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Abstract. The succinct non-interactive argument of knowledge (SNARK)
technique has been extensively utilized in blockchain systems to replace
the costly on-chain computation with the verification of a succinct proof.
However, most existing applications verify each proof independently, re-
sulting in a heavy load on nodes and high transaction fees for users.
Currently, the mainstream proof aggregation schemes are based on gen-
eralized inner product argument, which has a logarithmic proof size and
verification cost. To improve the efficiency of verifying multiple proofs,
we introduce SnarkFold, a novel SNARK-proof aggregation scheme with
constant verification time and proof size. SnarkFold is derived from incre-
mentally verifiable computation (IVC) and is optimized further through
the folding scheme. By folding multiple instance-proof pairs, SnarkFold
defers the expensive SNARK verification (e.g., elliptic curve pairing) to
the final step. Additionally, we propose a generic technique to enhance
the verifier’s efficiency by delegating instance aggregation tasks to the
prover. The verifier only needs a simple preprocessing to check the valid-
ity of the delegation. We further introduce folding schemes for Groth16
and Plonk proofs. Experimental results demonstrate that SnarkFold of-
fers significant advantages, with an aggregated Plonk proof size of just
0.5 KB and the verification time of only 4.5 ms for aggregating 4096
Plonk proofs.

Keywords: Succinct Non-interactive Argument of Knowledge, Incre-
mentally Verifiable Computation, Proof Aggregation.

1 Introduction

The succinct non-interactive argument of knowledge (SNARK) is a crucial cryp-
tographic technique that allows a prover to convince a verifier of the correctness

⋆ Shang Gao is the corresponding author of this paper.
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Table 1: Complexity comparison of proof aggregations. G1 indicates the scalar
multiplication in the group G1. Zp indicates the field operation. H indicates hash
operation.

Setup Proof Size Proving Time
Verification Time

Proof Veri. Instance Agg.

TIPP [10] Yes O(logn) O(n) O(logn) O(n) G1

SnarkPack [14] Yes O(logn) O(n) O(logn) O(n) Zp

aPlonk [1] Yes O(logn) O(n) O(logn) O(n) Zp

SnarkFold (this) No O(1) O(n) O(1)
O(n) H (prep.)

O(1) (online veri.)

of a specific statement in a non-interactive way. This is achieved by the prover
constructing a succinct proof that the verifier can efficiently verify. The zero-
knowledge version of SNARK, zk-SNARK, further guarantees that the proofs
reveal no additional information beyond the validity of the statement.

In recent years, (zk-)SNARKs have gained great attention in real-world ap-
plications, leading to the development of many new constructions and implemen-
tations [17] [13] [24] [34] [6] [3] [28] [11] [35] [15]. For example, in zero-knowledge
rollups (zk-Rollups), a layer-2 network must provide a SNARK proof to the un-
derlying layer-1 blockchain to show the validity of off-chain transactions [31].
The more general version, zero-knowledge Ethereum virtual machine (zk-EVM),
further employs SNARK to demonstrate the correct execution of smart contracts
[25]. Additionally, zk-SNARK has been extensively used in private scenarios such
as anonymous cryptocurrencies [26] [18]. They can enhance blockchain privacy
by allowing users to prove the validity of a transaction without disclosing sensi-
tive information such as account address and account balance.

Although (zk-)SNARKs are promising for enhancing scalability and privacy,
SNARK-based applications pose significant challenges for both the prover and
the verifier, as generating and verifying individual proofs can be time-consuming,
thereby reducing the system’s throughput. This issue is more pronounced in
blockchain systems like Ethereum [33], where users (provers) are required to pay
transaction fees to the blockchain miners (verifiers) based on the computational
and storage resource usage of operations (the cost of proof verification). For
instance, in Sept. 2024, a deposit operation in TornadoCash (a smart contract
for anonymous transactions on Ethereum) required nearly 40 USD worth of
transaction fees.

Proof aggregation. A SNARK-proof aggregation scheme (hereafter referred to
as proof aggregation) can be utilized to mitigate these challenges. Informally, the
aggregation prover compacts n SNARK proofs (πi)

n
i=1 into a single aggregated

proof π∗ and generates an aggregation proof πAGG to show the validity the aggre-
gation process. The aggregation verifier computes an aggregated instance (i.e.,
the public input) u∗ based on the corresponding instances (ui)

n
i=1. The validity

of π∗ and πAGG implies the validity of all individual proofs. The aggregation
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time (proving time), verification time, and proof size are important metrics for
evaluating a proof aggregation scheme. Normally, we require the verification of
π∗ and πAGG to be much simpler than checking (πi)

n
i=1 individually. Proof aggre-

gation schemes have been applied in many applications, such as Zcash [18], and
Filecoin [23]. Currently, the mainstream of proof aggregation schemes is derived
from generalized inner product argument (GIPA) [10] [14], which transforms
the verification of n SNARK proofs into an inner product form. These schemes
further employ Bulletproofs-like compression [6] and a KZG commitment [19]
to reduce the proof size and verification cost to O(log n). However, the verifi-
cation cost remains substantial for real-world applications. Additionally, these
GIPA-based schemes require a trusted setup.

Motivation. One major objective of this paper is to reduce the proof size and
the verification cost of proof aggregation. To achieve this, we resort to a crypto-
graphic primitive known as the incrementally verifiable computation (IVC) [32],
which provides an efficient framework to generate a proof for a “long-repeated”
computation. IVC is a verification-friendly scheme as the verifier only needs
to validate the proof of the final step in the incremental computation, thereby
achieving constant verification time and proof size. Moreover, it does not re-
quire a trusted setup. These inspire us to incorporate IVC in proof aggregation,
regarding the aggregation of each proof as a repeated computation in IVC.

1.1 Our Contributions

We summarize the contributions of our paper as follows.

– A novel proof aggregation scheme. We propose SnarkFold, the first
proof aggregation scheme based on IVC. Compared with existing GIPA-
based approaches, SnarkFold has notable advantages that achieve constant-
size aggregated proof and constant verification time without the trusted
setup (see Table 1).

– Instance delegation. In existing schemes, the verifier must aggregate in-
stances (ui)

n
i=1 after receiving πAGG and π∗ by itself, which may lead to

an inefficient verifier. We propose a generic instance delegation technique,
which allows the verifier to delegate the instance aggregation of all kinds of
SNARKs to the prover with a simple preprocessing. By doing so, the verifier
can complete the verification at a small cost.

– Folding schemes for Groth16 and Plonk proofs. To demonstrate the
application of SnarkFold, we provide two detailed proof aggregation con-
structions for Groth16 [17] and Plonk [13], respectively. For Groth16, we
introduce a new “relaxed Groth16 proof relation” and further improve the
prover’s efficiency with some variants. For Plonk, we present two construc-
tions: one transforms a Plonk proof into a linear relation with a larger re-
cursive circuit, and the other transforms into a quadratic relation but with
a smaller circuit for a more efficient prover.
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– Experimental results. We conduct a performance comparison of Snark-
Fold and other state-of-the-art aggregation schemes. SnarkFold has notable
advantages in terms of proof size and verification time. Our proof size for ag-
gregating Plonk proofs remains constant (0.5 KB for the linear version and
1.74 KB for the quadratic version) while aPlonk increases logarithmically
with the number of proofs (13 KB for aggregating 4096 proofs). In terms of
the verification time, SnarkFold’s verifier only takes 4.5 ms for aggregating
4096 proofs, which outperforms the 38 ms of aPlonk.

1.2 Technique Overview

In this section, we briefly provide some core techniques included in SnarkFold.

Lightweight verifier from IVC. The verification cost in proof aggregation is
crucial for blockchain applications. However, the existing solutions’ verification
overhead is substantial. For example, in GIPA-based schemes [10] [14] [1], the
verifier needs to perform O(log n) GT (the pairing group of elliptic curves) oper-
ations to aggregate n Groth16 proofs. Since elements in GT are 12 times larger
and operations are 5 times slower than those in G1 (the elliptic curve group),
blockchain users face high transaction fees for verifying the aggregation process,
which limits its applications in real-world scenarios. Unfortunately, there is no
solution to reduce the costly GT operations in GIPA-based Groth16 aggregation.
To ease the verifier’s cost, we construct proof aggregation system based on IVC.
The IVC verifier maintains a constant cost because it only needs to check the
IVC proof of the final step. For example, at each step i, a straightforward design
is to view the verification of each SNARK proof SNARK.V(ui, πi) as a repeated
computation. The correctness of the IVC proof Πi demonstrates the validity of
all SNARK proofs for the first i steps. Therefore, suppose we have n proofs that
need to be aggregated; the prover performs n repeated computations to gener-
ate the final IVC proof Πn. The verifier only needs to check Πn to confirm the
validity of all n SNARK proofs.

Instance delegation with preprocessing. In proof aggregation scenarios,
the aggregation verifier conducts three key operations: ❶ receives an aggregation
proof πAGG and π∗ from the prover, ❷ computes an aggregated instance u∗ based
on u1, ..., un, and ❸ verifies the validity of πAGG and π∗. In existing schemes, these
steps are sequential, i.e., the verifier cannot precompute u∗ before receiving πAGG

and π∗ from the prover. For example, in a Groth16 proof aggregation scheme
proposed by Bünz et al. [10], the verifier computes u∗ using some commitments
provided in πAGG, which involves O(n) scalar-exponentiation in G1. Similarly,
SnarkPack’s verifier also relies on πAGG to aggregate instances with O(n) Zp

operations [14]. This leaves us a space for reducing the verifier’s cost by further
delegating the computation of u∗ to the prover. However, directly accepting an
aggregated instance u∗ from the prover incurs some security issues, even when the
aggregation is done correctly. For instance, a malicious prover can replace (ui, πi)
with a valid trivial instance-proof pair (u′

i, π
′
i). Thus, the verifier needs to ensure

that u∗ is aggregated using the expected instances. To achieve this, we adopt
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a generic preprocessing process to allow the verifier to efficiently precompute
a binding claim using all ui locally with O(n) hash operations, which is much
more efficient than the O(n) G1 operations required by Bünz’s scheme [10]. Note
that our preprocessing process is applicable for all kinds of SNARKs and can
be independently completed by the verifier in advance without relying on the
πAGG and π∗ from the prover. Meanwhile, the prover is required to integrate
the precomputation logic into the recursive circuit, outputting the binding claim
at the final step as a part of πAGG. By comparing the binding claim from the
prover with the local one, the verifier can efficiently ensure u∗ is aggregated from
those expected ui’s. We refer to this constant-cost comparison and the process
of checking πAGG and π∗ as online verification. The detailed descriptions are
provided in Section 3.1.

Lightweight prover from the folding scheme. We further enhance the ef-
ficiency of the aggregation prover when using IVC for proof aggregation. In the
straightforward design discussed in “lightweight verifier from IVC”, at step i,
the prover inputs a new SNARK instance-proof pair (ui, πi) and the previous
IVC proof Πi−1. The recursive circuit is required to show the validity of both
the IVC proof Πi−1 and the SNARK proof πi. Then, the prover generates a
new IVC proof Πi and feeds it into the next recursion step. However, there are
certain limitations in the straightforward design since integrating complex veri-
fication algorithms such as elliptic curve pairing into recursive circuits incurs a
significant cost. For instance, a single pairing operation requires up to 25 mil-
lion gates, and the circuit compilation time for a single pairing operation can
take up to 4.2 hours [30]. Recently, IVC has been developed from the folding
schemes [9] [8] [22] [21] [7] [12] [36] [20] for a simpler recursion, which moves
the verification of the previous step Πi−1 from the recursive circuit (replacing it
with folding relaxed R1CS instances in Nova [22]). Unfortunately, the circuit still
requires verifying the current SNARK proof πi, which remains to be a large over-
head. To improve the prover’s efficiency, we propose a novel construction with
two folding operations in the recursive circuit: one algebraic instance for folding
SNARK proofs and one circuit instance for folding relaxed R1CS instances. In
other words, we regard “folding each proof” as repeated computation (actually,
we only fold each instance in the recursive circuit) rather than “verifying each
proof”. This can completely remove the pairing operations from the circuit. The
detailed descriptions of the recursive circuit are provided in Section 3.2.

Folding schemes for Groth16 proofs. To implement our proof aggregation
architecture, we require a folding scheme for the SNARK proof. We first consider
the Groth16 proof, which consists of three group elements πGro = (A,B,C),
with A,C ∈ G1 and B ∈ G2. A straightforward way to obtain a folded proof
(A∗, B∗, C∗) is to use a random combination between two proofs (A1, B1, C1)
and (A2, B2, C2), such as A∗ = A1 · (A2)

r. However, the folded proof can not
pass the verifier’s pairing check due to the cross-terms generated by the random
combination. To solve this, we propose a “relaxed Groth16 proof relation” by
introducing two additional factors to absorb the cross terms generated by folding,
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and further enhance the prover’s efficiency with some variants. The detailed
descriptions are provided in Section 3.4.

Folding schemes for Plonk proofs. Unlike Groth16, Plonk is built from
polynomial interactive oracle proofs (PIOPs), which require multiple rounds
of interaction. The corresponding non-interactive version requires Fiat-Shamir
transformations, which must be verified in the recursive circuit since they are
not homomorphic. To address this problem, we introduce a preprocessing step
in the recursive circuit that performs some simple hash checks and transforms
the Plonk proof into a folding-friendly form. Note that all inputs of the pre-
processing should be regarded as a part of the instance of the new relation,
as the folding verifier also needs to run the preprocessing to ensure its correct
execution. Specifically, we outline two methods: the first preprocesses a Plonk
proof into a linear relation, supporting multi-folding without error terms but
resulting in a larger recursive circuit due to the preprocessing process (similar to
[9]); the second employs a simpler preprocessing process (i.e., a smaller recursive
circuit) to transform a Plonk proof into a quadratic relation, but only supports
two-folding. The details are provided in Section 3.5.

