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Abstract. We survey various mathematical tools used in software works multiplying
polynomials in

Zq[x]
⟨xn − αx − β⟩ .

In particular, we survey implementation works targeting polynomial multiplications
in lattice-based cryptosystems Dilithium, Kyber, NTRU, NTRU Prime, and Saber
with instruction set architectures/extensions Armv7-M, Armv7E-M, Armv8-A, and
AVX2.
There are three emphases in this paper: (i) modular arithmetic, (ii) homomorphisms,
and (iii) vectorization. For modular arithmetic, we survey Montgomery, Barrett, and
Plantard multiplications. For homomorphisms, we survey (a) various homomorphisms
such as Cooley–Tukey FFT, Bruun’s FFT, Rader’s FFT, Karatsuba, and Toom–
Cook; (b) various algebraic techniques for adjoining nice properties to the coefficient
rings, including injections, Schönhage’s FFT, Nussbaumer’s FFT, and localization;
and (c) various algebraic techniques related to the polynomial moduli, including
twisting, composed multiplication, evaluation at ∞, Good–Thomas FFT, truncation,
incomplete transformation, and Toeplitz matrix-vector product. For vectorization, we
survey the relations between homomorphisms and the support of vector arithmetic.
We then go through several case studies: We compare the implementations of modular
multiplications used in Dilithium and Kyber, explain how the matrix-to-vector
structure was exploited in Saber, and review the design choices of transformations for
NTRU and NTRU Prime with vectorization. Finally, we outline several interesting
implementation projects.
Keywords: Lattice-based cryptography · Polynomial multiplication · Modular
arithmetic · Homomorphism · Vectorization

1 Introduction
This paper surveys various ways multiplying polynomials in the ring

Zq[x]
⟨xn − αx− β⟩

.

We aim at surveying various mathematical tools that are frequently used in highly optimized
assembly implementations. In particular, we survey how to multiply polynomials in
Dilithium, Kyber, NTRU, NTRU Prime, and Saber on the processors Cortex-M3, Cortex-
M4, Cortex-A72, and Haswell. All of the polynomial multiplications fall into the case
Zq[x]/⟨xn − αx− β⟩ : We have Z8380417[x]

/〈
x256 + 1

〉
in Dilithium, Z3329[x]

/〈
x256 + 1

〉
in Kyber, Z2k [x]/⟨xn − 1⟩ with prime n in NTRU, Zq[x]/⟨xp − x− 1⟩ ∼= Fqp in NTRU
Prime, and Z213 [x]

/〈
x256 + 1

〉
in Saber. We refer to [ABD+20a, ABD+20b, CDH+20,

BBC+20, DKRV20] for the specifications.
E-mail: vincentvbh7@gmail.com (Vincent Hwang)

https://vincentvbh.github.io/
mailto:vincentvbh7@gmail.com
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1.1 Emphases
This paper is written with three emphases: (i) modular arithmetic, (ii) homomorphisms of
algebraic structures, and (iii) vectorization.

1.1.1 Modular Arithmetic

We first survey various modular arithmetic computing representatives of elements in Zq.
Let R be a power of two with exponent a power of two and q ≤ R. We call log2 R the width
or precision of arithmetic. We only need the cases R = 216, 232 in this paper. If q is a
power of two, then reduction modulo q can be implemented as reduction modulo R and
logical and &.

If q is not a power of two, then there are two cases: q is an even number with an odd
factor, or q is an odd number. We leave the discussion of even q with an odd factor to
future work since it is not used in the interested implementations of this paper.

Let’s assume q is odd. For a, b ∈ ZR, there are many ways to compute c ∈ ZR with
c ≡ ab (mod q). The requirement c ∈ ZR is to ensure that everything we have at the
end can be passed to successive computations with the same width of arithmetic. In
practice, we prefer c ∈ ZB with q ≤ B ≤ R for B reasonably close to q. Montgomery
multiplication [Mon85] achieves B = 2q and Plantard multiplication [Pla21] achieves
B = q+ 1. Both modular multiplications come with multiplicative forms by design. Barrett
reduction [Bar86] effectively achieves B = 2q with b = 1 for the same R, and B = q while
replacing R with sufficiently large 2kR. [BHK+22b] later introduced Barrett multiplication
– a multiplicative form of Barrett reduction – and showed that its range is the same
as Montgomery multiplication. They introduced the notion “integer approximation” JK
mapping a real number to an integer with a difference bounded by 1, and defined modJK

as
∀a ∈ Z, q

s
a

q

{
= a− a mod JKq.

[BHK+22b] established a correspondence between Montgomery and Barrett multiplications.
While Montgomery multiplication is considered exact, Barrett multiplication encompasses
various multiplication instructions by interpreting them as high-products (multiplication
instructions returning the high parts) with integer approximations. Recently, [HKS23]
showed that relaxing the condition on JK allows efficient Barrett multiplication on micro-
controllers with limited multiplication instructions.

1.1.2 Homomorphisms of Algebraic Structures

This paper involves several notions of algebraic structures and their homomorphisms. An
algebraic structure is a set A of elements equipped with finitely many operations on A.
In this paper, there are always identity elements for the operations. Homomorphisms are
structure-preserving maps between two algebraic structures – a homomorphism η : A → B
must satisfy that

∀a, b ∈ A, η(a ·A b) = η(a) ·B η(b)

for ·A and ·B same type of operations. We call η a monomorphism if it is injective. Common
algebraic structures are rings, modules, and associative algebras. Associative algebras are
algebraic structures that are modules and rings at the same time. For simplicity, we call
associative algebra an algebra.

Let R be a unital commutative ring. This paper surveys various algebra homomorphisms
implementing the polynomial ring multiplication of R[x]/⟨xn − αx− β⟩ as an algebra.
R = Zq is a special case, but the survey of homomorphisms considers arbitrary unital
commutative rings. Since algebra homomorphisms are ring and module homomorphisms
by definition, we can view them in both ways. In this paper, we always view algebra
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homomorphisms as module homomorphisms. Suppose we find a way to decompose an
algebra homomorphism η into a composition of module homomorphisms:

· · · ◦ ηi+2 ◦ ηi+1 ◦ η ◦ · · · ◦ ηj+2 ◦ ηj+1 ◦ ηj ◦ · · · .

We now identify the series of module homomorphisms resulting in ring homomorphisms.
Such series allow us to multiply the homomorphic images of multiplicands. In practice, this
is an interactive process with the target platform – we first write an algebra homomorphism
as a composition of module homomorphisms, implement a series of module homomorphisms
giving a ring homomorphism, and decide if we want to implement the remaining module
homomorphisms, or halt and multiply the images. Therefore, thoroughly examining the
efficiency of module homomorphisms in practice is crucial.

We first survey various homomorphisms and their definability on R[x]/⟨xn − β⟩ (the
case α = 0), including Cooley–Tueky, Bruun’s, Good–Thomas, and Rader’s fast Fourier
transforms (FFTs). In practice, R[x]/⟨xn − β⟩ does not always exhibit nice properties
for FFTs. One usually embed R[x]/⟨xn − β⟩ and generally R[x]/⟨xn − αx− β⟩ into
R′[x]/⟨g⟩ admitting fast computations. We survey various techniques for deciding the
pair (R′, g).

For the coefficient ring injection R ↪→ R′, we consider the integer ring and polynomial
ring cases. For the integer ring case, we search for an R′ containing suitable roots of
unity or allowing us to adjoin the inverses of some integers. For the polynomial ring
case, we assume α = 0 and start by replacing R with a polynomial ring R′ = R[x]/⟨h⟩ .
Schönhage’s FFT converts the relation h ∼ 0 into an identity defining roots of unity
and splits R′[x]/⟨xn − β⟩ accordingly, and Nussbaumer’s FFT factors R[x]/⟨h⟩ using the
roots of unity already defined by the relation xn ∼ β.

For the choice of g, the most straightforward case when α = 0 is twisting and composed
multiplication replacing xn ±β with g = xn ±1. This requires the invertibility of β and the
existence of β 1

n . The most complicated case is to choose a g with deg(g) ≥ 2n−1 in order to
have a “forgetful map1” from R[x]/⟨xn − αx− β⟩ to R[x]/⟨g⟩ . A straightforward approach
is to embed R[x]/⟨xn − αx− β⟩ into R[x]/⟨g⟩ as an algebra, multiply in R[x]/⟨g⟩ , and
reduce modulo xn −αx− β. Frequent choices of g for such an approach are xn − 1 and its
factors for FFTs, and

∏
i(x−si) for Karatsuba and Toom–Cook where {si} ⊂ Q∪{∞}. An

alternative approach is the Toeplitz transformation via dual modules. [IKPC20, IKPC22]
showed that reduction modulo xn −β becomes free, and [CCHY23] demonstrated its benefit
on register scheduling and permutation whenever there are vector-by-scalar multiplication
instructions.

1.1.3 Vectorization

Vectorization is another important topic for highly-optimized assembly implementa-
tions. Common vector instruction sets are Neon on Arm Cortex-A processors and
SSE/AVX/AVX2/AVX512 on Intel processors. Usually, vector instructions perform a wide
variety of vector-by-vector arithmetic, including additions, subtractions, multiplications,
shift operations, and variants. Let v be the number of algebraic elements contained in a
vector register. In this paper, an algebraic element is an element in the coefficient ring
Zq where q < 216 or q < 232. An obvious way to design an easily vectorizable polynomial
transformation f is to define it in R[x]/⟨g(xv)⟩ ∼= R[y]/⟨xv − y, g(y)⟩ . This leads to the
first question:

• How to identify a suitable R[x]/⟨g(xv)⟩ defining an easily vectorizable f?

After applying such an f , one usually interleaves v computing tasks of the same kind
and computes accordingly to fully exploit the vectorization feature. We can vectorize

1We borrow this usage from category theory.
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everything if the number of computing tasks is a multiple of v. On the other hand, if there
are some leftover computing tasks, we can still interleave the leftovers with don’t-cares and
extract the results. This comes with the expense of computing the results of don’t-cares.
Our second question is the following:

• How to identify a suitable f giving v′ subproblems of the same kind where v|v′?

In addition to vector-by-vector instructions, there are also vector-by-scalar counterparts
in Neon2. [CCHY23] showed the benefit of vector-by-scalar multiplication instructions for
small-dimensional Toeplitz matrix-vector products and explained how to turn arbitrary
polynomial transformations defined in R[x] into a computation for R[x]/⟨xn − β⟩ resulting
small-dimensional Toeplitz matrix-vector products. The case R[x]/⟨xn − αx− 1⟩ was
implied by [FH07], and the case R[x]/⟨xn − αx− β⟩ was discovered by [Yan23].

1.2 Artifact
We are preparing C implementations for each of the ideas reviewed in this paper and
will make them pubicly available soon for referential purposes (we believe the material
shown in the paper is self-contained but additional examples with actual programs will be
helpful).

1.3 Related Works
There are many survey works targeting polynomial multiplications. We recommand [Win80,
Nus82, DV90, Ber01, Ber08] for the underlying mathematical ideas, and [LZ22] for the
applications to lattice-based cryptography.

1.4 Assumed Knowledge
This paper assumes that readers have some basic understandings of commutative algebra.
We list the following key words and corresponding references: rings from [Jac12a, Section
2] and [Bou89, Section 8, Chapter I], modules from [Jac12a, Section 3] and [Bou89, Section
1, Chapter II], dual modules from [Jac12b, Example 11, Section 1.3] and [Bou89, Section 2,
Chapter II], tensor products of modules from [Jac12b, Section 3.7] and [Bou89, Section 3,
Chapter II], associative algebras from [Jac12a, Section 7], [Jac12b, Section 3.9], and [Bou89,
Sections 1 and 2, Chapter III], and tensor products of algebras from [Jac12b, Section 3.9]
and [Bou89, Section 4].

1.5 Structure of This Paper
This paper is structured as follows: Section 2 reviews the modular arithmetic Montgomery,
Barrett, and Plantard multiplications. Section 3 reviews several techniques requiring the
Chinese remainder theorem for polynomial rings.

We then gradually review techniques for addressing technical limitations arising from
the polynomial rings used in practice and the target platform. Section 4 reviews several
techniques for replacing the coefficient rings with the ones containing suitable roots of unity
and inverses of integers. Section 5 turns the focus to the polynomial moduli. Section 6
relates vector-by-vector multiplication instructions to the notions “vectorization-friendliness”
and “permutation-friendliness”, and vector-by-scalar multiplication instructions to small-
dimensional Toeplitz matrix-vector products.

Section 7 goes through several case studies: We compare the deployment of Montgomery
and Barrett multiplication for Dilithium and Montgomery and Plantard multiplications

2Additionally, RISC-V “V” vector extension also includes vector-by-vector and vector-by-scalar instruc-
tions.
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for Kyber. We also survey homomorphism caching and its application to Saber. For
vectorization, we survey the application of Toeplitz matrix-vector products to NTRU and
the designs of vectorization- and permutation-friendly polynomial multipliers for NTRU
Prime. Section 8 gives a brief overview of the recent advances. Finally, Section 9 outlines
several possible implementation projects for future works.

2 Modular Arithmetic
We first survey various modular arithmetic. Section 2.1 generalizes integer approximations
for unifying the modular arithmetic used in relevant works. Section 2.2 reviews Montgomery
multiplication, Section 2.3 reviews Barrett multiplication, and Section 2.4 reviews Plantard
multiplication.

2.1 Integer Approximations
For a real number δ > 0 and an integer-valued function JK : R → Z, we call JK a δ-integer-
approximation [BHK+22b, HKS23] if

∀r ∈ R, |JrK − r| ≤ δ.

To avoid clutter, we call JK an integer approximation as long as there is a δ such that JK
is a δ-integer-approximation. Furthermore, for a positive integer q ∈ Z>0, we define the
corresponding modular reduction modJKq : Z → Z as

∀z ∈ Z, z modJKq = z −
s
z

q

{
q

and
∣∣modJKq

∣∣ = maxz∈Z

∣∣∣z modJKq
∣∣∣. By definition, we have

∀z ∈ Z,

{r
z
q

z
q = z − z modJKq,

z ≡ z modJKq (mod q).

We illustrate the idea with two examples: the floor function ⌊⌋ and the rounding function
⌊⌉ := r 7→

⌊
r + 1

2
⌋
.

The floor function ⌊⌋. The floor function ⌊⌋ maps a real number to the largest integer
lower-bounding the real number. Therefore, for an r ∈ R, we have r − 1 < ⌊r⌋ ≤
r −→ |⌊r⌋ − r| ≤ 1 and find ⌊⌋ a 1-integer-approximation. This function is commonly
accompanied by unsigned arithmetic. We denote the corresponding modulo reduction as
mod⌊⌋ = mod+ in this case.

The rounding function ⌊⌉. For the round function ⌊⌉ and an r ∈ R, since ⌊r⌉ =
⌊
r + 1

2
⌋

and r − 1
2 <

⌊
r + 1

2
⌋

≤ r + 1
2 , we find |⌊r⌉ − r| ≤ 1

2 and ⌊⌉ a 1
2 -integer-approximation.

If ⌊⌉ is used for signed arithmetic, we denote the corresponding modulo reduction as
mod⌊⌉ = mod±.

In this paper, we provide a unified view of Montgomery, Barrett, and Plantard mul-
tiplication using the pair

(
JK ,modJKq

)
. Usually, two pairs of integer approximations(

JK0 ,modJK0q
)

and
(
JK1 ,modJK1R

)
are involved where

(
JK0 ,modJK0q

)
refers to the one we

really want and
(
JK1 ,modJK1R

)
refers to the practically efficient one.
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2.2 Montgomery Arithmetic
Let a, b be integers. We wish to compute ab mod JK0q for a modJK0q with odd q. Mont-
gomery multiplication [Mon85, Sei18] computes a representative of ab mod JK1q with possi-
ble scaling. Observe that ab+

(
ab
(
−q−1) mod JK1R

)
q is equivalent to 0 modulo R and ab

modulo q, we have

ab+
(
ab
(
−q−1) mod JK1R

)
q

R
≡ abR−1 (mod q).

