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Abstract

This paper studies a multi-party private set union (mPSU), a fundamental cryptographic
problem that allows multiple parties to compute the union of their respective datasets without
revealing any additional information. We propose an efficient mPSU protocol which is secure in
the presence of any number of colluding semi-honest participants. Our protocol avoids computa-
tionally expensive homomorphic operations or generic multi-party computation, thus providing
an efficient solution for mPSU.

The crux of our protocol lies in the utilization of new cryptographic tools, namely, Member-
ship Oblivious Transfer (mOT) and Conditional Oblivious Pseudorandom Function (cOPRF).
We believe that the mOT and cOPRF may be of independent interest.

We implement our mPSU protocol and evaluate their performance. Our protocol shows an
improvement of up to 55× and 776.18× bandwidth cost compared to the existing state-of-the-art
protocols.

1 Introduction

Secure multi-party computation (MPC) enables multiple parties to compute an arbitrary function
on their private input without revealing additional information. A special case of MPC is the private
set operation, which provides a secure means for joining data distributed across disparate databases.
Private set intersection (PSI) and private set union (PSU) are two common set operations in this
category. PSI finds applications in a variety of privacy-sensitive scenarios such as measuring the
effectiveness of online advertising [22], contract tracing [43, 3], and contact discovery [20], and cache
sharing in IoT [32]. Similarly, PSU has numerous practical use cases. For example, PSU can be
used to implement Private-ID functionality [8], cyber risk assessment and management via joint IP
blacklists and joint vulnerability data [21], private database supporting full join [27], association
rule learning [24], joint graph computation [7], and aggregation of multi-domain network events [10].

Over the last decade, a substantial body of research [37, 39, 9] has focused on PSI, whereas PSU
has received relatively little attention. The majority of present practical PSU protocols [27, 17, 46, 1]
have only been optimized for the two-party setting. In this study, we investigate multi-party PSU
(mPSU) in the semi-honest model, which allows more than two parties to compute the union of
their private data sets without revealing additional information.
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1.1 Multi-Party PSU vs 2-Party PSU

Multi-party PSU is a natural extension of the two-party PSU and enables much richer data shar-
ing than a two-party PSU. However, designing a multi-party protocol in secure computation is
challenging as it usually requires a dishonest majority (e.g. provides security in the presence of
a number of dishonest, colluding participants). Existing mPSU protocols in generic MPC [5, 44],
or homomorphic encryption[25, 16, 41, 19], are considerably more complex and expensive in the
multiparty case than in the two-party case.

A possible solution for computing mPSU is leveraging efficient multi-party PSI protocols. Given
their recent PSI improvements [11, 31] with practical implementations, one might think that mPSU
can be computed directly from multi-party PSI using DeMorgan’s Law as

⋃n
i=1Xi = U \

(⋂n
i=1(U \

Xi)
)
, where U is a universe of input items. While this approach correctly and securely computes

the set union, it is inefficient when U is significantly larger than
⋃n

i=1Xi. Thus, this solution is
still far from practical.

Another potential approach is to extend the aforementioned practical two-party PSU proto-
cols [37, 39, 9] to the multi-party case. However, it remains unclear how to achieve a secure mPSU
protocol through this extension since the intermediate result would leak information like the inter-
section or union of a subset of parties’ inputs which violate the mPSU functionality. In general, the
state-of-the-art 2-party PSU protocols [17, 46, 1, 4] follow the framework of [27] based on oblivious
transfer (OT), which consists of two main stages:

1. Reverse Private Membership Test (RPMT): The receiver learns the bit representing the mem-
bership of each element in the sender’s set. (e.g. for an element x in sender’s set, the receiver
with set Y learns a bit b = 1 if x ∈ Y and b = 0 otherwise.). Note that the bit b revelas
no additional information about the sender’s set X, apart from the intersection cardinality
|X ∩ Y |, which is already revealed by the final PSU output.

2. Oblivious Transfer (OT): The senders obliviously sends each item x in its set X to the receiver
using OT. Concretely, the sender and the receiver invoke an OT functionality in which the
sender possesses messages {⊥, x} while the receiver holds the choice bit b, where ⊥ represents
a predefined special character. The bit b is the membership indicator bit which is derived
from the preceding stage. The result of the OT provides the receiver with either ⊥ or the
sender’s item x which is not the intersection item. By merging this outcome with its set Y ,
the receiver can produce the set union. This OT step prevents the receiver from deducing
the intersection set, thereby fulfilling the functionality of a two-party PSU.

To summarize, in the two-party protocol, the parties initially establish the sender’s element
membership, followed by the receiver obliviously obtaining only the set difference from the sender.
While this framework functions effectively and securely for the 2-party PSU, it cannot be directly
extended to multi-party settings due to various sources of information leakage. To be more precise,
assume there are n parties, each with a set Xi, and P1 is the one who receives the final output.
Therefore, the element x ∈

⋃n
i=2Xi \X1 must be included in the final output. The initial potential

leakage arises from the origin of x as we cannot apply the OT on a pairwise basis between the
parties (note that this information does not constitute a leakage in the two-party setting). Another
potential leakage is the count of element x. In a 2-party setting, this count is consistently one,
as the sender is the sole provider of new elements to the receiver (assuming that the X2 is not a
multi-set). In a multi-party setting, the count of element x can range from 1 to n− 1. Thus, in the
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multi-party setting, the definition and execution of RPMT must differ from that in the two-party
setting. Furthermore, another main challenge in designing mPSU is to prevent leakages in the event
of collusion among a subset of parties

1.2 Related Work

In this section, we focus on the state-of-the-art of multi-party PSU protocols. The earliest construc-
tion of such a protocol was proposed by Kissner and Song [25], which relied heavily on homomorphic
encryption (the Paillier encryption) and the idea of polynomial representation. Input sets are rep-
resented as polynomials where each party Pi∈[n] represents an input set Xi = {xi,1, . . . , xi,m} as a
polynomial whose roots are its elements, which we denote fi(x) = (x− xi,1)(x− xi,2) . . . (x− xi,m).
All parties together compute the encryption of polynomial p =

∏n
i=1 fi which presents the polyno-

mial of the union
⋃n

i=1Xi. Using polynomial evaluation on the encrypted p, all parties are able to
extract the union items without disclosing additional information. The protocol proposed in [25] has
O(n3m2) computation complexity. Relying on the polynomial presentation technique, Frikken [16]
proposed an efficient mPSU protocol that requires the O(n2m log(m)) number of multiplications.
[41] presented input sets using rational polynomial functions and reversed Laurent series. As a
result, it showed a more efficient protocol than previous works [25, 16], but the protocol is secure
up to n/2 corrupted parties.

Blanton and Aguiar [5] presented a new direction to compute mPSU that avoids expensive
homomorphic encryption but heavily relies on MPC. Their idea is to combine the input sets of
all parties under a secret-shared form, perform an oblivious sort on the resulting set, and then
remove the duplications by comparing the adjacent elements. In the context of MPC, a more
practical sorting algorithm is Batcher’s network which requires O(mn log(mn)) comparisons to
sort the union sets. Due to the underlying MPC techniques, the protocol of [5] is inefficient when
the m and n are large.

Recently, [42, 19] compute the mPSU using Bloom filter (BF). Specifically, each party Pi∈[1,n]
inserts its input items into a local BF and transmits the encrypted version of the resulting BF to
a designated leader party P1. Subsequently, the P1 aggregates the encrypted local BFs from all
parties to generate a global BF, denoted by G, from which the union items are computed. While
the protocol presented in [42] makes use of an outsourcing server to compute G, [19] is built on
homomorphic encryption (HE), which requires a homomorphic computation per each entry of G,
and might need the expensive multi-key HE. Moreover, the BF-based approach is associated with
a high false positive rate.

In another work, Vos at. el.[44] proposed private OR protocols and build mPSU protocols upon
it. They consider relatively small universe (e.g. up to 32-bit long element). At the high-level
idea, their approach presents the input set in a bit vector of length |U|. The bit is set to 1 if its
corresponding element belongs to the given input set and 0 otherwise. By invoke the proposed
private OR protocol, the leader learns the bit vector of the union. While optimization is given
by applying divide-and-conquer so that the long vector can be divided into small ones, it is still
inefficient especially for the standard input of 128-bit elements. Concurrently with our work, Liu
and Gao [29] presented an efficient mPSU protocol, but requires a weak security assumption wherein
the leader is not in collusion with any other participating parties.

