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ABSTRACT
In this paper, we propose the MixFlow model, an approach for ana-
lyzing the unobservability and unlinkability of instant messaging
in Loopix Mix networks. The MixFlow model utilizes contrastive
architectures and loss functions inspired by DNA sequence anal-
ysis in bioinformatics to identify semantic relationships between
entry and exit flows, even after applying significant transforma-
tions such as poisson mixing delay and cover traffic. We use the
MixFlow model to evaluate the resistance of Loopix Mix networks
against a global passive adversary with the ability to control both
ends of the network and infer real messages from cover messages.
Our experimental results demonstrate that the MixFlow model is
highly effective in linking end-to-end flows with a detection rate
of over 90%, challenging the common belief that adding poisson
mixing delay and cover traffic can obscure the metadata patterns
and relationships between communicating parties. Our findings
have important implications for existing poisson-mixing techniques
and open up new opportunities for analyzing the anonymity and
unlinkability of communication protocols.
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Mixnets; Flow Correlation Attack; Contrastive models
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1 INTRODUCTION
Mixing networks, such as Loopix [24], have gained attention in
recent years as a means of enabling private communication be-
tween two parties through the exchange of instant messages. For
example, Bahramali et al. [2] have evaluated the vulnerability of
various instant messaging apps and suggested using countermea-
sure techniques, such as cover traffic and poisson mixing delays, to

This work is licensed under the Creative Commons Attribu-
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letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Conference’17 (), 1–16
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reduce the effectiveness of traffic analysis attacks. These networks,
also known as "stop-and-go Mix networks", utilize Poisson mix-
ing strategies in addition to cryptographic operations to provide
anonymity and unobservability for the sender and receiver, and
to prevent a global passive adversary from linking the entry and
exit flows in a flow correlation attack [24]. Flow correlation attacks
have been used to compromise anonymous systems and measure
the amount of network information leakage against a global passive
adversary [5, 24, 27, 32]. These attacks aim to determine the level
of uniqueness of entry and exit flows even after significant trans-
formations, such as the addition of cover traffic and random delays
in Mixnets. The goal of a flow correlation attack is not to identify a
single fingerprint, but rather to understand the similarity between
two sets of observations. It is generally believed that drastic flow
transformations can effectively disguise network flows and that
injecting cover traffic and delays can help anonymize network con-
nections. If a global adversary, who has control over both ends of
the network, is unable to learn any identifying characteristics from
the transformed network flows, we can conclude that the network
is unlinkable and the anonymity goal has been achieved. Further
research on developing flow correlation attacks and investigating
these attack models on Loopix can help identify more effective
defenses for network anonymity.

Despite the potential of Mixnets in protecting anonymity, there
is currently no research evaluating the information leakage when
short instant messaging is transferred in Mixnets. Previous studies,
such as DeepCoffea, FlowTracker, and DeepCorr, primarily focused
on deanonymizing traffic on the Tor network and analyzing website
traffic traces, rather than evaluating the vulnerability of messaging
applications [11, 19, 21]. While FlowTracker [11] and DeepCof-
fea [21] have been shown to be effective in traffic analysis, they
only investigated their attack for flow correlation on website traffic
traces. These attack models are efficient only for long flow traffic
traces (more than 100 packets per flow), and that shorter flow se-
quences, especially when mixed with additional poisson mixing
noises, are not detectable with their models. As poisson mixing
increases, it becomes more difficult to distinguish the true corre-
sponding entry flow from unrelated flows that appear similar to the
exit flow, resulting in correlation failure. Moreover, existing flow
correlation studies do not address how to leverage information from
unrelated flows to create more effective differential representations

1
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for attacking. When analyzing Mixnet traffic sequences, it’s com-
mon to observe discrepancies between the number of sent packets
and received packets due to mixing delays, injecting cover traffic,
reordering, and network jitters. However, current state-of-the-art
attacks rely on packet-level feature sequences for flow correlation,
which may not accurately represent the traffic shape as the orig-
inal one-to-one packet relationship is lost and the same location
in the ingress and egress flow sequences may not correspond to
the same packet in Mixnet traffic flows [11, 19, 21]. Indeed, there
is a gap in the literature when it comes to analyzing correlation
attacks on instant messaging in Mixnets. This is because instant
messaging traffic flows on Mixnets typically have fewer packets
with more traffic perturbation, which limits the applicability of
previous correlation attacks [11, 19, 21].
Our Contribution: In this paper, we introduce MixFlow, an op-
timal flow correlation model for the particular settings of instant
messaging communications on Mix networks. MixFlow is a con-
trastive approach based on flow and label embeddings, along with
a Poisson Hidden Markov Model (PHMM) as the feature embed-
ding network, to identify complex, semantic patterns and achieve a
predefined similarity goal. Mixflow incorporates two contrasting
models that extract semantic network traffic features from two
unique perspectives in the embedding space, providing the ability
to be used in varying levels of anonymity: The contrastive flow
embeddings (ConFEm) model and the Contrastive with Flow and
Label embedding (ConCEn) model. These models are adaptable to
various external factors such as poisson delays or cover traffic and
are not limited to fixed flow lengths, target websites, or clients.
We proposed ConFEm, a model that assesses how the flow em-
beddings and semantic information of uncorrelated exit flows can
adjust embedding spaces and find the optimal decision boundary
for correlating flows. ConCEN, on the other hand, is a model that
demonstrates the effectiveness of using a combination of flow and
label embeddings, cluster representations, correlated labels, and a
single representative for clusters of uncorrelated flows. The aim is
to extract representations and create embeddings based on selected
positive and negative exit flows for each entry flow. The following
is the highlight of MixFlow’s contributions:

• MixFlow is an intuitive approach to explaining flow pat-
terns in terms of hidden structure and serves as a crucial
component of traffic correlation analysis.

• MixFlow surpasses prior flow correlation attacks by corre-
lating instant messaging flows. It uncovers semantic net-
work information and traffic sequences, even in the pres-
ence of poisson-mixing networks.

• MixFlow presents models that use flow and label embed-
dings, as well as representative information for uncorre-
lated flow clusters. The models convert features into an
embedding space, resulting in a detection rate above 90%
for correlating entry and exit flows in Loopix.

• MixFlow can be utilized as a versatile correlation func-
tion to examine the linkability and anonymity of clients
in Mixnets. MixFlow’s performance is stable across a wide
range of conversation lengths, poisson delays, and cover
traffic values.

• MixFlow demonstrates the robustness and scalability, even
when faced with increased poisson delays and cover traffic,
highlighting the need for further development and imple-
mentation of traffic analysis countermeasures to protect
connections.

• MixFlow is designed using random deterministic projection
algorithms and reduces the overall cost of flow correlation
attacks.

• MixFlow presents a new approach for assessing the efficacy
of poisson-mixing techniques for instant messaging against
a global passive adversary for anonymity and unlinkability.

The foundation of our approach lies in the lack of robust traffic
obfuscation measures implemented by major poisson-mixing op-
erators, which makes it possible for us to correlate user traffic. It
has the potential to inform future efforts to enhance the security of
mixing protocols.

2 PRELIMINARIES AND MOTIVATION
MixFlow is an end-to-end contrastive flow correlation attack that
aims to identify similar connections at both ends of anonymous
networks like Loopix Mixnets. The proposed attack is based on
the triplet networks [26] in a supervised contrastive scheme: an
embedding network for entry flows and two embedding networks
for exit flows, which share weights. These sub-networks are passed
through a similarity module, which calculates the distance between
embeddings to determine how similar they are. Using a predeter-
mined similarity score and a loss function, the similarity distances
are evaluated and the model weights are adjusted.

MixFlow is a model that uses representations of flows in embed-
ding space to reduce complexity and the need for pairwise com-
parisons. This approach is effective in handling increased Mixnets’
poisson delays and the cover traffic. Previous contrastive mod-
els [11, 21, 30] used sample-wise strategies that compared embed-
dings and classified elements based on a majority vote, without
directly labeling the "correlates to" set. These approaches calculated
the distance between the anchor and representative samples of each
class using a threshold or by aggregating the distances between
samples. In contrast, our approach uses representative-based con-
trastive strategies, which involve calculating the distance between
representative points in the embedding space instead of individual
samples. MixFlow models use both flow and label embeddings to
simultaneously embed both flows and labels in the same vector
space. The embedding vectors of both flows and labels are then used
to calculate distances. To improve efficiency, MixFlow replaces cor-
related and uncorrelated exit flows for each entry flow with a single
representative element for both positive and negative samples. This
allows each entry flow to be compared to the representatives of
both positive and negative flows, rather than comparing each flow
individually. By using label embedding in conjunction with flow em-
bedding as templates or coordinates for embedding representations,
MixFlow is able to reduce the need for costly pairwise comparisons
during training and prediction. This approach allows MixFlow to
create more precise references for comparison from a supervised
standpoint, leading to more accurate and efficient learning from
the data.