To see why this is a reduction, we bound the range as follows:∣∣∣∣∣ab+
(
ab
(
−q−1) mod JK1R

)
q

R

∣∣∣∣∣ ≤
|ab| +

∣∣modJK1R
∣∣ q

R
.

There are many ways to mitigate the scaling. A generic way is to perform an additional
Montgomery multiplication with b = R2 mod JK0q for some modJK0q. If b is known in prior,
we can precompute bR mod JK0q and compute

a
(
bR mod JK0q

)
+
(
a
(
bR mod JK0q

) (
−q−1) mod JK1R

)
q

R
≡ ab (mod q).

Since bR mod JK0q is now bounded by
∣∣modJK0q

∣∣, we have the following bound:∣∣∣∣∣a
(
bR mod JK0q

)
+
(
a
(
bR mod JK0q

) (
−q−1) mod JK1R

)
q

R

∣∣∣∣∣
≤

|a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

.

For unsigned arithmetic with modJK1R = mod+R and modJK0q = mod+q, the range is

|a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

≤ q

(
1 + |a|

R

)
.

For signed arithmetic with modJK1R = mod±R and modJK0q = mod±q, the resulting
range is

|a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

≤ q

2

(
1 + |a|

R

)
.

Historical review. [Mon85] proposed the unsigned Montgomery multiplication, and
[Sei18] later proposed the signed variant along with the subtractive variant:

ab−
(
abq−1 mod ±R

)
q

R
.

The benefit of the subtractive variant is that (ab mod ±R)−
((
abq−1 mod ±R

)
q mod ±R

)
=

0 whereas (ab mod ±R) +
((
ab− q−1 mod ±R

)
q mod ±R

)
= 0 or R as integers. The former

allows us to compute as follows:⌊
ab

R

⌋
−

⌊(
abq−1 mod ±R

)
q

R

⌋
.

This replaces double-size products with high-products. See [KAK96, KA98] for the multi-
limb versions.
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2.3 Barrett Arithmetic
Let JK0 , JK1 be integer approximations. Barrett multiplication computes

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q ≡ ab (mod q).

Obviously, this is a representative of ab mod q. The only question is if the resulting range
falls into the data width. [BHK+22b] showed the following correspondence

ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q =
a
(
bR modJK0 q

)
+
(
a
(
bR modJK0 q

) (
−q−1) modJK1 R

)
q

R

and obtained the bound∣∣∣∣∣∣ab−

u

v
a

r
bR
q

z

0
R

}

~

1

q

∣∣∣∣∣∣ ≤
|a|
∣∣modJK0q

∣∣+
∣∣modJK1R

∣∣ q
R

.

In Appendix A, we prove the correspondence for principal ideal domains. This captures
the polynomial ring case with coefficient ring a finite field and is of independent interest.

Comparing Montgomery and Barrett multiplications. Since the absolute value of
the result is smaller than R

2 for signed arithmetic (R for unsigned arithmetic) in practice, we
only need to compute ab mod ±R (ab mod +R for unsigned arithmetic) instead of the full

product. Same observation holds for
s

aJ bR
q K0
R

{

1
q. Therefore, Barrett multiplication only

requires one to compute a high-product implementing
s

aJ bR
q K0
R

{

1
and two low-products

multiplying in mod±R or mod+R. On the other hand, one has to compute two full
products (or high-products for the subtractive variant) and one low-product for Montgomery
multiplication. [BHK+22b] saved one subtraction with Barrett multiplication since there
is a subtractive variant for low-product and not high-product.

Historical review. For unsigned arithmetic, [Bar86] proposed the case b = 1, and [Sho]
proposed Barrett multiplication for generic b. The signed version and its correspondence to
Montgomery multiplication was discovered by [BHK+22b]. Interestingly, [Dhe03] proposed
the finite field version. Appendix A proves the correspondence for principal ideal domains,
and the impact for finite fields is left for future investigation. Recently, [BHK+22a, Section
2.4] improved the output range for b ≠ 1 while replacing R for some 2kR, and [HKS23]
furthered the approximation nature of JK1 and improved the modular multiplications on
microcontrollers.

2.4 Plantard Arithmetic
Recently, [Pla21] proposed an unsigned modular multiplication essentially with precision
2 log2 R. The signed versions were later proposed by [HZZ+22, AMOT22]. For multiplying
an integer a by a constant b known in prior, Montgomery multiplication results in the
bound |a|| mod JK0 q|+| mod JK1 R|q

R . If we replace the precision log2 R with 2 log2 R and compute
with

a
(
bR2 mod JK0q

)
+
(
a
(
bR2 mod JK0q

) (
−q−1) mod JK1R2) q

R2 ,
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we have the bound
|a|
∣∣modJK0q

∣∣+
∣∣modJK1R2

∣∣ q
R2 .

For signed arithmetic with
∣∣modJK1R2

∣∣ ≤ R2

2 and
∣∣modJK0q

∣∣ ≤ q
2 , the bound is q

2

(
1 + |a|

R2

)
.

In practice, since |a| ≤ R and q < R, the result is stricly smaller than q
2 , and hence an

integer in
{

− q−1
2 , . . . , 0, . . . , q−1

2
}

.
We borrow the integer-approximation view from [HKS23] and proceed with [Pla21]’s

innovation for implementing the above observation. Suppose we find two integer approxi-
mations JK2 and JK3 implementing:

c+
(
c
(
−q−1) mod JK1R2) q

R2

=
t
c+

(
c
(
−q−1) mod JK1R2) q

R2 −
c+

(
c
(
−q−1) mod JK1R2 mod JK2R

)
q

R2

|

3

for all c ∈ ZR2 , we claim the following:

c+
(
c
(
−q−1) mod JK1R2) q

R2 =

u

ww
v

s
c(−q−1) mod JK1 R2

R

{

2
q

R

}

��
~

3

.

The proof is left as an exercise3. If c = ab, we can instead precompute b
(
−q−1) mod JK1R2,

and apply only two high-products. While z 7→
q

zq
R

y
3 is the usual high-product multiplying

numbers of precision log2 R, the high-product z 7→
s

zb(−q−1) mod JK1 R2

R

{

2
requires one

to multiply a by a number with precision 2 log2 R. [HZZ+22] identified the use case in
Armv7E-M implementing the multiplication instructions smulw{b, t}4, and [AMOT22,
Source code 1] implemented the idea when only multiplication instructions with precision
2 log2 R are available.

3 Basic Algebraic Techniques
We survey several techniques that fall into the paradigm – the Chinese remainder theorem
for polynomial rings. We will go through isomorphisms of the form

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉
with different choices of gi0,...,ih−1

. Section 3.1 reviews Cooley–Tukey FFT, Section 3.2
reviews Bruun’s FFT, Section 3.3 reviews Rader’s FFT, and Section 3.4 reviews Karatsuba
and Toom–Cook.

3.1 Cooley–Tukey Fast Fourier Transform
For a positive integer n and an element ω ∈ R, we call ω an n-th root of unity if ωn = 1.
Furthermore, we call ω a principal n-th root of unity if

∀i ∈ {0, . . . , n− 1} ,
∑

j

ωij = nδ0,i

3Hint: cancel out the terms c
R , write the remaing as a multiple of q

R , and rewrite the rest with JK2.
4w stands for a word and {b, t} stands for the bottum or the top half-word.
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where δ is the Kronecker delta. We denote ωn for a principal n-th root of unity. For
an invertible ζ ∈ R, the isomorphism R[x]/⟨xn − ζn⟩ ∼=

∏n−1
i=0 R[x]

/〈
x− ζωi

n

〉
is called

a discrete weighted transform (DWT) [CF94]. If ζ = 1, it is called a discrete Fourier
transform (DFT).

Let nj = |Ij |, n =
∏

j nj . Cooley–Tukey FFT [CT65, CF94] chooses

gi0,...,ih−1
= x− ζω

∑
j

ij

∏
l<j

nl

n

for ij ∈ Ij . Since
∏

i0,...,ih−1
gi0,...,ih−1

= xn − ζn, we now have a fast transformation
for the ring R[x]/⟨xn − ζn⟩ . We call it a cyclic FFT if ζn = 1 and a negacyclic FFT if
ζn = −1.

Conditions for an invertible DWT. There are three defining conditions for an
invertible R[x]/⟨xn − ζn⟩ ∼=

∏
i R[x]

/〈
x− ζωi

n

〉
: (i) ζ must be invertible, (ii) there must

exist a principal n-th root of unity ωn, and (iii) n must be invertible in R5. For conditions
(ii) and (iii), [Pol71] showed that n must be a divisor of q−1 if R = Fq and p−1 if R = Zpk

for a prime p. The latter says that for R = Zm with prime factorization m =
∏

i p
di
i , n

must divide gcd(pi − 1) [Pol71, AB74]. [DV78b, Theorem 4] gave the condition when R is
a product of local rings6, and [Für09, Section 2] explained the conditions for rings and
named ωn a principal n-th root of unity.

Real-world example(s). In Dilithium, one is asked to implement the radix-2 FFT
defined on Z8380417[x]

/〈
x256 + 1

〉
. Since x256 + 1 = Φ512(x), the defining condition is

the same for Z8380417[x]
/〈
x512 − 1

〉
. Observe that 8380417 = 213 · 3 · 11 · 31 + 1, we

can define a cyclic FFT with transformation size a divisor of 213 · 3 · 11 · 31. This
gives the isomorphism Z8380417[x]

/〈
x512 − 1

〉 ∼=
∏

i Z8380417[x]
/〈
x− ωi

512
〉

and hence
Z8380417[x]

/〈
x256 + 1

〉 ∼=
∏

i Z8380417[x]
/〈
x− ω2i+1

512
〉

by choosing ζ = ω512 (any odd
power of ω512 works) and ω256 = ω2

512.

3.2 Bruun-Like Fast Fourier Transforms
After the introduction of Cooley–Tukey FFT over complex numbers, many works proposed
several optimizations if the input coefficients are real. [Bru78] proposed Bruun’s FFT for
the power-of-two case, [DH84] proposed split-radix FFT, [Bra84] proposed fast Hartley
transform for the discrete Hartley transform (DHT) [Har42]7, [Mur96] generalized Bruun’s
FFT to arbitrary even sizes, and [JF07, Ber07, LVB07] improved the split-radix FFT.

This section reviews the works [Bru78, Mur96] over complex numbers for historical
reasons. However, the actual use case relevant to us are the factorization of cyclotomic
polynomials over finite fields [BC87, BGM93, Mey96]. See [TW13, BMGVdO15, WYF18,
WY21] for recent progresses on this topic.

The complex case. Let nj = |Ij |, n =
∏

j nj . Bruun’s FFT [Bru78, Mur96] chooses
gi0,...,ih−1

as follows:

gi0,...,ih−1
= x2 −

(
ζω

∑
j

ij

∏
l<j

nl

n + ζ−1ω
−
∑

j
ij

∏
l<j

nl

n

)
x+ 1.

5Since rings are Z-algebras, a positive integer n is encoded as 1 + · · · + 1︸ ︷︷ ︸
n

.

6A ring with a unique maximal left/right-ideal.
7One can derive DFT and DHT from each other with linearly number of arithmetic during post-

processing.
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Since
∏

i0,...,ih−1
gi0,...,ih−1

= x2n − (ζn + ζ−n)xn + 1, we now have a fast transformation
for the ring R[x]

/〈
x2n − (ζn + ζ−n)xn + 1

〉
. For ζ = ω4n ∈ C, this implements the

isomorphism C[x]
/〈
x2n + 1

〉 ∼=
∏

i C[x]
/〈
x− ω1+2i

4n

〉
if we further split into linear factors.

The finite field cases. In this paper, we are interested in the case R = Fq with q ≡ 3
(mod 4) which relies on the following theorem from [BGM93]:
Theorem 1 ([BGM93]). Let q ≡ 3 (mod 4) be a prime and 2w be the highest power of
q + 1. For k < w, x2k + 1 factors into irreducible trinomials x2 + γx + 1 ∈ Fq[x]. For
k ≥ w, x2k + 1 factors into irreducible trinomials x2k−w+1 + γx2k−w − 1 ∈ Fq[x].

Real-world example(s). For the NTRU Prime parameter sets ntrulpr761/sntrup761,
[HLY24] introduced a fast transformation (Good–Schönhage–Bruun) leading to computing
in Z4591[x]

/〈
x32 + 1

〉
. Since 4591 ≡ 3 (mod 4) and 4591 + 1 = 287 · 24, we can split

Z4591[x]
/〈
x32 + 1

〉
into polynomial rings modulo trinomials of the form x4 + γx2 − 1.

[HLY24] splitted into rings of the form Z4591[x]
/〈
x8 + αx4 + 1

〉
for efficiency reasons.

3.3 Rader’s Fast Fourier Transform
Let n be a positive integer, I = {0, . . . , n− 1}, and ωn ∈ R be a principal n-th root of
unity. If n is an odd prime power, Rader’s FFT computes the map a 7→

(
a(ωi

n)
)

i∈I via a
size-λ(n) cyclic convolution where λ is Carmichael’s lambda function. [Rad68] introduced
the idea of n an odd prime, and [Win78, Section IV] generalized it to n an odd prime
power.

We explain the idea for an odd prime n. Let I∗ := {1, . . . , n− 1} be an index
set, (aj)j∈I := a, and (âi)i∈I :=

(
a(ωi

n)
)

i∈I . Since n is prime, there is a g ∈ I with{
gk ∈ I|k ∈ Zλ(n)

}
= I∗ where the powers gk are reduced modulo n. We introduce the

reindexing j ∈ I∗ 7→ − logg j ∈ Zλ(n) and i ∈ I∗ 7→ logg i ∈ Zλ(n) where logg is the
discrete logarithm, and split the computation (aj)j∈I 7→ (âi)i∈I into â0 =

∑
j∈I aj and

âi = a0 +
∑

j∈I∗ ajω
ij
n for i ∈ I∗. For the cases i ∈ I∗, we move a0 to the left-hand side,

and rewrite it as

âglogg i − a0 =
∑
j∈I∗

ajω
ij
n =

∑
− logg j∈Zλ(n)

aglogg jωglogg i+logg j

n .

We can now compute
(
âgk − a0

)
k∈Zλ(n)

as the size-λ(n) cyclic convolution of
(
ag−k

)
k∈Zλ(n)

and
(
ωgk

n

)
k∈Zλ(n)

. We give an example for n = 5 and g = 2:

(â2k − a0)k∈Z∗
5

=


a1ω

2
5 + a2ω

4
5 + a3ω

1
5 + a4ω

3
5

a1ω
4
5 + a2ω

3
5 + a3ω

2
5 + a4ω

1
5

a1ω
3
5 + a2ω

1
5 + a3ω

4
5 + a4ω

2
5

a1ω
1
5 + a2ω

2
5 + a3ω

3
5 + a4ω

4
5

 =


a24ω21

5 + a23ω24

5 + a22ω23

5 + a21ω22

5
a24ω22

5 + a23ω21

5 + a22ω24

5 + a21ω23

5
a24ω23

5 + a23ω22

5 + a22ω21

5 + a21ω24

5
a24ω24

5 + a23ω23

5 + a22ω22

5 + a21ω21

5

 .

If n is an odd prime power, we define I∗ := {z ∈ Zn|z⊥n} and find a g satisfying{
gk|k ∈ Zλ(n)

}
= I∗8. We can now split the map (aj)j∈I 7→ (âi)i∈I into i ∈ I∗ and

i ∈ I − I∗. For i ∈ I∗, we move
∑

j∈I−I∗ ajω
ij
n to the left-hand side and find

âglogg i −
∑

j∈I−I∗

ajω
ij
n =

∑
j∈I∗

ajω
ij
n =

∑
− logg j∈Zλ(n)

aglogg jωglogg i+logg j

n .

