
Faithful Simulation of Randomized BFT Protocols on Block
DAGs
HAGIT ATTIYA, Technion, Israel
CONSTANTIN ENEA, Ecole Polytechnique, France and CNRS, France

SHAFIK NASSAR, Technion, Israel

Byzantine Fault-Tolerant (BFT) protocols that are based on Directed Acyclic Graphs (DAGs) are attractive due
to their many advantages in asynchronous blockchain systems. Many DAG-based BFT protocols rely on

randomization, since they are used for agreement and ordering of transaction, which cannot be achieved deter-

ministically in asynchronous systems. Randomization is achieved either through local sources of randomness,

or by employing shared objects that provide a common source of randomness, e.g., common coins.
This paper shows how to simulate DAG-based BFT protocols that use public coins and shared objects,

like common coins. Our simulation is faithful in the sense that it precisely preserves the safety and liveness

properties of the original BFT protocol, and in particular, their probability distributions.

1 INTRODUCTION
Asynchronous distributed computation is naturally captured by a directed acyclic graph (DAG),

whose nodes describe local computation and edges correspond to causal dependency between

computation at different processes. Lamport’s happens-before relation [11] is an example of such

DAG, where each node is a single local computation event, and each edge is a single message delivery

event. Block DAGs [20] go one step further and incorporate more than one local computation step

in each block (node); these steps may even belong to several independent protocols.
By exchanging blocks in a manner that preserves their dependencies, a distributed protocol

can now be abstracted as a joint computation of a block DAG. In particular, a general Byzantine
fault-tolerant (BFT) DAG-based algorithm combines two components: one component builds the

DAG using a communication protocol that tolerates malicious failures, and the other component

performs the local computation embodied in each node of the DAG. The first component can be

used to separate the task of injecting user input to the system, such as transactions, from the task

of processing these inputs and producing an output, e.g., an ordering of those transactions.

This generality makes block DAGs an attractive approach for designing coordination protocols

for, e.g., Byzantine Atomic Broadcast [8, 10, 19], consensus [2, 14] and cryptocurrencies [5]. A block

DAG can be seen as a strict extension of a blockchain, which is a DAG where all blocks are totally
ordered, i.e., a directed path. The DAG approach was shown to achieve high throughput [18] due to

the flexibility it provides over the standard blockchain approach.

Schett and Danezis [16] have shown that any deterministic BFT protocol can be simulated as a

block DAG. They provide generic mechanisms for processes to maintain a consistent view of the

block DAG, and for each process to interpret that DAG as an execution of some protocol. Because

several protocols can be interpreted on the same block DAG, this provides a powerful ability to run

multiple protocols, or multiple instances of the same protocol, at the same cost.

The restriction to deterministic protocols, however, handicaps the applicability of this result.

DAG-based agreement protocols with provable security, like Aleph [8] or DAG-Rider [10], are either

randomized or assume the existence of a shared source of randomness. (This is not surprising since

consensus cannot be deterministically solved in an asynchronous system, when even a single process

may fail by crashing [7].) More generally, practical DAG-based algorithms like Narwhal [6] can be

Authors’ addresses: Hagit Attiya, Technion, Department of Computer Science, Israel, hagit@cs.technion.ac.il; Constantin

Enea, Ecole Polytechnique, LIX, France and CNRS, France, cenea@lix.polytechnique.fr; Shafik Nassar, Technion, Department

of Computer Science, Israel, shafiknassar@campus.technion.ac.il.

HTTPS://ORCID.ORG/0000-0002-8017-6457
HTTPS://ORCID.ORG/0000-0003-2727-8865
HTTPS://ORCID.ORG/0000-0002-7388-3858
https://orcid.org/0000-0002-8017-6457
https://orcid.org/0000-0003-2727-8865
https://orcid.org/0000-0003-2727-8865
https://orcid.org/0000-0002-7388-3858

2 Hagit Attiya, Constantin Enea, and Shafik Nassar

composed with other “base” consensus protocols to achieve the performance of the DAG-based

approach while inheriting liveness and safety from the base protocol.

This calls for a framework that can handle randomized BFT protocols; those that either utilize

local randomness or even a shared object.

1.1 Our Results
This paper takes upon the task of developing a general approach for DAG-based execution of

BFT protocols, even with randomization and shared objects. Specifically, we consider randomized
BFT protocols in which the local coin flips of each process may be public, we call those protocols

public-coin protocols. We prove that any public-coin protocol that uses shared objects, e.g., common

coins, can be simulated on a block DAG, preserving its usage of shared objects.

It is crucial to show that this simulation is faithful, i.e., it preserves properties of the original
protocol, including security and probabilistic properties, for example expected termination time. To

achieve this, the DAG-based protocol is modelled as a labeled transition systems (LTS), and shown to

be a forward simulation [12] of the original protocol(s). This implies that it precisely preserves the

trace distribution and the probabilistic relationship between inputs and outputs. From a security

point of view, this means that whatever adverse effects can occur in the simulation, can already be

demonstrated in the original protocol.

We believe that our result can help design future DAG-based protocols, by providing an expressive

and systematic framework to analyze such protocols. We demonstrate this utility by presenting a

high level analysis of existing DAG-based protocols using our result.

1.2 Related Work
Our results can be viewed as a generalization of the work of Schett and Danezis [16]. They show

how block DAGs can be used to simulate deterministic protocols, which are a special case of the

protocols that we handle here. Readers that are familiar with their work will notice that we were

able to achieve a simulation that is a natural extension of theirs. We emphasize, however, that our

techniques for proving the faithfulness of our simulation are novel and different from theirs. This

is because their techniques do not capture the probabilistic guarantees of randomized protocols.

Additional details appear in Section 5.1.

Several recent works have adopted the block DAG approach, e.g., Aleph [8], DAG-Rider [10] and

Bullshark [19]. All of these protocols are randomized. Many DAG-based practical systems have

been deployed, e.g., ByteBall [5], Flare [14] and Hashgraph [2]. For a survey of the techniques used

in block DAG approaches, see [20]. While each of these works presents a new protocol, we provide

a formal and systematic framework for analyzing DAG-based protocols, especially randomized
block DAG protocols. We discuss how our framework can be used to analyze Aleph and DAG-Rider

in Section 5.2.

1.3 Organization
Section 2 describes the model and introduces some definitions and notations. Section 3 formally de-

fines block DAGs. Our results are presented and proved in Section 4. Applications of our simulation

and its relation to [16] appear in Section 5, and we summarize with future work, in Section 6.

2 PRELIMINARIES
For any 𝑛 ∈ N, we denote [𝑛] = {1, . . . , 𝑛}. For any two strings 𝑠1 and 𝑠2, we denote by 𝑠1 ◦ 𝑠2 the
concatenation of the two strings.

Faithful Simulation of Randomized BFT Protocols on Block DAGs 3

2.1 Model
We consider an asynchronous network with 𝑛 processes 𝑝1, . . . , 𝑝𝑛 . Each process 𝑝𝑖 has a local

process state 𝑃𝑆𝑖 , and buffers In𝑗→𝑖 and Out𝑖→𝑗 , for each 𝑗 ∈ [𝑛], that serve for communicating

with 𝑝 𝑗 , as well as a buffer 𝑅𝑞𝑠𝑡𝑠𝑖 that contains incoming user requests. A schedule consists of two

types of events:

• A compute(𝑖) event lets process 𝑝𝑖 pass all the messages in the buffers In𝑗→𝑖 , as well as the

requests in 𝑅𝑞𝑠𝑡𝑠𝑖 , to 𝑃𝑆𝑖 . Then a local computation is performed which may update 𝑃𝑆𝑖 ,

deposit new messages in Out𝑖→𝑗 and return indications to the user.

• A deliver(𝑖, 𝑗) event moves the oldest message in Out𝑖→𝑗 to In𝑗→𝑖 .

We assume a computationally bounded adversary that may adaptively corrupt up to 𝑓 processes,

and also controls the scheduling of the system. Initially, all 𝑛 processes are correct and honestly

follow the protocol. Once a process is corrupted, it may behave arbitrarily. The adversary can also

read all messages in the system, even those sent by correct processes. Although the scheduling of

message delivery is adversarial, we assume eventual delivery, i.e., every message sent is eventually

delivered. We also assume that messages are delivered in the order they were sent.

