
Differential Fault Attack on Ascon Cipher

Amit Jana

Cryptology & Security Research Unit,
R. C. Bose Centre for Cryptology & Security,
Indian Statistical Institute, Kolkata, India,

janaamit001@gmail.com

Abstract. This work investigates the security of the Ascon authenti-
cated encryption scheme in the context of fault attacks, with a specific
focus on Differential Fault Analysis (DFA). Motivated by the growing sig-
nificance of lightweight cryptographic solutions, particularly Ascon, we
explore potential vulnerabilities in its design using DFA. By employing a
novel approach that combines faulty forgery in the decryption query un-
der two distinct fault models, leveraging bit-flip faults in the first phase
and bit-set faults in the second, we successfully recover the complete As-
con key. This study sheds light on the impact of key whitening in the
final permutation call and discusses potential threats when this safeguard
is absent. Additionally, we consider the implications of injecting multi-
ple bit-flip faults at the S-box input, suggesting alternative strategies for
compromising the state space. Our findings contribute valuable insights
into the gray-box security landscape of Ascon, emphasizing the need
for robust defenses to ensure the integrity and resilience of lightweight
cryptographic primitives against diverse fault attacks.

Keywords: CAESAR · NIST· LwC· Authenticated Encryption· Side-
channel Attacks· Differential Fault Attack· Faulty Forgery· Ascon

1 Introduction

The Internet of Things (IoT) [1] represents the modern evolution of the Internet,
establishing a network of small objects to connect myriad devices across various
platforms. Within IoT technology, key components like Radio Frequency Identi-
fication (RFID) and Wireless Sensor Networks (WSN) find applications in areas
such as traffic control, environmental surveillance, and home automation. Nev-
ertheless, conventional cryptographic methods such as AES (SPN-based block
cipher) and SHA (secure hashing algorithm) encounter difficulties in IoT envi-
ronments due to resource limitations. Lightweight cryptography (LwC) meth-
ods have emerged as a solution, addressing challenges related to physical size,
processing capacity, memory constraints, and power consumption in embedded
systems and sensor networks.

As the Internet of Things (IoT) and cloud computing continue to advance,
the prevalence of small-scale devices has increased. These devices often engage
in cryptographic operations, making them susceptible to device-specific attacks.

For instance, sensor nodes in Wireless Sensor Networks (WSN) deployed in unat-
tended and potentially hostile environments face exposure to various circum-
stances. In the context of IoT, this highlights the transition from the traditional
black-box attack model, relying on classical cryptanalysis, to the gray-box model,
where attackers gain access to additional side-channel information. The Fault At-
tack (FA) has emerged as a potent threat in the gray-box model, with the Differ-
ential Fault Attack (DFA) being a widely employed technique introduced in 1996
by Boneh et al. [2] and demonstrated by Biham and Shamir in [3]. DFA lever-
ages computational errors to extract cryptographic keys. The NIST Lightweight
Cryptography (LwC) Competition, emphasizing side-channel and fault attacks,
motivates the study of submissions in light of physical attacks like DFA, forming
the main focus of this work. Additionally, the LwC design considerations in [4]
stipulate “Side-channel and fault attacks” as a specific requirement, further mo-
tivating our research efforts.

In recent times, there has been a surge in the development of lightweight cryp-
tographic primitives tailored for resource-constrained devices. These encompass
a spectrum of algorithms such as Stream ciphers, Block ciphers, Hash functions,
Message Authentication Codes (MAC), and Authenticated ciphers. Noteworthy
instances among lightweight block ciphers include PRESENT [5], PRINCE [6],
LED [7], SKINNY [8], KATAN & KTANTAN [9], and GIFT [10]. Compre-
hensive analyses and categorizations of lightweight cryptography are provided
in [11] and [12], respectively. Moreover, both national (NIST) and international
(ISO/IEC) bodies offer methodologies for lightweight cryptography applicable to
IoT and RFID devices [4]. In 2013, the Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness (CAESAR) was established by a
consortium of international cryptologic researchers to promote the development
of authenticated encryption schemes. In 2019, Ascon [13] was selected as the
preferred choice for lightweight applications in the final portfolio. Later, NIST
has initiate a standardization for lightweight cryptography, commencing in 2019,
featured 56 accepted submissions in Round-1, whittling down to 32 candidates
in Round-2 and culminating in the announcement of 10 finalists, with Ascon
emerging as the recent winner.

The cryptographic properties of Ascon render it secure against various linear
and differential cryptanalysis methods. However, the Ascon implementation
is susceptible to side-channel and fault attacks aimed at key recovery. In this
context, Joshi et al. [14] introduced a subset fault analysis (SSFA) attack on
Ascon. The authors utilized various fault models with different granularities
to uniquely recover the key. For the SSFA attack, they found that it required
85, 680, and 5440 faults to reduce the key space to values between 1 and 264

under different bit-reset fault granularities of 1 bit, byte, and word, respectively.
In 2019, Ramezanpour et al. [15] presented a statistical fault attack on Ascon
using double-fault injections at a selected pair of S-boxes. In experiments on
a software implementation of Ascon, the author demonstrated that between
12.5 to 2500 correct tag values (i.e., ineffective faults) were sufficient for key
recovery for fault distributions ranging from highly biased to more uniform.

2

Jacob et al. [16] demonstrated how to modify Ascon-128a by exploiting the
pseudo-random properties of cellular automata to prevent statistical ineffective
fault attacks (SIFA) and subset fault analysis (SSFA). Additionally, Surya et
al. [17] proposed a local clock glitching fault injection attack on Ascon-128.
Furthermore, in [18,19], side-channel attacks were proposed on Ascon to recover
its key using 24K power traces on the Artix-7 FPGA.

Performing Differential Fault Analysis (DFA) is highly challenging due to
the inability of an attacker to observe both the correct and faulty output for
the same input. Some cryptographic schemes assert a certain level of resilience
even in misuse scenarios, such as repeated nonces or the release of unverified
plaintext. However, unlike nonce-based encryption schemes, the decryption pro-
cedure (with a fixed nonce) remains susceptible to DFA. In the case of a sponge
authenticated encryption (AE) scheme, conducting DFA necessitates creating a
replay in each encryption query. Yet, the use of a unique nonce in each encryp-
tion makes generating a faulty state collision challenging to satisfy the replay
criterion. However, the impact of this unique nonce becomes irrelevant in the
decryption query. Additionally, to orchestrate a replay of the sponge AE in the
decryption query, one might need to fabricate a faulty forgery. Here, “faulty
forgery” denotes an attacker repetitively making queries by selecting a new tag
T ′ and then injecting faults in the intermediate rounds of the state during the
last permutation call until the attacker successfully obtains at least one tag
forgery. Several works [20–22] pose a significant risk to nonce-based designs by
performing DFA using faulty forgery in the decryption query.

