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Abstract

The semidirect discrete logarithm problem (SDLP) is the following
analogue of the standard discrete logarithm problem in the semidirect
product semigroup G x End(G) for a finite semigroup G. Given g €
G,o € End(G), and h = [[\Z} 0'(g) for some integer ¢, the SDLP(G, o),
for g and h, asks to determine ¢. As Shor’s algorithm crucially depends on
commutativity, it is believed not to be applicable to the SDLP. Previously,
the best known algorithm for the SDLP was based on Kuperberg’s subex-
ponential time quantum algorithm. Still, the problem plays a central role
in the security of certain proposed cryptosystems in the family of semidi-
rect product key exchange. This includes a recently proposed signature
protocol called SPDH-Sign. In this paper, we show that the SDLP is even
easier in some important special cases. Specifically, for a finite group G,
we describe quantum algorithms for the SDLP in G x Aut(G) for the fol-
lowing two classes of instances: the first one is when G is solvable and the
second is when G is a matrix group and a power of o with a polynomially
small exponent is an inner automorphism of G. We further extend the
results to groups composed of factors from these classes. A consequence
is that SPDH-Sign and similar cryptosystems whose security assumption
is based on the presumed hardness of the SDLP in the cases described
above are insecure against quantum attacks. The quantum ingredients
we rely on are not new: these are Shor’s factoring and discrete logarithm
algorithms and well-known generalizations.



1 Introduction

The presumed difficulty of computing discrete logarithm problem (DLP) in cer-
tain groups is essential for the security of the Diffie-Hellman key exchange which
is the basis for a number of communication protocols deployed today. However,
since the invention of Shor’s algorithm [Sho94], the problem of computing dis-
crete logarithm can be solved efficiently in the domain of quantum computing.
Massive efforts have been done in order to construct alternative versions of
the discrete logarithm problem that allow for the Diffie-Hellman key exchange
without being vulnerable to Shor’s algorithm. Since that algorithm takes ad-
vantage of the group structure underlying the problem, a DLP analogue in the
framework of commutative group actions has been proposed. It is an instance
of a constructive membership testing in orbits of commutative permutation
groups (on large finite sets), called vectorization problem. The framework orig-
inally appears in [Cou06] and it becomes a central problem of isogeny-based
cryptography, CSIDH [CLM™ 18] for example. Another natural approach which
is worth consideration to escape from the quantum attack is a DLP analogue in
non-commutative groups. It is natural in a sense that Shor’s algorithm crucially
depends on the commutativity of the underlying groups. In this direction, an
analogue of the DLP in the semidirect product groups has been proposed. The
proposal firstly appears in its full generality in [HKKS13]. Specifically, let G be
a finite semigroup and End(G) be the monoid of endomorphisms of G. Then we
have the semidirect product G x End(G) where the multiplication is defined by
(g,0)(h,9) = (go(h),c¢). Moreover, we have the formula for exponentiation

(g.0)" = (f[ oi<g>,at> ,
1=0

where Hf:k a; stands for the product ag . ..-ay in G. This leads to an analogue
of the standard discrete logarithm problem in the semidirect product semigroup
defined as follows. Given g € G,0 € End(G), and h = Hf;é o'(g) for some
integer ¢, determine .

The SDLP is interesting as it allows us to perform a Diffie-Hellman key ex-
change procedure, known as semidirect product key exchange (SPDKE). Suppose
two parties, Alice and Bob, agree on a public group G, an element g € G, and
an endomorphism o € End(G). Then they can arrive at the same G—element
as follows.

1. Alice picks a random positive integer x and computes (g,0)* = (A4,0%).
Then, Alice sends A = [T/Z, o*(g) to Bob.

2. Bob also picks a random positive integer y, computes (g,0)¥ = (B, d¥)
and sends B = [[YZ, o(g) to Alice.

3. Alice computes its shared key K4 = Ao”™(B).

4. Bob computes its shared key Kg = Bo¥(A).



Note that K4 = Kp, as the following calculation shows.
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The key recovery problem of SPDKE is the problem of computing the shared key
K4 = Kp from the public information g, A, B € G and ¢ € End(G). Clearly,
similar to the case of the standard DLP and the corresponding Diffie-Hellman
key exchange, the key recovery problem of SPDKE and the difficulty of SDLP
are heavily related. Particularly, if one can solve an instance of the SDLP, then
one is also able to break the corresponding SPDKE.