1.3 Related Work

Proof aggregation. Some work focuses on designing cryptography accumu-
lators for aggregating specific proofs, such as (non-)membership proofs. Srini-
vasan et al. [29] propose a zero-knowledge (non-)membership proof aggregation
in the bilinear pairing group settings. However, it is not suitable for aggregating
general-purpose SNARK proofs such as Groth16 and Plonk. Bünz et al. [10]
adopt GIPA for Groth16 proof aggregation. This approach converts the ver-
ification of n individual Groth16 proofs into the verification of a generalized
inner product argument, which can utilize Bulletproofs folding to reduce the
proof size to a logarithmic scale. Furthermore, they introduce an inner pairing
product (TIPP) relation to regard the compressed argument as a polynomial and
utilize the KZG commitment to reduce the verification cost further. Bünz et al.’s
scheme requires the verifier to conduct O(n) field operations and O(log n) cryp-
tographic operations. SnarkPack [14], an optimization of Bünz et al.’s scheme,
is designed to aggregate Groth16 proofs and reuses the public parameters from
the trusted setup. Both Bünz et al.’s scheme and SnarkPack achieve O(log n)
proof size. aPlonk [1] extends the techniques of SnarkPack to Plonk aggregation
with a logarithmic proof size and verification time. Other approach for Groth16
proof aggregation rely on recursive composition. Bowe et al. [5] construct an
additional SNARK for n copies of the Groth16 verifier circuit. However, this
scheme integrates pairing into the circuit and incurs a significant cost. For in-
stance, calculating a pairing on the BLS12-377 curve requires approximately
15,000 constraints [10].

Folding scheme. Traditionally, recursive SNARK required embedding a SNARK
verifier in the circuit and implementing a full verification logic at every step,
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which introduces a huge overhead. The folding scheme is an advanced technique
for constructing efficient recursive SNARKs. Several folding protocols, such as
Nova [22], Kilonova [36], and others, have been proposed recently. The folding
scheme allows multiple instances to be folded into a single one. The validity of
the folded instance implies the correctness of all instances. This eliminates the
need for costly verification from the recursive circuit: the recursive circuit simply
folds multiple instances into a folded “running instance” and outputs a “circuit
instance” to demonstrate that the recursion function and folding are executed
correctly. By verifying the correctness of the running instance and the circuit
instance in the final step, the verifier can ensure the accuracy of all iterations.

2 Preliminaries

2.1 Notation

This work considers the security parameter as λ. negl(λ) denotes a negligible
function in λ. Let Zp denote the prime field for a large prime p, and Z<d

p [X] (or

Zd
p[X]) denote the set of univariate polynomials over Zp with a degree smaller

than (or equals to) d. We use r ←$ Zp to denote sampling r from Zp uniformly
at random and x ← a to denote variable assignment of a to x. For simplicity,
(a1, ..., an) is denoted as (ai)

n
i=1.

Relations. For a nondeterministic polynomial time (NP) relation R, we define
it over public parameters pp (e.g., the groups and fields), structure s (e.g., R1CS
coefficient matrices), instance u (i.e., the public inputs), and witness w (i.e., the
secret) tuples, (pp, s, u, w) ∈ R.

Bilinear groups. Let (G1,G2,GT , p, e) be a type II bilinear group of prime
order p where e : G1 × G2 → GT is the bilinear map. Let g ∈ G1 and h ∈ G2

be the generators of G1 and G2 respectively. We define group elements [x]1 as
gx ∈ G1, [x]2 as hx ∈ G2, and [x]T as e(g, h)x ∈ GT .

2.2 (zk-)SNARK and Proof Aggregation

Let R be a NP relation. A SNARK is described by four algorithms (SNARK.G for
public parameter generator, SNARK.K for key generator, SNARK.P for prover,
SNARK.V for verifier), that work in a non-interactive way:

– pp← SNARK.G(1λ): On input security parameter λ, sample public parameters
pp.

– (pk, vk)← SNARK.K(pp, s): Taking the public parameters pp and a structure
s, generate the prover’s proving key pk and the verifier’s verification key vk.

– π ← SNARK.P(pk, u, w): Given an instance-witness pair (u,w), output a suc-
cinct proof π with pk proving that (pp, s, u, w) ∈ R.

– 0/1 ← SNARK.V(vk, u, π): Given an instance u and the corresponding proof
π, output either 1 by accepting the proof or 0 by rejecting it.
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A SNARK satisfies completeness, knowledge soundness, and succinctness
properties. Zk-SNARK is a variant of SNARK with zero-knowledge property:
the proof π reveals nothing about w (formally defined in the Appendix A.1).

Given a SNARK system and n proofs π1, ..., πn, we call AGG a proof aggre-
gation scheme, which includes four algorithms (AGG.G, AGG.K, AGG.P, AGG.V):

– pp ← AGG.G(1λ): On input of the security parameter λ, sample public pa-
rameters pp.

– (pk, vk)← AGG.K(pp): Taking the public parameters pp, generate the prover’s
proving key pk and the verifier’s verification key vk for the aggregation scheme.

– (π∗, πAGG) ← AGG.P(pk, (ui, πi)
n
i=1): Given n instance-proof pairs (ui, πi)

n
i=1,

output an aggregated proof π∗ and an aggregation proof πAGG that shows the
correctness of the aggregation process.

– 0/1 ← AGG.V(vk, n, (ui)
n
i=1, π

∗, πAGG): Given n instances (ui)
n
i=1, an aggre-

gated proof π∗ and an aggregation proof πAGG, output either 1 by accepting
the aggregation or 0 by rejecting.

A proof aggregation scheme satisfies perfect completeness and knowledge
soundness, which are formally defined in Appendix A.2.

2.3 IVC and Folding Scheme

IVC allows efficient verification on repeated computation of F , i.e., F (zi−1, ωi−1) =
zi at step i, where ωi−1 is an auxiliary input and zi−1 is the output in step i−1.
IVC is constructed by a tuple of PPT algorithms (IVC.G, IVC.K, IVC.P, IVC.V)
with the following interface:

– pp← IVC.G(1λ): Given a security parameter λ, sample public parameters pp.
– (pk, vk) ← IVC.K(pp, F ): Given the public parameter pp and the function F ,

generate a proving key pk and a verification key vk.
– Πi ← IVC.P(pk, i, z0, zi, zi−1, ωi−1, Πi−1): Taking a counter of current step i,

an initial input z0, two claimed outputs of the previous and current steps zi−1

and zi, an auxiliary input ωi−1, and a proof Πi−1 attesting to the correctness
of zi−1, output a proof Πi for zi = F (zi−1, ωi−1) with pk.

– 0/1 ← IVC.V(vk, i, z0, zi, Πi): On the input of a counter of current step i,
an initial input z0, a claimed output of the i-th iteration zi, and a proof Πi

attesting to zi, output 1 if Πi is a valid proof and 0 otherwise with vk.

An IVC scheme satisfies perfect completeness, knowledge soundness, and suc-
cinctness, which are formally defined in Appendix A.3.

One approach to achieve IVC is from a folding scheme that allows the prover
and verifier to transform the task of verifying two (or more) instances of relation
R into the task of verifying a single instance in R. The folding scheme consists
of four algorithms (Fold.G, Fold.K, Fold.P, Fold.V) with the following interface:

– pp← Fold.G(1λ): Given a security parameter λ, sample public parameters pp.
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– (pk, vk)← Fold.K(pp, s): Given the public input pp and a common structure s
between instances to be folded, output a prover key pk and a verifier key vk.

– (u,w)← Fold.P(pk, (u1, w1), (u2, w2)): Given two instance-witness pairs (u1, w1)
and (u2, w2), generate a new folded instance-witness pair (u,w) of the same
size.

– u ← Fold.V(vk, u1, u2): Given the instance u1 and u2, output a new folded
instance u.

The above algorithms can also be generalized to multiple folding (e.g., (u,w)←
Fold.P(pk, (ui,wi)

n
i=1)). A folding scheme satisfies perfect completeness and knowl-

edge soundness, which are formally defined in Appendix A.4. Given that our ap-
plication is proof aggregation, where the instances are derived from zk-SNARK
proofs, we do not require the folding schemes to have a zero-knowledge property.

2.4 Groth16 Background

Groth16 is a pairing-based efficient zkSNARK [17]. We briefly present the al-
gorithms of Groth16 (the details of each parameter are presented in Appendix
B.1).

– pp← Groth16.G(1λ): Based on λ, sample a type III bilinear group (G1,G2,GT , p, e)
with g ∈ G1 and h ∈ G2 as generators. Output pp = (G1,G2,GT , p, e, g, h).

– (pk, vk) ← Groth16.K(pp, s): Generate a common reference string crs which
contains the necessary group elements for the prover and the verifier. Output
pk = crs and vk = crs.

– π ← Groth16.P(pk, u, w): Let (u,w) be a R1CS instance-proof pair with
u := (a1, ..., aℓ) ∈ Zℓ

p. The algorithm outputs a Groth16 proof π = (A,B,C)
consisting of three group elements A,C ∈ G1 and B ∈ G2 (more details in
Appendix B.1).

– 0/1← Groth16.V(vk, u, π): Parse u as (a1, ..., aℓ) and obtain (Si)
ℓ
i=0 =([

βui(x)+αvi(x)+wi(x)
γ

]
1

)ℓ
i=0

from crs. Compute D = e([α]1, [β]2) and check

e(A,B) = e(C, [δ]2) · e(
ℓ∏

i=0

Sai
i , [γ]2) ·D,

where ui(X), vi(X), wi(X) are polynomials defined in circuit structure s and
[α]1, [β]2, [γ]2, [δ]2, x are parameters defined in crs (more details in Appendix
B.1).

2.5 Plonk Background

Plonk is an efficient zk-SNARK with a universal trusted setup. The verification
only requires checking a KZG pairing equation. We briefly present the algorithms
of Plonk (the details of each building block are provided in the Appendix B.2).
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– pp← Plonk.G(1λ): Given the parameter λ, select a bilinear group (G1,G2,GT , p, e)
with generators g ∈ G1 and h ∈ G2. Output pp = (G1,G2,GT , p, e, g, h).

– (pk, vk) ← Plonk.K(pp, s): Generate a structured reference string srs that in-
cludes the required group elements for the prover and verifier. Compute and
output pk and vk based on srs.

– π ← Plonk.P(pk, u, w): Given a Plonkish instance-witness pair (u,w), output
a Plonk proof

π =

(
A,B,C,Z, Tl, Tmi, Th,W, V,
ā, b̄, c̄, s̄σ1

, s̄σ2
, z̄ω

)
,

where the first line consists of G1 elements and the second line consists of Zp

elements (more details in Appendix B.2).
– 0/1← Plonk.V(vk, u, π): The verifier checks the pairing relation

e(W · V γ , [x]2) = e(Wλ · V γλω ·M ·N · F−1, [1]2),

where x is the trapdoor element from the srs, λ, γ are challenge points used
in KZG evaluation and KZG batching, ω ∈ F is m-th root of unity of the
subgroup H, and M,N,F ∈ G1 are commitments calculated from the Plonk
proof π (more details in Appendix B.2).

3 SnarkFold

We present our proof aggregation scheme, SnarkFold, which is built from folding-
based IVC. We also construct two folding schemes for Groth16 and Plonk for
real-world applications.

3.1 Proof aggregation from IVC

In IVC, the recursive function F is performed sequentially with each step built
upon the previous one, whereas the relationship among each SNARK proof is
independent in proof aggregation, and there is no strict requirement to follow a
step-by-step order. Thus, we first propose a straightforward construction shown
in Figure 1a, which models the aggregation process as a n-step IVC (the wit-
ness part is omitted here for simplicity). The IVC prover iterates n steps, with
each step receiving a new SNARK instance-proof pair (ui, πi) as input. The
IVC proof of step i validates the SNARK proofs π1, ..., πi, and the final IVC
proof validates all n SNARK proofs. Specifically, this design sets F to checking
SNARK.V(ui, πi) = 1. The recursive circuit is required to verify the correctness
of F and FoldCircuit.V, transforming them into a circuit instance uC,i (e.g., relaxed
R1CS). Here, FoldCircuit.V folds the previous circuit instance uC,i−1 with the run-
ning instance u∗

C,i−1 into a new running instance u∗
C,i, which serves as the input

for the next step. The final verifier only needs to check uC,n and u∗
C,n to accept

all proofs. This design can enhance the verifier’s efficiency. However, a major
drawback is that SNARK.V may involve expensive non-native computations like
elliptic curve pairings, which incur substantial overhead.
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Recursive circuit
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Recursive circuit

Function 

(a) A straightforward design.

Recursive circuit

Function 

Recursive circuit

Function 

(b) SnarkFold from two-folding.

Fig. 1: Comparison of the straightforward design and the SnarkFold scheme.

SnarkFold: proof aggregation from two-folding.Different from the straight-
forward construction, which includes a full SNARK verification logic in the
recursive circuit, we remove the verification (i.e., SNARK.V) from the circuit
and replace it with folding SNARK proofs (i.e., FoldSNARK.V). This defers the
costly verification such as pairing operations to the final step. As depicted in
Figure 1b, we employ two running instances of different types in the recur-
sive circuit: u∗

i for the SNARK and u∗
C,i for the circuit. One core idea of our

construction is to view each πi as a witness, folded locally rather than in the
recursive circuit. The prover adopts a folding scheme FoldSNARK.V to fold the
input SNARK instances to u∗

i and another folding scheme FoldCircuit.V to fold
the circuit instance to u∗

C,i. The recursive circuit shows the correct execution
of the two foldings by outputting a claim as a new circuit instance uC,i. For
example, assume (ui, πi) = (Pi, Qi) ∈ G1 × G1, with the verification relation
e(Pi, [α]2) = e(Qi, [β]2). The FoldSNARK.V simply computes P ∗

i = P ∗
i−1 · (Pi)

r

(r donates a random challenge from Zp). The proof Qi is folded locally as
Q∗

i = Q∗
i−1 · (Qi)

r since we regard it as witness. Consequently, the recursive
circuit only needs to transfer the correct execution of one G1 operations (and
FoldCircuit.V) into a circuit instance uC,i, without the need for the costly trans-
formation of pairing. We provide the formal design in Section 3.2.

Instance delegation. In existing schemes, the verifier must combine instances
(ui)

n
i=1 into an aggregated instance u∗, typically requiring at least O(n) oper-

ations. Furthermore, this step cannot be precomputed before receiving π∗ and
πAGG from the prover. To reduce the verifier’s online workload, we delegate the
instance aggregation into the prover’s recursive function F . As shown in Fig-
ure 1b, the running instance at step n, u∗

n, can be considered as u∗. However,
there is a subtle issue if the verifier does not read all (ui)

n
i=1 as it can not en-

sure u∗ is derived from the expected instances. For instance, a malicious prover
can replace (ui, πi) with a valid trivial proof (u′

i, π
′
i). To address this issue, we
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require the verifier to recursively precompute a binding claim h using (ui)
n
i=1

(i.e., hi = Hash(ui, hi−1) and h = hn). Similarly, the prover performs the Hash
operations as a part of recursive function (shown in the grey part in Figure 1b).
hn is the IVC output from the n-th step, which is included in the final IVC proof
and sent to the verifier. By comparing the received claim with the local one, the
verifier can ensure u∗ is derived from those expected ui’s.