2.2 Public-Coin Randomized Protocols
In a randomized protocol, the local computation of a process can depend on the result of local

coin flips. To model this, we assume each process 𝑝𝑖 has access to a random tape, from which it

can draw a random string at each compute(𝑖) event. Our simulation can be applied to public-coin
protocols, which are randomized protocols that do no require processes to keep secrets, i.e., they

can broadcast the random string they draw as soon as they use it. This definition captures protocols

in the full-information model such as [9].

2.3 Shared Objects
To allow for easy composition, we define shared objects. A shared object is an implementation of an

interface that is accessible by all processes. For example, the interface can be that of a common coin
and the implementation can be a protocol that implements it. For reference, we formally define the

interface of a perfect common coin:

Definition 1. An 𝑓 -resilient perfect common coin can be invoked using a Toss(𝑘) request for
any 𝑘 ∈ N and returns an indication associated with that 𝑘 , which satisfies the following properties if
the adversary can corrupt up to 𝑓 processes:

(1) (Correctness) If two correct processes 𝑝𝑖 , 𝑝 𝑗 invoke Toss(𝑘) then they both get the same indica-
tion. Furthermore, for any𝑤 ∈ {0, 1}ℓ it holds that the indication is equal to𝑤 with probability
2
−ℓ .

(2) (Termination) If all correct processes invoke Toss(𝑘) then they all get an indication. Furthermore,
if some correct process gets an indication, then every correct process that invokes Toss(𝑘)
eventually gets an indication.

(3) (Unpredictability) No Byzantine process can obtain the indication associated with 𝑘 before at
least one correct process invokes Toss(𝑘).

For any shared object o, each process 𝑝𝑖 can invoke o as it performs any local computation.

We assume that 𝑃𝑆𝑖 explicitly states the object invocations and their parameters. Invocations are

non-blocking, and omay at any point return an indication in a designated buffer o.buff 𝑖 . Whenever

a compute(𝑖) event is scheduled, the contents of o.buff 𝑖 are passed to 𝑃𝑆𝑖 and may affect the local

computation.

4 Hagit Attiya, Constantin Enea, and Shafik Nassar

2.4 Labeled Transition System
In this work, we model protocols as Labeled Transition Systems (LTSs), defined as follows:

Definition 2. A labeled transition system is a tuple 𝐿 = (𝑄, Σ, 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝛿) where:
(1) 𝑄 is a (possibly infinite) set of states.
(2) Σ is a set of (transition) labels.
(3) 𝑞𝑠𝑡𝑎𝑟𝑡 is the starting state.

(4) 𝛿 ⊆ 𝑄 × Σ ×𝑄 is a (possibly infinite) set of transitions, written as 𝑞1
𝑙−→ 𝑞2 for any (𝑞1, 𝑙, 𝑞2) ∈

𝑄 × Σ ×𝑄 .

An execution of 𝐿 is an alternating sequence of states and transition labels 𝛼 = 𝑞0, 𝑙0, 𝑞1, 𝑙1, . . .

such that for any 𝑖 ≥ 0 it holds that 𝑞𝑖
𝑙𝑖−→ 𝑞𝑖+1. If there exists any partial execution 𝑞𝑖 , 𝑙𝑖 , . . . , 𝑙 𝑗−1, 𝑞 𝑗

then we write 𝑞𝑖
𝑙𝑖 ,...,𝑙 𝑗−1−−−−−−→ 𝑞 𝑗 . We define a subset of labels Σ𝐸 ⊆ Σ as the external actions, and define

a trace of 𝐿 to be the projection of an execution over Σ𝐸 . Typically, external actions correspond to

requests and indications in the interface of a protocol, and define the “observable” behavior of a

protocol.

LTSs as defined above can be used to model deterministic protocols in a straightforward manner.

Essentially, LTS states correspond to tuples of states of participating processes and communication

channels, and each transition corresponds to a step of some process (more details are given below).

Randomized protocols can be modeled using an extension of LTSs called (simple) probabilistic
automata [17] where a transition from a state 𝑞 leads to a probability distribution over states instead

of a single state. The semantics of a probabilistic automaton is formalized in terms of probabilistic
executions, which are probability distributions over executions defined by a deterministic scheduler

that resolves the non-determinism. The deterministic scheduler corresponds to the notion of

adversary described above which controls message delivery and process scheduling. Since we

consider protocols where the random choices follow the uniform distribution, we simplify the

formalization and model them using LTSs instead of probabilistic automata by including results of

random choices in the transition labels. Also, the transition labels corresponding to random choices

are defined as external actions. The relevance of this modeling choice will be detailed later when

discussing forward simulations.

2.5 Modeling the Protocol as an LTS
Let P be a public-coin protocol and O be a set of shared objects used by P. We define the

LTS of P as follows 𝐿 = (𝑄, Σ, 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝛿). A state 𝑞 ∈ 𝑄 consists of the local state 𝑃𝑆𝑖 , the

incoming messages (In𝑗→𝑖) 𝑗 ∈[𝑛] , the outgoing messages (Out𝑖→𝑗) 𝑗 ∈[𝑛] and the incoming ob-

ject indications (o.buff 𝑖)o∈O of each process 𝑝𝑖 . For convenience, we assume that incoming

user requests are stored in In𝑖→𝑖 and outgoing user indications are stored in Out𝑖→𝑖 . Overall,

𝑞 =
(
𝑃𝑆𝑖 , (In𝑗→𝑖) 𝑗 ∈[𝑛], (Out𝑖→𝑗) 𝑗 ∈[𝑛], (o.buff 𝑖)o∈O

)
𝑖∈[𝑛] . We use register notation to refer to the

components of each state, e.g., 𝑞.In𝑗→𝑖 refers to the incoming messages buffer from 𝑗 to 𝑖 in the

state 𝑞. In the initial state 𝑞𝑠𝑡𝑎𝑟𝑡 , all of the processes have the initial local state and all of the message

buffers are empty.

The transition labels Σ correspond to the different types of steps in a protocol execution, namely,

local computation, message delivery, indications from objects in O, or user requests and indications.
Observe that we do not need to label sending requests to o ∈ O as this is done in an ordinary local

computation event. In addition, the local computation label would include the randomness (if any)

that is used by the process in the said computation event. Formally, the labels in Σ are as follows:

Faithful Simulation of Randomized BFT Protocols on Block DAGs 5

(1) compute(𝑖, 𝜌) denotes a transition where process 𝑝𝑖 performs a local computation with 𝜌

as its randomness.

(2) deliver(𝑖 → 𝑗) denotes a transition where all of the messages in Out𝑖→𝑗 are moved to In𝑖→𝑗 .

(3) o.indicate(𝑖,𝑤) denotes a transition where the value𝑤 has been added to o.buff 𝑖 .

(4) request(𝑖, 𝑥) denotes a transition where process 𝑝𝑖 receives 𝑥 as input.

(5) indicate(𝑖, 𝑦) denotes a transition where process 𝑝𝑖 returns 𝑦 as output.

The external actions in Σ𝐸 ⊆ Σ are user requests (request(𝑖, 𝑥)) and indications (indicate(𝑖, 𝑦)),
and local computation events (compute(𝑖, 𝜌)). The latter are included in Σ𝐸 in order to be able to

relate probability distributions in different protocols, as discussed hereafter. A transition (𝑞1, 𝑙, 𝑞2) ∈
𝑄 × Σ ×𝑄 is in 𝛿 if and only if the protocol can get from state 𝑞1 to state 𝑞2 by executing the step

denoted by the label 𝑙 .

Forward Simulations. Showing that a block DAG protocol is a simulation of some other protocol

relies on the notion of forward simulation between the LTSs modeling the two protocols, respectively.

Definition 3. Let 𝐿 = (𝑄, Σ, 𝑞𝑠𝑡𝑎𝑟𝑡 , 𝛿) and 𝐿′ = (𝑄 ′, Σ′, 𝑞′𝑠𝑡𝑎𝑟𝑡 , 𝛿 ′) be two LTSs with the same set of
external actions Σ𝐸 . A relation 𝑅 ⊆ 𝑄 ×𝑄 ′ is a forward simulation from 𝐿 to 𝐿′ if both of the following
hold:
• (𝑞𝑠𝑡𝑎𝑟𝑡 , 𝑞′𝑠𝑡𝑎𝑟𝑡) ∈ 𝑅
• For any (𝑞1, 𝑙, 𝑞2) ∈ 𝛿 and any 𝑞′

1
such that (𝑞1, 𝑞′1) ∈ 𝑅, there exists 𝑞′2 ∈ 𝑄 ′ such that:

– (𝑞2, 𝑞′2) ∈ 𝑅,
– 𝑞′

1

𝜎−→ 𝑞′
2
is a partial execution of 𝐿′ (𝜎 is a sequence of labels in Σ′), and

– if 𝑙 ∈ Σ𝐸 , then the projection of the label sequence 𝜎 over Σ𝐸 is exactly 𝑙 .