For a comprehensive analysis of representative multi-party PSU protocols that are resilient to
the presence of any number of colluding semi-honest participants, we provide a summary of their
theoretical complexity in Table 1. Additionally, in Section 5, we present a numerical performance
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Protocol
Overall

Communication

Computation
Round

Overall
# HE

Leader P1 Party Pi∈[2,n]
[25] O(n2m) O(n3m2) O(nm2) O(nm2) O(n)

[16] O(n2m) O(n2m log(m)) O(nm) O(nm log(m)) O(n)

[5] O(n2m log2(mn)) O(n2m log2(mn)) 0 0 O(log(nm))

[19] O(n2mλ) O(n2mλ) O(nmλ) O(nmλ) O(1)

[44] O(n2m log |U|) O(n2m log |U|) O(|U|) O(|U|) O(1)

Ours O(n2m logm/ log logm) O(n2m logm/ log logm) O(nm) O(nm) O(n)

Table 1: Communication (overall), computation (overall and number of homomorphic operation),
and round complexities of n-party PSU protocols which are secure in the presence of any number
of colluding semi-honest participants. #HE represents the number of additive homomorphic oper-
ations. n is number of parties, each with set size m; λ is the statistical security parameter; U is
the universal domain of the input; σ is the bit length of input element;t is the number of AND
gates in the SKE decryption circuit. Notably, the complexity of [19] consists of λ due to the usage
of the Bloom filter. All [25, 16, 19] use Paillier encryption to compute addition on the encryptions
(#HE) while our protocol uses Elgamal encryption scheme to re-randomize the ciphertexts.

comparison of our proposed protocols with prior works [16, 5, 19].

1.3 Technical Overview of Our Protocols

We present an efficient protocol for mPSU that guarantees security in the semi-honest setting. We
demonstrate the practicality of our mPSU protocol with an implementation. It is shown to be
efficient even for large sets with 220 items distributed among 8 parties. The main reason for our
protocol’s high performance is its reliance on fast symmetric-key primitives, Diffie-Hellman-based
PRF [13] from the elliptic curve, and Elgamal encryption. This is in contrast with prior protocols,
which require expensive Paillier encryption on the polynomial set representation [25, 16] or each
entry of the Bloom filter [19]. Additionally, our approach eliminates the need for the inefficient
oblivious sort/OR operations and generic MPC of [5, 44].

Technical Overview. In our protocol, we assume the existence of a leader party denoted as P1.
This party collects the union for each of the following sets, specifically

⋃t
i=1Xi,∀t ∈ [2, n]. This

is achieved by interacting sequentially with each party Pt, and the sets are encrypted to prevent
the leader from learning the partial union. Moreover, the leader P1 acquires the encryption of zero
for duplicate items from Pt to conceal the size of each union set, as well as the multiplicity of each
element in the union. To give the P1 these encryptions, we use our new building block, Membership
Oblivious Transfer (mOT), which is introduced in Section 3.1.

Briefly, the mOT is a two-party protocol, in which a leader P1 (also referred to as the receiver)
holding a set X1 interacts with the sender Pt who possesses an input item xt,j , j ∈ [m], and two
associated values {Enc(pk, 0),Enc(pk, xt,j)}). Here, pk represents the encryption’s public key, which
requires Pt for the decryption process. Similar to the traditional OT [38], the result is that the
sender Pt learns nothing whereas the receiver P1 obtains one of the two sender’s associated values
depending on whether xt,j ∈ X1. More specifically, if xt,j ∈ X1, P1 learns Enc(pk, 0); otherwise it
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learns Enc(pk, xt,j). By executing the mOT multiple times with Pt∈[2,n] for each item xt,j ∈ Xt, the
leader P1 obtains a set E of encryptions Enc(pk, xi,j) for xi,j ∈

⋃n
i=1Xi and τ encryptions of zero,

where τ =
∑n

i=1 |Xi| − |
⋃n

i=1Xi| indicates the number of duplicate items. At this point, the union
set can be obtained by decrypting E and removing the zeros.

For the dishonest majority setting in which the protocol is secure against an arbitrary number
of colluding parties, the decryption should be executed by all the parties. Thus, we employ the
multi-key cryptosystem based on Elgamal encryption scheme (ref. Section 2.6). The decryption
process involves a partial decryption that requires the individual party’s secret key. In our protocol,
each party is required to perform its own private permutation on the partial decryption result before
sending it to another party. This step aims to prevent a coalition of corrupt parties (including the
leader P1) from learning which parties hold which elements. We implement the permutation and
decryption using our simple building block “Oblivious Shuffle and Decryption” (Shuffle&Decrypt),
which is described in Section 3.3.

The brief overview of mOT executions above ignores many important concerns — in particular,
how the P1 obtains encryption of zero from Pi for a duplicated item x which Pi∈[2,n] also has. We
propose utilizing an Oblivious PRF (OPRF), wherein P1 obliviously learns and maintains a list of
PRF values for the union sets

⋃t
i=1Xi, ∀t ∈ [2, n]. The PRF values hide the actual input items

and are used as the input into mOT, rather than the input sets as previously described. In our
protocol, we require an extended variant of OPRF to prevent a coalition of corrupt parties from
learning the partial union (we describe the attack explicitly in Section 4). Thus, we introduce a
new gadget called Conditional OPRF (cOPRF). Similar to the classical OPRF, the cOPRF has the
additional feature that the sender Pi has a set of elements Xi, and the receiver Pt>i only obtains
the correct PRF value if its input query xt is not present in the sender’s set Xi, and random “fake”
value otherwise. We describe the cOPRF ideal functionality and its instantiation in Section 3.2.

In brief, our contributions can be summarized as follows:

• We present an efficient mPSU construction, which eliminates the need for computationally
expensive homomorphic operations or generic multi-party computation, and is secure in the
presence of any number of colluding semi-honest participants.

• We introduce new building blocks, namely Membership Oblivious Transfer (mOT), Condi-
tional OPRF (cOPRF), Oblivious Shuffle and Decryption (Shuffle&Decrypt), which may be of
independent interest and can be used in other related protocols.

• We show that our protocol is significantly faster than previous work [16, 5, 19]. For example,
for four parties with data-set of 216 item each, our mPSU protocol shows an improvement up
to 37.82× in terms of running time and up to 776.18× less bandwidth requirement when com-
pared to the state-of-the-art protocols. Our implementation will be made publicly available
on GitHub.

2 Preliminaries

In this work, the computational and statistical security parameters are denoted by κ, λ, respectively.
We use [m] to refer to the set {1, . . . ,m}, and [i, j] to denote the set {i, . . . , j}. We denote the
concatenation of two strings x and y by x||y. We use f ◦g to denote the composition of the functions
f and g.
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Parameters: n parties P1, ..., Pn, and the set size m.
Functionality:

• Wait for input set Xi of size m from Pi.

• Give P1 the union
⋃n

i=1Xi.

Figure 1: Multi-party Private Set Union Ideal Functionality

2.1 Multi-party Private Set Union

The ideal functionality of multi-party PSU (mPSU) is given in Figure 1. The mPSU allows n
parties, each holding a set Xi of the input items, to learn the union set

⋃n
i=1Xi and nothing else.

For simplicity, we assume that all parties have the same set size. Note that our protocol can be
easily extended to accommodate varying set sizes, while also revealing the set size of each party.
To avoid this leakage, all parties can agree on an upper bound set size m, and use it as the input
set size. Before initiating the protocol, each party can pad their set with a particular item, such as
zero, to reach the size of m. It is customary in private set operation literature to assume that all
parties have the same set size.

2.2 Oblivious PRF

An oblivious pseudorandom function (OPRF) [15] is a 2-party protocol in which the sender learns
a PRF key k and the receiver learns F (k, q1), . . . , F (k, qm). Here, F is a PRF, and (q1, . . . , qm) are
query inputs chosen by the receiver. Figure 9 formally presents a variant of the OPRF where the
receiver obtains outputs of multiple chosen queries.

2.3 Oblivious Transfer

Oblivious Transfer (OT) is a fundamental primitive of secure computation, and introduced by
Rabin [38]. It refers to the problem where a sender with two input strings (x0, x1) interacts with
a receiver who has an input choice bit b. The OT gives the receiver xb and nothing to the sender.
Figure 10 presents the OT functionality.

2.4 Secret-shared Private Membership Test

Secret-shared Private Membership Test (SS-PMT) is the main building block in different applica-
tions [35, 28, 11, 36, 29, 46]. It refers to the two-party setting where a P0 with input a set of items
X = {x1, . . . , xn} interacts with a P1 who has an input single item y. SS-PMT gives both parties
a secret-share of a membership bit, i.e. the two parties obtain XOR shares of 1 if y ∈ X and 0
otherwise. Figure 11 presents the SS-PMT functionality.

2.5 Bin-and-ball Scheme

Our protocols employ hashing schemes such as the Cuckoo and Simple hashing schemes [34, 37]
to allocate items into bins. We review the basics of the Cuckoo hashing and Simple hashing
schemes [34, 37] as follows.
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Cuckoo hashing. In basic Cuckoo hashing, there are µ bins denoted B[1 . . . µ], a stash, and h
random hash functions H1, . . . ,Hh : {0, 1}⋆ → [µ]. One can use a variant of Cuckoo hashing such
that each item x ∈ X is placed in exactly one of µ bins. Using the Cuckoo analysis [34, 12] based
on the set size |X|, the parameters µ, h are chosen so that with high probability (1 − 2−λ) every
bin contains at most one item, and no item has to place in the stash during the Cuckoo eviction
(.i.e. no stash is required).