2
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2.1 Entry and Exit flows
The proposed framework is based on the assumption that each
entry flow, represented by 𝑛𝑖 , has a set of associated exit flows,
represented by 𝑥𝑘 , which are similar to 𝑛𝑖 and are identified as
𝑥𝑘 ∈ 𝐶𝑜𝑟𝑟 (𝑛𝑖 ). Correlated exit flows are referred to as positive
samples, while exit flows that are not correlated to the reference
anchor entry flow are called negative samples. The goal of the
proposed models is to bring the entry flow 𝑛𝑖 closer to positive exit
flows in the embedding space, while simultaneously separating 𝑛𝑖
from negative exit flows that do not belong to 𝐶𝑜𝑟𝑟 (𝑛𝑖 ). In order
to achieve this separation, the entry flows 𝑛𝑖 are compared with
positive samples that are similar to 𝑛𝑖 (𝑥𝑘 ∈ 𝐶𝑜𝑟𝑟 (𝑛𝑖 )) as well as
with a representative number of negative samples that are not
similar to 𝑛𝑖 (𝑥 𝑗 ∉ 𝐶𝑜𝑟𝑟 (𝑛𝑖 )). We supposed 𝑁 flow pairs (𝑛𝑖 , 𝑥𝑖 ),
where 𝑛𝑖 is an entry flow with 𝑝 packets (𝑛𝑖 ∈ 𝑅𝑝 ) and 𝑥𝑖 is an exit
flow with 𝑝′ packets (𝑥𝑖 ∈ 𝑅𝑝 ′) and 𝑝 ≠ 𝑝′. The flow vectors are
created by concatenating the inter-packet delay (IPD) and packet
size information for each flow ([𝐼𝑖 | |𝑆𝑖 ]). The IPD vectors (𝐼𝑖 ) and
packet size vectors (𝑆𝑖 ) contain both upstream and downstream
packets, with the downstream packets multiplied by −1 to indicate
their direction.

2.2 Base Contrastive model (MMFEM)
We consider a Max-Margin over Flow embedding contrastive model
(𝑀𝑀𝐹𝐸𝑚) with the𝐿𝑜𝑠𝑠 = 1

𝑁

∑𝑁
𝑖=1𝑚𝑎𝑥 (𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )]−𝐷 [𝜙 (𝑛𝑖 ),

𝜙 (𝑥𝑁
𝑖
)] + 1, 0), over the distance between the entry flow 𝑛𝑖 and

the exit flows 𝑥𝑃
𝑖
and 𝑥𝑁

𝑖
, as a base architecture for our correlation

attack models. The base loss function is based on the max-margin
separation strategy to increase the difference between the distance
(Euclidean or Cosine similarity distance) between the entry flow 𝑛𝑖
and the correlated exit flow 𝑥𝑃

𝑖
and the distance between the entry

flow 𝑛𝑖 and uncorrelated exit flow 𝑥𝑁
𝑖

beyond a certain margin.
In this model, we consider three separate embedding networks to
evaluate the importance of sample pairs and make the feature ex-
traction model converge faster. These networks have different input
sizes but the same output size, which represents the embeddings
of the respective flows: (𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 ), 𝜙 (𝑥

𝑁
𝑖
)). 𝜙 (𝑎) is an embed-

ding transformation that maps the input vectors 𝑎 ∈ 𝑅𝑝 into a new
space with a lower dimension, 𝑅𝑚 , where𝑚 < 𝑝 . This preserves
the representational capacity of the original vectors in the newly
mapped vectors and allows the network to discover relationships
between the embedded vectors.

2.3 Flow and Label Embeddings
To evaluate the correlation between flow embeddings, we apply a
distance function to calculate the distance between the entry flow
embeddings and the positive exit flow embeddings (𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )]),
as well as the distance between the entry flow embeddings and
the negative exit flow embeddings (𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )]). These dis-
tances are then used as input to the loss function, which calculates
the triplet loss and updates the embedding networks to better un-
derstand the correlation between the flows. During the prediction
phase, we input the entry flow of the test sample and the exit flow
we want to test into the model, and we use the trained embedding

networks for the entry and exit prototypes to compute their dis-
tance. To incorporate label information into the embedding space,
MixFlow maps each label to a specific position in the space and
uses this position to define the natural representative location for
each sample in triplets. In this case, labels are represented using
one-hot encoding, which involves creating a zero array of length
two (corresponding to the two classes) with a single one placed at
the position of the ground-truth label 𝑦𝑖 . For each anchor sample
with ground-truth label/class 𝑦𝑖 , the ground-truth label is repre-
sented as 𝐿𝑘

𝑖
. Since this is a binary classification problem, the index

𝑘𝑖 can take on values of either 0 or 1. The positive label for positive
exit flows is defined as 𝐿𝑥𝑃

𝑖
= 𝐿𝑘

𝑖
= 𝑦𝑖 ) if 𝐿𝑘𝑖 = 𝑦𝑖 , and the negative

label for negative samples is defined as 𝐿𝑥𝑁
𝑖

≠ 𝑦𝑖 ). If 𝑦𝑖 𝑗 represents
the position of the one-hot-encoded array, then 𝑦𝑖 𝑗 = 1 if 𝑗 = 𝑘𝑖
and 𝑦𝑖 𝑗 = 0 if 𝑗 ≠ 𝑘𝑖 .

3 MIXFLOW: CONTRASTIVE FLOW
CORRELATION ATTACK

In this work, to implement a contrastive learning framework be-
tween the entry and exit flows from different perspectives, we
propose two constructive models for performing our flow corre-
lation attack: Contrastive with Flow Embeddings (𝐶𝑜𝑛𝐹𝐸𝑚) and
Contrastive with Flow and Label Embeddings (𝐶𝑜𝑛𝐶𝐸𝑛). Each pro-
posed model architecture is designed with appropriate loss func-
tions to uncover the functional network information that connects
correlated flows.

3.1 Contrastive with Flow Embeddings
(ConFEm)

The 𝐶𝑜𝑛𝐹𝐸𝑚 model focuses on using a mixture of Max-Margin
and Min-Separation strategies to increase the distance, beyond
a margin, between the entry flow 𝑛𝑖 and negative exit flow 𝑥𝑁

𝑖
while reducing the distance, as much as possible, between the entry
flow 𝑛𝑖 and the positive exit flow 𝑥𝑃

𝑖
. Figure 1 shows an overall

structure of the 𝐶𝑜𝑛𝐹𝐸𝑚 model. 𝐶𝑜𝑛𝐹𝐸𝑚 model aims to capture
the underlying semantic relations between flow sequences, and the
feature representations that are robust and generalizable to unseen
data. This Contrastive model is based on the flow embeddings
architecture and the distance function 𝐷 [𝜙 (𝑎), 𝜙 (𝑏)] that can be
the Euclidean or Cosine similarity distance. Finally, we compute
the similarity for each testing sample using the trained embedding
networks in the prediction phase.

Moreover, uniformity in flow correlation can help to learn separa-
ble features, but the excessive pursuit of uniformity can negatively
impact the formation of features useful for downstream tasks. This
is because the instance discrimination objective, which tries to push
all uncorrelated flows apart, ignores the underlying relations be-
tween samples. A well-designed contrastive correlation loss should
have some tolerance to the closeness of semantically similar flows
in order to improve feature qualities and downstream performance.
Hence, we define the contrastive loss tomeet a uniformity-tolerance
dilemma with a temperature 𝜏 that can compromise these two prop-
erties properly to both learn separable features and be tolerant to
semantically similar flows, improving the feature qualities and the
downstream performances.

3
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3.1.1 Loss Function and Embedding Parameters: Temperature is
used as a hyperparameter to balance the trade-off between uni-
formity and tolerance in contrastive loss to control the degree of
similarity between semantically similar flow sequences. The tem-
perature parameter is a learnable parameter during training, and
its value is typically chosen between the range of 0.1 to 2. A lower
temperature would result in a higher degree of similarity, and a
higher temperature would result in a lower degree of similarity. By
adjusting the temperature, the algorithm can be made more or less
tolerant of the closeness of semantically similar flows. The good
choice of temperature will help to balance the trade-off between
uniformity and tolerance in the contrastive loss, thereby improving
the feature qualities and downstream performance. Using these
parameters, the loss 𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚 for 𝑁 samples is computed as:

𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚 =
1
𝑁

𝑁∑︁
𝑖=1

2∑︁
𝑗=1

[𝑌𝑖,𝐿𝑗
.𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )]

+ (1 − 𝑌𝑖,𝐿𝑗
).𝑚𝑎𝑥 (1 − 𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )], 0)]

(1)

The indicator function 𝑌𝑖,𝐿𝑗
is used to define the positive and

negative exit flows for each entry flow, which is used to compute
the contrastive loss. The indicator function 𝑌𝑖,𝐿𝑗

= 1 if 𝐿𝑗 = 𝑦𝑖 ,
0 otherwise. The indicator function for our two-class problem is
based on the ground-truth label, and we interpret the distances as
a probability loss. In this regard, we applied the sigmoid function
to transform the distances to a range of values between 0 and 1.
This distance computation is now based on a dot product with
an additional sigmoid function to scale the output in the range of
values [0, 1].

3.1.2 Temprature and Indicator Function: The temperature is the
scalar hyperparameter typically added to the logits before the sig-
moid function and multiplied with the logits to control the strength
of the penalties on the hard negative samples. The logits are the
output of the model before applying the sigmoid function to convert
them into probabilities. The temperature is added to the logits be-
cause it modifies the output of the model, it is equivalent to scaling
the logits, so it is applied before the sigmoid function. It can also be
added to the output of the model after the sigmoid function, but it
would have a similar effect as multiplying the logits by temperature.
The indicator function 𝑌𝑖,𝐿𝑗

helps to learn more discriminative and
representative feature representations and capture the underlying
semantic relations between entry and exit flows by encouraging
similar flows to be close together in the feature space and dissimi-
lar flows to be far apart to make the feature representations more
robust and generalizable to unseen data. This value also impacts
the training process by defining the positive and negative flow
embeddings, which are used to compute the contrastive loss. This
loss is used to train the model to extract feature representations
that are more discriminative, representative, and robust to unseen
traffic flows. Without the indicator function, the model would not
be able to learn discriminative feature representations, that are
representative of the underlying data distribution, and learn from
the similarity or dissimilarity between flows, which is the main
objective of our correlation attack model. In summary, the indicator
function is an essential part of the 𝐶𝑜𝑛𝐹𝐸𝑚 loss formula, and its
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Figure 1: Contrastive over the flow embeddings (ConFEm)
with indicator function 𝑌𝑖,𝐿𝑗

.

absence would greatly decrease the model’s performance because
the model would not be able to focus on the hardest negative sam-
ples. On the other hand, the temperature hyperparameter controls
the strength of the penalties on the hard negative samples and the
degree of similarity between semantically similar flows, which is
used to balance the trade-off between uniformity and tolerance in
flow correlation.