In this study, we present an innovative approach by proposing a differential
fault attack on the Ascon AE scheme through faulty forgery in the decryp-
tion query. Our attack achieves comprehensive key recovery by leveraging faulty
forgery under two distinct fault models. In the first fault model, the attacker
successfully retrieves the 64-bit key, and subsequently, the remaining 64-bit key
is obtained through the second fault model. The interesting part of this attack
is that the attacker does not need to invert any round function operations from
the fresh and faulty tag pairs. Instead, a pre-computed table of forgery differ-
ences and input patterns from the S-box is constructed, allowing the attacker
to recover keys through pattern matching from these tables. This distinctive
approach enhances the efficiency and effectiveness of the attack.

Our Contributions. In this paper, in alignment with the NIST LwC requirements,
we investigate the vulnerability of the Ascon AEAD primitive to a differential
fault attack (DFA). Ascon emerged victorious in both the lightweight cryptog-
raphy competitions, CAESAR and the NIST-organized competition. Our primary
contribution lies in outlining a forging strategy under two different fault models,
where we strategically employ faulty forgery in the decryption query. Unlike con-
ventional DFA-based key recovery, where attackers guess the key and perform
inverse computations, we introduce an innovative approach. Instead of relying
on inverse computations, we pre-compute tables of forgery differences and in-
put patterns from the S-box. This approach allows the attacker to recover keys
through efficient pattern matching from these tables. Our combined approach,

3

utilizing both bit-flip faults in the first phase and bit-set faults in the second
phase, enables the attacker to uniquely retrieve the key with 1024 faulty queries,
requiring 576 bytes of extra memory and exhibiting linear time complexity. This
represents a significant advancement in the field of differential fault attacks on
lightweight cryptographic primitives.

Paper Outline. The remaining sections of the paper are structured as follows.
Section 2 introduces the notation that will be consistently used throughout the
paper. In Section 3, we provide a concise overview of the Ascon AE scheme.
Sections 4 delve into the specifics of the differential fault attacks, exploring their
complexities on Ascon under two distinct fault models. Furthermore, Section
4 includes a detailed discussion on the attack, elucidating the reasons behind
selecting the second phase attack under bit-set faults, and highlighting how
it facilitates the faulty forgery process and enhances key recovery. The paper
concludes with Section 5, summarizing the key findings and contributions.

2 Notations

The following list of notations are used throughout the paper.

– K, N , T , P , C, and A represent the secret key of k bits, nonce of 128 bits,
tag of 128 bits, plaintext, ciphertext, and associated data, respectively.

– S, Sr, Sc denote the sponge state of b bits, the r-bit rate part of S, and the
c-bit capacity part of S, respectively.

– π, πa, πb denote the single-round, a-round, and b-round Ascon permuta-
tions, respectively.

– π = πC ◦ πSB ◦ πL denotes the composition of three operations: constant
addition, substitution, and linear mixing, respectively.

– x ∈ {0, 1}n denotes the bitstring of length n.
– x0, x1, . . . , x4 denote the five 64-bit words of the state S with x0 and x4

being the most and least significant words, respectively.
– xi,j , 0 ≤ i ≤ 4, 0 ≤ j ≤ 63 denotes the jth bit of the word xi.
– For any input (x0,j , x1,j , x2,j , x3,j , x4,j), where 0 ≤ j ≤ 63, to the Ascon

S-box, x0,j and x4,j denote the most and least significant bits, respectively.

– (∆x0,j ,∆x1,j , . . . ,∆x4,j)
S-box
−−−−→ (∆y0,j ,∆y1,j , . . . ,∆y4,j) denotes the input and

output difference of S-box respectively.
– ⊕ denotes the bitwise XOR operation.
– x ≫ i denotes the right rotation of the the n-bit word x by i bits.

3 Specification

Ascon cipher, designed by Dobraunig et al. [13] is an authenticated encryption
with associated data (AEAD), based on MonkeyDuplex construction [23] with
stronger keyed initialization and finalization function. The authenticated encryp-
tion (AE) designs of Ascon are parametrized by the key length k ≤ 160 bits, the

4

rate (data block size) r and internal round numbers a and b. The recommended
instances for Ascon authenticated encryption and their parameters are listed in
Table 1. The encryption procedure Ek,r,a,b takes as inputs a secret key K with
k bits, a nonce N with 128 bits, associated data A of arbitrary length and a
plaintext P of arbitrary length. It authenticates both the associated data and
the message to produce an output consisting of the authenticated ciphertext C
of exactly the same length as the plaintext P as well as an authentication tag T
of size 128 bits:

Ek,r,a,b(K,N,A, P) = (C, T).

The decryption and verification procedure Dk,r,a,b takes as input the key K,
nonce N , associated data A, ciphertext C and tag T , and outputs either the
plaintext P if the verification of the tag is correct or an error ⊥ if the verification
of the tag fails:

Dk,r,a,b(K,N,A,C, T) ∈ {P,⊥}.

The Ascon cipher operate on a state S of b bits, where b = 320. The state
is updated with permutations πa and πb. The 320-bit state S is divided into an
outer part Sr of r bits and an inner part Sc of c bits, where r + c = 320. The
main components of the Ascon design are the two 320-bit permutations πa and
πb. The permutations iteratively apply an SPN-based round transformation π
which in turn consists of three operations: Addition of Constants, Substitution
Layer, and Linear Diffusion Layer. The Ascon state with S-box operation and
the linear diffusion operation is described in Figure 2. The constant addition
step πC adds a round constant to register word x2 of the state S in each round.
The substitution layer πSB updates the state S with 64 parallel applications of
the 5-bit S-box SB(x), where x = (x4,j , x3,j , x2,j , x1,j , x0,j), 0 ≤ j ≤ 63. The
lookup table of SB is given in Table 2. The linear diffusion layer πL provides
diffusion within each 64-bit register word xi, i = 0, 1, . . . , 4. The row diffusion in

Const.

K||N
c

r

πa

0∗||K

A0

πb

As

πb

0∗||1

M0C0

πb

M1C1

πb

Mt−2 Ct−2

πb

Mt−1Ct−1

K||0∗

πa
k

K

T

Fig. 1: The Design of Ascon Cipher

x4

x3

x2

x1

x0

x4,0

x3,0

x2,0

x1,0

x0,0

x4,1

x3,1

x2,1

x1,1

x0,1

x4,2

x3,2

x2,2

x1,2

x0,2

...

...

...

...

...

x4,61

x3,61

x2,61

x1,61

x0,61

x4,62

x3,62

x2,62

x1,62

x0,62

x4,63

x3,63

x2,63

x1,63

x0,63

Substitution
Operation

...

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox Linear

Diffusion
Operation

Row Diffusion (R4)

Row Diffusion (R3)

Row Diffusion (R2)

Row Diffusion (R1)

Row Diffusion (R0)

Fig. 2: The S-box and Linear operation of Ascon Permutation π

5

each word are defined as follows:

R0 : x0 = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28),

R1 : x1 = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39),

R2 : x2 = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6),

R3 : x3 = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17),

R4 : x4 = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41).