In the description of the SDLP above, an instance of the SDLP in GxEnd(G)
is only specified by an endomorphism ¢, hence we can describe the SDLP in an
alternative, more compact way.

First, we observe some properties of semidirect product semigroups that
would be useful for our purpose. Let G and T be semigroups and let o : t — oy
be a homomorphism from 7" to the monoid of endomorphisms of G. Then the
semidirect product G x, T is the set G x T equipped with the multiplication
(g,t)(¢',t") = (goi(g’),tt'). Tt is straightforward to check that G x, T is a
semigroup. Also, if both G and T are finite groups and o; is the identity
map of G, then G x, T is also a group. There is a natural representation
p:(9,t) = peg) of G x5, T as a semigroup of transformations on G, given by
Pig.t)(9") = goi(g’). This is indeed a representation, i.e., a homomorphism to
the semigroup of transformations, because we have (g,t)(g',t") = (p(g,+)(9"), tt")
and

Plg,t)(g"t') = Plpeg,e)(g"),tt") = Plg,t) © Pg',t')-

If G x, T is a group as above then p gives a permutation representation of the
group G x, T.

Note that if G is a monoid and ¢ is a monoid endomorphims of G (that
is, 0(lg) = 1g), then we have (g,1)* = (p(g,1):(1g),t). This shows that, as
already observed by Battarbee et al. in [BKPS22], the SDLP can be cast as
a constructive membership problem in an orbit of a transformation semigroup.
Using the above observation and notations we have the following definition for
the semidirect discrete logarithm that will be used throughout this paper.

Definition 1. Let o be an endomorphism of the finite monoid G with identity
element 1 and consider the semigroup G X, Z>o where o, = o' for every
t € Z>o. Then SDLP(G, o) is the following problem. Given elements g and h
of G, determine the set of non-negative integers t such that

h = pgay(la).



The set to be determined is either the empty set, a singleton, or {z¢ + az :
x € Z>o} for some integers zo > 0 and a > 0. Indeed, an orbit of a semigroup
generated by a single transformation on a finite set consists of a tail of a certain
length called the indez, followed by a recurrent cycle, whose length is called the
period. The index can be zero while the period is positive. Note that these
parameters can be computed by a slight modification of Shor’s period finding
quantum algorithm, see [CI14]. In our case, the transformation semigroup is
generated by p(, 1) and our objective is the orbit of it starting at 1g. The
solution set is a singleton if h is in the tail, while in the case when A is in the
cycle, it is {zo + ax : © € Z>¢}, where a is the period and z is the position of
h in the cycle, shifted by the index.

We remark that the assumptions that G is a monoid and that ¢ is a monoid
endomorphism of G are rather technical, though they offer some notational
conveniences. In the general semigroup case, one should solve the equation
h = p(g1)e-1(9)-

Battarbee et al. [BKPS22] present a subexponential quantum algorithm for
the SDLP in so-called the easy family of semigroups {G,},ep for some count-
able set P. A family of semigroups {G,},cp is called easy if the size |G| grows
monotonically and polynomial in p, and the evaluation costs of gh and o(g) is
O((logp)?) for any p € P, g,h € G, and 0 € End(G,). Indeed, the critical
problem is determining the position of A in the cycle, which is actually an in-
stance of the vectorization problem, and hence reduces to the abelian hidden
shift problem for which Kuperberg’s subexponential time algorithm [Kup05] is
available. On the other hand, there exist several efficient algorithms that break
the SPDKE protocols in some specific groups without solving the correspond-
ing SDLP, instead exploiting the structure of the platform groups to directly
solve the corresponding key recovery problem. See [BKS22] for a more detailed
survey on the semidirect product key exchange. The most recent work in this
direction is by Battarbee et al. [BKPS23|. They propose a post-quantum sig-
nature scheme, called SPDH-Sign, where the security depends on the presumed
difficulty of the group case of the SDLP. Moreover, they propose non-abelian
groups of order p? for some odd prime p as candidate groups for SPDH-Sign.