3.2 Recursive Circuit Design

To describe our techniques more precisely, we include the witness parts of our
design in Figure 1b. As we described above, the recursive circuit only needs to
show that “ui part is folded correctly”, avoiding the cost of showing “πi part is
folded correctly”. Specifically, the recursive circuit takes two SNARK instances
ui and u∗

i−1 and two circuit instances uC,i−1 and u∗
C,i−1, and derives two running

instances u∗
i and u∗

C,i. Additionally, to compute the binding claim for the instance
aggregation, the recursive circuit hashes ui and hi−1 to generate a new binding
claim hi.

hi ← Hash(ui, hi−1),

u∗
i ← FoldSNARK.V(vkFS, ui, u

∗
i−1),

u∗
C,i ← FoldCircuit.V(vkFC, uC,i−1, u

∗
C,i−1).

(1)

The recursive circuit will generate an instance-witness pair (uC,i, wC,i) to show
the correct execution of Equation (1). The prover folds instance-proof and instance-
witness pairs and computes hi locally:

hi←Hash(ui, hi−1),

(u∗
i , π

∗
i )←FoldSNARK.P

(
pkFS, (ui, πi), (u

∗
i−1, π

∗
i−1)

)
,

(u∗
C,i, w

∗
C,i)←FoldCircuit.P

(
pkFC, (uC,i−1, wC,i−1), (u

∗
C,i−1, w

∗
C,i−1)

)
.

(2)

The above construction has a subtle issue: since hi, u
∗
i and u∗

C,i are outputs
of the recursive circuit, they must be included in uC,i’s public input (i.e., uC,i.x).
In other words, (hi, u

∗
i , u

∗
C,i) ∈ uC,i.x. This implies that the structures of u∗

C,i

and uC,i are different and cannot be folded in the next iteration. To address
this inconsistency, we adopt the same idea as Nova [22], modifying the recursive
circuit to output a collision-resistant hash of its inputs and outputs [22], i.e.,
uC,i.x← Hash(vk, i, hi, u

∗
i , u

∗
C,i). The details of the recursive circuit RC are shown

in Figure 2.

3.3 SnarkFold: Construction

Proof aggregation with instance delegation. We formally define the Snark-
Fold proof aggregation algorithm SF, which consists of a set of algorithms: SF.G,
SF.K, SF.P, SF.VeriPrep, and SF.V. Compared to the existing aggregation algo-
rithm in Section 2.2, SF introduces a verifier preprocessing algorithm SF.VeriPrep
for delegation. Additionally, SF.P and SF.V have been correspondingly adjusted.
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uC,i.x← RC(vk, i, hi−1, ui, u
∗
i−1, uC,i−1, u

∗
C,i−1)

1 : if i = 1,output uC,i.x← Hash(vk, 1, h⊥, u
∗
⊥, u

∗
C,⊥);

2 : else

3 : check uC,i−1.x = Hash(vk, i− 1, hi−1, u
∗
i−1, u

∗
C,i−1),

4 : check ui and uC,i−1 are non-relaxed instances,

5 : hi ← Hash(ui, hi−1)

6 : u∗
i ← FoldSNARK.V(vkFS, ui, u

∗
i−1),

7 : u∗
C,i ← FoldCircuit.V(vkFC, uC,i−1, u

∗
C,i−1),

8 : output uC,i.x← Hash(vk, i, hi, u
∗
i , u

∗
C,i).

Fig. 2: The logic of recursive circuit in SnarkFold.

– pp ← SF.G(1λ): On input of the security parameter λ, sample public param-
eters pp.

– (pk, vk) ← SF.K(pp): Taking the public parameters pp, generate the prover’s
proving key pk and the verifier’s verification key vk for the aggregation scheme.

– ((u∗, π∗), πAGG) ← SF.P(pk, (ui, πi)
n
i=1): Given n instance-proof pairs, output

an aggregated instance-proof pair (u∗, π∗) and an aggregated proof πAGG that
shows the correctness of the aggregation process.

– h ← SF.VeriPrep(vk, (ui)
n
i=1): Given n instances u1, ..., un, output a binding

claim h of all instances u1, ..., un.
– 0/1← SF.V(vk, n, h, (u∗, π∗), πAGG): Given an aggregated instance-proof (u∗, π∗),

a binding claim h and the corresponding aggregation proof πAGG, output either
1 to accept the aggregation or 0 to reject it.

SnarkFold delegates the computing of u∗ to the prover, requiring the verifier to
perform only a simple preprocessing step. Specifically, u∗ is produced by SF.P
and sent to the verifier along with a proof πAGG to demonstrate the correct aggre-
gation. The verifier, SF.V, verifies u∗ using πAGG and a binding claim h produced
by SF.VeriPrep. The SnarkFold proof aggregation satisfies perfect completeness,
knowledge soundness which are formally defined in Appendix A.5.

Construction. Let (u∗
⊥, π

∗
⊥) be a trivial satisfying instance-proof pair and

(u∗
C,⊥, w

∗
C,⊥) be a trivially satisfying instances-witness pair. We describe the con-

struction of SnarkFold in Figure 4. The aggregation prover calls n times IVC.P
(defined in Figure 3) to generate a final IVC proof Πn, which includes the bind-
ing claim hn, the aggregated SNARK instance-proof pair (u∗

n, π
∗
n), the circuit

instance-witness pair (uC,n, wC,n), and the running circuit instance-witness pair
(u∗

C,n, w
∗
C,n). The resulting aggregated SNARK instance-proof pair is (u∗, π∗) =

(u∗
n, π

∗
n) and the binding claim is h = hn. To further improve efficiency, the prover

can fold (uC,n, wC,n) and (u∗
C,n, w

∗
C,n) into (u′, w′) and employ another SNARK

for the recursive circuit (denoted as SNARK′, which can be different from the
SNARK to be aggregated) to produce a proof π′ showing the knowledge of w′.
Accordingly, the aggregation proof πAGG is (hn, uC,n, u

∗
C,n, π

′).
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Πi ← IVC.P
(
pkIVC, i, (ui, πi), Πi−1

)
1 : if i = 1

2 : (u∗
0, π

∗
0)← (u∗

⊥, π
∗
⊥), (u∗

C,0, w
∗
C,0)← (u∗

C,⊥, w
∗
C,⊥);

3 : else

4 : parse Πi−1 as
(
hi−1, (u

∗
i−1, π

∗
i−1), (uC,i−1, wC,i−1), (u

∗
C,i−1, w

∗
C,i−1)

)
;

5 : compute hi, (u
∗
i , π

∗
i ), (u

∗
C,i, w

∗
C,i) based on Equation (2),

6 : (uC,i, wC,i)← tr
(
RC(vk, i, hi−1, ui, u

∗
i−1, uC,i−1, u

∗
C,i−1)

)
,

7 : output Πi ←
(
hi, (u

∗
i , π

∗
i ), (uC,i, wC,i), (u

∗
C,i, w

∗
C,i)

)
.

Fig. 3: The logic of the IVC prover in SnarkFold. (u,w) ← tr(RC(input)) rep-
resents the trace of the recursive circuit. i.e., converting the recursive circuit
RC(input) to an instance-witness pair (u,w).

Theorem 1. The construction of SnarkFold proof aggregation in Figure 4 satis-
fies perfect completeness and knowledge soundness if IVC and SNARK′ has perfect
completeness and knowledge soundness.

Proof Sketch. We prove that the IVC for proof aggregation satisfies perfect com-
pleteness and knowledge soundness in Appendix D.2. The perfect completeness of
SnarkFold is directly inferred from the perfect completeness of IVC and SNARK′.
The knowledge soundness of SnarkFold is also implied by the knowledge sound-
ness of IVC and SNARK′, composing the two extractors: by running the extractor
of SNARK′, we can extract a valid w′; by further running the extractor of IVC
with different w′, we can obtain all proofs (πi)

n
i=1 such that (ui, πi)

n
i=1 are valid

instance-proof pairs. Guaranteed by the binding property of SF.VeriPrep (elab-
orated in Lemma 2), the (ui)

n
i=1 are expected instances with an overwhelming

probability.

3.4 Folding Scheme for Groth16

To adopt SnarkFold in Groth16 aggregation, we need a folding scheme for
Groth16. A straightforward approach is to perform a random exponential combi-
nation (e.g., A∗ = A1 ·Ar

2), but this leads to inconsistencies in folded verification

due to cross-terms (i.e., e(A∗, B∗) ̸= e(C∗, [δ]2) · e(
∏ℓ

i=0 S
a∗
i

i , [γ]2) ·D).

First attempt: relaxed Groth16. We introduce our initial attempt at the
folding scheme for Groth16. Specifically, we propose a variant of the Groth16
relation, called “relaxed” Groth16, which introduces some additional elements
to ensure that the folded instance-proof pair is satisfiable.

Definition 1 (Relaxed Groth16 Proof Relation). Given the structure with
([δ]2, [γ]2, (Si)

ℓ
i=0, D) ∈ (G2, G2, Gℓ+1

1 , GT ), a relaxed Groth16 proof rela-
tion consists of an instance (⃗a, µ,E) ∈ (Zℓ+1

p ,Zp,GT ) and a proof (A,B,C) ∈
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pp← SF.G(1λ)

1 : ppIVC ← IVC.G(1λ), pp′ ← SNARK′.G(1λ),

2 : output pp← (ppIVC, pp
′).

(pk, vk)← SF.K(pp, s′)

1 : V (·)← SNARK.V(vkSNARK, ·),
2 : (pkIVC, vkIVC)← IVC.K(ppIVC, V ),

3 : (pkSNARK′ , vkSNARK′)← SNARK′.K(ppSNARK′ , s
′),

4 : output (pk, vk)←
(
(s′, pkIVC, pkSNARK′), (s

′, vkIVC, vkSNARK′)
)
.

((u∗, π∗), πAGG)← SF.P
(
pk, (ui, πi)

n
i=1

)
1 : Π0←⊥,
2 : for i = 1 to n

3 : Πi ← IVC.P
(
pkIVC, i, (ui, πi), Πi−1

)
;

4 :
(
hn, (u

∗
n, π

∗
n), (uC,n, wC,n), (u

∗
C,n, w

∗
C,n)

)
← Πn,

5 : (u∗, π∗)← (u∗
n, π

∗
n),

6 : (u′, w′)← FoldCircuit.P
(
pkFC, (uC,n, wC,n), (u

∗
C,n, w

∗
C,n)

)
,

7 : π′ ← SNARK′.P(pkSNARK′ , u
′, w′),

8 : πAGG ← (hn, uC,n, u
∗
C,n, π

′),

9 : output
(
(u∗, π∗), πAGG

)
.

h← SF.VeriPrep
(
vk, (ui)

n
i=1

)
1 : h0 = h⊥,

2 : for i = 1 to n

3 : hi ← Hash(ui, hi−1);

4 : h← hn,

5 : output h.

0/1← SF.V(vk, n, h, (u∗, π∗), πAGG)

1 : parse πAGG as (hn, uC,n, u
∗
C,n, π

′),

2 : check h = hn,

3 : check uC,n.x = Hash(vk, n, hn, u
∗, u∗

C,n),

4 : u′ ← FoldCircuit.V
(
vkFC, uC,n, u

∗
C,n

)
,

5 : check SNARK′.V(vkSNARK′ , u′, π′) = 1,

6 : check uC,n is a non-relaxed instance.

Fig. 4: The SnarkFold scheme.
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(G1,G2,G1), such that

e(A,B) · e(C, [δ]2)−µ · e(
∏ℓ

i=0
Sai
i , [γ]2)

−µ ·D−µ2

= E,

where a⃗ = (a0, ..., aℓ).

The relaxed relation introduces two additional elements, E and µ. Specifi-
cally, E is used to absorb the cross-term generated by folding, and µ is used to
absorb additional factors. For traditional (non-relaxed) Groth16 proof relations,
µ = 1 and E = [0]T .

We describe the folding scheme for relaxed Groth16 in more detail. Given
two instance-proof pairs, (u1, π1) =

(
(⃗a1, µ1, E1), (A1, B1, C1)

)
and (u2, π2) =(

(⃗a2, µ2, E2), (A2, B2, C2)
)
where a⃗1 = (a1,i)

ℓ
i=0 and a⃗2 = (a2,i)

ℓ
i=0, the prover

P and verifier V engage in the following protocol:

1. P → V: Compute and send the cross-item T :

T ←e(A1, B2) · e(A2, B1) · e(C−µ2

1 C−µ1

2 , [δ]2)

· e(
∏ℓ

i=0
S
−µ2a1,i−µ1a2,i

i , [γ]2) ·D−2µ1µ2 .

2. V → P: Sample and send a challenge r ←$ Zp.
3. P and V Compute the folded relaxed Groth16 instance (⃗a∗, µ∗, E∗):

a⃗∗ ← a⃗1 + r · a⃗2, µ∗ ← µ1 + r · µ2, E∗ ← E1 · T r · Er2

2 .

4. P: Compute the folded relaxed Groth16 proof (A∗,B∗,C∗):

A∗ ← A1 ·Ar
2, B∗ ← B1 ·Br

2 , C∗ ← C1 · Cr
2 .

Reducing pairings: augmented relaxed Groth16. In the above construc-
tion, P is required to compute four pairings for T at step 1 in each iteration.
Although the pairing is performed locally (not in the recursive circuit), it in-
troduces a non-negligible cost. To improve efficiency, P can compute and send
T ′ = e(A1, B2) · e(A2, B1), R = C−µ2

1 C−µ1

2 , t⃗ = µ2a⃗1 + µ1a⃗2, and κ = −2µ1µ2

with two pairings in step 1. Consequently, the E∗ in step 3 becomes E∗ =
E1 ·

(
T ′ · e(R, [δ]2) · e(

∏ℓ
i=0 S

ti
i , [γ]2) · Dκ

)r · Er2

2 . This may not seem helpful
since computing E∗ requires two additional pairings, but we observe that R and∏

Sti
i (and κ) parts can further be folded in each iteration, and the pairing op-

eration (and GT operation) can be deferred to the final step. This indicates we
only need 2n+ 2 pairings for folding n proofs instead of 4n pairings. To achieve
this optimization, we formally introduce the concept of an “augmented relaxed
Groth16 proof relation”.

