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Abstract

Zero-knowledge range proofs (ZKRPs) are commonly used to prove the validation of a secret integer lies in an interval
to some other party in a secret way. In many ZKRPs, the secret is represented in binary and then committed via a
suitable commitment scheme or represented as an appropriate encryption scheme. This paper is an extended version
of the conference paper presented in 14th IEEE International Conference on Security of Information and Networks.
To this end, we first analyze the proof proposed by Mao in 1998 in both discrete logarithm-setting and elliptic-curve
settings. Mao’s proof contains a bit commitment scheme with an OR construction as a sub-protocol. We have extended
Mao’s range proof to base-u with a modified OR-proof. We investigate and compare the efficiency of different base
approaches on Mao’s range proof. Later, we analyze the range poof proposed by Bootle et al. in both finite fields and
elliptic-curve settings. This proof contains polynomial commitment with matrix row operations. We take the number
of computations in modulo exponentiation and the cost of the number of exchanged integers between parties. Then,
we generalize these costs for u-based construction. We show that compared with the base-2 representation, different

base approach provides efficiency in communication cost or computation cost, or both.

Keywords: Zero knowledge range proof, OR proof, Pedersen commitment.

1. Introduction

The zero-knowledge proofs are used to prove the ac-
curacy of specific information in a secret way and are
important building blocks of privacy-preserving sys-
tems. A particular and notable example of ZKPs is
the zero-knowledge range proofs, which are commonly
used to prove a secret integer lies in a given inter-
val. There are various usage areas of ZKRP in the real
world, such as e-cash [1, 2], e-voting [3], age validation,
risk assessments/credit score systems [4] for banking
and financial institutions, investment grading, e-auction
[5], group signature schemes [6] and verifiable secret
sharing. With the rapid development of blockchain-
based distributed ledger technology, ZKRPs have be-
come even more popular since they are used to validate
cryptocurrency transactions. Monero [7], Zcash [8], and
Zerocoin [2] are just a few examples of cryptocurren-
cies using ZKRPs for the validation of the transaction
process.
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The first study to construct a range proof was pro-
posed by Brickell, Chaum, Damgrd & van de Graaf
[9], in 1987. They managed to secretly send the dis-
closed bits to other participants. Their scheme was
based on the discrete logarithm together with a bit com-
mitment. Their construction has considerable negative
features, especially in ranging. In 1995, Damgard [10]
proposed a ZKRP scheme. Soon later, in 1997, Fu-
jisaki & Okamoto [11] proposed another construction.
Although these proposed constructions work correctly,
their use in real-world systems was inefficient. Bellare
and Goldwasser [12] presented the binary decomposi-
tion range proof in 1997. In this construction, the secret
s is represented on a modulo-2 basis. In 1998, Chan et
al. [1] proposed the CFT proof using the algorithm by
Brickell et al. [9]. Nevertheless, their construction only
succeeded in the non-negative ranges, and the order of
the group has to be unknown. In 2000, Boudot [13] pre-
sented a scheme depending on the strong RSA problem.
To prove that the secret x lies in the interval [a,b], it is
sufficient to show both x —a and b —x are positive.

Using inner product argument techniques presented
by Bootle et. al [14], Biinz et. al proposed a novel
range proof, namely Bulletproof [15]. Soon later , us-



ing the zero-knowledge weighted inner product argu-
ment technique, Chung et. al improved the Bulletproof
and presented Bulletproof+ [16]. Though these proofs
are highly efficient and novel, due to their inner product
structure, these are not applicable to reconstructing for
different base approaches. Therefore, for the scope of
our study, we will not try to represent them on different
bases.

In almost all ZKRP schemes, the secret is committed
at the beginning of the scheme. In the literature, there
are three main approaches to commit a secret, which
are integer, binary, or the u—ary method. Hence, these
methods are listed as follows:

1. integer method In this method, the interval is of
the form .¥ = [a,b]. Generally, .# is chosen as a
large interval space. It is enough to check whether
a committed number belongs to .# or not.