For authenticated encryption of Ascon design, the encryption and decryp-
tion operations are illustrated in Figure 1. The encryption is partitioned into
four phases: initialization, processing of associated data, processing of the plain-
text, and finalization. In the “Initialization” phase, the 320-bit initial state of
Ascon is formed by the concatenation of an Initial Vector (IV), the secret key
K and nonce N . At the Initialization, πa is applied to the state, and the 128-bit
secret key is XORed with the last 128 capacity bits. The “Associated Data” stage
absorbs r-bit blocks of associated data into the sponge by XORing them with the
rate bits, followed by πb after each block absorption. In the “Plaintext” stage,
plaintext blocks are absorbed, and ciphertext blocks are squeezed out. After pro-
cessing all plaintext blocks, Ascon enters the “Finalization” stage to generate
the authentication tag T . Here, the secret key is XORed with 128 capacity bits
(most significant) of the state, and πa is performed. The tag T consists of the
last 128 capacit bits (least significant) of the state XORed with 128 bits of the
key K.

Table 1: Recomended Parameters of Ascon AE Schemes

Schemes
Size in Bits # Rounds

Key Nonce Tag Data Blocks πa πb

Ascon-128 128 128 128 64 12 6

Ascon-128a 128 128 128 128 12 8

4 Differential Fault Attack on Ascon

In this comprehensive attack, our objective is to recover the key of the Ascon
cipher by employing two distinct fault setups. To achieve this, we explore two
different fault models in this attack.

In the initial phase of the attack, we elucidate how an attacker can generate
forgeries (faulty forgery) of Ascon in the decryption query using bit-flip faults.
Leveraging the collected forgeries, we successfully reduce the internal state space
to 264 and subsequently recover its 64-bit key.

6

Table 2: The Ascon S-box

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S-box 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c

x 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S-box 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

Moving on to the second phase of the attack, we opt for generating faulty
forgery under bit-set faults. This strategic choice enables us to uniquely recover
the state, thereby obtaining the key in a unique manner. This multi-phase ap-
proach highlights the sophistication of the attack strategy, leveraging different
fault models to compromise the security of the Ascon cipher and ultimately
retrieve its key.

4.1 Fault Model

In this attack, we consider two different kind of fault models. The first fault
model we consider in this attack is to induce precise bit-flip faults in the state.
For example, an attacker can induce a precise bit-flip fault to change one bit (at
the input of S-box operation) in the internal state during the tag verification
of Ascon decryption oracle call. This can be practically achieved because the
attacker can use a Laser beam to induce such faults [24–26] with high accuracy
(space and time). Further, EM is also a good way of injecting such precise bit-flip
faults which does not require any chip de-packaging. Practically, precise bit-level
fault injections can be achieved by EM fault injection setup and is being shown
in [27].

In the second phase of our attack strategy, we consider the scenario where
the attacker can introduce bit-set faults at the input of the S-box operation
during the finalization stage’s last round in the decryption oracle call. A bit-
set fault, when applied to a data bit, causes a change in its value from zero to
one, thereby introducing a computation error. Conversely, if the logical value
of the data bit was already one before the fault injection, it remains unaltered.
Practical experiments conducted on a microcontroller, as documented in [28,29],
have successfully demonstrated the induction of bit-set faults using laser beams.
Research findings highlight that the occurrence rate of bit-set/reset faults is
notably higher than that of bit-flip faults. While the implementation of laser-
induced faults requires expensive equipment, it allows for the injection of faults
with exceptional precision in both target location and timing, as illustrated
in [30].

4.2 Faulty Forgery on Ascon

During the decryption query of the Ascon AEAD, we initiate a faulty forgery
by deliberately introducing repeated bit-flip faults at the final Ascon permu-

7

Table 3: Difference Distribution Table (DDT) of S-box Corresponding to Input
Bit Differences

In/out 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

1 - - - - - - - - - 4 - 4 - 4 - 4 - - - - - - - - 4 - 4 - 4 - 4 -

2 - - - - - - - - - - - - - - - - - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4

4 - - - - - - 8 - - - - - - - 8 - - - - - - - 8 - - - - - - - 8 -

8 - - - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4 - - - - - - 4 4

1f - - 4 4 4 4 - - - - - - - - - - - - 4 4 4 4 - - - - - - - - -

tation call, precisely before the tag evaluation. Specifically, these bit-flip faults
are induced at the last round (before the S-box operation) of the final Ascon
permutation denoted as πa in the decryption query.

To implement this, we randomly select T
′
= T ⊕∆ based on the input bit

difference in the state. In the context of the round function of the permutation π,
if a bit difference is injected (prior to the S-box operation) at any bit position in
the j-th column, the resulting output differences from the S-box operation spread
to two bit positions, namely (3, j) and (4, j) in the state words x3 and x4. In
our approach, we specifically focus on the differences in the bit positions (3, j)
and (4, j) within the column. This targeted selection is made since differences in
other bit positions within the column are deemed irrelevant and do not impact
the tag computation.

Let δi,j denote the bit differences of the state after the S-box operation,
where 0 ≤ i ≤ 4 and 0 ≤ j ≤ 63. It is evident that the two bit differences
at positions (3, j) and (4, j) are δ3,j = b1 and δ4,j = b2, where b1, b2 ∈ {0, 1}.
The two 64-bit word differences δ3 and δ4 take the form δ3 = 00 . . . δ3,j . . . 0 and
δ4 = 00 . . . δ4,j . . . 0. Therefore, for each bit-flip fault, we select the∆ difference as
∆ = R3(δ3)||R4(δ4). This scenario is visually depicted in Figure 3. Additionally,
we summarize the steps to obtain the faulty forgery in Algorithm 1. We estimate
the number of required faulty decryption queries to get a successful forgery when
an attacker inject a fault (bit-flip) at the specific bit position. The following
propositions give the answer and finally, show that 4 faulty queries are sufficient
to get one successful tag forgery.

Theorem 1. For Ascon AEAD, let χ denotes the number of faulty queries to
collect a successful forgery by injecting falts at the (i, j)th position (before S-box
operation) in the last round of the final permutation. Then, E(χ) = 22.

Proof. To make a valid forgery, we have to try for all b1||b2 ∈ {00, 01, 10, 11} and
make the corresponding T

′
as T

′
= T ⊕ R3(δ3)||R4(δ4). Thus, the probability

(p) to get one successful forgery will be 1
22 .

Let χ denotes the number of trials to get a success, i.e., a valid forgery.
So, for each trial, Pr[success] = p and Pr[failure] = q = 1 − p. Therefore,
Pr[χ = j] = qj−1 · p. It shows that χ follows a geometric distribution with
probability p. Hence, E(χ) = 1

p = 22.

