Beyond the Blockchain Address:
Zero-Knowledge Address Abstraction

Sanghyeon Park
Seoul National University
Seoul, Republic of Korea

lukepark @snu.ac.kr

Hyeonmyeong Cho
UNIST
Ulsan, Republic of Korea
heyitsme @unist.ac.kr

Jeong Hyuk Lee
Hanyang University
Seoul, Republic of Korea
ahoo791 @hanyang.ac.kr

MinGi Kim
Sungkyunkwan University
Seoul, Republic of Korea

lupin1001 @skku.edu

Seunghwa Lee
Kookmin University
Seoul, Republic of Korea
ttyhgo @kookmin.ac.kr

Hyun Ki Cho
Sogang University
Seoul, Republic of Korea
blockchain@sogang.ac.kr

Jung Hyun Chun
Hanyang University
Seoul, Republic of Korea
jungdev@hanyang.ac.kr

Soo-Mook Moon
Seoul National University
Seoul, Republic of Korea

smoon@snu.ac.kr

Abstract—The integration of web2 identities into the web3
blockchain has been a challenging area of research. Existing
methods use a mapping approach, linking web2 identities to
blockchain addresses, resulting in limitations such as identifier
fragmentation across different blockchains.

In this paper, we propose a novel solution, zero-knowledge
Address Abstraction (zkAA), which eliminates the need for
mapping and enables the direct use of web2 identity in the
blockchain. Our solution leverages zero-knowledge proofs verified
by smart contracts, allowing users to operate in the blockchain
using their web2 identity without any address-related restrictions.
The identity used in zKAA is based on the certificate issued
by a trusted institution and registered as a hidden form in the
blockchain.

Our zKAA solution is implemented as a smart contract on
top of the Ethereum blockchain, providing easy integration with
existing systems without the need for a hardfork. We conducted
an implementation and evaluation of zkAA on Ethereum, where
we found that the cost of registering an abstract identity is $7.66
and the cost of publishing an abstracted transaction is $4.75.
On Polygon, the cost is much more favorable, with a cost of
$0.02 for registering and $0.01 for publishing, as of January 13,
2023. In addition, we found that the time taken for generating
proofs for registering is approximately 9.57 seconds and the time
cost for publishing is approximately 3.49 seconds on an average
local machine. This suggests that the client has adequate time to
generate proofs within a single block.

Keywords—identity management; blockchain; decentralized
applications; privacy-preserving; zero-knowledge proofs;

I. INTRODUCTION

The rapid growth of blockchain technology has given rise to
the proliferation of decentralized applications (dApps). How-
ever, despite their decentralized nature, dApps often require
centralized authentication methods, such as social login or
Know-Your-Customer (KYC) processes, for efficient operation
and to mitigate malicious activities, such as Sybil attacks
[12]. In integrating web2 identities into the web3 blockchain,
previous approaches have encountered several challenges.
These approaches center around mapping external identities to
blockchain-specific addresses, which can result in difficulties
in effectively utilizing external identities on the blockchain

and increased complexity in identification from dApps. This
becomes particularly problematic in multi-chain dApps, where
the management of multiple blockchain-specific addresses
becomes a challenge, leading to fragmented digital identities
for both service providers and users. The use of blockchain-
specific addresses also results in the public linkage of external
identities and addresses on the blockchain, which can result
in privacy leaks given the transparency of the blockchain and
its ability to trace the full history of an account distinguished
by its address.

A. Address Abstraction

To address these challenges, this paper proposes the Address
Abstraction (AA) scheme, which allows for the direct use of
external identities cert, such as JSON Web Tokens (JWTs)
[20], as blockchain identifiers, without mapping them to
blockchain-specific addresses. In the AA scheme, such as the
hash output H (cert), is used as the web3 identifier. This non-
blockchain-specific identity scheme enables the creation of a
unified multi-chain identity, regardless of the signature and
address system, and enables users to leverage the benefits of
both web2 and web3 technologies seamlessly.

However, straightforward implementations of the AA
scheme through hash-only schemes or Merkle tree approaches
can result in privacy and unsustainable issues, as they lack
privacy-preserving cryptography. To address these challenges,
this paper proposes zkAA, a zero-knowledge Address Abstrac-
tion solution that leverages zero-knowledge proofs [16], [17]]
for identity verification on the blockchain. In a nutshell, zZkAA
introduces a novel approach to incorporating external identities
into the blockchain, using certs and zero-knowledge proofs,
without mapping to blockchain addresses. This eliminates the
need for private key storage, provides an effective solution
for identity management, and enables the development of
seamless multi-chain and web2-web3 hybrid dApps. Table [
provides a comparison between traditional blockchain ad-
dresses and the proposed identifier, denoted as H(cert).

mailto:lukepark@snu.ac.kr
mailto:ahoo791@hanyang.ac.kr
mailto:ttyhgo@kookmin.ac.kr
mailto:jungdev@hanyang.ac.kr
mailto:heyitsme@unist.ac.kr
mailto:lupin1001@skku.edu
mailto:blockchain@sogang.ac.kr
mailto:smoon@snu.ac.kr

TABLE I: Comparison of Address and #(cert) as Identifiers on the Blockchain

Identifier | Definition [Purpose [Issuing Authority

Address A public identifier employed for con- | To furnish a means of identifying and managing digital | Generated by individual users, not
ducting on-chain transactions. assets in a blockchain. issued by a central authority.

H(cert) A solution utilizing certificates certs | To tackle the challenges associated with mapping exist- | certs can be issued and verified by

in ZkAA as a form of identification within a | ing external identities into blockchain-specific identities. | trusted Web2 certificate authorities.
blockchain.

Identifier | Underlying Cryptography [Secret Chain-Specific [Cost

Address Public Key Cryptography (& Hash) | Private Key Yes. Typically low, with only minimal fees incurred

for transaction processing.
H(cert) Zero-Knowledge Proofs & Hash Certificate, such as | No. Identifiers remain | The cost of implementation is contingent upon
in zkAA JSON Web Token consistent across multi- | the specifics of the implementation, but, in
ple chains. general, the use of ZKPs increases the cost.

The implementation of zkAA is achieved through the use
of smart contracts on top of existing blockchain infrastructure,
making it easy to integrate with existing systems and applica-
tions and eliminating the need for a hardfork process.

B. Contributions

The focus of this paper is to present a unique approach
to address abstraction in blockchain systems, utilizing zero-
knowledge proofs. The key contributions of this paper are as
follows:

« We introduce a new identity system, address abstraction,
to overcome the limitations of traditional blockchain-
specific identity and signature systems.

« We present a novel scheme for address abstraction named
zkAA, zero-knowledge Address Abstraction, which lever-
ages zero-knowledge proofs to offer strong privacy guar-
antees and practicality.

o The paper demonstrates the integration of zkAA with
multi-modal decentralized applications, including multi-
chain and web2-web3 hybrid systems, to provide a seam-
less user experience in blockchain systems.

« The paper presents the implementation and evaluation of
zkAA on the Ethereum [46], along with a comprehensive
analysis of its performance and efficiency.

The organization of this paper is as follows: In Section[[I} a
comprehensive background is presented to provide a clear un-
derstanding of the concepts involved in the material presented.
In Section the necessary notations and definitions are
defined to ensure consistency throughout the paper. In Section
the design and implementation of a naive solution for ad-
dress abstraction are described and its limitations are analyzed.
In Section [V| our proposed solution, Zero-knowledge Address
Abstraction (zkAA), is introduced. zkAA leverages the power
of zero-knowledge proofs to overcome the limitations of the
naive solution. In Section [V} a sequence diagram is provided
to outline the potential applications of zkAA. In Section
experiments are conducted to evaluate the performance and
overhead of zkAA. In Section the potential for future
work and enhancement of zkAA is discussed. In Section
related work in the field of identity management in web3
is reviewed. Finally, in Section our proposed scheme is
summarized and its strengths are highlighted.

II. BACKGROUND
A. JSON Web Tokens

JSON Web Tokens (JWTs) [20] are widely used open
standards for securely transmitting claims between parties.
They are commonly used for authenticating users and passing
user information between systems, especially as access tokens
in API authentication. JWTs are signed using public/private
key cryptography algorithms to ensure their authenticity and
integrity. Elliptic curve-based algorithms, such as EADSA [2],
[21]], are particularly secure and efficient for this purpose. The
signature created through this process confirms that only the
entity holding the private key could have signed the token,
thereby certifying the authenticity of the source of the JWT.

This paper presents an effort to integrate a certificate, such
as JWT, into the blockchain ecosystem, without mapping to
blockchain addresses. The utilization of certificates issued and
verified by trusted institutions offers a convenient and effec-
tive solution for identity verification, particularly in scenarios
where mapping to blockchain addresses is not necessary.