In this paper, we work over black-box groups with non-necessarily unique
encoding of elements to obtain sufficiently general results. (Together with as-
suming ability of evaluating powers of o, this corresponds to the easy families
of [BKPS22].) The concept of black-box groups was introduced by Babai and
Szemerédi [BS84] for studying the structure of finite matrix groups. Elements
of a black-box group G are represented by binary strings of a certain length and
the group itself is given by a list of generators. The group operations are given
by oracles. Here we also assume an oracle for computing 07 (g) for g € G and
J € Z~g. In general, it is not required that every group element is represented
by a unique code-word. Instead, there is also an oracle for testing whether two
strings represent the same group element. Here we assume a stronger oracle,
a labeling. It is a function A defined on the code-words for the group elements
where z and y represent the same group element if and only if A(z) = A(y).
We use the term black-box group with unique labeling for that sort of black-box



groups. The labeling makes it possible to compute the structure of G when G
is a solvable black-box group by the quantum algorithm of [IMS01, Theorem 7].
(In that paper the term secondary encoding is used for the labeling.) The notion
includes black-box groups with unique encoding. We need the generalization in
order to handle certain factor groups. To illustrate how this can occur, assume
that initially we work with a matrix group G and o is given as conjugation by a
matrix (possibly outside G) and we have another, non-faithful matrix represen-
tation ¢ of G whose kernel is o-invariant. Suppose further that we need to solve
the SDLP for ¢(g) and ¢(h) in Im(¢) and the automorphism induced by o. (Re-
call that this is the unique map @ : Im(¢) — Im(¢) satisfying ¥ (o(z)) = 7 (x). It
is well-defined as the kernel of ¢ is required to be o-invariant.) It turns out that
we would have difficulties with evaluating powers of the induced automorphism
if we used the natural unique encoding of the elements of Im(¢) by matrices. (In
general, this would require finding finding an element of the pre-image ¢~!(x)
for Im(¢).) We get around the issue by using the original matrices to encode
the elements of Im(¢) and to multiply them; while considering ¢ as a labeling
(and possibly also as further help). This gives us a simple way to evaluate the
induced automorphism.

The SDLP(G, o) is called the group-base case if G is a group, and we call it
the (full) group case when G is a group and o is an automorphism of G. In this
paper we focus on the group-base case. If, in addition, ¢ is an automorphism
of G then one could replace the monoid Zx>, with an appropriate finite cyclic
group Z,, = Z/mZ where m is a multiple of the order of ¢ and work over the
finite semidirect product group of G and Z,,. This justifies the terminology.

Contributions. In this paper, we provide an analysis of the SDLP in some
interesting classes of groups. Particularly, in section 2, we first give a reduction
from the group-base case to the group case of the SDLP. Moreover, using es-
sentially the same idea, we show that there exists a recursion from the SDLP
in a group into its quotient groups and subgroups. In section 3, we then pro-
pose efficient quantum algorithms based on Shor’s algorithm for the group case
SDLP(G, o) for the following cases:

1. The automorphism o is of small order, i.e., polynomial in log|G|;
2. The group G is solvable;

3. The group G is a matrix group over a finite field, i.e., G < GL4(F,), where
q is a power of a prime and ¢ is an inner automorphism of G;

4. Aflag 1l = My < My < ... < My = G of o-invariant normal subgroups
M; <1 G is given together with homomorphisms v; from M; with kernel
M;—y (i=1,...,k), where for each ¢, ¢; maps M; to either

4.1 a black-box group with unique labeling and when automorphism of
Im(%);) induced by o has polynomially small order; or

4.2 a solvable black-box group with unique labeling; or



4.3 a matrix group over a finite field, in which case we also assume that
a power of the induced automorphism with a polynomially small
exponent coincides with the conjugation by some matrix.

As a consequence, SPDH-Sign protocol in [BKPS23] and all other SPDKE
cryptographic protocols whose platform groups are in the above cases do not
belong to the realm of post-quantum cryptography. We remark that, a nor-
mal series together with the homomorphisms having the properties required in
item 4., can be efficiently computed for quite a wide class of finite groups us-
ing advanced algorithms of computational group theory. These include matrix
groups over finite fields of odd characteristic making the innerness assumption
of item 3. unnecessary when ¢ is odd, see the Appendix for a sketch of proof.
We even think that it is difficult to propose any ”concrete” platform group that
item 4. is not applicable to, so a viable platform for SPDH-Sign protocol should
be a semigroup quite far from any group.

2 Reduction and recursion of SDLP

In this section, we provide the reduction of the group-base case to the group
case, and we also describe a recursion tool that passes the SDLP in a group to
its quotient groups and subgroups.

From (g,1)" = (p(g,1)¢(1¢),t) we infer the following identity

Pt (1G) = Pioeyayr (1))t (1G)- (1)

We will frequently use this fact to reduce an instance of the SDLP for the
endomorphism ¢ to an instance for ¢” in place of o with suitable choices of 7.