When 𝐿 is an LTS modeling a block DAG simulation of a deterministic protocol that is modeled

as an LTS 𝐿′, the existence of a forward simulation 𝑅 from 𝐿 to 𝐿′ implies that the set of traces of

𝐿 is included in the set of traces of 𝐿′ [13]. It also implies the preservation of hyperproperties in

programs that use a block DAG simulation instead of the original protocol as shown in [1].

These results extend to randomized protocols as well. Assuming that the random choices follow

the uniform distribution, a forward simulation would imply that any random choice in 𝐿 is mimicked

in precisely the same manner by 𝐿′. This is because the label of every step that includes a random

choice is an external action and the result of that random choice is included in the label itself. More

formally, it will imply the existence of a weak probabilistic simulation which is known to imply that

the probability distributions over traces of 𝐿 defined by a deterministic scheduler are included in the

probability distributions over traces of 𝐿′ defined by a deterministic scheduler [17]. Moreover, it will

also imply the preservation of probability distributions over executions of programs that use the

block DAG simulation instead of the original protocol (this is a consequence of weak probabilistic

simulations being sound for the trace distribution precongruence [17]).

Therefore any standard specification of a protocol, e.g., safety or (almost-sure) termination, is

preserved by a block DAG simulation provided the existence of a forward simulation. Moreover,

typical specifications of programs using the DAG simulation instead of the original protocol will

also be preserved.

2.6 Cryptographic Primitives
Our block DAG simulation uses secure hash function and signatures. These cryptographic primitives

are traditionally defined with a security parameter, but here, we assume they are perfect. This is
justified because we can choose a security parameter that is sufficiently small so that the probability

6 Hagit Attiya, Constantin Enea, and Shafik Nassar

of failure is negligible.
1
We omit the security parameter from the definitions and assume zero

probability of failure.

Definition 4. An efficiently-computable function ℎ : 𝑋 → 𝑌 is a secure cryptographic hash

function if for any computationally bounded adversary:
(1) (Preimage resistance) It is infeasible to find a preimage 𝑥 ∈ 𝑋 s.t. ℎ(𝑥) = 𝑦 for any 𝑦 ∈ 𝑌 for

which no preimage is known.
(2) (Collision resistance) It is infeasible to find two preimages 𝑥1, 𝑥2 ∈ 𝑋 s.t. ℎ(𝑥1) = ℎ(𝑥2).

Definition 5. A cryptographic signature scheme consists of three efficiently-computable functions
(Gen, Sign,Vrfy) with the following properties:

(1) The key-generation function Gen produces a pair of keys (𝑝𝑘, 𝑠𝑘).
(2) The signing function Sign takes a secret key 𝑠𝑘 and a string𝑚 and outputs a signature 𝜎 .
(3) The verification function Vrfy takes a public key 𝑝𝑘 , a message 𝑚 and a signature 𝜎 and

outputs a bit 𝑏.
The scheme must satisfy that for any honestly generated (𝑝𝑘, 𝑠𝑘) ← Gen and any message 𝑚, it
holds that Vrfy(𝑝𝑘, Sign(𝑠𝑘,𝑚),𝑚) = 1. The scheme is secure if it is infeasible for any message𝑚
and any computationally bounded adversary that does not know 𝑠𝑘 to produce a signature 𝜎∗ s.t.
Vrfy(𝑝𝑘, 𝜎∗,𝑚) = 1.

We assume the existence of a secure cryptographic hash function ℎ : {0, 1}∗ → {0, 1}∗ and
a secure cryptographic signature scheme (Gen, Sign,Vrfy). Since we assume the computational

power of the adversary is bounded, it cannot forge messages or break cryptographic primitives.

We also assume that every process 𝑝 has already generated a key-pair (𝑠𝑘𝑝 , 𝑝𝑘𝑝) and distributed

the public key 𝑝𝑘𝑝 to all other processes, which allows other processes to verify signatures of 𝑝 .

We denote Sign𝑝 (·) := Sign(𝑠𝑘𝑝 , ·) and Vrfy𝑝 (·, ·) := Vrfy(𝑝𝑘𝑝 , ·, ·).

3 BLOCK DAGS
A block is the main type of message that is exchanged in DAG-based protocols and our block DAG

simulations. A block contains the identity of the issuing process and some data, and is additionally

signed by the issuing process to prevent forgery. Formally:

Definition 6 (Block). A block 𝐵 is a message that consists of the identity of the issuing process 𝑝 ,
some data 𝑑 , a hash ℎ(𝐵.𝑝 ◦ 𝐵.𝑑) of the data and the issuing process which we denote by ref (𝐵) and a
signature 𝜎 = Sign𝑝 (ref (𝐵)) of the issuing process 𝑝 over the hash. The data consists of:

(1) A sequence number 𝑘 .
(2) A finite list of hashes of predecessor blocks preds.
(3) A finite list of requests rqsts that come from the user.
(4) Auxiliary information aux.

This definition is similar to that of [16], with the added auxiliary information (4) on which we

will elaborate in Section 4.1. We use register notation, e.g., 𝐵.𝑝 is the issuing process of 𝐵. We

say that a block 𝐵′ ∈ 𝐵.preds is the parent of 𝐵 if 𝐵.𝑝 = 𝐵′.𝑝 and 𝐵.𝑘 = 𝐵′.𝑘 + 1, and we denote

𝐵′ = 𝐵.𝑝𝑎𝑟𝑒𝑛𝑡 . A genesis block is a block 𝐵 with sequence number 𝐵.𝑘 = 0. We define the ancestors
of a block 𝐵 to be all of the predecessors of 𝐵, and their predecessors and so on; this set is denoted

ancestors(𝐵).
Correct processes in DAG-based protocols usually add a block to their block DAG only if they can

validate it. Validation typically entails checking that block was created according to the rules, but

1
This is also a standard assumption in distributed algorithms [3, 16].

Faithful Simulation of Randomized BFT Protocols on Block DAGs 7

in addition, a process cannot add a block without adding its predecessors, therefore the validation

process is recursive, meaning that a block can be valid only if its predecessors are valid. Formally:

Definition 7 (Valid Block). A correct process 𝑝𝑖 considers a block 𝐵 valid, denoted valid(𝑝𝑖 , 𝐵),
if all of the following hold:
• It considers all blocks in 𝐵.preds valid.
• It can verify the signature Vrfy𝐵.𝑝 (𝐵.𝜎, ref (𝐵)).
• 𝐵 has exactly one parent or is a genesis block.

Since a process only validates blocks that are properly signed and we assume that the adversary

cannot forge signatures, then we may assume that only authentic blocks are exchanged in the

system.

As mentioned before, each process uses the valid blocks it has received to build a DAG which

we call a block DAG. The vertices are all valid blocks and the edges correspond to the predecessor

relation between blocks, that is (𝐵′, 𝐵) is an edge if and only if 𝐵′ ∈ 𝐵.preds. Formally:

Definition 8 (Block DAG). For a correct process 𝑝𝑖 , G = (𝑉G, 𝐸G) is a Block DAG of 𝑝𝑖 if:
• 𝑉G ⊆ {𝐵 : 𝐵 is a block that 𝑝𝑖 considers valid}.
• If 𝐵 ∈ 𝑉G then for all 𝐵′ ∈ 𝐵.preds it holds that 𝐵′ ∈ 𝑉G .
• 𝐸G = {(𝐵′, 𝐵) ∈ 𝑉G ×𝑉G : 𝐵′ ∈ 𝐵.preds}.

Note that by the preimage resistance ofℎ, it holds that if𝐵′ ∈ ancestors(𝐵) then𝐵 ∉ ancestors(𝐵′)
That is, the blocks guarantee that there are no cycles, and G is indeed acyclic. If 𝑝𝑖 receives a new

block 𝐵 that it considers valid, then it can add it to 𝑉G and update 𝐸G accordingly and the result

would be a new block DAG. We abuse notation and write 𝐵 ∈ G if 𝐵 ∈ 𝑉G .
Observe that by definition, if a block 𝐵 is in some block DAG G, then all of the ancestors of 𝐵

are in G as well.

