider a message set 2, 3,5,7 with the first client contributing 2,3 and the second client
contributing 5, 7. If the evaluation point is » = 0, the first client’s evaluation is (2 — 0)(3 — 0) = 6.
The server can deduce that 2 and 3 are from the first client, as it is the only combination resulting in
an evaluation value of 6. Our idea is to make this “guessing” process exponentially more difficult:
each client multiplies d random dummy field elements to its evaluations, and send the d dummies to
the shuffler. The server only sees the multiset of nd dummies and is able to compute the product of
all clients” dummies, so it can still compute the right product of the clients’ polynomial evaluations.
If the server wants to break the unlinkability of any client’s messages, it needs to find the right set
of d dummies out of nd total dummies. Intuitively, this should be hard if d is large enough—there
are (Zd) possible combinations (more than n?). Formally, the security of this protocol relies on a
key lemma developed by previous split-and-mix shuffle-aggregation protocols [IKOS06, BBGN20]
based on random graph theory, which shows that d = Q(1+ logn) is sufficient to achieve statistical
security.

3.2 Phase 2: Non-Compliance Attribution

The server can directly identify clients who submit invalid proofs. However, if the polynomial check
fails (consistency issue), attribution is non-trivial because all the clients’ evaluations are masked.

We focus on the case where the set of the messages used by the clients during the proof generation
process (denoted as S..) is not consistent with the message set received by the server during initial
message collection (denoted as S,;). If all clients follow the protocol, S!, = S,. We assume each client
submits exactly m messages (otherwise they will be identified by the shuffler), and all messages
submitted by the clients are unique (this assumption is not needed in our full protocol design).
When |S;| = |S%| and S!, # S,, there are two possibilities:



1. Case 1: A client submitted a proof over a message that was not in the original set.
Le., there exists message z € S, s.t. x ¢ S,. E.g., S, ={0,1,2,5} and S, = {0,1,2,3}.

2. Case 2: Some client(s) use a message multiple times in their proofs. le., there are
(incorrectly) repeated elements in S,. For example, S, = {0,1,2,2} and S, = {0,1,2,3}.

Case 1: We can require clients to prove their messages belong to S,. For example, the clients can
use a Private Information Retrieval (PIR) protocol [CGKS95, CG97] to fetch a Merkle proof for
each of its messages. Then, the client provides an additional proof to the server, first proving that
the messages used in this extra proof are consistent with the messages used in the detection protocol
by checking against the commitment, and also proving the memberships of all those messages. We
deliberately avoid membership proofs in the detection protocol to keep overhead low. However, we
tolerate these overheads in the attribution protocol, since we assume it is run infrequently.

Case 2: Catching repeated messages is more subtle because the adversary may corrupt multi-
ple clients and only share messages across different clients. For example, client 1 uses messages
{1,2,3} and client 2 uses messages {3,4,5} to generate their proofs. This requires a cross-checking
identification protocol without compromising the unlinkability of the original messages.

Our protocol works as follows. We first augment the original protocol: when collecting the
messages {Ti; }ic[n],je[m], each client ¢ randomly samples a A-bit serial number sx; ; and attaches
the commitment of the serial number, denoted as sx;;, to each of its message as the form of
(2i,5,5%i;). Then, in the attribution protocol, we require each client to directly open all the serial
numbers to the server, and also prove that for each serial number sx; ;, its corresponding message
(i j,5%;,;) is indeed included in the message set observed by the server. To do that, the client
fetches the digest of S, and a membership proof (a Merkle proof) mkx; ; for the message (z; ;,5%; ;)
upfront.

From the server’s perspective, if it sees two repeated serial numbers, it can report those clients
who submit those serial numbers because they are using repeated messages to generate proofs. Also,
the adversary cannot force an honest client to be reported, because the probability of the adversary
successfully guessing the random serial numbers sampled by the honest clients is negligibly small.
For the privacy, as long as the commitment scheme is computationally hiding, the server still cannot
link the serial numbers submitted by honest clients to any specific messages, so the zero-knowledge
property of the protocol is still preserved.

4 Primitives

We use the following primitives in our construction.

Non-Interactive Commitment A non-interactive commitment algorithm commit(1*, x; ) takes
in a security parameter 1*, a message = € {0,1}*), and a random string r € {0,1}*, and outputs
a committed value C. Henceforth let the message length ¢(\) be a polynomial function in A. We
require that a non-interactive commitment scheme satisfy the following properties:

o Computationally hiding. For any z,y € {0,1}*™, it must be that commit(1*, z) and commit(1*, )
are computationally indistinguishable. We write commit(1*, z) to denote the randomized algo-

rithm that first samples rﬁ{O, 1}* and then calls commit(1*, z; 7).



o Computationally binding. For any non-uniform P.P.T. A,

Pr[A(l)‘) — (x1,71,22,72) :

commit(1*, z1;71) = commit(1}, zo;79)] < negl()).
Non-Interactive Zero-Knowledge Argument A non-interactive argument system for a familiy
of NP relations {R )}, indexed by A consists of the following (possibly randomized) algorithms:
e crs + Gen(11): samples and outputs a common reference string denoted crs.

e 7 <« P(crs,z,w): takes in the common reference string crs, a statement = and a witness w such
that Ry (z,w) = 1, outputs a proof 7.

e Oor 1+« V(ers,z,m): takes in the common reference string crs, a statement z, and a purported
proof , outputs either 0 or 1 indicating “reject” or “accept”.

We require the following properties:

1. Completeness. For any A, for any (x,w) such that Ry (z,w) = 1, it holds that

Pr [crs — Gen(1*), 7 < P(crs, z,w) : V(crs, z, m) = 1] =1

2. Soundness. For any non-uniform probabilistic polynomial-time (PPT) prover P*, there exists a
negligible function negl(-), such that

Pr [crs — Gen(1%), (x,7) = P*(crs) : V(crs,z, ) = 1 but = ¢ 7?,,\} < negl(\)

In the above, we use = ¢ R to mean that there does not exist a w such that Ry(z,w) = 1.

3. Knowledge soundness. For any non-uniform deterministic algorithm A, there exist a non-uniform
polynomial-time extractor X4 and a negligible function negl(-) such that for any auxiliary string
z’

Pr [crs — Gen(1%), ((z,m); w) < (A||Xa)(crs, 2) : V(ers, z, ) = 1 A Ry(z,w) = 0] < negl()\)

4. Zero-knowledge. Intuitively, a non-interactive argument system is computationally zero-knowledge
if one can simulate the proof of a true statement without knowing the witness. Formally, a non-
interactive argument system satisfies adaptive multi-theorem computational zero-knowledge, iff
there exists a PPT simulator (S, S2), such that for any non-uniform PPT adversary A, there
exists a negligible function negl(-) such that

negl(A <
Pr [crs — Gen(1*) : AP (1A crs) = 1} gy Pr [(CI’S,’T) — S (1Y) - A5 (1 ers) = 1}

where 7 is a trapdoor, and S(7,x,w) is the following oracle: upon receiving (7, x,w), it checks

whether Ry (z,w) = 1. If so, output Sy(7,x), which simulates a proof without knowing the
. . . I(A) .
witness; otherwise, output L. Moreover, the notation "R means that the left-hand side and

the right-hand side differ by at most negl(\).
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5 Phase 1: Non-Compliance Detection

We now introduce our Shuffle-ZKP non-compliance attribution protocol, which is designed for
efficiency. If any client fails the compliance check, the protocol raises an alarm that at least one
of the clients is non-compliant. This triggers the heavier non-compliance attribution protocol
in Section 6.

5.1 Honest-Verifier Shuffle-ZKP Protocol

We start with a Shuffle-ZKP protocol assuming the server is semi-honest (honest-verifier). The
pseudocode is presented in Figure 3 and an illustration is in Figure 2.

Co
i %,

U -
Cli(-znt 1 C\ie.nt 1 Permutation

. —) \
' =) v vma S
/ L Server [
,“(\e . "9 A Shuffler Server
W

A"
Client n Co Clientn ’9 ™
(a) (b)
Poly Eval & Proof
1. Commitment V'
r = 2. Poly Eval V N
\ 3. Compliance Rule v > N
Client 1 . A
§ : . Server
N Server Verify:
/ e Poly Eval & Proof 1) All proofs v
Al 2) Product of Client Evals
Client n (c) (d) =Server Poly Eval

Figure 2: Demostration of our protocol. (a) Step 1: the clients send commitments to the server;
(b) Step 2: each client i sends the dummies y; 1,...,y; 4 to the shuffler; (c) Step 3: the server
broadcasts a challenge r; (d) the client ¢ sends a field element z; and a proof to the server, proving
that correctness of the commitment and the polynomial evaluation z; = [ [cpn (@i — ) ILepa i
and also the compliance to the rule. The server verifies all the proofs and the correctness of the

polynomial evaluation, Hje[nm] (xj —7) Hje[nd] Y = 2122 Zn.

Context. We assume each client 7 already submits its anonymous messages x; 1, ..., Z;m to the
shuffler, and the server receives the shuffled message set {x1,...,Znm}. Henceforth, let NIZK; be
a NIZK scheme for the relation R; (described below). We describe a Shuffle-ZKP protocol in the
Fehufie-hybrid model.  We shall assume that each client i’s input x; € F™ is a vector of length m
and each element in the vector is from some finite field F°.

