
SnarkFold: Efficient SNARK Proof Aggregation
from Split Incrementally Verifiable Computation

Xun Liu, Shang Gao⋆, Tianyu Zheng, and Bin Xiao

Department of Computing, The Hong Kong Polytechnic University
compxun.liu@connect.polyu.hk

shanggao@polyu.edu.hk

tian-yu.zheng@connect.polyu.hk

csbxiao@polyu.edu.hk

Abstract. The succinct non-interactive argument of knowledge (SNARK)
technique is widely used in blockchain systems to replace the costly on-
chain computation with the verification of a succinct proof. However,
when dealing with multiple proofs, most existing applications require
each proof to be independently verified, resulting in a heavy load on
nodes and high transaction fees for users. To improve the efficiency of
verifying multiple proofs, we introduce SnarkFold, a universal SNARK-
proof aggregation scheme based on incrementally verifiable computation
(IVC). Unlike previous proof aggregation approaches based on inner
product arguments, which have a logarithmic proof size and verifica-
tion cost, SnarkFold achieves constant verification time and proof size.
One core technical advance in SnarkFold, of independent interest, is the
“split IVC”: rather than using one running instance to fold/accumulate
the computation, we employ two (or more) running instances of dif-
ferent types in the recursive circuit to avoid transferring into the same
structure. This distinguishing feature is particularly well-suited for proof
aggregation scenarios, as constructing arithmetic circuits for pairings can
be expensive. We further demonstrate how to fold Groth16 proofs with
our SnarkFold. With some further optimizations, SnarkFold achieves the
highest efficiency among all approaches.

Keywords: Succinct Non-interactive Argument of Knowledge, Incre-
mentally Verifiable Computation, Proof Aggregation.

1 Introduction

The succinct non-interactive arguments of knowledge (SNARK) is a crucial cryp-
tographic technique that allows a prover to convince a verifier of the correctness
of a specific statement in a non-interactive way. This is achieved by the prover
constructing a succinct proof that the verifier can efficiently verify. The zero-
knowledge version of SNARK, known as zk-SNARK, further guarantees that
the proofs reveal no additional information beyond the validity of the prover’s
statement.
⋆ Shang Gao is the corresponding author of this paper.

1



In recent years, (zk-)SNARKs have gained great attention in real-world appli-
cations, leading to the development of many new constructions and implementa-
tions [10] [8] [15] [25] [4] [1] [19]. For example, in zk-Rollups (zero-knowledge
rollups), a layer-2 network must provide a SNARK proof to the underlying
layer-1 blockchain to show the validity of off-chain transactions [22]. The more
general version, zk-EVM (zero-knowledge Ethereum virtual machine), further
employs SNARK to demonstrate the correct execution of smart contracts [29].
Additionally, zk-SNARK has been extensively used in private scenarios such as
anonymous cryptocurrencies [18] [11]. They can enhance blockchain privacy by
allowing users to prove the validity of a transaction without disclosing sensi-
tive information such as the transaction amount, account address, and account
balance.

Challenges. Although (zk-)SNARKs are promising for enhancing scalability
and privacy, SNARK-based applications pose significant challenges for both the
prover and the verifier, as generating and verifying individual proofs can be
time-consuming, thereby reducing the system’s throughput. This issue is more
pronounced in blockchain systems like Ethereum [24], where users (provers) are
required to pay transaction fees to the blockchain miners (verifiers) based on the
computational and storage resource usage of operations (the cost of proof veri-
fication). For instance, in December 2023, a deposit operation in TornadoCash
(a smart contract for anonymous transactions on Ethereum) required 80 USD
worth of transaction fee, calculated based on the Ethereum exchange rate.

A SNARK-proof aggregation scheme (hereafter referred to as proof aggrega-
tion) can be utilized to mitigate these challenges. It compacts multiple proofs
π1, ..., πn into a single aggregated proof π, and generates an aggregation proof
πAGG to validate the aggregation process. The validity of π and πAGG implies the
validity of all individual proofs. This aggregation scheme requires the verifica-
tion of π and πAGG to be much simpler than checking π1, ..., πn individually, thus
reducing both verification time and user costs. Proof aggregation schemes have
been applied in many applications, such as SNARKBlock [17] and SnarkPack
[9].

One approach to achieve proof aggregation is through a generalized inner
product argument (GIPA) [7] [9], which transforms the verification of n SNARK
proofs into an inner product form and further employs Bulletproofs-like compres-
sion [4] and a KZG commitment [12] to reduce the proof size and verification
cost to O(log n). However, due to the costly operations in bilinear groups (e.g.,
for pairing-based SNARKs such as Groth16 [10]), the verification overhead of
the aggregated proof remains substantial for real-world applications such as Tor-
nadoCash.

Motivations.One major objective of this paper is to reduce the size and the ver-
ification cost of an aggregation proof. To achieve this, we resort to another cryp-
tographic primitive known as incrementally verifiable computation (IVC) [23],
which provides an efficient framework to generate proof for a “long-repeated”
computation. Notably, the size of an IVC proof is independent of the number of
iterations, making the framework ideal for proof aggregation scenarios.

2



Originally, IVC is constructed using recursive SNARK [23], which requires
the IVC prover (recursive circuit) to show the correctness of the previous step
in the current step (i.e., the current proof needs to complete a full verification
relation of the previous proof). Recently, state-of-the-art IVC has been developed
from the folding/accumulation1 schemes [14] [6] [5] [28] [13], which defers the
costly verification to the final step. The recursive circuit only folds instances and
generates a non-interactive argument (NARK) instance to indicate the folding
is done correctly, which will be folded in the subsequent iteration.

In a folding scheme, the correctness of the folded instance implies the cor-
rectness of all input instances. This motivates us to incorporate folding in proof
aggregation, regarding folding as the aggregation function that takes each πi as
an input. In each iteration, the recursive circuit folds (aggregates) proofs into
one, and the final folded proof is regarded as the πAGG. When further constructed
into IVC, we can ensure a constant size and verification time for πAGG.

However, previous works have limitations when implementing proof aggre-
gation directly. The new proof/instance must have the same form as the in-
stance generated by the recursive circuit, enabling them to be folded into one.
For instance, Nova [14] necessitates that all instances be relaxed R1CS (rank-1
constraint system) instances, while BCMS20 [6] requires them to be in bullet-
proofs/KZG forms. Consequently, in proof aggregation, these methods require
new proofs to be transformed into relaxed R1CS instances, or need to use a
bulletproofs/Plonk proof (instead of a simple NARK) to demonstrate that the
folding has been correctly executed. These transformations introduce a non-
negligible overhead into the system.
Contributions. We introduce SnarkFold, a new proof aggregation scheme that
improves the state-of-the-art by providing constant size aggregated proofs and
constant time verification. The core of SnarkFold is a new folding-based IVC,
called split IVC, which employs two (or more) instances of different types in the
recursive circuit to avoid costly transformations.

We summarize the contributions of this paper as follows.

– We introduce a new structure for constructing IVC from folding schemes,
named split IVC. The recursive circuit uses two (or more) running instances
to fold instances of different types, eliminating the costly transformations.

– We adopt our split IVC in proof aggregation and further propose SnarkFold,
a new system that achieves constant proof size and verification cost when
folding multiple (zk-)SNARK proofs.

– To demonstrate the application of SnarkFold, we provide a detailed con-
struction for Groth16 proofs aggregation. By introducing a new “augmented
relaxed Groth16 proof relation”, we further reduce the prover’s cost, making
our scheme the most efficient among state-of-the-art approaches.

The structure of this paper is as follows. We first introduce the challenge
of verifying multiple SNARK proofs in blockchain systems and emphasize the

1 Precisely, folding and accumulation (not to be the cryptographic accumulator) are
techniques with slight differences. In this paper, we use the term “folding” to repre-
sent both of techniques.

3



motivation for an IVC-based aggregation scheme to enhance efficiency (Section
1). We highlight the limitations of existing approaches in Section 2. To solve
these, we present SnarkFold, a novel proof aggregation scheme that advances
the state-of-the-art by enabling constant-size aggregated proof and constant-time
verification. The core building block of SnarkFold is a generic split IVC (Section
4), an IVC framework that is more suitable for proof aggregation purposes.
Finally, we introduce the real-world applications of SnarkFold and instantiate it
to Groth16 (Section 5).

2 Related Work

We review existing work and techniques for proof aggregation.
(Non-)Membership proof aggregation. Some work focuses on designing ef-
ficient proof aggregations with cryptography accumulators for specific proofs,
such as (non-)membership proofs. The RSA accumulator is a widely used im-
plementation of this concept. Boneh et al. [3] provide both membership and
non-membership proofs in an RSA accumulator. However, this approach is lim-
ited to aggregating elements within a prime domain and cannot be directly
applied to arbitrary elements. To overcome this limitation, Srinivasan et al. [20]
propose a zero-knowledge (non-)membership proof aggregation in the bilinear
pairing group settings. Although this approach offers constant proof size and
verification time, the bilinear pairing group elements in the trusted setup are
significantly large (18 MB for 217 elements). Furthermore, they are not suitable
for aggregating general-purpose SNARK proofs such as Groth16 and Plonk.
Generalized inner pairing product argument. Bünz et al. [7] extend the
inner-product argument in bulletproofs to pairing-based languages, enabling the
aggregation of Groth16 proofs. This approach converts the verification of an
aggregated proof into the verification of a generalized inner product argument,
which can utilize bulletproofs folding to reduce the proof size to a logarithmic
scale. Furthermore, they regard the compressed argument as a polynomial and
employ the KZG commitment to reduce the verification cost further. SnarkPack,
an optimization of Bünz et al.’s scheme, is designed to aggregate Groth16 proofs
and reuses the public parameters from the trusted setup. Both Bünz et al.’s
scheme and SnarkPack achieve O(log n) proof size and O(log n) verification time.
Incrementally Verifiable Computation. IVC enables a prover to prove the
correctness of a “long-repeated” computation, such as the repetition of function
F with m as the input, F (F (...F (m)...)), with a succinct proof. Traditionally,
IVC is constructed using a recursive composition of SNARKs, which requires the
recursive circuit to implement a full verification logic for the proof generated in
the previous step [2] [23]. Recent research presents a new IVC construction based
on the folding technique [6] [5] [14], which allows multiple instances to be folded
into a single one. The validity of the folded instance implies the correctness of
all instances. This eliminates the need for costly verification from the recursive
circuit: the recursive circuit simply folds multiple instances into a folded “run-
ning instance” and outputs an “accumulated instance” to demonstrate that F

4



and folding are executed correctly. By verifying the correctness of the running
instance and the accumulated instance in the final step, the verifier can ensure
the accuracy of all iterations.