Simple hashing. One can map its input set Y into µ bins using the same set of h Cuckoo hash
functions (i.e, each item y ∈ Y appears h times in the hash table). Using a standard ball-and-bin
analysis based on h, µ, and |X|, one can deduce an upper bound η such that no bin contains more
than β items with high probability (1− 2−λ).

2.6 Multi-key Cryptosystem

We revise the multi-key cryptosystem that needs for ourmPSU protocol. We first give an overview of
each component of the cryptosystem. We then present a construction based on the ElGamal scheme.
Amulti-key cryptosystem is defined as a tuple of PPT algorithm (KeyGen,Enc,ParDec,FulDec,ReRand)
with properties as follows:

• Key Generation: KeyGen(1κ, n). In a setting with n parties, a key generation algorithm
takes security parameter κ as input and gives each party Pi a secret key ski and a joint public
key pk = Combine(sk1, sk2, . . . , skn), where Combine is an algorithm to generate the public
key from the input secret keys depending on the construction.

• Encryption: ct← Enc(pk;m). Given a joint public key pk and a message m←M from the
plaintext spaceM, an encryption algorithm outputs a ciphertext ct.

• Decryption: There are two types of decryption:

– Partial decryption ct′ ← PartDec(ski, ct,A). A partially decryption algorithm takes a
secret key ski and a ciphertext ct ← C encrypted under the partial pubic key pkA =
Combine({skj | j ∈ A}) and outputs a ciphertext ct′ ← C which is encrypted under the
partial pubic key pkA\{i} = Combine({skj | j ∈ A, j ̸= i}). Note that in the context of
the multi-key encryption system, we utilize set A to represent the collection of public
keys belonging to the parties within A.

– Full decryption: m ← FullDec(sk1, sk2, ..., skn; ct). A full decryption algorithm takes a
ciphertext ct ← C encrypted under pk and all the secret keys and outputs a message
m←M.

• Re-randomization: ct′ ← ReRand(ct, pk). A re-randomization algorithm takes a ciphertext
ct← C encrypted under pk and gives a new ciphertext ct′ ← C encrypted under the same pk
such that they are both encryptions of the same message m←M.

The multi-key cryptosystem should satisfy correctness and security as defined in [18, 2, 6].
Informally, the multi-key cryptosystem satisfies correctness if m = FullDec(sk1, ..., skn, ct) or m =
FullDec(sk1, . . . , ski−1, ski+1, . . . , skn, ct

′) for ct = Enc(pk,m) and ct′ = PartDec(ski, ct{1,...,i−1,i+1,...,n}).
For security, the ciphertext ct or ct′ is random and reveals nothing about the plaintext. When n = 1,
we have a single-key encryption scheme which is indeed the traditional Elgamal system[14].
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A Construction While there are many multi-key cryptosystems, we choose Elgamal system[14]
as it is easy to implement and efficient (we do not perform any arithmetic computation on the
encryption). In the following, we present the Elgamal scheme in the multi-key setting with n
parties P1, ..., Pn.

• Key Generation: Given a cyclic group G of order p, all the parties agree on a common prime
g. Each party Pi∈[n] chooses a random secret key ski ← {0, 1}κ and publishes the value of

hi = gski . We can define the public key pk = Combine(sk1, sk2, ..., skn) = gΣ
n
i=1ski =

∏n
i=1 hi.

• Encryption: To encrypt a message m, one can compute ct = (ct1, ct2) = (gr,m · pkr) where
r is a randomly chosen value from {0, 1}κ.

• Decryption: The two decryption algorithms are as follows:

– Partial decryption: To partially decrypt a ciphertext ct = (ct1, ct2) encrypted under the
partial pubic key pkA =

∏
j∈A hj , one can output ct′ = PartDec(ski, ct, A) = (ct′1, ct

′
2),

where ct′1 = ct1 · gr
′
, ct′2 = ct2 · ct−ski

1 · (pkA\{i})
r′ , the r′ ← {0, 1}κ is a random value,

and pkA\{i} =
∏

j∈A\{i} hj . Note that the use of the random r′ aims to re-randomize the
ct1.

– Full decryption: To fully decrypt a ciphertext ct = (ct1, ct2) encrypted under pk =∏
i∈[n] hi, one can compute m = FullDec(sk1, sk2, ..., skn; ct) = ct2 · ct

−Σn
i=1ski

1 .

• Re-randomization: To rerandomize a ciphertext ct encrypted under the pk, one can choose a
random value r′ ← {0, 1}κ, and compute (ct′1, ct

′
2) = ReRand((ct1, ct2), pk) where ct

′
1 = ct1 ·gr

′

and ct′2 = ct2 · pkr
′
.

3 Our mPSU Building Blocks

We introduce three simple cryptographic gadgets that will serve as the fundamental building blocks
in our mPSU protocol.

• The first gadget is called “Membership Oblivious Transfer” (mOT) which enables a receiver
to obtain one of two associated values from the sender based on the set membership. The
mOT allows a leader party in our mPSU protocol to obliviously retrieve the items of other
parties that are not in the intersection while maintaining privacy.

• The second gadget is called “Conditional OPRF” (cOPRF) which allows the receiver to obtain
a PRF value of its query x if and only if x satisfies the pre-defined condition (i.e., membership
test). The cOPRF eliminates duplicated items from the final mPSU output by giving the
incorrect (or fake) PRF value of the intersection item.

• In our mPSU protocol, the union result is stored under the multi-key encryption until the final
step, which requires all parties to decrypt the ciphertexts together. The encryption protects
against corrupted parties from learning partial union. We revise a multi-key cryptosystem in
Section 2.6, and introduce a simple tool called “Shuffle and Decryption” (Shuffle&Decrypt) to
implement the last step of our mPSU construction.
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Parameters: Sender S and Receiver R, the receiver set size m, the length ℓ.
Functionality:

• Wait for input keyword y and a pair (v0, v1) ⊂ ({0, 1}ℓ)2 from S.

• Wait for input set X = {x1, ..., xm} from R.

• Give R the value v where v equals to v0 if y ∈ X, and v1 otherwise.

Figure 2: Membership Oblivious Transfer (mOT) Ideal Functionality

3.1 Membership Oblivious Transfer (mOT)

Membership Oblivious Transfer (mOT) is a two-party protocol, in which a sender S with a keyword
and two associated values as (y, {v0, v1}) interacts with a receiver R who has a set of keywords
X = {x1, ..., xm}. The result is that the receiver learns the value vb without learning anything
about others v1⊕b where b = 0 if y ∈ X and b = 1 otherwise, while the sender learns nothing
about the receiver’s input X. Here, the associated values v0, v1 are indistinguishable with their
domain {0, 1}ℓ. Since the receiver’s obtained value depends on whether y ∈ X, we name our gadget
“Membership Oblivious Transfer”. We formally describe the mOT ideal functionality in Figure 2.

It is easy to define the correctness of the mOT. For the security guarantee, we say that a mOT
is secure if it satisfies two following properties:

• Similar to the traditional one-out-of-two oblivious transfer [38], the receiver R only learns one
of the two associated values of the sender S. In addition, the receiver R has no information
about whether y ∈ X is from the protocol’s output. In fact, the latter is satisfied if the
associated values (v0, v1) come from the same distribution.

• The sender S learns nothing about the receiver’s input and output.

Our mOT Protocol. Our mOT construction consists of two main phases. The first phase follows
the popular steps in the circuit-PSI protocols [35, 36], which enables the sender and the receiver
to compute a secret share of a membership bit, i.e. the two parties obtain XOR shares of 1 or 0 if
the sender’s keyword y is or is not in the receiver’s set X.

The second phase allows the receiver to obtain the corresponding associated value from the
sender, depending on whether the output of the first phase was shares of 0 or 1. Typically, this step
can be done using generic two-party secure computation (e.g., garbled circuit) in the literature.
However, it is relatively inefficient. Instead, we propose a simple solution that relies on OT. More
precisely, the sender randomly chooses a value r ← {0, 1}ℓ and masks its associated values by
computing (r ⊕ v0, r ⊕ v1). Denote a secret share bit of S and R to be bS and bR received from
the first phase, respectively. Using the choice bit bR, the receiver obliviously obtains w = r ⊕ vbR
when interacting with the sender with input (r ⊕ v0, r ⊕ v1) via OT. Next, the sender sends u =
r⊕bS ·(v1⊕v0) to the receiver R. The value u helps to remove the mask r from the w by computing
v = u ⊕ w, which is the receiver’s output. We formally present the construction of our mOT in
Figure 3.

For the correctness of the mOT construction, one can rewrite w = r ⊕ bR · v1 ⊕ (1 ⊕ bR) · v0.
Hence, v = u ⊕ w = (bR ⊕ bS) · v1 ⊕ (1 ⊕ bR ⊕ bS) · v0 which equals to vbR⊕bS as desired (recall
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Parameters:

• Sender S and Receiver R, the receiver set size m, the length ℓ.

• The OT and SS-PMT functionalities described in Section 2.