Definition 2 (Augmented Relaxed Groth16 Proof Relation). Given the
structure with ([δ]2, [γ]2, (Si)

ℓ
i=0, D) ∈ (G2,G2,Gℓ+1

1 ,GT ), an augmented relaxed
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Groth16 proof relation consists of an instance (⃗a, µ,E,R, t⃗, κ) ∈ (Zℓ+1
p ,Zp,GT ,G1,

Zℓ+1
p ,Zp) and a proof (A,B,C) ∈ (G1,G2,G1), such that

e(A,B) · e(C, [δ]2)−µ · e(
∏ℓ

i=0
Sai
i , [γ]2)

−µ ·D−µ2

=E · e(R, [δ]2) · e(
∏ℓ

i=0
Sti
i , [γ]2) ·Dκ.

For traditional Groth16 proof relations, we can simply set µ = 1, E =
[0]T , R = [0]1, t⃗ = 0⃗, and κ = 0. Given two instance-proof pairs (u1, π1) =(
(⃗a1, µ1, E1, R1, t⃗1, κ1), (A1, B1, C1)

)
and (u2, π2) =

(
(⃗a2, µ2, E2, R2, t⃗2, κ2), (A2, B2, C2)

)
,

we describe the construction for augmented relaxed Groth16 in the following
protocol. The non-interactive version can be implemented by the Fiat-Shamir
transformation.

1. P → V: Compute T ′, R, t⃗, κ. Set and send the cross-item T :

T ′ ← e(A1, B2) · e(A2, B1), R← C−µ2

1 C−µ1

2 ,

t⃗← µ2a⃗1 + µ2a⃗2, κ← −2µ1µ2,

T ← (T ′, R, t⃗, κ).

(3)

2. V → P: Sample and send a challenge r ←$ Zp.
3. P and V: Compute the folded augmented relaxed Groth16 instance (⃗a∗, µ∗, E∗,

R∗, t⃗∗, κ∗):

a⃗∗ ← a⃗1 + r · a⃗2, µ∗ ← µ1 + r · µ2,

E∗ ← E1 · (T ′)r · (E2)
r2 , R∗ ← R1 ·Rr ·(R2)

r2 ,

t⃗∗ ← t⃗1+r· t⃗+r2 · t⃗2, κ∗ ← κ1+r·κ+r2 ·κ2.

(4)

4. P: Compute the folded augmented relaxed Groth16 proof (A∗, B∗, C∗):

A∗ ← A1 ·Ar
2, B∗ ← B1 ·Br

2 , C∗ ← C1 · Cr
2 .

Theorem 2. The construction of the folding scheme for augmented relaxed Groth16
satisfies perfect completeness and knowledge soundness under the random oracle
model.

Proof Sketch. The perfect soundness holds trivially. For the knowledge sound-
ness, we prove this interactive version of the protocol via the forking lemma
in Lemma 1, which implies the knowledge soundness of the non-interactive
construction under the Fiat-Shamir heuristic in the random oracle model. We
present a formal proof in Appendix D.3.

Large ℓ case: committed augmented relaxed Groth16. The above con-
struction requires O(ℓ) Zp operations within the recursive circuit. When ℓ is sig-
nificantly large, this cost can be further reduced. This is achieved by redefining
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Defination 2 as a committed version, where a⃗ is incorporated as part of the proof
and

∏
Sai
i is integrated as part of the instance. Specifically, a committed Groth16

relation consists of an instance (H,µ,E,R, S, κ) ∈ (G1,Zp,GT ,G1,G1,Zp) and
a proof (⃗a,A,B,C) ∈ (Zℓ+1

p ,G1,G2,G1), such that

e(A,B)·e(C, [δ]2)−µ ·e(H, [γ]2)
−µ ·D−µ2

=E ·e(R, [δ]2)·e(S, [γ]2)·Dκ, ∧ H =
∏ℓ

i=0
Sai
i .

We briefly describe the interactive version of the folding scheme. Given two
committed augmented relaxed Groth16 instance-proof pairs

(
(H1, µ1, E1, R1, S1, κ1),

(⃗a1, A1, B1, C1)
)
and

(
(H2, µ2, E2, R2, S2, κ2), (⃗a2, A2, B2, C2)

)
, the prover P

and verifier V engage in the following protocol:

1. P → V: Compute T ′, R, κ as in Equation (3). Compute S ← H−µ2

1 H−µ1

2 . Set
and send the cross items T ← (T ′, R, S, κ).

2. V → P: Sample and send a challenge r ←$ Zp.
3. P and V: Compute µ∗, E∗, R∗, κ∗ as in Equation (4). Compute H∗ and S∗:

H∗ ← H1 ·Hr
2 , S∗ ← S1 · Sr · Sr2

2 .

4. P: Compute the folded proof (⃗a∗, A∗, B∗, C∗):

a⃗∗ ← a⃗1 + r · a⃗2, A∗ ← A1 ·Ar
2, B∗ ← B1 ·Br

2 , C∗ ← C1 · Cr
2 .

Theorem 3. The construction of the above folding scheme for committed Groth16
satisfies perfect completeness and knowledge soundness under the random oracle
model.

Proof Sketch. For the perfect completeness, H∗ =
∏

S
a∗
i

i holds since H∗ =

H1 · Hr
2 =

(∏ℓ
i=0 S

a1,i

i

)
·
(∏ℓ

i=0 S
a1,i

i

)r
=
∏ℓ

i=0 S
a∗
i

i . The remaining parts are
identical to the proof of Theorem 2. As for knowledge soundness, the extrac-
tor extracts ˆ⃗a1 and ˆ⃗a2 with two accepting a⃗∗1 and a⃗∗2 under different challenges
through interpolation. Other parts are almost identical to that of Theorem 2.

Remark. For non-uniform pairs with different structures, we can also construct
a similar folding scheme at the cost of some additional pairing operations (Ap-
pendix E.1).

3.5 Folding Scheme for Plonk

Unlike Groth16, the Plonk protocol is constructed from PIOPs, which require
conversion into a non-interactive protocol using Fiat-Shamir transformations.
The challenges of Fiat-Shamir are non-homomorphic and need to be verified
within the circuit. To tackle this issue, we introduce a preprocessing step in
the recursive circuit that conducts basic hash checks and converts the Plonk
proof into a folding-friendly form. We outline two relations: linear relation and
quadratic relation.
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Linear relation. Observe that the final verification of Plonk is in a linear form
of e(P, [x]2)

?
= e(Q, [1]2). We can preprocess the proof to P,Q ∈ G1 and construct

(multiple) folding without incurring any cross item. Specifically, the preprocess-
ing procedure includes a Plonk verification except for the pairing check part,
which is described in Figure 5.

(P,Q)← PreprocessL(vkPlonk, uPlonk, πPlonk)

1 : β ← Hash(A,B,C), θ ← Hash(β), α← Hash(θ, Z), λ← Hash(α, Tl, Tm, Th),

2 : v ← Hash(λ, ā, b̄, c̄, s̄σ1 , s̄σ2 , z̄ω), γ ← Hash(v,W, V ),

3 : M ← Av ·Bv2

· Cv3

· (Sσ1)
v4

· (Sσ2)
v5

,

4 : N ← (QM )āb̄ · (QL)
ā · (QR)

b̄ · (QO)
c̄ ·QC

5 : · (Z)α(ā+βλ+θ)(b̄+βk1λ+θ)(c̄+βk2λ+θ)+α2L1(λ)+γ

6 : · (Sσ3)
−α(ā+βs̄σ1+θ)(b̄+βs̄σ2+θ)βz̄ω

7 : · (Tl)
−zH (λ) · (Tmi)

−zH (λ)·λm

· (Th)
−zH (λ)·λ2m

,

8 : r0 ← u(λ)− α2L1(λ)− α(ā+ βS̄σ1 + θ)(b̄+ βS̄σ2 + θ)(c̄+ θ)z̄ω,

9 : F ← [−r0 + vā+ v2b̄+ v3c̄+ v4s̄σ1 + v5s̄σ2 + γz̄ω]1,

10 : P ←W · V γ ,

11 : Q←Wλ · V γλω ·M ·N · F−1,

12 : return (P,Q).

Fig. 5: Preprocess a Plonk proof into a linear relation.

Definition 3 (Preprocessed Linear Plonk Relation). Given a structure
([x]2, vkPlonk), a preprocessed linear Plonk proof relation consists of an instance
(P,Q, uPlonk, πPlonk) and an empty witness ⊥ such that

e(P, [x]2) = e(Q, [1]2).

For non-folded instances, the verifier also needs to check (P,Q) =
PreprocessL(vkPlonk, uPlonk, πPlonk) to ensure P and Q are correctly generated.3

This is the reason to include vkPlonk, uPlonk, and πPlonk in the relation. How-
ever, they can be omitted in the folding scheme since all related parts are in
PreprocessL, whose validity is implied by the recursive circuit. Specifically, given
two instances with (P1, Q1) and (P2, Q2), we can fold them into P ∗ = P1 · P r

2

and Q∗ = Q1 ·Qr
2 using a challenge r (the u∗

Plonk and π∗
Plonk parts can be set to

⊥). It is clear that e(P ∗, [x]2) = e(Q∗, [1]2) still holds. This folding scheme also

3 The check of PreprocessL can be regarded as an auxiliary check for non-folded proofs,
such as verifying µ = 1 and E = [0]T for a non-relaxed Groth16 proof.
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supports multiple folding, which allows for the folding of k instances within a sin-
gle incremental step. Given k instances (Pi, Qi, uPlonk,i, πPlonk,i)

k
i=1, the detailed

k-folding construction is shown as follows:

1. V → P: Sample and send a challenge r ←$ Zp.
2. P: Compute P ∗ andQ∗ and return the folded instance-proof

(
(P ∗, Q∗,⊥,⊥),⊥

)
:

P ∗ ←
∏k

i=1
P ri−1

i , Q∗ ←
∏k

i=1
Qri−1

i .

3. V: For i = 1 to k, check

(Pi, Qi) = PreprocessL(vkPlonk, uPlonk,i, πPlonk,i)

and compute the folded instance (P ∗, Q∗,⊥,⊥):

P ∗ ←
∏k

i=1
P ri−1

i , Q∗ ←
∏k

i=1
Qri−1

i .

The non-interactive version can be implemented by the Fiat-Shamir transforma-
tion.

Theorem 4. The construction of the multiple folding scheme for Plonk in the
linear Plonk relation satisfies perfect completeness and knowledge soundness un-
der the random oracle model.

Proof Sketch. For each non-folded satisfying preprocessed linear Plonk instance,
we have (Pi, Qi) = PreprocessL(vkPlonk,uPlonk,i, πPlonk,i). Furthermore, e(P ∗, [x]2)

=
∏k

i=1 e(Pi, [x]2) =
∏k

i=1 e(Qi, [1]2) = e(Q∗, [1]2). For the knowledge soundness,
the extractor can trivially set the extracted witnesses to ⊥. As e(P ∗, [x]2) =
e(Q∗, [1]2), e(Pi, [x]2) = e(Qi, [1]2) holds for i = {1, ..., k} by construction, which

implies
(
(Pi, Qi, uPlonk,i, πPlonk,i),⊥

)k
i=1

are satisfying instance-witness pairs for
the preprocessed linear Plonk relation.

Quadratic relation. PreprocessL requires the prover to conduct many group
operations in the recursive circuit. Alternatively, the preprocessing process can
only conduct field operations and convert the proof into a quadratic relation
with the cost of a single cross item in 2-folding cases, as depicted in Figure 6.

Definition 4 (Relaxed Preprocessed Quadratic Plonk Relation). Given
a Plonk proof πPlonk to the corresponding instance uPlonk and verification key
vkPlonk, a relaxed preprocessed quadratic Plonk proof relation consists of a struc-
ture ([x]2, vkPlonk), an instance (λ, γ, v, ā, b̄, c̄, t⃗, uPlonk, πPlonk, µ, EP , EQ), and
an empty witness ⊥ such that

M ← Av ·Bt1 · Ct2 · St3
σ1
· St4

σ2
,

N ← Qāb̄
M ·Q

µā
L ·Q

µb̄
R ·Q

µc̄
O ·Q

µ2

C · Z
t5 · St6

σ3
· T t7

l · T
t8
mi · T

t9
h ,

P ←Wµ · V γ , Q←W γ · V t11 ·M ·N · [−µt10]1,
e(P, [x]2) · e(Q, [1]2)

−1 = e(EP , [x]2) · e(EQ, [1]2)
−1.
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Note that the last verification can be checked with two pairings. Similar to the
preprocessed linear Plonk relation, the verifier also needs to check (λ, γ, v, ā, b̄, c̄, t⃗)
= PreprocessQ(vkPlonk, uPlonk, πPlonk) for non-folded instances. However, for the
folding scheme, the prover and verifier also need to fold uPlonk and πPlonk parts as
they are involved in the verification of the relaxed preprocessed quadratic Plonk
proof relation.

(λ, γ, v, ā, b̄, c̄, t⃗)← PreprocessQ(vkPlonk, uPlonk, πPlonk)

1 : β ← Hash(A,B,C), θ ← Hash(β), α← Hash(θ, Z),

2 : λ← Hash(α, Tl, Tm, Th),

3 : v ← Hash(λ, ā, b̄, c̄, s̄σ1 , s̄σ2 , z̄ω), γ ← Hash(v,W, V ),

4 : t1 ← v2, t2 ← v3 t3 ← v4 t4 ← v5,

5 : t5 ← α(ā+ βλ+ θ)
(
b̄+ βk1λ+ θ

)
(c̄+ βk2λ+ θ) + α2L1(λ) + γ,

6 : t6 ← −α (ā+ βs̄σ1 + θ)
(
b̄+ βs̄σ2 + θ

)
βz̄ω,

7 : t7 ← −zH(λ), t8 ← −zH(λ) · λn,

8 : t9 ← −zH(λ) · λ2n,

9 : r0 ← u(λ)− α2L1(λ)− α(ā+ βs̄σ1 + θ)(b̄+ βs̄σ2 + θ)(c̄+ θ)z̄ω,

10 : t10 ← −r0 + vā+ v2b̄+ v3c̄+ v4s̄σ1 + v5s̄σ2 + γz̄ω,

11 : t11 ← γλω,

12 : t⃗← (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11),

13 : return (λ, γ, v, ā, b̄, c̄, t⃗)

Fig. 6: Preprocess a Plonk proof into a quadratic relation.