Setup. The protocol starts with a setup phase where the clients the server jointly generate the
public parameters. Each client ¢ and the server serves as a pair of prover and verifier in the
underlying NIZK protocol, so they share a common reference string crs;.

5In practice, each individual message may not be a field element. In this case, we can use a hash function to map
the original message to a field element and during the proof generation, the client additionally proves the correctness
of the hashing. Given the collision-resistant property of the hash function, all properties of the protocol should hold.
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Stage 1: Client preparation. As mentioned before, we use a polynomial-based set equality
check to ensure consistency. To further ensure privacy, each client now samples some dummy
elements to mask their local polynomial evaluation. We let client i sample d dummies from {F/{0}},
denoted as ¥;1,...,¥;4- The client compute the product of the dummies as p; = Hje[d] Yi,j- The
client now sends a commitment, com; = commit(x;, p;;vi) to the server where 7; denotes a freshly
sample random string. The client also sends the dummies to the shuffier.

Stage 2: Server broadcasting a challenge. The server broadcasts a random field r to all
clients.

Stage 3: Client proof generation. Upon receiving the challenge r, the client can compute
the masked polynomial evaluation z; = [];cn(2i; — 7)pi. Now each client is ready to prove its
compliance, which we model as an NP relation Ri(x;, w;). To include the consistency check, we
now define an augmented NP relation R; as following.

e Public statement (z;,com;, r): the client’s masked polynomial evaluation z;, the commitment
com; including the client’s messages and the mask, and also the evaluation point r;

e Private witness (x;,7;, w;, p;): the client’s messages x;, the client’s witness w; to the com-
pliance check, the randomness 7; used in the commitment and the product of the dummies,

Pi-

o Ri((2i,com;, 7), (i, i, wiy pi)) = 1 iff
— Ri(xi,w;) = 1;
— commit((x;, p;); ;) = com;; and
— jepm(@ij — 1) pi = 2.

The client generates the proof 7; by invoking the prover algorithm of the underlying NIZK protocol,
then sends the proof and the masked evaluation z; to the server.

Stage 4: Server verification. The server first verifies all the proofs. If any proof fails to be
verified, the server can identify the bad client. If all the proofs can be verified, the server also
compare the polynomial evaluations to ensure consistency. Upon receiving messages {; }ic[nm] and
dummies {y;i}ic[nqg from the shuffler, the server computes [[,cp,,,(zi — 7) as its evaluation and
computes the product of the dummies Hie[nd} ;. Finally, the server compares the product of the
clients’ masked evaluations to its evalutaion by checking if [[;c(; 2i = [Licpum) (@i — 1) - [Licpna) vi-

Parameter choices. With n clients and at most ¢ corrupted clients, to ensure privacy, we set

the dummy number as
B 2 + log, |F| 5
| logy(n —t) —logy e '

Here, ) is the statistical security parameter (and there is a separate computational security parame-
ter associated with the NIZK construction), and we assume there more than 19 honest clients®. The
reason behind the formula is that we will use the following key lemma from Balle et al. [BBGN20]
to prove the privacy. We will consider the multiplicative group (F \ {0},-) as the abelian group G
when we use the lemma.

STf there are no more than 19 honest clients, we can use d = [1.5log,(|F|) 4 logy n + A] as specified in Ishai et
al. [IKOS06]
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Setup(1*,n,R): For i € [n], run crs; < NIZK;.Gen(1*). Set the public parameters pp :=
{Crsi}ie[n}'

H(pp,Xl, vy X, W, ... 7wn)
e Each client i: /* client i’s input: x;,w;, pp */
3
— Sample y; = (yi1, - -, ¥ia) < {F/{0}}4 and let p; := [Teiq vij-

— Send (Yi,1,- -+ Yid) t0 Fhuffie, which sends Multiset({i; }ic|n] je[q)) to the server.

— Send com; = commit((x;, p;);v:) directly to the server where 7; denotes sampled random
coins.

e Server: /* server’s input: Multiset(x1,...,Xy), pp*/

— Sample a random challenge r& F and send 7 to all clients.
e Each client :
— Parse x; := (xi1,...,%im), and compute z; := Hje[m] (xij—1) " pi

— Parse pp := (crsy, ..., crsy), and call m; < NIZK;.P(crs;, (zi, comg, 1), (Xi, Vi, Wi, pi))-
— Send (z;,m;) to the server.

e Server: Output 1 if the following checks pass, else output 0:

— For i € [n], NIZK;.V(crs;, (z;, com;, r), m;) = 1.

- Hie[n] z; = Hie[n],je[m] (xi5—7)- Hie[n],je[d] ¥ij- The server can easily compute both sides
of the equation knowing Multiset(xy,...,x;,) and Multiset(y1,...,yn).

Figure 3: Our main stage protocol.

Lemma 5.1 (Key lemma from [BBGN20] (simplified)). Suppose n > 19. Given an abelian group
(G,") and two vectors (pu1,...,un) € G" and (pj,...,py,) € G such that [Liep, ti = Tliepn 15
For i € [n], let (yi1,---,Yia) and (Y;y,---,Y;4) be random linear shares of y; and p;, repec-
tively. Let' Y = Multiset(y1,1,...,yna) and Y' = Multiset(y} ;,..., ¥, 4). Then, as long as d >

[% + 1—‘ and d > 4, the statistical distance between'Y and Y’ is negligibly small.

In our practical implementation, we will use a prime field IF, where p is a 254-bit prime. Suppose
we want to achieve a statistical security failure probability of 278, Then, with 100 honest clients,
we can choose d = 82, with 1000 honest clients, we can choose d = 51, and when there are 10,000
honest clients, we can choose d = 37.

Security. We formally prove the following security theorem. We will defer the proofs to Ap-
pendix A.1.

Theorem 5.2 (Shuffle-ZKP construction with honest-verifier zero-knowledge). Suppose that |F| is
superpolynomial in A, n—t > 19 and d > [% + 21 . Further, suppose that the underlying
NIZK satisfies completeness, soundness, and zero-knowledge, and the commitment scheme comm

13



is computationally binding and computationally hiding. Then, the above Shuffle-ZKP construction
satisfies completeness, soundness, and t-honest-verifier-zero-knowledge.

Asymptotic Costs. We show that Shuffle-ZKP is efficient in terms of asymptotic costs.

Theorem 5.3. Suppose logy(|F|) = O(X\) and d = O(X). Assume that the underlying NIZK has
6)\(6)7 proving time, O}(l) verifying time and 5>\(1) proof size given a size-c relation, and the
commitment scheme comm has 5)\(m) computation time and 6A(1) commitment size. Then, the
above Shuffle-ZKP construction that checks the predicate R on each client has Ox(|R| + m) per
client time, Ox(1) per client communication, and Ox(nm) total server time.

Proof. We discuss the communication cost first. Each client needs to send the dummies (y; 1, ..., ¥i.d)
to the shuffler, and since d = O()), sending (y;,1, ..., ¥iq4) requires only Ox(1) bits. Further, each
client needs to send com;, z; and 7, i.e., the commitment, the masked polynomial evaluation and
the proof to the server and receives a challenge from the server. The commitment com; is Oy(1)
bits long. Sending z; and receiving the challenge take only Ox(1) communication, and sending
requires only Ox(1) overhead. Therefore, each client’s communication overhead is only O,(1), not
counting the overhead of transmitting the x; to the shuffler. The server’s communication cost is
the sum of the clients’ costs since the communication pattern is client-server only.

We now analyze the client and server’s computation costs. Each client needs to generate a proof
for the relation R;, which R; checks the original compliance rule predicate R; and checks correct
computation of a commitment and a product calculation. Therefore, |R;| = |R;| + Ox(m) where
|R| denotes the size of the constraint representation of checking the NP relation R, and recall that
m is the length of client i’s vector x;. The server’s verification time is 6A (n) since verifying each
client’s proof takes Oy(1) time. The server also needs to compute polynomial evaluation and the
product of the dummies, which takes Oy(nm) time. O

Practical Instantiation. We use MiMC hash [AGR"16] (as a random oracle) to instantiate
the commitment scheme. We provide two instantiations of our protocol with two NIZK schemes,
Groth16 [Grol6] and Plonk [GWC19]. Groth16 has better concrete performances but requires a per-
circuit setup. Plonk has a universal trusted setup. Practitioners can choose one instantiation based
on the actual scenarios. We use the gnark library [BPH'22] for the implementation. In Section 7,
we evaluate our protocol in realistic scenarios and report the concrete performance. Notably, even
for a predicate of size around one million, the per client run time is around 10 seconds and the
per-client communication is around 2-3 KB.

5.2 Achieving Zero-Knowledge Against a Malicious Verifier

The construction in Section 5.1 provides only honest-verifier zero-knowledge. A malicious server can
intentionally pick a challenge r that equals one of the messages. Then, the server learns the source
of that particular message, because the client who submitted it will have a polynomial evaluation
of 0. We observe that if the random challenge r does not equal to any one messages, the protocol
is zero-knowledge (we still need r to have high entropy to ensure soundness).

To additionally achieve zero-knowledge against a malicious verifier, one naive way is the use a
generalization of the generic transformation described by Damgard [Dam] to our setting. Another
naive approach is to use a coin toss protocol among the server and the clients to jointly sample the
random challenge. These naive approaches would add high overhead to the protocol. We propose
a practical and nearly overhead-free upgrade to the protocol.