2.1 Reduction from the group-base case to the group case

Let G be a finite group and ¢ be an endomorphism of G. We will describe a
reduction from SDLP(G, o) to SDLP(K, ¢’) where K is a subgroup of G and ¢’
is the restriction of o to K which forms an automorphism.

Let K = N%2,0'(G) and let ko be the smallest non-negative integer such
that K = o (G). Obviously, ko < [log|G|]. Let k > ko, where such a k can
be ”blindly” chosen by taking an integer greater than a known upper bound for
log |G|. (Such an upper bound can be ¢, where binary strings of length ¢ encode
the group elements.) Then K = o*(G) and the restriction of o to K is an
automorphism of K. Let r be the length of the orbit {p(,x(g)1):(1c) : t € Z>o}

and put M = ker o* = kero*°. Then K = G/M, KN M = {1¢}, and we have
r= min{t € Lo : p(gk(g)yl)t(lg) = 1g} = min{t € Lo : p(g,l)t(lg) € M}

Let gl = p(g71)r(lc). Then p(g71)7‘t(1G) = P(g',r)t(lc)- As g’ e M = kerak,
for rt > k we have 0™ (g') = 1g, and hence py y1(la) = g'o”(g') - ... -
o"t(g)o" (") = g'o"(g)) ... " V(g) = p(y .y (1g). It follows that

Pg1yran+s (1a) = pegayri+s (1), (2)



By equation (2), if the solution set of the SDLP in K for ¢*(g) and o*(h) is
{s+rt:t € Z>p} for some 0 < s < r, then the set of solutions of the SDLP in G
for g and h is either the empty set, a singleton {s+rto}, or {s+ 71t :t € Z>y, },
for some tog < [ko/r] < [log|G|]. Therefore, one can solve the SDLP(G, o) for g
and h by solving SDLP(K, o|x) for o¥(g) and o*(h), followed by an exhaustive
search. This gives the following theorem.

Theorem 1. There is a classical polynomial time reduction from an instance
of the group-base case SDLP to an instance of the group case SDLP.

2.2 An easy reduction

In the group case, we have the following simple reduction based on brute force.
This will be useful when a power of the automorphism o with polynomially
small exponent has some desired property.

Proposition 2. Assume that o is an automorphism of the group G. Then, for
every positive integer k, SDLP(G, o) can be reduced to k instances of SDLP(G, o*).

Proof. We look for the smallest non-negative solution of the SDLP in the form
s+tk for s=0,...,k— 1. We have

p(gxl)s'*'““(lG) = P(g,1)* (p(g7l)m(1G))
= p(g.1)s (P{g 1y (1))
= Pa.)* (Ploy, n 1) (16)));

whence h = p(g’l)s#»tk(lG) if and only if p(g,l)*s(h) = IO(P(ng)k(lG),k)t(lG))‘ Let
g = pgayr(le) and b’ = p(41)-s(h). Then, we need to solve the SDLP for ¢’
and A/, where we replace o by o*. O

2.3 Recursion into quotient groups and subgroups

We will show that one can solve the SDLP(G, o), for a group G and o € Aut(G),
by recursively solving an instance of the SDLP in a quotient group and a sub-
group of G. The main idea of recursion is essentially the same as those used in
the preceding subsections.

Theorem 3. Let G and G be black-box groups with unique labeling and let an
automorphism o of G be given by a black box for evaluating the powers o® on
codewords for group elements. Assume that we are given a o-invariant normal
subgroup M of G and a group homomorphism v : G — G with kernel M. We
assume that v can be evaluated efficiently and we have a black box for evaluating
powers of the automorphism & of Im(v) induced by o. Then SDLP(G,c) can
be reduced to an instance of SDLP(Im(),a) and an instance of SDLP(M, %)

|M
for some integer ng.



Proof. Every solution of SDLP(G, o) for g and h is a solution of the SDLP (Im(%)), )
for ¢(g) and ¢(h). If there is no solution for the problem in Im(v), then there
is no solution for the problem in G either.

Otherwise, the set of solutions in Im(v)) is the residue class {tg+not} for some
0 < to < ng, where ng = [{p(y(g),1)t(1c) : t € Z}|. Note that ng is the smallest
positive integer such that p(g 1y (M) = M. We have ¢’ = p(g 1m0 (1g) € M
and also

h = P(g,1)~to (h) = (p(gﬁl)—to o p(g71)t0+n0t)(1G) = p(g71)n0t(1G) e M.