3.1.3 Extending the Loss to a Binarry Cross-Entropy Loss: Because
our attack problem is a two-class classification, we can extend
the Contrastive loss 𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚 to a binary Cross-Entropy loss
function 𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚𝐶𝑟𝑜𝑠𝑠 as Equation 2. The output value is inter-
preted as a posterior probability that the entry and exit flow given
as inputs correspond to a true pair.

𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚𝐶𝑟𝑜𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

2∑︁
𝑗=1

[𝑌𝑖,𝐿𝑗
.𝑙𝑜𝑔(𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )])

+ (1 − 𝑌𝑖,𝐿𝑗
).𝑙𝑜𝑔(1 − 𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )])]

(2)

The Cross-Entropy𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚𝐶𝑟𝑜𝑠𝑠 in comparison to𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚
can better generalize the 𝐶𝑜𝑛𝐹𝐸𝑚 model and improve the perfor-
mance by reducing the distance between embeddings for correlated
flow pairs and increase the distance for uncorrelated flow pairs.

3.2 Contrastive with Flow and Label
Embeddings (ConCEn)

Increasing the delay and cover traffic in the Loopix network can
affect the distance between the embedded flows, causing the distri-
bution of positive and negative exit flows to overlap and making it
difficult for the model to distinguish between them. To effectively
link two clients, we need to adjust the embedding spaces to ensure
that correlated and uncorrelated flows do not overlap. One main
problem with previous approaches [11, 19, 21] is the use of major-
ity voting to assign labels to new samples, which involves a large
number of pair-wise comparisons. Additionally, previous methods
struggle with complexity in selecting representative sets of posi-
tive and negative samples and incorporating supervised learning.
(𝐶𝑜𝑛𝐶𝐸𝑛) model addresses these issues by using the labels them-
selves as the best class representatives. This eliminates the need
for a large number of distance comparisons at inference time, as
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Figure 2: Model framework for Contrastive with the flow and
label embeddings model (𝐶𝑜𝑛𝐶𝐸𝑛) with Regularization.

the new sample’s label is determined by comparing it to the class
representative. Furthermore, this approach simplifies the process of
selecting representative sets of positive and negative samples and
allows for easy integration of supervised learning, which makes our
model more efficient and accurate than previous flow correlation
attacks. The 𝐶𝑜𝑛𝐶𝐸𝑛 model, shown in Figure 2, is designed based
on additional useful information such as label embeddings, cluster
representations, correlated labels, and a single representative for
the cluster of uncorrelated flows.

3.2.1 Training and Prediction Phases: During the training phase of
the𝐶𝑜𝑛𝐶𝐸𝑛, the inputs are the entry flow (𝑛𝑖 ), positive and negative
exit flows, and 𝐿𝑗 where 𝑗 ∈ [1, 2] as the probability likelihood of be-
longing to a corresponding training class. Label probabilities ((𝐿𝑗 ))
are also used to train the embeddings, and a separate embedding
network is created for label embeddings. The embedding networks
for the flows and label embeddings (𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 ), 𝜙 (𝑥

𝑁
𝑖
), 𝜙 (𝐿∗

𝑗
))

have different input sizes but the same small output dimension. The
Euclidean or Cosine distance function is then applied to calculate
the distances between the entry and exit flows and label embed-
dings. These distances are input to the Main Distance Computation
function, which computes the distance to the positive label, the dis-
tance to the nearest negative exit flow, and the average distance to
all the uncorrelated flows. Finally, these distance values are used as
inputs to loss functions, and the average loss for all 𝑁 flow pairs is
calculated. During the prediction phase, the inputs to the model are
the test entry flow and exit flows. The model output is the distance
between the flow embeddings and each label. The smallest distance
is then chosen as the distance associated with the predicted label
(More detailed information in Appendix A). Using a single forward
pass to obtain the shortest distance to the test sample allows for
efficient prediction, as demonstrated by experimental results. This
approach can significantly reduce prediction times.

3.2.2 Contrastive Losses for ConCEn Model: We proposed three
loss functions that can be used with the 𝐶𝑜𝑛𝐶𝐸𝑛 contrastive archi-
tecture:Max-Margin (𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛), Max-MarginwithMin-Separation

(𝑀𝑀𝑀𝑆), and Max-Separation with Min-Separation (𝑀𝑆𝑀𝑆). All
three of these losses are based on a common architecture that in-
cludes four embedding networks. To compute the loss values for
these loss functions, three distance functions are applied to the
entry 𝑛𝑖 , exit 𝑥𝑖 , and label 𝐿∗

𝑗
flows in the embedding space. The

first distance function, 𝐷𝑃 (𝑛𝑖 ) = 𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝐿𝑃𝑗 )], calculates the
distance between the𝑛𝑖 embedding and its positive label embedding
(the likelihood of belonging to the positive class). The second func-
tion, 𝐷𝑁𝑁 (𝑛𝑖 ) = 𝑚𝑖𝑛(𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝐿𝑁𝑗 )]), calculates the distance
between the 𝑛𝑖 entry flow embedding and its nearest negative la-
bel embedding 𝐿𝑁

𝑗
. Finally, 𝐷𝐴𝑁 (𝑛𝑖 ) = 1

𝐶−1
∑

𝑗≠𝑖 𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝐿𝑁𝑗 )]
calculates the average distance between the 𝑛𝑖 entry flow and all
negative label embeddings. 𝐷𝐴𝑁 represents the average distance
between the entry flow and the negative exit flows and refers to the
upper bound of the distance to the centroid of the negative flows.
Maximizing this distance helps to increase the distance of any other
negatives. The following loss functions for the 𝐶𝑜𝑛𝐶𝐸𝑛 model are
defined to improve performance when the amount of cover traffic
and delays increase. These loss functions calculate the differences
between the distances of the entry and exit flows (𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )],
𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )]) and the representatives of the uncorrelated label
embeddings (𝐷𝑁 , 𝐷𝑁𝑁 , 𝐷𝐴𝑁 ). These loss functions are specific to
the representative Contrastive architecture.
Max-Margin label based losses (MMConCEn): Max-Margin
losses aim to make the distance difference greater than a margin
that we can compute the loss by combining the distance of both
(𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )],𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )]) and𝐷𝑁 , 𝐷𝑁𝑁 , 𝐷𝐴𝑁 or extend
this loss with configurable weights for each distance term. Hence,
the𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 loss function is defined based on the distances of
the entry and positive exit flowswith theMax-Margin of the Nearest
Negative label. Moreover, it has been shown through experiments
that multiplying weights with the embedding distances can improve
the model’s generalization and detection rate. The weighted version
of the 𝐿𝑜𝑠𝑠𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 loss function, which is based on the weighted
version of the distances for the entry and exit flows and the negative
label (𝑤𝑖 > 0), is defined as:

𝐿𝑜𝑠𝑠𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 =
1
𝑁
(
𝑁∑︁
𝑖=1

𝑚𝑎𝑥 (𝑤0𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )]−

𝑤1𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )] + 1, 0) +
𝑁∑︁
𝑖=1

𝑚𝑎𝑥 (𝑤2𝐷𝑃 (𝑛𝑖 ) −𝑤3𝐷𝑁𝑁 (𝑛𝑖 ) + 1, 0)

+
𝑁∑︁
𝑖=1

𝑚𝑎𝑥 (𝑤4𝐷𝑃 (𝑛𝑖 ) −𝑤5𝐷𝐴𝑁 (𝑛𝑖 ) + 1, 0)

(3)

Max-Margin with Min-Separation losses with label embed-
ding (MMMS):Max-Margin with Min-Separation minimizes the
distance between correlated entry and exit flows while maximizing
the distance between uncorrelated exit flows and their represen-
tative labels. This loss function uses a model that calculates the
distance between the flows and their labels. The Contrastive Loss
with Max-Margin and Min-Separation is defined as:
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𝐿𝑜𝑠𝑠𝑀𝑀𝑀𝑆 =
1
𝑁
(
𝑁∑︁
𝑖=1

𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )] + (1 − 𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )], 0)

+ 1
𝑁
(
𝑁∑︁
𝑖=1

𝐷𝑃 (𝑛𝑖 ) +𝑚𝑎𝑥 (1 − (𝐷𝑁𝑁 (𝑛𝑖 ), 0))

+ 1
𝑁
(
𝑁∑︁
𝑖=1

𝐷𝑃 (𝑛𝑖 ) +𝑚𝑎𝑥 (1 − 𝐷𝐴𝑁 (𝑛𝑖 ), 0))

(4)

ExponentialMax-SeparationwithMin-Separation loss (MSMS):
The Max-Separation with Min-Separation loss function uses either
exponential or squared exponential loss to measure the difference
in distance between the representative vectors of the entry and
exit flows. The exponential function (exp) increases quickly as the
difference in distances grows and decreases to zero quickly for neg-
ative values. This allows the loss function to assign small values of
distance between correlated flows and large values for uncorrelated
flows, maximizing the separation between positive and negative
flows. Moreover, we extend the Max-Separation with Exponential
Loss function (𝑀𝑆𝑀𝑆𝐿) to include the label embeddings of nega-
tive flows in addition to the entry/exit flow embeddings. In label
embedding, the probability of belonging to a particular training
class, represented by 𝐿𝑖 , is calculated for each flow. The squared
version of the exponential function (𝑒𝑥𝑝2) enhances the distinction
between correlated and uncorrelated flows. Therefore, we extend
the 𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 by adding the squared Exponential Loss, and the
weights to calculate the optimal distances to the nearest correlated
and uncorrelated flow embeddings more accurately (with weights
𝑤𝑖 > 0). Hence, the distances between the entry flow and the near-
est uncorrelated (negative) exit flow using the Max-Separation with
Exponential Loss function are defined as:

𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑒𝑥𝑝 (𝑤0𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑃𝑖 )] −𝑤1𝐷 [𝜙 (𝑛𝑖 ), 𝜙 (𝑥𝑁𝑖 )])2

+ 1
𝑁

𝑁∑︁
𝑖=1

(𝑒𝑥𝑝 [𝑤2𝐷𝑝 (𝑛𝑖 ) − (𝑤3𝐷𝑁𝑁 (𝑛𝑖 ) +𝑤4𝐷𝐴𝑁 (𝑛𝑖 ))])2

(5)

Contrastive Regularization and Predict Network: To improve
the detection of traffic streams even when they are noisy and it is
difficult to classify positive and negative flows, we regularized the
weighted losses (Appendix C). In regularized contrastive models,
the distance between the transformed entry and exit flow embed-
dings is calculated based on the regularization of the max-margin
and max/min-separation, and a combined loss function with cross-
entropy loss. The predicted network model is a neural network with
a softmax nonlinear activation function in the last layer, which takes
input flow pairs and label embeddings. The output of this predicted
network (𝑦𝑖 ) and the distances between embeddings are used as
inputs for the compound losses. Regularization reduces the error
rate between the expected and predicted labels by keeping the dis-
tances between correlated entry and exit flows as close as possible
and separating uncorrelated flows.

3.3 Poisson Hidden Markov Model and Feature
Embedding Networks

We employed two distinct feature embedding architectures for
our flow and label embedding networks. For flow embeddings, we
proposed contrastive models based on Poisson Hidden Markov
Model (PHMM) feature embedding to identify flows, inspired by
the idea of identifying conserved domains in protein families [35].
Our model belongs to the class of contrastive mixture models [17],
which are capable of learning semantic information that is crucial
for handling complex traffic traces that may contain poisson delays
and cover. To model each flow sequence, we use Poisson Hidden
MarkovModels (PHMMs) [7], similar to how biological homologous
genes are modeled. We learn and update the parameters of PHMMs
using contrastive losses. In homological gene sequences [7], some
of the genes in an organism change due to environmental factors,
but their essential functionality can still be the same. Similarly,
Mixnets alter flow distributions through the use of delay or cover
traffic, yet they can still exhibit correlations with each other. By
identifying these hidden relationships, we can potentially exploit
them to detect correlated flows within traffic patterns. Indeed, there
are certain key factors that act as functional "genes" in traffic flows,
aiding us in the process of correlating different flows. For the label
embedding networks, we utilized a convolution network with one
hidden layer and a non-linear activation function (𝑅𝑒𝐿𝑈 ), along
with normalization and pooling operations.

3.3.1 PHMM based Feature Embeddings: Addressing Inductive Bias
and Improving Generalization. To eliminate inductive bias and pre-
vent poor generalization of embeddings, we need to address the
increasing diversity of data distribution caused by the increasing
number of cover traffic packets and delays. Moreover, because each
flow sequence has a different flow length and the number of pack-
ets, each flow can be clustered in a big deviation for the number of
states and transitions. However, instead of padding the input flows
or selecting several windows manually (e.g., Deepcoffea window
amplification method [21]), in MixFlow, we need to find a constant
optimal value for the number of states in the PHMM graph. The
optimal number of states is estimated based on the training data
and the Expectation-Maximization algorithm [18]. To this end, the
K-means algorithm is also adopted to obtain the best value for the
number of states by selecting different state clustering and Gauss-
ian mixture components for each observation. Then, based on the
obtained results, the maximum likelihood of weights, mean vectors,
and covariance matrix parameters are computed for each cluster. Fi-
nally, after determining the hidden states of PHMM, the probability
of happening of each state is computed with the Forward-Backward
algorithm [8].
PHMM-based Contrastive: PHMMs capture differential statis-
tics observed in various regions and extract key elements (sub-
sequences) in the target flow sequences to match multiple subse-
quences of the main flow. This method combines PHMM and con-
trastive learning to differentiate between main flow sequences and
poisson Mixnets noises by learning a latent variable model based on
statistical correlations. PHMM contrastive helps to correlate flows
by handling the probable diversity of users and characterizing the
customized behavior heterogeneity and multi-behavior patterns.
To calculate the similarity score between entry and exit flows in
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a contrastive PHMM, we use an expectation-maximization algo-
rithm. The expectation step calculates the statistical values based
on an input sequence to train the probabilities of PHMMs. This
process involves three steps: the forward calculation, the backward
calculation, and the updating of parameters. These steps allow us
to calculate the probability likelihoods in the PHMM based on all
possible combinations of differences between an entry flow and
a positive and negative exit flow. The pairwise similarity scores
are then computed using forward and backward calculations and
optimization methods to update the probabilities in the PHMM
graph. Contrastive PHMM allows for more efficient comparison
of flow sequences by reducing the number of comparisons needed
to tune the embedding parameters and by comparing each flow
sequence to a single PHMM that represents multiple sequences. It
also allows us to identify the modifications that need to be made to
entry flow sequences to detect and correlate changes in the entry
and exit flows as they are transferred through the network. For
more information on PHMM graphs and estimating their states and
transitions, see Appendix B.

4 EXPERIMENTAL SETUP
We evaluate the performance of the proposed models for different
cover traffic and poisson delay values in the Mixnet connections.
All of the proposed models are designed considering general stan-
dards for machine learning models [13, 14] and are specifically
tailored for the task of Mixnets traffic analysis. However, these
models can also be applied to other network traffic analysis appli-
cations depending on the level of noise in the network. The noise
level refers to the amount of random delay and the cover traffic
introduced by Loopix Mixnets to make the ends of the network
unlinkable. Our experimental results show that while the model
performance may decrease with increasing levels of noise, delay, or
cover traffic, training the models using a combination of flow and
label embedding information significantly improves the attack per-
formance. This suggests that by using simple embedding networks
and leveraging the available information in the embedding space,
we can improve model performance and embedding distances with-
out adding unnecessary complexity that would increase training
time.

4.1 Triplet Generator
One of the main challenges in flow correlation attacks is selecting
informative positive and negative pairs to improve the embeddings.
The goal is to map correlated flows of different connections to the
correct cluster while avoiding the generalization of the embeddings
due to the memorization of the training data. To achieve this, we
use a triplet generator algorithm to select positive and negative
exit flows for each anchor flow [21]. In our approach, we use semi-
hard negative examples to find more informative pairs for training
the embeddings. Semi-hard negative examples are those that are
hard enough to contribute to the loss, but easy enough to adjust
the parameters and decrease the loss to zero. To generate these
examples, we divide the exit flows into two sets in each epoch and
use the triplet generator to select positive samples from one set and
negative samples from the other. It is important to note that if an exit
flow is selected as both a positive and negative sample for creating

the embedding networks, it will freeze the triplet loss at a certain
value because the same sample is being used interchangeably to
both maximize and minimize the distance in the triplet embedding
space [21]. By using semi-hard negative examples, we can avoid
this issue and train more effective embeddings.

4.2 Performance Metrics
We have used a comprehensive set of metrics to evaluate the perfor-
mance of the proposed contrastive models. These metrics include
accuracy, F1-score, precision, recall, and Matthews Correlation Co-
efficient (MCC) [16, 25]. The MCC is a correlation coefficient that
ranges from -1 to 1, where a value of +1 indicates a strong correla-
tion between the ground truth and predicted results, and a value of
-1 indicates complete disagreement. In addition to these classifica-
tion metrics, we also considered Normalized Mutual Information
(NMI) [22] and the Silhouette coefficient to measure the quality of
clustering. These clustering metrics provide insight into the clas-
sification models from a clustering perspective and measure the
transformation of the original features into a low-dimensional em-
bedding space [1]. NMI is a label-based metric that estimates how
much uncertainty about class labels is reduced when the correct
labels are known.

We have also measured the training and prediction execution
times, as well as the number of trainable weights and Floating
Point Operations (Flops) for each model. These metrics provide
a comparative indicator of complexity and computational load. It
is important to note that the absolute timing values will depend
on the processor used, and therefore cannot be directly compared
across different systems. However, they can still provide useful
insight into the computational complexity and performance of the
models[1].