3 Preliminaries

3.1 Notion

This work considers the security parameter as λ. negl(λ) denotes a negligible
function in λ. Let Zp denote the prime field for a large prime p. We use r ←$ Zp

to denote sampling r from Zp uniformly at random and x← a to denote variable
assignment of a to x. For simplicity, (a1, ..., an) is denoted as (ai)

n
i=1.

Relations. For a nondeterministic polynomial (NP) relation R, we define it
over public parameters pp (e.g., the groups and fields), structure s (e.g., R1CS
coefficient matrices), instance u (i.e., the public inputs), and witness w (i.e., the
secret) tuples, (pp, s, u, w) ∈ R.
Bilinear groups. Let (G1,G2,GT , p, e) be a type III bilinear group of prime
order p where e : G1 × G2 → GT is the bilinear map. Let g ∈ G1 and h ∈ G2

be the generators of G1 and G2 respectively. We define group elements [x]1 as
gx ∈ G1, [x]2 as hx ∈ G2, and [x]T as e(g, h)x ∈ GT .

3.2 (zk-)SNARK and Proof Aggregation

LetR be a NP relation. A SNARK is described by four algorithms, (SNARK.G for
public parameter generator, SNARK.K for key generator, SNARK.P for prover,
SNARK.V for verifier), that work in a non-interactive way:

– pp← SNARK.G(1λ): On input security parameter λ, sample public parameters
pp.

– (pk, vk)← SNARK.K(pp, s): Taking the public parameters pp and a structure s
representing common structure among instances, generate the prover’s proving
key pk and the verifier’s verification key vk.

– π ← SNARK.P(pk, u, w): Given a instance-witness pair (u,w), output a suc-
cinct proof π with pk proving that (pp, s, u, w) ∈ R.

– 0/1 ← SNARK.V(vk, u, π): Given an isntance u and the corresponding proof
π, output either 1 by accepting the proof or 0 by rejecting it.

A SNARK satisfies completeness, knowledge soundness, and succinctness
properties, which are formally defined in the Appendix A.1. zk-SNARK is a
variant of SNARK with zero-knowledge property: the proof π reveals nothing
about w.

Given a SNARK system and n proofs π1, ..., πn. We call AGG a proof aggre-
gation scheme with three functions (AGG.G, AGG.K, AGG.P, AGG.V):

– pp ← AGG.G(1λ): On input of the security parameter λ, sample public pa-
rameters pp.

5



– (pk, vk)← AGG.K(pp, s′): Taking the public parameters pp and a structure s′,
generate the prover’s proving key pk and the verifier’s verification key vk for
the aggregation scheme.

– ((u, π), πAGG) ← AGG.P(pk, (ui, πi)
n
i=1): Given n instance-proof pairs, output

an aggregated proof-instance pair (u, π) and an aggregation proof πAGG that
shows the correctness of the aggregation process.

– 0/1 ← AGG.V(vk, n, u, πAGG): Given an aggregated instance u and the corre-
sponding aggregation proof uAGG, output either 1 by accepting the aggregation
or 0 by rejecting.

Note that the aggregation proof πAGG only ensures the correct execution of the
aggregation process. In real-world applications, the verifier needs to further verify
(u, π) to ascertain the validity of all (ui, πi) pairs. A proof aggregation satisfies
perfect completeness and knowledge soundness, which are formally defined
in Appendix A.2.

3.3 IVC and Folding Scheme

IVC allows efficient verification on repeated computation of F , i.e., F (zi−1, ωi−1) =
zi at step i, where ωi−1 is an auxiliary input and zi−1 is the output in step i−1.
IVC is constructed by a tuple of PPT algorithms (IVC.G, IVC.K, IVC.P, IVC.V)
with the following interface:

– pp← IVC.G(1λ): Given a security parameter λ, sample public parameters pp.
– (pk, vk) ← IVC.K(pp, F ): Given the public parameter pp and the function F ,

generate a proving key pk and a verification key vk.
– πi ← IVC.P(pk, i, z0, zi, zi−1, ωi−1, πi−1): Taking a counter of current step i,

an initial input z0, two claimed outputs of the current and previous steps zi−1

and zi, an auxiliary input ωi−1, and an proof πi−1 attesting to zi−1 is correct,
output a proof πi for zi = F (zi−1, ωi−1) with pk.

– 0/1 ← IVC.V(vk, i, z0, zi, πi): On the input of a counter of current step i, an
initial input z0, a claimed output of the i-th iteration zi, and an proof πi

attesting to zi, output 1 if πi is a valid proof and 0 otherwise with vk.

An IVC scheme satisfies perfect completeness, knowledge soundness, and
succinctness, which are formally defined in the Appendix A.3.

One approach to achieve IVC is from folding schemes, which allow the prover
and verifier to transform the task of verifying two (or more) instances of relation
R into the task of verifying a single instance in R. A folding scheme consists of
four algorithms (Fold.G, Fold.K, Fold.P, Fold.V) with the following interface:

– pp← Fold.G(1λ): Given a security parameter λ, sample public parameters pp.
– (pk, vk)← Fold.K(pp, s): Given the public input pp and a common structure s

between instances to be folded, output a prover key pk and a verifier key vk.
– (u,w)← Fold.P(pk, (u1, w1), (u2, w2)): Given two instance-witness pairs (u1, w1)

and (u2, w2), generate a new folded instance-witness pair (u,w) of the same
size.

6



– u ← Fold.V(vk, u1, u2): Given the instance u1 and u2, outputs a new folded
instance u.

The above algorithms can also be generalized to multiple folding (e.g., (u,w)←
Fold.P(pk, (ui, wi)

n
i=1)). A folding scheme satisfies perfect completeness and

knowledge soundness, which are formally defined in Appendix A.4.

3.4 Groth16 Backgroud

Groth16 [10] is a pairing-based efficient zkSNARK, which has been widely adopted
in various cryptographic applications [26] [16]. We briefly present the algorithms
of SNARKGro16 (the details of each parameter are presented in Appendix B.1).

– pp← SNARKGro16.G(1
λ): Based on λ, sample a type III bilinear group (G1,

G2,GT , p, e) with g ∈ G1 and h ∈ G2 as generators. Output pp = (G1,G2,GT ,
p, e, g, h).

– (pk, vk)← SNARKGro16.K(pp, s): Generate a common reference string crs which
contains the necessary group elements for the prover and verifier. Output
pk = crs and vk = crs.

– π ← SNARKGro16.P(pk, u, w): Given a R1CS instance-witness pair (u,w), out-
put a Groth16 proof π = (A,B,C) consists of three group elements A,C ∈ G1

and B ∈ G2.
– 0/1 ← SNARKGro16.V(vk, u, π): Compute H ∈ G1 based on vk (i.e., crs) and

check e(A,B) = e(C, [δ]2) · e(H, [γ]2) ·D.

4 Split IVC

We introduce a novel IVC construction derived from folding schemes named
split IVC. It utilizes multiple running instances during its recursive computation,
thereby avoiding costly transformations between relations. First, we provide a
brief overview of our techniques. Then, we present the details of circuits in the
split IVC. Lastly, we formally describe the construction of split IVC.

4.1 Technique Overview

We begin by revisiting the existing IVC construction from folding schemes, as
illustrated in Figure 1a. At step i, the prover computes an incremental step of
F , zi = F (zi−1, ωi−1), and folds the running instance u∗

i−1 and the accumulated
instance ui−1 from the previous step into a new running instance u∗

i , u∗
i =

Fold(ui−1, u
∗
i−1). Additionally, it uses a recursive circuit to generate a new claim

(as a new accumulated instance ui) to show the above computation has been
correctly executed.2

2 Precisely, the prover needs to run Fold.P to fold both instances and witnesses. The
recursive circuit shows Fold.V is correctly executed, and the corresponding claim
should also include a witness. The folded witness and the witness of the claim will
serve as an IVC proof. We omit witness in the description here for simplicity.

7



recursive circuit

-circuit

-circuit

(a) Traditional IVC.

recursive circuit

-circuit

-circuit

(b) Split IVC.

Fig. 1: The IVC structure from a folding scheme in each iteration. The witness
part is omitted for simplicity.

A significant issue in existing IVC constructions is the costly conversion of
F into the same form as ui, e.g., in Nova [14], all computations are required to
be rewritten into a relaxed R1CS relation. However, for some operations such as
elliptic curve pairing, these transformations can be highly costly. As pointed out
in [21], a single pairing operation requires up to 25 million gates, which takes a
compilation time of 4.2 hours.