This gives that the solutions of SDLP(G, o) for g and h are exactly the numbers
of the form tg + ngt, where ¢ is a solution of SDLP(M,c™) for ¢" and h'. O

By considering the equivalent ”backward” version of the SDLP, that is, solv-
ing 1g = p(g,1) (), the recursion suggested by the proof of the theorem can be
interpreted as driving first to M by solving the SDLP in Im(y)) & G/M and
then, inside M, driving further to the identity element.

A general straightforward way to evaluate the induced automorphism (and
its powers) is based on computing an arbitrary element of the pre-image ¢ ~1(7)
for each & € Im(z)). This can be facilitated by replacing G' with the black-box
group H encoded by pairs (z,¢(z)), where z is a code-word for an element of
(. For multiplication we use the oracle for G and re-evaluate 1 on the product.
For labeling, we use the labeling of G. Of course, there are many cases when
this trick can be replaced by a simple direct method for evaluating . This holds
in particular when G = Zg with the standard representation by column vectors
modulo p.

3 Quantum algorithms for the group case SDLP

In this section, we will prove the following main result of the paper.

Theorem 4. Let G be a group and o € Aut(G). We assume that G is a black-
box group with a unique labeling of elements and we also have a black box for
computing o'(g) (i € Z> 0,9 € G). Suppose that we are given a series 1 =
My < My < ...My =G of o-invariant normal subgroups M; < G together with
homomorphisms ; : M; — G; (i = 1,...,k) with kernel M;_y (i = 1,...,k).
Let @; denote the automorphism of Im(1);) induced by o|pr,. Assume further
that, for each i, either

(0) Im(v;) is of polynomial size; or
(1) @; has polynomial order; or
(2) Im(v;) is solvable;

(3) Gi < GLg,(F,,) for some positive integer d; and for some prime power
q;, moreover, there exists a polynomially bounded integer n; and a matriz
a; € GLg,(F,,) such that G (z) = a; ‘za; for every x € Im(v;).



For items (0), (1) and (2), we assume that G; is a black-box group with unique
labeling. For item (4), neither n; nor a; are assumed to be given, their mere
existence is sufficient. (By "polynomial” we mean polynomial in the maximum
of the lengths of the bit strings used for encoding and labeling the elements of
the groups G and G; (i =1,...,k). Then SDLP(G, o) can be solved in quantum
polynomaial time.

When k = 1, condition of type (0) means that G itself is of polynomial size,
that of type (1) means that o itself has polynomially small order, that of type
(2) means that G is solvable. The standard descriptions of simple groups of
Lie type define them as factors of certain matrix groups over finite field. The
quotient is taken to be the center of the matrix group, so the simple group has
a representation as a matrix group by the conjugation action on the matrix
algebra spanned by the covering matrix group. Also, the outer automorphism
group of a finite simple group is of polynomial size. Therefore, these groups are
covered by conditions of type (3).

The algorithm for polynomially small groups is the straightforward trial and
error. In the first three subsections of this section we give efficient algorithms
for groups/automorphisms satisfying conditions (1), (2), or (3). In the fourth
subsection we show how to use these ingredients and Theorem 3 to prove The-
orem 4.

Note that the order of ¢ can be computed in quantum polynomial time
using Shor’s period finding method applied to the functions ¢ — o*(x;) for the
generators x; of the group G and taking the least common multiple of these
periods. The order can be factorized using Shor’s factoring algorithm. The
length of the orbit {p(,1)¢(1g) : t € Z} can be determined and factorized in a
similar way. Based on these observations, in the algorithms below we assume
that these numbers are already computed and factorized. The solution set is
either empty or the the residue class of an arbitrary solution modulo the period.
So it is sufficient to find any solution, e.g., the smallest non-negative one.

3.1 The SDLP for small order automorphisms

In this subsection we prove the following result.

Proposition 5. Let G be a black-box group with unique labeling. Then SDLP(G, o)
can be solved by a quantum algorithm in time polynomial in the order of o and
the length of the code-words together with the labels of the group elements.

Proof. By Proposition 2, it is sufficient to prove the case when o is trivial. Then
Pg,1)(x) = gz, whence piy1)(lg) = g* for every integer ¢. Thus, solving the
SDLP for g and h is the same as computing the base-g discrete logarithm of h,
which can be accomplished by Shor’s algorithm. O

3.2 The SDLP in solvable groups

In this part, we first present a quantum algorithm for the SDLP on elementary
abelian groups. We then show how Theorem 3 can be used to reduce the general



solvable case to instances of the elementary abelian case.