Obviously, collecting the right-hand side forms a system of equations implementing a
size-λ(n) cyclic convolution.

8There is always such a g since n is an odd prime.
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Real-world example(s). The case (n, g) = (17, 3) was used for multiplying over
Z4591. [ACC+21] multiplied in Z4591[x]

/〈
x1530 − 1

〉
on Cortex-M4, [HLY24] multiplied in

Z4591[x]
/〈
x1632 − 1

〉
with Armv8.0-A Neon, and [Hwa23] multiplied in Z4591[x]

/〈
Φ17(x96)

〉
with Armv8.0-A Neon and Intel AVX2. Observe 1530 = 17·90 and 1632 = 17·96, their imple-
mentations relied on the size-17 cyclic FFT Z4591[x]

/〈
x17 − 1

〉 ∼=
∏

i Z4591[x]
/〈
x− ωi

17
〉

,
and are implemented with Rader’s FFT. We will shortly review how [Hwa23] applied
Rader’s FFT for Z4591[x]

/〈
Φ17(x96)

〉
in Section 5.4.

3.4 Karatsuba and Toom–Cook
Let I = {0, . . . , 2k − 2} and {si}i∈I ⊂ Z be a finite set. Karatsuba [KO62] and Toom–
Cook [Too63] compute R[x]

/〈∏
i∈I(x− si)

〉 ∼=
∏

i∈I R[x]/⟨x− si⟩ . [KO62] proposed the
case k = 2 with the point set {0, 1,∞}, [Too63] chose k ≥ 2 and {si} ⊂ Z, and [Win80]
extended the choice of {si} to Q ∪ {∞}. We will review the idea of evaluating at ∞
in Section 5.2. Let c ∈ Z. Evaluating x at c−1 means mapping a polynomial a(x) to
cdeg(a)a(c−1) instead of a(c−1). This convention allows us to operate entirely on integers
during evaluation and worry about “invertibility” later. We will review how to adjoin the
inverses of integers in Section 4.3.

3.5 Homomorphism Caching
Let f : A → B be an algebra monomorphism, and a0,a1, b ∈ A. Suppose we want to
implement a0b and a1b. We can compute with f−1 (f(a0)f(b)) and f−1 (f(a1)f(b)) using
only three applications of f and two applications of f−1. This is called homomorphism
caching and FFT-caching if f is an FFT. [Ber08, Section 2.9] said this was widely known in
1992. Section 5.3 will show historical evidence that caching was used implicitly in [Goo71]
dating back to 1971.

4 Coefficient Rings
This section reviews existing techniques and benefits of a coefficient ring injection:

R ↪→ R′.

Section 4.1 reviews the case whenR andR′ are integer rings, Section 4.2 reviews Schönhage’s
and Nussbaumer’s FFTs choosing R′ as a polynomial ring over R, and Section 4.3 reviews
localization for adjoining inverses of integers.

4.1 Coefficient Ring Injection
Let g = xn ± 1. For multiplying polynomials in Zq[x]/⟨g⟩ with q ∈ N, we can always
multiply in Z[x]/⟨g⟩ and reduce to Zq at the end. There are many ways to compute the
desired result as if the coefficient ring is Z. For simplicity, let’s assume we want to multiply
two polynomials. Since we know that the result over Z has coefficients with absolute values
bounded by nq2

4 for signed arithmetic, we choose a q′ admitting a suitable FFT over g with
q′

2 > nq2

4 and compute in Zq′ [x]/⟨g⟩ with signed arithmetic. For unsigned arithmetic, the
condition is replaced by q′ > nq2. Obviously, Zq ↪→ Zq′ is an injection. If arithmetic defined
over q′ is too large for efficient implementations, one can also choose coprime integers qi’s as
long as their product q′ :=

∏
i qi fulfills the same conditions. The tuple of coprime integers

is called a residue number system (RNS). Multiplying over Zq′ and
∏

i Zqi
is used in many

contexts, including lattice-based cryptography [BBC+20, ACC+21, CHK+21, ACC+22],
and also before public key cryptography [Nic71, Pol71].
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In the literature, one usually sticks to Zq′ or
∏

i Zqi
for the transformations and

small-degree polynomial multiplications. However, [ACC+22, Section 4.2.1] showed how
to balance computing time and memory by operating in Z∏

i
qi

and
∏

i Zqi
for different

operands.

4.2 Schönhage’s and Nussbaumer’s Fast Fourier Transforms
This section surveys Schönhage’s [Sch77] and Nussbaumer’s FFTs [Nus80]. Let g(xn1) ∈
R[x] be a degree-n0n1 monic polynomial. Both FFTs exploit the structure of g(xn1) by
introducing xn1 ∼ y (so R[x]/⟨g(xn1)⟩ ∼= R[x, y]/⟨xn1 − y, g(y)⟩ ). Schönhage splits the
structure into small structures by adjoining the defining condition. On the other hand,
Nussbaumer adjoins a structure for splitting and uses g(xn1) as the defining condition.
We start by replacing xn1 − y with h(x) satisfying deg(h) ≥ 2n1 − 1.

Schönhage requires g(y)|(yn − 1) and h(x)|Φn for an n, and treats R[x]/⟨h(x)⟩ as the
coefficient ring. We then split as follows:

R[x]
⟨g(xn1)⟩

∼=
R[x, y]

⟨xn1 − y, g(y)⟩ ↪→
R[x, y]

⟨h(x), g(y)⟩
∼=

(
R[x]

⟨h(x)⟩

)
[y]

⟨g(y)⟩
∼=
∏
i∈I

(
R[x]

⟨h(x)⟩

)
[y]

⟨y − ωi⟩

for ω a principal n-th root of unity in R[x]/⟨h(x)⟩ .
On the other hand, Nussbaumer requires g(y)|Φn and h(x)|(xn − 1) for an n. This

allows us to split as follows:

R[x]
⟨g(xn1)⟩

∼=
R[x, y]

⟨xn1 − y, g(y)⟩ ↪→
R[x, y]

⟨h(x), g(y)⟩
∼=

(
R[y]

⟨g(y)⟩

)
[x]

⟨h(x)⟩
∼=
∏
i∈I

(
R[y]

⟨g(y)⟩

)
[x]

⟨x− ωi⟩

for ω a principal n-th root of unity in R[y]/⟨g(y)⟩ .
We briefly compare Schönhage and Nussbaumer when n is a power of two in two aspects:

(i) definability and (ii) problem size reduction. For the definability, Schönhage only requires
g(y)|(yn − 1) while Nussbaumer requires g(y)|Φn. Since Φn|(yn − 1), Schönhage applies
to more scenarios. The benefit of Nussbaumer is a broader choice for h. This results in
smaller subproblem sizes or simpler subproblems in some cases [Ber01, Section 9]. For a
more detailed comparison, see Appendix B.

Schönhage and Nussbaumer can be used together, with the former covering a wide
range of polynomial modulus and the latter exploiting the newly introduced factor of a
cyclotomic polynomial.

Real-world example(s). [BBCT22] transformed Z4591[x]
/〈

(x1024 + 1)(x512 − 1)
〉

as
follows. They started with Schönhage for

Z4591[x]
⟨(x1024 + 1)(x512 − 1)⟩

∼=
Z4591[x, y]

⟨x32 − y, (y32 + 1)(y16 − 1)⟩ ↪→

(
Z4591[x]
⟨x64+1⟩

)
[y]

⟨(y32 + 1)(y16 − 1)⟩

and applied Nussbaumer to Z4591[x]
/〈
x64 + 1

〉
.

For generalizations on introducing a polynomial ω as a principal root of unity,
see [MV83a, MV83b, Ber01].

4.3 Localization
Let n ∈ Z be non-invertible in R. Localization allows us to formulate “division by an
integer nk in R.” We quote the following from [Jac12b, Section 7.2] for the propose of
localization:



Vincent Hwang 13

Given a (commutative) ring R and a subset S of R, to construct a ring RS and
a homomorphism λS of R into RS such that every λS(s), s ∈ S, is invertible in
RS , and the pair (RS , λS) is universal for such pairs in the sense that if η is
any homomorphism of R into a ring R′ such that every η(s) is invertible, then
there exists a unique homomorphism η̃ : RS → R′ such that η = η̃ ◦ λS

9.

The ring RS is also commonly denoted as S−1R. We leave the formal treatment to
Appendix C and explain with a small example.

Suppose we want to compute c0 + c1x = (a0 + a1x)(b0 + b1x) in Z215 [x]
/〈
x2 − 1

〉
with “Cooley–Tukey FFT”. We compute a0 + a1x 7→ (a0 + a1, a0 − a1) and b0 + b1x 7→
(b0 + b1, b0 − b1), point-multiply them, and perform an add-sub pair. The result is
((a0 + a1)(b0 + b1) ± (a0 − a1)(b0 − b1)) = 2(a0b0+a1b1, a0b1+a1b0). It remains to “divide
by two”. Localization means the following monomorphisms:

Z215 [x]
⟨x2 − 1⟩

↪→
∏ Z216 [x]

⟨x± 1⟩
↪→ Z216 [x]

⟨x2 − 1⟩
.

Since we know that the result is a 2-multiple of the desired one, we can extract the result
by maintaining the set of 2-multiples as in Z216 .

a0 a1

1 15 1 15
b0 b1

1 15 1 15
c0 c1

15 1 15 1

Figure 1: Localization for Z215 in Z216 . We store the 15-bit values a0, a1, b0, b1 as halfwords.
For the 15-bit values c0, c1, we compute the 16-bit values 2c0 and 2c1 and extract the c0
and c1 by shifting.

Real-world example(s). Recall that for Toom-3 with the point set {0,±1, 2,∞}, we
have to apply 

1 0 0 0 0
1 1 1 1 1
1 −1 1 −1 1
1 2 4 8 16
0 0 0 0 1


−1

=


1 0 0 0 0

− 1
2 1 − 1

3 − 1
6 2

−1 1
2

1
2 0 −1

1
2 − 1

2 − 1
6

1
6 −2

0 0 0 0 1

 .

If we work over the ring Z211 [x] used in ntruhps2048677, then we have to maintain the val-
ues in Z212 for adjoining 2−1. Another example is Toom-5. If we choose {0,±1,±2,±3, 4,∞}
as the point set for evaluation, we must adjoin 16−1. [CCHY23] showed that one can
instead switch to

{
0,±1,±2,± 1

2 , 3,∞
}

requiring only 8−1.
It should be noted that localization need not to adjoin the inverses uniformly in practice.

For example, if we apply Toom-4 with the point set {si} = {0,±1,±2, 3,∞}, then we only
need to implement the following monomorphism:
Z2k [x]
⟨
∏

i si⟩
↪→ Z2k+2 [x]

⟨x⟩
× Z2k+2 [x]

⟨x− 1⟩
× Z2k+3 [x]

⟨x+ 1⟩
× Z2k+3 [x]

⟨x− 2⟩
× Z2k+3 [x]

⟨x+ 2⟩
× Z2k+3 [x]

⟨x− 3⟩
× Z2k [x]

⟨x− ∞⟩
.

9The last sentence actually ends with “such that the diagram [Figure] is commutative”. We replace the
description with the desired composition.
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This allows one to apply more transformations for some subproblems by working over
Z2k+2 and Z2k instead of Z2k+3 . The non-uniform property of localization with Toom–Cook
does not seem to appear in the literature, but we believe there are practical benefits for
implementations.

5 Polynomial Modulus
This section reviews several techniques related to the polynomial modulus g of R[x]/⟨g(x)⟩ .
Section 5.1 reviews twisting and composed multiplication converting R[x]/⟨g(x)⟩ into a
polynomial ring of the form R[y]/⟨g(ζy)⟩ , Section 5.2 reviews embedding and evaluation at
∞ for choosing a polynomial h admitting the monomorphism R[x]/⟨g(x)⟩ ↪→ R[x]/⟨h(x)⟩ .
Section 5.3 reviews the group algebra view for g(x) = xn − 1 and Good–Thomas FFT.
Section 5.4 reviews truncation computing products in R[x]

/〈∏
i∈I′ gi

〉
with an isomor-

phism derived from an isomorphism for R[x]
/〈∏

i∈I gi

〉
with I ′ ⊂ I. Section 5.5 reviews

incomplete transformations and striding, and Section 5.6 reviews the Toeplitz matrix-vector
product for R[x]/⟨xn − αx− β⟩ from the dual module view of algebra homomorphisms
multiplying two size-n polynomials in R[x].

5.1 Twisting and Composed Multiplication
5.1.1 Twisting

Let ζ ∈ R be an invertible element. Twisting is an isomorphism from R[x]/⟨g(x)⟩
to R[y]/⟨g(ζy)⟩ by introducing x ∼ ζy. We have the isomorphism R[x]/⟨g(x)⟩ ∼=
R[x, y]/⟨x− ζy, g(ζy)⟩ and treat R[x]/⟨x− ζy⟩ as the coefficient ring. Let n = deg(g). In
order to change the basis from (1, x, . . . , xn−1) to (1, y, . . . , yn−1) = (1, ζx, . . . , ζn−1xn−1),
we have to multiply the coefficients with the powers ζ, . . . , ζn−1. This usually amounts to
n − 1 multiplications in R, and allows us to operate in an easier case. However, if n is
odd and ζ = −1, we do not need any multiplication for the isomorphism R[x]/⟨xn + 1⟩ ∼=
R[x, y]/⟨x+ y, yn − 1⟩ . We will shortly see how this insight can be systemized in Sec-
tion 5.4.

Twisting was introduced in [GS66] for computing FFTs with R[x]/⟨xn0n1 − 1⟩ ∼=∏
i R[x]

/〈
xn1 − ωi

n0

〉 ∼=
∏

i R[x]/⟨xn1 − 1⟩ . See [DH84, Für09] for more insights on the
choices of n0 and n1.

5.1.2 Composed Multiplication

We go through a specialized approach when R = Fq. Given f0,f1 ∈ Fq[x], we defined
their composed multiplication [BC87] as

f0 ⊙ f1 :=
∏

f0(α)=0

∏
f1(β)=0

(x− αβ)

where α, β are elements from an extension field of Fq. Composed multiplication allows us
to generalize twisting to the polynomial modulus of the form (x− ζ) ⊙ f(x). In particular,
we have Fq[x]/⟨(x− ζ) ⊙ f(x)⟩ ∼= Fq[y]/⟨x− ζy,f(y)⟩ .

Another benefit of composed multiplication is systematically deriving transformations
based on (presumably much simpler) coprime factorizations. Let f0 =

∏
i0

f0,i0 and
f1 =

∏
i1

f1,i1 be coprime factorizations in Fq[x]. We have f0 ⊙ f1 =
∏

i0

(
f0,i0 ⊙ f1

)
=∏

i0,i1

(
f0,i0 ⊙ f1,i1

)
. A practically important example is f0 = xr − 1 =

∏
i0

(
x− ωi0

r

)
∈

Fq[x] and f1 = x2k − 1. Given a factorization x2k − 1 =
∏

i1
f1,i1 in Fq[x], we have

x2kr − 1 =
∏
i0

(
x2k

− ω2ki0
r

)
=
∏
i0,i1

ω
deg(f1,i1 )
r f1,i1(ω−i0

r x).
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Real-world example(s). For an odd number r with r|(4591−1), we have the size-r trans-
formation R[x]/⟨xr − 1⟩ ∼=

∏
i R[x]

/〈
x− ωi

r

〉
. We extend it to a size-2kr transformation

for the ease of vectorization. [HLY24] implemented the isomorphism Z4591[x]
/〈
x1632 − 1

〉 ∼=∏
i Z4591[x]

/〈
x16 ± ωi

51
〉

, and factor Z4591[x]
/〈
x16 ± ωi

51
〉

into polynomial rings modulo
the composed multiplications of x− ωi

51 and factors of x16 ± 1.