We describe the interactive version of the folding scheme. Given two prepro-
cessed quadratic Plonk instances, (λ1, γ1, v1, ā1, b̄1, c̄1, t⃗1, uPlonk,1, πPlonk,1) and
(λ2, γ2, v2, ā2, b̄2, c̄2, t⃗2, uPlonk,2, πPlonk,2) where t⃗i = (t1,i, ..., t11,i) for i ∈ {1, 2},
the prover P and verifier V engage in the following protocol:

1. P → V: Compute and send the cross-items TP and TQ:

TM ←Av2
1 Av1

2 ·B
t1,2
1 B

t1,1
2 · Ct2,2

1 C
t2,1
2 · St3,2

σ1,1
S
t3,1
σ1,2
· St4,2

σ2,1
S
t4,1
σ2,2

,

TN ←Qā1b̄2+ā2b̄1
M ·Qµ1ā2+µ2ā1

L ·Qµ1b̄2+µ2b̄1
R ·Qµ1c̄2+µ2c̄1

O

·Q2µ1µ2

C · Zt5,2
1 Z

t5,1
2 · St6,2

σ3,1
S
t6,1
σ3,2
· T t7,2

l,1 T
t7,1
l,2

· T t8,2
mi,1T

t8,1
mi,2 · T

t9,2
h,1 T

t9,1
h,2 ,

TP ←Wµ2

1 Wµ1

2 · V
γ2

1 V γ1

2 ,

TQ ←W γ2

1 W γ1

2 · V
t11,2
1 V

t11,1
2 · TM · TN · [−µ1t10,2 − µ2t10,1]1.
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2. V → P: Sample and send a challenge r ←$ Zp.
3. P and V Compute the folded relaxed quadratic Plonk instance (λ∗, γ∗, v∗,

ā∗, b̄∗, c̄∗, t⃗∗, u∗
Plonk, π

∗
Plonk, µ

∗, E∗
P , E

∗
Q):

λ∗ ← λ1 + r · λ2, γ∗ ← γ1 + r · γ2, v∗ ← v1 + r · v2,
ā∗ ← ā1 + r · ā2, b̄∗ ← b̄1 + r · b̄2, c̄∗ ← c̄1 + r · c̄2,

(u∗
Plonk,π

∗
Plonk)← Lin

(
(uPlonk,1, πPlonk,1), (uPlonk,2, πPlonk,2)

)
,

t⃗∗ ← t⃗1 + r · t⃗2, µ∗ ← µ1 + r · µ2,

E∗
P ← EP,1 · T r

P · Er2

P,2, E∗
Q ← EQ,1 · T r

Q · Er2

Q,2,

where Lin is a function by conducting a scalar multiplication for each G1 element
and a linear combination for each Zp element (e.g., A∗ = A1 · Ar

2 and z̄∗ω =
z̄ω,1 + r · z̄ω,2).

Theorem 5. The construction of the 2-folding scheme for Plonk satisfies perfect
completeness and knowledge soundness under the random oracle model.

Proof Sketch. The perfect completeness and knowledge soundness of the protocol
can be proved with an approach similar to the proof of Theorem 4. We present
a formal proof in Appendix D.4.

Remark. The folding scheme for quadratic Plonk relations can be extended to
support non-uniform Plonk proofs of different structures (Appendix E.2).
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4 Performance Evaluation

4.1 Theoretical Analysis

We first compare the performance of SnarkFold, TIPP [10], and SnarkPack [14]
in folding Groth16 proofs, as shown in Table 2, Table 3, and Table 4. SNARK′.P,
SNARK′.V and |πSNARK′ | stand for the proving time, verification time, and proof
size of SNARK′, respectively. SNARK′ is generated in the final step of IVC. ℓ
represents the size of a Groth16 instance, which is a fixed value for a given cir-
cuit. The blue parts in Table 4 represent the preprocessing (SF.VeriPrep) cost
of SnarkFold and the instance aggregation cost of other methods. In terms of
proving/verification time, we ignore the cost of Zp operations for simplicity as
it only constitutes a minor overhead (except for the instance aggregation part).
Notably, “RC” does not refer to the logic of the recursive circuit itself (the logic
of the recursive circuit should be divided by n). Among the three methods, our
solution achieves a constant proof size, while the others are only logarithmic.
Regarding the proving cost shown in Table 3, SnarkFold has the lowest local
computation cost with only 2n pairing operations, while TIPP and SnarkPack
require 17n and 21n pairings, respectively. However, a SnarkFold prover neces-
sitates additional steps to demonstrate that the computation has been correctly
executed with a recursive circuit. The primary cost of this step is a GT scalar
multiplication. In terms of verification time, the SnarkFold verifier is the most
efficient. It verifies the delegation process by preprocessing with a cost of n H.
However, TIPP requires nℓ G1 operations for instance aggregation. SnarkPack
needs nℓ Zp and ℓ G1 operations. Neither TIPP nor SnarkPack supports prepro-
cessing. Besides, SnarkFold requires a constant online verification time, while
TIPP and SnarkFold are logarithmic. Additionally, our committed version is
expected to exhibit superior efficiency with large ℓ values.

We further compare the performance of SnarkFold and aPlonk in folding
Plonk proofs, as illustrated in Table 5, Table 6, Table 7. aPlonk employs ad-
ditional parameters, ζ, and η, to denote the sizes of the circuit and meta-
verification circuit, respectively (for more details, refer to [1]). SnarkFold main-
tains a constant proof size, while aPlonk’s size is logarithmic. Regarding the
proving time, both SnarkFold and aPlonk exhibit linear behavior. Specifically,
SnarkFold does not require pairing operations but incurs the additional cost of
the recursive circuit. We can employ quadratic preprocessing to reduce the num-
ber of G1 operations from 22n to 13n. Moreover, if the proof is conducted over
a cycle of elliptic curves, we can delegate G1 operations to the other curve for
enhanced efficiency, as demonstrated in Nova [22]. In terms of verification time,
our scheme incurs a constant cost, while aPlonk’s time is logarithmic. Moreover,
our method supports instance preprocessing, while aPlonk does not support it
and incurs an nℓ log ℓ complexity in Zp.
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Table 2: Proof size comparisons for Groth16 proof aggregation schemes.

Proof Size

TIPP [10] 6 G1, 6 G2, (12 logn+ 5) GT

SnarkPack [14] 7 G1, 6 G2, (12 logn+ 5) GT

SnarkFold (augmented) (2ℓ+ 8) Zp, 7 G1, 1 G2, 1 GT , |πSNARK′ |

SnarkFold (committed) 9 G1, 1 G2, 1 GT , |πSNARK′ |

Table 3: Proving time comparisons for Groth16 proof aggregation schemes. “LC”
and “RC” are the total cost of local computation and recursive circuit when
aggregating n proofs. Group operations (G1,G2,GT ) indicate the scalar multi-
plication in the group. P indicates pairing operation, H indicates hash function,
and RO indicates oracle query.

Proving time

TIPP [10] (2ℓ+ 10n) G1, 8n G2, (5n− 5) GT , 1 H, 17n P

SnarkPack [14]
(2n+ 4 log n+ 10) G1, 7n G2, (log n+ 3) RO,

2 H, 21n P

SnarkFold (augmented)
LC 7n G1, n G2, n GT , n RO, 2n P, SNARK′.P

RC 3n G1, n GT , n RO, 2n H

SnarkFold (committed)
LC 11n G1, n G2, n GT , n RO, 2n P, SNARK′.P

RC 6n G1, n GT , n RO, 2n H

Table 4: Verification time comparisons for Groth16 proof aggregation schemes.
Group operations (G1,G2,GT ) indicate the scalar multiplication in the group. P
indicates pairing operation, H indicates hash function, and RO indicates oracle
query. The blue parts represent SF.VeriPrep time of SnarkFold and the instance
aggregation time of TIPP and SnarkPack.

Verification time

TIPP [10] ℓ G1, 12 log n GT , 1 H, 18 P, nℓ G1

SnarkPack [14]
(ℓ+ 5) G1, 5 G2, 12 log n GT , (log n+ 3) RO, 2 H,

18 P, nℓ Zp, ℓ G1

SnarkFold (augmented) (2ℓ+ 2) G1, 1 RO, 1 H, 5 P, SNARK′.V, n H

SnarkFold (committed) (ℓ+ 2) G1, 1 RO, 1 H, 5 P, SNARK′.V, n H
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Table 5: Proof size comparisons for Plonk proof aggregation schemes.

Proof Size

aPlonk [1] 19 Zp, (2 log2 3n+ 10) G1, 2 G2, (2 log2 3n+ 3) GT

SnarkFold (linear) 4 Zp, 6 G1, |πSNARK′ |

SnarkFold (quadratic) (ℓ+ 25) Zp, 15 G1, |πSNARK′ |

Table 6: Proving time comparisons for Plonk proof aggregation schemes. Group
operations (G1,G2,GT ) indicate the scalar multiplication in the group. P in-
dicates pairing operation, H indicates hash function, and RO indicates oracle
query. In aPlonk, ζ represents the circuit size, and η = O(n+ ℓ) denotes the size
of the meta-verification circuit.

Proving Time

aPlonk [1]
(3ζn+ 6ζ + 3n+ 9η + 20) G1, (3 log2 3n− 2) G2,

(5 log2 3n+ 2) P, (log2 3n+ 10) H

SnarkFold (linear)
LC 22n G1, 7n RO, SNARK′.P

RC 22n G1, 7n RO, 2n H

SnarkFold (quadratic)
LC 50n G1, 7n RO, SNARK′.P

RC 13n G1, 7n RO, 2n H

Table 7: Verification time comparisons for Plonk proof aggregation schemes.
Group operations (G1,G2,GT ) indicate the scalar multiplication in the group. P
indicates pairing operation, H indicates hash function, and RO indicates oracle
query. The blue parts represent SF.VeriPrep time of SnarkFold and the instance
aggregation time of aPlonk.

Verification Time

aPlonk [1]
(2 log2 3n+ 13) G1, (2 log2 3n) GT , (log2 3n+ 10) H, 4 P,

nℓ log ℓ Zp

SnarkFold (linear) 2 G1, 1 RO, 1 H, 2 P, SNARK′.V, n H

SnarkFold (quadratic) 22 G1, 1 RO, 1 H, 2 P, SNARK′.V, n H
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4.2 Implementation and Evaluation

We have implemented SnarkFold for Plonk in Rust based on Nova [27]. We
adopt the BN254/Grumpkin [2], a half-pairing cycle of elliptic curves. For both
random oracle and hash queries, we use Poseidon with 128-bit security [16], a
hash function that is friendly to zero-knowledge proofs. The SNARK′ in the final
step is Spartan [28].

We evaluate the performance of SnarkFold and aPlonk when folding n Plonk
proofs based on the BN254 curve. The experiments are conducted on a personal
computer equipped with an Intel i7-12700KF CPU (3.6 GHz) and 32 GB of
memory. The results are depicted in Figure 7. Our proof size remains constant
(0.5 KB for the linear version and 1.74 KB for the quadratic version) while
aPlonk increases logarithmically with the number of proofs. For the proving
time, both SnarkFold and aPlonk scale linearly with the number of proofs, but
SnarkFold performs about 10% to 20% better than aPlonk. Furthermore, our
quadratic version performs about 10% better than the linear version, as we in-
troduce fewer G1 operations in the recursive circuit. However, this optimization
is less significant as we use a cycle of elliptic curves in our implementation. If
Plonk uses a curve that is different from our cycle curves, the optimization could
reduce around 45% of the prover’s cost. For the verification time, our solutions
remain constant (around 2ms and 5ms, respectively), while aPlonk increases
logarithmically. Besides, in aPlonk, the instance aggregation time becomes sig-
nificant as the number of aggregations grows (e.g., 16ms for aggregating 4096
proofs). Our SnarkFold has more efficient pre-processing (2.9ms for aggregating
4096 instances), and the verifier only needs to perform one online verification.
Therefore, both variants of SnarkFold consistently outperform aPlonk.
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Fig. 7: Efficiency comparisons for aPlonk and SnarkFold.

5 Discussion

In this section, we discuss some questions from readers.

– Soundness of augmented relaxed Groth16 proof relation. Since a
folded Groth16 proof cannot pass the original Groth16 verification due to
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the cross-items, we propose the augmented relaxed Groth16 proof relation
to absorb cross-items by introducing some extra factors. It is a relation
specifically for folding and only needs to satisfy the knowledge soundness
(and the perfect completeness) of the folding scheme (detailed proof provided
in Appendix D.3), i.e., the validity of the folded relation implies the validity
of the original relations. Note that we ensure µ = 1, E = [0]T , R = [0]1,
t⃗ = 0⃗, and κ = 0 for the input Groth16 instance-proof pair in the recursive
circuit. Since we have not made any changes to the Groth16 zk-SNARK proof
system, the knowledge soundness of each single Groth16 instance-proof pair
(ui, πi) is ensured by the original Groth16 zk-SNARK proof system.

– The advantages of instance delegation. In previous schemes, the ag-
gregation verifier needs to aggregate n instances with at least O(n) F or G
operations. Moreover, the aggregation occurs after receiving the prover’s π∗

and πAGG. Our scheme requires performing n times hash operations to gen-
erate a binding claim, which is more efficient than conducting O(n) F or G
operations. Additionally, this step can be accomplished before obtaining π∗

and πAGG from the prover. In other words, the verifier can precompute the
binding claim in advance. Once receiving π∗ and πAGG, the online verification
can be completed with only O(1) cost.
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A Formal Definitions

A.1 (zk-)SNARK

Definition 5 (Perfect Completeness). A SNARK satisfies perfect complete-
ness if for any PPT adversary A

Pr

SNARK.V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← SNARK.G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← SNARK.K(pp, s),
π ← SNARK.P(pk, u, w)

 = 1.

Definition 6 (Knowledge Soundness). A SNARK satisfies knowledge sound-
ness if for all PPT adversaries A there exists a PPT extractor E such that for
any randomness ρ

Pr

SNARK.V(vk, u, π)=1,
(pp, s, u, w) /∈R

∣∣∣∣∣∣∣∣
pp← SNARK.G(1λ),
(s, (u,w))← A(pp; ρ),
(pk, vk)←SNARK.K(pp, s),
w ← E(pp; ρ)

 = negl(λ).