To address this problem, we introduce a novel construction called split IVC :
instead of using a single running instance in the recursive computation, we em-
ploy two (or more) instances of different types, as depicted in Figure 1b. Specifi-
cally, we use an “F -friendly” instance uF,i to represent the correct computation
of F (F -circuit3) and fold it with the running F -instance u∗

F,i−1 from the pre-
vious step to a new running F -instance u∗

F,i. Additionally, we also maintain a
“Fold-friendly” running instance u∗

Fold,i, which is derived by folding the running
Fold-instance u∗

Fold,i−1 and accumulated Fold-instance uFold,i−1 from the previ-
ous step. The “Fold-circuit” will show the correct execution of the two foldings
(FoldF and Fold), outputting a claim as a new accumulated Fold-instance uFold,i.

A key advantage of our split IVC is its ability to bypass the costly transforma-
tion. For example, when F is a pairing relation of (Ai, Bi) such that e(Ai, h) =
e(Bi, C) for some C ∈ G2, we can use an algebraic instance (Ai, Bi) ∈ (G1,G1)
to represent F , incurring no additional cost. To fold two F -instances, (A1, B1)
and (A2, B2), FoldF simply computes A∗ = A1 ·Ar

2 and B∗ = B1 ·Br
2 (r donates

a random challenge from Zp). Consequently, the Fold-circuit only needs to trans-
fer the correct execution of two G1 operations (and Fold) into a uFold,i instance
(e.g., relaxed R1CS ), without the need for the costly transformation of pairing.

3 We slightly abuse the term “circuit” here since some instances (relations) may not
be constructed from the circuit.

8



4.2 Circuit Design

To describe our techniques more precisely, we include the witness part. In our
construction of the split IVC, the F -circuit simply transforms the correct execu-
tion of F into an F -friendly instance-witness pair (uF,i, wF,i). The Fold-circuit
takes two F -friendly instances (uF,i and u∗

F,i−1) and two Fold-friendly instances
(uFold,i−1 and u∗

Fold,i−1), and derives two running instances u∗
F,i and u∗

Fold,i as
follows:

u∗
F,i ← FoldF .V(vkF , uF,i, u

∗
F,i−1),

u∗
Fold,i ← Fold.V(vkFold, uFold,i−1, u

∗
Fold,i−1).

(1)

Additionally, the Fold-circuit will generate an instance-witness pair (uFold,i, wFold,i)
to show the correct execution of Equation (1).

The prover will fold both instance-witness pairs locally:

(u∗
F,i, w

∗
F,i)← FoldF .P

(
pkF , (uF,i, wF,i), (u

∗
F,i−1, w

∗
F,i−1)

)
,

(u∗
Fold,i, w

∗
Fold,i)← Fold.P

(
pkFold, (uFold,i−1, wFold,i−1),

(u∗
Fold,i−1, w

∗
Fold,i−1)

)
.

The above construction has a subtle issue: since u∗
F,i and u∗

Fold,i are out-
puts of the Fold-circuit, they must be included in uFold,i as a part of public
input (i.e., u∗

F,i, u
∗
Fold,i ∈ uFold,i). This implies that the structures of u∗

Fold,i and
uFold,i are different and cannot be folded in the next iteration. To address this
inconsistency, we adopt the same idea as Nova, modifying the Fold-circuit to
output a collision-resistant hash of its inputs and outputs [14], i.e., uFold,i.h =
Hash(vk, i, u∗

F,i, u
∗
Fold,i). Consequently, the Fold-circuit outputs a statement that

there exists
(
(i, uF,i, u

∗
F,i−1, uFold,i−1, u

∗
Fold,i−1), (u

∗
F,i, u

∗
Fold,i)

)
such that the fol-

lowing equations hold:

u∗
F,i = FoldF .V(vkF , uF,i, u

∗
F,i−1),

u∗
Fold,i = Fold.V(vkFold, uFold,i−1, u

∗
Fold,i−1),

uFold,i−1.h = Hash(vk, i− 1, u∗
F,i−1, u

∗
Fold,i−1),

uFold,i.h = Hash(vk, i, u∗
F,i, u

∗
Fold,i).

(2)

Accordingly, the Fold-circuit outputs uFold,i.h. The details of Fold-circuit is in
Figure 2.
Generalize to multiple instances. The idea of using two running instances
can be generalized to multiple instances. Specifically, we can take k1 instances
to encode the correct execution of F and k2 instances to encode the folding.4

Accordingly, the FoldF folds k1-many uF,i and k1-many u∗
F,i−1 into k1-many

u∗
F,i, and the Fold folds k2-many uFold,i−1 and k2-many u∗

Fold,i−1 into k2-many
u∗
Fold,i, as depicted in Figure 3. The claim generated by the Fold-circuit is similar

4 In these scenarios, it may require some “glue” proof to link all instances. But for
some (reusable) relations, the glue proof can be avoided with [27].

9



zi ← CirF(ωi−1, zi−1)

1 : output zi ← F (ωi−1, zi−1).

uFold,i.h← CirFold(vk, i, z0, zi−1, zi, uF,i, u
∗
F,i−1, uFold,i−1, u

∗
Fold,i−1)

1 : if i = 1,output uFold,i.h← Hash(vk, 1, z0, zi, u
∗
F,⊥, u

∗
Fold,⊥);

2 : else

3 : check uFold,i−1.h = Hash(vk, i− 1, z0, zi−1, u
∗
F,i−1, u

∗
Fold,i−1),

4 : check uF,i and uFold,i−1 are non-relaxed instances,

5 : u∗
F,i ← FoldF .V(vkF , uF,i, u

∗
F,i−1),

6 : u∗
Fold,i ← Fold.V(vkFold, uFold,i−1, u

∗
Fold,i−1),

7 : output uFold,i.h← Hash(vk, i, z0, zi, u
∗
F,i, u

∗
Fold,i).

Fig. 2: The logic of CirF and CirFold. (z0, zi) is put into CirFold to ensure F is
originated from z0 and avoid the hash relation in CirF.

to Equation (2) by regarding u as a set of multiple instances. The output only
contains one element (i.e., the output of the hash function). This could yield an
optimization on all commitment-based folding schemes, including Nova, Hyper-
Nova, ProtoStar, and KiloNova. The recursive circuit can output two instances:
one circuit instance (e.g., relaxed R1CS) to show the correctness of hash func-
tions (ui.h and the Fiat-Shamir transform) and one algebraic instance to show
commitments are folded correctly (group operations).

4.3 Construction of Split IVC

Circuits. Let (u∗
F,⊥, w

∗
F,⊥) and (u∗

Fold,⊥, w
∗
Fold,⊥) be trivially satisfying instances-

witness pairs. We give a formal description of the F -circuit (CirF) Fold-circuit
(CirFold) of split IVC.

To ensure the computation originated from z0, we should use the hash func-
tion again in CirF and check hi = Hash(i, z0, zi). However, here we use a trick
to put z0 and zi in CirFold instead of CirF, thereby avoiding the hash relation in
CirF. We formally described the logic of circuits in Figure 2.

CirF and CirFold can be expressed as a F -friendly instance with structure
sF and a Fold-friendly instance with structure sFold, respectively. Let (u,w) ←
tr(Circuit, inputs) denotes a satisfying instance-witness pair for the execution of
Circuit.
IVC Proofs. In step i, the ICV prover computes (u∗

F,i, w
∗
F,i), (uFold,i, wFold,i) and

(u∗
Fold,i, w

∗
Fold,i) pairs. Since u

∗
F,i, uFold,i, and u∗

Fold,i together attest the correctness
of all i steps of F (indirectly attests u∗

F,i which implies the correctness of the i-th

step of F ), the IVC proof is πi =
(
(u∗

F,i, w
∗
F,i), (uFold,i, wFold,i), (u

∗
Fold,i, w

∗
Fold,i)

)
.

10



Fig. 3: Fold-circuit implemented with multiple instances.

Construction. We formally describe our split IVC scheme in Figure 4. If the
original SNARK requires relaxation in folding, we need to check uFold,i is a
non-relaxed instance in the last step of IVC.V. Otherwise, this final step can be
avoided.

Theorem 1. The construction of split IVC in Figure 4 satisfies perfect com-
pleteness, knowledge soundness, and succinctness if the FoldF and Fold have
perfect completeness and knowledge soundness.

Proof Sketch. The succinctness trivially holds since (u∗
F,i, w

∗
F,i), (uFold,i, wFold,i),

and (u∗
Fold,i, w

∗
Fold,i) are three instance-witness pairs. We prove the perfect com-

pleteness by induction. Specifically, we assume that the proof πi−1, generated by
IVC.P, is valid at step i − 1. Then, we demonstrate that the proof πi for step i
is also valid. For the knowledge soundness, we use the recursive extraction tech-
nique described in [6], which allows us to construct an extractor Ei that outputs(
(zi, ..., zn−1), (ωi, ..., ωn−1), πi−1

)
. To achieve so, we use inductive hypothesis to

assume that the existence of an extractor Ei. We then use the outputs of Ei and
the extractors of folding schemes to construct Ei−1. The formal proof is provided
in Appendix C.2.

5 SnarkFold

We present our proof aggregation scheme, SnarkFold, which is built from split
IVC. We also construct a Groth16 folding scheme for real-world applications.

5.1 SnarkFold from Split IVC

The core idea of SnarkFold is to view each instance-proof pair (ui, πi) as the
instance-proof pair (uF,i, wF,i) derived from F -circuit in split IVC, i.e., πi as

11



pp← IVC.G(1λ)

1 : ppF ← FoldF .G(1
λ), ppFold ← Fold.G(1λ),

2 : output pp← (ppF , ppFold).

(pk, vk)← IVC.K(pp, F )

1 : (pkF , vkF )← FoldF .K(ppF , sF ),

2 : (pkFold, vkFold)← FoldFold.K(ppFold, sFold),

3 : output (pk, vk)←
(
(F, pkF , pkFold), (F, vkF , vkFold)

)
.