4.3 Mixnet Parameters and Anonymity in
Extended Conversations

Continuous conversations on Mixnets may compromise anonymity
due to the large amount of information shared during the con-
versation. As more information is exchanged, it becomes easier
for an attacker to potentially identify the individuals involved.
To address this risk, we have conducted experiments to evaluate
the performance of our proposed models in the correlation of in-
stant chat messages transmitted through Mixnets. We have also
used these models to determine the optimal Loopix Mixnets pa-
rameters that provide the best protection against flow correlation
attacks. By selecting parameters that effectively obscure the pat-
terns and characteristics of conversations, we can help to maintain
anonymity in the context of extended Mixnets conversations. To
identify the most effective Mixnets parameters, we evaluated the
models’ performance for Mixnet with different anonymity coun-
termeasures. The collected datasets have been generated using
poisson delays of 𝜇 ∈ {0, 10, 20, 30, 40, 50} seconds and cover traf-
fic of 𝜆𝐶 ∈ {0, 10, 20, 30, 40, 50, 60} packets per 28 minutes (each
packet is 500 bytes). The conversation length (payload messages)
is set to 20 packets per minute, with the message rate as the mean
and half of that as the standard deviation [24]. These ranges have
been chosen based on the findings of the Loopix paper [24]. We
assume that clients and mix servers continuously generate a flow
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of real messages (𝜆𝑀 ) with cover traffic (𝜆𝐶 ) injected into the net-
work. The parameter 𝜇 represents random poisson delays drawn
from an exponential distribution. The average poisson delays ( 1

𝜇 )
is tuned such that decreasing 𝜇 increases the average poisson de-
lay [23, 24]. We assume that Mixnet generates messages 𝜆𝑀 from
the Poisson distribution to simulate clients with various sending
patterns and different message rates, which is more realistic. The
Poisson distribution is commonly used in computer networks and
telecommunications research to model situations where arrivals
come from a large number of independent sources, as is the case in
Mixnets with many clients and nodes [2].

4.3.1 Training and Testing Datasets: To ensure that the results of
our experiment are realistic and not overly optimistic, it is impor-
tant to strictly separate the dataset into training, validation, and
testing sets prior to generating a learning model [1]. For our ex-
periment, we have collected flow data in a situation where one
client is communicating with another client, and we have treated
this data as correlated for the training set. We have also assumed
that each client is simultaneously communicating with two other
clients for the validation and testing data, which consists of flows
that are mixed with other conversations in addition to the main
connection. This separation of the dataset allows us to accurately
assess the performance of the model when it is presented with new,
unseen data and helps to prevent temporal snooping, which refers
to the use of information from the future to inform the present.
By carefully separating the dataset in this way, we can ensure that
our experiment and conclusions are reliable and not overly opti-
mistic. In addition, this process allows us to identify useful features,
parameters, and learning algorithms, which is essential for obtain-
ing accurate results. For more information on the dataset, refer to
Appendix D.

4.3.2 Network Simulation: Due to constraints in our experimental
setup, we were unable to collect real Mixnets traffic data to test
the proposed models. To compensate for this, we simulated Loopix
Mixnets with a stratified topology using the Poisson mixing tech-
nique as a continuous-time mixing variant [12, 23, 24]. The Loopix
network is implemented on m4.4xlarge instances of EC2 Ubuntu,
which are powered by 2.3 GHz machines with 64 GB of RAM mem-
ory. We generated 60, 000 flow pairs and extracted metadata such
as Inter packet delay (IPD), size, and direction information for the
entry and exit flows. To evaluate the performance of the proposed
models, we varied cover traffic and poisson delays to estimate the
anonymity provided by Loopix under different network counter-
measures.

4.3.3 Assumptions: Real-world adversaries may target multiple
communications and monitor many clients, but our research sim-
plifies this scenario due to lab limitations and makes the following
assumptions:
• We used one-on-one communications for training and one-to-
two for testing. Simulating instant text messaging on Loopix, we
generated random content matching size and frequency statistics
of chat messaging with a volume of 3.85MB and a size range of
1B-4095B.
• We used version 22.10.6 of Signal-cli [28] to write Python pro-
grams for sending and receiving generated one-on-one traces in our

Figure 3: Comparing the𝑀𝑀𝐹𝐸𝑚,𝐶𝑜𝑛𝐹𝐸𝑚, and𝐶𝑜𝑛𝐶𝐸𝑛 mod-
els performance for different amounts of delay 𝜇 (left plot)
and cover traffic 𝜆𝐶 (right plot).

simulation. We modeled text messaging with a Pareto Type I distri-
bution (scale: 5000ms, shape: 0.93) resulting in a total of 458 hours
of communication traces, including 34477 messages for one-to-one
and 283329 messages for one-to-two communications [3].
• Our research limitations led us to simulate Signal’s text chats to
model chat traffic. However, similar traffic patterns are observed in
other messaging apps such as WhatsApp and Telegram [3]. There-
fore, the results of our research can be applied to these other mes-
saging apps. Further research on evaluating the attack performance
on different types of messages like photos, videos, audio, or files is
planned but beyond the scope of this current paper.
• To evaluate the impact of different cover traffic and poisson de-
lay values, we assumed no additional network jitter on internet
connections and users are always online.

5 EXPERIMENTAL RESULTS
In this section, we evaluate the impact of different Mixnet coun-
termeasures on the performance of MixFlow and compare the ef-
fectiveness and efficiency of our proposed models for correlating
end-to-end connections.

5.1 Delay Countermeasure
The poisson mixing delay is a crucial factor in improving the
anonymity of Loopix Mixnets. To understand the relationship be-
tween flow correlation attack performance and different poisson
delays, we evaluated the performance of three proposed models
by recording traffic flows while varying the delay value from 1
to 50 seconds with cover traffic of 𝜆𝐶 = 0. Our results showed
that the max-margin contrastive model (𝑀𝑀𝐹𝐸𝑚) had the best
performance when the poisson delay was increased, followed by
contrastive models with cross-entropy (𝐶𝑜𝑛𝐶𝐸𝑛) and contrastive
flow embeddings (𝐶𝑜𝑛𝐹𝐸𝑚). The use of a max-margin loss function
in the𝑀𝑀𝐹𝐸𝑚 model may have contributed to its improved perfor-
mance, and flow embeddings may be able to capture more complex
patterns in the data. The minimum accuracy for all three models
was almost reached at 𝜇 = 0.02, corresponding to a delay of 50 sec-
onds. This suggests that the 𝜇 = 0.02 parameter can be considered
one of the best levels of anonymity among the tested delays. There-
fore, we chose this delay value as the fixed parameter to evaluate
other poisson countermeasures in subsequent experiments.

5.2 Cover Traffic Countermeasure
Cover traffic injection is a technique that adds additional, unrelated
traffic to a network to obscure the activity of a particular user or
group. In this study, we tested cover traffic as a countermeasure
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against Loopix Mixnets by using a range of 𝜆𝐶 values from 0 to 60
with 𝜇 = 0. The maximum value of 𝜆𝐶 = 60 is selected based on
previous experiments [24]. Figure 3 shows the impact of increas-
ing cover traffic 𝜆𝐶 = [0, 60] on the classification performance of
our models. Comparing two plots in Figure 3, it is clear that the
average performance of the models when only considering cover
traffic values is lower than the average performance when pois-
son delay is injected. This indicates that cover traffic may have a
greater impact on anonymity than poisson delay in some scenarios.
Additionally, the𝑀𝑀𝐹𝐸𝑚 and𝐶𝑜𝑛𝐹𝐸𝑚 models experience a larger
drop in classification and clustering scores as the cover traffic rate
increases. While the accuracy of the 𝐶𝑜𝑛𝐶𝐸𝑛 model also decreases
with increasing cover traffic, its performance has a smaller decline
compared to the other models.

Our findings for cover traffic values from Figure 3 suggest that
max-margin contrastive models are more effective at distinguishing
traffic mixed with poisson delays. It appears that the 𝐶𝑜𝑛𝐹𝐸𝑚 and
𝐶𝑜𝑛𝐶𝐸𝑛 contrastive models exhibit better generalization perfor-
mance when compared to the classification and clustering scores,
as they demonstrate an increase in cover traffic. This suggests that
more complex embeddings are necessary for accurately correlating
flows that are mixed with cover traffic. As a result, the𝐶𝑜𝑛𝐹𝐸𝑚 and
𝐶𝑜𝑛𝐶𝐸𝑛 contrastive models exhibit greater stability with increased
cover traffic and have the potential to be optimized to minimize
loss at higher levels of anonymity.

5.3 Embedding Distance and Complex Data
Settings:To evaluate the performance of the MixFlow contrastive
models under varying levels of cover traffic intensity, we conducted
experiments with cover traffic range 𝜆𝐶 = [0, 60] packets per
minute and a fixed poisson delay of 𝜇 = 0.02 seconds drawn from an
exponential distribution. These specific values were selected based
on their ability to significantly impact the model’s performance in
our experiments.
Results: The results of this evaluation are shown in Figure 4, which
compare the models using classification metrics and the distance
between embeddings calculated with Cosine and Euclidean dis-
tances. These results are the average of five runs of the experi-
ment. Increased cover traffic in Mixnets can negatively affect the
generalization ability of the model. However, properly training
the embeddings with Cosine similarity distance can improve the
model’s ability to identify correlated entry and exit flows. When
comparing the performance metrics of the proposed models under
different network countermeasures, we find that increasing cover
traffic and poisson delay to its highest can lead to an increase in the
false positive rate of the correlation model. However, 𝐶𝑜𝑛𝐹𝐸𝑚 and
𝐶𝑜𝑛𝐶𝐸𝑛 contrastive models with Cosine similarity distance show
greater robustness compared to the max-margin contrastive model.