4 SIMULATING PUBLIC-COIN PROTOCOLS WHICH USE SHARED OBJECTS
Simulating a protocol on a block DAG consists of two components: first, a mechanism that allows

processes to build and maintain a joint block DAG and second, an algorithm to interpret this joint
block DAG as an execution of the original protocol. Given those two ingredients, we can execute

an instance of the protocol without sending any actual messages that are specific to the protocol

itself. Of course, maintaining the joint block DAG would require exchanging one type of messages

(blocks), but those messages are agnostic to the protocol being simulated. This means that we can

use the same joint block DAG to interpret multiple instances of the same protocol or even instances

of different protocols.

Fig. 1 describes how to simulate a public-coin protocol P using the components mentioned

above. We refer to this protocol as the block DAG simulation of P and denote it by BD(P). We

allow BD(P) to access the same shared objects as P.
Interpreting the block DAG as an execution of P is done using the interpret algorithm. This

algorithm runs locally and involves no communication, yet guarantees that if two correct processes

are interpreting the same (partial) block DAG, then their interpretations would be identical. This

algorithm is presented and discussed in Section 4.1.

Maintaining the joint block DAG is done using the genBlock and echo algorithms: genBlock is

responsible for creating and disseminating new blocks and echo is responsible for passing those
blocks around to ensure that all correct processes receive the same blocks even if the process that

issued the block is corrupted. These algorithms are presented and discussed in Section 4.2.

The aforementioned components, together, ensure that correct processes have consistent views

of the execution of P at all times. However, this does not guarantee that the execution is useful,

8 Hagit Attiya, Constantin Enea, and Shafik Nassar

Simulation of Public-Coin Protocols on Block DAGs
From the perspective of process 𝑝𝑖 , user requests go directly to 𝑅𝑞𝑠𝑡𝑠𝑖 .

Initialize 𝐺𝑖 as an empty block DAG and blks as an empty set of blocks.

On every compute(𝑖) event:
(1) Run genBlock(𝐺𝑖 , blks).
(2) If new blocks were added to 𝐺𝑖 , then run interpret(𝐺𝑖 ,P).
(3) Run echo(𝐺𝑖 , blks).

Fig. 1. The simulation algorithm for public-coin protocols

e.g., it might give the adversary more power or it might be a “liveless” execution where the correct

processes are not making any progress. For that reason, we prove in Section 4.3 that the execution

(defined by the views) is faithful in the sense that there exists a forward simulation towards the

original protocol. This guarantees that the simulation of P on the block DAG preserves P’s original
specification.

4.1 Common Interpretation
Given a block DAG G = (𝑉 , 𝐸), we want to interpret it as an execution of the protocol. We call this

execution the simulated execution. Furthermore, we need the interpretation to be consistent among

all correct processes doing it.

The idea is to view G as a causality graph, where a block in G issued by some process 𝑝𝑖
corresponds to a node that belongs to 𝑝𝑖 in the causality graph, and such a node corresponds to a

compute(𝑖) in the simulated execution. In order to interpret G, we need to interpret each block

separately, where the interpretation of the block consists of the local process state and the outgoing

messages of the issuing process after the corresponding compute(𝑖) event. For convenience, we
also treat the incoming messages (right before the event) as part of the interpretation. Formally:

Definition 9 (Block Interpretation). The interpretation of a block 𝐵 has the following fields:
(1) A local process state 𝐵.PS.
(2) A list of incoming messages 𝐵.𝑀in.
(3) A list of outgoingmessages𝐵.𝑀out . For convenience, we denote by𝑀out [𝑗] the outgoingmessages

in𝑀out that are designated to 𝑝 𝑗 .

Note that the interpretation of a block is not sent over the network. That is, when a process

receives or even generates a new block, it does not automatically have its interpretation. This is

crucial because we do not want the size of the block to increase with the number of messages,

and instead we only want the block to include information that processes cannot locally compute

unambiguously. As such, it is the responsibility of each process to interpret each block it has locally.

In a regular execution of a deterministic protocol, whenever a compute(𝑖) event is scheduled,
the process 𝑝𝑖 performs the following: it passes all of the message in 𝐼𝑛 𝑗→𝑖 to the local state of its

protocol instance 𝑃𝑆𝑖 and performs a local computation. This updates the local state 𝑃𝑆𝑖 , produces

new outgoing messages that are deposited into 𝑂𝑢𝑡𝑖→𝑗 and may return user indications. Our

interpretation protocol tries to mimic the execution by assigning to 𝐵.PS the local state of the

process after the corresponding event, 𝐵.𝑀out [𝑗] the messages that would be deposited in 𝑂𝑢𝑡𝑖→𝑗

and 𝐵.𝑀in the messages that would have been in 𝐼𝑛 𝑗→𝑖 before the event. In addition, if the block 𝐵

was issued by the process doing the interpretation and 𝐵.PS produces a user indication, then the

process must actually return the indication to the user.

Faithful Simulation of Randomized BFT Protocols on Block DAGs 9

Algorithm 1 interpret(𝐺𝑖 ,P) for process 𝑝𝑖
𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) is a block DAG and P is a public-coin protocol.

𝐺𝑖 is process-local variable that maintains its value across different invocations

1: while ∃𝐵 ∈ 𝐺𝑖 s.t. 𝐵 is not interpreted s.t. ∀𝐵′ ∈ 𝐵.preds : 𝐵′ is interpreted do
2: if 𝐵.𝑘 = 0 then
3: Initialize 𝐵.PS as a new state according to the protocol P and process 𝐵.𝑝

4: else
5: 𝐵.PS := 𝐵.parent .PS
6: for all 𝐵′ ∈ 𝐵.preds do
7: Copy messages from 𝐵′.𝑀out [𝐵.𝑝] to 𝐵.𝑀in

8: Pass the user requests 𝐵.rqsts, messages 𝐵.𝑀in, random tape 𝐵.rand and the object indica-

tions 𝐵.buff to the state 𝐵.PS
9: Overwrite the new state in 𝐵.PS
10: Store the outgoing messages in 𝐵.𝑀out
11: if 𝐵.𝑝 = 𝑖 then
12: Return user indications produced by 𝐵.PS to the user

13: Perform object invocations as dictated by 𝐵.PS

When extending this approach to randomized protocols, we need to account for the local ran-

domness. In this case, the process state expects to receive a random tape and the result of the

computation, i.e., the new 𝑃𝑆𝑖 and 𝑂𝑢𝑡𝑖→𝑗 . To guarantee that the interpretation is consistent for all

correct processes, we use the same randomness tape when interpreting a block. For that reason, we

need the random tape to be attached to the block, which is where 𝐵.aux comes in: each process

that issues a block 𝐵, attaches the random tape in a specific field in 𝐵.aux which we call 𝐵.rand,
thus forcing all other processes to use the same randomness when interpreting its blocks.

When further extending this to protocols with shared objects, we need to handle object invocations
and object indications. When an object o returns an indication to 𝑝𝑖 , there is not necessarily a way

for all other processes to learn that indication on their own. (This can happen, for example, in a

secret sharing object, where the different indications of processes are independent.) For that reason,

we need processes to attach those indications to their blocks as well: when 𝑝𝑖 receives an indication

from object o, that indication is added to a specific field in 𝐵.aux which we call 𝐵.buff [o]. These
indications are then passed to 𝐵.PS (alongside 𝐵.𝑀in and 𝐵.rand) when interpreting the block. As

for object invocations, they should be handled in a similar fashion to user indications, that is if the

interpreting process is 𝐵.𝑝 and 𝐵.PS dictates that o must be invoked, then the interpreting process

actually performs the invocation.

With all of this in mind, the interpretation is described in Algorithm 1. At a high level, we

interpret the blocks in a topological order and rely on the fact that if we feed the same messages,

randomness and object indications to the same process state, then we would always get the same

interpretation. We then apply this idea inductively and prove that the interpretation of any specific

block is consistent among all correct processes. To that end, for any block block DAG𝐺 and 𝐵 ∈ 𝐺 ,

we denote by interpret(𝐺,P).𝐵 the interpretation of 𝐵 when running interpret(𝐺,P). Lemma 1

formalizes the main guarantee of Algorithm 1.