B. Blockchain and Smart Contracts

The advent of blockchain technology and smart contracts
has established itself as a transformative solution for secure
and efficient data storage and contract execution. A blockchain
is a distributed ledger that employs cryptographic techniques to
securely record transactions across a network of nodes, where
the integrity of the data is maintained through the consecutive
creation of blocks that form a chain, making it resistant to
modification [30]. One of the leading blockchain platforms
is Ethereum [46], which provides an infrastructure for the
creation and operation of smart contracts. The Ethereum
Virtual Machine (EVM) operates in a decentralized environ-
ment, executing smart contracts through a global network of
public nodes and using the cryptocurrency Ether (ETH) as the
medium of exchange for transaction fees and computational
services. Smart contracts have also found applications in iden-
tity management, as demonstrated by decentralized identity
managements [[I-C

In this work, we introduce a new identity management
system, named zkAA, that integrates the use of smart contracts
to achieve privacy-preserving verification of web?2 certificates.
Our implementation is based solely on the functionality of

Ethereum Virtual Machine (EVM), allowing for seamless
integration into existing blockchain networks without the need
for a hardfork, thus increasing feasibility.

C. Decentralized Identity Management

Decentralized identity management refers to the utilization
of blockchain technology to allow entities to create, store, and
manage their own digital identity, without relying on central-
ized authorities or databases. Examples of decentralized iden-
tity management systems that run on the blockchain include
Proof of Attendance Protocol (POAP) and SoulBound Tokens
(SBTs). POAP [19] is a platform that leverages blockchain
technology to create collectible tokens representing personal
experiences, while SBTs [43]] serve as nontransferable Non-
Fungible Tokens (NFTs) that form the foundation of the
Decentralized Society trend in web3.

Howeyver, these solutions are based on the web3 identifier,
also known as the blockchain address. In order to directly use
a web2 identity on a web3 platform, mapping between the two
identities is necessary. Whereas in the case of our proposed
identity system, address abstraction, the web2 identity is uti-
lized directly on the blockchain, without the need for mapping
to a web3 identity.

D. Account Abstraction

In the Ethereum blockchain, Account Abstraction is a
technique that aims to unify External Owned Accounts (EOAs)
and Contract Accounts (CAs). EOAs are traditional blockchain
accounts controlled by a private key, enabling users to sign
transactions and interact with the network. On the other hand,
CAs do not have a corresponding private key but possess
program codes and storage. Account Abstraction enables in-
tegration of the features of both EOAs and CAs, allowing
for programmability features in EOAs and signing capabilities
in CAs. This integration can be achieved either through a
hardfork on the Ethereum network [44] or a contract-based
wallet solution without the need for a hard fork [7]).

In contrast, our proposed Address Abstraction is a new
concept in the blockchain. Our proposed solution abstracts
the user identifier from the conventional blockchain address
to an abstracted unified identifier. This simplifies identity
management and enhances inter-compatibility across various
blockchains by enabling users to interact with the blockchain
using a single credential, thereby eliminating the limitations
imposed by the underlying blockchain address systems that
may vary between different blockchains.

E. Zero-Knowledge Proofs

The field of cryptography and blockchain technology has
seen a surge in interest in Zero-Knowledge Proofs (ZKPs) as
a solution to privacy and security challenges. Zero-knowledge
proofs were first introduced in [[I16] as a mechanism for
verifying the authenticity of information without requiring
the revelation of the underlying data. Since the initial in-
troduction of zero-knowledge proofs, the field has undergone

significant advancements, including the development of zero-
knowledge Succinct Non-Interactive Arguments of Knowledge
(zk-SNARKS) [17]. This technology allows for the efficient
and succinct verification of information, making it an ideal
solution for blockchain-based systems. A popular tool used in
the development of zero-knowledge proofs is ZoKrates [13], a
toolkit for writing, compiling, and executing ZKP-based smart
contracts on the Ethereum blockchain.

The zero-knowledge protocol employed in this pa-
per includes three functions: zkp.Setup, zkp.Prove, and
zkp.Verify.

e crs < zkp.Setup(R): This function takes as input a rela-
tion R and returns a Common Reference Strings (CRSs),
crs, which are public parameters for proof generation and
verification.

o m < zKp.Prove(crs,io;w): This function is utilized to
generate a proof m based on the input values of crs,
public input/output ¢o, and private witness w. The proof
is generated in such a manner that the witness w remains
hidden during the verification process.

e 0/1 < zkp.Verify(crs,io, 7): This function verifies the
validity of a proof m by taking as input the crs, in-
put/output o, and proof 7. The function returns a binary
outcome, either O or 1, indicating whether the verification
was successful (1) or failed (0).

III. DEFINITIONS
A. Notation

In this paper, we use the following notations. The adversary
is represented by A and its output is represented as A(x),
where z is the input. The function u(x) represents a negligible
function, which approaches zero. The order-related symbol,
a > b, is used to denote that a cannot occur before b.
A web2 certificate, such as a JSON Web Token (JWT), is
represented by cert, and it is assumed that a trusted third
party provides the cert corresponding to the user’s private
personal data pwd, such as a password. The public key of
the trusted institution is denoted as pk. The function H is
utilized to generate a universally consistent identifier ¢d from
the certificate cert. For example, this is achieved through
the application of a cryptographic hash function, expressed
as id < H(cert). The identifier or identity of a specific
user user® is represented as id®. Let M be a set of all
executable messages. The user request, which consists of
(target, funcsig, calldata, value), is denoted as msg € M.
These parameters (target, funcsig, calldata, value) make up
the context of the user request. The function funcsig is
executed on the target address through an internal transaction,
with calldata and value ETH. Finally, two relations are
defined: Ry for id registration and Rp for msg publication
using ¢d. The symbol L indicates that a value is not consid-
ered.

B. Address Abstraction

The proposed concept of address abstraction refers to the
abstraction of the identifier system in blockchain, which is

decoupled from the underlying blockchain platform. This
approach allows for the registration and usage of identity to
be independent of the specific characteristics and features of a
given blockchain. In this work, we present a novel definition
of address abstraction in relation to abstracted identity and ab-
stracted transaction, which encompasses the functions: SETUP,
CERTIFICATE, REGISTER, and PUBLISH. The function of
REGISTER facilitates the registration of an identifier as an
abstracted address, while the function of PUBLISH allows for
the publishing of transactions using the abstracted identifier.

Definition IIL.1 (Address Abstraction). Let Rr and Rp be
relations for registration and publication, respectively. The
private data of the user, utilized in web2, is referred to
as pwd. In order to achieve an abstracted identity id of
user and to be able to publish the abstracted transaction
msg, the scheme must possess four key functions (SETUP,
CERTIFICATE, REGISTER, PUBLISH).

e (ppRr,pPp) < SETUP(RR,Rp): This function generates
the public parameters ppy and ppp for registration and
publication, respectively. The inputs to the function are
the relations R and Rp.

e (pk,cert) «+ CERTIFICATE(pwd): This function enables
a user to request a certificate from a trusted institution.
The user submits their personal information, pwd, and the
trusted institution returns a certificate, cert, and its public
key, pk. The public key serves to identify the certificate
authority and verify the validity of the certificate.

e (0/1,idchain) < REGISTER(ppg, id, pk, mr): This func-
tion allows a user to register the abstracted identity, id,
derived from the certificate cert through the application
of H (i.e., id < H(cert)) on a blockchain, chain. The
inputs to the function include the public parameters ppp,
id, the public key pk, and a proof 7wp that verifies the
validity of ¢d. It is not necessary for the verification
of ¢d to occur immediately. It is acceptable for the
verification to occur prior to the first publishing of the
abstracted transaction. The output of the function includes
the validation status of the identifier id, where a value
of O represents an invalid identifier and a value of 1
represents a valid one. Additionally, the function returns
the blockchain-specific explicit identity, id.jqin, Which
may or may not be equivalent to id, for supporting
compatibility with other smart contracts on the same
blockchain. The comprehensive information regarding
tdchain can be found in Section [V-C| and

e (0/1,7es,,) <« PUBLISH(ppp,id, msg, m,wp): This
function allows the execution of a submitted request msg
upon the provision of valid proof 7p about an identifier
id, based on the public parameters ppp. The input of
a monotonic increasing counter m is required to ensure
that the submitted msg is processed chronologically. The
result of the execution of the m-th message is represented
by res,,. If the execution is success, returns (1,7es,,),
or (0,0), otherwise.

The address abstraction must conform to two properties

to ensure its functionality: Unique Identifier and
Immutable Request ([IL.3). These properties are crucial in
maintaining the security and integrity of the address abstrac-
tion system.

Unique Identifier. A Unique Identifier is a property that

ensures a user’s identity is unique ([njectiveness), controlled
only by the user who holds the secret (Unforgeability]), and
publicly verifiable (Correctness).

Definition IIL.2. The system (SETUP, CERTIFICATE, REGIS-
TER, PUBLISH) has unique identifier id® for user®, if id®
meets the [Injectiveness| [Unforgeability} and |Correctness|

for all (cert®, cert’), cert® # certy = id® # id?
(Injectiveness)

for all adversaries A,

Pr[ﬂ'ﬁ (_A(ln)Opmm(-)-Ocert(‘);

(sp, L) < PUBLISH(ppp, id, msg, m, Th) :

sp =1, (id, Trﬁ) & OproveNert & Ocert s.t. id = H(cert)]

< p(k) (Unforgeability)

where Opyove(¢) is an oracle that can receive the any
identifier ¢d and a proof wp for any unqueried 7wp, and
Ocert(+) is an oracle that can generate a cert for any pwd.