5.2 Embedding (Polynomial Modulus) and Evaluation at ∞
Let g ∈ R[x] be a polynomial with deg(g) ≤ n. An obvious approach for multiplying
polynomials in R[x]/⟨g⟩ is multiplying in R[x] followed by reducing modulo g. This is
the embedding technique for ignoring the structure of g. For R[x], one further applies
an identity map from R[x] to R[x]/⟨h⟩ where h is a polynomial with degree larger
than the product in R[x]. h is usually a polynomial with a very nice structure for fast
transformations.

Evaluation at ∞ is an optimization for choosing h [Win80]. Suppose r is the product
in R[x], d the degree, and rd the leading term of r. Instead of computing r, we compute
r − rdh by embedding into R[x]/⟨h⟩ with deg(h) = d. The term rdh is computed
individually and added back. In the literature, the idea is commonly presented as allowing
h to contain the polynomial x− ∞. Historically, evaluation at ∞ was first used by [KO62].
[Too63] chose small integers for evaluation, and [Win80, Page 31] replaced a point with
∞ for unifying Karatsuba and Toom–Cook. [Win80]’s idea was already as general as this
section and applied to other choices of h.

In [KO62], they computed (a0 + a1x)(b0 + b1x) with (a0 + a1x)(b0 + b1x) = a0b0 +
((a0 + a1)(b0 + b1) − a0b0 − a1b1)x + a1b1x

2. If we choose h = x2 + x, the polynomial
(a0 + a1x)(b0 + b1x) − a1b1(x2 + x) = a0b0 + (a0b1 + a1b0 − a1b1)x can be computed in
R[x]

/〈
x2 + x

〉
. Applying R[x]

/〈
x2 + x

〉 ∼= R[x]/⟨x⟩ × R[x]/⟨x− 1⟩ gives us (a0, a0 +a1)
and (b0, b0 + b1). After point-multiplying and inverting, we have a0b0 + ((a0 + a1)(b0 +
b1) − a0a1)x. Adding a1b1(x2 + x) derives the desired result.

It doesn’t seem that people have ever chosen h with x− ∞ for FFT in the literature.
We believe the reason is that one usually splits h into a large number of small factors for
FFT, and the benefit of replacing one of them with x− ∞ is marginal. Nevertheless, we
give the following example of multiplying (a0 + a1x)(b0 + b1x) for referential purposes. We
rewrite (a0 + a1x)(b0 + b1x) as (a0b0 + a1b1) + (a0b1 + a1b0)x + a1b1(x2 − 1), compute
(a0b0 + a1b1) + (a0b1 + a1b0)x with the isomorphism R[x]

/〈
x2 − 1

〉 ∼=
∏
R[x]/⟨x± 1⟩ ,

and finally add a1b1(x2 − 1) to the result.

5.3 Good–Thomas FFT
This section presents an algebraic view of the Good–Thomas FFT [Goo58, Goo71]. Let
n0, . . . , nd−1 be coprime integers and n =

∏
j nj . We have R[Zn] ∼=

⊗
j R[Znj ] as

algebras, or equivalently, R[x]/⟨xn − 1⟩ ∼= R[x0, . . . , xd−1]
/〈
xn0

0 − 1, . . . , xnd−1
d−1 − 1

〉
as

polynomial rings. We leave the proof as an exercise. For a d-dimensional polynomial
a =

(
ai0,...,id−1

)
i0,...,id−1

∈
⊗

j R[Znj
], we define ai0,...,ih−1 as the (d−h)-dimensional tuple(

ai0,...,id−1

)
ih,...,id−1

for h > 0 and a otherwise. Multiplying two elements a, b is regarded
as the following multi-dimensional cyclic convolution ·h defined recursively:

ai0,...,ih−1 ·h bi0,...,ih−1 =
{
ai0,...,id−1bi0,...,id−1 if h = d,∑

k

(∑
ka+kb=k ai0,...,ih−1,ka

·h+1 bi0,...,ih−1,kb

)
xk

h otherwise.

Our goal is to implement ·0, the multiplication in R[x0, . . . , xd−1]
/〈
xn0

0 − 1, . . . , xnd−1
d−1 − 1

〉
.

We now apply homomorphism caching as follows. Let f : R[xd−1]
/〈
x

nd−1
d−1 − 1

〉 ∼= Rd−1
be a monomorphism. We naturally have R[x0, . . . , xd−1]

/〈
xn0

0 − 1, . . . , xnd−1
d−1 − 1

〉 ∼=
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R[x0, . . . , xd−2]
/〈
xn0

0 − 1, . . . , xnd−2
d−2 − 1

〉
⊗Rd−1. This contextualizes ·d−2 as

ai0,...,id−3 ·d−2 bi0,...,id−3 =
∑

k

f−1

( ∑
ka+kb=k

f(ai0,...,id−3,ka
) ·Rd−1 f(bi0,...,id−3,kb

)
)
xk

d−2.

We compute and cache f(ai0,...,id−3,kb
) and f(ai0,...,id−3,kb

), and use them for all the k’s.
Similarly, the idea applies to all other dimensions. As a side note, arbitrary additive group
isomorphism Zn

∼=
∏

j Znj
suffices and there are ϕ(n) of them where ϕ is the Euler’s totient

function. In Appendix F, we survey the vector–radix transform [HMCS77] for optimizing
the multi-dimensional transformation directly.

Real-world example(s). Good–Thomas FFT was first used in [BBC+20] for lattice–
based cryptography. They implemented Z7681·10753[Z1536] ∼= Z7681[Z1536]×Z10753[Z1536] ∼=
Z7681[Z3 ×Z512]×Z10753[Z3 ×Z512] with 16-bit arithmetic using AVX2. [AHY22] proposed
to introduce x4 ∼ y first for Good–Thomas FFT and operate in y for vectorization-
friendliness, and [HLY24] implemented [AHY22]’s idea with Armv8.0-A Neon. [AHY22]
was working with Armv7E-M where a very limited vectorization support is implemented.
They observed that vectorization-friendliness implies a flexible code-size optimization while
permuting for R[Zn] ∼= R

[∏
j Znj

]
with compact code size. See [AHY22, Sections 3.2 and

3.3] for details.
The notion of homomorphism caching is the actual reason making the multi-dimensional

cyclic convolution fast. Historically, Good–Thomas FFT was first presented in [Goo58]10

as a correspondence between a DFT defined on R[x]/⟨xn − 1⟩ and a tensor product of the
DFTs defined on R[xj ]

/〈
x

nj

j − 1
〉

. This was cited as a motivation of Cooley–Tukey FFT
in [CT65]. [GS66, Sto66] pointed out the use of Cooley–Tukey FFT for cyclic convolutions.
[Goo71] explained the differences between Good–Thomas FFT and Cooley–Tukey FFT,
and acknowledged the application of multi-dimensional transform to multi-dimensional
cyclic convolution. Based on this, we believe that homomorphism caching was already
used in [Goo71].

5.4 Truncation
Truncation is a simple and powerful idea. Let I ′ ⊂ I be index sets and {gi}i∈I be coprime
polynomials in R[x]. Suppose we are given the following isomorphism

η :


R[x]

/〈∏
i∈I

gi

〉
→

∏
i∈I

R[x]/⟨gi⟩ ,

a 7→ (a mod gi)i∈I .

We can naturally define an isomorphism ηI′ as

ηI′ :


R[x]

/〈∏
i∈I′

gi

〉
→

∏
i∈I′

R[x]/⟨gi⟩ ,

a 7→ (a mod gi)i∈I′ .

ηI′ is called the truncation of η at R[x]
/〈∏

i∈I′ gi

〉
. Truncation was introduced by [CF94,

Section 7]. [Ber08] (according to [vdH04], the work [Ber08] was already online prior
to [vdH04]) described the benefit in terms of complexity, and [vdH04] named the technique
“truncated Fourier transform” for the FFT case. We call it truncation since it is not
restricted to FFTs.

10In the literature, people commonly attribute the idea to [Goo58, Tho63]. However, we are unable to
locate the work [Tho63], and only find the publication information. If someone finds a copy, we would like
to see how general the idea was in [Tho63].
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5.4.1 Application I: R[x]
/〈

x2k−1 + 1
〉

from R[x]
/〈

x2k − 1
〉

We derive FFT for R[x]
/〈

x2k−1 + 1
〉

from the one for R[x]
/〈

x2k − 1
〉

. For a principal

2k-th root of unity ω2k realizing R[x]
/〈

x2k − 1
〉

∼=
∏2k−1

i=0 R[x]
/〈
x− ωi

2k

〉
, we have

R[x]
/〈

x2k−1 + 1
〉

∼=
∏2k−1−1

i=0 R[x]
/〈
x− ω1+2i

2k

〉
. We can generalize the idea to arbitrary

transformation size n. Below is a straightforward generalization of [CF94, Section 7]. Let
b = n and b̃ =

∑
j b̃j2j be the 2’s complement representation of −n as a ⌈log2 n⌉-bit integer.

We have b+ b̃ = 2⌈log2 n⌉ by definition and define a transformation for

R[x]
/〈

x2⌈log2 n⌉ − 1∏
j

(
x2j + 1

)b̃j

〉
.

This boils down to transformations for rings of the form R[x]
/〈

x2k ± 1
〉

. An example is
the Schönhage for R[x]

/〈
(x1024 + 1)(x512 − 1)

〉
derived from R[x]

/〈
x2048 − 1

〉
.

5.4.2 Application II: R[x]/⟨xr + 1⟩ from R[x]
/〈
x2r − 1

〉
for r⊥2

Our second application is to systematically generalize the isomorphism R[x]/⟨xr + 1⟩ ∼=
R[x, y]/⟨x+ y, yr − 1⟩ for an odd r. Let ψ : Z2r

∼= Z2 × Zr be the additive group isomor-
phism 1 7→ (1, 1). Recall that ψ induces an algebra isomorphism ψ′ : R[x]

/〈
x2r − 1

〉 ∼=
R[z]

/〈
z2 − 1

〉
⊗ R[y]/⟨yr − 1⟩ (cf. Section 5.3). From R[z]

/〈
z2 − 1

〉 ∼=
∏
R[z]/⟨z ± 1⟩ ,

we have
R[x]

⟨xr + 1⟩
∼= ψ′−1

(
R[z]

⟨z + 1⟩
⊗ R[y]

⟨yr − 1⟩

)
∼=

R[x, y]
⟨x+ y, yr − 1⟩

.

Similarly, whenever we are working on a polynomial ring with modulus a factor of xq0q1 − 1
for q0⊥q1, we can always look for transformations for R[z]/⟨zq0 − 1⟩ ⊗ R[y]/⟨yq1 − 1⟩
and pull them back to the desired domain (in our example, we exploit R[z]

/〈
z2 − 1

〉 ∼=∏
R[z]/⟨z ± 1⟩ ). Examples in the literature are the CRT negacyclic/tricyclic transform

in [HVDH22, Sections 3.5 and 3.6].
One should notice that we could derive optimizations by exploiting some properties

of a factor of xq0q1 − 1 and bring the resulting computation back to the isomorphism
R[x]/⟨xq0q1 − 1⟩ ∼= R[z]/⟨zq0 − 1⟩ ⊗ R[y]/⟨yq1 − 1⟩ . The optimization comes from split-
ting Φ3·2k =

(
x2k − ω6

)(
x2k − ω5

6

)
exploiting the identity ω6 + ω5

6 = 1 [LS19] and
Φ3 = (x− ω3)(x− ω2

3) exploiting the identity ω3 + ω2
3 = −1 [DV78a, HY22, AHY22]. We

leave them as exercises for the readers.

5.4.3 Application III: Nussbaumer from Schönhage

As we know, for arbitrary g a factor of x2k −1, we can derive the corresponding Schönhage’s
FFT via truncating the Schönhage’s FFT for R[x]

/〈
x2k − 1

〉
. We now show how to

exploit the same idea for Nussbaumer’s FFT systematically. An example is to derive the
Nussbaumer for R[x]

/〈
x1536 + 1

〉
from the Schönhage for R[x]

/〈
(x1024 + 1)(x512 − 1)

〉
.

Given polynomials g(z)|(zn′ − 1) and h(z)|Φn′(z) with deg(g) = 2n0 and deg(h) = 2n1,
we have a size-2n0n1 transformation via Schönhage as follows

R[x]
⟨g (xn1)⟩

∼=
R[x, y]

⟨xn1 − y, g(y)⟩ ↪→
R[x, y]

⟨h(x), g(y)⟩
∼=

(
R[x]

⟨h(x)⟩

)
[y]

⟨g(y)⟩ .
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We exchange x and y in (R[x]/⟨h(x)⟩ ) [y]/⟨g(y)⟩ , and invert the derivation of Nussbaumer.
This gives us the following transformation for Nussbaumer

R[x]
⟨h (xn0)⟩

∼=
R[x, y]

⟨xn0 − y,h(y)⟩ ↪→
R[x, y]

⟨g(x),h(y)⟩
∼=

(
R[y]

⟨h(y)⟩

)
[x]

⟨g(x)⟩ .

5.4.4 Application IV: Rader’s FFT

Let p be an odd prime, I = {0, . . . , p− 1}, I∗ = {z ∈ I|z⊥p}, and g be a generator of I∗.
For a principal p-th root of unity, we show how Rader’s FFT converts the computing task of
size-p cyclic FFT into a size-λ(p) cyclic convolution in Section 3.3. In this section, we show
that the isomorphism R[x]

/〈∏
i∈I∗

(
x− ωi

p

)〉 ∼=
∏

i∈I∗ R[x]
/〈
x− ωi

p

〉
and its inverse can

also be converted into size-λ(p) cyclic convolutions. For generalization truncating a size-n
cyclic DFT to the roots with exponents coprime to n, see [Ber22, Sections 4.12.3 and
4.12.4].

Forward transformation. Given a polynomial
∑

j∈Zλ(p)
ajx

j ∈ R[x]
/〈∏

i∈I∗

(
x− ωi

p

)〉
and its image (âi−1)i∈I∗ =

∑
j∈Zλ(p)

ajx
j mod

(
x− ωi

p

)
, we rewrite the definition of

âglogg i−1 = âi−1 as follows:

âglogg i−1 = âi−1 =
∑

j∈Zλ(p)

ajω
ij
p = ω−i

p

∑
j∈Zλ(p)

ajω
i(j+1)
p = ω−i

p

∑
j∈I∗

aj−1ω
ij
p

= ω−glogg i

p

∑
− logg j∈Zλ(p)

aglogg j−1ω
glogg i+logg j

p .

If we multiply both sides by ωglogg i

p , then we find that
(
ωgk

p âgk−1

)
k∈Zλ(p)

is a size-λ(p)

cyclic convolution of
(
ag−k−1

)
k∈Zλ(p)

and
(
ωgk

n

)
k∈Zλ(p)

.

Inverse transformation. [Ber22, Section 4.8.2] showed that convolution by
(
ωgk

p

)
k∈Zλ(p)

can be inverted by convolution. By definition, convolution in the polynomial ring
R[x]

/〈
xλ(p) − 1

〉
is the ring multiplication in the group algebra R[Zλ(p)]. Therefore,

the inversion amounts to multiplying the multiplicative inverse of
(
ωgk

p

)
k∈Zλ(p)

in the

group algebra R[Zλ(p)]. The inverse of
(
ωgk

p

)
k∈Zλ(p)

is 1
p

(
ω−g−k

n − 1
)

k∈Zλ(p)
. [Ber22]

proved this by showing that the convolution of
(
ωgk

p

)
k∈Zλ(p)

and
(
ω−g−k

p − 1
)

k∈Zλ(p)
is

(δ0,kp)k∈Zλ(p)
: For all k ∈ Zλ(p), we find

∑
i+j=k

ωgi

n

(
ω−g−j

n − 1
)

=
∑

i+j=k

ω
gi(1−g−(i+j))
n −

∑
i+j=k

ωgi

n = δ0,kp

as desired.