πi ← IVC.P(pk, i, z0, zi−1, ωi−1, πi−1)

1 : parse πi−1 as
(
(u∗

F,i−1,w
∗
F,i−1), (uFold,i−1,wFold,i−1), (u

∗
Fold,i−1,w

∗
Fold,i−1)

)
,

2 : if i = 1

3 : (u∗
F,i, w

∗
F,i)←(u∗

F,⊥, w
∗
F,⊥), (u∗

Fold,i, w
∗
Fold,i)←(u∗

Fold,⊥, w
∗
Fold,⊥);

4 : else

5 : (uF,i, wF,i)← tr
(
CirF, (ωi−1, zi−1)

)
,

6 : (u∗
F,i, w

∗
F,i)← FoldF .P

(
pkF , (uF,i, wF,i), (u

∗
F,i−1, w

∗
F,i−1)

)
,

7 : (u∗
Fold,i, w

∗
Fold,i)← Fold.P

(
pkFold, (uFold,i−1, wFold,i−1),

(u∗
Fold,i−1, w

∗
Fold,i−1)

)
;

8 : (uFold,i, wFold,i)← tr
(
CirFold,

(vk, i, z0, zi−1, zi, uF,i, u
∗
F,i−1, uFold,i−1, u

∗
Fold,i−1)

)
,

9 : output πi ←
(
(u∗

F,i, w
∗
F,i), (uFold,i, wFold,i), (u

∗
Fold,i, w

∗
Fold,i)

)
.

0/1← IVC.V(vk, i, z0, zi, πi)

1 : if i = 0, check zi = z0;

2 : else

3 : parse πi as
(
(u∗

F,i, w
∗
F,i), (uFold,i, wFold,i), (u

∗
Fold,i, w

∗
Fold,i)

)
,

4 : check uFold,i.h = Hash(vk, i, z0, zi, u
∗
F,i, u

∗
Fold,i),

5 : check w∗
F,i, wFold,i, w

∗
Fold,i are satisfying witnesses to u∗

F,i, uFold,i,

u∗
Fold,i respectively,

6 : check uFold,i is a non-relaxed instance.

Fig. 4: The split IVC scheme.

12



a secret. Using a folding scheme for the SNARK proof, denoted as FoldSNARK,
the (ui, πi) pair is folded with the previously aggregated instance-proof pair
(u∗

i−1, π
∗
i−1) to generate a new aggregated pair (u∗

i , π
∗
i ). Furthermore, we employ

a Fold-circuit (referred to as CirFold′ in Figure 5) to ensure the instance part
is folded correctly, which is a simplified version of CirFold in split IVC without
z0, zi−1, zi.

uFold,i.h← CirFold′(vk, i, ui, u
∗
i−1, uFold,i−1, u

∗
Fold,i−1)

1 : if i = 1,output uFold,i.h← Hash(vk, 1, u∗
⊥, u

∗
Fold,⊥);

2 : else

3 : check uFold,i−1.h = Hash(vk, i− 1, u∗
i−1, u

∗
Fold,i−1),

4 : check ui and uFold,i−1 are non-relaxed instances,

5 : u∗
i ← FoldSNARK.V(vkSF, ui, u

∗
i−1),

6 : u∗
Fold,i ← Fold.V(vkFold, uFold,i−1, u

∗
Fold,i−1),

7 : output uFold,i.h← Hash(vk, i, u∗
i , u

∗
Fold,i).

Fig. 5: The logic of CirFold′ in proof aggregation.

In a straightforward approach, the resulting aggregated instance-proof pair
is (u, π) = (u∗

n, π
∗
n) and the aggregation proof includes (u∗

n, π
∗
n), (uFold,n, wFold,n),

and (u∗
Fold,n, w

∗
Fold,n). To further improve efficiency, the prover can fold (uFold,n, wFold,n)

and (u∗
Fold,n, w

∗
Fold,n) into (u′, w′) and employ a SNARK for Fold-circuit (denoted

as SNARK′, which can be different from the SNARK to be aggregated) to pro-
duce a proof π′ showing the knowledge of w′. Accordingly, the aggregation proof
πAGG becomes (u∗

n, uFold,n, u
∗
Fold,n, π

′). Since u∗
n = u, this part can be further

omitted in πAGG, i.e., πAGG = (uFold,n, u
∗
Fold,n, π

′). In verification, u is input into
the hash function to check uFold,n.h. The aggregation verifier locally folds uFold,n

and u∗
Fold,n to obtain u′ and run SNARK′.V to check only one proof π′.5

The above construction folds one proof in each iteration. If FoldSNARK can
handle multiple pairs, the proof aggregation could be implemented more effi-
ciently by folding multiple proofs in one step. For simplicity, we only consider
the case of one proof.

Let FoldSNARK be a folding scheme for SNARK proofs with proving key pkSF
and verification key vkSF, SNARK

′ be a SNARK for CirFold′ with structure s′,
(u∗

⊥, π
∗
⊥) be a trivial satisfying instance-proof pair, and (u∗

Fold,⊥, w
∗
Fold,⊥) be a

trivially satisfying instances-witness pair. We formally describe the construction
of SnarkFold in Figure 6.

5 In real-world applications, the verifier needs to further check (u∗
n, π

∗
n) to ensure the

correctness of all instance-proof pairs. We omit this check here as the aggregation
verifier only cares about the validity of the aggregation process.

13



pp← AGG.G(1λ)

1 : ppIVC ← IVC.G(1λ), ppSNARK′ ← SNARK′.G(1λ),

2 : output pp← (ppIVC, ppSNARK′).

(pk, vk)← AGG.K(pp, s′)

1 : (pkIVC, vkIVC)← IVC.K(ppIVC, ∅),
2 : (pkSNARK′ , vkSNARK′)← SNARK′.K(ppSNARK′ , s

′),

3 : output (pk, vk)←
(
(s′, pkIVC, pkSNARK′), (s

′, vkIVC, vkSNARK′)
)
.

((u, π), πAGG)← AGG.P(pk, (ui, πi)
n
i=1)

1 : (u∗
0, π

∗
0)← (u∗

⊥, π
∗
⊥),

2 : (u∗
Fold,0, w

∗
Fold,0)← (u∗

Fold,⊥, w
∗
Fold,⊥),

3 : for i = 1 to n

4 : (u∗
i , π

∗
i )← FoldSNARK.P

(
pkSF, (ui, πi), (u

∗
i−1, π

∗
i−1)

)
,

5 : (u∗
Fold,i, w

∗
Fold,i)← Fold.P

(
pkFold, (uFold,i−1, wFold,i−1),

(u∗
Fold,i−1, w

∗
Fold,i−1)

)
;

6 : (uFold,i, wFold,i)← tr
(
CirFold′,

(vk, i, ui, u
∗
i−1, uFold,i−1, u

∗
Fold,i−1)

)
,

7 : (u, π)← (u∗
n, π

∗
n),

8 : (u′, w′)← Fold.P
(
pkFold, (uFold,n, wFold,n), (u

∗
Fold,n, w

∗
Fold,n)

)
,

9 : π′ ← SNARK′.P(pkSNARK′ , u
′, w′),

10 : πAGG ← (uFold,n, u
∗
Fold,n, π

′),

11 : output
(
(u, π), πAGG

)
.

0/1← AGG.V(vk, n, u, πAGG)

1 : parse πAGG as (uFold,n, u
∗
Fold,n, π

′),

2 : check uFold,n.h = Hash(vkIVC, n, u, u
∗
Fold,n),

3 : u′ ← Fold.V
(
vkFold, uFold,n, u

∗
Fold,n

)
,

4 : check SNARK′.V(vkSNARK′ , u′, π′) = 1,

5 : check uFold,n is a non-relaxed instance.

Fig. 6: The SnarkFold scheme.

14



Theorem 2. The construction of SnarkFold proof aggregation in Figure 6 satis-
fies perfect completeness and knowledge soundness if IVC and SNARK′ has perfect
completeness and knowledge soundness.

Proof Sketch. The perfect completeness is directly inferred from the perfect com-
pleteness of IVC and SNARK′.

The knowledge soundness is also implied by the knowledge soundness of IVC
and SNARK′, composing the two extractors: by running the extractor of SNARK′,
we can extract a valid w′; by further running the extractor of IVC with different
w′, we can obtain all proofs (πi)

n
i=1 such that (ui, πi)

n
i=1 are valid instance-proof

pairs.

15



5.2 Folding Scheme for Groth16

To adopt SnarkPack in Groth16 aggregation, we need a folding scheme for
Groth16. A straightforward approach is to perform a random linear combination
(e.g., A∗ = A1 · Ar

2), but this leads to inconsistencies in folded verification due
to cross-terms (i.e., e(A∗, B∗) ̸= e(C∗, [δ]) · e(H∗, [γ]2) ·D∗).

First attempt. We introduce our initial attempt at the folding scheme for
Groth16. Specifically, we propose a variant of the Groth16 relation, called “re-
laxed” Groth16, which introduces some additional elements to ensure that the
folded instance-proof pair is satisfiable.

Definition 1 (Relaxed Groth16 Proof Relation). Given the structure with
([δ]2, [γ]2, D) ∈ (G2,G2,GT ), a relaxed Groth16 proof relation consists of an
instance (µ,H,E) ∈ (Zp,G1,GT ) and a proof (A,B,C) ∈ (G1,G2,G1), such
that

e(A,B) · e(C, [δ]2)−µ · e(H, [γ]2)
−µ ·D−µ2

= E.