Pr[(ppgr,ppp) < SETUP(RR, Rp);

(pk, cert) < CERTIFICATE (pwd); id < H(cert);

($r, L) < REGISTER(ppp, id, pk, TR);

(sp,L) < PUBLISH(ppp,id,msg,m,mp) : sSg A sp = 1]

=1 (Correctness)

A user possessing a valid cert can always generate a proof
mr and 7p for all executable messages msg € M and a
monotonically increasing counter m, to the verifier.

Immutable Request. This property means that requests made
under a registered identity can only perform the specified
actions and cannot be altered in transit. This is crucial in
avoiding front-running attacks [26]], where malicious actors
observe the transaction and try to modify requests to gain an
advantage.

Definition IIL.3. Requests on the system (SETUP, CERTIFI-
CATE, REGISTER, PUBLISH) is immutable, if the system

ensures the constraints [Chronicle] and [Tamper Resistance]
execution of msgs.

for all m > 0,msg,,, 1 = msg,, (Chronicle)

for Vmsg' # msg, msg € M,
Pr[(ppr,ppp) < SETUP(RR, RpP);

(pk, cert) <= CERTIFICATE(pwd); id < H(cert);
(sgr,L) < REGISTER(ppg, id, pk, 7R);

msg’ < A(ppp,id,m,mp);

(sp, L) + PUBLISH(ppp,id,msg’,m,7p) : sp = 1]

< p(k) (Tamper Resistance)

C. Privacy-Preserving Address Abstraction

Privacy-Preserving. The property of a system that protects
users’ personal information, such as JWT, from public disclo-
sure. It guarantees that the information is kept confidential and
does not reveal sensitive details to unauthorized parties.

IV. NAIVE APPROACH TO ADDRESS ABSTRACTION

Address abstraction, we proposed, is a novel concept in
blockchain that aims to simplify identity management by ab-
stracting away the underlying cryptography. The fundamental
idea behind address abstraction is to utilize the web?2 certificate
cert to generate a unique, secure, and concise identifier
id < H(cert) for users on the blockchain. In this section,
we will introduce two naive approaches to address abstraction,
namely the hash-based approach and the Merkle tree approach.

A. Hash-based Approach

In this section, we present a hash-based scheme for iden-
tifying users in a blockchain. This approach leverages the
properties of cryptographic hash functions, such as SHA256
[33]], [40], to generate a unique identifier. Our method uses
a certificate cert and a hash function H to create a unique
identifier, id denoted as id = H(cert || msg || r), for each
user. The identifier is formed by the hash of the concatenation
of cert, a message msg, and a random number r for added
security. Our approach is similar to the commit-and-reveal
scheme, where the user first commits to a value by submitting
its hash representation id and later reveals the original values
cert, msg, and r.

The hash-based approach consists of four functions accord-
ing to the definition of address abstraction: SETUP, CER-
TIFICATE, REGISTER, and PUBLISH. These functions are
described below:

0) (L,1) < SETUP(RR,Rp): The hash-based scheme
does not require the generation of any additional public
parameters.

1) (pk,cert) < CERTIFICATE(pwd): A user obtains a
signed certificate, such as JSON Web Token, from a
trusted institute by providing their private information
pwd. The certificate can be verified using the public key
pk.

2) (0/1,4dcpain) < REGISTER(L,id, pk, L): The user cal-
culates a one-time identifier id = H(cert || msg || r).
The validity of id is verified later, just before the first
execution of PUBLISH in the same transaction.

3) (0/1,resy,) < PUBLISH(L,id, msg, L, (cert,msg,r)):
The user reveals the preimages (cert, msg,) as proof,

and the validity of id is calculated by executing the hash
function H on the smart contract. The validity of cert is
also confirmed by checking it against the public key pk
saved from REGISTER. If both REGISTER and PUBLISH
return a result of 1, msg is executed and the result res,,
is returned. Note that the hash-only scheme is designed
for one-time use, so the monotonic increasing counter m
is not necessary.

The hash-based approach satisfies the properties of address
abstraction, unique identifier and immutable request, as fol-
lows:

« Unique Identifier Generation. In this hash-based ap-
proach, a unique identifier, id, is generated as id =
H(cert || msg ||). The original certificate is not dis-
closed publicly during the REGISTER. During PUBLISH,
only the entity that possesses the original certificate can
provide its preimage and claim the use of the correspond-
ing identity. The certificate is recorded on the blockchain
in a public manner, making it available for verification
by any party or contract at any time.

« Immutable Request Execution. The user request msg is
executed exactly as it was recorded during the REGISTER.
The blockchain records the request message in the form
of id, ensuring that any modifications to the original
request would compromise the validity of the id and thus
prevent its execution.

However, it is important to note that this approach has its
limitations. Once the certificate is revealed and recorded in
the blockchain, it cannot be used again in the future, as its
preimage is publicly known. This method is only suitable for
cases where the identity does not need to be kept private and
can only be used for a single transaction. Additionally, the
execution message is enrolled at the time of registration and
cannot be changed during the publication phase. To execute
a different request, the user must go through the registration
phase again to call REGISTER, incurring additional time and
cost overhead for both the user and service provider.

B. Using Merkle Tree

Figure [I| presents a Merkle tree-based approach as an
alternative to implement address abstraction. The root of a
Merkle tree and its accompanying Merkle proofs are employed
to execute a requested message msg at a specified order,
1 < m < n, where n is the maximum number of messages.
The identifier in this approach, with a finite lifetime of n, is
the root of the Merkle tree.

The Merkle tree approach to address abstraction is com-
prised of four functions: SETUP, CERTIFICATE, REGISTER,
and PUBLISH. The functions SETUP and CERTIFICATE work
similarly to the hash-only scheme, with the main differences
being in the REGISTER and PUBLISH functions.

2) (0/1,4dchqin) < REGISTER(L,id, pk, L): The user sub-

mits the root of the Merkle tree, which consists of
a series of leaves including the certificate cert, the
requested message msg,,, and the random number 7,

®) Publish

[root |
[[|]

| | | [| |
|

nll |

cert
I msg;

cert
Il msgy

H nln ‘

[P l [P l

@ Setup @ Certificate @ Register
Bh—
inst. @
pwd
cert
‘ Y]I Register Transaction l
userk Secure Channel
Yuser
[@PEN) v

| ublish Transaction J

g = (cert,msg,, 12,2,z merkie)

| ublish Transaction J

mg = (cert,msgy, 71, 1,1 merkie)

« setup(Rg, Rp)

$ |

Store id® = root*, pk

}——{ if Register A Publish, Execute H if Publish, Execute }—

Fig. 1: Merkle Tree Address Abstraction

concatenated with the order of the message m. The leaves
of the Merkle tree are organized in the following order:
[cert || msgq,r1 || 1,cert || msgq,re || 2,...,cert |
msg,,n || n]. The random number r,, serves as a
security feature to randomize the input data. In this step,
the user submits all the messages to be executed in the
future PUBLISH step in a specified order. The validity of
the identity id is verified just before the first execution
of PUBLISH in the same transaction.
3) (0/1,resy,) «

PUBLISH(L, id, msg, m, (cert, msg,,, "m, M, Tm, Merkle)):

The user reveals the certificate cert, the requested
message msg,,, the corresponding random number 7,
the order of the message m, and the Merkle proof
Tm,Merkle- In the first execution of this step, when
m = 1, the validity of the certificate cert is verified
using the public key pk to ensure that it was signed by
a valid trusted institute. The contract then verifies the
Merkle proof 7, prerkie by computing hash functions
and comparing the results with the registered root of
the Merkle tree. If both REGISTER and PUBLISH return
a result of 1, the first message msg; is executed and
the result res; is returned. For subsequent executions of
PUBLISH with m > 1, if the function returns a result of
1, the message msg,,, is executed and the result res,, is
returned.

The Merkle tree approach satisfies the following two prop-

erties of address abstraction:

o Unique Identifier. The root of the Merkle tree is a
unique identifier for the entity that holds the original cert.
During the PUBLISH, the entity presents the cert, the
corresponding random number r,,,, the execution message
msg, and the Merkle proof 7, arerkie for the order of
m. These data are verified by the contract, and upon
verification, the entity is allowed to use the identity
represented by the root. The data is recorded in the
blockchain and can be publicly verified by anyone or a
contract after the corresponding round m data is revealed.

« Immutable Requests. The execution messages, or msgs,

are enrolled during the REGISTER and are executed
in chronological order, determined by the monotonic
increasing nonce m. This ensures that the execution
messages cannot be altered and are executed in the same
manner as they were enrolled at the time of the root
registration.

However, it is important to note that this method, like
the hash-based approach, also reveals the cert, which makes
it only suitable for cases where the identity represented by
the cert does not need to be kept private. Additionally, the
execution messages must be enrolled during the time of the
root registration and cannot be changed during the PUBLISH
step. Changing the execution messages would incur significant
overhead in terms of time and cost, as the user would need to
re-register. Furthermore, the identifier root can only be used
a finite number of times, n.