Input:

• Receiver R: X = {x1, . . . , xm} ⊂ ({0, 1}⋆)m

• Sender S: y ∈ {0, 1}⋆ and two associated values (v0, v1) ⊂ ({0, 1}ℓ)2

Protocol:

1. The sender S and the receiver R invoke a SS-PMT functionality where:

• R has an inputs X, and S has an input y

• S and R obtain the bit bS and bR, respectively. Here, bS ⊕ bR = 1 if y ∈ X and 0
otherwise.

2. S and R invoke an OT instance where:

• S acts as an OT sender with input two strings {r ⊕ v0, r ⊕ v1}, where r ← {0, 1}ℓ
is a random chosen value.

• R acts as an OT receiver with input a choice bit bR

• R obtains w = r ⊕ vbR

3. S sends u = r ⊕ bS · (v1 ⊕ v0) to R who outputs v = u⊕ w

Figure 3: Membership Oblivious Transfer (mOT) Construction

that bR⊕ bS = 1 if y ∈ X and 0 otherwise). We present the security proof of the below theorem in
Appendix A.1.

Theorem 1. The mOT protocol described in Figure 3 securely implements the mOT functionality
defined in Figure 2 in the semi-honest setting, given the OT and SS-PMT functionalities described
in Section 2.

3.2 Conditional OPRF (cOPRF)

As described in Section 2.2, an OPRF [15] enables the receiver to learn a PRF value F (k, q) on its
input query q without knowing the sender’s PRF key k. In this work, we introduce a new notion
of a conditional oblivious PRF (cOPRF). Intuitively, the functionality is similar to OPRF, with
the additional feature that the sender has a set of elements X, and the receiver only obtains the
correct PRF value if its query q is not in the sender’s set X. The formal description of a conditional
oblivious PRF (cOPRF) functionality is given in Figure 4.

For the correctness, we say that a conditional OPRF satisfies correctness: Given the PRF k
key generated from KeyGen(1κ), (i) if q ̸∈ X, then the cOPRF outputs a valid PRF value F (k, q)
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Parameters: Sender S and Receiver R, the receiver set size m, and the PRF F .
Functionality:

• Wait for input set X = {x1, ..., xm} and a PRF key k from S.

• Wait for input a query q from R.

• Give R the PRF value F (k, q) if q ̸∈ X, and random otherwise.

Figure 4: Conditional OPRF (cOPRF) Ideal Functionality

; (ii) otherwise, the cOPRF outputs a random value. For the security guarantee, we consider the
following experiment/game where FcOPRF is the output function of the cOPRF:

ExpA(X, q, κ):

k ← KeyGen(1κ)
return A

(
FcOPRF(k,X, q)

)
We say that a cOPRF is m-secure if for all |X1| = |X2| = m and all polynomial-time A:∣∣∣Pr[ExpA(X1, q, κ)⇒ 1]− Pr[ExpA(X2, q, κ)⇒ 1]

∣∣∣
is negligible in κ

The security definition indicates that the sender’s set size m is a public parameter, which allows
us to state that the probability of two experiments in the definition is indistinguishable. Thus,
given the output of the cOPRF, there is no information about what the sender’s set of items was.

Our cOPRF Protocol. We present the construction of an cOPRF, which is built on our mOT
primitive and OPRF. While many OPRF protocols exist such as the BaRK OPRF [26], we use the
Diffie-Hellman OPRF protocol [13] in which the PRF value of q has a form F (k, q) = H(q)k for a
hash function H.

The protocol starts with the receiver R picking a random number α← {0, 1}κ and computing
v1 = H(q)α. The goal is to allow the receiver R obliviously send v1 to the sender S if the query
q is not in the sender’s set X. This can be done using the mOT in which the receiver R acts as
the mOT’s sender with input (q, v0, v1) for a random v0 ← {0, 1}κ while the sender S acts as the
mOT’s receiver with input X. As a result, R obtains v. Next, the S raises v to the k power as
w = vk and sends the result w back to the R. Now, the receiver can raise the w to the 1/α to
obtain the final output y. We formally present our cOPRF construction in Figure 5.

It is not hard to see that the output of the cOPRF protocol satisfies correctness. More precisely,
if q ̸∈ X, then v = v1 = H(q)α, thus, the protocol’s output y = w1/α = H(q)k as desired. In case

the q ∈ X, the value y = v
k/α
0 is a random value (i.e. an incorrect PRF value of q). We present the

security proof of the below theorem in Appendix A.2.

Theorem 2. The cOPRF protocol described in Figure 5 securely implements the cOPRF function-
ality defined in Figure 4 in the semi-honest setting, given the mOT functionalities described in
Section 2.
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Parameters:

• Sender S and Receiver R, the receiver set size m, the PRF F

• The mOT functionalities described in Figure 2

• The hash function H : {0, 1}⋆ → {0, 1}κ

Input:

• Sender S: X = {x1, . . . , xm} ⊂ ({0, 1}⋆)m and the PRF key k

• Receiver R: q ∈ {0, 1}⋆

Protocol:

1. The receiver chooses a random α← Z and computes v1 = H(q)α

2. The sender S and the receiver R invoke a mOT functionality where:

• R acts as the sender with input (y, v0, v1) for a random v0 ← {0, 1}κ

• S acts as the receiver with input X, and obtains v

3. The sender computes w = vk and sends it to the receiver who outputs w1/α

Figure 5: Conditional OPRF (cOPRF) Construction

3.3 Oblivious Shuffle and Decryption (Shuffle&Decrypt)

Oblivious Shuffle and Decryption (Shuffle&Decrypt) is a n-party protocol, in which each party
Pi∈[n] holds a permutation πi : [m] → [m] and a secret key ski of the multi-key cryptosystem as
(pk, {ski}i∈[n]) ← KeyGen(1κ, n). Given a set of ciphertexts {ct1, . . . , ctm} where cti = Enc(pk, xi),
the Shuffle&Decrypt functionality gives {xπ(1), . . . , xπ(m)} to the party P1 where π = πn ◦πn−1 ◦ . . .◦
π1, and nothing to other parties. The private permutation aims to remove the linkage between the
ciphertext cti and the plaintext xi. We formally describe the Shuffle&Decrypt ideal functionality in
Figure 6.

Our Shuffle&Decrypt Protocol. The Shuffle&Decrypt construction is simple and directly built
from calling algorithms provided in the multi-key cryptosystem. First, the P1 re-randomizes the
ciphertexts and then permutes the result. P1 then sends the permuted set C1 to P2. The re-
randomization aims to hide the permutation function from P2. The P2 now performs partial
decryption using its secret key sk2. This decryption removes the role of sk2 from the original
ciphertext. P2 then applies the permutation π2 on the resulting ciphertexts C2 and forwards them
to P3. Note that P2 does not need to rerandomize C2 as the C2 is in the random distribution and
thus it hides the permutation of P2. The process repeats sequentially through P4, . . . , Pn. After
the partial decryption was executed by Pn, the ciphertexts require only the secret key sk1 for the
final decryption. Pn now sends these ciphertexts in the permuted order to P1 which performs the
partial decryption and outputs the final result. Figure 7 presents the Shuffle&Decrypt construction.
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Parameters: n parties, parameter m, and a multi-key encryption scheme defined in Sec-
tion 2.6
Functionality:

• Wait for input secret key ski and a permutation function πi : [m]→ [m] from each party
Pi∈[n]. Here, (pk, {ski}i∈[n])← KeyGen(1κ, n)

• Wait for a combined input a set of ciphertexts {ct1, . . . , ctm} where cti = Enc(pk, xi)
from all parties {P1, . . . , Pn}.

• Give {xπ(1), . . . , xπ(m)} to P1 where π = πn ◦ πn−1 ◦ . . . ◦ π1.

Figure 6: Oblivious Shuffle and Decryption (Shuffle&Decrypt) Ideal Functionality

Parameters:

• n parties, the set size m

• A multi-key cryptosystem (KeyGen,Enc,ParDec,FulDec,ReRand) defined in Section 2.6

Input:

• Each party Pi∈[n]: The secret key ski and a permutation function πi : [m]→ [m]. Here,
(pk, {ski}i∈[n])← KeyGen(1κ, n)

• All parties: {ct1, . . . , ctm} where cti = Enc(pk, xi)

Protocol:

1. P1 re-randomizes ctj = ReRand(ctj , pk),∀j ∈ [m], and sends C1 = {ct11, . . . , ct1m} to P2

where ct1j = ctπ1(j),∀j ∈ [m].

2. For i = 2 to n:

• Pi computes a partial decryption c̄tij = PartDec(ski, ct
i−1
j , Ai), ∀j ∈ [m], where

Ai = {1, i, i+ 1, . . . , n}
• Pi permutes the set {c̄ti1, . . . , c̄tim} as ctij = c̄tπi(j),∀j ∈ [m]

• Pi sends Ci = {cti1, . . . , ctim} to P(i+1)%n

3. P1 outputs PartDec(sk1, ct
n
j , {1}),∀j ∈ [m].

Figure 7: Oblivious Shuffle and Decryption (Shuffle&Decrypt) Construction

From the high-level description, it is clear that the protocol is correct given the correctness of
the underlying multi-key cryptosystem. We present the security proof of the below theorem in
Appendix A.3.