The relaxed relation introduces two additional elements, E and µ. Specifically,
E is used to absorb the cross-term generated by folding, and µ is used to absorb
additional factors. For traditional (non-relaxed) Groth16 proof relations, E =
[0]T and µ = 1.

We describe the folding scheme for relaxed Groth16 in more details. Given
two instance-proof pairs, (u1, π1) =

(
(µ1, H1, E1), (A1, B1, C1)

)
and (u2, π2) =(

(µ2, H2, E2), (A2, B2, C2)
)
, the prover P and verifier V engage in the following

protocol:

1. P → V: Compute and send the cross-item T :

T ←e(A1, B2) · e(A2, B1) · e(C−µ2

1 C−µ1

2 , [δ]2)

· e(H−µ2

1 H−µ1

2 , [γ]2) ·D−2µ1µ2 .
(3)

2. V → P: Sample and send a challenge r ←$ Zp.
3. P and V Compute the folded relaxed Groth16 instance (µ∗, H∗, E∗):

µ∗ ← µ1 + r · µ2, H∗ ← H1 ·Hr
2 , E∗ ← E1 · T r · Er2

2 .

4. P Compute the folded relaxed Groth16 proof (A∗, B∗, C∗):

A∗ ← A1 ·Ar
2, B∗ ← B1 ·Br

2 , C∗ ← C1 · Cr
2 .

Clearly,
(
(µ∗, H∗, E∗), (A∗, B∗, C∗)

)
is a satisfying pair since

e(A∗, B∗) · e(C∗, [δ]2)
−µ∗
· e(H∗, [γ]2)

−µ∗
·D−µ∗2

=e(A1, B1) · e(C1, [δ]2)
−µ1 · e(H1, [γ]2)

−µ1 ·D−µ2
1

·
(
e(A1, B2) · e(A2, B1) · e(C−µ2

1 C−µ1

2 , [δ]2)

·e(H−µ2

1 H−µ1

2 , [γ]2) ·D−2µ1µ2
)r

·
(
e(A2, B2) · e(C2, [δ]2)

−µ2 · e(H2, [γ]2)
−µ2 ·D−µ2

2

)r2

=E1 · T r · Er2

2 = E∗.

16



Augmented relaxed Groth16 proof relation. In the above construction, P
is required to compute four pairings for T at step 2 in each iteration. Although
the pairing is performed locally (not in the recursive circuit), it introduces a non-
negligible cost. To improve efficiency, P can compute and send T ′ = e(A1, B2) ·
e(A2, B1), R = C−µ2

1 C−µ1

2 , S = H−µ2

1 H−µ1

2 , and κ = −2µ1µ2 with two pairings
in step 1. Consequently, the E∗ in step 3 becomes E∗ = E1 ·

(
T ′ · e(R, [δ]2) ·

e(S, [γ]2) · Dκ
)r · Er2

2 . This may not seem helpful since computing E∗ requires
two additional pairings, but we observe that R and S (and κ) can further be
folded in each iteration, and the pairing operation (and GT operation) can be
deferred to the final step. This indicates we only need 2n+2 pairings for folding
n proofs instead of 4n pairings.

To achieve this optimization, we formally introduce the concept of an “aug-
mented relaxed Groth16 proof relation”.

Definition 2 (Augmented Relaxed Groth16 Proof Relation). Given the
structure with ([δ]2, [γ]2, D) ∈ (G2,G2,GT ), an augmented relaxed Groth16 proof
relation consists of an instance (µ,H,E,R, S, κ) ∈ (Zp,G1,GT ,G1,G1,Zp) and
a proof (A,B,C) ∈ (G1,G2,G1), such that

e(A,B) · e(C, [δ]2)−µ · e(H, [γ]2)
−µ ·D−µ2

(4)

=E · e(R, [δ]2) · e(S, [γ]2) ·Dκ.

For traditional Groth16 proof relations, we can simply set µ = 1, E = [0]T ,
R = [0]1, S = [0]1, and κ = 0. We formally describe the construction of our
non-interactive folding scheme (by adopting the Fiat-Shamir transform) for aug-
mented relaxed Groth16 (FoldGro16) in Figure 7. FoldGro16.P and FoldGro16.V are
slightly adjusted to take an auxiliary T to assist the Fiat-Shamir transformation,
as with [14].

Theorem 3. The construction of the folding scheme for Groth16 in Figure 7
satisfies perfect completeness and knowledge soundness under the random oracle
model.

Proof Sketch. The perfect soundness holds trivially. For the knowledge sound-
ness, we prove the interactive version of the protocol via the forking lemma
in Lemma 1, which implies the knowledge soundness of the non-interactive
construction under the Fiat-Shamir heuristic in the random oracle model. We
present a formal proof in Appendix C.3.

6 Evaluation

We provide a comparison of the communication and time complexity of Snark-
pack and a TIPP-based approach for Groth16 proof aggregation. The Fold-circuit
is expressed as a relaxed R1CS relation. Let LC and RC donate the cost of local
computations and recursive circuit computations, respectively. P be a pairing
operation, H be a hash function, and RO be a random oracle query (can be

17



pp← FoldGro16.G(1
λ)

1 : output pp← ⊥.

(pk, vk)← FoldGro16.K(pp, ([δ]2, [γ]2, D))

1 : output pk = vk←
(
pp, ([δ]2, [γ]2, D)

)
.

((u∗, π∗), T )← FoldGro16.P(pk, (u1, π1), (u2, π2))

1 : parse (u1, π1) as
(
(µ1, H1, E1, R1, S1), (A1, B1, C1)

)
,

2 : parse (u2, π2) as
(
(µ2, H2, E2, , R2, S2), (A2, B2, C2)

)
,

3 : T ′ ← e(A1, B2) · e(A2, B1),

4 : R← C−µ2
1 C−µ1

2 , S ← H−µ2
1 H−µ1

2 , κ← −2µ1µ2,

5 : T ← (T ′, R, S, κ),

6 : r ← Hash(pk, u1, π1, u2, π2, T ),

7 : µ∗ ← µ1 + r · µ2, H∗ ← H1 ·Hr
2 , E∗ ← E1 · (T ′)r · Er2

2 ,

8 : R∗ ← R1 ·Rr ·Rr2

2 , S∗ ← S1 ·Sr ·Sr2

2 , κ∗ ← κ1+r ·κ+r2 ·κ2,

9 : A∗ ← A1 ·Ar
2, B∗ ← B1 ·Br

2 , C∗ ← C1 · Cr
2 ,

10 : (u∗, π∗)←
(
(µ∗, H∗, E∗, R∗, S∗, κ∗), (A∗, B∗, C∗)

)
,

11 : return
(
(u∗, π∗), T

)
.

u∗ ← FoldGro16.V(vk, u1, u2, T )

1 : r ← Hash(pk, u1, π1, u2, π2, T ),

2 : parse T as (T ′, R, S),

3 : µ∗ ← µ1 + r · µ2, H∗ ← H1 ·Hr
2 , E∗ ← E1 · (T ′)r · Er2

2 ,

4 : R∗ ← R1 ·Rr ·Rr2

2 , S∗ ← S1 ·Sr ·Sr2

2 , κ∗ ← κ1+r·κ+r2 ·κ2,

5 : return u∗ ← (µ∗, H∗, E∗, R∗, S∗, κ∗).

Fig. 7: The Folding Scheme for Groth16.

Proof Size Proving Time Verification Time

TIPP-based [7] 6 G1, 6 G2, (12 logn) GT LC (18 + ℓ)n P, 10n G1, 8n G2, (6n+ ℓn− ℓ) GT LC 16P , nℓ G1, 12 logn GT

SnarkFold 6 G1, 1 G2, 4 Zp
LC 2n P, n H, 11n G1, n G2, n GT , (2m− ℓ) Zp LC 3 P, 3 H, 2 G1, 1 RO
RC 5n G1, 2n H, 2n RO, n GT RC -

Table 1: Efficiency comparisons for proof aggregation schemes. “LC” is for the
cost of local computation, and “RC” is for the cost of the recursive circuit. P
indicates pairing operation, H indicates hash function, and RO indicates random
oracle query. ℓ is the size of Groth16 instance, and m is the total size of Groth16
instance and witness (as in Appendix B.1).

18



implemented with hash functions in applications, refer to Nova’s Lemma 4 for
more details). The result is depicted in Table 1.
Proof size. The aggregated proof contains of two relaxed R1CS instance uFold,n,
u∗
Fold,n, including 4 elements in G1 and 4 elements in Zp. Additionally, it contains

a Groth16 proof π′, which have 2 element in G1 and 1 element in G2. Therefore,
the proof πAGG has a total of 6 elements in G1, 1 element in G2, and 4 elements
in Zp.
Prover time. The aggregation prover (AGG.P) performs n iterations of FoldSNARK.P ,
Fold.P and tr(CirFold′). FoldSNARK.P involves 2n pairings, n hash computations,
9n exponentiations in G1, n exponentiations in G2, and n exponentiations in GT .
The recursive circuit Fold.P requires 2n exponentiations in G1 and 2m− ℓ scalar
multiplications in Zp. tr(CirFold

′) requires the cost of 5nG1+2nH+2nRO+nGT

in the recursive circuit.
Verification time. The aggregation verifier (AGG.V) first calls a hash function
to verify uFold.h. Then, it performs Fold.V with the cost of 2G1 + 2H + 1RO).
AGG.V additionally performs a Groth16 verification for proof u′, π′ with the cost
of 3 pairings (D can be precomputed).

7 Conclusion

In conclusion, we propose a novel proof aggregation scheme called SnarkFold
that significantly improves the efficiency of verifying multiple SNARK proofs.
Our SnarkFold is based on incrementally verifiable computation and employs a
new folding-based IVC called split IVC, which avoids costly transformations in
recursive circuit. SnarkFold achieves constant verification time and proof size,
making it a valuable tool for reducing user transaction fees in blockchain ap-
plications. We also provide detailed aggregation designs for Groth16 proofs, a
widely used zk-SNARK in real-world applications.