In conclusion, the hash-based approach enables single-
use abstracted identity. Meanwhile, the Merkle tree approach
employs a Merkle tree structure, with a limited number of
identity uses as determined by the number of n. Despite
their merits, both these approaches can present privacy and
scalability concerns due to the lack of privacy-preserving
features.

To tackle these challenges, we present our solution, the zero-
Knowledge Address Abstraction scheme, which utilizes zero-
knowledge proofs for identity verification on the blockchain,
as detailed in the next Section [Vl

V. ZERO-KNOWLEDGE ADDRESS ABSTRACTION

The management of identities in decentralized systems,
particularly blockchain networks, presents a challenge in bal-
ancing privacy and security with efficiency and usability. The
naive approaches, hash-based or Merkle tree based address
abstraction methods, fail to provide privacy guarantees as the
contents of the certificates are disclosed during the PUBLISH
phase. Furthermore, they are limited in their application, as
they can only be used for single-use or a finite number of

@ Setup

@ Certificate

M

@ Register

@

pwd
cert
\ 4 | . . |
| Register Transaction J
k Secure Channel

®) Publish

id* « 3 (cert)

iok « (id*, pk)

wk « cert

K« zkp.Prove(ppp, iok; w,fz‘)

i0p,, « (H (cert), H (msg),m)
wp « cert
TTpm zkp.prove(ppp,io,,’m;wp)

|| Transaction l || Transaction l

| p l l Publish Transaction I

PPr
« zkp.Setup(Rg)

A 4

ppe
« zkp.Setup(Rp) if zkp.Verify (ppg, iok, 7k),

Register

(1) id*

(2) id* = CA¥

ublish Transaction
L | L |

if zkp.Verify (ppp, iop 2, p2),
Execute

if zkp.Verify(ppp, iop, np_l),
Execute

A\ 4 v

—

Execute Execute

(3) id* — EOA¥

Fig. 2: Zero-Knowledge Address Abstraction

usages on a registered identifier, rendering them unsuitable
for unlimited identity usage.

To address these limitations, a privacy-preserving approach
is necessary. Our proposed solution leverages zero-knowledge
proofs to offer a solution that verifies the validity of a cert,
while maintaining its privacy. The use of a zero-knowledge
address abstraction scheme ensures the preservation of privacy
for the cert contents and enables unlimited usage of identities.

A. Design of zkAA

The zkAA protocol is a specific implementation of address
abstraction that leverages the power of zk-SNARKSs to provide
privacy for registering identities on a blockchain network. In
the zZkAA system, the user’s identity is represented by a cert
that is hashed to create a unique identifier id = H(cert).
‘H is the hash function. The proof 7 is created to verify the
authenticity of the cert, thereby proving that the user holds
the preimage corresponding to the H(cert), without disclosing
the contents of the cert. This enhances privacy as the contents
of the cert remain confidential throughout the protocol. The
proof is verified on the blockchain, providing a decentralized
and tamper-proof method for managing and verifying user
identities. The use of zk-SNARKSs in the proof process makes
the zkAA protocol efficient and succinct, making it suitable
for use in the blockchain.

The zkAA protocol consists of four functions by the defini-
tion of address abstraction: SETUP, CERTIFICATE, REGISTER,
and PUBLISH, which are depicted in Figure [2| and are based
on the zero-knowledge protocol described in Section [[I-E]

0) (ppg,ppp) < SETUP(RR, Rp):

The SETUP function generates the common reference
strings (crsg, crsp), as (ppr, ppp), which are used
in the identity verification and hash verification pro-

1y

2)

3)

cesses, respectively. The two trusted setups, crsp <
zkp.Setup(Rr) and crsp < zkp.Setup(Rp), are con-
ducted and the public parameters are used for identity
verification in the REGISTER phase and hash verification
in the PUBLISH phase.

(pk, cert) < CERTIFICATE(pwd):

The user requests a cert from an institute using their
personal web2 data pwd.

(0/1,4dchain) < REGISTER(ppg, id, pk, TR):

The user calculates the hash of their certificate as
identifier id = 7H(cert) and creates a proof mp <
zkp.Prove(ppg, (id, pk); cert) to verify that the id was
derived from the cert and that the cert was signed by
the institute, without revealing the actual cert. The user
then registers the id and proof 7w on the blockchain, and
the zkAA contract verifies the hash and proof through
zkp.Verify(ppg, (id, pk), r) to ensure their validity. If
the verification is successful, the contract adds the id
to its list of valid identities. In the zZkAA protocol, the
id is immediately finalized after the completion of the
REGISTER function.

(0/1,res,,) + PUBLISH(ppp, id, msg, m,wp):

The user can publish abstracted transactions from any
account they choose, as long as they have a valid
certificate cert and can calculate its corresponding
hash id, which must match the registered id on the
blockchain. The abstracted transaction includes a proof

Tpm < zKp.Prove(ppp, (id, H(msg), m); cert)
that the zkAA contract verifies through
zkp.Verify(ppp, (id, H(msg), m),7p,m) to ensure

that the sender is the legitimate owner of the identity
represented by id and that the message msg and its
sequence m are valid. The requested message is executed

Algorithm 1 Q) REGISTER

Algorithm 2 (3) PUBLISH

1: pre-defined registration type 7 € {71, 72,73}

Require:
ppg. cert, institute’s public key pk,
2. procedure CALLREGISTER (ppy, cert, pk)
3: id" « H(cert)
4: 7 < zkp.prove(ppg, (id, pk); cert)
5. call REGISTER(ppy, id, pk, 7%)

Require: ppp, id, pk, TR
Ensure: 0/1,id phain
6: transaction REGISTER(pppR, id, pk, TR)

7: assert(id has not yet been registered)

8: assert(zkp.Verify(pppg, (id, pk), 7r))

9: register 4d within zkAA contract

10: set nonce;q < 0

11: switch 7 do

12: case 7, > (id)
13: return (1,id)

14: case Ty > (id — CA)
15: create contract wallet controlled by id

16: map id into address of contract wallet CA

17: return (1, address(CA))

18: case T3 > (id — EOA)
19: create NFT contains ¢d

20: give ownership to msg. sender

21 return (1,msg.sender)

22: return (0, 1)

and the result res,, is returned if the proof 7p,,, m,
and msg are valid.

REGISTER. The pseudocode for the REGISTER is depicted
in Algorithm [I] The REGISTER is a crucial step in the zkAA
system as it verifies the validity of the identities recorded
in the blockchain. During this phase, three verifications are
performed: verification of uniqueness, verification of hash,
and verification of cert signatures. The system checks that
each identity has a unique representation in the system by
verifying that the same value for ¢d is not already registered
in the blockchain. Then, the system verifies that id is indeed
a hash made from the original cert and that the cert has
been signed by the institute through a zero-knowledge proof,
without revealing the cert itself. The public key pk of the
institute is used to verify about signature on-chain. In this
paper, it is assumed that the correct public key is registered
through reliable Oracle, governance, or majority voting. If
the above verifications are successful, the id is registered in
one of three ways: (1) registering i¢d as a standalone value,
(2) mapping the smart contract wallet with ¢d, or (3) NFT-
izing ¢d and assigning its ownership to an Externally Owned
Account (EOA). In the case of options (1) and (2), a nonce, a
unique monotonic increment counter, is initialized to zero for

1: pre-defined registration type 7 € {71, 72,73}

Require:

ppp, cert, nonce m,

msg < (target, funcsig, calldata, value)
2: procedure CALLPUBLISH(ppp, cert, msg, m)
3 id < H(cert)
4: Tp,m < ZKp.Prove(ppp, (id, H(msg), m); cert)
5: if 7 € {71, 72} then
6 call PUBLISH(ppp, id, msg, m, Tp,m)
7 if msg.value > 0 then
8 Send msg.value ETH to zkAA contract
9

else > (id — EOA)
10: execute msg through normal transaction

Require: ppp, id, msg, m, mp
Ensure: 0/1, res,,
11: transaction PUBLISH(ppp, id, msg, m, mp)

12: assert(id must have been registered)
13: assert(m == nonce;q + 1)
14: assert(zkp.Verify(ppp, (id, H(msg), m), 7p))
15: update nonce;q < m
16: switch 7 do
17: case T > (id)
18: res <— execute msg with identifier ¢d
19: return (1,7res)
20: case T > (id — CA)
21: res < call ExecuteMsg(msg) of CA
22: return (1,res)
return (0, 1)
Require: msg
Ensure: execution result of msg
23: function EXECUTEMSG(msg)
24: assert(msg.sender == address(zkAA contract))
25: res <— execute msg
26: return res

each identity managed by the smart contract to maintain the
sequence of abstracted transactions. The information regarding
the details can be found in Subsection [V=C| and In the
zkAA scheme, the validation of the cert occurs during the
REGISTER, as opposed to the naive address abstraction imple-
mentations where cert validation occurs during the PUBLISH.
This forward-awareness of cert authenticity offers the added
advantage of allowing dApps to provide user-specific services
that rely on zkAA-driven identities in advance.