5.4 Feature Embedding Networks (FEN)
Settings: To evaluate the impact of using the proposed 𝑃𝐻𝑀𝑀-
based feature embedding network in contrastive flow correlation,
we compare PHMM-based models with the same models where
we used convolutional neural networks (𝐶𝑁𝑁𝑠) for feature em-
beddings. For CNN flow embeddings, we employed the feature
embedding network used in Deepcoffea [21], as we found it to be

particularly effective for identifying correlation attacks. The uti-
lized CNN flow embedding network consists of four 1D convolution
blocks with 1D convolution layers, a max pooling layer, and a linear
activation for the output layer. All three flow embedding networks
have the same configurations, and we used a batch normalization
layer with a kernel size of 8 after each convolutional layer to capture
local feature patterns. For models with added Cross Entropy, the
classification network has two hidden layers with ReLU activation
and a softmax activation for the output layer. All of the CNN em-
bedding models are neural networks trained with gradient descent,
using a batch size of 100 and 100 epochs, with early stopping and a
waiting period of 50 epochs. We used the Adam optimizer with its
default parameters.
Results:As shown in Figure 5, the use of the 𝑃𝐻𝑀𝑀 feature embed-
ding network leads to improved model performance, particularly
when the cover traffic increases. The 𝑃𝐻𝑀𝑀-based models allow us
to identify functional traffic patterns even when there are few pack-
ets per flow and the main traffic has been hidden by poisson mixing
and cover traffic. The best overall performance results are achieved
using the Cosine similarity distance for all models, indicating that
this distance is particularly effective at correlating mixing flows
and outperforming the Euclidean distance. The 𝐶𝑜𝑛𝐶𝐸𝑛 model in
Figure 5 has the highest performance and clustering metrics (as
measured by the NMI metric). We found that 𝐹1 and 𝑀𝐶𝐶 are
the two metrics that best capture the overall performance and im-
provement achieved using contrastive models for flow correlation.
As cover traffic increases with network delay 𝜇 = 0.02, the perfor-
mance of the contrastive models decreases, but the models based on
the 𝑃𝐻𝑀𝑀 feature embedding and Cosine similarity distance still
achieve the best overall performance results, even when 𝜆𝐶 = 60
and 𝜇 = 0.02. These results suggest that cover traffic injection
can effectively reduce the linkability of entry and exit flows, but a
higher amount of cover traffic leads to increased overall transaction
delay while flows can still be linked with a well-designed attack
model. In conclusion, incorporating feature embedding and the
distances between them, along with label embeddings, can improve
the performance of contrastive models as a replacement for original
flows.

5.5 Contrastive Embedding Losses
The performance of the proposed models is evaluated in Figure 6,
using various loss functions and different 𝜆 = [0, 60] values, with
a fixed value of 𝜇 = 0.02 and feature embedding network 𝐹𝐸𝑁 =

𝑃𝐻𝑀𝑀 .We can observe that using the cross-entropy𝐿𝑜𝑠𝑠𝐶𝑜𝑛𝐹𝐸𝑚𝐶𝑟𝑜𝑠𝑠

and 𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 losses significantly improves the generalization of
the 𝐶𝑜𝑛𝐹𝐸𝑚 and 𝐶𝑜𝑛𝐶𝐸𝑚 models based on the Cosine similarity
distance function and 𝑃𝐻𝑀𝑀 feature embedding network. The
weighted 𝐿𝑜𝑠𝑠𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 and 𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 for the 𝐶𝑜𝑛𝐶𝐸𝑛 model
also resulted in a notable increase in the detection rate for all mod-
els. The𝐶𝑜𝑛𝐶𝐸𝑛 model with the 𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 achieved an accuracy of
90% compared to other models, even when the cover traffic rate and
delay were increased. To further improve the results, we regularized
the cross-entropy based 𝐿𝑜𝑠𝑠𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 and 𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 , resulting
in the regularized losses 𝐿𝑜𝑠𝑠𝑅𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 and 𝐿𝑜𝑠𝑠𝑅𝑀𝑆𝑀𝑆 . This
regularization technique prunes filters by weight and significantly
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Figure 4: Comparing the models performance for different distances and cover traffic range 𝜆𝐶 = [0, 60] where 𝜇 = 0.02.

Figure 5: A comparison of performance metrics of the proposed models for different feature embedding networks (FEN) and
cover traffic range 𝜆𝐶 = [0, 60] where delay 𝜇 = 0.02.

improves accuracy. By combining the 𝐶𝑜𝑛𝐶𝐸𝑛 model with the reg-
ularized weighted losses and the 𝑃𝐻𝑀𝑀 feature embedding model,
we have achieved a significant improvement in the detection rate
using flow and label embeddings.

5.6 Mixnet Anonymity and the Length of
Conversations

The length of the conversations is one of the parameters that im-
pact the Mixflow performance on Loopix. Longer conversations
increase the risk that the anonymity of Loopix will be compromised,
making it easier for attackers to identify messages and disrupt the
system. To determine the optimal conversation length for max-
imum anonymity, we conducted experiments with six different
ranges of conversation lengths using the 𝐶𝑜𝑛𝐶𝐸𝑛 model and the
𝐿𝑜𝑠𝑠𝑅𝑊𝑀𝑆𝑀𝑆 metric, setting 𝜇 = 0.02 and 𝜆𝐶 = 60 packets gener-
ated by the poisson distribution. We calculated the average number
of samples that could be correctly correlated in each case and ran
the model 10 times. Our results allowed us to estimate the threshold
value for conversation length and anonymity level, which can help
us improve Loopix’s security and protect against attacks. As shown
in Figures 7 and 8, if the length of a conversation exceeds 20 to 30
packets per minute, Loopix Mixnets is unable to provide sufficient
anonymity protection even with the highest delay and cover traffic.
This is because a longer conversation allows the attacker to access
more traffic data, making it easier to correlate flows and reduce
anonymity. Therefore, it is important to carefully control the length
of conversations in Loopix to maintain a high level of security.

5.7 MixFlow Significantly Outperforms the
State-Of-The-Art

Figures 9 and 10 compare the performance of MixFlow models with
previous flow correlation algorithms, including DeepCoffea and
FlowTracker [11, 19, 21], for various values of poisson delay and
cover traffic. While existing flow correlation attacks have made
some progress, there are still challenges in analyzing the corre-
lation of instant messaging traffic flows in Mixnets, which have
fewer packets compared to website traffic traces and more complex
data distribution. To ensure a fair comparison, we optimized the
parameters of DeepCoffea, FlowTracker, and Deepcorr for the best
performance on our traffic flows. For DeepCorr and FlowTracker,
we found the optimal feature dimension (number of packets) to
be 100 and the optimal number of training flow pairs. We also an-
alyzed different window partitioning parameters for DeepCoffea
and determined the best value to be three windows with 1 sec-
ond time overlap. When evaluating the performance of previous
attacks [11, 19, 21] using 𝐹1 and 𝑀𝐶𝐶 as metrics, we found that
MixFlow improves the detection rate by about 90% for 𝜆𝐶 = 60 and
𝜇 = 0.02, while the maximum detection rate of DeepCoffea, Flow-
Tracker, and Deepcorr was less than 81%. We also observed that
Deepcoffea’s windowing and amplification indicate the smallest
impact on improving the detection rate for instant messaging traffic
analysis. This may be because the window partitioning method
is designed for large historical time series and is classified as a
Long-range Dependence (LRD) approach, which is not suitable for
predicting instant messaging traffic due to the lack of periodic be-
havior in the traffic baseline. In contrast, the 𝑀𝑀𝐹𝐸𝑚, 𝐶𝑜𝑛𝐹𝐸𝑚,

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MixFlow: Assessing Mixnets Anonymity with Contrastive Architectures Conference’17 (

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

)

Figure 6: Comparing the 𝐶𝑜𝑛𝐶𝐸𝑛 model performance for different losses and cover traffic range 𝜆𝐶 = [0, 60] where 𝜇 = 0.02.
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Figure 7: Impact of the conversation length on the detect-
ing flow pairs correctly based on the 𝐶𝑜𝑛𝐶𝐸𝑛 model with
𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 where 𝜆𝐶 = 60 and 𝜇 = 0.02.

Figure 8: Relation of conversation length and the attack de-
tection rate for different value of mean (u) and variance (v)
of the Mixnet poisson distribution. The 𝐶𝑜𝑛𝐶𝐸𝑛 model with
𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 is used where 𝜆𝐶 = 60 and 𝜇 = 0.02.

and𝐶𝑜𝑛𝐶𝐸𝑛 contrastive models in MixFlow showed a significant in-
crease in detection rate and reduction in execution times compared
to DeepCoffea.

5.8 MixFlow’s Computational Complexity
To evaluate the computational complexity of the proposed models,
we considered four metrics: training and testing time, the num-
ber of trainable weights, and the number of floating-point opera-
tions (Flops) required by each model. In our models, the number

Figure 9: MixFlow outperforms state-of-the-art correlation
attacks where poisson delays 𝜇 = 0.02 and cover traffic 𝜆 = 60.

Figure 10: MixFlow consistently outperforms state-of-the-art
correlation attacks across a wide range of Mixnets’ poisson
delays and types of cover traffic.

of Flops is approximately twice the number of trainable weights,
consistent with the relationship between Flops and matrix/vector
dimensions. We also found that most of the Flops required by each
model are determined by its number of weights, rather than by
the operations needed to calculate the loss function. This suggests
that the number of weights plays a key role in determining the
computational complexity of a model. According to Figure 11, the
𝐶𝑜𝑛𝐶𝐸𝑛 model has the highest performance and clustering metrics
(as measured by the 𝑁𝑀𝐼 metric), while the 𝑀𝑀𝐹𝐸𝑚 model has
the fastest training/prediction time, due to its fewer comparisons
compared to the other models. On the other hand, according to
Figure 11, the 𝐶𝑜𝑛𝐹𝐸𝑚 and 𝐶𝑜𝑛𝐶𝐸𝑛 models have large Flops num-
bers and training/prediction times based on cross-entropy with
contrastive regularization. The 𝑀𝑀𝐹𝐸𝑚 contrastive model even
with the 𝑃𝐻𝑀𝑀 flow embedding network shows extremely low
Flops requirements and prediction times than𝐶𝑜𝑛𝐹𝐸𝑚 and𝐶𝑜𝑛𝐶𝐸𝑛
models due to its architecture, which requires fewer comparisons
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Figure 11: Model complexities for MixFlow models and
state-of-the-art attack models in terms of Flops and Train-
ing/Prediction Time. Each model is identified by the model
name, FEN, and Losses.

to find the closest class to the input sample during prediction. It
seems that contrastive models based on PHMM, although requiring
more training time, outperform CNN-based contrastive models.