"The notation O(-) hides the polylogarithmic terms.
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A practical upgrade. The upgrade relies on a non-programmable random oracle®, denoted
RO : {0,1}* — {0,1}*. We let the server commit to the challenge upfront by hashing it with a
random oracle. The clients check if the opening agrees with the commitment when the challenge
is opened. Further, the challenge is sampled from a different half of the field than the messages.

e Assume we use a prime-order field F,. We will encode the clients’ messages x; ; using the first
half of the field {0,...,[p/2]}.

e At the beginning of the protocol, the server picks a random challenge r from {|p/2|+1,...,p—1},
and it computes 7 := RO(r). The server sends 7 to all clients over a broadcast channel.

e When the server announces the challenge 7, all clients check that RO(r) = 7 and that r >
|p/2] + 1, and they abort if the check fails.

The size of the field F used here is exponentially large in the security parameter A\, and therefore
the challenge r has high entropy. In this case, ¥ := RO(r) can be viewed as a secure commitment
to the challenge 7.

We prove that this upgraded protocol satisfies soundness, and t-zero-knowledge in Appendix A.2.

6 Phase 2: Non-compliance attribution

If Phase 1 (non compliance-detection) fails, it means that at least one of the clients has misbehaved.
The server can directly identify those who submits invalid proofs during the detection protocol.
In our non-compliance attribution protocol (Phase 2), we identify clients that fail the consistency
check. We devise a full protocol that satisfies completeness, soundness, and t-zero-knowledge as
before, and also misbehavior Identifiability. That is, except with negligible probability, if the
protocol aborts or the verification fails, then at least one corrupt client will be identified. Further,
except with negligible probability, no honest client will be identified assuming the server is honest.

6.1 Attribution Protocol

In Figure 4, we describe a full Shuffle-ZKP protocol with an extra round of attribution protocol. An
intuitive overview is included in Section 3.2. The full protocol also takes account inconsistencies
between the dummy sets.

Message Collection Phase. We augment the collection phase: each client ¢ samples serial
numbers sx; 1, ..., SXim, and sy, 1,...,sy; 4 for their m messages and d dummies, repectively. The
client generates the commitments of all the serial numbers as sx; 1, ..., m and sy, 1,...,sy; 4. The
client will then bind the message z;; and sx; j together and send {(z;,j,5xi ) }jem to the shuffler.

Main Stage. Same as before, except that each client now binds the dummy y; ; and sy, ; together
and sends (y; j,sy; ;) to the shuffler. The shuffler identifies who fails to send desired number of
messages. The server identifies who submits invalid proofs.

8We need to modify the formal definition of shuffle-ZKP to account for the random oracle. See Appendix A.2.
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e Message Collection Phase — Each Client i: /* client i’s input: x; */

$ . $ .
— Sample (sx;1, ... ,Xim)<{0, 1pm, (SYi1s---»5Yia){0, 1.
— Let sx;; = commit(sx;;; 8;;) and sy; ; = commit(sy, ;; 5; ;) where B;;, B ; is sampled
randomly.
— Initially, instead of sending x; := {4} je[m] t0 Fehuffie, send {(zij,5Xij)}jemm) 10 Fshuffte-

e Main Stage:

— Execute the protocol in Section 5.2. For each client 4, instead of sending y; := {y; ; }je[d]
to Fehuttte; send {(¥ij,5Y; ;) }jeia t0 Fshuftte- If Fepume aborts?, report the the corrupt
players identified by Fshuffie-

— If the server detects an invalid proof or fails to hear from any client ¢, report client i.

— If the server outputs 0 in the main stage (i.e., verification fails), proceed to the attribution
protocol.

e Attribution Protocol: // Sx = Multiset (@i.5:5%i5)ietml setm))
Sy := Multiset ((yz,ju Sf\}//i’j)ie[n],je[d])

Each client i:

— Fetch the digests digest(S,) and digest(gy) of the sets S, and §y from the server.

— For j € [m], privately retrieve a membership proof mkx; ; for (z; ;,X; ;) from the server;
for each j € [d], privately retrieve a membership proof mky; ; for (yij,sy; ;) from the
server;

— Call the NIZK prover to generate a proof 7/:

* Public statement: com;, digest(S:), digest(Sy), $Xi,1,- -, im, ;15 - -+ Yim;
* Private witness: 'n,pi,(:L‘i’j,§<l-7j,ﬁi7j)je[m},(yi,j,s’ym,ﬁl’-ﬁ)je[dl;
* Relation:
1. com; = commit((x;, pi); Vi);
2. pi = e vig
3. For j € [m], mkx; ; is a valid membership proof for (x; j,sX; ;) w.r.t. digest(gx);
4. For j € [m], sx; ; = commit(sx; ;; 3i j);
5. For j € [d], mky; ; is a valid membership proof for (y; ;,sy; ;) W.1.t. digest(gy);

6. For j € [d], sy, ; = commit(syi,j;ﬁz{,j);

— Send sX; 1, ., SXim, SY;1s--->SYiq> and the proof 7, to the server.
Server:

— For ¢ € [n], verify the proof «]. If the proof is invalid, report client i.

— If a serial-number collision of the form sx; j = sx; j or sy; ; = syy j» is found where
(1,7) # (', 7"), then report clients i and ¢’ (including the case when i’ = 7).

“Fshume aborts if any client who submits not exactly m message tuples or d dummy tuples.

Figure 4: Full protocol with misbehavior identifiability. The variables com;, «;, and p; are

inherited from the main stage of the protocol described earlier.
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Attribution protocol: client side algorithm. As mentioned before, client i needs to show that

for each j € [m], the message tuple (z; ;, sx; ;) belongs to the multiset S, := Multiset (@i, &i,j)ie[n],je[m])'
The client fetches the digest dlgest(S’ ) and privately fetch a membership proof mkx; ; for the tuple
w.r.t. the succinct digest from the server. The client similarly fetches the membership proofs for

all d dummy tuples, {(¥i.5,5Y; ;) }je[q- Now, the client i generates a proof showing that:

e The messages and the dummies used in this proof are consistent with the previous commit-
ments;

e For j € [m], (iﬁi,j,&i,j) € S
e For j € [d]v (yi,j:gg/i,j) € Sy'

Also, the client needs to reveal the serial numbers {sx; J}Je[m] and {sy; ;};e[q to argue that it does
share any messages. It includes the following statement in the proof:

e For j € [m], sX; ; is a valid commitment of sx; ;;

e For j € [d], sy, ; is a valid commitment of sy, ;.

Attribution protocol: server side algorithm. The server side algorithm is straightforward:
e Identify who submits an invalid proof;

e Identify who shares the same serial numbers.

6.2 Theoretical Analysis

The protocol’s soundness is straightforward, and follows from the soundness of the main phase
which we proved in Appendix A.2. Completeness is easily verified. Below, we show the asymptotic
bounds and prove zero knowledge, no false implication, and attribution completeness.

Asymptotic Bounds. Except the private queries of the membership proofs, the attribution pro-
tocol only incur a very light overhead. The clients attach a A-bit string to each of their submissions.
In the additional round, the client submits an additional proof and 2m serial numbers to the server.
The size of the relation each client needs to prove is of size Ox(m), so the additional computation
time per client is also O)(m) with a quasilinear proving algorithm.

For the private queries, each client can use a batch PIR scheme [ACLS18, MR23] to fetch m
membership proofs at once. The server computation will be Oy(nm) and the communication cost
will be Oy (m).

Theorem 6.1 (Full construction). Suppose that the underlying NIZK has O}( ) proving time,
Ox(1) werifying time and Ox(1) proof size given a size-c relation, the commitment scheme comm
has Ox(m) computation time and OA(N) commitment size. Also, given a database of size Ox(nm),
fetching m membership proofs takes Ox(nm) server time and OA( )_communication cost. Then,
the full construction to check the predicate R on every client has OA(]R| + m) per client time,
Ox(n2m) total server time and Ox(m) per client communication.
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Privacy. We prove that our full protocol with attribution satisfies zero-knowledge even against
a malicious verifier. Due to the introduction of the committed serial numbers, our full protocol
has slightly different syntax than the earlier main-stage protocol. Specifically, consider the main
stage and the attribution protocols—we can view each client ¢’s input as not only x;,w; but also
{sxij, Bi,j}jepm)- The server’s input is S := Multiset (7, SXi j)icjn] jejm)). We will imagine that
the serial numbers sy, ; for the dummy pool and their commitments are sampled during the main
stage, so they are included in the input.
We can still prove the t-zero-knowledge property of the protocol with the new syntax.

Theorem 6.2. Given a security parameter A\, assume |F| is superpolynomial in A\, n —t > 19,

d > [% —&—2—‘. Moreover, suppose that the underlying NIZK satisfies zero-knowledge,
the commitment scheme is computationally hiding, the private retrieval of the merkle proofs are
achieved using a secure PIR scheme, and RO(-) is a non-programmable random oracle. Then, our

full protocol with blame attribution satisfies t-zero-knowledge.
The proof is deferred to Appendix B.
Misbehavior Identifiability. Here, we assume the adversary only controls corrupted clients and

the server is honest — if the server is malicious, it can arbitrarily report any client and there is no
guarantee whatsoever. We now show that the protocol satisfies misbehavior identifiability.