PUBLISH. The pseudocode for the PUBLISH is presented
in Algorithm [2] The user must produce evidence of their
knowledge of the original preimage, which must correspond to
the registered hash value id"” in the contract. Upon successful
verification of the proof as true, the actions specified in msg
will be executed. A non-zero quantity of the native asset

(value) may also be required to be included in the abstracted
transaction. The presence of msg and m within a proof 7g
serves to safeguard the intended actions against tampering,
including potential front-running attacks [26], even if the proof
were to become public in the mempool. In addition, to generate
a valid proof, the nonce must be initiated with a value of 0 and
incremented by 1 for each subsequent transaction. The nonce
must be m after m-th abstracted transaction. In the case of
type 3, as specified in line 9 of Algorithm [2] the user executes
normal transactions rather than abstracted transactions. As a
result, this approach is more cost-efficient compared to the
cases of types 1 and 2.

B. Properties of zkAA

The zero-knowledge Address Abstraction (zkAA) is a
privacy-preserving scheme for address abstraction, privacy-
preserving address abstraction, that offers unique and distin-
guishable identities for users, with immutability and flexi-
bility in the requests. Unlike previous methods, the original
certificate is kept confidential throughout the entire process,
providing a secure and tamper-proof identifier that can be used
repeatedly without being consumed.

The zkAA process includes two essential features of address
abstraction, Unique Identifier and Immutable Requests,
and one feature for privacy-preserving address abstraction,
Privacy-Preserving. In addition, three additional convenience
features Unlimited Usage, and Message Flexibility are pro-
vided. In the following, we provide a detailed discussion of
these five properties:

« Unique Identifier. The zkAA process generates a unique
identifier, H(cert), that represents a user’s identity. This
identifier is ensured to be unique and distinguishable due
to the privacy-preserving nature of the approach, as the
original cert is known only to the user (and the trusted
institute). The validity of the identifier can be publicly
verified through proofs mr and 7p, ensuring that anyone
can confirm that it represents a legitimate identity without
revealing the original cert data.

o Immutable Request. The m-th user request, msg, is
included in the proof 7p,,, making it immutable and
resistant to tampering. The sequential number nonce also
ensures that the abstracted transactions are executed in
the correct order, without any changes or missing in the
sequence.

 Privacy-Preserving. Privacy is a key aspect of the zZkAA
approach, as it is designed to protect users’ personal infor-
mation from public disclosure. The approach guarantees
that public information does not reveal the original cert,
both now and in the future.

o Unlimited Usage. The zkAA approach offers unlimited
usage, allowing the unique identifier to be used repeatedly
without being consumed. This sets it apart from other
techniques such as hash-only or Merkle tree methods,
which are limited in their use.

o Message Flexibility. The user request, msg, can be
incorporated into the PUBLISH without prior registration,

providing a high level of flexibility in the requests. This
reduces the overhead at changing msg.

The zkAA offers a suitable and secure solution for privacy-
preserving address abstraction, through the use of a zero-
knowledge protocol. Moreover, the approach provides a unique
identifier that can be used for unlimited purposes, with flexible
messages.

C. Identifier Types of zkAA

Our paper proposes the use of cert-based encoded iden-
tifiers for improved identity management. The identifier is
created by taking the hash of a cert, H(cert), which solves
the issue of address variability across different blockchains
and web2 platforms by providing a unified solution.

The REGISTER of the zkAA protocol includes three distinct
methods for creating user identities: hash, contract wallet, and
NFT. Each method has its own benefits and drawbacks, which
are explained below.

1) Hash: In this method, the hash of the cert is submitted
to the zkAA contract on the blockchain, and the resulting
H(cert) serves as the unique identifier for the user both
implicitly as ¢d and explicitly as ¢d.pqin. This allows for
abstracted, anonymous transactions that can be signed from
any ephemeral address by a valid user.

2) Contract Wallet: A new contract wallet is created on the
blockchain and linked to the H(cert) identity, hence idcpain
is the address of the contract wallet, denoted as address(CA).
This approach offers compatibility with existing dApps by us-
ing a traditional address system but sacrifices anti-traceability
due to the contract wallet’s address. The contract wallet is
controlled by proof mp, and the abstracted transaction can be
performed from any ephemeral address. This method as ever
uses the same secret cert across all blockchains, eliminating
the need to store individual private keys for each address. In
order to forward a request to a target, the contract wallet must
implement the ExecuteMsg(msg) function, which can be
invoked by the zkAA contract as described in Algorithm 2]
line 23.

3) NFT: The user can create a Non-Fungible Token (NFT)
to represent the #(cert) identifier, which can then be linked
to a specific Externally Owned Account (EOA). The explicit
identifier id.pq;n 1S the same as the user’s address. This
method, known as NFT-izing id, resembles the traditional
mapping approach for integrating web2 identities into web3.
Unlike the hash and contract wallet methods, the user can
interact with decentralized applications using traditional trans-
actions instead of abstracted transactions that require zero-
knowledge proofs. However, this method requires certification
verification to be performed within the dApp-specific, which
can lead to an additional and explicit flow by the dApp. This
method offers a trade-off between cost and convenience, as it
incurs lower transaction costs compared to the hash and con-
tract wallet methods. However, it also shares the limitations of
the mapping approach in facilitating the seamless integration
of decentralized applications, as discussed in Section

In each of these methods, the dApp requires a different
flow for implementation. The second method, using the ad-
dress of the contract wallet, can be employed without any
modification to the existing dApp. However, the first method,
which is based on H(cert), necessitates careful consideration
during the design of the dApp to ensure that the identifier is
properly recognized. The third method, NFT-izing id, may be
compatible with existing systems that support POAP or SBT,
but it still demands verification actions to be performed by the
dApp. A more in-depth examination of these methods, along
with examples, can be found in the subsequent Section

VI. APPLICATIONS

The zkAA scheme, a zero-knowledge proof-based identity
management solution, has numerous potential applications in
the field of decentralized applications (dApps) on blockchain
technology. By eliminating the correlation between the identi-
fier and the private key, the zkAA scheme offers a more secure
and private approach for identity management in dApps. This
scheme exhibits several feasible use cases, including mitigat-
ing Sybil attacks during NFT minting, fulfilling Know-Your-
Customer (KYC) requirements, and securing wallet recovery.
One particularly promising application of zkAA is its use
in social login for dApps, such as online games. Currently,
social login in web2 games is typically facilitated through
a federated identifier. With the implementation of the zkAA
scheme, social login can be extended to the blockchain,
eliminating the need for mapping to or use of a web3 identifier.
Moreover, as the secret is a certificate rather than a private key,
dApps can be built with a hybrid architecture between web2
and web3, obviating the need for mapping and the storage
of multiple secrets. This hybrid approach provides a cost-
effective and high-performance solution, especially suitable
for online games. The zZkAA scheme also features multi-chain
functionality, which is vital for games that use popular NFTs
across multiple chains.

In this section, we will delve into the different ways in
which the zkAA scheme can be employed in dApps, with a
focus on its use in social login for blockchain-based games
as a concrete example. This case study provides insight into
the potential applications and benefits of the zkAA scheme
for decentralized applications and highlights its potential for
enhancing security and performance in identity management
within the blockchain sphere.

A. Using the Hash Value as an Identifier

In the scenario depicted in Figure [3| a user engages in a
social login process to gain access to and play games that are
partially or fully facilitated by smart contracts. The identifier
for the user is represented by the hash of their web2 identity,
which is denoted as id = H(cert).

The user navigates to the website of a game and clicks
on the login button, which redirects them to a social login
provider (e.g., Google or GitHub) for authentication (Step A-
1). Upon successful authentication, the user is redirected back
to the game’s website, with a cert that contains information

10

'

zkAA

'

game

&

userk

puur

inst.

A-1. request cert
>

>

A-2. response cert

A-3. register id*

A-4. verify
B-2. verify
B-3. execute msg

J |

| {
Fig. 3: Using H(cert) as identity.

| locp

B-1. publish abstracted transaction with msg

regarding their identity (Step A-2). The user’s browser then
computes the hash value id = H(cert) and creates a zero-
knowledge proof to demonstrate that the cert was signed by
the social login provider and that id is equal to H(cert). This
proof, along with the hash value id, is then published to the
blockchain (Step A-3). The contract verifies the proof, and if it
is valid, submits the hash value H (cert) as the user’s identifier
(Step A-4). The explicit identifier, id.pqin, 1S equivalent to the
unique identifier, ¢d. The user is now able to publish abstracted
transactions on the blockchain (Step B-1). Then, the validity
of the abstracted transaction is verified by the contract (Step
B-2). Finally, the original request denoted as msg is executed
(Step B-3).

This hash value identifier can be utilized by the user
to interact with other decentralized applications, as long as
these dApps are hash-value-identifier-aware rather than using
a traditional address-based identifier.

B. Using Contract Wallet

Figure [] illustrates an alternative method of implement-
ing address abstraction using zero-knowledge proofs, which
involves mapping the user’s H(cert) identity to a contract
wallet on the blockchain. The explicit identifier id.jqin in
this scenario is the address or Contract Account (CA) of the
contract wallet.