6 DISCUSSION
In this study, we presented two contrastive flow correlation mod-
els and demonstrated their ability to accurately identify the entry
and exit flows, even after they have been subjected to transforma-
tions such as poisson mixing, cover traffic, and delays. Our findings
indicate that contrastive models using flow/label embeddings can
effectively reduce false positive rates and distinguish between obfus-
cated, correlated, and uncorrelated flows. Furthermore, we demon-
strated that feature embedding networks based on the 𝑃𝐻𝑀𝑀 can
accurately extract functional flow information and correlate flows.
Our results show that by adjusting contrastive hyperparameters
and using flow and label information in the embedding space, we
can uniquely correlate anonymized flows in Mixnets, and by de-
veloping strong classification models, we can achieve high attack
performance.

This suggests that poisson mixing alone may not be sufficient
to obscure entry flows, and the message rate of at least 𝜆𝑀 = 20
packets per minute allows us to achieve the detection rate of over
90% for cover traffic rates of 𝜆𝐶 = 60 and delay 𝜇 = 0.02. Conversa-
tion length should also be taken into account as a countermeasure
in the design of Mixnets anonymous networks. The results of our
experiments show that when the conversation length is signifi-
cantly lower than the 20 to 30 messages, the probability of correctly
correlating flows decreases significantly, where the poisson delay

is set to 𝜇 = 0.02. While it is challenging to accurately determine
the precise parameter values, we do not recommend reducing the
rate of cover traffic in relation to real communication traffic as
the volume of real traffic increases. Further study of the MixFlow
architecture in other Mixing techniques could lead to improved
defense strategies against flow correlation attacks. Comparing the
effectiveness of various mixing techniques using a more realistic
dataset could enable the development of a stronger defense for
mixing networks.

7 RELATEDWORK
End-to-end flow correlation attacks aim to correlate flows at both
ends of the connections in anonymous networks. Researchers have
studied the feasibility of these attacks based on the different detec-
tion techniques [3, 4, 15, 19, 21, 30, 31]. Y. Zhu et al. [34] studied a
passive correlation attack against batching Mixnets and analyzed
different transformation models for flow pattern vector extraction.
Danezis et al. [5] examined the trade-offs between cover traffic and
extra latency in continuous-time Mixnets. The research on end-to-
end flow correlation on Tor focuses on how routing dynamics and
potential manipulation of the network could allow an adversary to
correlate flows [3, 15, 19, 21, 30]. Nasr et al. [20] proposed a com-
pressive traffic analysis for improving flow correlation techniques
using compressed sensing, which allows for efficient representa-
tion of signals using fewer samples than normally required [10, 33].
DeepCorr [19] is a deep-learning method for correlating website
traffic on the Tor network. Sirinam et al. [30] introduced Triplet Fin-
gerprinting, a method for website fingerprinting using compressive
representation learning to improve on DeepCorr’s performance.
Contrastive models, such as those used in Triplet Fingerprinting,
map inputs to low-dimensional feature embeddings instead of di-
rectly comparing high-dimensional vectors [26]. Triplet Finger-
printing [30] is a method for identifying website fingerprinting
attacks by using the cosine similarity of embeddings of website
traces to compute the triplet loss. It employs the Deep Fingerprint-
ing neural network model as the feature embedding network and
trains the k-nearest neighbors (k-NN) classifier using the acquired
website embeddings [29]. Oh et al. [21] proposed DeepCoffea, a
flow correlation model based on contrastive learning that aims to
minimize the gap between the distances of correlated Tor entry and
exit flows. FlowTracker [11], another approach for improving flow
correlation attacks on Tor, uses contrastive learning and cumula-
tive representation with stacked autoencoders at the time-window
level to optimize distance metrics. Both DeepCoffea [21] and Flow-
Tracker [11] were designed for flow correlation of websites, unlike
Triplet Fingerprinting which focuses on website fingerprinting [30].
A key difference between DeepCoffea and Triplet fingerprinting is
their data representation [21, 30]. DeepCoffea uses separate embed-
dings for entry and exit flows on the Tor network, while Triplet
fingerprinting uses a single unified embedding for website traces.

8 CONCLUSION AND FUTUREWORK
In this study, we investigate the vulnerability of Loopix Mix net-
works to flow correlation attacks that aims to identify similarities
between the entry and exit flows. We introduce MixFlow as a model
of the adversary and define detection rate as a measure of attack

12
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performance. Our analysis reveals the underlying principle of flow-
correlation attacks and presents the first quantitative analysis of
the relationship between Loopix Mixnet parameters such as con-
versation length, poisson delay, cover traffic, and detection rate.
Our findings indicate that flow-correlation attacks can significantly
compromise the anonymity of Mixnets by revealing correlations
between flows into and out of the network. Our results also suggest
that anonymous Mix networks may not adequately obscure meta-
data to make the entry and exit flows indistinguishable, even when
subject to random delays or cover traffic. These results provide valu-
able insights for the design of anonymous networks that require
additional protection against flow-correlation attacks. Our findings
suggest areas for future research, such as the attack’s effectiveness
on more realistic Mixnet traffic patterns and traffic analysis attacks
using PHMM graphs and generative adversarial networks.
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A CONTRASTIVE END TO END FLOW
CORRELATION ATTACK

We supposed a global passive adversary who can observe all net-
work traffic between users and providers in the Loopix network (e.g.,
large intelligence agencies) [24]. Consider a binary classification
problem with the data generating distribution 𝑃𝑋𝑌 being a mixture
of timestamp and packet size information. In this problem, the label
𝑌 can be either positive (+1) or negative (−1) with an equal proba-
bility. As a simple example, in flow correlation, the label is +1 given
entry and exit flows have similarity (𝑋 |𝑌 = +1 𝑁 (𝜇1, 𝜎2)), and −1 if
the flows are not correlated (𝑋 |𝑌 = −1𝑁 (𝜇2, 𝜎2)). In this regard, the
optimal Bayes’s classifier can be defined as 𝑓 (𝑥) = 𝑠𝑖𝑔𝑛(𝑥 − 𝜇1+𝜇2

2 )
and 𝑥 is classified as positive if 𝑥 >

𝜇1+𝜇2
2 . In this regard, we need

to estimate the capability of a model to learn the 𝜇1+𝜇2
2 as a proxy

for the model performance.
The proposed models for the approach/separation process in

embedding space between similar and dissimilar samples can be
categorized into two contrastive models: Sample-wise contrastive
models and contrastive ones based on flow and label embeddings.
Sample-wise contrastive models employ the distances between
flow embeddings without using labels. Indeed, each new element is
classified based on the majority class of its 𝐾 nearest elements, but
the distance comparison is not based on the complete population
as in the K-Nearest Neighbor model. In this case, a selection of
samples from the entry and exit flows is made by random sampling
of correlated and uncorrelated flow pairs. However, this solution
has an implicit problem because random sampling cannot create a
single representative that serves as a prototype for any correlated
entry and exit flows. In the distances based on the representative of
entry and exit flows in embedding space, the main goal is to reduce
the distance between an entry flow (anchor) to the representative
of positive exit flows and increase the distance to the representative
of negative samples. Moreover, each sample pushes to be as close
as possible to correlated label embedding while separating itself
from uncorrelated label embeddings.

B PHMM FEATURE EMBEDDING NETWORKS
Like traditional procedures, individual flow connections are gener-
ated and preprocessed to get the corresponding packet sequences.
An accurate description of traffic shape using proper original fea-
tures is crucial for flow correlation attacks. In these attacks, due
to cover traffic injection, delay, packet loss, reordering, and re-
assembly, the number of sent packets rarely equals the number of
received packets, making it difficult to preserve the original one-
to-one packet relationship. As a result, matching entry and exit
flow sequences may not correspond to the same packet. Packet at-
tributes, such as size or interval time, also have finite value ranges,
making it insufficient to record flow characteristics using packet se-
quences alone. Aside from typical network noise, Loopix’s poisson
mixing noises can also generate obfuscation noise by concealing
traffic patterns at both ends of the network. When the input flow
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Figure 12: PHMM model for flow sequences. Each flow is
divided into five cluster and the parameter values for each
state is computed based on each cluster. 𝑀𝑖 indicates the
matching, 𝐼𝑖 insertions, and 𝐷𝑖 deletions based on the inter-
packet delay and packet size metadata information.

sequences with any length are fed to PHMM, the model tries to
learn the key information and capture meaningful signals. In this
regard, for each gap relative to the flow sequence, such as a deletion
and an insertion, the path will pass through one or more deletion
or insertion states before it reaches the end state. The insertion and
deletion state properties allow us to have the tolerance to match the
subsequences in any network conditions or poisson mixing such as
packet dropping, delays, retransmission, or injecting cover traffic
packets.