5.5 Incomplete Transformation and Striding
5.5.1 Incomplete Transformation

For a monic polynomial g(xv) ∈ R[x], we call a homomorphism f : R[x]/⟨g(xv)⟩ → A
“incomplete” if f starts with introducing xv ∼ y and proceed as a polynomial ring in
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y with the coefficient ring R[x]/⟨xv − y⟩ . There are several benefits for an incomplete
transformation: (i) the definability of fast transformation, (ii) the vectorization-friendliness
of xv ∼ y, and (iii) the code size for implementing f . We give an example for (i) in this
section. For the benefit of vectorization, see Section 6.1. As for (iii), we refer to [AHY22,
Sections 3.2 and 3.3] for more details.

Real-world example(s). Let’s take the polynomial ring Z3329[x]
/〈
x256 + 1

〉
used

in Kyber as an example. Since 3329 is a prime, we can only define a size-n cyclic
FFT for n|3328. This doesn’t permit splitting the polynomial ring into linear factors
since x256 + 1 = Φ512 and 512 ̸ | 3328. What we can do is introduce x2 ∼ y and split(
Z3329[x]

/〈
x2 − y

〉)
[y]
/〈
y128 + 1

〉
into linear factors in y.

5.5.2 Striding

A closely related idea is striding – we regard R[y]/⟨g(y)⟩ as the coefficient ring. This is
Nussbaumer (cf. Section 4.2) if we replace xv − y with an h(x), and ask g(y)|Φn′(y) and
h(x)|(xn′ − 1) with n′ ≥ 2v − 1. We also have striding Toom–Cook [Ber01, BMK+22] if
h(x) =

∏
i(x− si) for {si} ⊂ Q ∪ {∞}.

5.6 Toeplitz Matrix-Vector Product
This section goes through a generic technique converting a fast computation for R[x] into
a fast computation for R[x]/⟨xn − αx− β⟩ . We present the mathematical background in
this section and will review the architectural insights in Section 6.2.

5.6.1 Bilinear System

We review a generic technique for bilinear systems adapted from [Win80, Theorem 6].

Theorem 1 ([Win80, Theorem 6] for R commutative). Let R be a ring, I,J ,K be finite
index sets, and (ai)i∈I , (bj)j∈J , (ck)k∈K be tuples drawn from R. For a bilinear system

S0 : ∀k ∈ K,
∑
i∈I

∑
j∈J

r(i,j,k)aibj

with r(i,j,k) ∈ R, we construct the following bilinear systems:

S1 : ∀j ∈ J ,
∑
i∈I

∑
k∈K

r(i,j,k)aick,

S2 : ∀i ∈ I,
∑
j∈J

∑
k∈K

r(i,j,k)ckbj .

Then any bilinear algorithm for one of S0, S1 or S2 leads to algorithms for the other two.

One can prove Theorem 1 by defining a |K| × |I| matrix Bk,i :=
(∑

j∈J r(i,j,k)bj

)
,

and write S0 as Ba and S2 as BT c where a and c are the column representations of
(ai)i∈I and (ck)k∈K. See Appendix E for details. If we choose r(i,j,k) := Ji+ j = kK
where JK is the Iverson bracket11 and |K| = |I| + |J | − 1, S0 represents the coefficients of(∑

i∈I aix
i
) (∑

j∈J bjx
j
)

in an obvious way. Then, S2 becomes

S2 : ∀i ∈ I,
∑
j∈J

∑
k∈K

Jk − j = iK ckbj .

11Iverson bracket is an indicator function for the truthfulness. The image of JK is {0, 1}, which can be
certainly embedded into a ring.



20 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

This is called a transposed multiplication [Sho99, Section 3] or a middle product [HQZ04].
[Fid73, Theorem 4 and 5] proved that transposing an algorithm results in same numbers
of constant multiplications (rai for a constant r in R), non-constant multiplications (aibj),
and additions/subtractions with a linear difference. For the history of transposition
principle, see [BCS13, Section 4].

We illustrate with the case |I| = |J | = n. S0 : ∀k ∈ K,
∑

i∈I
∑

j∈J Ji+ j = kK aibj =∑
i∈I,i≤k aibk−i can be written as:

a0 0 · · · 0
...

. . .
. . .

. . .

an−1
. . .

. . .
. . .

0 . . .
. . .

. . .
...

. . .
. . .

. . .

0 . . .
. . .

. . .



 b0
...

bn−1

 .

And S2 : ∀i ∈ I,
∑

j∈J
∑

k∈K Jk − j = iK ckbj =
∑

j∈J ci+jbj can be written as: c0 . .
.

. .
.

... . .
.

. .
.

cn−1 · · · c2n−2


 b0

...
bn−1

 .

S2 allows us to relate S0 to polynomial multiplication modulo a polynomial.

5.6.2 Toeplitz Transform for R[x]/⟨xn − αx− β⟩

Let M be an n× n matrix. We call M a Hankel matrix if Mi,j = Mi+1,j−1 for all possible
i, j, and a Toeplitz matrix if Mi,j = Mi+1,j+1 for all possible i, j. Notice that a Hankel
matrix can be converted into a Toeplitz matrix by multiplying an anti-diagonal matrix of
ones and vice versa.

This section explains how to derive a fast computation for R[x]/⟨xn − αx− β⟩ by look-
ing at an already well-studied algebra monomorphism f multiplying two size-n polynomials
in R[x]. There are four steps: (i) interpreting multiplication in R[x]/⟨xn − αx− β⟩ as a
Toeplitz matrix-vector product with no or little overhead; (ii) interpreting the Toeplitz
matrix-vector product as a composition of applying an anti-diagonal matrix of ones and
a Hankel matrix–vector product; (iii) rewriting the Hankel matrix–vector product as a
bilinear system of the form S2; and (iv) converting the computing task into a bilinear
system of the form S0. Once we go through all the ideas of (i) – (iv), we can now convert
an f into an algorithm for R[x]/⟨xn − αx− β⟩ via module–theoretic view. Notice that
steps (ii) and (iii) are sometimes described as a single step. We describe them separately
simply for clarity.

Steps (i) – (iii) are already shown in previous paragraphs. We now explain how to
interpret the multiplication in R[x]/⟨xn − αx− β⟩ as a Toeplitz matrix-vector product
with potential post-processing. We define Toeplitzn as the following function mapping a
(2n− 1)-tuple drawn from R to a Toeplitz matrix over R:

Toeplitzn : (z2n−2, . . . , z0) 7→


zn−1 · · · z0
...

. . .
. . .

z2n−2
. . .

. . .

 .
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Let a =
∑

i aix
i, b =

∑
bix

i be size-n polynomials. We recall that computing
∑

i cix
i =

ab in R[x] can be regarded as the following matrix–vector product:

 c0
...

c2n−2

 =



b0 0 · · · 0
...

. . .
. . .

. . .

bn−1
. . .

. . .
. . .

0 . . .
. . .

. . .
...

. . .
. . .

. . .

0 . . .
. . .

. . .



 a0
...

an−1

 .

Since (c0, . . . , cn−1) can be computed with a Toeplitz matrix-vector product, we only need
to convert reduction modulo xn − αx − β into the manipulation of Toeplitz matrices.
A standard approach for reducing modulo xn − αx − β is multiplying (cn, . . . , c2n−2)
by α and β and adding the results to (c1, . . . , cn−1) and (c0, . . . , cn−2). Based on this,
ab mod (xn − αx− β) can be written as

(M0 +M1 +M2) a

where {
M0 = Toeplitzn(bn−1, . . . , b0, 0, . . . , 0),
M1 = Toeplitzn(0, . . . , 0, βbn−1, . . . , βb1),

and

M2 = α


0 0 · · · 0
0 bn−1 · · · b0
...

. . .
. . .

. . .

0 . . .
. . .

. . .

 .

A specialized approach for β = 1. We review the case β = 1 implied by [FH07,
Section 3.2]. See Appendix D for an approach handling generic β with some overhead.
See [HB95, FD05] for related works when R = F2. Since β = 1, M0 +M1 is the circulant
matrix implementing ab mod (xn − 1). Obviously, if we multiply a circulant matrix by
a cyclic shift matrix (either left-multipling or right-multipling), we still have a circulant
matrix. Let P be the matrix moving the 0-th row of a circulant matrix to the bottom. We
find that both P (M0 +M1) and PM2 are Toeplitz matrices. Therefore, P (M0 +M1 +M2)
is a Toeplitz matrix and we can implement (M0 +M1 +M2) a as

(M0 +M1 +M2) a = P−1 (P (M0 +M1 +M2) a) .

In Section 6.1, we will justify why cyclic shift matrices are practically efficient.

Padding. The last instrument is padding. Suppose we have an n× n Toeplitz matrix
T = Toeplitz (z2n−2, . . . , z0). For an n′ ≥ n, we can always pad T to an n′ × n′ Toeplitz
matrix T ′ as follows:

T ′ = Toeplitz

0, . . . , 0︸ ︷︷ ︸
n′−n

, z2n−2, . . . , z0, 0, . . . , 0︸ ︷︷ ︸
n′−n

 .

The point is that if n × n Toeplitz matrices do not admit efficient applications, we can
pad them to slighly larger ones admitting efficient applications [IKPC22, Section 3.1].
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6 Vectorization
In this section, we review the formalization of vectorization by [Hwa23]. Since algebra
homomorphisms can be characterized as matrix multiplications, their formulation is based
on manipulations of matrices with standard bases unless specified otherwise. Section 6.1
formalizes vectorization-friendliness and permutation-friendliness, and Section 6.2 surveys
the benefit of vector-by-scalar multiplications.

6.1 Formalization of Vectorization
Throughout this section, we assume there are v elements in a vector register.

6.1.1 Vectorization-Friendliness

We first identify a set BlockDiag of matrices that can be implemented efficiently with vector
instructions. The set BlockDiag is served as a vehicle for defining vectorization-friendliness
of algebra homomorphisms. Although BlockDiag is definitely platform-dependent, we fix
BlockDiag to be a union of certain matrices and explain why they are usually suitable for
vectorization. We define BlockDiag as a set of all possible block diagonal matrices with
each block a v′ × v′ matrix of the following form for a v-multiple v′ [Hwa23]:

1. Diagonal matrix: a matrix with non-diagonal entries all zeros.

2. Cyclic/negacyclic shift matrix: a matrix implementing (ai) 7→
(
a(i+c) mod v′

)
(cyclic)

or (ai) 7→
(

(−1)Ji+c≥v′Ka(i+c) mod v′

)
(negacyclic) for a non-negative integer c.

Diagonal matrices are suitable for vectorization since we can load v coefficients, multiply
them by v constants, and store them back to memory with vector instructions. For
cyclic/negacyclic shift matrices, we discuss how to implement them for the following vector
instruction sets/extensions:

• Armv7/8-A Neon: For cyclic shifts, we extract consecutive elements from a pair of
vector registers with the instruction ext. For negacyclic shifts, we negate one of the
registers before applying ext [HLY24, Algorithm 5].

• AVX2: For cyclic shifts, we perform unaligned loads, shuffle the last vector register,
and store the vectors to memory. Again, the last vector register is negated for
negacyclic shifts [BBCT22].

Qualification of vectorization-friendliness. Let f be an algebra homomorphism,
and Mf be the matrix form of f . We call f vectorization-friendly if

Mf =
∏

i

(Mfi
⊗ Iv)Sfi

for Sfi ∈ S and some matrices Mfi . We first observe that vector instruction sets usually
provide instructions loading/storing consecutive v coefficients from/to memory. The tensor
product Mfi

⊗ Iv ensures that each v-chunk is regarded as a whole while applying Mfi
⊗ Iv.

Since Sfi
’s are assumed to be vectorization-friendly, the matrix product

∏
i (Mfi

⊗ Iv)Sfi

is vectorization-friendly.

6.1.2 Permutation-Friendliness

We introduce the notion “permutation-friendliness”. Conceptually, permutation-friendliness
stands for vectorization-friendliness after applying a special type of permutation – inter-
leaving.
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The set Interleave of interleaving matrices. Again, let v′ be a multiple of v. We
define the transposition matrix Tv′2 as the v′2 × v′2 matrix permuting the elements as if
transposing a v′ × v′ matrix. We illustrate the case v′ = 2 with Algorithm 1 for Neon and
Algorithm 2 for AVX2. Now we are ready to specify the set Interleave of interleaving
matrices. We call a matrix M interleaving matrix with step v′ if it takes the form

M = (π′ ⊗ Iv′) (Im ⊗ Tv′2) (π ⊗ Iv′)

for a positive integer m and permutation matrices π, π′ permuting mv′ elements. The
set Interleave consists of interleaving matrices of all possible steps and is closed under
inversion.

Algorithm 1 trn{1, 2} permuting double words in Armv8.0-A Neon registers.
Inputs: (v0, v1) = (a0 || a1, b0 || b1)
Outputs: (v2, v3) = (a0 || b0, a1 || b1)

1: trn1 v2.2D, v0.2D, v1.2D
2: trn2 v3.2D, v0.2D, v1.2D

Algorithm 2 vperm2i128 permuting double words in AVX2 %ymm registers.
Inputs: (%ymm0, %ymm1) = (a0 || a1, b0 || b1)
Outputs: (%ymm2, %ymm3) = (a0 || b0, a1 || b1)

1: vperm2i128 %ymm2, %ymm0, %ymm1, 0x20
2: vperm2i128 %ymm3, %ymm0, %ymm1, 0x31

Qualification of permutation-friendliness. We now define permutation-friendliness
formally as follows. We call an algebra homomorphism g permutation-friendly if we can
factor its matrix form Mg as

M ′
g =

∏
i

SgiMgi

for Sgi
∈ Interleave and vectorization-friendly Mgi

’s. The permutation-friendliness of
g−1 follows immediately from g.

6.1.3 Vectorization with Vector-By-Vector Instructions

Generally, while computing with vector-by-vector instructions, we choose algebra homo-
morphisms f and g such that f is vectorization-friendly and g is permutation-friendly.
Their composition g ◦ f then admits a suitable mapping to our target vector instruction
set. Concretely, we vectorize f , transpose the coefficients, and vectorize g.

6.2 Vector–By–Scalar Multiplication Instructions
For an m × n Toeplitz matrix M = Toeplitzm×n(am−1, . . . , a0, a

′
1, . . . , a

′
n−1) over the

ring R, [CCHY23] demonstrated the benefit of vector-by-scalar multiplication instructions
when applying M to a vector v = (b0, . . . , bn−1). For simplicity, we demonstrate with the
case m = n = 4 and R = Z232 :

c0
c1
c2
c3

 =


a0 a′

1 a′
2 a′

3
a1 a0 a′

1 a′
2

a2 a1 a0 a′
1

a3 a2 a1 a0



b0
b1
b2
b3

 .
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For deploying vector-by-scalar multiplications, the key is to identify the reuses of the scalar
operands. Obviously, we find that each of b0, . . . , b3 is involved in four multiplications
in R: we compute a0b0, a1b0, a2b0, a3b0 for the operand b0, etc. Therefore, an obvious
choice is to map each columns to a vector and apply vector-by-scalar multiplications. For
a given Toeplitz matrix Toeplitz(a3, · · · , a0, a

′
1, · · · , a′

3), the construction of such vectors
are usually instantiated in two ways: either loading from the addresses pointing a0, . . . , a3,
or loading the first column and first row and combining them with special instructions.
Algorithm 3 constructs the columns with only memory loads, and Algorithm 4 replaces
some memory instructions with permutation instructions.

Algorithm 3 Constructing the columns of a Toeplitz matrix from its array form with
memory loads [CCHY23].
Inputs: Array M[8] = {0, a′

3, a′
2, a′

1, a0, a1, a2, a3}.
Outputs: Vector registers 

t0 = a3 || a2 || a1 || a0,

t1 = a2 || a1 || a0 || a′
1,

t2 = a1 || a0 || a′
1 || a′

2,

t3 = a0 || a′
1 || a′

2 || a′
3.