Theorem 6.3. Assume that

1. The server is honest and the adversary corrupts a subset of clients C C [n]. Honest entities
communicate through secure channels;

2. The shuffle protocol Fgnume Satisfies identifiable abort — the protocol identifies the clients that
do not submit the expected number of messages;

3. The NIZK scheme is sound;
4. The commitment scheme is computationally hiding and binding.
Then, the attribution protocol satisfies misbehavior identifiability, such that if the verification fails,

1. (No false implication) Except with negligible probability, the server will not report any honest
client;

2. (Attribution completeness) Except with negligible probability, the server reports at least one
client in C.

We defer the proof to Appendix B. Note that the attribution protocol may not identify all
corrupted clients. In the worst case, the adversary can rearrange the messages of the corrupted
clients even before the detection protocol begins, so that most of the corrupted clients can just
follow the protocol honestly and only a small subset of the corrupted clients will be identified.

7 Empirical Evaluation

Implementation. We use gnark [BPH'22], an open-sourced NIZK library to implement our
protocol. We implement the non-compliance detection protocol assuming a semi-honest adversary.
We do not implement the attribution protocol since our asymptotic analysis Theorem 6.1 shows the
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cost of the PIR parts dominates the overheads, while the remaining parts have the same asymptotic
costs as the detection protocol. Designing a good batch PIR scheme is itself an active research area
and is beyond the scope of this paper. We use a prime modulo field F, with r being a 254-bit
prime associated with the BN254 elliptic curve. We use a security parameter of A = 80. We
instantiate our protocol with two proof schemes, Groth16 [Grol6] and Plonk [GWC19]. Grothl6
requires a per-circuit setup and Plonk has a universal setup. We use the MiMC hash [AGR™"16]
for the commitment scheme with a 254-bit random salt. The experiments are run on single server
with a 2.4GHz Intel Xeon E5-2680 CPU and a 256 GB RAM. To avoid excessive repetition, we
only generate real proofs for 10 clients and generate dummy proofs for the others. We compute the
amortized cost accordingly.

Settings. We implement three use cases. In all three use cases, there are 1000 clients with no
more than 500 corrupted clients. We list the concrete settings here.

Shuffle-DP summation protocol with contribution constraint checking. We implement
the shuffle-DP summation protocol from Balle et al. [BBGN20].

e Each client has an integer secret value v; in [0,1000]. The client adds a noise y; to v;, where
y; is distributed as the difference between two independent random variables sampled from
Polya(1/n,e~%/1909) as specified in [BBGN20]. This ensures the final sum value satisfies e-
shuffle-DP with ¢ = 1.0. Each client will split its noisy value v; 4+ y; into 60 additive shares
(ensuring 80-bit statistical security) and the server sums up all the shares.

e Constraint: The contribution of each client to the final sum, i.e., v; + y;, is less than 1500."

Notice that for this implementation, we do not verify if the client’s noise is generated cor-
rectly. We propose a more involved protocol that can further verify the noise generation process
Appendix D.

Secure vector summation protocol with Ly norm constraint. We extend the secure sum-
mation protocol from Balle et al. [BBGN20] to sum vectors with an Lo norm constraint, which
applies to update aggregation in federated learning.

e Each client has a 50-dimension vector #;. The client splits the corresponding value in each
dimension of its vector to 60 additive shares and the server sums all the shuffled shares. A
client’s shares across different dimensions are unlinkable.

e Constraint: The Ly norm of each client’s vector, i.e., ||Z;]|2, is no more than 1000.

An anti-money laundering protocol for a simplified privacy-preserving transaction sys-
tem.

e Each client has 200 transactions of the form (src,dst,amt), denoting the source account number,
the destination account number and and the amount, respectively. For each transaction, the
client samples a random salt slt and computes the transaction’s MiMC [AGR"16] hash h =
Hash(src||dst||amt||slt). The server only sees all the shuffled hashes.

9We choose 1500 because the probability that an honest client’s noise being more than 500 is small enough. This
is only for demonstration and can be adjusted according to other scenarios.
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e Constraint: 1) The hash values are computed correctly. 2) The total amount sent to any indi-
vidual destination is no more than $10,000.

This setting is a simplified caricature of real-world transaction systems for demonstration pur-
poses.

7.1 Shuffle-ZKP Protocol’s Communication Cost

—e— Shuffle ZKP w/ Grothl6
Shuffle ZKP w/ Plonk

Comm. Cost per Client (KB)
w

10° 10° 10*
Honest Client Number

Figure 5: Empirical communication overhead per client in our protocol.

We define the per-client communication cost as the total bits each client communicates with
the shuffler and the server after the setup phase. The per-client communication cost is dominated
by the dummies used to mask the polynomial evaluations, independent of the concrete use cases.
Each client needs to send d = O(1 + ﬁ) dummies to the shuffler. Given more honest clients, the
dummies sent to the shuffler per client are less. With our parameter setting, each client will not
send more than 60 dummies to the server. The client will also send one commitment, one field
element denoting the masked local polynomial evaluation and one NIZK proof to the server. We
plot the communication overhead for our protocol in Fig 5 given different honest client numbers
and two different proof systems. Given a wide range of client numbers, the communication cost is
no more than 6KB.

7.2 Shuffle-ZKP Protocol’s Computation and Memory Costs

We measure the computation and the communication cost for three use cases and show the results
in Table 1. For each task, we repeat the experiment five times and report the average results. The
amortized server time shows the server’s total computation time amotized by the number of clients.
Since the clients also need to store the proving key to generate the proof, the proving key sizes
capture the clients’ storage costs. Moreover, we also measure the the number of constraints needed
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Use Case # Constraints Proving Key Size Client Time Amortized Server Time Communication Per Client

Based on Groth16

Shuffle-DP Sum 2.4 x 10* 4.2MB 0.2s 2.5ms 2.2KB

Vector Sum 9.9 x 10° 163.3MB 8.5s 3.7ms 2.2KB

Simple AML 8.2 x 10° 132.4MB 2.6s 3.5ms 2.2KB
Based on Plonk

Shuffle-DP Sum 3.6 x 10* 22.5MB 0.4s 2.7Tms 2.6KB

Vector Sum 1.3 x 106 721.4MB 10.6s 6.0ms 2.6KB

Simple AML 1.4 x 106 721.4MB 10.4s 2.8ms 2.6KB

Table 1: The computation and memory costs of Shuffle-ZKP protocol. “# Constraints” stands for number
of constraints in the corresponding constraint system after compiling the program with gnark [BPH™'22].
“Client Time” denotes the average of the clients’ computation time. “Amortized Server Time” denotes the
amortized computation time that the server spends on each individual client.

Components Shuffle-DP Vector Sum Simple AML

Total 2.4 x 104 9.9 x 10° 8.2 x 10°

Compliance Check 4.0 x 10? 2.0 x 103 7.6 x 10°

Commitment 2.0 x 10* 9.9 x 10° 6.7 x 104
Polynomial Check 61 3001 201

Table 2: Breakdown of the constraints required by each component during the proof generation process for
each task.

for each task after we compile the circuit to the R1CS constraint system. The constraint number
can be viewed as a proxy for the complexity of each task.

Client Time. As shown in Table 1, the client time depends on the concrete use cases, and the
Grothl16-based instantiation is faster than the Plonk-based instantiation in general. We observe
that the proof generation time is the dominant factor of the clients’ computation time, and the
more constraints it takes to describe the compliance rule, the more time it takes for the client to
generate the proof. The constraint number for the Shuffle-DP Sum use case is between 2.4 x 10%
to 3.6 x 10%, and the average client time is 0.2s to 0.4s. The other two use cases have around one
million constraints and the client time is significantly longer. The Grothl6-based protocol takes
8.5s and 2.6s per client for the Vector Sum and the AML tasks, while the Plonk-based protocol
takes 10.4-10.6s for those two tasks.

Server Time. The server computation is highly efficient — the amortized computation time (the
total server time divided by the number of clients) is no more than 11ms for all use cases. This
is because verifying a proof in Groth16 or Plonk only takes 5>\(1) time, and the server only needs
to evaluate the polynomial evaluation besides the proof verification, which takes Oy(nm) time in
total.

Storage Cost. The proving key sizes reflect the storage cost of the clients and also scale with
the constraint number. The Grothl6 system has smaller proving key sizes that are only 4.2MB
for the shuffle-DP summation and no more than 200MB for the vector summation and the simple
AML tasks. The plonk system has larger proving key sizes that are 22.5MB for the shuffle-DP
summation and around 700MB for the remaining tasks.
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8 Additional Related Work

Distributed ZK Proofs. Aside from Ozdemir and Boneh [OB22] and Dayama et al. [DPP22],
there are also several works study generic ZK proofs under different distributed settings. DIZK [WZC 18],
deVirgo [XZC"22] and Pianist [LXZ"23] mainly consider how to accelerate proof generation us-
ing multiple distributed workers. Notably, Pianist also provides a robustness guarantee that those
workers who output malformed proofs will be caught. However, these approaches do not provide
privacy guarantee against corrupted workers. EOS [CLMZ23] and zkSaaS [GGJ23] show how
a client with weak computation power can delegate the proof generation to a group of stronger
servers. EOS works under the setting where the client can stay online during the whole generation
process, while ZKSaas allows the client to go offline. Both of the constructions protect the privacy
of the witness against partially corrupted servers with different corruption thresholds, respectively.
Their constructions do not fit in our setting where multiple clients wish to generate a joint proof.