Definition 7 (Succinctness). A SNARK system is succinct if the size of the
SNARK proof π is poly-logarithmic in the size of the witness w.

Definition 8 (Zero-Knowledge). A zk-SNARK satisfies zero-knowledge if there
exists PPT simulator S such that for all PPT adversaries A(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
pp← SNARK.G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← SNARK.K(pp, s),
π ← SNARK.P(pk, u, w)

 ≈(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
(pp, τ)← S(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← SNARK.K(pp, s),
π ← S(pp, u, τ)

 .
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A.2 Proof Aggregation

Definition 9 (Perfect Completeness). A proof aggregation scheme for SNARK
(with proving key pkSNARK and verification key pkSNARK) satisfies perfect com-
pleteness if for any PPT adversary A

Pr

AGG.V(vk, n, (ui)
n
i=1, π

∗, πAGG) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← AGG.G(1λ),
(ui, πi)

n
i=1 ← A(pp),

SNARK.V(vkSNARK, ui, πi) = 1,
∀i ∈{1, ..., n},
(pk, vk)← AGG.K(pp),
(π∗, πAGG)← AGG.P

(
pk, (ui, πi)

n
i=1

)

 = 1,

Definition 10 (Knowledge Soundness). A proof aggregation satisfies knowl-
edge soundness if for all PPT adversaries A and any randomness ρ

Pr

AGG.V(vk, n, (ui)
n
i=1, π

∗, πAGG) = 1,
∃i s.t SNARK.V(vkSNARK, ui, πi) = 0

∣∣∣∣∣∣∣∣
pp← AGG.G(1λ),
(pk, vk)← AGG.K(pp),
((ui)

n
i=1, π

∗, πAGG)← A(pp, pk; ρ),
(πi)

n
i=1 ← E(pp, u; ρ)

 = negl(λ).

A.3 Incrementally Verifiable Computation

Definition 11 (Perfect Completeness). An IVC satisfies perfect complete-
ness if for any PPT adversary A

Pr


IVC.V(vk, i,
z0, zi, πi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← IVC.G(1λ),
(F, (i, z0, zi, zi−1, ωi−1, πi−1))← A(pp),
(pk, vk)← IVC.K(pp, F ),
zi = F (zi−1, ωi−1),
IVC.V(vk, i− 1, z0, zi−1, πi−1) = 1,
πi ← IVC.P(pk, i, z0, zi, zi−1, ωi−1, πi−1)

 = 1.

Definition 12 (Knowledge Soundness). An IVC satisfies knowledge sound-
ness if for any constant n ∈ N and all expected PPT adversaries A there exists
an expected PPT extractor E such that for any randomness ρ

Pr


zn ̸= z,
IVC.V(vk, n,
z0, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← IVC.G(1λ),
(F, (z0, z, π))← A(pp; ρ),
(pk, vk)← IVC.K(pp, F ),
(ω0, ..., ωn−1)← E(pp, z0, z; ρ),
zi = F (zi−1, ωi−1) ∀i ∈ {1, ..., n}

 = negl(λ).

Definition 13 (Succinctness). An IVC is succinct if the size of the IVC proof
πn does not grow with the number of iterations n.
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A.4 Folding Scheme

Consider a folding scheme between the prover P and verifier V. Let (u,w) ←
⟨P(pk, w1, w2),V(vk)⟩(u1, u2) denote the verifier’s output instance u and the
prover’s output witness w from the interaction of the folding scheme on instance-
witnesses pairs (w1, u1) and (w2, u2), prover key pk, and verifier key vk. The
following definitions can also be generalized to multiple folding.

Definition 14 (Perfect Completeness). A folding scheme satisfies perfect
completeness if for any PPT adversary A

Pr

(pp, s, u, w) ∈ R
∣∣∣∣∣∣∣∣∣∣
pp← Fold.G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk)← Fold.K(pp, s),
(u,w)←⟨P(pk, w1, w2),V(vk)⟩(u1, u2)

 = 1.

Definition 15 (Knowledge Soundness). A folding scheme satisfies knowl-
edge soundness if for all expected PPT adversaries A, there exists an expected
PPT extractor E such that for any randomness ρ

Pr

(pp, s, u, w) ∈ R
∣∣∣∣∣∣∣∣
pp← Fold.G(1λ),
(s, (u1, u2))← A(pp; ρ),
(pk, vk)← Fold.K(pp, s),
(u,w)← ⟨A(pk; ρ),V(vk)⟩(u1, u2)

−
Pr

 (pp, s, u1, w1) ∈ R,
(pp, s, u2, w2) ∈ R

∣∣∣∣∣∣
pp← Fold.G(1λ),
(s, (u1, u2))← A(pp; ρ),
(w1, w2)← E(pp; ρ)

 ≤ negl(λ).

A.5 Proof Aggregation with Instance Delegation

Definition 16 (Perfect Completeness). SnarkFold proof aggregation scheme
SF for SNARK (with proving key pkSNARK and verification key vkSNARK) satisfies
perfect completeness if for any PPT adversary A

Pr

h← SF.VeriPrep
(
vk, (ui)

n
i=1

)
∧

SF.V(vk, n, h, (u∗, π∗), πAGG) = 1

∣∣∣∣∣∣∣∣∣∣
pp← SF.G(1λ),
(ui, πi)

n
i=1 ← A(pp),

∀i s.t SNARK.V(vkSNARK, ui, πi)=1,
(pk, vk)← SF.K(pp),
((u∗, π∗), πAGG)← SF.P

(
pk, (ui, πi)

n
i=1

)
,

 = 1.

Definition 17 (Knowledge Soundness). SnarkFold proof aggregation scheme
satisfies knowledge soundness if for all PPT adversaries A and any randomness
ρ

Pr

h← SF.VeriPrep
(
vk, (ui)

n
i=1

)
∧

SF.V(vk, n, h, (u∗, π∗), πAGG) = 1,
∃i s.t SNARK.V(vkSNARK, ui, πi) = 0

∣∣∣∣∣∣∣∣
pp← SF.G(1λ),
(pk, vk)← SF.K(pp),
((ui)

n
i=1, u

∗, πAGG)← A(pp, pk; ρ),
((πi)

n
i=1, π

∗)← E(pp, u; ρ)

 = negl(λ).
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B Details of zk-SNARKs

B.1 Groth16

Groth16 describes the circuit constraints as R, which is defined over the public
parameters pp = (G1,G2,GT , p, e, g, h), structure s =

(
ℓ, (ui(X), vi(X), wi(X))mi=1, t(X)

)
,

instance u = (a1, ..., aℓ) ∈ Zℓ
p, and witness w = (aℓ+1, ..., am) ∈ Zm−ℓ

p with
a0 = 1, such that

∑m
i=0 aiui(X) ·

∑m
i=0 aivi(X) =

∑m
i=0 aiwi(X)+h(X)t(X) for

some (n− 2)-degree quotient polynomial h(X), where n is the degree of t(X).
In Groth16.K, crs is set as follows with randomly sampled α, β, γ, δ, x← Z∗

p:

(
[α]1, [β]1, [β]2, [γ]2, [δ]1, [δ]2,

(
[xi]1, [x

i]2
)n−1

i=0
,

([
xit(x)

δ

]
1

)n−1

i=0

,

([
βui(x) + αvi(x) + wi(x)

γ

]
1

)ℓ

i=0

,

([
βui(x) + αvi(x) + wi(x)

δ

]
1

)m

i=ℓ+1

)
.

In Groth16.P, A,B,C is computed as follows with randomly sampled r, s←
Zp:

A =

[
α+

m∑
i=0

aiui(x) + rδ

]
1

, B =

[
β +

m∑
i=0

aivi(x) + sδ

]
2

,

C =

[∑m
i=ℓ+1 ai

(
βui(x) + αvi(x) + wi(x)

)
+ h(x)t(x)

δ

+ s

(
α+

m∑
i=0

aiui(x)

)
+ r

(
β +

m∑
i=0

aivi(x)

)
+ rsδ

]
1

.

In Groth16.V, D is computed as D = e
(
[α]1, [β]2

)
. The verifier checks

e(A,B)
?
= e(C, [δ]2) · e(

ℓ∏
i=0

Sai
i , [γ]2) ·D.

B.2 Plonk

Plonk describes the circuit as a Plonkish relation R, which is defined over the
public parameters pp = (G1,G2,GT , p, e, g, h), structure s =

(
ℓ,H, ω, qL(X), qR(X),

qM (X), qO(X), qC(X), σ(X)
)
, instance (ui)

ℓ
i=1 ∈ Zℓ

p, and witness (ai)
m
i=1, (bi)

m
i=1, (ci)

m
i=1 ∈

Zm
p such that

fa(X)fb(X)qM (X) + fa(X)qL(X) + fb(X)qR(X) + fc(X)qO(X)

+ (u(X) + qC(X)) = zH(X)h(X); and f(X) = f(σ(X)),
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where fa(X), fb(X), fc(X), u(X) are polynomials derived by Lagrange inter-
polations on (ai)

m
i=1, (bi)

m
i=1, (ci)

m
i=1, and (ui)

ℓ
i=1 respectively, f(X) is a poly-

nomial derived by a Lagrange interpolation on (a1, ..., am, b1, ..., bm, c1, ..., cm),
zH(X) = Xm − 1, and h(X) is a quotient polynomial.
Setup. In Plonk.K, the common input srs is set to ([1]1, [x]1, [x

2]1, ..., [x
m+5]1, [1]2, [x]2).

Define H′ = H∪ k1H∪ k2H and a permutation σ∗ from {1, ..., 3m} to H′ derived
from applying σ and an injective mapping i→ ωi, n+ i→ k1ω

i, 2n+ i→ k2ω
i.

The proving key pk and and the verification key vk are set to

pk = (qL(X), qR(X), qM (X), qO(X), qC(X), sσ1(X), sσ2(X), sσ3(X)),

vk = (QL, QR, QM , QO, QC , Sσ1 , Sσ2 , Sσ3 ,m),

where sσ1
(X), sσ2

(X), sσ3
(X) are derived by Lagrange interpolation. QL =

[qL(x)]1, QR = [qR(x)]1, QM = [qM (x)]1, QO = [qO(x)]1, QC = [qC(x)]1, Sσ1
=

[sσ1(x)]1, Sσ2 = [sσ2(x)]1, Sσ3 = [sσ3(x)]1.
Proving. The prover conducts the following computations.

1. Compute wire polynomials a(X), b(X), c(X) and commitments A,B,C. Com-
pute challenges β, θ.

2. Sample a quadratic polynomial rp(X) ←$ Z2
p[X] and compute the permu-

tation polynomial z(X) = rp(X) · zH(X) + p(X) to prove the copy con-
straints, where p(X) is a polynomial derived by a Lagrange interpolation on
(1, p1, ..., pm−1) and pi =

i∏
j=1

(aj + βωj + θ)(bj + βk1ω
j + θ)(cj + βk2ω

j + θ)

(aj + βsσ1
(ωj) + θ) (bj + βsσ2

(ωj) + θ) (cj + βsσ3
(ωj) + θ)

.

3. Compute the commitment Z = [z(x)]1.
4. Compute challenge α and polynomial t(X):

t(X)zH(X) =

a(X)b(X)qM (X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X)

+ u(X) + qC(X) + α [(a(X) + βX + θ) (b(X) + βk1X + θ)

(c(X) + βk2X + θ)] z(X)− α [(a(X) + βsσ1(X) + θ)

(b(X) + βsσ2(X) + θ) (c(X) + βsσ3(X) + θ)] z(Xω)

+ α2(z(X)− 1)L1(X).

5. Split t(X) into tl(X), tmi(X), th(X), where each polynomial has a degree less
than n such that t(X) = tl(X) +Xm · tmi(X) +X2m · th(X).

6. Compute commitments Tl = [tl(x)]1, Tmi = [tmi(x)]1 and Th = [th(x)]1.
7. Compute challenge λ = Hash(α, Tl, Tmi, Th).
8. Compute opening evaluations ā = a(λ), b̄ = b(λ), c̄ = c(λ), s̄σ1

= sσ1
(λ),

s̄σ2 = sσ2(λ) and z̄ω = z(λω).
9. Compute challenge v = Hash(λ, ā, b̄, c̄, s̄σ1

, s̄σ2
, z̄ω).
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10. Compute linearisation polynomial:

r(X) = āb̄ · qM (X) + ā · qL(X) + b̄ · qR(X)

+ c̄ · qO(X) + u(λ) + qC(X)

+ α
[
(ā+ βλ+ θ)

(
b̄+ βk1λ+ θ

)
(c̄+ βk2λ+ θ)

]
z(X)

− α
[
(ā+ βs̄σ1 + θ)

(
b̄+ βs̄σ2 + θ

)
(c̄+ βsσ3(X) + θ)

]
z̄ω

+ α2(z(X)− 1)L1(λ)− zH(λ)
(
tl(X) + λmtmi(X) + λ2mth(X)

)
.

11. Compute opening proof polynomial w(X):

w(X) =
1

X − λ

 r(X) + v(a(X)− ā)
+v2(b(X)− b̄) + v3(c(X)− c̄)
+v4 (sσ1

(X)− s̄σ1
) + v5 (sσ2

(X)− s̄σ2
)

 .

12. Compute opening proof polynomial v(X) = z(X)−z̄ω
X−λω .

13. Compute commitments W = [w(x)]1, V = [v(x)]1.
14. Return Plonk proof π = (A,B,C,Z, Tl, Tmi, Th,W, V , ā, b̄, c̄, s̄σ1 , s̄σ2 , z̄ω).

Verification The verifier performs as follows.