19



References

1. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars
Virza, and Nicholas P Ward. Aurora: Transparent succinct arguments for r1cs.
In Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19–23, 2019, Proceedings, Part I 38, pages 103–128. Springer, 2019.

2. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Advances in Cryptology - CRYPTO,
2014.

3. Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators
with applications to iops and stateless blockchains. In Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18–22, 2019, Proceedings, Part I 39, pages 561–586. Springer,
2019.

4. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE symposium on security and privacy (SP), pages 315–334. IEEE,
2018.

5. Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data without succinct arguments. In Advances in
Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference,
CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part I 41, pages
681–710. Springer, 2021.

6. Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. Proof-
carrying data from accumulation schemes. Cryptology ePrint Archive, 2020.

7. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely.
Proofs for inner pairing products and applications. In Advances in Cryptology–
ASIACRYPT 2021: 27th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 6–10, 2021, Proceed-
ings, Part III 27, pages 65–97. Springer, 2021.

8. Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryp-
tology ePrint Archive, 2019.

9. Nicolas Gailly, Mary Maller, and Anca Nitulescu. Snarkpack: Practical snark aggre-
gation. In International Conference on Financial Cryptography and Data Security,
pages 203–229. Springer, 2022.

10. Jens Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35, pages 305–326. Springer, 2016.

11. Daira Hopwood, Sean Bowe, Taylor Hornby, Nathan Wilcox, et al. Zcash protocol
specification. GitHub: San Francisco, CA, USA, 4(220):32, 2016.

12. Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments
to polynomials and their applications. In Advances in Cryptology-ASIACRYPT
2010: 16th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 5-9, 2010. Proceedings 16, pages
177–194. Springer, 2010.

13. Abhiram Kothapalli and Srinath Setty. Supernova: Proving universal machine
executions without universal circuits. Cryptology ePrint Archive, 2022.

20



14. Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-
knowledge arguments from folding schemes. In Annual International Cryptology
Conference, pages 359–388. Springer, 2022.

15. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. Communications of the ACM, 59(2):103–112,
2016.

16. Alexandre Miranda Pinto. An introduction to the use of zk-snarks in blockchains.
In Mathematical Research for Blockchain Economy: 1st International Conference
MARBLE 2019, Santorini, Greece, pages 233–249. Springer, 2020.

17. Michael Rosenberg, Mary Maller, and Ian Miers. Snarkblock: Federated anonymous
blocklisting from hidden common input aggregate proofs. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 948–965. IEEE, 2022.

18. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments
from bitcoin. In 2014 IEEE symposium on security and privacy, pages 459–474.
IEEE, 2014.

19. Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted
setup. In Annual International Cryptology Conference, pages 704–737. Springer,
2020.

20. Shravan Srinivasan, Ioanna Karantaidou, Foteini Baldimtsi, and Charalampos Pa-
pamanthou. Batching, aggregation, and zero-knowledge proofs in bilinear accu-
mulators. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 2719–2733, 2022.

21. Yi Sun. zkpairing, 2023. https://github.com/yi-sun/circom-pairingbenchmarks.

22. Scroll Tech. Scroll tech, 2023. https://github.com/scroll-tech.

23. Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Theory of Cryptography: Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008. Proceedings 5, pages
1–18. Springer, 2008.

24. Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

25. Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computa-
tion. In Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings,
Part III 39, pages 733–764. Springer, 2019.

26. Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges
made practical. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 3003–3017, 2022.

27. Min Zhang, Yu Chen, Chuanzhou Yao, and Zhichao Wang. Sigma protocols from
verifiable secret sharing and their applications. 2023.

28. Tianyu Zheng, Shang Gao, Yu Guo, and Bin Xiao. Kilonova: Non-uniform pcd with
zero-knowledge property from generic folding schemes. Cryptology ePrint Archive,
2023.

29. Polygon. Polygon zkevm, 2023. https://github.com/0xpolygonhermez.

21



A Formal Definitions

A.1 (zk-)SNARK

Definition 3 (Perfect Completeness). A SNARK satisfies perfect complete-
ness if for any PPT adversary A

Pr

SNARK.V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← SNARK.G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← SNARK.K(pp, s),
π ← SNARK.P(pk, u, w)

 = 1.

Definition 4 (Knowledge Soundness). A SNARK satisfies knowledge sound-
ness if for all PPT adversaries A there exists a PPT extractor E such that for
any randomness ρ

Pr

SNARK.V(vk, u, π)=1,
(pp, s, u, w) /∈R

∣∣∣∣∣∣∣∣
pp← SNARK.G(1λ),
(s, (u,w))← A(pp; ρ),
(pk, vk)←SNARK.K(pp, s),
w ← E(pp; ρ)

=negl(λ).

Definition 5 (Succinctness). A SNARK system is succinct if the size of the
SNARK proof π is poly-logarithmic in the size of the witness w.

Definition 6 (Zero-Knowledge). A zk-SNARK satisfies zero-knowledge if there
exists PPT simulator S such that for all PPT adversaries A(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
pp← SNARK.G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← SNARK.K(pp, s),
π ← SNARK.P(pk, u, w)

 ≈(pp, s, u, π)

∣∣∣∣∣∣∣∣∣∣
(pp, τ)← S(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← SNARK.K(pp, s),
π ← S(pp, u, τ)

 .

A.2 Proof Aggregation

Definition 7 (Perfect Completeness). A proof aggregation scheme for SNARK
(with proving key pkSNARK and verification key pkSNARK) satisfies perfect com-
pleteness if for any PPT adversary A

Pr

AGG.V(vk, n, u, πAGG) = 1,
SNARK.V(vkSNARK, u, π)=1

∣∣∣∣∣∣∣∣∣∣
pp← AGG.G(1λ),
(s′, (ui, πi)

n
i=1)← A(pp),

SNARK.V(vkSNARK, ui, πi)=1,∀i∈{1, ..., n},
(pk, vk)← AGG.K(pp, s′),
((u, π), πAGG)← AGG.P

(
pk, (ui, πi)

n
i=1

)

 = 1.

22



Definition 8 (Knowledge Soundness). A proof aggregation satisfies knowl-
edge soundness if for all PPT adversaries A and any randomness ρ

Pr


AGG.V(vk, n, u, πAGG) = 1,
SNARK.V(vkSNARK, u, π) = 1,
∃i s.t SNARK.V(vkSNARK, ui, πi)=0

∣∣∣∣∣∣∣∣∣∣∣∣

pp← AGG.G(1λ),
s← A(pp; ρ),
(pk, vk)← AGG.K(pp, s′),
((ui)

n
i=1, (u, π), πAGG)←

A(pp, pk; ρ),
(πi)

n
i=1 ← E(pp, u; ρ)

=negl(λ).

A.3 Incrementally Verifiable Computation

Definition 9 (Perfect Completeness). An IVC satisfies perfect completeness
if for any PPT adversary A

Pr


IVC.V(vk, i,
z0, zi, πi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← IVC.G(1λ),
(F, (i, z0, zi, zi−1, ωi−1, πi−1))← A(pp),
(pk, vk)← IVC.K(pp, F ),
zi = F (zi−1, ωi−1),
IVC.V(vk, i− 1, z0, zi−1, πi−1) = 1,
πi ← IVC.P(pk, i, z0, zi, zi−1, ωi−1, πi−1)

 = 1.

Definition 10 (Knowledge Soundness). An IVC satisfies knowledge sound-
ness if for any constant n ∈ N and all expected PPT adversaries A there exists
an expected PPT extractor E such that for any randomness ρ

Pr


zn ̸= z,
IVC.V(vk, n,
z0, z, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← IVC.G(1λ),
(F, (z0, z, π))← A(pp; ρ),
(pk, vk)← IVC.K(pp, F ),
(ω0, ..., ωn−1)← E(pp, z0, z; ρ),
zi = F (zi−1, ωi−1) ∀i ∈ {1, ..., n}

 = negl(λ).

Definition 11 (Succinctness). An IVC is succinct if the size of the IVC proof
πn does not grow with the number of iterations n.

A.4 Folding Scheme

Consider a folding scheme between the prover P and verifier V. Let (u,w) ←
⟨P(pk, w1, w2),V(vk)⟩(u1, u2) denote the verifier’s output instance u and the
prover’s output witness w from the interaction of the folding scheme on instance-
witnesses pairs (w1, u1) and (w2, u2), prover key pk, and verifier key vk. The
following definitions can also be generalized to multiple folding.

Definition 12 (Perfect Completeness). A folding scheme satisfies perfect
completeness if for any PPT adversary A

Pr

(pp, s, u, w) ∈ R
∣∣∣∣∣∣∣∣∣∣
pp← Fold.G(1λ),
(s, (u1, w1), (u2, w2))← A(pp),
(pp, s, u1, w1), (pp, s, u2, w2) ∈ R,
(pk, vk)← Fold.K(pp, s),
(u,w)←⟨P(pk, w1, w2),V(vk)⟩(u1, u2)

=1.

23



Definition 13 (Knowledge Soundness). A folding scheme satisfies knowl-
edge soundness if for all expected PPT adversaries A, there exists an expected
PPT extractor E such that for any randomness ρ

Pr

(pp, s, u, w) ∈ R
∣∣∣∣∣∣∣∣
pp← Fold.G(1λ),
(s, (u1, u2))← A(pp; ρ),
(pk, vk)← Fold.K(pp, s),
(u,w)← ⟨A(pk; ρ),V(vk)⟩(u1, u2)

−
Pr

 (pp, s, u1, w1) ∈ R,
(pp, s, u2, w2) ∈ R

∣∣∣∣∣∣
pp← Fold.G(1λ),
(s, (u1, u2))← A(pp; ρ),
(w1, w2)← E(pp; ρ)

 ≤ negl(λ).