B.1 State Transition Diagram for Contrastive
PHMM

Figure 12 shows a schema of a state transition diagram of our PHMM
model. In the central chain of PHMM, states are referred to as Match
states which means the probability distribution of the main flow
sequence. For each state in the main chain, two additional states
are considered for variations in exit flows after leaving the mix
network: Insert and Delete states. Each flow sequence is supposed
to be as a path in a linear fashion 𝐵𝑒𝑔𝑖𝑛 → 𝑀1 → ... → 𝑀𝑛 → 𝐸𝑛𝑑

that includes match state (𝑀), delete state (𝐷), insert state (𝐼 ), start
state (𝑆), terminal state (𝑇 ), and states (𝑁,𝐶, 𝐽 ). States 𝑁 , 𝐶 , and
𝐽 generate a random sequence that is not aligned with the main
sequence as unpredictable network jitters or delays in Mixnets.
Additional states of 𝑁 , 𝐶 , and 𝐽 allow us to counter unpredictable
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background and dummy noises in the traffic traces and find mul-
tiple key elements in the network traffic, regardless of the impact
of the delay or dummy packets on the traffic patterns. Insertion
states allow for one or more extra packets inserted in between two
matching states of the chain. The delete state means omitting some
matching states (key information) from the sequence. In the context
of flow sequences, the Insert states can define dummy packets, du-
plicate packets, and retransmissions, while the Delete states model
random delay or packets lost in the network.

In this regard, each PHMM model is defined based on a series
of hidden states 𝑄𝑖 = {𝑞1, 𝑞2, ..., 𝑞𝑁 } and observation sequences
𝑂𝑖 = {𝑜0, 𝑜1, ..., 𝑜𝐿}. Each observation 𝑜𝑙 is equal to the logarithm
of Inter packet delay between the 𝑙𝑡ℎ packet and (𝑙 + 1)𝑡ℎ packet
and packet size 𝑆𝑙 of the 𝑙𝑡ℎ packet (𝑜𝑙 = {𝑙𝑜𝑔(𝐼𝑙 ), 𝑆𝑙 }𝑇 ). For each
state, two variables of inter-packet delay 𝐼𝑙 and packet size 𝑆𝑙
are correlated with a mixing coefficient. For each PHMM model
𝜆′ = (𝜖,𝐴,𝑤,𝑚, 𝜙), we define five parameters [7]: 𝜖 that means the
primary probability for hidden stats;𝐴 is the state transition matrix
and its elements 𝑎𝑖 𝑗 indicate the probability of transition from a
state 𝑖 to state 𝑗 ; Parameter𝑤 is the vector of weights as the mixture
coefficient that their values are computed based on the Gaussian
distribution;𝑚 is the mean vector; 𝜙 defines the covariance matrix
of Gaussian distribution.

B.2 Estimating the Number of States in Each
Embedding Network

Each flow sequence is quantized on a not linear scale separately,
using the k-means algorithm [7]. We trained the model with the
different number of states and compared them using penalizes
complexity and choosing the best one. After some experimental
trials, flow sequences, including the packet timestamps, size, and
direction information, are quantized to five values (e.i., five states in
the PHMM graph). We employed inter-packet delay and packet size
statistics to construct the five-state Markov chain, which we used
to model the time series sequences transmitted in a communication
stream. In PHMM, states are visiting nodes connected via directed
edges called transitions, associated with certain probabilities to
identify differences. Each state indicates the presence/absence of
specific metadata information at that flow sequence, which is used
to learn the parameters of PHMM. Transitions define the correct
order and existence of the flow sequence metadata information
while allowing insertions and deletions to the flow sequence. We
have separated the chain of match states and defined three parallel
and interconnected Markov chains (network) of matching states:
One network for entry flow and two other networks for positive
and negative exit flows.

For training, primary values of the parameters are chosen uni-
formly to cover the whole range of the observed packet timestamps
and size values because the distribution of flow sequences is not
solely dependent on the packet’s position within the flow. Each state
in the PHMMnetwork has different Gaussian weights that equal the
covariance matrix of the joint distribution of timestamps and packet
size information. Using the Baum-Welch training algorithm [9] all
parameters are converged in a few (10) iterations. The probabilities
of the PHMM transition states are modified based on the triplet
loss function and the input flow sequences. The main goal is to

maximize the similarity score of positive exit flows to the entry flow
that the PHMM represents. The Expectation-Maximization algo-
rithm [6] along with contrastive triplet loss are used to compute the
optimal parameter values and maximize the expected log-likelihood
for each observation. Each training data sample is clustered into 𝐾
states by selecting 𝑘 observation sub-sequences from the original
flow. Each state consists of𝐺 Gaussian components, and the proba-
bility of the 𝑙𝑡ℎ observation is computed based on the 𝑏𝑡ℎ Gaussian
component. In the next step, the parameters of each Gaussian com-
ponent (i.e.,𝑚,𝜙 , and its weight𝑤𝑖 in state 𝑘𝑖 ) are updated to find
the optimal value by maximization of the Gaussian parameters.
At the prediction, the similarity score of the entry and exit flows
is computed based on the triplet PHMM models. The test entry
and exit flows are assigned to be correlated based on the similarity
score of the entry flow’s PHMM probability when compared to the
PHMM embeddings (for positive and negative exit flows) outputs.
Finally, the output of three embeddings is fed to a loss function to
make a prediction.

C CONTRASTIVE REGULARIZATION
The cross entropy loss (𝐿𝑜𝑠𝑠𝐶𝑟𝐸𝑛) is defined as:

𝐿𝑜𝑠𝑠𝐶𝑟𝐸𝑛 = − 1
𝑁

𝑁∑︁
𝑖=1

2∑︁
𝑗=1

𝑦
𝑗
𝑖
𝑙𝑜𝑔(𝑦 𝑗

𝑖
) (6)

This approach corresponds to the losses based on the categori-
cal Cross Entropy including 𝐿𝑜𝑠𝑠𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 , 𝐿𝑜𝑠𝑠𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 , and
𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 . 𝑦

𝑗
𝑖
∈ [0, 1] is computed using the indicator function in

Equation 7 in a supervise problem where
∑
𝑦
𝑗
𝑖
= 1, and 𝑦 𝑗

𝑖
is the

real label.

𝑦
𝑗
𝑖
=

{
1 if 𝑗 = 𝑘𝑖
0 otherwise

(7)

Finally, the regularized losses (𝐿𝑜𝑠𝑠𝑅𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 and 𝐿𝑜𝑠𝑠𝑅𝑀𝑆𝑀𝑆 )
are equal to the summation of 𝐿𝑜𝑠𝑠𝐶𝑟𝐸𝑛 loss with each of the
𝐿𝑜𝑠𝑠𝑀𝑀𝐶𝑜𝑛𝐶𝐸𝑛 and 𝐿𝑜𝑠𝑠𝑀𝑆𝑀𝑆 losses. The predicted label 𝑦 𝑗

𝑖
is the

output of a Softmax activation function at the last layer of a neural
network and is defined as the probability that an exit flow 𝑥𝑖 is
associated with an entry flow 𝑛𝑖 . 𝑦𝑖 equals the ground-truth label,
and 𝑦 𝑗

𝑖
corresponds to its one-hot-encoded representation where

𝑦
𝑗
𝑖
= 1 if 𝑗 = 𝑘𝑖 and 𝑎𝑟𝑒𝑦

𝑗
𝑖
= 0 if 𝑗 ≠ 𝑘𝑖 and 𝑘𝑖 is the index of the

positive class label (i.e., correlated or not).

D DATASET DETAILS
The probability density function of the messages generated in our
Loopix simulation closely follows a Poisson distribution. Poisson
distribution of traffic traces is a result of the sparse nature of events
in typical instant messaging in Loopix mixing communications, as
well as the stationary nature of noises in communications, unlike
in the case of Tor. In our simulation, each instant messaging chat
between clients 𝐶𝑖 and 𝐶 𝑗 was analyzed as a two-way communi-
cation flow. It consisted of packets sent from 𝐶𝑖 to 𝐶 𝑗 or received
by 𝐶𝑖 from 𝐶 𝑗 . The entry/exit flow was represented by n packets,
represented as 𝑓 = {𝐼𝑆1, 𝐼𝑆2, ..., 𝐼𝑆𝑛}. The notation of inter-packet
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delay (I) and packet size (S), multiplied by packet direction, was
used.

An adversarywho has obtained entry flow 𝑓 (𝐶𝑖 ) = {𝐼𝑆𝑖1, 𝐼𝑆
𝑖
2, ..., 𝐼𝑆

𝑖
𝑛}

and exit flow 𝑓 (𝐶 𝑗 ) = {𝐼𝑆 𝑗1 , 𝐼𝑆
𝑗

2 , ..., 𝐼𝑆
𝑗
𝑛} aims to determine if 𝐶𝑖 is

communicating with 𝐶 𝑗 . The adversary’s hypotheses can be re-
stated as follows:

• 𝐻0: No communication between 𝐶𝑖 and 𝐶 𝑗 , resulting in in-
dependence of 𝑓 (𝐶𝑖 ) and 𝑓 (𝐶 𝑗 ). The flow 𝑓 (𝐶 𝑗 ) originates
from a non-participant in the communication with 𝐶𝑖 .

• 𝐻1: If user𝐶𝑖 is communicating with client𝐶 𝑗 , then the exit
flow 𝑓 (𝐶 𝑗 ) will be a noisier version of the communication
flow 𝑓 (𝐶𝑖 ).

• 𝐻2: We assumes that client𝐶𝑖 is communicating simultane-
ously with both clients 𝐶 𝑗 and 𝐶𝑘 . The attacker’s objective
is to identify the correlation between flows𝐶𝑖 and𝐶 𝑗 from a
pool of candidate flows that contain unrelated background
flow from 𝐶𝑘 .

In our research, we only considered the scenario where two
clients are communicating simultaneously. However, in real-world
situations, with the increasing number of connections per client,
it becomes increasingly challenging to differentiate the accurate
corresponding entry flow from similar, unrelated ingress flows,
resulting in a higher probability of correlation failures.

E ETHICS
Our flow correlation attack was only conducted on virtual Signal in-
stant messaging and communication between simulated clients and
did not involve capturing private chat messaging. Our experiments
were limited to our simulated clients and did not compromise the
privacy of real-world Signal/Loopix members.
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