Theorem 3. Given the multi-key cryptosystem defined in Section 2.6, the Shuffle&Decrypt protocol
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P1 : X1 P2 : {x2} P3 : {x3} P4 : {x4}
Round 1 ⇐ OPRF & mOT ⇒ ⇐ cOPRF ⇒

r3
S F1(X1) ∪ {F1(x2)} F1(x2) ⇐ cOPRF ⇒
E {Enc(x2)} F1(x4)

Round 2 ⇐ OPRF & mOT ⇒ ⇐ cOPRF ⇒
S F2(X1) ∪ {F2(x2)} ∪ {F2(r3)} F2(r3) F2(x4)
E {Enc(x2),Enc(0)}
Round 3 ⇐ OPRF & mOT ⇒
S F3(X1) ∪ {F3(x2)} ∪ {F3(r3)} ∪ {F(x4)} F3(x4)

E {Enc(x2),Enc(0),Enc(x4)}
Shuffle {Enc(0),Enc(x4),Enc(x2)}
Decrypt {0, x4, x2}
Output X1 ∪ {x4, x2}

Table 2: Illustration of our mPSU protocol for 4 parties. P1 has an input set of X1 while Pi

have input set of only one item xi for i ∈ [2, 4]. In addition, we assume that x2 = x3 ̸∈ X1 and
x4 ∈ X1. The Fi−1(·) denotes the multi-key PRF F ((ki+1, . . . , k2), ·), which represents the PRF
value received in the i-th round. ⇐ P ⇒ denotes the execution of protocol P between two parties
and colors are given to show different invocations. We only show the output of each invocation. For
example, in round 1, P1 and P2 invoke the OPRF and mOT (Step (3,a) and (3,b) in Figure 8). P1

updates its set by the PRF value and receives the message (F1(x2),Enc(x2)) from P2. P2 invokes
cOPRF protocol with P3 and P4 concurrently. P3 receives a random value r3 since x3 = x2 and P4

receives the PRF value F1(x4) for x4. The following rounds are similar.

described in Figure 7 securely implements the Shuffle&Decrypt functionality defined in Figure 6 in
the semi-honest model, against any number of corrupt, colluding, semi-honest parties.

4 Our mPSU Construction

Figure 8 presents our main mPSU protocol, which guarantees security against any number of
corrupt, colluding, semi-honest parties. The protocol makes use of our new mOT, cOPRF and
Shuffle&Decrypt gadgets.

4.1 Our Protocol

The design of a secure mPSU protocol presents significant challenges, specifically with regard to (1)
ensuring that the output does not contain duplicate items, (2) preventing the disclosure of partial
union results, and (3) hiding which items from which parties. To illustrate the high-level idea of
our protocol, we consider a simple case where the leader party P1 has a set X1 of items while the
remaining parties P2, . . . , Pn, each possess a single item Xi = {xi}. We assume that the item x2 of
P2 and x3 of P3 are not in the X1 but x4 of P4 is (i.e. x2, x3 ̸∈ X1 and x4 ∈ X1).

Regarding (1), a potential approach is to enable the leader P1 to engage with the other parties
and obtain an encryption of xi if xi ̸∈ X1 and an encryption of the zero otherwise. An encryption
of zero indicates the presence of common items between P1 and Pi, which can be removed after
decryption. To this end, the P1 and Pi invoke the mOT instance in which Pi acts as the sender
with input

(
xi,Enc(pk, 0),Enc(pk, xi)

)
and P1 acts the receiver with input X1, thereby obtaining
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the desired encryption. After executing the mOT instances, the leader party P1 acquires E =
{Enc(pk, x2),Enc(pk, x3),Enc(pk, 0)} from the party P2, P3 and P4, respectively. The set E allows
the leader P1 to obtain the set union after decryption.

The above protocol description does not entirely address the issue of removing duplicate items
since x2 could be identical to x3. To overcome the limitation, we leverage the OPRF in the following
manner. The leader party P1 with input X1 interacts with P2 holding the PRF key k and receives
the PRF values S = {y | y = F (k, x), x ∈ X1}. They then execute the mOT where P2 has keyword
F (k, x2) and messages (r2||Enc(pk, 0), F (k, x2)||Enc(pk, x2)) so that P1 can obliviously obtain v2||e2
from P2 where v2||e2 equals F (k, x2)||Enc(pk, x2) if x2 ̸∈ X1, and r2||Enc(pk, 0) otherwise for a
random r2. The P1 appends v2 to S and e2 to an empty set E. At this point, S = {y | y =
F (k, x), x ∈ X1} ∪ {F (k, x2)} if x2 ̸∈ X2, and S = {y | y = F (k, x), x ∈ X1} ∪ {r2} otherwise. The
updated set S will be used as the input to the next mOT between P1 and P3. It helps to remove
the duplication items of P2 and P3 from the final output. Concretely, P3 prepare the keyword and
messages in the same way for the mOT, the functionality checks the membership condition whether
F (k, x3) is in the updated S and then gives P1 the corresponding result v3||e3 which equals to
either r3||Enc(pk, 0) for a random r3 or F (k, x3)||Enc(pk, x3). If x2 = x3 ̸∈ X1, the P1 obtains the
encryption e2 = Enc(pk, x2) from P2, but e3 = Enc(pk, 0) from P3. The r3 is indistinguishable from
the PRF value F (k, x3), thus r3 reveals nothing to P1 about whether x2 = x3. The P1 continues to
update the PRF set S and the encryption set E by repeating the above process sequentially with
other parties P4, . . . , Pn.

The above description ignores an important security concern – in particular, when P1 and P3

collude and the PRF key is belongs to one party (e.g., P2), the adversary learns P2’s input as
F (k, x2) appears in S, but F (k, x3) does not. To address this vulnerability, e.g., the challenge (2),
we propose to use our new gadget cOPRF as described in Section 4.1.1.

Upon the completion of (n− 1) instances of the mOT protocol between the leader party P1 and
other parties Pi, the leader P1 has acquired an encryption set E, containing encryptions Enc(pk, x)
for x ∈

⋃n
i=1Xi and τ encryptions of zero, where τ =

∑n
i=1 |Xi| − |

⋃n
i=1Xi| indicates the number

of duplicate items. In order to satisfy requirement (3) of the mPSU protocol, the encryption
set E remains secure and cannot be decrypted by any subset of parties. We utilize a multi-key
cryptosystem, as detailed in Section 2.6. This cryptosystem requires the participation of all parties
in the decryption process. Moreover, to prevent any compromised parties from ascertaining which
elements are held by each party, partial decryption results must be permuted by each party prior
to transmission to the others. To achieve this, we employ the Shuffle&Decrypt functionality, which
permits each party to apply its own permutation function to the partial decryption results. We
demonstrate our mPSU protocol execution in Table 2 pertaining to the scenario involving four
parties.

At this stage, we are currently focusing on a simple scenario where each Pi∈[2,n] possesses only
one item. In order to generalize our method to a set Xi, we apply a popular technique known
as bin-and-ball technique. At the high level, the party Pi∈[2,n] places its input values into β bins
through the use of Cuckoo hashing, where each bin is allowed to contain at most one item. The
leader P1 utilizes the same set of Cuckoo hash functions to map the input values in S into β bins
using Simple hashing. The mapping allows the parties to execute the simple case above bin-by-bin
efficiently. As a result, for each bin, the P1 obtains encryptions of the partial union set which are
subsequently combined into a big encryption set E before being subjected to decryption.
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Parameters:

• n parties Pi∈[n] for n > 1.

• The mOT, OPRF, Shuffle&Decrypt functionalities described in Figures 2&9&6, respectively.

• A multi-key cryptosystem (KeyGen,Enc,ParDec,FulDec,ReRand) defined in Section 2.6.

• Hashing parameters: a number of bins µ, maximum bin sizes β : Z → Z for simple-hashing bins, the h hash functions
Hj∈[h] : {0, 1}⋆ → [µ].

Input:
• Party Pi∈[n] has Xi = {xi,1, . . . , xi,m}.

Protocol:

1. All n parties call the key generation algorithm KeyGen(1λ, 1κ). Each Pi receives a private key ski and a joint public key
pk.

2. Local Execution:

(a) Pi∈[2,n] hashes items Xi into µ bins using the Cuckoo hashing. Let Ci
b,1 denote the items in the Pi’s bth bin. Pi

computes the encryption eib,1 = Enc(pk, Ci
b,1), for b ∈ [µ].

(b) Pi∈[n] hashes Xi into µ bins under k hash functions. Let Si
b,1 denote the set of items in the Pi’s bth bin. Pi pads

Si
b,1 with dummy values to the maximum bin size β(m).

(c) For bin b ∈ [µ], the P1 initials an empty set Eb.

3. P1 sequentially interacts with Pi for i ∈ [2, n] as follow.

(a) For each bin b ∈ [µ], the P1 and Pi invoke the functionality of OPRF where:

• P1 acts as the receiver with input the set S1
b,i−1.