8

Algorithm 1 faulty forgery Bit Difference Pattern of Ascon

Input: Associated data A, Plaintext P , and the target bit position (i, j), 0 ≤ i ≤ 4, 0 ≤
j ≤ 63 in the state
Output: The output bit difference patterns b2||b1 for which faulty forgery happens

1: Initialize a list L[3] = [0x01, 0x02, 0x03]
2: Make an encryption query (N,A, P) and get (C, T).
3: Choose the last round function π at the finalization phase where faults will be injected before

the S-box operation
4: for p = 0 to 2 do ▷ In the decryption query
5: Inject bit-flip fault at the bit position (i, j) before the S-box operation
6: Compute ∆x3 = (((L[p]&0x02) >> 1) << 63− j) and ∆x4 = ((L[p]&0x01) << 63− j)
7: Choose the tag difference ∆T = R3(∆x3)||R4(∆x4)

8: Make the decryption query as (N,A,C, T
′
), where T

′
= T ⊕ ∆T and check

whether T
′

is a valid forgery or not? If happens, then return the bit difference pattern
(L[p]&0x1)||((L[p]&0x2) >> 1).

9: return 0||0.

For any bit difference at the input to S-box, there are four possible output
difference patterns denoted as b2||b1: 00, 01, 10, or 11. Another perspective is
to consider the differential distribution table (DDT) of Ascon S-box, where a
given input difference leads to various output differences. The Table 3 provides
the DDT corresponding to input bit differences for the S-box. Analyzing these
output differences for a fixed input difference, the initial two LSB bit differences
may appear in the forms of different strings. It is important to note that the
decryption query does not provide any response for the output difference pattern
b1||b2 = 00, where no difference reflects to the tag part (T

′
= T). This behavior

stems from the property of the S-box DDT.
Consequently, the faulty forgery is executed based on the output differences

b1||b2 ∈ {01, 10, 11}, and the ∆ difference is crafted accordingly. Therefore,
if no successful forgeries occur (corresponding to bit-flip faults) for b1||b2 ∈
{01, 10, 11}, it is inferred that a forgery must indeed occur for b1||b2 = 00. This
assumption is grounded in the understanding of the differential distribution ta-
ble (DDT) properties of the Ascon S-box, where the absence of differences in
the b1||b2 = 00 pattern indicates a unique behavior in the decryption response.

4.3 The First Phase Attack

Notably, when bit faults are injected at a given bit position in the input to S-
box for faulty forgery, the attacker gains knowledge of the first two LSB bits of
the output difference b1||b2 after the S-box operation. This implies that the at-
tacker possesses complete information on the S-box input difference while having
only partial information on the S-box output difference. To filter out the S-box
difference, two approaches are considered.

The first approach involves computing backward from the S-box by guessing
the input values of the inverse S-box. This iterative process is repeated for all
64 S-box operations, leading to a reduction in the state space. Following the
reduction, the focus is on identifying the state words x3 and x4. If either one or
both of these words are uniquely determined, the corresponding 64-bit keys can
be unequivocally retrieved. However, this approach may prove intricate.

9

x4

x3

x2

x1

x0

x4,0

x3,0

x2,0

x1,0

x0,0

x4,1

x3,1

x2,1

x1,1

x0,1

x4,2

x3,2

x2,2

x1,2

x0,2

...

...

...

...

...

x4,61

x3,61

x2,61

x1,61

x0,61

x4,62

x3,62

x2,62

x1,62

x0,62

x4,63

x3,63

x2,63

x1,63

x0,63

Substitution
Operation

...

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox Linear

Diffusion
Operation

Row Diffusion (R4)

Row Diffusion (R3)

Row Diffusion (R2)

Row Diffusion (R1)

Row Diffusion (R0)

K1

T1

K0

T0

K = K0||K1
Fresh Tag: T = T0||T1

(a) Fresh Tag in Encryption Query

Bit-flip Fault

x4

x3

x2

x1

x0

x4,0

x3,0

x2,0

x1,0

x̄0,0

x4,1

x3,1

x2,1

x1,1

x0,1

x4,2

x3,2

x2,2

x1,2

x0,2

...

...

...

...

...

x4,61

x3,61

x2,61

x1,61

x0,61

x4,62

x3,62

x2,62

x1,62

x0,62

x4,63

x3,63

x2,63

x1,63

x0,63

Substitution
Operation

...

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox

S
-b
ox Linear

Diffusion
Operation

Row Diffusion (R4)

Row Diffusion (R3)

Row Diffusion (R2)

Row Diffusion (R1)

Row Diffusion (R0)

K1

T
′
1

K0

T
′
0

K = K0||K1

Faulty Tag: T
′

= T
′
0||T

′
1

(b) Faulty Tag in Decryption Query

Fig. 3: An example of Faulty Forgery of Ascon

Hence, the second approach is preferred, offering an alternative strategy for
efficiently achieving the same goal. In this approach we filter out the inputs of
the S-box in the forward direction and store them in a table. The approach is as
follows. Consider the input/output difference of jth, 0 ≤ j ≤ 63 S-box as

(∆x0,j ,∆x1,j ,∆x2,j ,∆x3,j , ∆x4,j)
S-box−−−→ (∗,∗,∗, ∆y3,j ,∆y4,j),

where ∆in = ∆x0,j ||∆x1,j ||∆x2,j ||∆x3,j ||∆x4,j is a one bit input difference and
∆out = ∗||∗||∗||∆x3,j ||∆x4,j is the output difference, with b1 = ∆y3,j , b2 = ∆y4,j
being the two LSB output bit differences in the state. Thus, for all inputs x ∈
{0, 1}5, we have to compute the output difference b2||b1 corresponding to each
input differences ∆in = (0x1 << i), i ∈ {0, 1, 2, 3, 4} and store them in a table.
The faulty forgery scenario at the targeted S-box (jth) is depicted in Figure 4.
The evaluation of the table is given in Algorithm 2. Also, for each S-box input
value, the first two LSB bit difference pattern b2||b1 for each 5 different input bit
differences are presented in Table 4.

Upon closer examination of Table 4, it becomes evident that each output
bit difference pattern of S-box corresponds to exactly two different input values
of S-box for each set of five faulty forgery at the S-box input. For instance, the
difference pattern 01 01 01 11 11 occurs for two different input values, namely
3 and 7. The pairs of S-box input values sharing the same output bit difference
patterns follow the pattern (z, z + 4), where z = 8 · a + b and a, b ∈ {0, 1, 2, 3}.
This observation indicates that any output bit difference pattern corresponding
to faulty forgery for each fault at the S-box input effectively reduces the S-box
input space to 2. Consequently, for each faulty forgery at the 64 different S-box,
the state space is directly reduced from 2128 to 264. This reduction in state space,
in turn, diminishes the key space to 264, rendering it impractical for any type of
fault attacks.