The steps involved in this process are similar to those
depicted in Figure The only difference is the presence
of a contract wallet. In Step A-4 of Figure [the zkAA
contract verifies the proof and, upon validation, creates a
mapping from the user’s id to the newly minted contract
wallet. The contract wallet interacts with the game contract
via abstracted transactions (Steps B-3 and B-4) that utilize the
original request msg.

In this scenario, the user’s request msg is forwarded to the
contract wallet, which then calls the target contract. As a

zkAA wallet game

&

userk

puur

inst.

A-1. request cert
>

»

A-2. response cert

A-3. register id*

A-4. verify

[1oop]

B-1. publish abstracted transaction with msg
B-2. verify

B-3. forward

B-4. execute

| |
Fig. 4: Mapping H(cert) to contract wallet.

result, the caller’s address in the request is always the address
of the contract wallet. This implementation provides maximum
compatibility with all decentralized applications that utilize the
traditional address system as an identifier.

C. Using Non-Fungible Token

The utilization of Non-Fungible Tokens (NFTs) as a means
of identification on a blockchain is presented in this scenario,
as illustrated in Figure 5} NFTs are unique digital assets that
represent ownership on a blockchain. These NFTs can be uti-
lized as identifiers to allow users to engage with decentralized
applications, such as POAP [[19] or SBTs [43]. In this scenario,
the zkAA contract creates a new NFT that is linked to the
user’s identity during the REGISTER phase (Step A-4).

One notable difference in this approach is that users do
not have to publish abstracted transactions, as is the case in
the previous two scenarios. Instead, users can publish normal
transactions, as is typical in blockchain systems (Step B-1).
The application contract must verify the NFT ownership by
requesting validation from the zkAA contract (Step B-2). Upon
successful verification of ownership (Steps B-3 and B-4), the
request is executed normally (Step B-5). The NFT acts as an
identifier for the user and enables them to interact with other
decentralized applications. In this case, the explicit identifier
idchain 18 the address of the owner.

However, there are also challenges associated with using
NFTs as identifiers. In this approach, the service contract
must verify the user’s identity through NFT ownership, in-
creasing the complexity of dApp development and execution.
Additionally, pre-existing dApps that do not consider NFT
ownership checks may not be compatible with this method.
In summary, the use of NFTs as identifiers presents a trade-
off between the lack of abstraction and cost-efficiency, as

11

'

zkAA

’

game

-

userk

puu

inst.

A-1.request cert
>

»

A-2. response cert

A-3. register id*

>
»

A-4. verify

[oop

B-1. publish transaction

B-2. request verify

¢

B-4. response

B-5. execute

B-3. verify

Fig. 5: Using H(cert) as NFT.

users can send normal transactions rather than more costly
abstracted transactions that require zero-knowledge proofs.

D. Multi-chain Decentralized Applications

The traditional approach of managing user identities in
decentralized applications across multiple blockchain networks
has posed a significant challenge, as the address systems
used by different blockchain networks, such as Ethereum
[46], Cosmos [23], and Polkadot [45]], among others, are
incompatible and result in difficulties in identifying the same
user across multiple dApps.

The zero-knowledge address abstraction method offers a
promising solution to this challenge. It employs a non-
revealing cert and its hash value H(cert) to establish a
uniform, blockchain-agnostic identifier, thereby overcoming
the difficulties posed by disparate address systems, as depicted
in Figure [6] This not only enables the easy creation of multi-
chain applications but also facilitates interoperability between
different blockchain networks, allowing for the development
of decentralized cross-chain applications while maintaining a
consistent and secure user identity.

For instance, when transferring assets between different
blockchain networks, the conventional approach relies on a
bridge, such as [28]], [47]. This method requires the input of
a receiver address, which may not be compatible with the
current blockchain, leading to potential errors in address input
and resulting in a higher risk of assets being lost. However, the
zero-knowledge address abstraction approach offers a solution
to this issue by employing a uniform identifier for each user.
This eliminates the risk of mistyping addresses and reduces
the need to store multiple private keys for various blockchains,
thus improving overall security.

In conclusion, zkAA presents a promising solution for the
challenge of cross-chain identity management. Its blockchain-

‘ Hybrid dApp on multi-chains

@ .

web2

v

chainf

A A
cert H(cert) H (cert) cert

:I—

Fig. 6: Invariant identity across multi-chains and web2.

agnostic identity and compatibility with multi-chain applica-
tions make it a versatile and efficient solution for various use
cases in the decentralized ecosystem.

E. Web2-Web3 Hybrid Applications

The integration of decentralized technologies with tradi-
tional web-based systems, referred to as web2-web3 hy-
brid applications, has become a prevalent solution for high-
performance and gas-efficient applications, particularly in
games. This integration presents an opportunity to offer an
improved user experience by combining the ease of use of
fast centralized systems with the security and decentralization
of blockchain.

One of the major obstacles in the development of hybrid
applications is the management of user identities, which are
fragmented by each web2 and web3’s unique identifier system.
The zkAA approach offers a potential solution for this chal-
lenge by enabling a uniform representation of identifiers across
both web2 and web3, as shown in Figure [§] The representation
is based on the same cert and eliminates the need for a service
provider to manage multiple identities across various systems,
simplifying the management.

In summary, the zkAA approach provides a promising
solution for the management of user identities in web2-web3
hybrid applications. Its compatibility with both web2 and
web3 systems makes it a versatile solution that can support
the growth and development of hybrid applications in the
decentralized ecosystem.

VII. EXPERIMENTS

In order to gauge the efficiency and effectiveness of the pro-
posed zero-knowledge address abstraction scheme, we conduct
experiments that measure the gas cost for verification on the
Ethereum [46] and Polygon [41]], as well as the time required
for creating witnesses and proofs locally.

A. Implementations

In this work, we have adopted EdDSA [2]] for the institute
to sign the certificate cert. To generate the signature, we apply
the SHAS512 digest to the cert as input. The resulting signature
is then used to compute the identifier id, from cert, through

12

the application of the SHA256 hash function as H, to the 1024-
bit padded input derived from the signature. The registration
phase involves the verification of EADSA and SHA256 in a
zero-knowledge manner, ensuring the user’s privacy by not
revealing the cert. In contrast, the publication phase employs
a different zero-knowledge circuit that performs SHA256
verification on the preimage cert while keeping it confidential.

The implementation of the proposed scheme is done using
the ZoKrates [[13]] toolbox, which is based on the Grothl6
[17] zero-knowledge proof system. We also utilize the ALT-
BN128 curve for efficient on-chain verification through the
use of pre-compiled contracts in Ethereum, which are created
at addresses 0x6 for ADD, 0x7 for MUL, and 0x8 for pairing
check [6], [36]. The implementation consists of two zero-
knowledge circuits, with 169188 constraints in the registration
circuit and 75945 constraints in the publication circuit. The
experiments were conducted using a local machine, an Apple
M1 Pro with 16GB of memory.

For the benefit of the research community, the imple-
mentation and experimental codes have been made publicly
accessible on GitHulﬂ allowing for replication and further
study.

B. Verification Costs

Table [[I| presents the examination of the costs associated
with on-chain verification. The contract was optimized using
the Solidity 0.8.17 version with the option (200 runs). On
the Ethereum blockchain, the average gas price was 14 gwei
(14 *+ 1079 ETH), with an ETH price of 1412.49 USD. On
the Polygon network, the average gas price was 51.6 gwei
(51.6 * 1079 MATIC), with a MATIC price of 0.91 USD.
These data were derived as of January 13, 2023.

The deployment of the verification contracts is a one-
time task that incurs a cost in gas. Specifically, the deploy-
ment of the registration verification contract requires 1410472
gas, translating to approximately $27.89 on Ethereum. The
deployment of the publication verification contract requires
921902 gas, translating to approximately $18.23 on Ethereum.
Although the initial cost of deploying the contracts may be
substantial, it is a one-time expense. The cost of verifying
the certificate identifier, ¢d, is incurred at the time of registra-
tion and publication. On average, the cost of registering the
identifier is 387494 gas, translating to approximately $7.66
on Ethereum. The cost of publishing the identifier is 239953
gas, translating to approximately $4.75 on Ethereum. On the
Polygon network, the cost is significantly lower, at $0.02 and
$0.01 for registration and publication, respectively. The cost
of verifying the identifier during publication, while dependent
on the user’s requirements, can be considered economical,
especially on low-cost blockchains like Polygon.

C. Overhead on Generating Proofs

Table presents the average time taken to generate the
witnesses and proofs for creating input values of the verifi-
cation logic. During the registration process, it was observed

Uhttps://github.com/lukepark327/zkAA

https://github.com/lukepark327/zkAA

TABLE II: Gas cost on Ethereum and Polygon

. USD (avg)

Methods min max avg Ethereum | Polygon
Registration

verifyTx 387456 | 387516 387494 $7.6626 | $0.0182

Deployment - - | 1410472 | $27.8919 | $ 0.0662
Publication

verifyTx 239906 | 239966 239953 $4.7450 | $0.0113

Deployment - - 921902 | $ 18.2305 | $ 0.0433

TABLE III: Time taken for generating proofs (sec)

Methods | min | max | avg (sd) | med
Registration

witness 3.7511 3.9998 | 3.8381 (0.0474) | 3.8300

proof 5.4607 11.8173 | 5.7365 (0.6323) | 5.6348
Publication

witness 1.7636 1.9181 0.8132 (0.0285) 1.8098

proof 2.5685 2.9915 | 2.6759 (0.0640) | 2.6668

that on average, 9.5746 seconds were spent creating the proofs.
Conversely, the average time taken to generate the proofs for
the publication of abstracted transactions was 3.4891 seconds.
Although this time overhead is non-negligible, it is still within
the acceptable limit given that the block interval of Ethereum is
approximately 12 seconds, allowing ample time for calculation
and broadcasting.