Lemma 1. For any two block DAGs 𝐺1 and 𝐺2, if 𝐵 ∈ 𝐺1 and 𝐵 ∈ 𝐺2 then interpret(𝐺1,P).𝐵 =

interpret(𝐺2,P).𝐵.
Proof. For any block 𝐵 ∈ 𝐺1 ∩ 𝐺2, let 𝐵.PS1, 𝐵.𝑀1

in, 𝐵.𝑀
1

out and 𝐵.PS2, 𝐵.𝑀2

in, 𝐵.𝑀
2

out be the in-

terpretations interpret(𝐺1,P).𝐵 and interpret(𝐺2,P) .𝐵, respectively. Recall that by definition,

10 Hagit Attiya, Constantin Enea, and Shafik Nassar

𝐵.𝑝, 𝐵.preds, 𝐵.rqsts and 𝐵.aux (which consists of 𝐵.rand and 𝐵.buff) are identical in𝐺1 and𝐺2. We

note that any path in 𝐺1 that ends in 𝐵 is also a path in 𝐺2 and vice versa since both 𝐺1 and 𝐺2

include all of the ancestors of 𝐵. Define ℓ (𝐵) to be the length of the longest such path from a genesis

block to 𝐵. We utilize the fact that if ℓ (𝐵) ≥ 1 then ℓ (𝐵′) < ℓ (𝐵), for any 𝐵′ ∈ 𝐵.preds. This allows
us to prove the lemma by induction on ℓ .

• Base: If ℓ (𝐵) = 0 then 𝐵 is a genesis block. By the construction of interpret, it holds that
both 𝐵.PS1 and 𝐵.PS2 are initialized with the initial state of 𝐵.𝑝 w.r.t. P. Since ℓ (𝐵) = 0,

we know that 𝐵.preds = ∅ Therefore, there are no incoming messages, i.e., 𝐵.𝑀𝑖
in = ∅ for

all 𝑖 ∈ {1, 2}. By the construction of interpret, interpret(𝐺𝑖 ,P) is computed by feeding

𝐵.𝑀𝑖
in, 𝐵.rqsts and 𝐵.aux to 𝐵.PS𝑖 and since 𝐵.𝑀1

in = 𝐵.𝑀2

in and 𝐵.PS1 = 𝐵.PS2, we get that
interpret(𝐺1,P) = interpret(𝐺2,P).
• Hypothesis:Assume that for all blocks 𝐵′ with ℓ (𝐵′) < 𝑙 it holds that interpret(𝐺1,P).𝐵′ =
interpret(𝐺2,P).𝐵′.
• Step: Let 𝐵 be a block with ℓ (𝐵) = 𝑙 . By the induction hypotheses, interpret(𝐺1,P) .𝐵′ =
interpret(𝐺2,P).𝐵′ for all 𝐵′ ∈ 𝐵.preds. This implies that both 𝐵.PS1 and 𝐵.PS2 are initialized
with the same value and that 𝐵.𝑀1

in = 𝐵.𝑀2

in. By the same argument we have used in the

base of the induction, it follows that interpret(𝐺1,P) = interpret(𝐺2,P).
■

4.2 Joint Block DAG
We have shown that processes that interpret the same blocks reach the same conclusion. But for

this to be useful, we must show that correct processes eventually receive the same blocks. This

is where communication is used. Recall that our model assumes eventual delivery, that is, every

message sent is eventually delivered, albeit with a potentially unbounded delay. This is immediately

inherited by blocks: if a process sends a block, then all other processes eventually receive that

block.

We utilize this to allow processes to generate and disseminate new blocks in Algorithm 2. Since

blocks are the only way for processes to inject information into the system, user requests are

injected using blocks in Line 2. In our context of simulating public-coin protocols with shared

objects, blocks must also include the local randomness and the object indications that might have

been returned due to previous object invocations. We utilize the function fillAux(𝐵) in Line 7 to

perform those two tasks:

(1) Generate a random string 𝜌 and assign it to 𝐵.rand := 𝜌 .

(2) For each o ∈ O, move the object indications from o.buff 𝑖 to 𝐵.buff [o].
While generating a new block 𝐵, processes also add valid blocks they receive to their block DAGs and

to 𝐵.preds. This way, each correct process 𝑝𝑖 extends its block DAG 𝐺𝑖 gradually. By construction,

only valid blocks are added to 𝐺𝑖 and 𝐵.preds. Finally, the block is signed and sent to everyone.

The condition in step 6 only guarantees that we do not send out blocks that do no contain new

information.

We would like to claim now that if a correct process 𝑝𝑖 issues a block 𝐵 := genBlock(𝐺𝑖 , blks),
then any other correct process 𝑝 𝑗 will eventually consider 𝐵 valid and thus, add it to its block

DAG. However, for that to happen, 𝑝 𝑗 must receive (and consider as valid) all the predecessors

of 𝐵. Consider an adversarial process 𝑝∗ that sends a block 𝐵∗ to 𝑝𝑖 but not to 𝑝 𝑗 . In this case, 𝑝𝑖
generates a 𝐵 such that 𝐵∗ ∈ 𝐵.preds, but 𝑝𝑖 will not consider 𝐵 valid unless it also considers 𝐵∗

valid. This issue can be easily solved with a simple echoing mechanism, presented in Algorithm 3.

Now we can claim that all correct processes eventually receive the same blocks:

Faithful Simulation of Randomized BFT Protocols on Block DAGs 11

Algorithm 2 genBlock(𝐺𝑖 , blks) for process 𝑝𝑖
𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) is a block DAG and blks is a set of blocks. In the initial invocation, a variable 𝑘 is

initialized to 0 and its value is preserved throughout all invocations.

𝐺𝑖 , blks and 𝑘 are process-local variables that maintain their values across different invocations.

1: Initialize a new block 𝐵 as follows 𝐵.𝑝 = 𝑝𝑖 , 𝐵.𝑘 = 𝑘, 𝐵.preds = ∅, 𝐵.rqsts = ∅
2: Move all user requests (if any) from 𝑅𝑞𝑠𝑡𝑠𝑖 to 𝐵.rqsts.
3: Move all blocks from all In𝑗→𝑖 to blks.
4: while ∃𝐵′ ∈ blks s.t. valid(𝑝𝑖 , 𝐵′) do
5: Add 𝐵′ to 𝐺𝑖 and add 𝐵′ to 𝐵.preds
6: if 𝐵.preds ≠ ∅ ∨ 𝐵.rqsts ≠ ∅ ∨ ∃o ∈ O s.t. o.buff 𝑖 ≠ ∅ then
7: Fill the auxiliary information fillAux(𝐵).
8: Sign the block 𝐵, i.e., 𝐵.𝜎 := Sign𝑝𝑖 (ref (𝐵)), add it to 𝐺𝑖 and broadcast it to everyone.

9: Increment 𝑘 := 𝑘 + 1.
10: else
11: 𝐵 := ⊥
12: return 𝐵

Algorithm 3 echo(𝐺𝑖) for process 𝑝𝑖
𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) is a block DAG and blks is a set of blocks.

𝐺𝑖 and blks are process-local variables that maintain their values across different invocations.

1: for all 𝐵′ ∈ blks s.t. 𝐵′ is not valid do
2: for all 𝐵′′ ∈ 𝐵′.preds s.t. 𝐵′′ ∉ 𝐺𝑖 do
3: Send FWD(𝐵′′) to 𝐵′.𝑝
4: for all FWD(𝐵′′) ∈ In𝑗→𝑖 do
5: If 𝐵′′ ∈ 𝐺𝑖 , send 𝐵

′′
to 𝑝 𝑗

6: Remove FWD(𝐵′′) from In𝑗→𝑖

Lemma 2. For any two correct processes 𝑝𝑖 , 𝑝 𝑗 executing the protocol of Fig. 1, if 𝑝𝑖 adds a block to
its block DAG 𝐺𝑖 , then 𝑝 𝑗 eventually receives 𝐵.

Proof. Let 𝐵 be a block added to𝐺𝑖 . If 𝐵 was issued by 𝑝𝑖 , then 𝑝𝑖 broadcasts that block to everyone

and therefore 𝑝 𝑗 eventually receives it. Otherwise, by Algorithm 2, it must be that 𝑝𝑖 created a new

block 𝐵′ and added 𝐵 as the predecessor of 𝐵′ (because this is the only a correct process adds a block
it has not issued to its block DAG). By Algorithm 2, 𝑝𝑖 sends 𝐵

′
to 𝑝 𝑗 and 𝑝 𝑗 eventually receives 𝐵′.