Verifiability in Aggregagtion protocol Bell et al. [BGL"23] proposed ACORN, an input
validation scheme for the pairwise-mask-based secure summation protocol (also known as secure
aggregation). ACORN requires each client to submit a Zero-Knowledge proof to prove the validity
of their inputs to the protocol (e.g. within a certain range). Notice that consistency is also one of
the main challenge in their setting. The protocol requires each client participates in then participate
in a collaborative version of Schnorr proof to ensure the summation of the masks used by the clients
is consistent with the aggregated mask value observed by the server. In our setting, the consistency
challenge is different: we care about the consistency of the set equality (and thus applying to
different applications) while ACORN cares about the consistency of the summation of masks.
There are also notable verifiable aggregation schemes [CGB17,BBCGT19,AGJ 22, DPRS23] in the
multi-server setting, which assumes the existence of mulitple non-colluding servers. Each client will
generate a secret-shared version of their inputs and send each shared piece to one of the serves. All
servers (act as distributed verifiers) and the client (act as the prover) jointly interacts in a proving
protocol ensure the inputs are valid. Instead, our work focuses on the single-server and muliti-client
setting.

Algorithmic Solutions to Regulate Privacy-preserving Financial Systems. Recently,
there has been a significant effort from academic researchers on seeking algorithmic solutions to
regulate privacy-preserving financial systems. Most of them focus on building new systems from
scratch with regulation capabilities. Our solution can be considered as an extra auditing or com-
pliance checking tool to existing systems.

Some previous works target traditional settings such as inter-bank transaction systems. ZK-
Ledger [NVV18] provides auditing capabilities for an auditor to look at an commitment-based
public ledger and ask a participant (usually a bank) to generate a proof that shows the compliance
and the consistency to the public ledger. ZKLedger solves the consistency issue by requiring each
transaction in the ledger to record the change of the deposits for all participants, thus a participant
has to use all transactions during the proofs. As an optimization, MiniLedger [CB21] uses crytpo-
graphic accumulators to reduce the cost of computing/storing the public ledger. Nonetheless, each
transaction in ZKLedger and MiniLedger requires an full coordination between all the pariticipants,
and thus only applicable when the number of participants are limited.

Some proposals aim to build regulation-friendly Central Bank Digital Currencies. For exam-
ple, PRCash [WKCC19] and UTT [TBA*22] are anonymous digital currency designs that enforce
an spending amount on users’ anonymous transactions given each time period. The privacy in
these systems are achieved by distributing the trust to multiple regulating agencies or validators.
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Account-based systems, such as Platypus [WKDC22] and PEReDi [KKS22], introduces per-account
history information accumulators and the user needs to prove their compliance against the history
accumulator, thus enabling compliance checking for the whole account history.

For the fully decentralized setting, Garman, Green and Miers [GGM16] extends the Decen-
tralized Anonymous Payment (DAP) abstraction [SCGT14] for fully decentralized cryptocurren-
cies. There proposal is a bitcoin-like (also known as UTXO-based) transaction system that adds
policy-related counter to each coin and includes a policy checking step when each unspent coin is
being consuming. Zhaolu, Wan and Wang [ZWW22] introduces a DAP system with filters and
supervisors, who identify suspicious transactions and initiate inspection operations, respectively.
Badertscher, Sedaghat and Waldner [BSW23] presents Unlinkable Policy-compliant Signatures for
DAP system, in which the re-randomizable public keys can ensure anonymity and a compliance
proof based on the sender/recipient’s attributes is verified during each transaction.

Cryptographic solutions are introduced to other types of new financial systems for regulation,
such as accountable private cryptocurrency exchange [LQT23] and privacy-enhanced coin-mixing
pool [BF23].
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A Proofs for Our Construction

In this section, we provide the missing proofs for the completeness, soundness, and t-zero-knowledge
for both the honest verifier protocol and the malicious verifier protocol.

A.1 Proofs for the Honest Verifier Protocol

A.1.1 Completeness Proof

Theorem A.1 (Completeness). The protocol satisfies completeness: for any \,n € N, for any
(x,w) such that R(x,w) =1,

Pr |pp < Setup(1*,n, R), I(pp,x, w) = 1] =1.

Proof. The completeness is straightforward.

A.1.2 Soundness Proof

Lemma A.2. Let F be a finite field. Let x1,...,x, € F, a € F\{0}, and let o,...,z},0/ € F.
Suppose that Multiset(zy, ..., zx) # Multiset(z], ..., z}). Then, it holds that
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Proof. Consider the two polynomials F(R) = [[;c,(R — 2;) and F'(R) = J[;¢, (R — ;). Since
Multiset(z1, ..., z,) # Multiset(z],...,z),), we know that the two polynomials are not the same,
ie., F(R) # F'(R).

e Case 1: a # o/. Since F(R) and F(R') are both monic polynomials, the two polynomials
aF(R) and o/ F(R') are not the same. Thus, due to the Schwartz-Zippel lemma,
Ianl n
Pr [aF(r) =d'F'(r)] < —.

r(i]F _‘ |

e Case 2: o =«/. Since o # 0, aF(r) = o F'(r) only happens when F(r) = F'(r). Again, due
to the Schwartz-Zippel lemma,

Pr [aF(r) =d'F'(r)] = I?Br [F(r)=F'(r)] < .

r&F r<F B ‘ |

O]

Theorem A.3 (Soundness). Suppose the field size |F| is superpolynomial w.r.t. the security pa-
rameter \, the commitment scheme is perfectly binding and the NIZK scheme satisfies soundness.
Then, our protocol satisfies soundness.

Proof. Before the random challenge is sampled, the server’s view contains pp, Multiset(x1, . ..,X,),
Multiset(y1, ..., ¥n), and {com;};cp,). Except with the negligible probability that some underlying
NIZK instance’s soundness is broken, if the server outputs “accept”, then for every i € [n], it must
be that there exists (x},7i,w;, p}) such that R;(x},w;) = 1, commit(1*, (x}, p});v;) = com;; and
[Liem (@5; —7) - p; =z

Henceforth we ignore the negligibly small probability that the NIZK’s soundness is broken, and
assume that the above equations hold. Since the commitment scheme is perfectly binding, the x/
and p} satisfying the above equations are already uniquely determined given com;, which must be
sent before seeing the random challenge » — we need this because later, to apply Lemma A.2, the
challenge r must be sampled independently of the x/s and pis.

Now, if the server passes verification, it must be that

[[ G-n-d= 1] @i-r-a

i€[n],je[m] i€[n],j€[m]
where
o =[]s a= JI wy
i€[n) i€[n],j€ld]

Due to Lemma A.2, we conclude that except with the negligibly small probability that a

bad challenge r is sampled, it must be that Multiset(x1,...,x,) = Multiset(x],...,x],) where
(x},...,x},) are uniquely determined by comy, ..., com,,.

Summarizing the above, except with negligible probability, if the server accepts, then there
exists a partitioning (x},...,x},) of the multiset Multiset(x1,...,Xy) which is uniquely determined
by comy, ..., com,, such that for every i € [n], R;(x}, w;) = 1.

O
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A.1.3 Honest-Verifier-Zero-Knowledge Proof

Additional preliminary.

Statistical Distance. For any two distributions X,Y on the same finite sample space D, the
statistical distance is defined as

SD(X,Y) = % S| Pr[X = a] = Pr[Y = a].
aeD

When the context is clear, given two random variables A, B, we also use the notation SD(A, B) to
denote the statistical distance between their empirical distribution.

Lemma A.4 ( [BBGN20]). Suppose n > 19,d > 4. Given an abelian group (G, -) and two vectors
. $
(H1y ey pin) and (ph, ..., 1) such that [Licp i = Tliep pi. Fori € [n], let yia,...,Yiac GY

be uniformly random variables subject to Hje[d] Yij = pi- Similarly, let yé}l, .. .,yad<i G% be uni-
formly random wvariables subject to Hje[d} Y, = M. Let Y = Multiset(y11,...,yna) and Y’ =
Multiset(yy 1,- - -, Yy, 4)- Then,

SD(Y,Y') < 2—U(n,d7\G|)’
where

o(n.d,|cl) = 92

1
 (ogyn — logy ) — 1 log, €.

Lemma A.5 (Key lemma for proving zero-knowledge). Given a security parameter A, assume |F| is

% + 2—‘ . Denote H as the honest client index set.

Given any {Ti j}icr,jefm] € FI*l™ and {2} Yiern jeim) € FIH™ such that Multiset({Zi ; }ic,jefm]) =
Multiset({z} ; Yic,jem)), given 7 & {%ijticn jem) also from F, the following distributions have
negligibly small in A\ statistical distance:

superpolynomial in A, n—t > 19, d > [

o Distribution 0: Sample {yi’j}z‘eH’je[d] at random from F, output the following terms:

Multiset({zi,; tic,jem)), 7 Multiset({y;; tien jea)
foreachieH: z = Hje[m] (zij—1)- Hje[d] Yi.j

o Distribution 1: Same as Distribution 0 except that each x; ; is replaced with x;]

Proof. First, consider the following hybrid experiment which is equivalent to Distribution 1 except
that the order in which the random variables are sampled is changed.

Experiment Hyb,:
e First, sample {z;};e at random from F/{0}.

e Next, for each ¢ € H, compute p; = z;/ Hje[m] (xi; — r), basically p; corresponds to the the
product of the terms {y; ;}je(a-

e Next, for each ¢ € H, sample {y; ; }je[d] at random subject to the constraint that their product
is i -

e Finally, compute and output the following terms:

Multiset({xi,j }ieH,jE[M] ); T,
Multlset({yi,j }ieHJE[d})v {Zz}ze’H
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Experiment Hyb;: same as Hyb, except that each w;; is replaced with 2} .. Hyb; is equivalent
to Distribution 1 except that the order in which the random variables are sampled is changed.
The key lemma follows directly from the following claim which we prove below.