Theorem 6. Let G = ZZ, the (additive) group of column vectors of length d over
the integers modulo p, where p is a prime number and let o be an automorphism
of G, given as a d by d non-singular matriz. Then SDLP(G,o) can be solved
by a quantum algorithm in time polynomial in logp and d.

Proof. We consider G as a vector space of dimension d over the finite field
Z,. We take a minimal nontrivial o-invariant subspace M of G. This can be
done, e.g., by a classical randomized method based on computing the rational
Jordan normal form of o, see [Gie95]. Then the factor space M has no proper
nontrivial o-invariant subspace. Iterating this in G/M, we eventually obtain
a flag of subspaces (0) = My < M; < ... < M} = G such that there is no
o-invariant subspace strictly between M; 1 and M;. Then, by Theorem 3, the
problem is reduced to the case when G has no proper nontrivial o-invariant
subspace. Suppose that we have an instance of that case.

If 1¢ is an eigenvalue of o then d = 1 and o is trivial. It follows that
pg.1)t (1) = g'. Using the additive notation for Z/pZ, we need to solve h = t-g.
If g = 0 and h = 0 then every integer is a solution, while if g = 0 and h # 0
then there is no solution. If g # 0 let ¢’ stand for the multiplicative inverse of
g in the field Z/pZ. Then the solutions are {hg’ + tp : t € Z}. (Actually, the
case when o is trivial is a special case of the broader case already discussed in
Subsection 3.1.)

If 15 is not an eigenvalue then we do the following. We compute the matrix
B of ¢ in the standard basis of (Z/pZ)?. Then, using again the additive notation,
we can write p(g.1y:(1g) as

ing =(B'-1)(B-1)""g.
j=0

Let B be the matrix algebra generated by B. Then B is isomorphic to the field
F,q« and the action of B on (Z/pZ)* can be identified with the multiplication
by the field element B on the additive group of the field. Thus we can view
g and B as field elements. The solutions of the SDLP can be obtained by
solving a discrete log problem in this field by computing base-B logarithm of
I+ (B —1)g~'h. This can be done by Shor’s quantum algorithm. O

The method for the elementary abelian case, in combination with the re-
cursion tool (Theorem 3), gives an efficient quantum algorithm for solving the
SDLP in solvable groups. More precisely, we obtain the following result.

Theorem 7. Assume that G is a solvable black-box group with unique labeling.
Then SDLP(G, o) can be solved in quantum polynomial time.

Proof. Using the labeling, by [IMS01, Theorem 7] which is based on the Beals-
Babai algorithm [BB99], we can compute a composition series of G with explicit
isomorphisms between the composition factors and additive groups Z,, for var-
ious primes p. In particular, we obtain a maximal normal subgroup N of G

10



together with a homomorphism ¢ : G — Z,. For any positive integer j, let
N; = NJZy0"(N). Note that Nji; = N; N o/(N) and if Nj4; = N then
Nj» = Nj for any integer j/ > j and N, is o-invariant. This equality happens
for an integer j bounded by the length ¢ of code-words for the group elements.
We compute the map ¢ : G — Zﬁ defined as z — (¢(x), 97 (x), ... ,¢0£71(m))T.
Based on the above discussion, the kernel M of v is o-invariant. The image
Im(¢) is a subspace V of Zf;. Compute a basis for V' by taking a maximal
linearly independent set of the images of the generators for G under the map
and using them replace 1) with the composition of 1) with the transpose of the
matrix whose columns are the bases elements for V. This new map, denoted
again by 1, is a surjective homomorphism from G to Zg with kernel M. Then,
by Theorem 3, after solving the SDLP in the t-image Zg, SDLP(G, o) gets
reduced to SDLP(M, ¢’) where o’ is the restriction of a power of o to M. O

3.3 The SDLP in matrix groups with an inner automor-
phism

In this part we prove the following result.

Theorem 8. Let G be a subgroup of GL4(IF,) where d is a positive integer and
q is a power of a prime. Assume that G is given by a list of matrices that
generate G and that the automorphism o is given on the generators. Suppose
that o coincides with the conjugation action of a matriz a € GL4(F,). Then
SDLP(G,0) can be solved by a quantum algorithm in time polynomial in d and

logq.

The matrix a that implements the automorphism o does not need to be
given, such a matrix is computed by the algorithm. (It is unique up to the
centralizer of G.) Note that conjugation by a is an inner automorphism of the
full matrix group GLg(F,) (or just of the matrix group generated by G and a),
justifying the title of the subsection.