B Details of zk-SNARKs

B.1 Groth16

Groth16 describes the circuit constraints as a quadratic arithmetic program R,
which is defined over the public parameters pp = (G1,G2,GT , p, e, g, h), struc-
ture

(
ℓ, (ui(X), vi(X), wi(X))mi=1, t(X)

)
, instance (a1, ..., aℓ) ∈ Zℓ

p, and witness

(aℓ+1, ..., am) ∈ Zm−ℓ
p with a0 = 1, such that

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X),

for some (n−2)-degree quotient polynomial h(X), where n is the degree of t(X).
In SNARKGro16.K, crs is set as follows with randomly sampled α, β, γ, δ, x←

Z∗
p: (

[α]1, [β]1, [β]2, [γ]2, [δ]1, [δ]2,
(
[xi]1, [x

i]2
)n−1

i=0
,

([
xit(x)

δ

]
1

)n−1

i=0

,

([
βui(x) + αvi(x) + wi(x)

γ

]
1

)ℓ

i=0

,

([
βui(x) + αvi(x) + wi(x)

δ

]
1

)m

i=ℓ+1

)
.

In SNARKGro16.P, A,B,C is computed as follows with randomly sampled
r, s← Zp:

A =

[
α+

m∑
i=0

aiui(x) + rδ

]
1

, B =

[
β +

m∑
i=0

aivi(x) + sδ

]
2

,

C =

[∑m
i=ℓ+1 ai

(
βui(x) + αvi(x) + wi(x)

)
+ h(x)t(x)

δ

+ s

(
α+

m∑
i=0

aiui(x)

)
+ r

(
β +

m∑
i=0

aivi(x)

)
+ rsδ

]
1

.

24



In SNARKGro16.V, H and D is computed as follows:

H =

[∑ℓ
i=0 ai

(
βui(x) + αvi(x) + wi(x)

)
γ

]
1

,

D = e
(
[α]1, [β]2

)
.

C Formal Proofs

C.1 Lemmas

Lemma 1 (Forking Lemma for Folding Schemes [14]). Consider a (2k+
1)-move folding scheme Fold = (G;K;P;V). Fold satisfies knowledge soundness
if there exists a PPT E such that for all input instance pairs (u1;u2), outputs
satisfying witnesses (w1;w2) with probability 1 − negl(λ), given public parame-
ters pp, a structure s, and an (n1, ..., nk)-tree of accepting transcripts and the
corresponding folded instance-witness pairs (u;w). This tree comprises n1 tran-
scripts (and the corresponding instance-witness pairs) with fresh randomness in
the verifier’s first message, and for each such transcript, n2 transcripts (and
the corresponding instance-witness pairs) with fresh randomness in the verifier’s

second message; etc., for a total of
∏k

i=1 ni leaves bounded by poly(λ).

C.2 Proof of Theorem 1

Perfect completeness. Consider (F, i, z0, zi) and the corresponding inputs
(zi−1, ωi−1) such that zi = F (zi−1, ωi−1). Let pp ← IVC.G(1λ) and (pk, vk) ←
IVC.K(pp, F ). Given a proof πi−1 such that IVC.V(vk, i, z0, zi−1, πi−1) = 1, we
prove πi ←
IVC.P(pk, i, z0, zi, zi−1, ωi−1, πi−1) such that IVC.V(vk, i, z0, zi, πi) = 1 by induc-
tion on i.

Base Case (i = 1): By the base case of IVC.P (i = 1), we have π1 =
(
(u∗

F,⊥, w
∗
F,⊥),

(uFold,1, wFold,1), (u
∗
Fold,⊥, w

∗
Fold,⊥)

)
. By definition, (u∗

F,⊥, w
∗
F,⊥) is a trivial sat-

isfying instance-witness pair for F and (u∗
Fold,⊥, w

∗
Fold,⊥) is a trivial satisfying

instance-witness pair for CircF. Moreover, by construction, (uFold,1, wFold,1) must
also be satisfying and uFold,1.h = Hash(vk, 1, z0, z1, u

∗
F,⊥, u

∗
Fold,⊥). Additionally,

uFold,1 is a non-relaxed instance as it is generated from the CircF directly. There-
fore, we have IVC.V(vk, 1, z0, z1, π1) = 1.

Inductive Step (i = 1 to n): Assume the proof in the (i − 1)-th step πi−1 =(
(u∗

F,i−1, w
∗
F,i−1), (uFold,i−1, wFold,i−1), (u

∗
Fold,i−1, w

∗
Fold,i−1)

)
is a satisfying proof

such that IVC.V(vk, i− 1, z0, zi−1, πi−1) = 1. Given πi =
(
(u∗

F,i, w
∗
F,i),

(uFold,i, wFold,i), (u
∗
Fold,i, w

∗
Fold,i)

)
generated by IVC.P(pk, i, z0, zi−1, ωi−1, πi−1), by

construction, we have

(u∗
F,i, w

∗
F,i)← FoldF .P

(
pkF , (uF,i, wF,i), (u

∗
F,i−1, w

∗
F,i−1)

)
,

(u∗
Fold,i, w

∗
Fold,i)← Fold.P

(
pkFold, (uFold,i−1, wFold,i−1), (u

∗
Fold,i−1, w

∗
Fold,i−1)

)
.

25



Since (u∗
F,i−1, w

∗
F,i−1), (uFold,i−1, wFold,i−1), and (u∗

Fold,i−1, w
∗
Fold,i−1) are satisfy-

ing instance-witness pairs (implied by IVC.V in the previous round), and (uF,i, wF,i)
is also a satisfying instance-witness pair (implied by the construction), we have
that (u∗

F,i, w
∗
F,i) and (u∗

Fold,i, w
∗
Fold,i) are satisfying instance-witness pairs based

on the perfect completeness of FoldF and Fold.

Moreover, since uFold,i−1.h = Hash(vk, i − 1, z0, zi−1, u
∗
F,i−1, u

∗
Fold,i−1) and

uFold,i−1 is a non-relaxed instance (implied by the correctness of IVC.V in the pre-
vious round), the (uFold,i, wFold,i) constructed by tr

(
CirFold, (vk, i, z0, zi−1, zi, uF,i,

u∗
F,i−1, uFold,i−1, u

∗
Fold,i−1)

)
is a satisfying pair where uFold,i.h = Hash(vk, i, z0, zi,

u∗
F,i, u

∗
Fold,i) and uFold,i non-relaxed, by the perfect correctness of the underlying

folding schemes. Thus, we have IVC.V(vk, i, z0, zi, πi) = 1.

Knowledge Soundness. Let pp ← IVC.G(1λ). Given adversarially chosen (F )
by an expected PPT adversaryA, generate the keys with (pk, vk)← IVC.K(pp, F ).
A additionally outputs (z0, z, π) such that IVC.V(vk, i, z0, z, π) = 1 for a con-
stant n with probability ϵ. We construct an expected polynomial-time extractor
E that takes (pp, z0, z) and outputs (ω0, ..., ωn−1) such that zi = F (zi−1, ωi−1)
and zn = z with probability ϵ− negl(λ).

Specifically, we show E can be constructed inductively by an expected polynomial-
time extractor Ei(pp; ρ) that with probability ϵ− negl(λ) outputs

(
(zi, ..., zn−1),

(ωi, ..., ωn−1), πi

)
such that zj = F (zj−1, ωj−1) and IVC.V(vk, i, z0, zi, πi) = 1

for all j ∈ {i + 1, ..., n}. This implies zn = z since z0 = zi when i = 0 (im-
plied by IVC.V = 1 when i = 0) and (ω0, ..., ωn−1) extracted by E0 satisfies
zi = F (zi−1, ωi−1) for all i > 0 (implied by IVC.V = 1 when i > 0).

To construct Ei−1, we assume there exists an Ei that satisfies the inductive hy-
pothesis. Then we use Ei to construct an adversary Ai−1 for the folding schemes.
By further invoking two extractors for folding schemes, we can construct Ei−1

that satisfies the inductive hypothesis. The detailed construction is as follows.

Base Case (i = n): En outputs (⊥,⊥, πn) where πn = π is the output of A.
By the premise, En succeeds with probability ϵ in expected polynomial-time.

Inductive Step (i = n− 1 to 1): Suppose we have constructed Ei that outputs(
(zi, ..., zn−1), (ωi, ..., ωn−1), πi

)
and a πi satisfies the inductive hypothesis. We

first construct an adversary Ai−1 for the folding schemes as follows:

Ai−1(pp; ρ)

1 :
(
(zi, ..., zn−1), (ωi, ..., ωn−1), πi

)
← Ei(pp; ρ),

2 : parse πi as
(
(u∗

F,i, w
∗
F,i), (uFold,i, wFold,i), (u

∗
Fold,i, w

∗
Fold,i)

)
,

3 : parse wFold,i to retrieve (uF,i, u
∗
F,i−1, uFold,i−1, u

∗
Fold,i−1),

4 : output
(
(uF,i, u

∗
F,i−1, uFold,i−1, u

∗
Fold,i−1), (u

∗
F,i, w

∗
F,i), (u

∗
Fold,i, w

∗
Fold,i)

)
.

The third step is correct since (uFold,i, wFold,i) is derived from tr(CirFold, ∗).
By the inductive hypothesis, we have IVC.V(vk, i, z0, zi, πi) = 1. This implies
(uFold,i, wFold,i) is a non-relaxed satisfying pair for CirFold relation in Equation
(2). Therefore, wFold,i must include u∗

F,i−1, uFold,i−1, and u∗
Fold,i−1.