1: t0 = M[4-7]
2: t1 = M[3-6]
3: t2 = M[2-5]
4: t3 = M[1-4]
5: ▷ Memory load.

Algorithm 4 Constructing the columns of a Toeplitz matrix from its array form with
memory loads and permutations [Hwa23].
Inputs: Array M[8] = {0, a′

3, a′
2, a′

1, a0, a1, a2, a3}.
Outputs: Vector registers 

t0 = a3 || a2 || a1 || a0,

t1 = a2 || a1 || a0 || a′
1,

t2 = a1 || a0 || a′
1 || a′

2,

t3 = a0 || a′
1 || a′

2 || a′
3.

1: t0 = M[4-7]
2: t3 = M[0-3]
3: ▷ Memory load.
4: t1 = ext(t3, t0, 3)
5: t2 = ext(t3, t0, 2)
6: t3 = ext(t3, t0, 1)

After constructing the matrix column-wise, we now identify the column vector c as the
sum of columns scaled by the corresponding elements in v. In other words,

c0
c1
c2
c3

 = b0


a0
a1
a2
a3

+ b1


a′

1
a0
a1
a2

+ b2


a′

2
a′

1
a0
a1

+ b3


a′

3
a′

2
a′

1
a0

 .

Algrotihm 5 is an illustration.
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Algorithm 5 Applying a 4 × 4 Toeplitz matrix with vector-by-scalar multiplication
instructions [CCHY23].
Inputs: Toeplitz(a3, a2, a1, a0, a

′
1, a

′
2, a

′
3), (b0, b1, b2, b3).

Outputs: Toeplitz(a3, a2, a1, a0, a
′
1, a

′
2, a

′
3)(b0, b1, b2, b3).

1: t0 = a3||a2||a1||a0
2: t1 = a2||a1||a0||a′

1
3: t2 = a1||a0||a′

1||a′
2

4: t3 = a0||a′
1||a′

2||a′
3

5: ▷ Applying Algorithms 3 or 4.
6: c = mul(t0, b0)
7: c = mla(c, t1, b1)
8: c = mla(c, t2, b2)
9: c = mla(c, t3, b3)

7 Case Studies

We go through several case studies in this section. Section 7.1 compares Barrett and
Montgomery multiplications with Dilithium implementations for modular arithmetic, and
Section 7.2 compares Montgomery and Plantard multiplications with Kyber implemen-
tations. We then go through several algebraic techniques and vectorization. Section 7.3
explains how to exploit the matrix-to-vector structure with Saber as an example, Sec-
tion 7.4 reviews the benefit of Toeplitz matrix-vector multiplication with NTRU as an
example, and Section 7.5 details the design choices for vectorization with NTRU Prime as
an example.

7.1 Dilithium : Barrett vs Montgomery Modular Arithmetic

This section reviews the modular arithmetic used in Dilithium. In Dilithium, we want
to multiply polynomials in Zq[x]

/〈
x256 + 1

〉
for q = 223 − 213 + 1. Since q is a prime

supporting a size-213 cyclic FFT, we can split x256 + 1 into linear factors (recall that
x256 + 1 = Φ512|(x512 − 1) and 512|213). The choice of FFT is already determined by the
specification – one of the operands is assumed to be transformed. The remaining question
is to compute the modular arithmetic efficiently. For a 32-bit value a, modular reduction
is fairly simple. Since q is fairly close to 223, a−

⌊
a

223

⌉
q is a representative of a mod ±q

within an acceptable range12.
How about modular multiplications? In Section 2, we have three classes of modular

multiplications – Montgomery, Barrett, and Plantard. We compare Montgomery and
Barrett multiplications for Dilithium in this section. Essentially, if we briefly categorize
multiplication operations into three groups: (i) low products {mul, mla, mls}lo, (ii) high
products {mul, mla, mls}hi, and (iii) double-size products {mul, mla, mls}l, Barrett
multiplication requires two low products and one high product whereas Montgomery
multiplication require one low product and two high/double-size products. Table 1 is a
summary. In practice, low products are fairly common, while high products and double-size
products usually lack additive or subtractive variants. See Table 2 for a summary. For the
actual instructions, see [ARM21b, Section A4.4.3], [ARM21a, Sections C3.5.14, C3.5.16,
and C3.5.18], and [Ora14, Section 3.7].

12The actual range for −231 ≤ a < 231 is [−4186113, 4194303] by brute-force testing.
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Table 1: Overview of required multiplication instructions of Barrett and Montgomery
multiplications.

mullo mlslo mulhi mlshi mull mlal
Barrett 1 1 1 0 0 0
Montgomery 1 0 0 0 1 1
Montgomery 1 0 1 1 0 0

Table 2: Overview of the available forms of input-independent signed multiplication
instructions.

Low products
ISA mullo mlalo mlslo
Armv7-M ✓(R = 232) ✓(R = 232) ✓(R = 232)
Armv7E-M ✓(R = 232) ✓(R = 232) ✓(R = 232)
Armv8.0-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
Armv8.1-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
AVX2 ✓(R = 216, 232) - -

High products
ISA mulhi mlahi mlshi
Armv7-M - -
Armv7E-M ✓(R = 232) - -
Armv8.0-A ✓(R = 216, 232) - -
Armv8.1-A ✓(R = 216, 232) ✓(R = 216, 232) ✓(R = 216, 232)
AVX2 ✓(R = 216) - -

Double-size products
ISA mull mlal mlsl
Armv7-M - - -
Armv7E-M ✓(R = 216, 232) ✓(R = 216, 232) -
Armv8.0-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
Armv8.1-A ✓(R = 28, 216, 232) ✓(R = 28, 216, 232) ✓(R = 28, 216, 232)
AVX2 ✓(R = 232) - -

7.1.1 Armv8-A Neon Implementations

For vectorized implementations, [BHK+22b] implemented Barrett multiplication and the
subtractive variant of Montgomery multiplication with Armv8.0-A Neon. For Armv8.0-A,
there are multiplication instructions sq{, r}dmulh computing and doubling the high-
products – For two values a and b, sqdmulh computes

⌊ 2ab
R

⌋
with saturations, and sqrdmulh

applies rounding ⌊⌉ instead of flooring ⌊⌋. For Montgomery multiplication, [BHK+22b]
implemented

1
2

(⌊
2ab
R

⌋
−

⌊
2
(
abq−1 mod ±R

)
q

R

⌋)

as shown in Algorithm 6. One can show that 1
2

(⌊ 2ab
R

⌋
−
⌊

2(abq−1 mod ±R)q

R

⌋)
=
⌊

ab
R

⌋
−⌊

(abq−1 mod ±R)q

R

⌋
. We leave the justification to readers. For Barrett multiplication,
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[BHK+22b] implemented

ab−

a
⌊

bR
q

⌉
2

R

 q
for ⌊⌉2 := r 7→ 2

⌊
r
2
⌉

as shown in Algorithm 7. Since there is a subtractive form for low
products only, Barrett multiplication saves one addition/subtraction compared to Mont-
gomery multiplication. Additionally, [HLY24, Algorithms 3 and 4] proposed the additive
and subtractive variants computing representatives of d ± ab mod q and [Bo-22] found
their benefits for computing radix-2 Cooley–Tukey butterflies on platforms implementing
barrel shift (for example, Cortex-M4). We leave the exploration of the additive/subtractive
Barrett multiplication to the readers.

Algorithm 6 Single-width Montgomery multiplication [BHK+22b, Algorithm 12].
Inputs: Values a, b ∈

[
− R

2 ,
R
2
)
.

Output: c = 1
2

(⌊ 2ab
R

⌋
−
⌊

2(abq−1 mod ±R)q

R

⌋)
.

1: sqdmulh c, a, b ▷ c =
⌊ 2ab

R

⌋
.

2: mul t, a, bq−1 mod ±R ▷ t = abq−1 mod ±R.
3: sqdmulh t, t, q ▷ t =

⌊
2(abq−1 mod ±R)q

R

⌋
.

4: shsub c, c, t ▷ c = 1
2

(⌊ 2ab
R

⌋
−
⌊

2(abq−1 mod ±R)q

R

⌋)
.

Algorithm 7 Single-width Barrett multiplication [BHK+22b, Algorithm 10].
Inputs: Values a, b ∈

[
− R

2 ,
R
2
)
.

Output: lo = ab−
⌊

a⌊ bR
q ⌉2
R

⌉
q.

1: mul lo, a, b ▷ lo = ab.
2: sqrdmulh hi, a,

⌊ bR
q ⌉2
2 ▷ hi =

⌊
a⌊ bR

q ⌉2
R

⌉
.

3: mls lo, hi, q ▷ lo = ab−
⌊

a⌊ bR
q ⌉2
R

⌉
q.

7.1.2 Armv7-M Implementations

This section reviews [HKS23]’s observation of Barrett multiplication on Cortex-M3. Cortex-
M3 implements the ISA Armv7-M where mul/mla/mls, {u, s}{mul, mla, mls}l are the
only multiplication instructions. However, double-size products {u, s}{mul, mla, mls}l
take input-dependent time [ARM10] and can only be used for computing public data.
For computing the 32-bit NTTs of secret data in Dilithium, [GKS21] implemented 32-bit
Montgomery multiplication while emulating the double-size products with mul/mla/mls
as shown in Algorithm 8.

[HKS23] proposed using Barrett multiplication for 32-bit modular multiplications on
Cortex-M3. They observed the following:

B1 While Montgomery multiplication requires two double-size/high products and one
low product, Barrett multiplication requires one high product and two low products.

B2 In Barrett multiplication, the high product only needs to be approximately correct.
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Algorithm 8 Constant-time 32-bit Montgomery multiplication [GKS21, Listing 7]
Inputs: al + ah · R = a, bl + bh · R = b.
Output: tmph = ab+(−abq−1 mod ±R)q

R .
1: SBSMULL tmpl, tmph, al, ah, bl, bh ▷ tmpl + tmph · R = ab.
2: mul ah, tmpl, −q−1 mod ±R ▷ ah = abq−1 mod ±R.
3: ubfx al, ah, #0, #16
4: asr ah, ah, #16 ▷ al + ah · R = −abq−1 mod ±R.
5: SBSMLAL tmpl, tmph, al, ah, ql, qh ▷ tmph = ab+(−abq−1 mod ±R)q

R .

Observation B1 saves one emulation of the double-size/high product, and observation B2
allows one to deploy a faster emulation with tolerable errors.

Let’s consider JK the following integer approximation:

∀r ∈ R, JrK = ar,hbh +
⌊
ar,lbh√

R

⌋
+
⌊
ar,hbl√

R

⌋
for ar,l+ar,h

√
R = rR

⌊ bR
q ⌉ and bl+bh

√
R =

⌊
bR
q

⌉
. For − q

2 ≤ b < q
2 and − R

2 ≤ ar,l+ar,h

√
R < R

2 ,

[HKS23] showed that |r − JrK| ≤ 3 and
∣∣modJKR

∣∣ ≤ 7R
2 , and computed

ab−

u

v
a
⌊

bR
q

⌉
R

}

~ q

as a representative of ab mod ±q with range bounded by

|a| |mod±q| +
∣∣modJKR

∣∣ |q|
R

≤
|a| q

2 + 7
2 Rq

R
= q

2

(
7 + |a|

R

)
.

Algorithm 9 is an illustration.

Algorithm 9 Constant-time 32-bit Barrett multiplication with approximated high prod-
uct [HKS23].
Inputs: a = a, b = b.
Output: t3 = ab−

s
a⌊ bR

q ⌉
R

{
q.

1: mul t3, a, b ▷ t3 = ab mod ±R.
2: ubfx t0, a, #0, #16
3: asr a, a, #16 ▷ t0 + a · R = a.
4: smmulr_approx t1, a, bhi, t0, blo, t2 ▷ t1 =

s
a⌊ bR

q ⌉
R

{
.

5: mls t3, t1, q, t3 ▷ t3 = ab−
s

a⌊ bR
q ⌉

R

{
q.

7.2 Kyber : Montgomery vs Plantard Modular Arithmetic
In this section, we compare the applications of Montgomery and Plantard multiplications
to Kyber, which requires modular multiplication for the coefficient ring Z3329. We assume
R = 216 in this section. [HZZ+22] and [AMOT22] independently found the signed Plantard
multiplications. [HZZ+22] identified the benefit of 16-bit modular arithmetic if there
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are 16 × 32-bit multiplication instructions, and [AMOT22] identified the benefit of 32-bit
modular arithmetic using only 64-bit multiplication instructions. [HZZ+] later implemented
16-bit Plantard multiplication following [AMOT22]’s insights when there are no 16 × 32-bit
multiplication instructions.

7.2.1 Armv7-M Implementations

In Armv7-M, since all the registers contain 32-bit values, we can compute the 16-bit
Montgomery multiplication with mul and mla in an obvious way (cf. Algorithm 10).
[HZZ+] implemented 16-bit Plantard multiplication with [AMOT22]’s insights. For 16-bit
values a ∈

[
− R

2 ,−
R
2
)

and b ∈
[
− q

2 ,
q
2
)
, we compute

⌊
−abq−1 mod ±R2

R

⌋
q + 2αq

R


as a representative of −abR−2 mod ±q. See 11 for an illustration. If b is known in prior,
we skip the computation for −bq−1 mod ±R2 and cancel out the scaling −R2 mod ±q by
precomputing −

(
−bR2 mod ±q

)
q−1 mod ±R2.

Algorithm 10 16-bit Montgomery multipliation with Armv7-M [GKS21].
Inputs: Values a, b ∈

[
− R

2 ,
R
2
)
.

Output: t0 = ab+
(
−abq−1 mod ±R

)
q.

1: mul t0, a, b ▷ t0 = ab.
2: mul t1, t0, −q−1 mod ±R
3: sxth t1, t1, #0, #16 ▷ t1 = −abq−1 mod ±R.
4: mla t0, t1, q, t0 ▷ t0 = ab+

(
−abq−1 mod ±R

)
q.

5: ▷ The desired result is stored in the upper half.

Algorithm 11 16-bit Plantard multiplication with Armv7-M [HZZ+].

Inputs: Values a ∈
[
− R

2 ,
R
2
)
,−bq−1 ∈

[
− R2

2 ,
R2

2

)
.

Output: t =
(⌊

−abq−1 mod ±R2

R

⌋
+ 2α

)
q.

1: mul t, b, −q−1 mod ±R2 ▷ t = −bq−1 mod ±R2.
2: mul t, t, a ▷ t = −abq−1 mod ±R2.
3: add t, 2α, t, asr #16 ▷ t =

⌊
−abq−1 mod ±R2

R

⌋
+ 2α.

4: mul t, t, q ▷ t =
(⌊

−abq−1 mod ±R2

R

⌋
+ 2α

)
q.

5: ▷ The desired result is stored in the upper half.

7.2.2 Armv7E-M Implementations

We briefly compare Montgomery and Plantard multiplications with the Digital Signal
Processing extension in Armv7E-M where “E” stands for “extension”. [ABCG20] showed
that 16-bit Montgomery multiplication can be implemented with three 16-bit multiplication
instructions from the extension as shown in Algorithm 12. Recently, [HZZ+22] found that
the multiplication instruction smulwb fits for 16-bit Plantard multiplication. Algorithm 13
is an illustration. If one of the multiplicands is known in prior, we can remove one
multiplication and cancel out the scaling with precomputation as shown in previous
section.
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Algorithm 12 16-bit Montgomery multiplication with Armv7E-M [ABCG20].
Inputs: lo(a) = al, lo(b) = bl.
Outputs: hi(th) = albl+(−alblq−1 mod ±R)q

R .
1: smulbb th, a, b ▷ hi = albl.
2: smulbb tl, th, −q−1 mod ±R ▷ lo = (albl mod ±R)

(
−q−1 mod ±R

)
.

3: smlabb th, tl, q, th ▷ th = albl +
(
−alblq

−1 mod ±R
)
q.

4: ▷ The desired result is stored in the upper half.