1. Compute challenges β, θ, α, λ, v, γ ∈ Zp, and evaluations u(λ), zH(λ), L1(λ).
2. Compute polynomial r(X)’s constant term r0 = u(λ) − α(ā + βs̄σ1

+ θ)(b̄ +
βs̄σ2

+ θ)(c̄+ θ)z̄ω − α2L1(λ).
3. Compute batched commitment M,N,F ∈ G1:

M =Av ·Bv2

· Cv3

· (Sσ1
)v

4

· (Sσ2
)v

5

,

N =(QM )āb̄ · (QL)
ā · (QR)

b̄ · (QO)
c̄ ·QC

· (Z)α(ā+βλ+θ)(b̄+βk1λ+θ)(c̄+βk2λ+θ)+α2L1(λ)+γ

· (Sσ3)
−α(ā+βs̄σ1+θ)(b̄+βs̄σ2+θ)βz̄ω

· (Tl)
−ZH(λ) · (Tmi)

−zH(λ)·λm

· (Th)
−zH(λ)·λ2m

,

F =[−r0 + v · ā+ v2 · b̄+ v3 · c̄+ v4 · s̄σ1
+ v5 · s̄σ2

+ γ · z̄ω]1.

4. Verify

e (W · V γ , [x]2)
?
= e

(
Wλ · V γλω ·M ·N · F−1, [1]2

)
.

C Construction of IVC for proof aggregation.

We present the formal IVC protocol for proof aggregation in Figure 8.
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pp← IVC.G(1λ)

1 : ppFS ← FoldSNARK.G(1
λ), ppFC ← FoldCircuit.G(1

λ),

2 : output pp← (ppFS, ppFC).

(pk, vk)← IVC.K(pp, V )

1 : (pkFS, vkFS)← FoldSNARK.K(ppFS, sS),

2 : (pkFC, vkFC)← FoldCircuit.K(ppFC, sC),

3 : output (pk, vk)←
(
(V, pkFS, pkFC), (V, vkFS, vkFC)

)
.

Πi ← IVC.P(pk, i, (ui, πi), Πi−1)

1 : if i = 1

2 : (u∗
0, π

∗
0)← (u∗

⊥, π
∗
⊥), (u∗

C,0, w
∗
C,0)← (u∗

C,⊥, w
∗
C,⊥);

3 : else

4 : parse Πi−1 as
(
hi−1, (u

∗
i−1, π

∗
i−1), (uC,i−1, wC,i−1), (u

∗
C,i−1, w

∗
C,i−1)

)
;

5 : compute hi, (u
∗
i , π

∗
i ), (u

∗
C,i, w

∗
C,i) based on Equation (2),

6 : (uC,i, wC,i)← tr
(
RC(vk, i, hi−1, ui, u

∗
i−1, uC,i−1, u

∗
C,i−1)

)
,

7 : output Πi ←
(
hi, (u

∗
i , π

∗
i ), (uC,i, wC,i), (u

∗
C,i, w

∗
C,i)

)
.

0/1← IVC.V(vk, i,Πi)

1 : parse Πi as
(
hi, (u

∗
i , π

∗
i ), (uC,i, wC,i), (u

∗
C,i, w

∗
C,i)

)
,

2 : check uC,i.x = Hash(vk, i, hi, u
∗
i , u

∗
C,i),

3 : check π∗
i is a satisfying proof to u∗

i ,

4 : check wC,i, w
∗
C,i are satisfying witnesses to uC,i, u

∗
C,i,

5 : check uC,i is a non-relaxed instance.

Fig. 8: Construction of IVC for proof aggregation.

D Formal Proofs

D.1 Lemmas

Lemma 1 (Forking Lemma for Folding Schemes [22]). Consider a (2k+
1)-move folding scheme Fold = (G;K;P;V). Fold satisfies knowledge soundness
if there exists a PPT E such that for all input instance pairs (u1;u2), outputs
satisfying witnesses (w1;w2) with probability 1 − negl(λ), given public parame-
ters pp, a structure s, and an (n1, ..., nk)-tree of accepting transcripts and the
corresponding folded instance-witness pairs (u;w). This tree comprises n1 tran-
scripts (and the corresponding instance-witness pairs) with fresh randomness in
the verifier’s first message, and for each such transcript, n2 transcripts (and
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the corresponding instance-witness pairs) with fresh randomness in the verifier’s

second message; etc., for a total of
∏k

i=1 ni leaves bounded by poly(λ).

Lemma 2 (Binding property of SF.VeriPrep.). The preprocessing algorithm
SF.VeriPrep satisfies the binding property. Concretely, for all probabilistic poly-
nomial time adversary A, the following probability is negligible assuming that
Hash is a collision-resistant hash function,

Pr

h = h′,
∃j, s.t., uj ̸= u′

j

∣∣∣∣∣∣∣∣∣∣
pp← SF.G(1λ),
(pk, vk)← SF.K(pp, s′),
(ui)

n
i=1, (u

′
i)

n
i=1 ← A(pk, vk)

h← SF.VeriPrep(vk, (ui)
n
i=1)

h′ ← SF.VeriPrep(vk, (u′
i)

n
i=1)

 = negl(λ).

Proof. We show that if there exists such A who can break the binding property,
i.e., outputs required two sets of instances with non-negligible probability, then
it is efficient to construct a collision finder B against the hash function Hash.
Specifically, B first runs A to obtain two different instances sets (ui)

n
i=1, (u

′
i)

n
i=1,

then B can use these two sets to find collision in Hash. Since there must exist
one pair of different instances (uj , u

′
j), j ∈ [1, n], B can output (uj , hj−1) and

(u′
j , hj−1) as the breaking case, where Hash((uj , hj−1)) = Hash((u′

j , hj−1)), hj−1

is computed with previous (ui)
j−1
i=1 . More detailed discussions can be referred to

the security proofs for the Merkle-Damg
◦
ard paradigm [4].

D.2 Proof of IVC for proof aggregation

Perfect completeness. Consider a satisfying SNARK instance-proof pair (ui, πi)
such that V (ui, πi) = 1, where V is derived from SNARK.V (since we adopt
preprocessing to handle the non-homomorphic parts of SNARK.V, V may not
equal to SNARK.V). Consider the IVC algorithm defined in Figure 8. Let pp ←
IVC.G(1λ) and (pk, vk)← IVC.K(pp, V ). Given a proofΠi−1 such that IVC.V(vk, i−
1, Πi−1) = 1, we proveΠi ← IVC.P(pk, i, (ui, πi), Πi−1) such that IV.V(vk, i,Πi) =
1 by induction on i.

Base Case (i = 1):
Consider a satisfying instance-proof pair (u1, π1) such that V (u1, π1) = 1. Sup-
pose the prover is provided Π0 such that IV.V(vk, 0, Π0) = 1. By the base case
of IVC.P, we have Π1 =

(
h1, (u

∗
1, π

∗
1), (uC,1, wC,1), (u

∗
C,1, w

∗
C,1)
)
. By the construc-

tion of IVC.P, we have (u∗
1, π

∗
1) = FoldSNARK.P(pkFS, (u1, π1), (u

∗
⊥, π

∗
⊥)). Since

(u∗
⊥, π

∗
⊥) is a trivially satisfying instance-proof pair, we have (u∗

1, π
∗
1) is a satis-

fying instance-proof pair (by the perfect completeness of FoldSNARK). Similarly,
we can prove that (u∗

C,1, w
∗
C,1) is a satisfying instance-witness pair. Moreover,

by construction of the recursive circuit RC, (uC,1, wC,1) must be satisfying and
uC,1 is a non-relaxed instance. Additionally, uC,1.x = Hash(vk, 1, h1, u

∗
1, u

∗
C,1).

Therefore, we have IV.V(vk, 1, Π1) = 1.
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Inductive Step (i = 2 to n):

Consider a satisfying instance-proof pair (ui, πi) such that V (ui, πi) = 1.
Suppose Πi−1 is a satisfying IVC proof such that IVC.V(vk, i − 1, Πi−1) = 1.
Given Πi =

(
hi, (u

∗
i , π

∗
i ), (uC,i, wC,i), (u

∗
C,i, w

∗
C,i)
)
, by the construction of IVC.P,

we have

(u∗
i , w

∗
i )← FoldSNARK.P

(
pkFS, (ui, πi), (u

∗
i−1, π

∗
i−1)

)
,

(u∗
C,i, w

∗
C,i)← FoldCircuit

(
pkFC, (uC,i−1, wC,i−1), (u

∗
C,i−1, w

∗
C,i−1)

)
.

Since (u∗
i−1, π∗

i−1), (uC,i−1, wC,i−1), and (u∗
C,i−1, w

∗
C,i−1) are satisfying pairs,

and (ui, πi) is also a satisfying instance-proof pair, we have that (u∗
i , π

∗
i ) and

(u∗
C,i, w

∗
C,i) are satisfying pairs based on the perfect completeness of FoldSNARK

and FoldCircuit. Moreover, since uC,i−1.x = Hash(vk, i− 1, hi−1, u
∗
i−1, u

∗
C,i−1) and

uC,i−1 is a non-relaxed instance (implied by the correctness of IVC.V in the
previous round), the (uC,i, wC,i) constructed by a claim of the recursive cir-
cuit tr

(
RC(vk, i, hi−1, ui, u

∗
i−1, uC,i−1, u

∗
C,i−1)

)
is a satisfying pair and uC,i non-

relaxed, by the perfect correctness of the underlying folding schemes. Thus, we
have IVC.V(vk, i,Πi) = 1.

Knowledge soundness. Let pp← IVC.G(1λ). Given adversarially chosen (V, (ui)
n
i=1)

by an expected PPT adversaryA, generate the keys with (pk, vk)← IVC.K(pp, V ).
A additionally outputs Πn such that IVC.V(vk, n,Πn) = 1 for a constant n with
probability ϵ. We construct an expected polynomial-time extractor E that takes
(pp, (ui)

n
i=1, Πn) and outputs (πi)

n
i=1 such that V (ui, πi) = 1 for all i = 1, ..., n

with probability ϵ − negl(λ). Specifically, we show E can be constructed in-
ductively by an expected polynomial-time extractor Ei(pp; ρ) that with prob-
ability ϵ − negl(λ) outputs

(
(uj , πj)

n
j=i+1, Πi

)
such that V (uj , πj) = 1 for all

j ∈ {i + 1, ..., n} and IVC.V(vk, i,Πi) = 1. This implies (ui, πi)
n
i=1 since (πi)

n
i=1

extracted by E0 are satisfying proofs for the corresponding instances (ui)
n
i=1.

To construct Ei−1, we assume there exists an Ei that satisfies the inductive hy-
pothesis. Then we use Ei to construct an adversary Ai−1 for the folding schemes.
By further invoking two extractors for folding schemes, we can construct Ei−1

that satisfies the inductive hypothesis. The detailed construction is as follows.
Base Case (i = n): En outputs (⊥,⊥, Πn) where Πn = Π is the output of A. By
the premise, En succeeds with probability ϵ in expected polynomial-time.
Inductive Step (i = n− 1 to 1): Suppose we have constructed Ei that outputs
(πj)

n
j=i+1 and a Πi satisfies the inductive hypothesis. We first construct an

adversary Ai−1 for the folding schemes as follows:

Ai−1(pp; ρ)

1 :
(
(πj)

n
j=i+1, Πi

)
← Ei(pp; ρ),

2 : parse Πi as
(
hi, (u

∗
i , π

∗
i ), (uC,i, wC,i), (u

∗
C,i, w

∗
C,i)

)
,

3 : parse wC,i to retrieve (hi−1, ui, u
∗
i−1, uC,i−1, u

∗
C,i−1),

4 : output
(
(hi−1, ui, u

∗
i−1, uC,i−1, u

∗
C,i−1), (u

∗
i , π

∗
i ), (u

∗
C,i, w

∗
C,i)

)
.
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The third step is correct since (uC,i, wC,i) is derived from tr(RC(∗)). By the
inductive hypothesis, we have IVC.V(vk, i,Πi) = 1. This implies (uC,i, wC,i) is a
non-relaxed satisfying pair for RC relation. Therefore, wC,i must include ui, u

∗
i−1,

uC,i−1, and u∗
C,i−1. Based on the construction of RC and the binding property of

the hash function, we have

u∗
i ← FoldSNARK.V(vkFS, ui, u

∗
i−1),

u∗
C,i ← FoldCircuit.V(vkFC, uC,i−1, u

∗
C,i−1).

Therefore, Ai−1 succeeds in producing satisfying folded pairs (u∗
i , π

∗
i ) and

(u∗
C,i, w

∗
C,i) for instances (ui, u

∗
i−1) and (uC,i−1, u

∗
C,i−1), respectively.

Based on the knowledge soundness of the folding schemes FoldSNARK and
FoldCircuit, we can further invoke the extractors of them, ES and EC, which will
output satisfying proofs (πi, π

∗
i−1) and witness (wC,i−1, w

∗
C,i−1) for RC respec-

tively in (i− 1)-th round. The detailed construction of Ei−1 is as follows:

Ei−1(pp; ρ)

1 :
(
(ui, u

∗
i−1, uC,i−1, u

∗
C,i−1),

2 : (u∗
i , w

∗
i ), (u

∗
C,i, w

∗
C,i)

)
←Ai−1(pp; ρ),

3 : retrive
(
(πj)

n
j=i+1, πi

)
from Ai−1’s internal states,

4 : (πi, π
∗
i−1)← ES(pp; ρ), (wC,i−1, w

∗
C,i−1)← EC(pp; ρ),

5 : Πi−1 ←
(
(u∗

i−1, π
∗
i−1), (uC,i−1, wC,i−1), (u

∗
C,i−1, w

∗
C,i−1)

)
,

6 : output
(
(πj)

n
j=i, Πi−1

)
.

Since ES and EC only incur a negligible soundness error, Ei−1 succeeds with
probability ϵ−negl(λ). Now, we argue the validity of the outputs. First, (πj)

n
j=i+1

are valid by hypothesis, πi is also a satisfying proof to ui based on the knowledge
soundness of ES. Besides, (ui, πi) is a non-relaxed pair implied by the validity of
(uC,i, wC,i). Therefore, (πj)

n
j=i are valid proofs.

Next, we argue Πi−1 is valid. Since (uC,i, wC,i) satisfies RC in i-th round and
uC,i−1 is retrieved from wC,i, we have uC,i−1.h = Hash(vk, i−1, u∗

i−1, u
∗
C,i−1) and

uC,i−1 are non-relaxed instances. Since Ei−1 succeeds with probability ϵ−negl(λ),
we have IVC.V(vk, i− 1, Πi−1) = 1 with probability ϵ− negl(λ).
Succinctness. The proof Πi contains: hi, (u

∗
i , π

∗
i ), (uC,i, wC,i), and (u∗

C,i, w
∗
C,i).