10

x4

x3

x2

x1

x0

∆x4,0

∆x3,0

∆x2,0

∆x1,0

∆x0,0

...

...

...

...

...

∆x0,0 = 1

∆x4,0 = ∆x3,0 = ∆x2,0 = ∆x1,0 = 0

∆x4,0 = 1

∆x0,0 = ∆x3,0 = ∆x2,0 = ∆x1,0 = 0

Substitution
Operation

...

b2

b1

*

*

*

b2 = ∆y4,0

b1 = ∆y3,0

Linear
Diffusion
Operation

Row Diffusion (R4)

Row Diffusion (R3)

Row Diffusion (R2)

Row Diffusion (R1)

Row Diffusion (R0)

K1

∆T
′
1

K0

∆T
′
0

K = K0||K1
Tag Difference: ∆T = R3(b10 . . . 0)||R4(b20 . . . 0)

Fig. 4: Example of Faulty Forgeries at 0th Column in the Last Round Finalization
Phase

(0, 4) → (4, 26)
S-box

00100
11010
✗ ✗ ✗ ✗ ✓

(1, 5) → (11, 21)
S-box

01011
10101
✗ ✗ ✗ ✗ ✓

(2, 6) → (31, 9)
S-box

11111
01001
✗ ✓ ✗ ✗ ✓

(3, 7) → (20, 2)
S-box

10100
00010
✗ ✓ ✗ ✗ ✓

(8, 12) → (27, 29)
S-box

11011
11101
✓ ✓ ✗ ✗ ✓

(9, 13) → (5, 3)
S-box

00101
00011
✗ ✗ ✗ ✗ ✓

(10, 14) → (8, 6)
S-box

01000
00110
✗ ✗ ✗ ✗ ✓

(11, 15) → (18, 28)
S-box

10010
11100
✗ ✗ ✗ ✗ ✓

(16, 20) → (30, 0)
S-box

11110
00000
✗ ✗ ✗ ✗ ✓

(17, 21) → (19, 13)
S-box

10001
01101
✗ ✗ ✗ ✓ ✓

(18, 22) → (7, 17)
S-box

00111
10001
✗ ✓ ✗ ✓ ✓

(19, 23) → (11, 24)
S-box

01110
11000
✗ ✓ ✗ ✗ ✓

(24, 28) → (16, 22)
S-box

10000
10110
✓ ✓ ✗ ✗ ✓

(25, 29) → (12, 10)
S-box

01100
01010
✓ ✓ ✗ ✗ ✓

(26, 30) → (1, 15)
S-box

00001
01111
✓ ✗ ✗ ✗ ✓

(27, 31) → (25, 23)
S-box

11001
10111
✓ ✗ ✗ ✗ ✓

Fig. 5: Ascon S-box Output Pairs Correspond to Input Pairs Which Generates
the Same faulty forgery Difference Pattern in Table 4

To accurately recover the 64-bit keys, further exploration is needed based on
this reduced 264 state space. For all these pairs of inputs, it must be checked
whether the LSB bits of S-box’s output are the same or not. We list all these
input pairs and their corresponding outputs in Figure 5. From Figure 5, it is
evident that the LSB bits of each of the 64 S-box can be uniquely retrieved,
meaning that the word x4 after the S-box operation is uniquely recovered. This
final step facilitates the direct retrieval of the 64-bit key by XORing the fresh
tag T with the word R4(x4).

The complete process for recovering the 64-bit keys can be summarized as
follows. Fix the column (jth, 0 ≤ j ≤ 63 S-box) position in a state and collect
the five output bit difference patterns b2||b1 by performing faulty forgery through
injecting bit-flip faults on five input bits to the S-box input. Based on the five
output bit difference patterns, search for the input values of the S-box from
Table 4, and then retrieve the LSB bit according to Figure 5, which directly
provides the actual bit value (at the jth column position) of the word x4 after
the S-box operation. Repeat this procedure for each of the 64 S-boxes to directly
retrieve the word x4 after the S-box operation. Then, apply the Row Mixing
operation to x4 and XORing it with the fresh tag T to uniquely obtain the
64-bit key. This entire process is detailed in Algorithm 3.

11

T
ab

le
4:

T
h
e
O
u
tp
u
t
B
it
D
iff
er
en
ce

P
a
tt
er
n
o
f
A
sc

o
n
S
-b
ox

W
h
en

F
a
u
lt
y
F
o
rg
er
y
H
a
p
p
en
s
u
n
d
er

B
it
-fl
ip

F
a
u
lt
s

In
p
u
t
O
u
tp
u
t
B
it
s
D
iff
er
en

ce
P
a
tt
er
n
b 2
||b

1
o
f
ea
ch

in
p
u
t
b
it

d
iff
er
en

ce
In
p
u
t
O
u
tp
u
t
B
it

D
iff
er
en

ce
P
a
tt
er
n
b 2
||b

1
o
f
ea
ch

in
p
u
t
b
it

d
iff
er
en

ce

∆
in

=
0
x
1
0
∆

in
=

0
x
0
8
∆

in
=

0
x
0
4
∆

in
=

0
x
0
2

∆
in

=
0
x
0
1

∆
in

=
0
x
1
0
∆

in
=

0
x
0
8
∆

in
=

0
x
0
4
∆

in
=

0
x
0
2

∆
in

=
0
x
0
1

0
0
1

1
1

0
1

1
1

1
1

1
6

0
1

0
1

0
1

1
0

1
0

1
0
0

0
1

0
1

1
1

1
1

1
7

0
0

1
1

0
1

1
0

1
0

2
0
0

1
1

0
1

1
1

1
1

1
8

0
0

0
1

0
1

1
0

1
0

3
0
1

0
1

0
1

1
1

1
1

1
9

0
1

1
1

0
1

1
0

1
0

4
0
1

1
1

0
1

1
1

1
1

2
0

0
1

0
1

0
1

1
0

1
0

5
0
0

0
1

0
1

1
1

1
1

2
1

0
0

1
1

0
1

1
0

1
0

6
0
0

1
1

0
1

1
1

1
1

2
2

0
0

0
1

0
1

1
0

1
0

7
0
1

0
1

0
1

1
1

1
1

2
3

0
1

1
1

0
1

1
0

1
0

8
1
1

1
1

0
1

1
1

0
1

2
4

1
1

0
1

0
1

1
0

0
0

9
1
0

0
1

0
1

1
1

0
1

2
5

1
0

1
1

0
1

1
0

0
0

1
0

1
0

1
1

0
1

1
1

0
1

2
6

1
0

0
1

0
1

1
0

0
0

1
1

1
1

0
1

0
1

1
1

0
1

2
7

1
1

1
1

0
1

1
0

0
0

1
2

1
1

1
1

0
1

1
1

0
1

2
8

1
1

0
1

0
1

1
0

0
0

1
3

1
0

0
1

0
1

1
1

0
1

2
9

1
0

1
1

0
1

1
0

0
0

1
4

1
0

1
1

0
1

1
1

0
1

3
0

1
0

0
1

0
1

1
0

0
0

1
5

1
1

0
1

0
1

1
1

0
1

3
1

1
1

1
1

0
1

1
0

0
0

12

Algorithm 2 Computing the Pre-defined Table of faulty forgery
Bit Difference Pattern of Ascon S-box