Proof. We assume that ¢ > 2d. (If not, we consider G as a matrix group over an
extension field of Fy having at least 2d elements.) To find a matrix a with the
desired property, we take the linear space of matrices y such that yz; = o(z;)y
for the generators x; of GG, and choose a random element a of this space. Since
q > 2d, by the Schwartz-Zippel lemma [Sch79, Zip79], a random element of
this matrix space will be with high probability invertible as it contains at least
one by the assumption of the theorem. Conjugation by a extends o to a linear
automorphism of the full matrix algebra B = Mg4(F,) of the d by d matrices.
We denote this extension also by o.

We have p(y1)(z) = go(z), thus p1) = pg o 0, where u, denotes the
multiplication by g from the left. The map p, can also be extended to an
invertible linear transformation of B. Therefore the composition p(, 1) has an
invertible linear extension ® to B. Also, solving h = pf gyl)(lg) is equivalent to

solving h = ®'I;. The latter is an instance of the well known Orbit Problem
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introduced by Harrison in [Har69]. It is the following orbit membership problem.
Given vectors a,b of a finite dimensional vector space V over the field F and
a linear transformation ® € Endg(V), find ¢ € Z>o, if there exists, such that
b = ®la.

Kannan and Lipton in [KL86] gave a polynomial time solution of the Orbit
Problem for the case when F is the field of rationals. Here we need to solve the
finite field case. Kannan and Lipton gave a construction to reduce the Orbit
Problem to the so-called Matriz Power Problem, which is the following. Given
square matrices A and B over a field F, solve B = A!, see [KL86, Theorem
1]. For completeness we briefly recall (a version of) their construction. We
compute the subspace W spanned by ®‘a (t = 0,1,...). This can be done by
computing the vectors a, ®a, ..., "'q until ®/a becomes linearly dependent
of the previous vectors. Then W is the subspace with basis a, ®a, ..., ® 'a.
If b ¢ W, then the problem has no solution. Otherwise ®'b €¢ W for every t.
Write the vectors ®‘a and ®b (i = 0,...,j — 1) as column vectors in terms of a
basis of W. Let A be the matrix of the restriction of ® to W in the same basis
and let C resp. D be the j by j matrices whose columns are a, ®a,...,® " la
and b, ®b, ..., ®I~'b, respectively. Then b = Ala if and only if D = A*C. Let
B = DC~! and we need to solve B = A*. If ® is invertible then so is A.

The invertible case of the matrix power problem over a finite field can be
solved by Shor’s quantum discrete log algorithm. O

We remark that, using the Jordan blocks of A, one could classically reduce
the problem to the instances of the discrete logarithm problem in the multi-
plicative group of extensions of F. Also, in practice it might be worth replacing
B with the matrix algebra spanned by the elements of G.

Proposition 2 gives the following extension.

Corollary 9. Let G be as in Theorem 8. Let o be an automorphism of G. Let
K be a positive integer. We assume that for the divisors k < K of the order
of o, the action of o* on the generators for G is also given and that among
those divisors k, o coincides with the conjugation action of a matriz. Then
SDLP(G, o) can be solved by a quantum algorithm in time polynomial in K,d
and log q.

3.4 Putting things together

Our recursion tool (Theorem 3) can assemble the results proved in the preceding
subsections for various special cases of the SDLP to obtain Theorem 4.

Proof of Theorem 4. Assume that we have the chain of subgroups M; and homo-
morphisms ¥; (¢ =0,..., k) with properties as in the statement of the theorem.
For ¢ = k to 1, using Theorem 3, by solving the SDLP in the ¢;-image of M;
we reduce the problem to an instance in M;_;. In the small size case (0), we
use brute force. When @; is of small order (case (1)) or when Im();) is solvable
(case (2)), we use Proposition 5 or Theorem 7, respectively. In order to facilitate
using the oracle for evaluating the powers of o to evaluate those of ;, we use

12



the pairs (x,1;(x)) to encode the elements of Im(1);), while as labeling we use
the labeling for G;. In the matrix group case (4), we use the natural encoding
by matrices for the image. We compute the order o; of 7; using the factorization
of the order of ¢ and compute o' for the smallest few divisors of o; and apply
the method of Corollary 9. O
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Appendix: the matrix group case in odd charac-
teristic

This part is devoted to a sketch of a proof of the following.