If 𝑝 𝑗 considers 𝐵
′
valid upon reception, then it must hold that 𝑝 𝑗 received 𝐵 by the definition of

validity. Otherwise, it will send a FWD(𝐵) to 𝑝𝑖 . This request will be eventually received 𝑝𝑖 , who

in return will send 𝐵 to 𝑝 𝑗 . Again, 𝑝 𝑗 will eventually receive 𝐵 and the lemma follows. ■

Furthermore, we claim that all correct processes validate the same blocks:

Lemma 3. For any two correct processes 𝑝𝑖 and 𝑝 𝑗 executing the protocol of Fig. 1, if 𝑝𝑖 adds a block
to its block DAG 𝐺𝑖 , then 𝑝 𝑗 eventually considers 𝐵 valid.

Proof. Let 𝐵 be a block that was added to 𝐺𝑖 . By Lemma 2, 𝑝 𝑗 will eventually receive 𝐵. Since 𝑝𝑖
is a correct process, it must hold that valid(𝑝𝑖 , 𝐵) and specifically, that 𝐵.𝑝 = 𝑝𝑠 for some process

𝑝𝑠 and 𝐵.𝜎 = Sign𝑝𝑠 (ref (𝐵)), therefore 𝑝 𝑗 can verify the signature 𝐵.𝜎 . In addition, 𝐵 is either a

genesis or has exactly one parent. It remains to show that all predecessors of 𝐵 will eventually be

12 Hagit Attiya, Constantin Enea, and Shafik Nassar

considered valid by 𝑝 𝑗 . Similarly to Lemma 1, we prove this by induction on ℓ (𝐵), the length of the

longest path from a genesis block to 𝐵:

• Base: If ℓ (𝐵) = 0 then 𝐵 is a genesis block. This means that the predecessors condition

holds trivially.

• Hypothesis: Assume that all blocks 𝐵′ with ℓ (𝐵′) < 𝑙 will eventually be considered valid

by 𝑝 𝑗 .

• Step: Let 𝐵 be a block with ℓ (𝐵) = 𝑙 . By the induction hypotheses, all of the predecessors of

𝐵 will eventually be considered valid by 𝑝 𝑗 , since they must have a shorter path to a genesis

block that 𝑙 . Therefore, the predecessors condition of validity will eventually hold for 𝐵 and

thus 𝑝 𝑗 will consider it valid.

■

Lemma 3 essentially states that correct processes are building a joint block DAG in the sense

that if a block 𝐵 is added to the block DAG of a correct process, then it will eventually be added

to the block DAGs of all other correct processes. We note that Lemmas 2 and 3 really refer to any

protocol in which Algorithms 2 and 3 are continuously run, and are not specific to Fig. 1.

Liveness of Block DAG Simulations. Combining Lemma 3 with Lemma 1 and assuming eventual

delivery of blocks, we get eventual delivery of simulated messages. In other words, if a correct

process 𝑝𝑖 wants to send a message𝑚 to some correct process 𝑝 𝑗 , then this expressed in the block

DAG framework as a block 𝐵 issued by 𝑝𝑖 , such that 𝐵.𝑀𝑜𝑢𝑡 [𝑗] contains the message𝑚. Delivering

the message𝑚 to 𝑝 𝑗 is expressed by 𝑝 𝑗 creating a block 𝐵
′
such that𝑚 ∈ 𝐵′.𝑀𝑖𝑛 . Note that referring

to unambiguous interpretations of 𝐵 and 𝐵′ is only possible through Lemma 1. By Lemma 3, we

know that if 𝑝𝑖 issues the block 𝐵 then 𝑝 𝑗 eventually receives 𝐵 and considers it valid. By the

algorithm in Algorithm 2, eventually 𝑝 𝑗 creates a new block 𝐵′ such that 𝐵 ∈ 𝐵′.𝑝𝑟𝑒𝑑𝑠 and by

Algorithm 1,𝑚 will be added to 𝐵.𝑀𝑖𝑛 . This discussion demonstrates that the block DAG framework

guarantees eventual delivery of simulated messages, if we assume eventual delivery of blocks.

Essentially, this guarantees the liveness of block DAG simulations.

4.3 Correctness of the Simulation
We show that the block DAG simulation of a protocol P inherits all of the properties of P, which
we accomplish by proving that there exists a forward simulation from the block DAG simulation

denoted as BD(P) to P (modeled as LTSs). Section 2.5 describes the modeling of P using LTSs. We

describe below a modeling of BD(P) using an LTS which simplifies the forward simulation proof.

Modeling the Block DAG simulation as an LTS. We describe the components of an LTS 𝐿′ =
(𝑄 ′, Σ′, 𝑞′start, 𝛿 ′) that we use to model BD(P). A state 𝑞′ ∈ 𝑄 ′ contains the block DAG𝐺𝑖 of each

process 𝑝𝑖 and (In𝐵𝑗→𝑖) 𝑗 ∈[𝑛] and (Out𝐵𝑖→𝑗) 𝑗 ∈[𝑛] for each process 𝑝𝑖 , where In𝐵𝑗→𝑖 is the incoming

buffer of process 𝑖 with blocks sent by process 𝑗 and Out𝐵𝑖→𝑗 is the outgoing buffer with blocks

sent by 𝑖 to 𝑗 . As before, we assume that incoming user requests are stored in In𝐵𝑖→𝑖 and outgoing

user indications are stored in Out𝐵𝑖→𝑖 . The shared object indications are stored in separate buffers

(o.buff 𝑖)o∈O as before. Overall,𝑞′ =
(
𝐺𝑖 , (In𝐵𝑗→𝑖) 𝑗 ∈[𝑛], (Out𝐵𝑖→𝑗) 𝑗 ∈[𝑛] (o.buff 𝑖)o∈O

)
𝑖∈[𝑛] . In the initial

state 𝑞′start , all of the block DAGs and the buffers are empty. The transition labels correspond to

computing and validating blocks, exchanging blocks, and user requests or indications. In comparison

to the “standard” model described in Section 2.5 we decompose a compute step of a process as

defined in Fig. 1 into a sequence of steps. This simplifies the forward simulation proof. As before,

we include the randomness (that is attached to the newly created block) in the computation label.

Formally, the transition labels are as follows:

Faithful Simulation of Randomized BFT Protocols on Block DAGs 13

(1) validateBlock(𝑖 → 𝑗) denotes a transition where 𝑝 𝑗 validates a block issued by 𝑝𝑖 (inside

the genBlock algorithm).

(2) compute(𝑖, 𝜌) denotes a transition where process 𝑝𝑖 produces and disseminates a new

block (inside the genBlock algorithm) with 𝜌 as its randomness, and then runs interpret to
interpret the new block (and other previously uninterpreted blocks).

(3) sendFWD(𝑖 → 𝑗) denotes a transition where 𝑝𝑖 sends a FWD request to 𝑝 𝑗 .

(4) replyFWD(𝑖 → 𝑗) denotes a transition where 𝑝𝑖 sends a reply to a FWD sent by 𝑝 𝑗 .

(5) deliverBlocks(𝑖 → 𝑗) denotes a transition where all of the blocks in Out𝐵𝑖→𝑗 are moved to

In𝐵𝑖→𝑗 .

(6) o.indicate(𝑖,𝑤) denotes a transition where the value𝑤 has been added to o.buff 𝑖 .

(7) labels for user requests (request(𝑖, 𝑥)) or indications (indicate(𝑖, 𝑦)) have the same meaning

as in Section 2.5.

The external actions Σ𝐸 are defined exactly as for the LTS 𝐿 modeling P, presented in Section 2.5

(Σ𝐸 includes request(𝑖, 𝑥), indicate(𝑖, 𝑦), and compute(𝑖, 𝜌)). A transition (𝑞′
1
, 𝑒, 𝑞′

2
) ∈ 𝑄 ′ × Σ′ ×𝑄 ′

(denoted 𝑞′
1

𝑒−→ 𝑞′
2
) is in 𝛿 ′ if and only if the protocol BD(P) can get from state 𝑞′

1
to state 𝑞′

2
by

executing the step denoted by the label 𝑒 .

Theorem 1. There exists a forward simulation from the LTS 𝐿′ modeling BD(P) to the LTS 𝐿

modeling P.