26



Based on the construction of CirFold and the binding property of the hash
function, we have

u∗
F,i ← FoldF .V(vkF , uF,i, u

∗
F,i−1),

u∗
Fold,i ← Fold.V(vkFold, uFold,i−1, u

∗
Fold,i−1).

Therefore, Ai−1 succeeds in producing satisfying folded instance-witness pairs
(u∗

F,i, w
∗
F,i) and (u∗

Fold,i, w
∗
Fold,i) for instances (uF,i, u

∗
F,i−1) and (uFold,i−1, u

∗
Fold,i−1),

respectively.
Based on the knowledge soundness of the folding schemes FoldF and Fold,

we can further invoke the extractors of them, EF and EFold, which will output
satisfying witnesses (wF,i, w

∗
F,i−1) for CirF and (wFold,i−1, w

∗
Fold,i−1) for CirFold

respectively in (i − 1)-th round. zi−1 and ωi−1 will be included in wF,i. The
detailed construction of Ei−1 is as follows:

Ei−1(pp; ρ)

1 :
(
(uF,i, u

∗
F,i−1, uFold,i−1, u

∗
Fold,i−1),

(u∗
F,i, w

∗
F,i), (u

∗
Fold,i, w

∗
Fold,i)

)
← Ai−1(pp; ρ),

2 : retrive
(
(zi, ..., zn−1), (ωi, ..., ωn−1), πi

)
from Ai−1’s internal states,

3 : (wF,i, w
∗
F,i−1)← EF (pp; ρ), (wFold,i−1, w

∗
Fold,i−1)← EFold(pp; ρ),

4 : parse wF,i to retrieve (zi−1, ωi−1),

5 : πi−1 ←
(
(u∗

F,i−1, w
∗
F,i−1), (uFold,i−1, wFold,i−1), (u

∗
Fold,i−1, w

∗
Fold,i−1)

)
,

6 : output
(
(zi−1, ..., zn−1), (ωi−1, ..., ωn−1), πi−1

)
.

Since EF and EFold only incur a negligible soundness error, Ei−1 succeeds with
probability ϵ− negl(λ).

Now we argue the validity of the outputs. First, (zi−1, ..., zn−1) and (ωi−1, ..., ωn−1)
are valid since zj = F (zj−1, ωj−1) for all j ∈ {i + 1, ..., n} by hypothesis, and
(uF,i, wF,i) is a non-relaxed (by the validity of (uFold,i, wFold,i)) satisfying (by EF )
pair, which implies zi = F (zi−1, ωi−1).

Next, we argue πi−1 is valid. Since (uFold,i, wFold,i) satisfies CirFold in i-th
round and uFold,i−1 is retrieved from wFold,i, we have uFold,i−1.h = Hash(vk, i −
1, z0, zi−1, u

∗
F,i−1, u

∗
Fold,i−1) and uFold,i−1 are non-relaxed instances. Additionally,

by the base case check of CirFold, we ensure zi−1 = z0 when i = 1. Since Ei−1

succeeds with probability ϵ− negl(λ), we have IVC.V(vk, i− 1, z0, zi−1, πi−1) = 1
with probability ϵ− negl(λ).
Succinctness. The proof πi contains three instance-witness pairs: (u∗

F,i, w
∗
F,i),

(uFold,i, wFold,i), and (u∗
Fold,i, w

∗
Fold,i). The folding schemes ensure (u∗

F,i, w
∗
F,i) and

(u∗
Fold,i, w

∗
Fold,i) are of the size of one instance-witness pair, which are indepen-

dent from i. (uFold,i, wFold,i) is also independent from i since it is a non-relaxed
instance-witness pair. Therefore, the size of πi does not increase with i.

C.3 Proof of Theorem 3

Perfect completeness. Given two augmented relaxed Groth16 instance-proof
pairs,

(
(µ1, H1, E1, R1, S2), (A1, B1, C1)

)
and

27



(
(µ2, H2, E2, R2, S2), (A2, B2, C2)

)
, the folded pair

(
(µ∗, H∗, E∗, R∗, S∗),

(A∗, B∗, C∗)
)
is a satisfying pair since

e(A∗, B∗) · e(C∗, [δ]2)
−µ∗
· e(H∗, [γ]2)

−µ∗
·D−µ∗2

=e(A1, B1) · e(C1, [δ]2)
−µ1 · e(H1, [γ]2)

−µ1 ·D−µ2
1

·
(
e(A1, B2) · e(A2, B1) · e(C−µ2

1 C−µ1

2 , [δ]2)

·e(H−µ2

1 H−µ1

2 , [γ]2) ·D−2µ1µ2
)r

·
(
e(A2, B2) · e(C2, [δ]2)

−µ2 · e(H2, [γ]2)
−µ2 ·D−µ2

2

)r2

=E1 ·e(R1, [δ]2)·e(S1, [γ]2)·Dκ1 ·
(
T ′ ·e(R, [δ]2)·e(S, [γ]2)·Dκ

)r

·
(
E2 · e(R2, [δ]2) · e(S2, [γ]2) ·Dκ2

)r2

=E∗ · e(R∗, [δ]2) · e(S∗, [γ]2) ·Dκ∗
,

where T ′ = e(A1, B2) · e(A2, B1), R = C−µ2

1 C−µ1

2 , S = H−µ2

1 H−µ1

2 , and κ =
−2µ1µ2.

Knowledge Soundness. Consider public parameters pp for FoldGro16, an ad-
versarially chosen augmented relaxed Groth16 proof structure ([δ]2, [γ]2, D) ∈
(G1,G2,GT ), and two adversarially chosen instances (µ1, H1, E1, R1, S1, κ1) and
(µ2, H2, E2, R2, S2, κ2). We prove knowledge soundness of the interactive ver-
sion of the protocol via the forking lemma in Lemma 1 (the corresponding
non-interactive version can be proved under the Fiat-Shamir heuristic in the
random oracle model): there exists a PPT extractor E such that when given pp,
([δ]2, [γ]2, D), and a tree of accepting transcripts and the corresponding folded
instance-proof pair, outputs two satisfying proofs with probability 1− negl(λ).

Specifically, when given 2 accepting transcripts with the same T ,(
T, ri, (A

∗
i , B

∗
i , C

∗
i )
)2
i=1

, interpolate points (Â1, B̂1, Ĉ1) and (Â2, B̂2, Ĉ2) such
that for all i ∈ {1, 2},

Â1 · Âri
2 = A∗

i , B̂1 · B̂ri
2 = B∗

i , Ĉ1 · Ĉri
2 = C∗

i .

Now we show that the extracted proofs (Â1, B̂1, Ĉ1) and (Â2, B̂2, Ĉ2) are
valid proofs to the corresponding instances. Since (A∗

i , B
∗
i , C

∗
i ) are satisfying

proofs for i ∈ {1, 2}, we have

e(A∗
i , B

∗
i ) · e(C∗

i , [δ]2)
−µ∗

i · e(H∗
i , [γ]2)

−µ∗
i ·D−(µ∗

i )
2

=E∗
i · e(R∗

i , [δ]2) · e(S∗
i , [γ]2) ·Dκ∗

i , ∀i ∈ {1, 2},
(5)

28



where (µ∗
i , H

∗
i , E

∗
i , R

∗
i , S

∗
i , κ

∗
i )

2
i=1 are computed based on FoldGro16.V by E . The

left-hand side of Equation (5) equals

e(A∗
i , B

∗
i ) · e(C∗

i , [δ]2)
−µ∗

i · e(H∗
i , [γ]2)

−µ∗
i ·D−(µ∗

i )
2

=e(Â1Â
ri
2 , B̂1B̂

ri
2 ) · e(Ĉ1Ĉ

ri
2 , [δ]2)

−(µ1+riµ2)

· e(H1H
ri
2 , [γ]2)

−(µ1+riµ2) ·D−(µ1+riµ2)
2

=e(Â1, B̂1) · e(Ĉ1, [δ]2)
−µ1 · e(H1, [γ]2)

−µ1 ·D−µ2
1

·
(
T ′ · e(R, [δ]2) · e(S, [γ]2) ·Dκ

)ri

·
(
e(Â2, B̂2) · e(Ĉ2, [δ]2)

−µ2 · e(H2, [γ]2)
−µ2 ·D−µ2

2

)r2i
.

The right-hand side of Equation (5) equals

E∗
i · e(R∗

i , [δ]2) · e(S∗
i , [γ]2) ·Dκ∗

i

=
(
E1(T

′)riE
r2i
2

)
·e
(
R1R

riR
r2i
2 , [δ]2

)
·e
(
S1S

riS
r2i
2 , [γ]2

)
·Dκ1+riκ+r2i κ2

=E1 ·e(R1, [δ]2)·e(S1, [γ]2)·Dκ1 ·
(
T ′ ·e(R, [δ]2)·e(S, [γ]2)·Dκ

)ri

·
(
E2 · e(R2, [δ]2) · e(S2, [γ]2) ·Dκ2

)r2i
.

Since Equation (5) holds for i ∈ {1, 2}, by expanding and interpolating, we
have the following relations hold with probability 1− negl(λ)

e(Âi, B̂i) · e(Ĉi, [δ]2)
−µi · e(Hi, [γ]2)

−µi ·D−µ2
i

=Ei · e(Ri, [δ]2) · e(Si, [γ]2), ∀i ∈ {1, 2},

which implies the extracted proofs (Â1, B̂1, Ĉ1) and (Â2, B̂2, Ĉ2) are valid proofs
to the corresponding instances.

29