Claim A.6. Hyb, and Hyb; have statistical distance negligibly small in \.

It suffices to show that conditioned on any fixed {z; }icy, Hyby and Hyb, are statistically close.
Since Multiset({z;; }icr, jem)) = Multiset({xgvj}ieﬁje[m]), we have

11 - 11 s .
i Wiem(@ig =) 25 Tiepm (25 — 1)

Then, we can directly apply Lemma A.4 and get that the statistical distance of the distribution of
Multiset({y:,; }icn, jelq) in Hybs and Hyb, is bounded by

o9~ {952 (logy (n—t)—log, €)+ log, ([F|-1)

Therefore, when d > [Ww + 2}, the statistical distance of A’s view between Hybs; and
go(n—t)—logy e

Hyb, is bounded by 27*.

O
Theorem A.7 (t-honest-verifier-zero-knowledge). Given a security parameter X\, assume |F| is
superpolynomial in A\, n —t > 19, d > [% + 21. Moreover, suppose that the NIZK
scheme satisfies zero-knowledge, and the commitment scheme is computationally hiding. Then, our
shuffle-model ZKP protocol satisfies t-zero-knowledge.

Proof. Let H be the set of at least n — ¢ honest users, and let C be the set of corrupt clients.

Real-world experiment. Below we first write down the real-world experiment where the ad-
versary A can see the view of the server and the clients in C.

1. pp < Setup(1*,n,R).
2. A(1*,n, pp) outputs {x;, w; };e[n where R;(x;,w;) =1 for i € [n] and some state st.

3. output st and the adversary’s view in an honest execution of the protocol, consisting of the
following terms:

(a
(b
(c
(d

Multiset({y: ; }icn, je[a)) Where the terms {y; ; }ien je|q) are all sampled at random from F/{0};
{com; }icn where com; := commit((x;, [T;cpq ¥is); %)

a random challenge r; and

(i, m;) for each ¢ € H, where z; := []
NIZK proof by client 4.

(e) All the other messages sent by the corrupt clients, including {y; ; }icc,jeq), and {com;, 2, 7; }iec
— without loss of generality, we can omit this part in our subsequent proofs due to Re-
mark A.8.

— — — "

jetm) (@i —1) 11 eq ¥ij» and m; is an honestly computed

Remark A.8. Since we are consider a semi-honest adversary, Item 3e above can always be gen-
erated honestly using {x;, w;}icc. Henceforth in our proof, we shall omit this part from the view.
Also, for part (a), the adversary actually gets from the shuffler Multiset({yi ; }icn) je[q). However,
since the adversary knows the part {yi7j}i€c7j€[d}, the new information the adversary can derive

from MUItiset({yi,j}ie[n],je[d]) is Multiset({ym}ieﬁje[d]).
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Experiment Hyb,. Experiment Hyb, is otherwise identical to the real-world experiment, except
that

e Inside the Setup algorithm, for any honest user i € H, instead of calling the real NIZK;.Gen
algorithm for honest users, now call the simulator of NIZK; to generate simulated common
reference strings and the trapdoors (crs;, 7;).

e Whenever the experiment needs to compute a NIZK proof on behalf of an honest user i € H, it
calls the simulator of NIZK; to generate a proof without using any witness.

Claim A.9. Suppose that the NIZK scheme satisfies zero-knowledge, then the real-world experiment
and Hyb, are computationally indistinguishable.

Proof. We can prove this through sequence of hybrids, such that one honest user at a time, we can
replace its crs; and NIZK proof with simulated ones. Any pair of adjacent hybrids are computation-
ally indistinguishable through a straightforward reduction to the zero-knowledge of the underlying
NIZK. O

Experiment Hyb,. Hyb, is almost the same as Hyb; except that when the experiment needs to
compute com; on behalf of an the honest client i € H, it now computes a commitment of 0 instead.

Claim A.10. Suppose that the commitment scheme is computationally hiding, then Hyb; and Hyb,
are computationally indistinguishable.

Proof. We can prove this through sequence of hybrids, such that one honest user at a time, we can
replace its commitment with a commitment of 0. Any pair of adjacent hybrids are computationally
indistinguishable through a straightforward reduction to the computational hiding property of the
underlying commitment scheme. ]

Experiment Hybs. Hybs is is almost identical to Hyb, except that we now sample r from
F\{Zij }icn, jem) rather than the entire field .

Claim A.11. Hybs and Hyb,y have statistical distance at most (n —t) - m/|F|.

Proof. Straightforward to see. O

Experiment Hyb,. Hyb, is almost identical as Hyb; except with the following modifications.

e Given Multiset({z; ; }icy je[m]), the experiment reorders the terms {z; ; };cy je|m] in any arbitrary
canonical order (e.g., from small to large). The reordered set is now denoted {7 ;}icp jem)-

e Whenever the challenger needs to use z; ; to compute a response to A, use ; instead.

Claim A.12. Supposen—t>19,d > {% + 2—‘ . Then, Hyb, and Hybs have statistical

distance at most 2.

Proof. Recall that the NIZK proofs and commitments for honest clients have been replaced with
simulated proofs and commitments of 0, so they are the same in Hyb; and Hyb,. The remaining
terms in Hybs; and Hyb, have negligibly small in A statistical distance by Lemma A.5. O
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Last but not the least, observe that in Hyb,, to compute the adversary’s view, the experiment
only needs to know Multiset({7; ; }icp je[m)) and pp but not the honest clients’ witnesses. Therefore,
the description of Hyb, uniquely defines a simulator Sim, such that Hyb, can be equivalently viewed

as the ideal experiment.
O

A.2 Proofs for the Malicious Verifier Protocol

We modify our shuffle-ZKP definitions in Section 2 to account for a non-programmable random
oracle:

e Completeness must hold regardless of the choice of the random oracle RO.

e For the soundness definition, one can view RO as an exponentially long random string appended
to pp, and the computationally bounded adversary can only query polynomially many locations
of RO.

e For the t-zero-knowledge definition, for the real-world experiment, one can also imagine that the
RO is an exponentially long random string appended to pp, but the adversary’s view only consists
of the polynomially many locations it has queried. For the ideal experiment, the simulator Sim
is allowed to query polynomially many locations of RO, too.

Theorem A.13 (Soundness of the upgraded protocol). Suppose the field size |F| is superpolynomial
w.r.t. the security parameter A, the commitment scheme is perfectly binding, the NIZK scheme
satisfies soundness, and RO(-) is a mon-programmable random oracle. Then, the above upgraded
protocol satisfies soundness.

Proof. The first part of the proof is the same as that of Theorem A.3, and we redescribe it below for
the reader’s convenience. Before the random challenge r is sampled, the server’s view contains pp,
Multiset(x1, . ..,Xy), Multiset(y1,...,yn), and {com;};c[,. Except with the negligibly small prob-
ability that some underlying NIZK instance’s soundness is broken, if the server outputs “accept”,
then for every i € [n], it must be that there exists (x},v;, w;, p;) such that

o Ri(xj,w;) =1;
e comm(1*, (x, p}); ;) = com;; and
o [Lepm (@i —7)-pi =2

Henceforth we ignore the negligibly small probability that the underlying NIZK’s soundness is
broken, and assume that the following expressions hold. Since the commitment scheme is perfectly
binding, x; and p) are uniquely determined given com;. If the server passes verification and the
underlying NIZK’s soundness is not broken, it must be that

[ @y-na= [ @i-na

i€[n],je[m] i€[n],j€[m]
where
o = H oh, o= H Yi,j
i€[n] i€[n],j€ld]

The main difference from the proof of Theorem A.3 is that to apply Lemma A.2, we need to
argue that the even when conditioned on the provers’ view right before the challenge r is opened,
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r is sampled at random from a sufficiently large random subset of IF,, (unless some negligibly small
probability event happens). We give the argument below. Suppose that the provers query the
random oracle RO(:) on a set of inputs denoted @) whose size |Q| is upper bounded by some
polynomial in A. Let Bad be the bad event that there exists 7’ € @, such that RO(r') = 7. It is not
hard to see that Pr[Bad] < % which is negligibly small.

If the event Bad does not happen, then even when conditioned on the provers’ view, the challenge

r is chosen at random from {[p/2] +1,...,p — 1}\@Q. In this case, using the same argument as
the proof of Theorem A.3, except with the negligibly small probability that some bad challenge
r is sampled, it must be that Multiset(x1,...,x,) = Multiset(x],...,x}) where (x},...,x],) are
uniquely determined by comy,...,com,,.

Summarizing the above, except with negligible probability, if the server accepts, then there
exists a partitioning (x},...,x},) of the multiset Multiset(x1,...,X,) which is uniquely determined
by comy, ..., com,, such that for every i € [n], R;(x}, w;) = 1.

]

Theorem A.14 (t-zero-knowledge of the upgraded protocol). Given a security parameter A, as-
2)\+logs (|F|—1)
log,(n—t)—logy e
the NIZK scheme satisfies zero-knowledge, the commitment scheme is computationally hiding, and
RO(:) is a non-programmable random oracle. Then, the upgraded protocol satisfies t-honest-verifier-

zero-knowledge.

sume |F| is superpolynomial in A\, n —t > 19, d > { + 2—‘. Moreover, suppose that

Proof. We now prove t-zero-knowledge of the upgraded protocol.