Input: Ascon S-box S
Output: A Table consisting the output difference patterns b2||b1 for each input bit differences

1: Initialize a two dimentional table T [32][5]
2: for x = 0 to 31 do
3: for i = 0 to 4 do
4: ∆in = (0x1 << i)
5: ∆out = S(x)⊕ S(x⊕∆in)
6: b1 = ((∆out & 0x2) >> 1)
7: b2 = (∆out & 0x1)
8: T [x][i] = b2||b1
9: return the table T

Algorithm 3 The Last 64-bit Key Recovery of Ascon using Bit-flip
faulty forgery

Input: Associated Data A and Plaintext P
Output: 64-bit key of Ascon using faulty forgery

1: Compute the table T according to Algoritm 2 ▷ See Table 4
2: Make an encryption query (N,A, P) and get (C, T)
3: Choose the last round function π at the finalization phase where faults will be injected before

the S-box operation
4: Initialize three variables i = j = l = 0 ▷ i← Row Position, j ← Column Position

5: Initialize a 64-bit register x4 = 0x0 and a 64-bit key K
′

▷ The LSB word after the S-box
operation

6: Initilize a table G[64][5]
7: for j = 0 to 63 do
8: l = 0
9: for i = 0 to 4 do
10: Fix the bit position (i, j) where bit-flip faults will be injected.
11: Call the Algorithm 1 and store the output bit difference pattern b2||b1 in the table
G[j][l] = b2||b1

12: l = l + 1

13: Search for the one input value x of S-box from the table T according to the output difference
patterns from the jth row of G ▷ See Table 4

14: Compute the LSB bit z ((4, j)th bit) from S-box(x), i.e., z = S-box(x)&0x1
15: x4 = x4 ⊕ (z << 63− j)

16: K
′
= T1 ⊕R4(x4) ▷ T = T0||T1, K = K0||K1

17: return K
′

4.4 The Second Phase Attack

In the initial phase of the attack, we demonstrated the retrieval of the 64-bit
key through faulty forgery using bit-flip faults. The natural question arises: Can
the attacker recover the remaining 64-bit key? Notably, a bit difference pattern
obtained through faulty forgery, induced by bit faults at each bit in the S-box,
directly reduces the S-box input space to 2. Furthermore, these two values share
the third LSB bit in the S-box input (see Figure 5). Therefore, for each S-box
in the finalization round, recovering the third LSB input bit of S-box directly
reduces the state space from 264 to a unique value. Consequently, the remaining
64-bit key can be directly retrieved. The straightforward approach involves per-
forming faulty forgery by injecting bit-set faults, instead of bit-flip faults, at the
third bit position (LSB) before the S-box transformation. The steps to uniquely
recover the key are outlined in Algorithm 4.

13

Algorithm 4 The Initial 64-bit Key Recovery of Ascon using Bit-set
faulty forgery

Input: Associated Data A and Plaintext P and the list G from Algorithm 3
Output: 64-bit key of Ascon using faulty forgery

1: Consider the same (C, T) pair of an encryption query (N,A, P) according to Algorithm 3.
2: Choose the last round function π at the finalization phase where faults will be injected before

the S-box operation during decryption
3: Initialize three variables j = l = 0 and i = 2 ▷ i← Row Position, j ← Column Position

4: Initialize a 64-bit register x3 = 0x0 and a 64-bit key K
′′

▷ Third LSB word after the S-box
operation

5: Initialize a list B[64]
6: for j = 0 to 63 do
7: l = 0
8: Fix the bit position (i, j) where bit-set faults will be injected.
9: Compute ∆x3 = (((G[j][i] & 0x02) >> 1) << 63 − j) and ∆x4 = ((G[j][i] & 0x01) <<

63− j)
10: Choose the tag difference ∆T = R3(∆x3)||R4(∆x4)

11: Make the decryption query as (N,A,C, T
′
), where T

′
= T ⊕∆T

12: if T
′
is a valid forgery then

13: B[j] = 0
14: else
15: B[j] = 1

16: Search for the input value x of S-box from the table TB so that the third LSB bit value
equals to B[j] ▷ See Table 4

17: Compute the second LSB bit z ((3, j)th bit) from S-box(x), i.e., z = ((S-box(x) & 0x2) >> 1)
18: x3 = x3 ⊕ (z << 63− j)

19: K
′′

= T0 ⊕R3(x3) ▷ T = T0||T1, K = K0||K1

20: return K
′′

For better comprehension, the described algorithm operates as follows. First,
target the jth, 0 ≤ j ≤ 63 S-box and select the actual output bit difference
pattern from the table G (see Algorithm 3). Compute the tag difference ∆T by
applying linear transformations to the state words x3, x4. Execute faulty forgery
in the decryption and check whether forgery occurs. If forgery occurs, the third
LSB input bit of S-box will be 0; otherwise, it will be 1. This bit value enables the
unique recovery of the S-box input. Repeat this procedure to uniquely retrieve
all S-box inputs. This ultimately reduces the state space of size 264 to a unique
value. Consequently, the first 64-bit key is uniquely recovered.

4.5 Attack Complexity

In the first phase of the attack, the two for loops at step 7 and step 9 in Al-
gorithm 3 are utilized to fix the bit position in the state. For each chosen bit
position, the attacker performs faulty forgery (using Algorithm 1) by trying three
different bit difference patterns. Consequently, to recover the last 64-key, a total
of 64 ·5 ·3 = 960 bit-flip faults are needed. As for memory usage by Algorithm 3,
it requires two 64-bit words, and the tables T , G take 160 and 320 bytes of
memory, respectively. Overall, 496 bytes of memory are needed to implement
Algorithm 3.

Similarly, in the second phase of the attack, the attacker must perform 64
faulty forgery operations (using Algorithm 4) to uniquely recover the other 64-
key. Additionally, it requires two 64-bit words and a list of 64 bytes to implement

14

Algorithm 4. Thus, for both attacks combined, the total number of faulty queries
will be 1024 = 210, and the space complexity will be 576 bytes of extra memory.
Furthermore, the time complexity of both algorithms can run in linear time.

4.6 Software Implementation

Practically, we have implemented both our proposed algorithms (Algorithm 3,
Algorithm 4) to make faulty forgery and then, retrieved the key uniquely. The im-
plementation was performed on a Intel(R) Core(TM) i5-8250U CPU @1.60GHz
machine and the secret key was successfully recovered approximately with the
above-mentioned complexities. The source code of this attack is available in [31].