• Pi acts as the sender with input the random-chosen PRF key ki.

• P1 obtains a set S1
b,i of the PRF values F (ki, y) for y ∈ S1

b,i−1.

(b) For each bin b ∈ [µ], P1 and Pi invoke a mOT instance where:

• P1 acts as the receiver with input S1
b,i.

• Pi acts as the sender with input (yb,i, rb,i||Enc(pk, 0), yb,i||ēb,i). Here, rb,i is a random value; yb,i =
F (ki, C

i
b,i−1) if Ci

b,i−1 ̸= ∅ and random otherwise; ēb,i = Enc(pk, 0) if Ci
b,i−1 = ∅, otherwise, ēb,i = eib,i−1.

• P1 obtains vb||eb.
P1 appends eb to Eb. P1 hashes

⋃µ
b=1

(
S1
b,i ∪ vb

)
into µ bins under h hash functions. The P1 redefines S1

b,i to be

the set of items in its bth bin, and then pads S1
b,i with dummy values to the maximum bin size β(im).

(c) For each bin b ∈ [µ], Pi and Pt∈[i+1,n] invoke the cOPRF where:

• Pt acts as the receiver with input Ct
b,i−1 or a dummy if Ct

b,i−1 = ∅.

• Pi acts as the sender with input the PRF key ki and the set Si
b,i−1.

• Pt obtains wb, and sets wb = ∅ if if Ct
b,i−1 = ∅.

Pt hashes W = {wb | b ∈ [µ] & wb ̸= ∅} into µ bins using the Cuckoo and Simple hashing. Let St
b,i and Ct

b,i

denote the items in the Simple and Cuckoo b-th bin, respectively. Pt pads St
b,i with dummy to maximum bin size

β(m).

(d) The Pi and Pt∈[i+1,n] invoke a mOT instance where:

• Pi acts as the receiver with input {F (ki, y) | y ∈ Si
b,i−1}

• Pt acts as the sender with input (Ct
b,i,Enc(pk, 0), e

t
b,i−1).

• Pi obtains c and sends c′ = ReRand(v, pk) to Pt

Pt computes etb,i = ReRand(c′, pk)

4. All the parties invoke the Shuffle&Decrypt functionality where:

• P1 inputs E =
⋃µ

b=2 Eb, the sk1 and a random permutation π1 : [m] → [m].

• Pi inputs the private key ski and a random permutation πi : [m] → [m].

• P1 obtains a set U .

5. P1 removes all zero from U , and outputs U ∪X1.

Figure 8: Our mPSU Protocol
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4.1.1 The Usage of cOPRF

As previously mentioned, when the set S of the leader party P1 contains the PRF values of the
union items but the PRF is under a single key k generated by a party, the adversary can learn
partial information regarding the Pi’s input set Xi if it colludes P1 and any Pt. To overcome
this limitation, the values added to set S after each mOT instance with Pi must not reveal any
information about the set Xi. To accomplish this, we propose using the multi-key PRF (ki, . . . , k2)
where each key kt is chosen by Pt∈[2,i]. Assume that Pi can compute yi = F ((ki, . . . , k2), xi) for each
item xi ∈ Xi (we describe how to compute the PRF value yi in detail in the following paragraph).
In that case, by invoking mOT, Pi can securely send yi to P1 if the item xi is not in the union of
previous sets {X1, . . . , Xi−1} and random otherwise. The key ki is kept secret and only known by
Pi, which protects colluding parties from learning the input set of Pi.

There is a simple way to enable the computation of the PRF values by party Pi. This involves a
sequential interaction between Pi and other parties, Pt∈[2,i−1], via an OPRF. During this interaction,
Pt acts as the sender with its PRF key kt, and Pi acts as the receiver with F ((kt−1, . . . , k2), xi),∀xi ∈
Xi or xi if t = 2. The receiver Pi then receives F (kt, F ((kt−1, . . . , k2), xi)) which we denote as
F ((kt, . . . , k2), xi), while the sender Pt learns nothing. However, the use of multi-key PRF values
could reveal information about Xt when P1 and Pt+1, . . . , Pi were to collude. For simplicity, we
assume that P1 and Pi>t engage in collusion. If the item xi of Pi is identical to the item xt ∈
Xt, but does not appear in any set Xj∈[1,t−1], the corrupt leader party P1 would obtain yt =
F ((kt, . . . , k2), xt) from the honest party Pt through the mOT instance. Additionally, the corrupt
Pi would also possess yi = F ((kt, . . . , k2), xi) after engaging in interactions with each P2, . . . , Pt via
OPRF. By comparing the two PRF values yt and yi, the adversary (i.e., the corrupt P1 and Pi)
would be able to obtain partial information about Xt. To address the leakage, we ensure that the
corrupt party Pi obtains a “fake” PRF value of their input item xi if the xi appears in any input
set of previous parties Pt∈[2,i−1]. This objective can be achieved through the use of our cOPRF
primitive.

Recall that our cOPRF is a single-query PRF, thus, we use the bin-and-ball technique to enhance
the performance of our protocol. We now demonstrate how to execute the cOPRF using the recursive
method. We assume that at the i−1th round of the protocol execution, the party Pt∈[i+1,n] possesses
a set St

b,i−1 for the b-th bin. This set contains F ((ki−1 . . . , k2), xt,j) if xt,j is not present in any

set Xt∈[2,i−1], and random values otherwise. For the baseline with i = 2, St
b,1 corresponds to the

input set of Pt, which was mapped to the b-th Simple-hashing bin. To compute the desired PRF
values which contain the key ki, the Pi and Pt invoke a cOPRF in which Pi acts as the sender
with input Si

b,i−1 and the PRF key ki while Pt acts as the receiver and queries on the input

c ∈ St
b,i−1. The output of cOPRF provides Pt the correct PRF value F (ki, c). This value equals

F ((ki, ki−1, . . . , k2), xt,j) for an input xt,j if xt,j ̸∈ Xi and c has a form F ((ki−1, . . . , k2), xt,j) – in
other words, xt,j ̸∈ X2 ∪ . . . ∪ Xi−1. The cOPRF gives Pt a random (i.e., a “fake” PRF value) if
xt,j ∈ Xi or c is random. We present the cOPRF execution in Step (3,c), Figure 8.

When using the hash-to-bin scheme, parties are required to apply the mapping to their multi-
key PRF values. Additionally, each individual Pi∈[2,n] must also map its PRF values using Simple
hashing, and the resulting Simple-hashing bin serves as the input of the sender Pi in the cOPRF
process. Since the P1 and Pi invoke mOT in Step (3,b), thus these parties only need to execute
the OPRF computation (instead of cOPRF). Note that P1 does not need to query the PRF values
for dummy items, but instead aggregates all non-dummy PRF values in the set S1

b,i−1 and employs
them as input to the OPRF execution.
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4.1.2 The Usage of mOT

As per the overview description, the parties P1 and Pi engage in the mOT to incrementally acquire
the PRF values and encrypted union items. As the PRF values are generated under distinct keys
in this protocol, the input for the mOT must differ from what we described before. We introduce
two modifications to the input as follows.

The first modification is that the P1 has to compute multi-key PRF values for its set S1
b,i for

i ∈ [2, n]. It can be done easily by executing an OPRF with Pi which holds the PRF key ki.
Concretely, assuming that after the mOT with Pi−1, the set S1

b,i−1 contains either random values r

or F ((ki−1, . . . , k2), x) for x ∈
⋃i−1

t=1Xi. In the case where i = 2, the S1
b,i−1 is indeed the P1’s input

set. The P1 submits OPRF queries on S1
i−1 to Pi and obtains S1

b,i = {F (ki, s) | s ∈ S1
i−1} whiles Pi

learns nothing. Clearly, the set S1
b,i consists of F ((ki, . . . , k2), x) for x ∈

⋃i−1
t=1Xi and F (ki, r) for

random r ∈ S1
i−1. We present the OPRF in Step (3,a), Figure 8.

The mOT execution between P1 and Pi should allow P1 to add the PRF values F ((ki, . . . , k2), x)
of the Pi’s item x ∈ Xi to S1

b,i if x is not in the union of {X1, . . . , Xi−1}. To achieve this, Pi should
use input (yb,i, rb,i||Enc(pk, 0), yb,i||ēb,i) to the mOT execution. The yb,i is F (ki, c) where c is either
random or has a form of the multi-key PRF F ((ki−1, . . . , k2), x)) obtained from cOPRF executions
with previous parties Pi∈[2,i−1]. The rb,i is randomly chosen. The main tricky part is how to define
ēb,i. If ēb,i is an encryption Enc(pk, x) of the Pi’s input item x, and if the the yb,i is a “fake” PRF
value, then ēb,i is added to Eb as yb,i never appears in the P1’s set S

1
b,i. Recall that the “fake” PRF

yb,i indicates that the corresponding x is in the set of previous parties Pt∈[2,i−1]. Hence, if we set
ēb,i = Enc(pk, x), the Eb contains two ciphertexts that are encryptions of the same x. This will
reveal to P1 the multiplicity of each element in the union after decrypting Eb. To avoid this issue,
we propose the following modification on how to compute ēb,i.