Real-world experiment. In the real-world experiment, the adversary A interacts with a chal-
lenger who acts on behalf of the honest clients denoted H, and implements the shuffler for A. The
experiment is described below:

1. pp < Setup(1*,n,R).
2. A(1*,n, pp) outputs {x;, w;};cy where R;(x;,w;) = 1 for i € H and some state st.

3. Run the protocol II where the honest clients’ inputs are {x;, w;};c and pp, and they interact
with the adversary A acting as the server and the corrupt clients:

(a) During the experiment, A can query RO(-).

(b) A outputs a commitment to a challenge 7.

(c) The challenger sends to A Multiset({: ; }ien, je(q)) Where the terms {y; j }icp jejq) are all sam-
pled at random from F/{0};

(d) The challenger sends to A the commitments {com; }ie3 where com; := commit((xs, [T;cq ¥i.5); %)-

(e) A outputs a random challenge r.

(f) If r passes the checks, the challenger sends to the adversary (z;,m;) for each i € H, where
zi=1]] jelm] (wi;—7)-11 jeld) Yi,j» and ; is an honestly computed NIZK proof by honest client
i.

The first two hybrids Hyb; and Hyb, basically make the same switches as the earlier honest-
verifier zero-knowledge proof, where we switch the NIZK setup for honest clients to simulated
setup, switch NIZK proofs for honest clients to simulated proofs, and switch commitments for
honest clients to commitments of 0. Assuming the NIZK scheme satisfies zero-knowledge, the com-
mitment scheme is computationally hiding, we can prove the Hyb,, Hyb;, Hyb, are computationally
indistinguishable with similar proofs of Claim A.9 and Claim A.10.

33



Experiment Hybs. Hybs is almost identical as Hyb, except with the following modifications.

e Given Multiset({; ; }ic2, je[m)), the experiment reorders the terms {; ; }icy je|m) in any arbitrary
canonical order (e.g., from small to large). The reordered set is now denoted {7 ;i jefm)-

* Replace each z; ; with a7 ;.

Claim A.15. Hyb; is statistically indistinguishable from Hyb,.

Proof. For i € {2,3}, define the intermediate hybrid Hyb/ that makes the following modification:
if the adversary ever finds two distinct inputs 9 and r; such that RO(rg) = RO(r1), the exper-
iment simply aborts outputting collision and we redefine the adversary’s view to be L. This
intermediate hybrid Hyb) has negligibly small statistial distance from Hyb; if the field size is super-
polynomial.

To conclude the proof, observe that Hyb), and Hybj have negligibly small statistial distance due
to Lemma A.5. In particular, in Hyb}, and Hyb%, conditioned on not aborting outputting collision,
effectively the adversary has uniquely committed to the challenge r when it submits . Note that
to apply Lemma A.5, the {y; ;}ien, j=[q) values have to be sampled independently of the challenge r,
and r has to be different than any z; ; (otherwise x; j —r = 0 will not be in the multiplicative group
F/{0}). Also, by construction, as long as the opened challenge r passes the check, it is guaranteed
that r does not collide with any x; ; since r is from a different half of the field . O

Last but not the least, observe that in Hybs, to compute the response to A, the challenger only
needs to know Multiset({z; ; }icn, jem)) and pp but not the honest clients’ witnesses. Therefore, the
description of Hybs uniquely defines a simulator Sim, such that Hybs can be equivalently viewed as
the ideal experiment.

O

B Proofs for the Blame Protocol

We modify the definition of the real and the ideal experiments in the definition of t-zero-knowledge
to fit the new syntax of the blame protocol. We say that a Shuffle-ZKP scheme (with blame
attribution) for the NP relations (Rq,...,R,) satisfies t-zero-knowledge, iff there exists a PPT
simulator Sim such that for any non-uniform PPT adversary A controlling the server and a set
of at most ¢ clients denoted C C [n], the adversary’s views in the following two experiments are
computationally indistinguishable where H := [n]\C:

1. Real:

e pp « Setup(1*,n, R); honestly sample the honest players’ {sxi.j» Bigr SXi.j Yier jelm)

o A(1*,n, pp, {sXij Yien,jeim)) outputs {x;, w;}iey where it is required that R;(x;, w;) = 1 for
i € H;

e run the protocol IT where A controls C and the server, and honest clients inputs are {x;, w; }ien

as well as {SXZ‘,J‘, 5i,j}i€%,j€[m]-

2. Ideal:

® (ppv T, {&Z,]}ZEH,jG[m}) — Slm(l)\a n, T‘,’)a
o A(1*,n,pp, {SXi; tiew,je[m]) outputs {x;, w;}ien where it is required that R;(x;,w;) = 1 for
i € H;
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o A now interacts with the simulator Sim(7, {x; }ies) which is provided only the multiset of the
honest clients’ input items Multiset({x; }ie3) but not the witnesses.

Theorem B.1 (Restatement of Theorem 6.2). The full protocol is zero-knowledge.

Proof. Consider the following sequence of hybrid.
Experiment Real. This is the real-world protocol.

Experiment Hyb,. Almost the same as Real except that we use the simulated setup algorithm
for the NIZK schemes and get a trapdoor. All NIZK proofs are now simulated with the trapdoor
and the simulated CRS.

Hyb, is computationally indistinguishable from Real through a straightforward reduction to the
zero-knowledge property of the NIZK scheme.

Experiment Hyb,;. Almost the same as Hyb, except that the PIR queries are simulated and the
response is ignored.

Hyb; is computationally indistinguishable from Hyb, through a reduction to the security of the
PIR scheme.

Experiment Hyb,. Almost identical as Hyb; except for any honest client ¢, we replace every sx; ;
and sy, ; with a fresh commitment of 0.

Hyb, is computationally indistinguishable from Hyb; through a reduction to the computational
hiding property of the commitment scheme.

Note that in Hyb,, the honest clients’ serial numbers {sx; ; }icy jem) and {sy; ; }ien,je(q) are no
longer dependent on the committed serial numbers {sx; ;}icw jem) and {sY; ;}ien,je(q)- Therefore,
the challenger need not sample the serial numbers {sx; ; }z‘e?{,je[m] upfront. In fact, it can delay the
sampling of {sx; j }icp jeim) and {sy; ; }ien,jelq) to exactly when the honest clients actually have to
send their serial numbers to the server.

Experiment Hyb;. Almost identical as Hyb, except that during the main phase of the protocol,
we call the simulator of the main phase (see Appendix A.2) with the input Multiset({x;}iex) to
interact with the adversary. Moreover, the simulator needs to bind a commitment of 0 to every
message it needs to send to Fgpufe-

Hyb; is computationally indistinguishable from Hyb, through a straightforward reduction to
the t-zero-knowledge property of the main phase protocol (proven in Appendix A.2).

Moreover, in Hybs, the challenger only needs to know Multiset({x;};c%) to interact with the

adversary, so it specifies the simulator and our ideal-world experiment.
O

Theorem B.2 (Restatement of Theorem 6.3). The protocol satisfies misbehavior identifiability.

Proof. We first prove no false implication given the underlying commitment scheme is computa-
tionally hiding. Specifically, a client ¢ can only be included in the report if one of the following bad
events happen: 1) its proof does not verify; or 2) a collision of the form sx; j = sxy j or sy, ; = sy,
is detected. If the underlying NIZK satisfies completeness, the first bad event will never occur.
We now prove that the second bad event does not happen except with negligible probability.
First, since honest client i’s the serial numbers are sampled at random, an internal collision sx; ; =
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SX;,j» OT Sy; ; = sy, »» cannot happen except with negligible probability. We now show that an external
collision sx; ; = sxy j or sy, ; = sy, j» also does not happen except with negligible probability.

Imagine that a challenger simulates the behavior of all honest clients and the server, and inter-
acts with the adversary controlling the corrupt clients. The adversary can query the whole S, and
§y. The adversary wins if any corrupt player ¢ can pass the proof verification, and moreover, it
submits a serial number that collides with any serial number chosen by the challenger.

We can build a hybrid experiment that instead of revealing the true sx; ; and sy, ; values to the
adversary during the PIR phase, we simply reveal fresh commitments of 0.

The probability that any efficient adversary wins in Hyb, is negligibly apart from the probability
that it wins in Real through a straightforward reduction to the computational hiding property of
the commitment scheme, assuming the honest parties are using secure communication channels.

Now, the view of the adversary is not related to the true serial numbers chosen by the challenger.
Therefore, we can equivalent imagine that the true honest serial numbers sx; ; and sy, ; are only
sampled at the very end when the experiment needs to determine if the adversary wins. Therefore,
the probability that the adversary wins is negligibly small.

Blame completeness. Consider the main stage and the blame protocols. Let each client 4’s
input be {x;,w;} as well as {sx; j, Bi;}tic[n] jepm)- We assume that for any honest client i, its input
w; is a valid witness for the relation R;. We want to show that assuming that the Merkle hash tree
satisfies collision resistance, the NIZK scheme is sound, and the commitment scheme is perfectly
binding, except with negligible probability, the following holds: if the server is honest but the main
stage protocol fails verification, then, at least one corrupt client will be reported.