5 Discussion

In this attack, we have demonstrated successful key recovery under the DFA
attack for the Ascon design. It is worth noting that, in the Ascon design, the
key undergoes XORing both before and after the last permutation call to produce
the final tag. This XORing of the key after the last permutation call facilitates
direct key recovery. A pertinent question arises: what if the key whitening is not
employed in the final permutation call before tag release?

If the key whitening is omitted, the attacker can still recover the key by
executing the DFA attack at the last round in the second-to-last permutation call.
Whether the XORing of the key occurs separately before or after the permutation
call, the recovery of the key using the DFA attack remains feasible. However, it’s
crucial to consider scenarios where no other key is XORed before or after the
permutation call. In such cases, unique state recovery through DFA at the last
round in the final permutation call directly leads to key recovery by inverting
the permutations accordingly. This poses a potential threat to AE schemes of
this type when subjected to DFA attacks in the decryption query.

Moreover, in our DFA attack, we opted for faulty forgery under a bit-set fault
scenario in the second phase attack to minimize the number of fault injections. It
is conceivable that other strategies, such as injecting multiple bit-flip faults at the
S-box input, might offer alternative ways to further reduce the state space and,
consequently, diminish the key space. This opens avenues for further exploration
on the potential vulnerabilities of AE schemes under diverse fault scenarios.

6 Conclusion

In conclusion, this work has presented a novel and effective approach to conduct
a Differential Fault Analysis (DFA) attack on the Ascon authenticated encryp-
tion scheme. By incorporating faulty forgery in the decryption query under two
distinct fault models, utilizing bit-flip faults in the first phase and bit-set faults
in the second, we have successfully demonstrated the complete recovery of the

15

Ascon key. Notably, the attack leverages the XORing of the key before and af-
ter the last permutation call, showcasing its vulnerability in the absence of key
whitening in this final stage.

The discussion has highlighted potential threats to AE schemes like Ascon
when key whitening is not employed in the final permutation call. Furthermore,
considerations about injecting multiple bit-flip faults at the S-box input suggest
alternative strategies for reducing the state space and potentially compromising
the security of such schemes.

This work contributes insights into the security landscape of Ascon, partic-
ularly in the context of fault attacks, and underscores the importance of com-
prehensive evaluations to fortify cryptographic designs against potential vulner-
abilities. Given the rising popularity of Ascon as a lightweight cryptographic
solution, our proposed DFA underscores the importance of strengthening its de-
fenses against various types of attacks. This is crucial to maintain the reliability
and security of Ascon as a promising cryptographic tool.

References

1. “Internet of things global standards initiative,” https://www.itu.int/en/ITU-T/
gsi/iot/Pages/default.aspx.

2. D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of checking
cryptographic protocols for faults (extended abstract),” in Advances in Cryptology
- EUROCRYPT ’97, International Conference on the Theory and Application of
Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, ser.
Lecture Notes in Computer Science, W. Fumy, Ed., vol. 1233. Springer, 1997,
pp. 37–51. [Online]. Available: https://doi.org/10.1007/3-540-69053-0\ 4

3. E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,”
in Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings,
ser. Lecture Notes in Computer Science, B. S. K. Jr., Ed., vol. 1294. Springer,
1997, pp. 513–525. [Online]. Available: https://doi.org/10.1007/BFb0052259

4. K. A. McKay, L. E. Bassham, M. S. Turan, and N. W. Mouha, “Report on
lightweight cryptography,” NIST Interagency/Internal Report (NISTIR),National
Institute of Standards and Technology, Gaithersburg, MD, [online], 2017. [Online].
Available: https://doi.org/10.6028/NIST.IR.8114

5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: an ultra-
lightweight block cipher,” in Cryptographic Hardware and Embedded Systems
- CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13,
2007, Proceedings, ser. Lecture Notes in Computer Science, P. Paillier and
I. Verbauwhede, Eds., vol. 4727. Springer, 2007, pp. 450–466. [Online]. Available:
https://doi.org/10.1007/978-3-540-74735-2\ 31

6. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R.
Knudsen, G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts,
S. S. Thomsen, and T. Yalçin, “PRINCE - A low-latency block cipher for
pervasive computing applications - extended abstract,” in Advances in Cryptology
- ASIACRYPT 2012 - 18th International Conference on the Theory and
Application of Cryptology and Information Security, Beijing, China, December

16

2-6, 2012. Proceedings, ser. Lecture Notes in Computer Science, X. Wang and
K. Sako, Eds., vol. 7658. Springer, 2012, pp. 208–225. [Online]. Available:
https://doi.org/10.1007/978-3-642-34961-4\ 14

7. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw, “The LED block
cipher,” in Cryptographic Hardware and Embedded Systems - CHES 2011 -
13th International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, 2011, pp. 326–341. [Online]. Available: https://doi.org/10.1007/
978-3-642-23951-9\ 22

8. C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, “The SKINNY family of block ciphers and its
low-latency variant MANTIS,” in Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II, ser. Lecture Notes in Computer Science,
M. Robshaw and J. Katz, Eds., vol. 9815. Springer, 2016, pp. 123–153. [Online].
Available: https://doi.org/10.1007/978-3-662-53008-5\ 5

9. C. D. Cannière, O. Dunkelman, and M. Knezevic, “KATAN and KTANTAN - A
family of small and efficient hardware-oriented block ciphers,” in Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International Workshop,
Lausanne, Switzerland, September 6-9, 2009, Proceedings, ser. Lecture Notes in
Computer Science, C. Clavier and K. Gaj, Eds., vol. 5747. Springer, 2009, pp.
272–288. [Online]. Available: https://doi.org/10.1007/978-3-642-04138-9\ 20

10. S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo, “GIFT:
A small present - towards reaching the limit of lightweight encryption,” in
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, ser. Lecture Notes
in Computer Science, W. Fischer and N. Homma, Eds., vol. 10529. Springer, 2017,
pp. 321–345. [Online]. Available: https://doi.org/10.1007/978-3-319-66787-4\ 16

11. G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou, and C. Manifavas, “A review of
lightweight block ciphers,” J. Cryptogr. Eng., vol. 8, no. 2, pp. 141–184, 2018.
[Online]. Available: https://doi.org/10.1007/s13389-017-0160-y

12. A. Biryukov and L. Perrin, “State of the art in lightweight symmetric
cryptography,” IACR Cryptol. ePrint Arch., p. 511, 2017. [Online]. Available:
http://eprint.iacr.org/2017/511

13. C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.2:
Lightweight authenticated encryption and hashing,” J. Cryptol., vol. 34, no. 3,
p. 33, 2021. [Online]. Available: https://doi.org/10.1007/s00145-021-09398-9