Proof. We define a relation 𝑅 ∈ 𝑄 ′ ×𝑄 as follows: 𝑞′ 𝑅 𝑞 if and only if all of the following holds

for each 𝑖, 𝑗 𝑖𝑛[𝑛]:
(1) 𝑞.PS𝑖 = 𝐵.PS, where 𝐵 is the most recent block issued by 𝑝𝑖 in 𝑞

′.𝐺𝑖 . If there is no such block,

then 𝑞.PS𝑖 is the initial state.
(2) for every 𝑖 ≠ 𝑗 , 𝑞.Out𝑖→𝑗 includes every message𝑚 such that there exists a block 𝐵 with

𝑚 ∈ 𝐵.𝑀𝑜𝑢𝑡 [𝑗], and 𝐵 is created by 𝑝𝑖 but not yet validated by 𝑝 𝑗 .

(3) for every 𝑖 ≠ 𝑗 , 𝑞.In𝑗→𝑖 includes every message𝑚 such that there exists a block 𝐵 with

𝑚 ∈ 𝐵.𝑀𝑜𝑢𝑡 [𝑖], and 𝐵 is created by 𝑝 𝑗 , validated by 𝑝𝑖 , but not yet interpreted by 𝑝𝑖 .

(4) for every 𝑖 , 𝑞.In𝑖→𝑖 = 𝑞′.In𝐵𝑖→𝑖 and 𝑞.Out𝑖→𝑖 = 𝑞.Out𝐵𝑖→𝑖 (the same user requests and indica-

tions).

(5) for every 𝑖 and o ∈ O, 𝑞.o.buff 𝑖 = 𝑞′.o.buff 𝑖 (the same object indications).

Next, we show that 𝑅 is indeed a forward simulation from 𝐿′ tp 𝐿. It is clear that 𝑞′start 𝑅 𝑞start by

construction. Let 𝑞1, 𝑞
′
1
be two states such that 𝑞′

1
𝑅 𝑞1 and let 𝑞′

1

𝑒′−→ 𝑞′
2
be a transition in 𝛿 ′. We

show that there exists 𝑞2 such that 𝑞′
2
𝑅 𝑞2, 𝑞1

𝑒−→ 𝑞2 is a transition in 𝛿 (or a stuttering step), and if

𝑒 ∈ Σ𝐸 , then 𝑒 = 𝑒 ′. We do a case analysis based on the label 𝑒 ′:

(1) If 𝑒 ′ ∈ {request(𝑖, 𝑥), indicate(𝑖, 𝑦), o.indicate(𝑖,𝑤)}, then the only difference between the

two states 𝑞′
1
, 𝑞′

2
is in the requests, indications or object indications buffer of 𝑝𝑖 . Let 𝑞2 ∈ 𝑄

be a state such that 𝑞′
2
𝑅 𝑞2. By the definition of 𝑅, it holds that the only difference between

𝑞1 and 𝑞2 is in same buffer, so it holds that 𝑞1
𝑒′−→ 𝑞2 for the same label 𝑒 ′.

(2) If 𝑒 ′ ∈ {sendFWD(𝑖 → 𝑗), replyFWD(𝑖 → 𝑗), deliverBlocks(𝑖 → 𝑗)}, then 𝑞′
2
𝑅 𝑞1. This is

because the definition of 𝑅 does not look at FWD requests or replies, or delivery of created

blocks (items 2 and 3 concern the creation or the validation of a block and not when a block

is sent or received). Therefore we can choose 𝑒 = 𝜖 and define 𝑞2 = 𝑞1 (stuttering step).

(3) If 𝑒 ′ = validateBlock(𝑖 → 𝑗), then 𝑞′
2
contains one more block 𝐵 which is validated by 𝑝 𝑗 .

Assume that 𝐵 was created by process 𝑝𝑖 . Since 𝐵 had to exist in 𝑞′
1
, for every 𝑗 , 𝑞1.Out𝑖→𝑗

includes every message in 𝐵.𝑀𝑜𝑢𝑡 [𝑗]. We define 𝑞2 as the state obtained from 𝑞1 by moving

14 Hagit Attiya, Constantin Enea, and Shafik Nassar

all messages from 𝑞1 .Out𝑖→𝑗 to 𝑞2.In𝑗→𝑖 . Also, let 𝑒 be the label deliver(𝑗 → 𝑖). It is quite
easy to check that 𝑞′

2
𝑅 𝑞2 and 𝑞1

𝑒−→ 𝑞2.

(4) If 𝑒 ′ = compute(𝑖, 𝜌) for some 𝑖∈ [𝑛], 𝜌 ∈ {0, 1}∗, then the only difference between 𝑞′
1
and

𝑞′
2
is in the block DAG 𝐺𝑖 and the buffers (In𝐵𝑖→𝑗 ,Out

𝐵
𝑖→𝑗) 𝑗 ∈[𝑛] and (o.buff 𝑖)o∈O . Let 𝐵 be

the block that 𝑝𝑖 disseminated in 𝑞′
2
and 𝐵′ = 𝐵.𝑝𝑎𝑟𝑒𝑛𝑡 . By the definition of 𝑅, it holds that

𝑞1.PS𝑖 = 𝐵′.PS, and for every 𝑗 ≠ 𝑖 , 𝑞1.In𝑗→𝑖 = {𝑚 : ∃𝐵0 ∈ 𝐵.𝑝𝑟𝑒𝑑𝑠,𝑚 ∈ 𝐵0.𝑀𝑜𝑢𝑡 [𝑖]}, and
𝑞1.In𝑖→𝑖 = 𝑞′

1
.In𝐵𝑖 → 𝑖 . In addition, the object buffers in both 𝑞1 and 𝑞

′
1
are equal, that is

(𝑞1 .o.buff 𝑖)o∈O = (𝑞′
1
.o.buff 𝑖)o∈O . Now let 𝑞2 ∈ 𝑄 be a state such that 𝑞1

compute(𝑖,𝜌)
−−−−−−−−−−→ 𝑞2.

We show that 𝑞′
2
𝑅 𝑞2. Therefore, we have that 𝑞2.PS𝑖 = 𝐵.PS. This is because 𝐵 is interpreted

by feeding the messages (𝑞1.In𝑗→𝑖) 𝑗 ∈[𝑛] and the object indications (𝑞1 .o.buff 𝑖)o∈O with

the randomness 𝐵.𝑟𝑎𝑛𝑑 to the state 𝑞1 .PS𝑖 = 𝐵′.PS. Note that by the definition of the label

compute(𝑖, 𝜌) in 𝐿′, it holds that 𝐵.𝑟𝑎𝑛𝑑 = 𝜌 .

This concludes the proof of Theorem 1. ■

5 RELATION TO PRIORWORK
5.1 Comparison with Schett and Danezis
Now that we have presented our simulation and its proof, we can discuss how they are related to

the work of Schett and Danezis [16].

Our network component which consists of genBlock and echo algorithms is a natural extension

of the gossip algorithm of [16]. Indeed, the code responsible for generating new blocks and echoing

them is almost identical to that of gossip. We only observe that blocks should carry enough

information to resolve the randomized decisions that can come from local randomness or shared

objects. This is because wewant to exchange only blocks. In our protocol, each process is responsible

to pass along its local randomness or the indications it got from the shared object in the blocks that

it creates. The proofs of Lemmas 2 and 3 follow the proof of [16, Lemma 3.7].

Our interpretation algorithm is the natural extension of interpret algorithm of [16] for our

context. That is, when interpreting a deterministic protocol, the computation of each process is

only determined by the incoming messages and its state prior to processing those messages. When

interpreting a randomized protocol with shared objects, the local computation may depend on

local randomness and object indications. Our interpretation algorithm used those fields that were

already attached to each block by our genBlock. We note that Lemma 1 that states the common

interpretation of block DAGs, is analogous to [16, Lemma 4.2]. However, the proof of the latter

had a very minor mistake (acknowledged by the authors [15]), and therefore our proof is slightly

different.

Finally, the guarantees of randomized protocols, unlike those of deterministic protocols, cannot

always be expressed as trace properties. Particularly, for our simulation to be faithful to the original

protocol, we need a more careful and precise statement and proof. Therefore, the modeling in

Sections 2.5 and 4.3 as well as the proof of Theorem 1 are totally different from what appears in [16].

5.2 Analyzing Existing Protocols
Here we discuss how our simulation applies to existing protocols, concentrating on Aleph [8] and

DAG-Rider [10]. These protocols aim to order the blocks of the DAG, so as to implement Byzantine
Atomic Broadcast (BAB). We briefly recall the problem of BAB and summarize how [8, 10] achieve

this goal.