VIII. DISCUSSION
A. Trusted Setup

Many tools for implementing zk-SNARKSs, such as [13],
[29], provide various implementations, including those usually
using Quadratic Arithmetic Programs (QAPs) [15], [17], [18],
[31]. Our proposed zero-knowledge address abstraction also
utilizes the ZoKrates library [13] for its verification smart con-
tract. However, the common use of QAP-based zk-SNARKSs
requires a trusted setup. While the trusted setup process can
be mitigated through Multi-Party Computation, it requires the
active participation of all parties, presenting a limitation.

To overcome this challenge, recent advancements in zero-
knowledge proofs have aimed to introduce zk-SNARKSs with-
out the need for a trusted setup, making the system more
decentralized and trustworthy [1f, [3], [4], [38]. However,
these systems lack the ability to provide constant verification,
and as a result, suffer from substantial verification gas costs
on-chain, or even experience limitations in verification due to
block gas constraints. As such, a trade-off exists between the
absence of a trusted setup and cost-efficiency.

B. Commit-and-Prove

In this work, we have leveraged the use of zk-SNARKSs
to construct zkAA. However, the field of zero-knowledge
proof systems is rapidly evolving and there exists room for
improvement in terms of efficiency. One promising direction
for future work is the integration of commit-and-prove (CP)
schemes [8]], [[14] into zkAA. CP is a type of SNARK that

13

allows for knowledge to be verified through the use of pre-
uploaded commitments. In CP-based SNARKS, the process of
verifying hashes, which is typically the most computationally
expensive part of generating a proof, is simplified through
the use of Pedersen commitments [32]. This leads to a de-
composition of computations into smaller, specialized proofs,
thus potentially increasing the efficiency of proof generation.
While the use of CP is expected to significantly increase the
efficiency of proof generation, it may result in a slight increase
in the cost of verification. This is due to the added complexity
of verifying both the Pederson commitment and the original
proof. However, it is important to note that the complexity of
zk-SNARK verification remains constant.

In conclusion, our future work includes the exploration of
CP-based SNARKSs and a comprehensive investigation into
their potential benefits and trade-offs. We believe that the
integration of CP into zk-SNARKSs holds the potential to
greatly improve the efficiency and widespread adoption of
zZKAA.

C. Privacy and Transaction Fees

In this work, we have considered privacy as a key aspect
of the zkAA system. The zkAA approach of detaching iden-
tity from the original blockchain address system offers the
potential for improved privacy by allowing users to generate
fresh ephemeral addresses for each transaction. This approach
allows users to maintain their identity while keeping their
history of transactions private. However, the creation of a fresh
temporary address also results in the absence of native assets,
making it difficult for users to pay transaction fees. The public
link created when sending assets to a temporary address may
also compromise the privacy of the transaction.

To mitigate these issues, various solutions have been ex-
plored, including the study of Stealth Addresses [5]. One
potential solution is the use of account abstraction’s paymaster
[7l, which is applicable only in the case of ERC20s. Another
option to enhance privacy fundamentally is by utilizing zero-
knowledge proofs to hide fee-sending transactions. However,
this approach increases implementation complexity and over-
head. Based on that, we plan to further investigate solutions for
preserving transaction privacy in the zkAA system in future
work.

D. Oracle Problem in Institute’s Public Key

The verification of the validity of a certificate issued by
an institute requires the saving of the institute’s public key
in a smart contract. This, however, poses a challenge in
terms of the trust as it involves an oracle problem in the
blockchain [[10]]. To overcome this issue, the public key can
be stored through a governance process involving stakeholders.
The other promising solution to address this challenge is to
leverage the latest research in oracle problems, such as the
Town Crier protocol [50].

IX. RELATED WORK
A. Linking Web2 and Web3 Identities

Several approaches have been proposed to link web2 and
web3 identities, with the aim of facilitating the transition
from web2 to web3. The WEBTTCOM framework [49] re-
lies on a mapping between web2 identities and blockchain-
specific identities to achieve this goal. Similarly, Holonym
[22] utilizes a mapping approach, using zk-SNARKSs to prove
knowledge of the JSON Web Tokens (JWTs) preimage and
signatures on-chain. Other works such as [35], [42], [48] also
focus on linking web2 and web3 identities, but they still
rely on blockchain-specific addresses. However, this mapping
approach requires careful management of both web2 and web3
secrets of identities to ensure their secure use. This not only
imposes a responsibility on users to manage their secrets
securely, but also places a burden on service providers to
securely keep and utilize both types of identities.

In contrast, our proposed system, zkAA, eliminates the need
for an explicit mapping between web2 and web3 identities.
The web2 identity, which is represented as a cert, can be
directly used as a secret to generate a unique proof, without
the need for considering blockchain-specific addresses. This
innovative approach enables the development of multi-chain
or web2-web3 hybrid applications, a capability that is not
currently available in existing frameworks.

B. Zero-Knowledge Identity Systems

Several studies have leveraged zero-knowledge proofs
(ZKPs) to preserve privacy in identity and credential systems.
For instance, [9], [35], [37]], [48] have utilized ZKPs to
maintain the confidentiality of identities or credentials. [25]]
leverages ZKPs to conceal users’ activities and service history
from even malicious identity providers. [42] enables face
matching for mapping actual individuals to accounts, where
ZKPs are used for this mapping confidentially. Holonym [22]
and Notebook [27] also utilize ZKPs to bridge the gap between
web2 and web3 identities. Holonym verifies the signatures
and hashes of JWTs using zk-SNARKSs. Notebook, a zero-
knowledge identity infrastructure, verifies credentials signed
by third-party organizations as proof of humanity, storing such
credentials on blockchain addresses.

However, both Holonym and Notebook rely on the original
blockchain address as the identifier, rather than using itself
as a web?2 identity. In contrast, our proposed system, zkAA,
utilizes the web2 identity as the direct identifier through #,
independent of the original blockchain address. Additionally,
zkAA enhances privacy by eliminating the risk of data leak-
ages, as the secret cert is not publicly linked to any address.

C. Web3 Login Solutions

In the decentralized application (DApp) arena, Web3 Login
Solutions, such as Web3Auth [24] and Ramper [34], have
been proposed to enhance the user experience and simplify
the onboarding process for both mainstream and crypto-savvy
users. These solutions aim to provide seamless authentication
through traditional web2 social login mechanisms. Web3Auth

14

employs Shamir Secret Sharing (SSS) [39] and Threshold
Cryptography [11] to divide the private key into multiple
key shares. On the other hand, Ramper employs a third-
party Key Management System (KMS), a hardware security
module (HSM), and encrypted cloud storage. Transactions can
be signed within a Trusted Execution Environment (TEE),
ensuring that Ramper has no access to the private key and
is unable to view it at any time.

However, these approaches still rely on the blockchain-
specific identity system and protect their secrets through SSS
or KMS/HSM. In contrast, zkAA fundamentally eliminates the
need for storing private keys and instead utilizes the original
cert for social login. As a result, zkAA is inherently non-
custodial and does not require the use of specialized hardware
such as TEE, or trust in other trusted third parties.

X. CONCLUSION

In this paper, we introduce a novel approach for privacy-
preserving identity management in blockchain systems, which
leverages the concept of zero-knowledge proofs. Our proposed
protocol, known as zkAA, enables users to securely associate
their web?2 identity with their presence on the web3 platform,
without revealing any sensitive information.

The zkAA protocol offers several advantages over previous
studies in the field. Firstly, users only need to keep their web2
identity and are free to keep their private keys in any manner
they choose. Secondly, the same identifier can serve across
different blockchains, eliminating the need to manage multiple
addresses. Thirdly, the seamless integration of web2 and web3
services is possible due to the use of the same value for both
the web2 identity and the web3 identifier. Lastly, privacy is
protected as the user’s certificate is not disclosed through the
blockchain.

In conclusion, our contribution, the zkAA protocol, provides
a secure, efficient, and privacy-preserving solution for identity
management in blockchain systems. The seamless integration
between web2 and web3 identities offers significant improve-
ments to the user experience in the blockchain.

ACKNOWLEDGMENT

This work was supported by Coinplug corporations.

REFERENCES
[1] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev.
Scalable, transparent, and post-quantum secure computational integrity.
Cryptology ePrint Archive, 2018.
Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-
Yin Yang. High-speed high-security signatures. Journal of cryptographic
engineering, 2(2):77-89, 2012.
Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wauille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 315-334. IEEE, 2018.
Benedikt Biinz, Ben Fisch, and Alan Szepieniec. Transparent snarks
from dark compilers. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 677-706. Springer,
2020.
Vitalik Buterin. An incomplete guide to stealth addresses .
vitalik.ca/general/2023/01/20/stealth.html.