14. P. Joshi and B. Mazumdar, “Ssfa: Subset fault analysis of ascon-128 authenticated
cipher,” Microelectronics Reliability, vol. 123, p. 114155, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026271421001219

15. K. Ramezanpour, P. Ampadu, and W. Diehl, “A statistical fault analysis
methodology for the ascon authenticated cipher,” in IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2019, McLean,
VA, USA, May 5-10, 2019. IEEE, 2019, pp. 41–50. [Online]. Available:
https://doi.org/10.1109/HST.2019.8741029

16. J. Jacob, J. Joseph, M. K. Abinshad, A. K. N, and J. Jose, “Prevention of fault
attacks in ASCON authenticated cipher using cellular automata,” in Cellular
Automata - 14th International Conference on Cellular Automata for Research and
Industry, ACRI 2020, Lodz, Poland, December 2-4, 2020, Proceedings, ser. Lecture
Notes in Computer Science, T. M. Gwizdalla, L. Manzoni, G. C. Sirakoulis,

17

S. Bandini, and K. Podlaski, Eds., vol. 12599. Springer, 2020, pp. 18–25.
[Online]. Available: https://doi.org/10.1007/978-3-030-69480-7\ 3

17. G. Surya, P. Maistri, and S. Sankaran, “Local clock glitching fault injection
with application to the ASCON cipher,” in IEEE International Symposium
on Smart Electronic Systems, iSES 2020 (Formerly iNiS), Chennai, India,
December 14-16, 2020. IEEE, 2020, pp. 271–276. [Online]. Available:
https://doi.org/10.1109/iSES50453.2020.00067

18. K. Ramezanpour, A. Abdulgadir, W. Diehl, J.-P. Kaps, and P. Ampadu,
“Active and passive side-channel key recovery attacks on ascon,” NIST
Lightweight Cryptography Workshop, 2020. [Online]. Available: https:
//csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2020/
documents/papers/active-passive-recovery-attacks-ascon-lwc2020.pdf

19. K. Ramezanpour, P. Ampadu, and W. Diehl, “SCARL: side-channel analysis
with reinforcement learning on the ascon authenticated cipher,” CoRR, vol.
abs/2006.03995, 2020. [Online]. Available: https://arxiv.org/abs/2006.03995

20. D. Saha and D. R. Chowdhury, “Scope: On the side channel vulnerability of
releasing unverified plaintexts,” in Selected Areas in Cryptography - SAC 2015
- 22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers, ser. Lecture Notes in Computer Science, O. Dunkelman
and L. Keliher, Eds., vol. 9566. Springer, 2015, pp. 417–438. [Online]. Available:
https://doi.org/10.1007/978-3-319-31301-6\ 24

21. A. Jana, “Differential fault attack on feistel-based sponge AE schemes,” J. Hardw.
Syst. Secur., vol. 6, no. 1, 2022.

22. A. Jana and G. Paul, “Differential fault attack on photon-beetle,” in Proceedings
of the 2022 Workshop on Attacks and Solutions in Hardware Security, ASHES
2022, Los Angeles, CA, USA, 11 November 2022, C. Chang, U. Rührmair,
D. Mukhopadhyay, and D. Forte, Eds. ACM, 2022, pp. 25–34. [Online]. Available:
https://doi.org/10.1145/3560834.3563824

23. G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Duplexing the sponge:
Single-pass authenticated encryption and other applications,” in Selected Areas in
Cryptography - 18th International Workshop, SAC 2011, Toronto, ON, Canada,
August 11-12, 2011, Revised Selected Papers, ser. Lecture Notes in Computer
Science, A. Miri and S. Vaudenay, Eds., vol. 7118. Springer, 2011, pp. 320–337.
[Online]. Available: https://doi.org/10.1007/978-3-642-28496-0\ 19

24. M. Agoyan, J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, and A. Tria,
“How to flip a bit?” in 16th IEEE International On-Line Testing Symposium
(IOLTS 2010), 5-7 July, 2010, Corfu, Greece. IEEE Computer Society, 2010, pp.
235–239. [Online]. Available: https://doi.org/10.1109/IOLTS.2010.5560194

25. J. Dutertre, A. Mirbaha, D. Naccache, A. Ribotta, A. Tria, and T. Vaschalde,
“Fault round modification analysis of the advanced encryption standard,” in 2012
IEEE International Symposium on Hardware-Oriented Security and Trust, HOST
2012, San Francisco, CA, USA, June 3-4, 2012. IEEE Computer Society, 2012,
pp. 140–145. [Online]. Available: https://doi.org/10.1109/HST.2012.6224334

26. B. Selmke, S. Brummer, J. Heyszl, and G. Sigl, “Precise laser fault injections into
90 nm and 45 nm sram-cells,” in Smart Card Research and Advanced Applications
- 14th International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers, ser. Lecture Notes in Computer Science,
N. Homma and M. Medwed, Eds., vol. 9514. Springer, 2015, pp. 193–205.
[Online]. Available: https://doi.org/10.1007/978-3-319-31271-2\ 12

18

27. S. Saha, R. S. Chakraborty, S. S. Nuthakki, Anshul, and D. Mukhopadhyay,
“Improved test pattern generation for hardware trojan detection using genetic
algorithm and boolean satisfiability,” in Cryptographic Hardware and Embedded
Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, ser. Lecture Notes in Computer Science,
T. Güneysu and H. Handschuh, Eds., vol. 9293. Springer, 2015, pp. 577–596.
[Online]. Available: https://doi.org/10.1007/978-3-662-48324-4\ 29

28. C. Roscian, A. Sarafianos, J. Dutertre, and A. Tria, “Fault model analysis
of laser-induced faults in SRAM memory cells,” in 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, Los Alamitos, CA, USA, August 20,
2013, W. Fischer and J. Schmidt, Eds. IEEE Computer Society, 2013, pp. 89–98.
[Online]. Available: https://doi.org/10.1109/FDTC.2013.17

29. A. Menu, J. Dutertre, J. Rigaud, B. Colombier, P. Moëllic, and J. Danger,
“Single-bit laser fault model in NOR flash memories: Analysis and exploitation,”
in 17th Workshop on Fault Detection and Tolerance in Cryptography, FDTC 2020,
Milan, Italy, September 13, 2020. IEEE, 2020, pp. 41–48. [Online]. Available:
https://doi.org/10.1109/FDTC51366.2020.00013

30. S. Skorobogatov, “Optical fault masking attacks,” in 2010 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2010, Santa Barbara, California,
USA, 21 August 2010, L. Breveglieri, M. Joye, I. Koren, D. Naccache, and
I. Verbauwhede, Eds. IEEE Computer Society, 2010, pp. 23–29. [Online].
Available: https://doi.org/10.1109/FDTC.2010.18

31. “Unoptimized c-implementations of differential fault attack on ascon cipher,”
https://github.com/janaamit001/DFA on ASCON.git, 2023.

19