Our objective is to ensure that ēb,i is the encryption of the Pi’s input item x if x does not appear
in any set X2, . . . , Xi−1; otherwise it should be the encryption of zero. We achieve this by having Pi

participate with each party P2, . . . , Pi−1 using mOT. For clarity, we describe the scenario for i = 3
as follows. Initially, P3 computes e3b,1 = Enc(pk, x) for its item x. Next, the party P2 and P3 invoke

a mOT instance where P2 acts as the receiver with input S2
b,2 = {F (k2, y) | y ∈ S2

b,1} and P3 acts as

the sender with input (C3
b,2,Enc(pk, 0), e

3
b,1). Here, C3

b,2 = F (k2, x) if x ̸∈ X2 or random otherwise

(the value C3
b,2 is the output of the cOPRF execution between the sender P2 and the receiver P3).

Therefore, the mOT functionality returns the vaue c to the P2, which is the Enc(pk, 0) if x ∈ X2

and the Enc(pk, x) if x ̸∈ X2. The P2 then rerandomizes c by computing c′ ← ReRand(c, pk) and
returns the result to P3. The rerandomization aims to prevent the P3 from determining the output
of P2, which would reveal whether x ∈ X2. The P3 then computes e3b,2 = ReRand(c′, pk), and we

define ēb,3 as e3b,2, which is the input to mOT. The OPRF is presented in Step (3,d), Figure 8.

4.2 Correctness and Security

Correctness. We consider three following cases depending on whether a specific item xi,k ∈ Xi

of the smallest-index party Pi is in P1 or other parties Pt for n ≥ t > i > 1. Since Pi is the smallest
index that has xi,k, no previous parties have xi,k. Thus, Pi obtains Ci

b,i−1 = F (ki−1, . . . , k2, xi,k)
after interacting with Pt∈[2,i−1] via the cOPRF.

• Case 1 (xi,k ∈ X1) – the P1 has xi,k: As xi,k ∈ X1, the OPRF with Pt∈[2,i] in Step (3,a) gives
P1 the multi-key PRF value F ((ki, . . . , k2), xi,k). In the mOT execution between P1 and Pi,
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the input keyword of Pi as yb,i = F (ki, C
i
b,i−1) is in S1

b,i. Thus, P1 receives the encryption
of zero Enc(pk, 0) from the mOT functionality. As a result, xi,k does not appear in the final
result from the Shuffle&Decrypt execution.

• Case 2 (xi,k ̸∈ X1 and xi,k ∈ Xt) – the P1 does not have xi,k, but another party Pt has xt,j =
xi,k for t > i: The mOT execution between P1 and Pi on input related to yb,i = F (ki, C

i
b,i−1)

gives P1 the yb,i and eb,i = Enc(pk, xi,k). The PRF value yb,i is added to the set S1
b,i, and the

xi,k will appear in the final union output.

Assume that xt,j = xi,k ∈ Xj was mapped into the b-th Cuckoo bin. Since xt,j ∈ Xi, the
cOPRF and mOT with Pi gives Pj a random “fake” PRF value Ct

b,i and et,b = Enc(pk, 0).
Thus, when executing mOT with Pt, the P1 obtains Enc(pk, 0). Hence, the xt,j does not
appear in the final result.

• Case 3 (xi,k ̸∈
⋃n

j=1,j ̸=iXj) – no party has xi,k: The mOT execution between P1 and Pi

gives P1 an Enc(pk, xi,k). Thus, xi,k appears in the final result from the Shuffle&Decrypt
functionality.

Security. The security of our mPSU protocol is given as below.

Theorem 4. Given the multi-key cryptosystem, mOT, OPRF, cOPRF and Shuffle&Decrypt func-
tionalities described in Section 2.6, and Figures 2&9&6, respectively, the mPSU protocol described
in Figure 8 securely implements the mPSU functionality defined in Figure 1 in the semi-honest
model, against any number of corrupt, colluding, semi-honest parties.

Proof. Let C and H be a coalition of corrupt and honest parties, respectively. We must show how
to simulate C’s view in the ideal model. We consider three following cases based on whether C has
an item x:

1. C does not have x, but H has x: If H contains only one honest party Pi, then Pi has x. The
corrupted parties C can deduce that the honest party Pi has x from the output of the set
union. Hence, there is nothing to hide about whether Pi has x in this case. If H has more
than one honest party (say Pi and Pj>i). We consider two following cases:

• Only Pi has x: we must show that the protocol must hide the identity of Pi. If P1 ∈ H,
only the honest party P1 learns the union

⋃n
i=1Xi in Step 5. In addition, the cOPRF

and mOT between Pi and previous corrupt parties Pt<i ∈ C reveals nothing to C. Thus,
the simulation is simple.

If P1 ∈ C, the corrupt P1 obtains Enc(pk, x) and the F ((ki, . . . , k2), x) from Pi. Since the
encryption is protected under the Shuffle&Decrypt functionality until the P1 learns the
union sets which was permuted by the honest party Pi, the encryption reveals nothing
to C. Similarly, the PRF value consists of the Pi’s key ki, which hides x from C.

• Both Pi and Pj have x: If i = 1, then the honest leader P1 receives encryptions of
zeros Enc(pk, 0) and “fake” PRF values when executing mOT with Pj . Thus, the C
learns nothing about which parties in H have x. If P1 ∈ C, the corrupt P1 receives the
encryption Enc(pk, x) from Pi and Enc(pk, 0) from Pj . Thanks to the CCA property of
the encryption scheme and the permutation in Shuffle&Decrypt, C cannot distinguish
the two encryptions. Thus, the protocol hides the identity of which honest party has x.

19



Our Protocol
m = 28 m = 212 m = 216 m = 220

t = 1 t = 4 t = 16 t = 1 t = 4 t = 16 t = 1 t = 4 t = 16 t = 1 t = 4 t = 16

LAN (s)

n = 3 2.34 0.68 0.36 36.19 9.30 2.91 601.18 153.76 41.99 5175.56 1395.41 378.74
n = 4 4.41 1.23 0.60 69.64 17.50 4.98 1147.32 291.31 78.60 11468.34 3046.06 826.02
n = 6 10.62 2.89 1.18 167.80 42.44 11.75 2786.67 724.16 189.26 30266.82 8351.98 2175.02
n = 8 19.68 5.24 1.96 312.52 78.98 21.49 5176.67 1331.20 349.87 57776.16 15680.08 4130.61

WAN (s)

n = 3 12.03 10.58 10.32 52.38 26.56 20.48 655.97 208.69 96.97 9920.07 2961.36 1219.62
n = 4 13.28 11.35 10.98 94.21 43.12 30.91 1214.65 370.88 161.04 18937.01 5444.82 2088.87
n = 6 36.72 29.04 27.36 210.05 85.91 55.57 2909.79 859.65 327.68 45732.48 12943.89 4434.85
n = 8 56.70 42.36 39.13 371.11 139.78 82.74 5356.24 1523.28 544.93 84535.25 23227.10 7576.88

Comm. Cost (MB)

n = 3 1.52 21.11 344.83 5517.28
n = 4 2.29 31.88 505.67 8090.72
n = 6 3.83 53.47 848.28 13572.48
n = 8 5.38 75.12 1191.67 19066.72

Table 3: The running time and communication cost of our mPSU protocol: the number of parties
n ∈ {3, 4, 6, 8}, set size m ∈ {28, 212, 216, 220}, and numbers of thread t = {1, 4, 16}. The reported
running time represents the time taken for the entire protocol to complete. Communication cost is
computed as the average cost across all parties.

2. C have x, but H does not have x: We must show that the protocol must hide the information
that H does not have x. Consider the cOPRF (or OPRF) and mOT executions where a party
in H acts as the sender and a party in C acts as the receiver, the corrupt set C receives
nothing related to x. In the final step, the encryption set E contains Enc(pk, x), which was
permuted by the honest parties H. Hence, all honest parties have an indistinguishable effect
on the Shuffle&Decrypt step.

3. Both C and H have x. When C acts as the receiver invokes the cOPRF (or OPRF) with
an honest sender which does not have x, the C obtains the correct PRF values. When C
interacts with an honest party that has x, the C obtains the PRF values (if P1 ∈ C) and the
“fake” PRF values. Since the PRF values contain the PRF key of the honest set H and their
distribution is random. Thus, C learns nothing from cOPRF or OPRF executions. Similarly,
the corrupt coalition’s view is simulated from Step (3b, 3d) based on the functionality of
mOT and encryption scheme. Moreover, the Enc(pk, x) appears only once in the encryption
set E, thus, C learns nothing about whether H has x.

5 Implementation and Performance

We implement our protocol and evaluate it with various number of parties, set sizes, and number
of threads. All evaluations were performed with an item input length 128 bits, a statistical security
parameter λ = 40, and a computational security parameter κ = 128. We do a number of experi-
ments on a single server that has AMD EPYC 74F3 processors and 256GB of RAM. We run all
parties in the same network, but simulate a network connection using the Linux tc command: a
LAN setting with 0.02ms round-trip latency, 10 Gbps network bandwidth; a WAN setting with a
80ms round-trip latency, 400 Mbps network bandwidth.