Only the following bad events can cause the main protocol to fail verification:

1. Finume aborted. As long as Fgnume satisfies identifiable abort, our protocol reports whoever
Fshuffle TEPOTtS.

2. There is any invalid proof. In this case, our protocol those who submits it.
3. All proofs verify but the product check failed.

It suffices to show that except with negligible probability, in Case 3, our protocol will report
at least one corrupt client too. We prove this below. If some corrupt client’s proof in the blame
phase fails to verify, then the claim trivially holds. Ignoring the negligible probability that the
adversary can break the collision resistance of the Merkle hash tree, or the soundness of NIZK,
or the computational binding property of the commitment scheme, as long as all corrupt clients’
proofs verify, the following claims must be true for every corrupt client i:

e com; commits some to X, = (1, ..., ) and p; such that the z; revealed to the server during
the main stage is the correct productNZZ- =ITjepm (27 —7) - pi; moreover, there exist {sX; ;}jc(m)

such that each (x; i sx;,j) belong to S, and sx; ; is a correct commitment of sx; j;
e there exist (Y 1,Y;1)s---» (¥; 4»Yi,q), such that each (y] ;, sy, ;) belongs to gy, and p; = [[;e1q ¥i 5
and moreover each SNy,U is a correct commitment of sy, ;.

We now consider the following cases. First, suppose that in the above, there is some corrupt
(372 j sx;,j) tuple or some some corrupt (yé o sy; ;) tuple equal to an honest client’s submission. Since
the sx; ; (or sy, ;) binds to a unique serial number and the NIZK is sound, the server must detect
a collision in the revealed serial numbers, and will therefore report corrupt client ¢. Henceforth,
we may assume that the corrupt (; ;,s%;;) tuples and (y; ;,sy; ;) tuples are not equal to any
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tuple submitted by an honest client. Since the verification of the main phase failed but all proofs

verified, it must be that [ [;cc jeim (275 —7) lice jeia Yi5 7 Lice jepm (ig —7) Tice jepa) vig where

C C [n] denotes the set of corrupt clients, and {=;;}icc jeim) and {¥i;}ticc,jeq are the corrupt
" Sy. ;) must come from the corrupt clients’ contributions to S, and S, respectively. This means

(Yi ;Y3 p y Tesp y

that there must be some (27 ; ,Xigj0) = (T}, j,sXir1) OF (Vi ior Viojo) = Uiy j1»Viy,j,) Where

10, Jo i1,71) and ig,i1 € C. Therefore, the server can detect a collision when the corrupted

J
clients open their serial numbers and the corrupt clients iy and i; will be reported.

clients’ contributions to S, and §y respectively. Further, we also know that each (7 ;,sx; ;) and

O]

C Extension: Using a Computationally Binding Commitment

In practice, we often want to use a computationally binding commitment instead of a perfectly
binding one, since such commitments can be succinct. In this section, we provide the modified
proofs for our protocol for the case of a computationally binding commitment.

Computationally binding, non-interactive commitment. A non-interactive computation-
ally binding commitment scheme for messages of length ¢ has the following possibly randomized
algorithms:

e pp + Gen(1"): takes in a security parameter in unary form 1* and samples the public parameters
PP;

e com < commit(pp,x): takes in the public parameters pp, a message = € {0, 1}4, and outputs a
committed value com. Sometimes we write commit(pp, ;) to mean that r is the random coins
consumed by the commit algorithm.

We want the following security properties.

e Perfectly hiding. For any )\, with probability 1 over the choice of pp < Gen(1?), it must be that
commit(pp, ) is identically distributed as commit(pp, 2).

o Computationally binding. For any non-uniform PPT adversary A, there exists a negligible
function negl(-) such that

Pr |pp <+ Gen(l)‘), (z,r 2, ") «— A1, pp) : commit(pp, z;7) = commit(pp, z’; ") A x # 2’| < negl(\)

Modified proofs when using a computationally binding commitment. If we switch the
non-interactive commitment scheme to a computationally binding one, the honest-verifier-zero-
knowledge or zero-knowledge proofs still work. We now give a modified proof of soundness assuming
that the underlying NIZK satisfies knowledge soundness.

Theorem C.1 (Soundness (variant)). Suppose that the field size |F| is superpolynomial in the
security parameter X\, the commitment scheme is perfectly hiding and computationally binding, and
the NIZK satisfies knowledge soundness. Then, our Shuffle-ZKP protocol of Section 5.1 satisfies
soundness.

Proof. Suppose that the underlying NIZK satisfies knowledge soundness. This means that there
exists an efficient extractor X' 4 such that except with negligible probability, if the server outputs
“accept”, the extractor can output {(x}, i, Wi, p;)}ic[n] Such that
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o Ri(x),w;) =1;

e commit(1?, (x}, p});vi) = com;; and

d Hje[m} (%,j =) p} = 2.

The rest of the proof follows in the same manner as the proof of Theorem A.3. 0

Theorem C.2 (Soundness of the upgraded protocol (variant)). Suppose that the field size |F|
18 superpolynomial in the security parameter X\, the commitment scheme is perfectly hiding and
computationally binding, and the NIZK satisfies knowledge soundness. Then, the upgrade protocol
of Section 5.2 satisfies soundness.

Proof. Suppose that the underlying NIZK satisfies knowledge soundness. This means that there
exists an efficient extractor X4 such that except with negligible probability, if the server outputs
“accept”, the extractor can output {(xj,7i,w;, p}) }icp) such that

° Ri(x;,wi) = 1;
e commit(1*, (x}, p}); 7i) = com;; and
. Hje[m] (%j —r)-pf = zi.

The rest of the proof follows in a similar way as the proof of Theorem A.13 by arguing that
unless the adversary submitted a random oracle query and found the pre-image of the committed
challenge, the random challenge r must be sampled at random from a sufficiently large space even
when conditioned on the adversary’s view right before the challenge r is opened. O

D Shuffle-DP Mechanisms with Verifiable Randomness

Differentially private mechanisms intrinsically rely on randomness to perturb the secrets and achieve
privacy. The random pertubation poses a challenge for compliance checking and the following
example shows the dilemma.

Suppose there are multiple clients and each client has a secret value, denoted as v. As in the
shuffle-DP summation protocol [BBGN20], the mechanism adds a random noise y to the value
and then the server and the clients run some secure summation protocol based on shuffling, which
outputs the sum of all the noisy values. Now, suppose a malicious client wants to perturb the final
outcome. It can simply have a valid input v (e.g. within a certain range), but instead of drawing the
noise from the right distribution, it can abitrarily generate a random noise y. However, with some
small probability, an honest client could also randomly draw a noise that is significantly deviating
from the mean. It seems like we do not have a good way to distinguish an anomaly noise is from
malicious behaviors or just from the honest behavior with bad luck.

Biswas and Cormode [BC22] proposed verifiable differential privacy in the trusted curator
model. Inspired by their work, we briefly introduce a generic construction for verifiability for
the shuffle-DP model, combining Shuffle-ZKP protocol and Blum’s coin tossing protocol [Blu83].
Since we aim to remove malicious client behaviors, this protocol assumes a semi-honest server.

We abstract the local perturbation function of any shuffle-DP mechanism as M (v; p) where x is
the secret input and p is a binary random string consumed by the mechanism, such that M(v; p) is
a deterministic function. Each client sends all the outputs of M(v; p) to the shuffler, and the server
only observes the shuffled results. The server then computes some useful statistics based on the
shuffled set. For example, in the private summation protocol [BBGN20], the randomness is used to
generate two discrete negative binomial noises and for random rounding and the mechanism outputs
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many additive shares of the sum of the noise and the original input. Or, in the private histogram
protocol [GGK™21], the randomness is used to generate dummy items and the mechanism outputs
the dummies along with the original input item.

Now, suppose p is a private random string that is guaranteed to be unbiased, a client can use
our Shuffle-ZKP protocol to prove that: 1) v is a valid input; 2) given p, z1,...,Z,, are indeed the
correct outputs of M(v; p). Assuming the soundness of the underlying ZK proof system, we enforce
each client to follow the right perturbation process, and malicious client’s only hope is to perturb
the random coin p.

We can use a variant of Blum’s coin tossing protocol to avoid this loophole. A client is required
to first locally sample a random string, say p; and send the commitment of p; to the server. The
server then sends back a random string ps to the client. Now, the client uses p = p; @ p2 as the
random string in the mechanism M. In addition, during the execution of Shuffle-ZKP protocol,
the client also needs prove that: 1) the commitment of p; is computed correctly; 2) p is computed
correctly, p = p1 @ p2. The hiding property of the commitment and the zero-knowledge property of
the underlying proof system ensure that the server still learns nothing about the random string p,
thus the shuffle-DP mechanism remains private. The binding property of the commitment ensures
that p = p1 @ po is unbiased, as long as the server indeed samples an unbiased ps.

This protocol adds one extra round of communication that the clients need to send a commit-
ment first and the server has to send a random string back to each client.

Remark. Although being clean in terms of theoretical description, the protocol might not be
directly practical. One of the main obstacles is that the most of the randomized functions used
in shuffle-DP mechanisms, i.e., those M(v; p), heavily rely on floating number operations (e.g. to
sample noise from some distributions). Supporting floating number operations in ZK proof systems
are notoriously challenging [G.JJZ22]. Therefore, we believe that designing simple mechanisms tha
can be efficiently proven in ZK systems is an interesting open problem for future shuffle-DP research.
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