By the definition of IVC.P, hi is a hash value of fixed size. The folding schemes
ensure (u∗

i , π
∗
i ) and (u∗

C,i, w
∗
C,i) are of the size of one pair, which are independent

of i. (uC,i, wC,i) is also independent from i since it is a non-relaxed instance-
witness pair. Therefore, the size of Πi does not increase with i.

D.3 Proof of Theorem 2

Perfect completeness. Given two augmented relaxed Groth16 instance-proof
pairs,

(
(µ1,H1,E1,R1,S1), (A1,B1, C1)

)
and

(
(µ2,H2,E2,R2,S2), (A2,B2,C2)

)
,

the folded pair
(
(µ∗,H∗, E∗, R∗, S∗), (A∗, B∗,C∗)

)
is a satisfying pair.

39



Knowledge soundness. Consider public parameters pp for FoldGro16, an ad-
versarially chosen augmented relaxed Groth16 proof structure ([δ]2, [γ]2, D) ∈
(G1,G2,GT ), and two adversarially chosen instances (µ1, H1, E1, R1, S1, κ1) and
(µ2, H2, E2, R2, S2, κ2). We prove knowledge soundness of the interactive ver-
sion of the protocol via the forking lemma in Lemma 1 (the corresponding
non-interactive version can be proved under the Fiat-Shamir heuristic in the
random oracle model): there exists a PPT extractor E such that when given pp,
([δ]2, [γ]2, D), and a tree of accepting transcripts and the corresponding folded
instance-proof pair, outputs two satisfying proofs with probability 1− negl(λ).

Specifically, when given 2 accepting transcripts with the same T ,
(
T, ri, (A

∗
i , B

∗
i ,

C∗
i )
)2
i=1

, interpolate points (Â1, B̂1, Ĉ1) and (Â2, B̂2, Ĉ2) such that for all i ∈
{1, 2},

Â1 · Âri
2 = A∗

i , B̂1 · B̂ri
2 = B∗

i , Ĉ1 · Ĉri
2 = C∗

i .

Now we show that the extracted proofs (Â1, B̂1, Ĉ1) and (Â2, B̂2, Ĉ2) are
valid proofs to the corresponding instances. Since (A∗

i , B
∗
i , C

∗
i ) are satisfying

proofs for i ∈ {1, 2}, we have

e(A∗
i , B

∗
i ) · e(C∗

i , [δ]2)
−µ∗

i · e(H∗
i , [γ]2)

−µ∗
i ·D−(µ∗

i )
2

=E∗
i · e(R∗

i , [δ]2) · e(S∗
i , [γ]2) ·Dκ∗

i , ∀i ∈ {1, 2},
(5)

where (µ∗
i , H

∗
i , E

∗
i , R

∗
i , S

∗
i , κ

∗
i )

2
i=1 are computed based on FoldGro16.V by E .

The left-hand side of Equation (5) equals

e(A∗
i , B

∗
i ) · e(C∗

i , [δ]2)
−µ∗

i · e(H∗
i , [γ]2)

−µ∗
i ·D−(µ∗

i )
2

=e(Â1Â
ri
2 , B̂1B̂

ri
2 ) · e(Ĉ1Ĉ

ri
2 , [δ]2)

−(µ1+riµ2)

· e(H1H
ri
2 , [γ]2)

−(µ1+riµ2) ·D−(µ1+riµ2)
2

=e(Â1, B̂1) · e(Ĉ1, [δ]2)
−µ1 · e(H1, [γ]2)

−µ1 ·D−µ2
1

·
(
T ′ · e(R, [δ]2) · e(S, [γ]2) ·Dκ

)ri
·
(
e(Â2, B̂2) · e(Ĉ2, [δ]2)

−µ2 · e(H2, [γ]2)
−µ2 ·D−µ2

2

)r2i
.

The right-hand side of Equation (5) equals

E∗
i · e(R∗

i , [δ]2) · e(S∗
i , [γ]2) ·Dκ∗

i

=
(
E1(T

′)riE
r2i
2

)
·e
(
R1R

riR
r2i
2 , [δ]2

)
·e
(
S1S

riS
r2i
2 , [γ]2

)
·Dκ1+riκ+r2i κ2

=E1 ·e(R1, [δ]2)·e(S1, [γ]2)·Dκ1 ·
(
T ′ ·e(R, [δ]2)·e(S, [γ]2)·Dκ

)ri
·
(
E2 · e(R2, [δ]2) · e(S2, [γ]2) ·Dκ2

)r2i
.
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Since Equation (5) holds for i ∈ {1, 2}, by expanding and interpolating, we
have the following relations hold with probability 1− negl(λ)

e(Âi, B̂i) · e(Ĉi, [δ]2)
−µi · e(Hi, [γ]2)

−µi ·D−µ2
i

=Ei · e(Ri, [δ]2) · e(Si, [γ]2), ∀i ∈ {1, 2},

which implies the extracted proofs (Â1, B̂1, Ĉ1) and (Â2, B̂2, Ĉ2) are valid proofs
to the corresponding instances.

D.4 Proof of Theorem 5

Perfect completeness. Given two relaxed quadratic Plonk instance-proof pairs(
(λi, γi, vi, āi, b̄i, c̄i, t⃗i, uPlonk,i, πPlonk,i), ⊥

)2
i=1

, the folded pair
(
(λ∗, γ∗, v∗, ā∗,

b̄∗, c̄∗, t⃗∗, u∗
Plonk, π

∗
Plonk), ⊥

)
satisfies one for the quadratic relation.

Knowledge soundness. Consider public parameters pp for FoldPlonk, an adver-
sarially chosen relaxed preprocessed quadratic Plonk proof structure ([1]2, [x]2) ∈
(G2,G2), and two adversarially chosen instances (λi, γi, vi, āi, b̄i, c̄i, t⃗i, uPlonk,i,
πPlonk,i)

2
i=1. We prove knowledge soundness of the interactive version of the pro-

tocol via the forking lemma in Lemma 1. The extractor E outputs empty witness
⊥ for both instances. We further argue the input instances must be valid if the
folded instance is valid. When given 2 accepting transcripts with the same TP and
TQ, we have two satisfying folded instances (λ∗

i , γ
∗
i , v

∗
i , ā

∗
i , b̄

∗
i , c̄

∗
i , t⃗

∗
i , u

∗
Plonk,i, π

∗
Plonk,i)

2
i=1

under two distinct challenges r1 and r2, such that for i ∈ {1, 2},

e(P ∗
i , [x]2) · e(Q∗

i , [1]2)
−1 = e(E∗

P,i, [x]2) · e(E∗
Q,i, [1]2)

−1, (6)

where P ∗
i and Q∗

i are derived from the folded instance as with Defination
4. Since the folded instance is computed based on the logic of V, we have the
left-hand side of Equation (6) equals

e(P ∗
i , [x]2) · e(Q∗

i , [1]2)
−1

=e((W ∗
i )

µ∗
i (V ∗

i )
γ∗
i , [x]2) · e((W ∗

i )
γ∗
i (V ∗

i )
t∗11,iM∗

i N
∗
i [−µ∗

i t
∗
10,i]1, [1]2)

−1

=e(Wµ1

1 V γ1

1 , [x]2) · e(W γ1

1 V
t11,1
1 M1N1[−µ1t10,1]1, [1]2)

−1

·
(
e(TP , [x]2 · e(TQ, [x]2)

−1)
)ri

·
(
e(Wµ2

2 V γ2

2 , [x]2) · e(W γ2

2 V
t11,2
2 M2N2[−µ2t10,2]1, [1]2)

−1
)r2i

.

The right-hand side of Equation (6) equals

e(E∗
P,i, [x]2) · e(E∗

Q,i, [1]2)
−1

=e(EP,1, [x]2) · e(EQ,1, [1]2)
−1 ·

(
e(TP , [x]2) · e(TQ, [1]2)

−1
)ri

·
(
e(EP,2, [x]2) · e(EQ,2, [1]2)

−1
)r2i .
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Since Equation (6) holds for both r1 and r2, we have

e(Wµi

i V γi

i , [x]2) · e(W γi

i V
t11,i
i MiNi[−µit10,i]1, [1]2)

−1

=e(EP,i, [x]2) · e(EQ,i, [1]2)
−1, ∀i ∈ {1, 2},

which implies the input instances are satisfying ones.

E Folding Scheme for Non-uniform Structure

E.1 Non-uniform structure for Groth16

The constructions we have presented so far are only applicable in cases of uni-
form structure, where different instance-proof pairs share the same structure
([δ]2, [γ]2, (Si)

ℓ
i=0, D). For non-uniform pairs with different structures, we can

also construct a similar folding scheme at the cost of some additional pairing
operations.

Definition 18 (Non-uniform Committed Relaxed Groth16). A non-uniform
committed relaxed Groth16 proof consists of a structure ([δ]2, [γ]2, (Si)

ℓ
i=0, D) ∈

(G2,G2,Gℓ+1
1 ,GT ), an instance (H,µ,E, F ) ∈ (G1,Zp,GT ,G1), and a proof

(⃗a,A,B,C) ∈ (Zℓ+1
p ,G1,G2,G1), such that

e(A,B) · e(C, [δ]2)−1 · e(H, [γ]2)
−1 ·D−µ = E,

∧ H−µ ·
∏ℓ

i=0
Sai
i = F.

Given two non-uniform structure-instance-proof tuples
(
([δ1]2, [γ1]2, (S1,i)

ℓ
i=0, D1),

(H1, µ1, E1, F1), (⃗a1, A1, B1, C1)
)
and

(
([δ2]2, [γ2]2, (S2,i)

ℓ
i=0, D2), (H2, µ2, E2, F2),

(⃗a2, A2, B2, C2)
)
, P and V engage in the following protocol:

1. P → V: Compute and send the cross-items T1 and T2:

T1 ←e(A1, B2) · e(A2, B1) · e(C1, [δ2]2) · e(C2, [δ1]2)

· e(H1, [γ]2) · e(H2, [γ]1) ·Dµ2

1 ·D
µ1

2 ,

T2 ←Hµ2

1 ·H
µ1

2 ·
∏ℓ

i=0

(
S
a2,i

1,i · S
a1,i

2,i

)
.

2. V → P: Sample and send a challenge r ←$ Zp.
3. P and V: Compute the folded committed Groth16 structure-instance pair(

([δ∗]2, [γ
∗]2, (S

∗
i )

ℓ
i=0, D

∗), (H∗, µ∗, E∗, F ∗)
)
:

[δ∗]2 ← [δ1]2 · [δ2]r2, [γ∗]2 ← [γ]2 · [γ]r2,
S∗
i ← S1,i · Sr

2,i, D∗ ← D1 ·Dr
2,

H∗ ← H1 ·Hr
2 , µ∗ ← µ1 + r · µ2,

E∗ = E1 · T r
1 · Er2

2 , F ∗ = F1 · T r
2 · F r2

2 .
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4. P: Compute the folded relaxed Groth16 proof (⃗a∗, A∗, B∗, C∗):

a⃗∗ ← a⃗1 + r · a⃗2, A∗ ← A1 ·Ar
2, B∗ ← B1 ·Br

2 , C∗ ← C1 · Cr
2 .

The perfect completeness and knowledge soundness of the protocol can be
proved with an approach similar to the proof of Theorem 2. We omit the details
here due to space constraints.

E.2 Non-uniform structure for Plonk

The folding scheme for quadratic Plonk relations can be extended to support
non-uniform Plonk proofs of different structures. To achieve this, we introduce
an additional step in PreprocessQ to compute t12 ← ā · b̄ and return t12 in t⃗. The
new relation is as follows:

Definition 19 (Non-uniform Preprocessed Quadratic Plonk Relation).
A non-uniform preprocessed quadratic Plonk proof relation consists of a struc-
ture ([x]2, vkPlonk), an instance (λ, γ, v, ā, b̄, c̄, t⃗, P, uPlonk, πPlonk, µ, EP , E), and an
empty witness ⊥ such that

M ← Av ·Bt1 · Ct2 · St3
σ1
· St4

σ2
,

N ← Qt12
M ·Q

ā
L ·Qb̄

R ·Qc̄
O ·Q

µ
C · Z

t5 · St6
σ3
· T t7

l · T
t8
mi · T

t9
h ,

Q←W γ · V t11 ·M ·N · [−µt10]1,
P−µ ·Wµ · V γ = EP , e(P, [x]2) · e(Q, [1]2)

−1 = E.

We briefly describe the interactive version of the folding scheme for non-
uniform Plonk proofs. Given two non-uniform preprocessed quadratic Plonk
structure-instance-witness tuples

(
([xi]2, vkPlonk,i), (λi, γi, vi, āi, b̄i, c̄i, t⃗i, Pi,

uPlonk,i, πPlonk,i, EP,i, Ei),⊥
)2
i=1

, the prover P and verifier V engage in the fol-
lowing protocol:

1. P → V: Compute and send the cross-items TP and T :

TM ←Av2
1 Av1

2 ·B
t1,2
1 B

t1,1
2 · Ct2,2

1 C
t2,1
2 · St3,2

σ1,1
S
t3,1
σ1,2
· St4,2

σ2,1
S
t4,1
σ2,2

,

TN ←Q
t12,2
M,1 Q

t12,1
M,2 ·Q

ā2

L,1Q
ā1

L,2 ·Q
b̄2
R,1Q

b̄1
R,2 ·Q

c̄2
O,1Q

c̄1
O,2 ·Q

µ2

C,1Q
µ1

C,2,

TQ ←W γ2

1 W γ1

2 · V
t11,2
1 V

t11,1
2 · TM · TN · [−µ1t10,2 − µ2t10,1]1,

TP ←P−µ2

1 P−µ1

2 ·Wµ2

1 Wµ1

2 · V
γ2

1 V γ1

2 ,

T ←e(P1, [x2]2) · e(P2, [x2]1) · e(TQ, [1]2)
−1.

2. V → P: Sample and send a challenge r ←$ Zp.
3. P and V: Compute (λ∗, γ∗, v∗, ā∗, b̄∗, c̄∗, t⃗∗,

u∗
Plonk, π

∗
Plonk, µ

∗) part using the same method as in the folding scheme for
quadratic relations, and (P ∗, E∗

P , E
∗) part as

P ∗←P1 ·P r
2 , E∗

P←EP,1 ·T r
P ·Er2

P,2, E∗←E1 ·T r ·Er2

2 .

The perfect completeness and knowledge soundness of the protocol can be
proved with an approach similar to the proof of Theorem 5. We omit the details
here due to space constraints.
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