Algorithm 13 16-bit Plantard multiplication with Armv7E-M [HZZ+22]
Inputs: lo(a) = al, b ∈

[
− q

2 ,
q
2
)
.

Outputs: hi(t) =

⌊−albq−1 mod ±R2
R

⌋
q+2αq

R

.

1: mul t, b, −q−1 mod ±R2 ▷ t = −bq−1 mod ±R2.
2: smulwb t, t, a ▷ t =

⌊
al(−bq−1 mod ±R2)

R

⌋
.

3: smlabb t, t, q, 2αq ▷ t =
⌊

−albq−1 mod ±R2

R

⌋
q + 2αq.

4: ▷ The desired result is stored in the upper half.

7.3 Saber : Homomorphism Caching

In Saber, the most performance-critical polynomial operation is multiplying l × l matrix
by an l × 1 vector over the polynomial ring Z8192[x]

/〈
x256 + 1

〉
. We review the benefit of

caching algebra and module homomorphisms.

Algebra homomorphism caching. Let f : Z8192[x]
/〈
x256 + 1

〉
→ S be an algebra

monomorphism, ·S be the multiplication in S, and +S be the addition in S. We denote C(−)
as the cost function of a map. If we apply f to all the polynomials, compute matrix–vector
multiplication over S, and transform back to a vector over Z8192[x]

/〈
x256 + 1

〉
, the total

cost is
(l2 + l)C(f) + l2C(·S) + (l2 − l)C(+S) + lC(f−1).

Optimizations for the matrix–vector multiplication over Z8192[x]
/〈
x256 + 1

〉
should base

the comparisons on the dominating term C(f) + C(·S) + C(+S). [KRS19] chose f as Toom–
Cook but didn’t exploit the homomorphic property. [MKV20] exploited the homomorphic
property for Toom–Cook, and [CHK+21] chose f as an FFT. The FFT-type approaches
for Saber remain the fastest [CHK+21, ACC+22, BHK+22b].

Module homomorphism caching. In the previous paragraph, we have seen the
importance of caching algebra homomorphisms. [BHK+22b] introduced “asymmetric
multiplication” which falls into module homomorphism caching. For a polynomial
a ∈ Z8192[x]

/〈
x256 + 1

〉
and an algebra homomorphism f : Z8192[x]

/〈
x256 + 1

〉
→ S,

we first regard f(a) as a module homomorphism mapping f(b) to f(a)f(b) for b ∈
Z8192[x]

/〈
x256 + 1

〉
. If f(a) amounts to polynomial multiplications modulo xv − ζ, we

can turn f(a) into a special kind of module homomorphism – Toeplitz matrix-vector
multiplication (cf. Section 5.6). In practice, the Toeplitz matrix conversion of f(a) is
cached. This is called asymmetric multiplication [BHK+22b, Section 4.2].
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7.4 NTRU : Toeplitz matrix-vector product
Section 5.6 discusses how to turn arbitrary algebra homomorphisms multiplying size-n poly-
nomials inR[x] into a Toeplitz matrix-vector product for multiplying in R[x]/⟨xn − αx− β⟩ .
In Section 6.2, we discuss the benefit of computing Toeplitz matrix-vector products with
vector-by-scalar multiplications. We review the Toeplitz matrix-vector product approach
for multiplying polynomials in Z2048[x]

/〈
x677 − 1

〉
used by the NTRU parameter set

ntruhps2048677.

7.4.1 Armv7E-M Implementation

[IKPC22] applied Toeplitz matrix-vector product with Karatsuba and Toom–Cook. They
first considered the following sequence of Karatsuba and Toom–Cook multiplying two
size-720 polynomials:

TC-4 → K-3 → K-3 → K-2
where K-2 is the usual Karatsuba in Section 3.4 and K-3 is the subtractive variant of 3-way
Karatsuba13. They then took the dual of Toom–Cook, Karatsuba, and their inverses, and
formed Toeplitz matrix-vector products as shown in Section 5.6. [IKPC22] identified that
one no longer needs to reduce modulo a polynomial since it is merged with the polynomial
multiplication itself (cf. Section 5.6.2).

7.4.2 Armv8-A Implementation

Shortly after, [CCHY23] explored the vectorization of Toeplitz matrix-vector products
with Armv8-A. They started with the following sequence of Karatsuba and Toom–Cook
multiplying two size-720 polynomials:

TC-5 → TC-3 → TC-3 → K-2

and took the dual of all the homomorphisms. They showed that small-dimensional power-
of-two Toeplitz matrix-vector product can be implemented efficiently for the following
reasons: (i) one can construct Toeplitz matrices efficiently from its first row and column (cf.
Section 6.2) and (ii) the existence of vector-by-scalar multiplication instructions allow one
to apply the outer-product-based matrix-vector multiplication while avoiding permutations
and reducing register pressure significantly [CCHY23]. See [CCHY23, Section 5.1] for
more details on memory optimizations while inverting Karatsuba and Toom–Cook.

7.5 NTRU Prime : Vectorized FFTs
In this section, we go through a detailed analysis of vectorized polynomial multipliers in
NTRU Prime. Our central objective is to answer the following question:

How FFT-, vectorization-, and permutation-friendly the coefficient ring is?
For simplicity, we focus on the polynomial ring Z4591[x]

/〈
x761 − x− 1

〉
used in the pa-

rameter sets ntrulpr761 and sntrup761. We first discuss a generic approach using
Schönhage and Nussbaumer for maintaining the friendliness while exploiting no algebraic
properties of the polynomial ring. Schönhage and Nussbaumer usually adjoin algebraic
structures for friendliness with expenses. We then systematically analyze how to exploit
the algebraic structure endowed in Z4591, showing that Z4591 actually admits FFT, vector-
ization, and permutation-friendly transformations. Observe that 4591 − 1 = 2 · 33 · 5 · 17
and 45912 − 1 = 25 · 33 · 5 · 7 · 17 · 41, we summarize the following findings from the
works [HLY24, Hwa23].

13In principle, we compute all possible aibi and (ai − aj)(bi − bj) for i ̸= j so arbitrary aibj can be
derived by only additions and subtractions, see [WP06, Section 3.2] for details.
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• We qualify Z4591 as an FFT-friendly prime by considering the application of Good–
Thomas and Rader’s FFTs based on the factorization of 4591 − 1 and Bruun’s FFT
based on the factorization of 45912 − 1 [HLY24].

• We qualify Z4591 as a vectorization-friendly prime since the product 25 · 33 · 5 · 17 =
73440 (73440 = 16(4591 − 1)|(45912 − 1)) allows a wide range of FFTs resulting
small-dimensional power-of-two polynomial multiplications [HLY24].

• We qualify Z4591 as a permutation-friendly prime since 3, 5, and 17 are Fermat
primes, and truncating Fermat-prime-size Rader’s FFTs gives power-of-two cyclic
convolutions [Hwa23].

We review two AVX2-optimized implementations in this section: (i) [BBCT22]’s
approach with truncated Schönhage and Nussbaumer FFTs, and (ii) [Hwa23]’s approach
with truncated Rader, Good–Thomas, and Bruun FFTs.

7.5.1 A Generic Approach with Truncated Schönhage and Nussbaumer FFTs

Let’s recall the AVX2-optimized polynomial multiplication for ntrulpr761/sntrup761
from [BBCT22]. For multiplying polynomials in Z4591[x]

/〈
x761 − x− 1

〉
, [BBCT22] com-

puted the product in Z4591[x]
/〈

(x512 − 1)(x1024 + 1)
〉

as follows. They first applied
Schönhage replacing x32 − y with x64 + 1:

Z4591[x]
⟨(x512 − 1)(x1024 + 1)⟩

η0∼=
Z4591[x]
⟨x32−y⟩ [y]

⟨(y16 − 1)(y32 + 1)⟩
η1
↪→

Z4591[x]
⟨x64+1⟩ [y]

⟨(y16 − 1)(y32 + 1)⟩ .

Since x2 is a principal 64-th root of unity in Z4591[x]
/〈
x64 + 1

〉
, we have (y16−1)(y32+1) =∏

i ̸≡2 (mod 4)(y − x2i) over Z4591[x]
/〈
x64 + 1

〉
. We find Schönhage’s FFT vectorization-

friendly since 64 = 4 · 16. After splitting the polynomial ring in y, the remaining problem is
multiplying in Z4591[x]

/〈
x64 + 1

〉
. [BBCT22] interleaved the polynomials with no leftovers

and applied Nussbaumer as follows:

Z4591[x]
⟨x64 + 1⟩

η2∼=
Z4591[z]
⟨z8+1⟩ [x]
⟨x8 − z⟩

η3
↪→

Z4591[z]
⟨z8+1⟩ [x]
⟨x16 − 1⟩

.

Since z is a principal 16-th root of unity in Z4591[z]
/〈
z8 + 1

〉
, we can factor x16 − 1 into∏

j(x−zj) over Z4591[z]
/〈
z8 + 1

〉
. In summary, we are left with 1536·2·2

8 = 768 polynomial
multiplications in Z4591[z]

/〈
z8 + 1

〉
. For multiplying polynomials in Z4591[z]

/〈
z8 + 1

〉
for details.

7.5.2 A Specialized Approach with Truncated Rader, Good–Thomas, and
Bruun FFTs

We briefly review the friendliness measures found by [HLY24, Hwa23]. The state-of-the-art
AVX2 implementation [Hwa23] computed the products in Z4591[x]

/〈
Φ17(x96)

〉
. [Hwa23]

first applied truncated Rader’s FFT to the isomorphism:

Z4591[x]
⟨Φ17(x96)⟩

∼=
∏
i ̸=0

Z4591[x]〈
x96 − ωi

17
〉

and twisted each of Z4591[x]
/〈
x96 − ωi

17
〉

into Z4591[x]
/〈
x96 − 1

〉
. They then applied

Good–Thomas FFT implementing the isomorphism:

Z4591[x]
⟨x96 − 1⟩

∼=
∏

j

Z4591[x]〈
x16 − ωj

6

〉
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and twisted into Z4591[x]
/〈
x16 ± 1

〉
. Since each vector registers in AVX2 contains sixteen

16-bit values, all of the above are vectorization-friendly. The remaining problems are 48
polynomial multiplications in Z4591[x]

/〈
x16 − 1

〉
and 48 in Z4591[x]

/〈
x16 + 1

〉
. Since 48

is a multiple of 16, we can interleave the polynomials with no leftovers. This implies
permutation-friendliness. For multiplying polynomials in Z4591[x]

/〈
x16 ± 1

〉
, see [Hwa23]

for details.

8 Overview of Advances
We give overviews of the advances of polynomial multiplications used in lattice-based
cryptosystem implementations with emphases on modular arithmetic, algebraic techniques,
and vectorization. Table 3 gives an overview of existing works for Dilithium, Kyber, and
Saber, and Table 4 gives an overview of existing works for NTRU and NTRU Prime.

Table 3: Target architectures/extensions of existing works for Dilithium, Kyber, and Saber.

Dilithium Kyber Saber
[BKS19] - Armv7E-M -
[KRS19] - - Armv7E-M
[ABD+20a] AVX2 - -
[ABD+20b] - AVX2 -
[DKRV20] - - AVX2
[ABCG20] - - Armv7E-M -
[MKV20] - - Armv7E-M, AVX2
[IKPC20] - - Armv7E-M
[CHK+21] - - Armv7-M, AVX2
[GKS21] Armv7-M - -
[SKS+21] - Armv8-A -
[NG21] - Armv8-A Armv8-A
[BHK+22b] Armv8-A Armv8-A Armv8-A
[AHKS22] Armv7-M Armv7E-M -
[HZZ+22] - Armv7E-M -
[AMOT22] - - RISC-V
[HKS23] Armv7-M - -

8.1 Modular Arithmetic
We first give an overview of modular arithmetic. See Table 5 for a summary of existing
works on 8-bit AVR, Armv7-M, Armv7E-M, Armv8.0-A, MVE, and AVX2.

8.1.1 Vector architecture implementations

[Sei18] was the first work proposing signed Montgomery multiplication. They applied the
idea to the vectorized 16-bit NTT used in the Ring-LWE scheme NewHope. Their idea
nicely captured the availability of 16-bit multiplication instructions in AVX2, and it was
applied to Kyber [ABD+20b] and NTRU Prime [BBC+20]. The subtractive variant was
also implemented by [SKS+21] in Armv8-A. The “unsigned Barrett multiplication” was
implemented in [Sho].
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Table 4: Target architectures/extensions of existing works for NTRU and NTRU Prime.

NTRU NTRU Prime
[KRS19] Armv7E-M -
[BBC+20] AVX2 -
[CDH+20] - AVX2
[ACC+21] - Armv7-M
[CHK+21] Armv7-M, AVX2 -
[NG21] Armv8-A -
[IKPC22] Armv7E-M -
[AHY22] Armv7-M Armv7-M
[BBCT22] - AVX2
[CCHY23] Armv8-A -
[Hwa23] - Armv8-A, AVX2
[HLY24] - Armv8-A

Table 5: Summary of existing works of modular multiplications relavent to our target
architectures and extensions.

Barrett Montgomery Plantard
[Sho] ✓ - -
[Sei18] AVX2 AVX2 -
[BKS19] Armv7E-M Armv7E-M -
[ABCG20] - Armv7E-M -
[ACC+21] Armv7E-M Armv7-M -
[GKS21] - Armv7-M -
[SKS+21] Armv8.0-A Armv8.0-A -
[BHK+22b] Armv8.0-A Armv8.0-A -
[AHKS22] Armv7E-M - -
[BHK+22a] MVE - -
[HZZ+22] - - Armv7E-M
[AMOT22] - - ✓
[HKS23] Armv7-M, 8-bit AVR - -

[BHK+22b] independently14 found the signed Barrett multiplication, the correspon-
dence between Montgomery and Barrett multiplication, and their variants and implemented
them with Armv8-A. [BHK+22a] later demonstrated that if one increases the precision of
the arithmetic, then we have the canonical representations of the products for some special
moduli, and implemented the idea with M-profile vector extension (MVE).

8.1.2 Microcontroller Implementations

[BKS19] implemented Barrett reduction and the subtractive variant of Montgomery multi-
plication with the SIMD instruction smul{b, t}{b, t} in Armv7E-M. [ABCG20] switched
to the additive variant of Montgomery multiplication and absorbed the addition by replac-
ing a smul{b, t}{b, t} with smla{b, t}{b, t} [ABCG20, Algorithm 11]. The signed

14[BHK+22b] cited the eprint version of [SKS+21]. The subtractive variant of Montgomery multiplication
was shown in the published version but not the eprint one. We are informing the authors of [BHK+22b]
for this miscontribution.
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Barrett reduction was later improved by [ACC+21] with instructions smlaw{b, t}15, but
it was not reported (we found this while carefully examining the assembly programs).
In [ACC+21], they also proposed the uses of s{mul, mla}l in Armv7-M for 32-bit Mont-
gomery multiplication and smmulr in Armv7E-M for 32-bit Barrett reduction. The 32-bit
Montgomery multiplication was independently proposed by [GKS21].

The improvement of signed Barrett reduction with Armv7E-M was later reported
in [AHKS22]. [HZZ+22] and [AMOT22] independently found the signed versions of
Plantard multiplication. [HZZ+22] applied the idea to 16-bit modular arithmetic with
Armv7E-M instructions s{mul, mla}w{b, t} while [AMOT22] applied the idea to 32-bit
modular arithmetic using 64 = 64 × 64 arithmetic on K210 (64-bit) [AMOT22, Section
V-B]. Shortly after, [HZZ+] applied signed Plantard arithmetic to Armv7-M with essen-
tially the same idea from [AMOT22]. Recently, [HKS23] proposed the uses of Barrett
multiplication when long/high multiplication instructions are slow, unusable, or unavailable
and implemented the ideas with Armv7-M and 8-bit AVR.