Faithful Simulation of Randomized BFT Protocols on Block DAGs 15

A BAB protocol is a broadcast protocol that allows all processes to receive the same messages in

the same order. One natural way of implementing a BAB protocol using a block DAG is by having

each process attach the messages it wants to broadcast to a block and then broadcast the block to

everyone. The processes then just need to agree on an order of the blocks, which would induce an

order of the messages.

Analogous to our simulation, both Aleph and DAG-Rider have a communication component

that is responsible for building and maintaining the common DAG. In both protocols, each block in

the DAG belongs to a specific round, and each correct process has a single block in each round.

In Aleph [8], ordering the blocks in the DAG is achieved by electing a leader block in each round,

and then having that leader block (deterministically) dictate the order of its ancestor blocks that

have not been ordered yet.

In DAG-Rider [10], the DAG is divided into waves where each one consists of four consecutive

rounds, and a leader block is elected for each wave. The block leader election is done by interpreting

the (same) block DAG as a consensus protocol and utilizing a shared object for generating random-

ness, namely, a common coin. It is critical to note that our simulation preserves the properties of

the shared object, for example the unpredictability of the common coin. This is because our forward

simulation preserves the compute events, in which the object invocations happen. This means that

the object cannot distinguish if it is being used in the context of the original protocol or in the

context of the block DAG simulation of the protocol. This means that its properties are preserved.

Aleph and DAG-Rider can be easily analyzed using our framework. The consensus protocol used

can be analyzed independently of Aleph or DAG-Rider, while assuming it has access to a common

coin. Then by Theorem 1, the simulation of the consensus protocol on the black DAG is faithful to

the original consensus protocol. This would not only simplify reasoning about safety and liveness

of Aleph and DAG-Rider, but it would support modularity: the simulated consensus protocol in

Aleph or DAG-Rider can be seamlessly replaced using Theorem 1.

6 DISCUSSION
We have presented a faithful simulation of DAG-based BFT protocols, which use public coins and

shared objects, including protocols that utilize a common source of randomness, e.g., a common
coin. Being faithful, the simulation precisely preserves properties of the original BFT protocol, and

in particular, their probability distributions.

One of the appealing properties of our block DAG framework is that it allows to minimize the

communication when running multiple instances of potentially different protocols. This can be

done by using the same joint block DAG to interpret multiple protocol instances. The logic of the

communication layer does not change, other than the need to specify the associated instance for

each user request and object indication that is attached to the blocks. Each process would then run

multiple interpretation instances, one for each protocol instance. We note that a process does not

necessarily need to attach a separate randomness tape for each instance, and can instead attach a

small random seed. Processes can then use a pseudorandom generator to expand the seed to a large

enough pseudorandom string that can be used for all of the instances. This ensures that block size

does not grow beyond the size of the user requests and the object indications.

Our simulation relies on the fact that it is safe to reveal the randomness to the adversary as soon as

it is used. We can similarly define private-coin protocols, whose security relies on processes ability to
keep secrets from the adversary. A classical example would be any Asynchronous Verifiable Secret

Sharing scheme (e.g. [4]). From a theoretical point of view, it would be interesting to demonstrate

how we can simulate such algorithms on block DAGs. However, we note that some protocols are

entirely public-coin other than a dedicated private-coin sub-protocol, such as Aleph-Beacon in

16 Hagit Attiya, Constantin Enea, and Shafik Nassar

Aleph [8] (which is used to implement a common coin). In this case, the dedicated sub-protocol can

be encapsulated as a shared object, thus factoring out the use of private-coin simulations.

ACKNOWLEDGMENTS
H. Attiya was partially supported by the Israel Science Foundation (grants 380/18 and 22/1425).

S. Nassar was partially funded by the European Union (ERC, FASTPROOF, 101041208). Views and

opinions expressed are however those of the author(s) only and do not necessarily reflect those

of the European Union or the European Research Council. Neither the European Union nor the

granting authority can be held responsible for them.

Faithful Simulation of Randomized BFT Protocols on Block DAGs 17

REFERENCES
[1] Hagit Attiya and Constantin Enea. Putting strong linearizability in context: Preserving hyperproperties in programsthat

use concurrent objects. In Jukka Suomela, editor, 33rd International Symposium on Distributed Computing, DISC 2019,
October 14-18, 2019, Budapest, Hungary, volume 146 of LIPIcs, pages 2:1–2:17. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2019.

[2] Leemon Baird. The Swirlds Hashgraph consensus algorithm: Fair, fast, Byzantine fault tolerance. In Technical Report,
2016.

[3] Christian Cachin, Rachid Guerraoui, and Luís E. T. Rodrigues. Introduction to Reliable and Secure Distributed Program-
ming (2. ed.). Springer, 2011.

[4] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In S. Rao Kosaraju,

David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing, May 16-18, 1993, San Diego, CA, USA, pages 42–51. ACM, 1993.

[5] Anton Churyumov. Byteball: A decentralized system for storage and transfer of value. In Technical Report, 2016.
[6] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal and Tusk: a DAG-based

mempool and efficient BFT consensus. In Yérom-David Bromberg, Anne-Marie Kermarrec, and Christos Kozyrakis,

editors, EuroSys ’22: Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022, pages
34–50. ACM, 2022.

[7] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one faulty process.

In Ronald Fagin and Philip A. Bernstein, editors, Proceedings of the Second ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, March 21-23, 1983, Colony Square Hotel, Atlanta, Georgia, USA, pages 1–7. ACM, 1983.

[8] AdamGagol, Damian Lesniak, Damian Straszak, andMichal Swietek. Aleph: Efficient atomic broadcast in asynchronous

networks with Byzantine nodes. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies, AFT
2019, Zurich, Switzerland, October 21-23, 2019, pages 214–228. ACM, 2019.

[9] Shang-En Huang, Seth Pettie, and Leqi Zhu. Byzantine agreement in polynomial time with near-optimal resilience. In

Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
Rome, Italy, June 20 - 24, 2022, pages 502–514. ACM, 2022.

[10] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need is DAG. In Avery

Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed
Computing, Virtual Event, Italy, July 26-30, 2021, pages 165–175. ACM, 2021.

[11] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565, 1978.

[12] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. Untimed systems. Inf. Comput.,
121(2):214–233, 1995.

[13] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. untimed systems. Inf. Comput.,
121(2):214–233, 1995.

[14] Sean Rowan and Naïri Usher. The Flare consensus protocol: Fair, fast federated Byzantine agreement consensus. In

Technical Report, 2019.
[15] Maria Schett. Personal communication, January 2022.

[16] Maria Anna Schett and George Danezis. Embedding a deterministic BFT protocol in a block DAG. In Avery Miller,

Keren Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, July 26-30, 2021, pages 177–186. ACM, 2021.

[17] Roberto Segala. A compositional trace-based semantics for probabilistic automata. In Insup Lee and Scott A. Smolka,

editors, CONCUR ’95: Concurrency Theory, 6th International Conference, Philadelphia, PA, USA, August 21-24, 1995,
Proceedings, volume 962 of Lecture Notes in Computer Science, pages 234–248. Springer, 1995.

[18] Yonatan Sompolinsky, Shai Wyborski, and Aviv Zohar. PHANTOMGHOSTDAG: a scalable generalization of nakamoto

consensus: September 2, 2021. In Foteini Baldimtsi and Tim Roughgarden, editors, AFT ’21: 3rd ACM Conference on
Advances in Financial Technologies, Arlington, Virginia, USA, September 26 - 28, 2021, pages 57–70. ACM, 2021.

[19] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bullshark: DAG BFT protocols

made practical. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pages 2705–2718. ACM, 2022.

[20] Qin Wang, Jiangshan Yu, Shiping Chen, and Yang Xiang. SoK: Diving into DAG-based blockchain systems. CoRR,
abs/2012.06128, 2020.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	2.1 Model
	2.2 Public-Coin Randomized Protocols
	2.3 Shared Objects
	2.4 Labeled Transition System
	2.5 Modeling the Protocol as an LTS
	2.6 Cryptographic Primitives

	3 Block DAGs
	4 Simulating Public-Coin Protocols Which Use Shared Objects
	4.1 Common Interpretation
	4.2 Joint Block DAG
	4.3 Correctness of the Simulation

	5 Relation to Prior Work
	5.1 Comparison with Schett and Danezis
	5.2 Analyzing Existing Protocols

	6 Discussion
	Acknowledgments
	References