Corollary 10. Let ¢ : K — My(F,) be a representation of the black-box group
K with our without a labeling. Assume that the automorphism o is given by a
black box to evaluate its powers on elements of K and that the kernel of 1 is
o-invariant (e.g., when 1 is faithful). Then, SDLP(Im(v),T) can be solved in
quantum polynomial time.

Proof (sketch). We encode the elements of G = Im(t)) by pairs (x,9(x)) and
labeling ¥ (x) so that we can evaluate powers of & on elements of the matrix
group (G. We use the notation o for . Below we outline how the result of
the polynomial time algorithm of Babai, Beals and Seress [BBS09] for comput-
ing the structure of matrix groups over finite fields can be used to obtain a
series of normal subgroups together with representations of the factors making
Theorem 4 applicable to these matrix groups.

Every finite group G has a unique largest solvable normal subgroup, called
the solvable radical of G. Tt is denoted by Rad(G). The factor group G =
G/Rad(G) is trivial if G itself is solvable. Even if G is a non-trivial group, it
has no nontrivial abelian subnormal subgroups. (Normal subgroups of a group
are subnormal, and, recursively, normal subgroups of subnormal subgroups are
also subnormal.) It follows that the minimal subnormal subgroups of G are non-
commutative simple groups. They pairwise commute and the subgroup Soc(G)
generated by them (called the socle of G) is the direct product of these simple
groups. (It follows that there are at most log G simple constituents of Soc(G).)
The full pre-image of Soc(G) at the projection G — G is denoted by Soc*(G).
The subgroups Rad(G) and Soc*(G) are characteristic subgroups of G. The
group G, by conjugation, acts as a permutation group on the minimal subnormal
subgroups of G. The kernel Pker(G) of this permutation representation, called
the permutation kernel, is a further characteristic subgroup. There are the
following inclusions between the subgroups introduced above.

1 < Rad(G) < Soc*(G) < Pker(G) < G.

Pker(G) acts by conjugation as an automorphism group on each simple compo-
nent of Soc(G). As the outer automorphism group of any finite simple group
is solvable, the factor group Pker(G)/Soc*(G) is solvable. The algorithm of
Babai, Beals and Seress [BBS09] computes in classical randomized polynomial
time (generators for) the three subgroups above. They also compute a permu-
tation representation of G with kernel Pker(G) (this is actually the conjugation
action of G on the simple components of Soc(G)); a (usually highly intransitive)
permutation representation of Pker(G) with kernel Soc*(G); and, most impor-
tantly, for each of the simple components of Soc(G), a sequence of elements of G
that generate the component modulo Rad(G) together with the images of these

under an isomorphism with a standard version of the a simple group. (The
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generators for each component S are actually generators for a perfect subgroup
S* of Soc*(G) such that (S*/Rad Q) is the pre-image of S by the projection
map G — G/Rad(G).)

We compute refinement of the sequence 1 < Rad(G) < Soc*(G) < Pker(G) <
G between Rad(G) and Soc™(G). To this end we notice that o also permutes the
simple components of Soc G. We take a o-orbit of a single simple component
S and we compute S** = [[, T* Rad(G), where the product is taken over the
o-orbit of S. Let r be the length of the orbit. Then ¢” acts as an automorphism
on each member of the orbit. As the outer automorphism group of a finite sim-
ple group is of size bounded by a polynomial of the logarithm of the group size,
we obtain that a polynomially small power of o acts as an inner automorphism
of $**/Rad(G). If S is sporadic, we use the regular representation of S. If S
is of Lie type, we take the isomorphism between S and the standard copy of
it computed by the algorithm of [BBS09]. It realizes S as the quotient group
of a matrix group by its center. We obtain a matrix representation of S by
taking the conjugation action on the matrix algebra spanned by the elements
of this covering group. We do the same for each T from the orbit (actually,
these are isomorphic to S, so the construction made for S can be re-used.) Fi-
nally we obtain a matrix representation of S** with kernel Rad(G) on the direct
sum of these representations. Then we proceed with another orbit, construct
the representation of the product of the orbit members and add to S**. This
way we obtain a chain of o-invariant normal subgroups between Rad(G) and
Soc*(G) together with the matrix representations of the factors so that case (4)
of Theorem 4 is applicable to them. For G/Pker(G), we use the permutation
representation which can be naturally extended to a matrix representation. As
o also permutes the simple components, the induced automorphism will be con-
jugation by a permutation, so case (4) is again applicable. For Pker(G)/Soc* G,
we use the matrix representation as a labeling and, by solvability, case (3) is
applicable. Finally, in Rad(G), again case (3) applies. O
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