Our mPSU protocol is built on Elgamal encryption scheme (multi-key cryptosystem), Diffie-
Hellman OPRF (cOPRF), SS-PMT, and OT (mOT and cOPRF). We implement the exponentiation
for OPRF and Elgamal encryption using the elliptic curve code (Curve25519) from Relic [40]. For
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m Our [19] [5] [16]

Running Time
LAN (second)

28 4.41 155.63 2.70 6009.00
212 69.64 2490.04 57.725 -
216 1147.32 39840.65 1158.53 -
220 11468.34 637450.40 25279.39 -

Running Time
WAN (second)

28 13.28 - 128.05 -
212 94.21 - 2387.70 -
216 1214.65 - 45939.46 -

Comm. Cost
(MB)

28 2.29 15.72 740.67 2.50
212 31.88 251.65 15058.25 40.00
216 505.67 4026.53 308523.50 640.00
220 8090.72 64424.48 6279871.50 10240.00

Table 4: Performance comparison of different mPSU protocols with n = 4 parties, each having
m ∈ {28, 212, 216, 220}.

the SS-PMT implementation which requires garbled circuit for two strings comparison, we use the
EMP-toolkit library [45]. Finally, we use the OT-extension [23] provided in [33] to implement mOT.
Our complete implementation will be available on GitHub.

Our protocol scales well using multi-threading between the parties. In each round, the party
Pi∈[2,n−1] can use n−i+1 threads so that each party operates OPRF with mOT and cOPRF building
blocks with other parties P1 and Pj∈[i+1,n] at the same time. In addition, each pair of parties can use
multiple threads to execute these building blocks bin-by-bin in parallel. We evaluate it on number
of threads t ∈ {1, 4, 16} to show the performance of our protocols running with multi-threading.
Table 3 presents the overall running time and communication overhead of our mPSU protocol.

Comparison with Previous Work To demonstrate the performance of our mPSU protocols
with a comparison, we have implemented the semi-honest protocols proposed in [16, 5] and estimate
the performance for protocol proposed in [19]. Table 4 presents the running time and communication
cost of various mPSU protocols [16, 5, 19] which are secure in the dishonest majority 1 and semi-
honest setting. We do not incorporate the results from [44] into our comparison, as their protocol
only work for a small universe. Even in their largest setting, with a universe size of 232, it is
considerably smaller than the general scenario involving 128-bit elements. According to [44,
Figure 7], in a scenario involving 5 parties, each with only 32 elements of 32-bit length, their
protocol takes around 10 seconds. Interestingly, this is comparable to the runtime of our protocol
involving 6 parties, each with 256 elements in a 128-bit universe.

1The recent mPSU protocol [29] provides a weak security guarantee wherein the leader does not collude with any
parties.
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In [5], each input set Xi is initially shared among n parties using a secret-sharing scheme.
Subsequently, these parties employ a generic secure computation technique to compute the union
on the shares. Our implementation of the [5]’s method, however, is limited to the two-party scenario
where each Xi is secret-shared between only two parties (which is in favor of [5]). Consequently,
the secure computation takes place exclusively between these two parties. We implement [5] using
EMP-toolkit library [45] which provides the most of the state-of-the-art techniques for two-party
secure computation in the semi-honest setting. As shown in Table 4, for n = 4, our protocol is 2.20
times faster for the large set size of 220 in the LAN setting and 9.64− 37.82× faster than [5] in the
WAN. Additionally, our protocol incurs an average communication cost of 505.67 MB per party,
whereas the cost for [5] is significantly (323− 776×) higher.

We report the partial running time and communication cost of the mPSU protocol proposed
by [19]. The first step of their protocol is for each party to locally compute an encryption of a
local Bloom filter. To achieve a false positive rate of 2−40, the table size should be at least 60nm.
We estimate the time and communication cost for this single step of each party based on the
performance shown in [30] (as well as our [16]’s implementation), where each Paillier encryption
takes about 2.5 ms with a key length of 2048 bits, and report the numbers in Table 4.

Our mPSU protocol outperforms previous works in the LAN setting. Despite the low com-
munication cost due to the usage of homomorphic encryption, the running time of [16, 19] is not
practical even for small set sizes. Thus, we skip the evaluation of the [19, 16] in the WAN setting.

References

[1] Shuffle-based private set union: Faster and more secure. In 31st USENIX Security Symposium
(USENIX Security 22), Boston, MA, August 2022. USENIX Association.
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Parameters: A PRF F , and a bound m on the number of queries.
Functionality:

• Wait for input (q1, . . . , qm) from the receiver where qi ∈ {0, 1}κ.

• Sample a random PRF key k and give it to the sender.

• Give {F (k, q1), . . . , F (k, qm)} to the receiver.

Figure 9: OPRF Ideal Functionality

Parameters: Two parties: Sender and Receiver
Functionality:

• Wait for input strings (x0, x1) ⊂ ({0, 1}∗)2 from the sender.

• Wait for input choice bit b ∈ {0, 1} from the receiver.

• Give xb to the receiver.

Figure 10: Oblivious Transfer (OT) Ideal Functionality.

Parameters: Two parties: P0 and P1, and the set size n.
Functionality:

• Wait for input a set of items X = {x1, . . . , xn} ⊂ ({0, 1}∗)n from the P0.

• Wait for input item y ∈ {0, 1}⋆ from the P1.

• Give bi to the Pi∈{0,1} where b0 ⊕ b1 = 1 if y ∈ X and 0 otherwise.

Figure 11: Secret-shared Private Membership Test (SS-PMT) Ideal Functionality.

A Security Proof

A.1 Security Proof of Theorem 1

Proof. We construct simulators SimS and SimR to simulate the view of corrupted sender S and
corrupted receiver R, respectively. We argue the indistinguishability of the simulator and the real
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execution.
Simulating S: The simulator SimS has input (y, v0, v1) and receives output from the SS-

PMT ideal functionality, consisting of a secret-shared membership bit bS . For the OT execution,
the simulator SimS obtains nothing, except the random OT transcript which is random. Since the
output of SS-PMT is secret-shared amongst the corrupt sender and honest receiver, one can replace
the bit bS with a random. It is straightforward to check that the simulation is perfect.

Simulating R: SimR with input X receives nothing from the SS-PMT ideal functionality,
expect a secret-shared membership bit bR. SimR obtains w from the OT and u from the sender
in the last step. We show that the output of the simulator SimR is indistinguishable from the real
execution. For this, we formally show the simulation by proceeding with the sequence of hybrid
transcripts T0, T1, T2 where T0 is real view of the receiver, and T2 is the output of SimR.

• Let T1 be the same as T0, except the SS-PMT output which can be replaced with random as
the honest sender holds a secret-shared of the output. Thus, T0 and T1 are indistinguishable.

• Let T2 be the same as T1, except the OT execution and obtaining u. Due to the underlying
security property of OT, the receiver only learns one of the two strings related to v0 or v1. In
addition, the sender’s associated values were masked with a random value r before the OT
execution. Thus, w reveals nothing about vi∈{0,1}. When having u = r ⊕ bS · (v1 ⊕ v0), the
corrupt receiver might try to unmask r by computing u ⊕ w. However, the resulting value
is indeed the protocol’s output which can be simulated. Therefore, we can replace both w
and u with random (the receiver sees a system of two equations that contains three unknown
variables). In summary, T2 and T1 are indistinguishable.

A.2 Security Proof of Theorem 2

Proof. The security follows from the security of the mOT functionality and the fact the value
v1 = H(q)α and y = w1/α is distributed uniformly.

More precisely, the corrupt sender S learns nothing from the mOT execution as v0 and v1 are in
the same distribution. The value v1 reveals nothing about the receiver’s input q due to the secret
α under the Diffie–Hellman assumption.

The corrupt receiver obtains w = vk from the honest sender. Due to the secret PRF key k, the
receiver learns nothing from v. Thus, simulation is trivial, as the parties’ views in the protocol are
exactly the cOPRF output.

A.3 Security Proof of Theorem 3

Proof. Let A be a coalition of corrupt parties. The view of A is a set of ciphertexts {Ci | Pi ∈ A},
and the output of the Shuffle&Decrypt which is {xπ(1), . . . , xπ(m)} if the leader P1 ∈ A.

Thanks to the property of the multi-key cryptosystem, Ci∈[n] reveals nothing about the un-
derlying plaintexts. If P1 is honest, the randomization hides the party’s permutation function.
Moreover, when assuming {Pi, Pj} ∈ A but {Pi+1, . . . , Pj−1} ̸∈ A, one might think that A might
learn the permutation functions of honest parties {Pi+1, . . . , Pj−1}. However, the output of the
partial decryption gives ciphertexts in the random distribution. Thus, the resulting view is random
to A (i.e., the corrupt coalition’s view is simulated).
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