[2]

[3]

[4]

[5] hitps://

https://vitalik.ca/general/2023/01/20/stealth.html
https://vitalik.ca/general/2023/01/20/stealth.html

[6]

[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]
[20]

[21]

[22]

(23]
[24]
[25]
[26]
[27]
(28]
[29]
[30]

[31]

Vitalik Buterin and Christian Reitwiessner. EIP-197: Precompiled
contracts for optimal ate pairing check on the elliptic curve alt_bn128.
https://eips.ethereum.org/EIPS/eip-197, 2017.

Vitalik Buterin, Yoav Weiss, Kristof Gazso, Namra Patel, Dror Tirosh,
Shahaf Nacson, and Tjaden Hess. EIP-4337: Account Abstraction Using
Alt Mempool [DRAFT]. https://eips.ethereum.org/EIPS/eip-4337, 2021.
Matteo Campanelli, Dario Fiore, and Anais Querol. Legosnark: Mod-
ular design and composition of succinct zero-knowledge proofs. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 2075-2092, 2019.

Jing Chen, Zeyi Zhan, Kun He, Ruiying Du, Donghui Wang, and Fei Liu.
Xauth: Efficient privacy-preserving cross-domain authentication. /EEE
Transactions on Dependable and Secure Computing, 19(5):3301-3311,
2021.

Matija Damjan. The interface between blockchain and the real world.
Ragion pratica, (2):379-406, 2018.

Yvo G Desmedt. Threshold cryptography. European Transactions on
Telecommunications, 5(4):449-458, 1994.

John R Douceur. The sybil attack. In Peer-to-Peer Systems: First
InternationalWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7—
8, 2002 Revised Papers 1, pages 251-260. Springer, 2002.

Jacob Eberhardt and Stefan Tai. Zokrates-scalable privacy-preserving
off-chain computations. In 2018 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), pages 1084—1091. IEEE,
2018.

Dario Fiore, Cédric Fournet, Esha Ghosh, Markulf Kohlweiss, Olga
Ohrimenko, and Bryan Parno. Hash first, argue later: Adaptive verifiable
computations on outsourced data. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages
1304-1316, 2016.

Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. IACR Cryptol. ePrint Arch., 2019:953, 2019.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In Robert
Sedgewick, editor, STOC, pages 291-304. ACM, 1985.

Jens Groth. On the size of pairing-based non-interactive arguments.
In Annual international conference on the theory and applications of
cryptographic techniques, pages 305-326. Springer, 2016.

Jens Groth and Mary Maller. Snarky signatures: Minimal signatures
of knowledge from simulation-extractable snarks. In Advances in
Cryptology - CRYPTO 2017, volume 10402, pages 581-612. Springer,
2017.

POAP Inc. Proof of Attendance Protocol. https://poap.xyz/.

M. Jones, J. Bradley, and N. Sakimura. JSON Web Token (JWT). https:
/Iwww.rfc-editor.org/rfc/rfc7519, May 2015.

Simon Josefsson and Ilari Liusvaara. Edwards-curve digital signature
algorithm (eddsa). Technical report, 2017.

Nanak Nihal Khalsa, Caleb Tuttle, Lily Hansen-Gillis, Kushal Kahar,
and Shady El Damaty. Holonym: A decentralized zero-knowledge smart
identity bridge. 2022.

Jae Kwon and Ethan Buchman. Cosmos whitepaper. A Netw. Distrib.
Ledgers, page 27, 2019.

Torus Labs Pte Ltd. Web3Auth. https://web3auth.io/.

Duc Anh Luong and Jong Hwan Park. Privacy-preserving identity
management system on blockchain using zk-snark. IEEE Access,
11:1840-1853, 2023.

Jerry W Markham. Front-running-insider trading under the commodity
exchange act. Cath. UL Rev., 38:69, 1988.

Nathaniel Masfen-Yan, Solal Afota, Dhruv Mangtani, and Sacha
Arroues-Paykin. Notebook: A zero-knowledge identity infrastructure
layer.

Multichain. Multichain. https://multichain.org/,

Jose L Mufioz-Tapia, Marta Belles, Miguel Isabel, Albert Rubio, and
Jordi Baylina. Circom: A robust and scalable language for building
complex zero-knowledge circuits. 2022.

Satoshi Nakamoto and A Bitcoin. A peer-to-peer electronic cash system.
Bitcoin.—URL: https://bitcoin. org/bitcoin. pdf, 4(2), 2008.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Symposium
on Security and Privacy, pages 238-252. IEEE, 2013.

15

(33]

(34]
[35]

[36]

[37]

(38]

[39]
[40]
[41]
[42]
[43]

[44]

[45]
[46]

[47]
(48]

[49]

[50]

Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Advances in Cryptology—CRYPTO 91:
Proceedings, pages 129-140. Springer, 2001.

Wouter Penard and Tim van Werkhoven. On the secure hash algorithm
family. Cryptography in context, pages 1-18, 2008.

Inc Ramper. ramper. https://www.ramper.xyz/.

Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan
Cottone, and Dawn Song. Zebra: Anonymous credentials with practical
on-chain verification and applications to kyc in defi. Cryptology ePrint
Archive, 2022.

Christian Reitwiessner. EIP-196: Precompiled contracts for addition
and scalar multiplication on the elliptic curve alt_bn128. https://eips.
ethereum.org/EIPS/eip- 196, 2017.

Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers.
zk-creds: Flexible anonymous credentials from zksnarks and existing
identity infrastructure. Cryptology ePrint Archive, 2022.

Srinath Setty. Spartan: Efficient and general-purpose zksnarks without
trusted setup. In Advances in Cryptology — CRYPTO 2020: 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17-21, 2020, Proceedings, Part III, page 704-737,
Berlin, Heidelberg, 2020. Springer-Verlag.

Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612-613, 1979.

Secure Hash Standard. National institute of standards and technology
(nist), fips publication 180-2, aug 2002.

Polygon technology. Polygon. https://polygon.technology/.

Taotao Wang, Shengli Zhang, and Soung Chang Liew. Linking souls
to humans with zkbid: Accountable anonymous blockchain accounts for
web 3.0 decentralized identity. arXiv preprint arXiv:2301.02102, 2023.
E Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. Decentralized society:
Finding web3’s soul. Available at SSRN 4105763, 2022.

Sam Wilson, Ansgar Dietrichs, Matt Garnett, and Micah Zoltu. EIP-
3074: AUTH and AUTHCALL opcodes [DRAFT]. |https://eips.
ethereum.org/EIPS/eip-3074, 2020.
Gavin Wood. Polkadot Whitepaper.
PolkaDotPaper.pdf.

Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum Project Yellow Paper, 2014.

Wormbhole. Potral. https://www.portalbridge.com/.

Xiaohui Yang and Wenjie Li. A zero-knowledge-proof-based digital
identity management scheme in blockchain. Computers & Security,
99:102050, 2020.

Guangsheng Yu, Xu Wang, Qin Wang, Tingting Bi, Yifei Dong,
Ren Ping Liu, Nektarios Georgalas, and Andrew Reeves. Towards
web3 applications: Easing the access and transition. arXiv preprint
arXiv:2210.05903, 2022.

Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine
Shi. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 aCM sIGSAC conference on computer and
communications security, pages 270-282, 2016.

https://polkadot.network/

https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-4337
https://poap.xyz/
https://www.rfc-editor.org/rfc/rfc7519
https://www.rfc-editor.org/rfc/rfc7519
https://web3auth.io/
https://multichain.org/
https://www.ramper.xyz/
https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196
https://polygon.technology/
https://eips.ethereum.org/EIPS/eip-3074
https://eips.ethereum.org/EIPS/eip-3074
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://www.portalbridge.com/

	Introduction
	Address Abstraction
	Contributions

	Background
	JSON Web Tokens
	Blockchain and Smart Contracts
	Decentralized Identity Management
	Account Abstraction
	Zero-Knowledge Proofs

	Definitions
	Notation
	Address Abstraction
	Privacy-Preserving Address Abstraction

	Naïve Approach to Address Abstraction
	Hash-based Approach
	Using Merkle Tree

	Zero-Knowledge Address Abstraction
	Design of zkAA
	Properties of zkAA
	Identifier Types of zkAA
	Hash
	Contract Wallet
	NFT

	Applications
	Using the Hash Value as an Identifier
	Using Contract Wallet
	Using Non-Fungible Token
	Multi-chain Decentralized Applications
	Web2-Web3 Hybrid Applications

	Experiments
	Implementations
	Verification Costs
	Overhead on Generating Proofs

	Discussion
	Trusted Setup
	Commit-and-Prove
	Privacy and Transaction Fees
	Oracle Problem in Institute's Public Key

	Related Work
	Linking Web2 and Web3 Identities
	Zero-Knowledge Identity Systems
	Web3 Login Solutions

	Conclusion
	References