8.2 Algebraic Techniques
In Dilithium and Kyber, most optimizations are about modular arithmetic, memory
footprint, and instructions scheduling, so we exclude them unless specified otherwise in
this section.

8.2.1 Vector Architecture Implementations

We first give an overview of AVX2-optimized implementations. For the big-by-small
polynomial multiplication, [BBC+20] implemented 16-bit Good–Thomas FFT with permu-
tations instantiated as logical operations for ntrulpr761/sntrup761 and applied radix-2
FFT to the power-of-two dimension. [CHK+21] applied 16-bit size-256 negacyclic FFT to
Saber and size-1024, size-1536, and size-1728 cyclic FFTs to NTRU. For the big-by-big
polynomial multiplication, [MKV20, CDH+20] applied Toom–Cook and Karatsuba to
NTRU and Saber. For NTRU Prime, [BBCT22] implemented truncated Schönhage’s
and Nussbaumer’s FFTs (cf. Section 7.5.2), and [Hwa23] applied truncated Rader’s,
Good–Thomas, and Bruun’s FFTs following [HLY24]’s Armv8-A work.

For the Armv8-A Neon implementations, [NG21] implemented 16-bit size-256 negacyclic
FFT for Saber, and 3- and 4-way Toom–Cook for NTRU. Shortly after, [BHK+22b]
demonstrated 32-bit negacyclic FFT is more performant for Saber 16. [CCHY23] deployed
5-way Toom–Cook to NTRU and showed that Toeplitz transformation with Toom–Cook was
more favorable due to the presence of vector-by-scalar multiplication instructions on Armv8-
A, and [HLY24] applied Rader’s, Good–Thomas, and Bruun’s FFTs. Finally, [Hwa23]
applied truncated Rader’s FFT, Good–Thomas FFT, and Toeplitz matrix-vector products
to small-dimensional cyclic/negacyclic convolutions.

8.2.2 Microcontroller Implementations

[KRS19] applied Toom–Cook and Karatsuba to NTRU and Saber. [MKV20] later cached
the homomorphisms in the case of Saber and [IKPC20] applied the Toeplitz matrix-
vector product to Saber with Toom–Cook and Karatsuba as the underlying monomor-
phisms. [ACC+21] proposed three implementations for NTRU Prime parameter sets
ntrulpr761/sntrup761: (i) a Good–Thomas FFT computing the big-by-small polyno-
mial multiplication with 32-bit arithmetic over Z, (ii) an FFT using radix-2, radix-
3, and radix-5 butterflies with 16-bit arithmetic over Z4591, and (iii) an FFT using

15smlaw{b, t} multiplies a 32-bit value by a certain half of a 32-bit value, accumulates the result to the
accumulator, and returns the most significant 32-bit value.

16This doesn’t say that we should do the same thing for AVX2-optimized implementation since there
are no native 32-bit multiplication instructions in AVX2.
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radix-3 and Rader’s radix-17 butterflies with 16-bit arithmetic over Z4591. The big-by-
small polynomial multiplication came from [BBC+20] and was later adapted to NTRU
and Saber [CHK+21]. [IKPC22] extended [IKPC20]’s work to NTRU and [AHY22] im-
proved [ACC+21, CHK+21]’s NTRU and NTRU Prime implementations by proposing
vector-radix butterflies for speed [AHY22, Section 4.1] and vectorization-friendly Good–
Thomas for code size [AHY22, Section 3.3].

9 Directions for Future Works
We point out several possible future works as follows.

Non-uniform property of localization in Toom–Cook. In Section 4.3, we explain
that localization does not need to be uniform among subproblems and illustrate the idea
with Toom–Cook. In practice, one usually applies Toom–Cook recursively. Since the
required localization for subproblems is not uniform, applying more aggressive divide-and-
conquer strategies for some subproblems is possible. We want to know the practical impact
of this observation of Toom–Cook and its Toeplitz version for NTRU and Saber.

Schönhage and Nussbaumer for NTRU and Saber. In lattice-based cryptosystem
implementations, Schönhage and Nussbaumer FFTs were only applied to NTRU Prime
where the coefficient ring is Zq for an odd q. We want to know the practical impact of
Schönhage’s FFT, Nussbaumer’s FFT, and their Toeplitz versions for NTRU and Saber
where q is a power of two.

Barrett multiplication for finite fields. The finite field versions of Montgomery
multiplication [KA98] and Barrett reduction [Dhe03] were known in the literature. Ap-
pendix A extends the correspondence between Montgomery multiplication and Barrett
multiplication [BHK+22b] to principal ideal domains. For a finite field Fp, since Fp[x]
is a principal ideal domain, the correspondence implies the finite field version of Barrett
multiplication. The Barrett reduction found by [Dhe03] is then a special case in this regard.
We want to know the practical impact of the deployment of Barrett multiplication for
finite fields.

Toeplitz matrix-vector product for NTRU Prime. Section 5.6.2 explains that
polynomial multiplication modulo xn −αx−β can be turned into a Toeplitz matrix-vector
product. Explore the Toeplitz approach for NTRU Prime.

A Modular Arithmetic for Principal Ideal Domains
Let R be a principal ideal domain, e0, e1 ∈ R be elements with gcd(e0, e1) = 1. We assume
implicitly that R/⟨e0⟩ , R/⟨e1⟩ ⊂ R by first fixing the representatives for each equivalence
classes. We define Montgomery multiplication as:

ab+
(
ab
(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0

e1
≡ abe−1

1 mod ⟨e0⟩ .

If b is known in prior, we compute the following instead:

a (be1 mod ⟨e0⟩) +
(
a (be1 mod ⟨e0⟩)

(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0

e1
≡ ab mod ⟨e0⟩ .

We prove the equivalence as follows.
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Proof. Let term = ab+
(
ab
(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0 be an abbreviation. By defini-

tion, we have

term mod ⟨e1⟩ =
(
ab+

(
ab
(
−e−1

0 mod ⟨e1⟩
)

mod ⟨e1⟩
)
e0
)

mod ⟨e1⟩ = 0.

Therefore, term is a multiple of e1 and term
e1

∈ R. It remains to show that term
e1

≡
abe−1

1 mod ⟨e0⟩. This bolds down to the fact that term ≡ ab mod ⟨e0⟩ and e0⊥e1.

Suppose we are given an ideal ⟨e⟩ and a quotient ring R/⟨e⟩ with a choice function for
the representatives. For an a ∈ R, we define

q
a
e

y
as the element in R satisfying:

e
ra
e

z
= a− a mod ⟨e⟩ .

We claim the following equation:

ab−

u

v
a

r
be1
e0

z

e1

}

~ e0 =
a (be1 mod ⟨e0⟩) +

(
a (be1 mod ⟨e0⟩) (−e−1

0 ) mod ⟨e1⟩
)
e0

e1
.

Proof. We first find the following:
s
be1

e0

{
mod ⟨e1⟩ = (be1 mod ⟨e0⟩) (−e−1

0 ) mod ⟨e1⟩

Then, we have:

ab−

u

v
a

r
be1
e0

z

e1

}

~ e0

=
abe1 − a

r
be1
e0

z
e0 +

(
a

r
be1
e0

z
mod ⟨e1⟩

)
e0

e1

=
abe1 − a

r
be1
e0

z
e0 +

(
a (be1 mod ⟨e0⟩) (−e−1

0 ) mod ⟨e1⟩
)
e0

e1

=
abe1 − a (be1 − (be1 mod ⟨e0⟩)) +

(
a (be1 mod ⟨e0⟩) (−e−1

0 ) mod ⟨e1⟩
)
e0

e1

=
a (be1 mod ⟨e0⟩) +

(
a (be1 mod ⟨e0⟩) (−e−1

0 ) mod ⟨e1⟩
)
e0

e1
.

[KAK96, KA98] demonstrated the benefit of unsigned Montgomery multiplication for
multi-precision arithmetic. We leave the principal-ideal-domain view of

〈
ek

0
〉

and ⟨e1⟩ and
its relation to Barrett multiplication as a future work.

B Comparing Radix-2 Schönhage and Nussbaumer
We compare the most commonly used radix-2 Schönhage and Nussbaumer.

Let’s start with Nussbaumer. Suppose the original polynomial modulus is x22k

+ 1.
We introduce x22k−1

∼ y and replace the relation with x22k−1+1 ∼ 1. This defines the FFT
modulo x22k−1+1 − 1 by regarding R[y]

/〈
y22k−1

+ 1
〉

as the coefficient ring. Since the
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remaining problem is again a power-of-two with exponent a power-of-two, we apply the
same idea recursively down to x2 + 1. This leads to the following problem sizes:

x22k

+ 1, x22k−1

+ 1, . . . , x2 + 1.

If x22k+1 + 1 is the polynomial moduls, Nussbaumer leads to the following problem sizes:

x22k+1
+ 1, x22k−1+1

+ 1, . . . , x8 + 1, x4 + 1, x2 + 1.

For recursive Schönhage, one can show that if the polynomial modulus is x22k+1 + 1, we
have the same sequence of problem sizes as Nussbaumer. On the other hand, if x22k

+ 1 is
the polynomial modulus, we have to introduce x22k−1

∼ y and replace it with x22k−1+1 + 1,
returning to the power-of-two case with exponent a power-of-two plus one. This leads to
the following problem sizes:

x22k

+ 1, x22k−1+1
+ 1, . . . , x8 + 1, x4 + 1, x2 + 1.

This supports the statement “Nussbaumer’s trick has the advantage of using slightly
smaller ring extensions” in [Ber01, Section 9].

C A Formal Treatment of Localization
We refer to [Jac12b, Sections 7.2 and 7.3] for the localization of rings and modules. Let
A be an R-algebra, z ∈ Z, and z−1R be the localization of R at the multiplicative set
Z =

{
1, z, z2, . . .

}
. Naturally, we have Z−1A as a Z−1R-module. We turn it into a

Z−1R-algebra by defining:

∀z−k0a, z−k1b ∈ Z−1A, z−k0az−k1b := z−k0−k1ab ∈ Z−1A.

Since rings and Z-algebra are exactly the same thing, for a ring R, we can pick a z ∈ Z
and define Z−1R as a Z−1Z-algebra (and hence a ring).

Let A,B be R-algebras, and η : A → B be an algebra monomorphism. For an integer
z ∈ Z − {0}, suppose we find a map ψz : η(A) → A such that

∀a ∈ A, (ψz ◦ η)(a) = za.

We define an algebra homomorphism ξ : Z−1η(A) → Z−1A as

∀z−kη(a) ∈ Z−1η(A), ξ
(
z−kη(a)

)
:= z−1−kψz(η(a)).

If we restrict the image of ξ to η(A), we find ξ|η(A) :=
(
η(a) 7→ z−1ψz(η(a))

)
= η−1. In

summary, to invert η while given ψz with z ∈ Z − {0} non-invertible in A, it suffices to
define ξ : Z−1η(A) → Z−1A and apply ξ|η(A).

Notice that applying ξ assumes an already existing approach for multiplying z−1. An
alternative way is to find ψz0 and ψz1 with z0⊥z1 and integers e0, e1 satisfying e0z0 +e1z1 =
1, and define η−1 as

η−1 := e0ψz0 + e1ψz1 .

Since e0 and e1 are integers, η−1 can be implemented entirely with arithmetic in R.
[CK91] used localization and Schönhage’s [Sch77] radix-2 and radix-3 FFTs for multiplying
polynomials over arbitrary unital (possibly-noncommutative) rings.
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D Interprating Multiplications in R[x]/⟨xn − αx − β⟩
as TMVPs

We outline [Yan23]’s ideas interprating multiplications in R[x]/⟨xn − αx− β⟩ as Toeplitz
matrix-vector products for generic β as follows. For reducing modulo xn−αx, if we addition-
ally add the element

∑n−2
j=0 αbn−1−jaj to c0, then the resulting computation is compatible

with a Toeplitz matrix-vector product. This gives us the following transformation matrix
mapping a to ab ∈ R[x]/⟨xn − αx− β⟩ :

M0 +M1 +M ′
2 −


αbn−1 · · · αb1 0

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0


where M0 and M1 are the same as previous paragraph and

M ′
2 = Toeplitzn(0, . . . , 0, αbn−1, . . . , αb1, 0).

Since M0 +M1 +M ′
2 is the Toeplitz matrix

Toeplitzn(bn−1, . . . , b1, b0 + αbn−1, βbn−1 + αbn−2, . . . , βb2 + αb1, βb1),

ab ∈ R[x]/⟨xn − αx− β⟩ can be written as a Toeplitz matrix-vector product with post-
processing as follows:

ab mod (xn − αx− β) = (M0 +M1 +M ′
2) a −


αbn−1 · · · αb1 0

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

a.

E A Formal Treatment of Bilinear Systems
Let A,B, C be modules over R. We call a map η : A × B → C a bilinear map if

• ∀a ∈ A, η(a,−) : B → C is a module homomorphism.

• ∀b ∈ B, η(−, b) : A → C is a module homomorphism.
Suppose we have maps ψ : A∗ → A′, ι : C′ → C∗, and a bilinear map ξ : C′ × B′ → A′

satisfying
∀b ∈ B′ ∩ B, ξ(−, b) = ψ ◦ η(−, b)∗ ◦ ι.

If η(−, b) = fb ◦ gb for some fb and gb, we have the corresponding factorization for ξ(−, b):

∀b ∈ B′ ∩ B, ξ(−, b) = ψ ◦ g∗
b ◦ f∗

b ◦ ι.

In Section 5.6, we present the ideas with bilinear systems. We now rephrase the core idea
as follows: Let’s assume A′ = A,B′ = B, C′ = C, ψ = a∗ 7→ a, and ι = c 7→ c∗. For finite
index sets I,J ,K and (r(i,j,k))(i,j,k)∈I×J ×K, define a = (ai)i∈I , b = (bj)j∈J , c = (bk)k∈K.
Then, we write 

∑
i∈I

∑
j∈J

r(i,j,k)aibj


k∈K

= η(−, b)(a)

∑
j∈J

∑
k∈K

r(i,j,k)ckbj


i∈I

= ξ(−, b)(c)

and find ξ(−, b) = (ψ ◦ η(−, b)∗ ◦ ι).



40 SoK: Polynomial Multiplications for Lattice-Based Cryptosystems

F Vector-Radix Transform
In Section 5.3, we know that one-dimensional size-n cyclic convolution can be turned into
a multi-dimensional cyclic convolution of dimensionals based on a coprime factorization of
n. If we apply isomorphism for each dimension and cache the results, then we save the cost
of transformation significantly. This section explains how one can save more by directly op-
timizing a multi-dimensional transform ⊗jfj with vector-radix transformation [HMCS77].

Frequently, fj is a composition of one-dimensional isomorphisms shown in Section 3.
Let’s write fj = fj,0 ◦ · · · ◦ fj,h−1. A crucial property while tensoring two compositions
f0,0 ◦ f0,1 and f1,0 ◦ f1,1 is that (f0,0 ◦ f0,1) ⊗ (f1,0 ◦ f1,1) = (f0,0 ⊗ f1,0) ◦ (f0,1 ⊗ f1,1).
Usually, fj can be characterized as a composition of multiplicative steps and additive
steps. During the multiplicative steps, we only multiply coefficients by some constants.
For the additive steps, we perform additions and subtractions. One observation is that
multiplicative steps are faster if we apply their composition directly. Suppose we have
two multiplicative steps represented as matrix multiplications by

(
1 0
0 ζ0

)
⊗ I2 and

I2 ⊗
(

1 0
0 ζ1

)
. Since

((
1 0
0 ζ0

)
⊗ I2

)(
I2 ⊗

(
1 0
0 ζ1

))
=


1 0 0 0
0 ζ1 0 0
0 0 ζ0 0
0 0 0 ζ0ζ1

, we only

need three multiplications on the right-hand side. If we compute with the left-hand side,
then we need four multiplications. The high-dimensional generalization and fj ’s as series
of compositions are obivous. See [AHY22] for applications.
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