2. binary method This method allows checking if the
committed value of binary represented secret is in
the interval [0,2F — 1].

3. u—ary method This method represents the message
in u-ary base, then checks if the committed value
is in the interval [0,u* — 1]. In the literature [17], it
is stated that this method itself does not reduce the
proof size.

Camenisch et al. [17] proposed improvements on
the bilinear-group assumption-based set-membership
proofs, which also can be used for range proofs. They
recommended representing the secret in base-u instead
of the folklore base-2 approach. Nevertheless, it is
stated that this idea alone does not reduce the proof size;
hence, it does not bring any efficiency alone. Conse-
quently, they constructed a scheme that allows reusing
the list of u signatures sent by the verifier. The veri-
fier sends the list of u signatures, and the list is used by
the prover to check the accuracy. In their system, the
range of integers is denoted by I = [1,4"], where u is
the representation base. Elements of I are signed us-
ing a digital signature by the verifier. These signatures
are considered as common inputs. The prover proves
that she knows a signature under the verification key for
the element committed to C, while C is a commitment.
Moreover, they showed that their approach could also
be applicable to the strong RSA-like assumption with a
significant level of improvement.

Though different base approaches were studied on bi-
linear groups and RSA-like schemes, up to our knowl-
edge, only Giinsay et. al [18] studied the DLP-based
classical proof. However, they did not examine the ver-
sion of the schemes that uses an elliptic curve in their

work. Due to its wide range of usage areas, we in-
vestigate the efficiency of different base approaches in
different settings. Our aim is to find the most efficient
base approach for both computation and communication
costs.

1.1. Our Contribution

In 1998, Mao [19] proposed a single verifier cor-
rectable binary multi-party secret-sharing construction,
which is used to encrypt corresponding primes, using
a protocol, namely a proof of bit length. We call this
protocol as classical range proof. Overall, the secret x
is represented in binary, and the binary Pedersen com-
mitment scheme is used thereafter. In this protocol, an
OR-Proof proposed in [20] is used as a sub-protocol.
This study focuses on the efficiency of different base
representations of range proof constructions and gener-
alizes the idea presented by Giinsay et al. [18]. We
investigate the classical range proof with different base
approaches in both discrete logarithm and elliptic curve
settings. To this end, we decompose the secret in the
u—ary method with an adapted sub-protocol. We also
analyze the corresponding construction using El-Gamal
encryption instead of the Pedersen commitment scheme
in both discrete-logarithm and elliptic-curve-based set-
tings. The results show that the base-3 method is more
efficient for the classical proof than other base choices
in both computation and communication costs. Later,
we analyze the range proof proposed by Bootle et al.
[21]. This scheme also has a sub-protocol for polyno-
mial commitments. We investigate the computation and
communication costs of the corresponding scheme in
both finite fields and elliptic-curve-based constructions.
The results show that in the finite field setting, while
we prove a single instance, the scheme has its lowest
computation cost in base-4 with 13.4% efficiency and
the lowest communication cost in base-4 with 24% effi-
ciency. In the elliptic-curve-setting, we have the highest
computation efficiency with 24.2% improvement while
working on base-4.

1.2. Outline of the Paper

Section 2 presents the details of the underlying
cryptographic primitives such as commitment schemes,
zero-knowledge proofs, and X-protocols. The classical
range proof proposed by Mao and the base-3 approach
to the existing construction, together with a generaliza-
tion to base-u is described in Section 3. In Section 4,
we represent the elliptic curve variant of the scheme
with generalization to different bases and comparisons.
In Section 5, we described the batched range proof for



low-degree polynomial relations, where the generaliza-
tions to different bases are analyzed and compared both
for computation and communication.

2. Preliminaries

We introduce the basic primitives, notations, and def-
initions in this section. Almost in all range proofs, the
secret is expressed as a committed value which makes
them essential in the context of range proofs. There-
fore, after giving a short notations part, we explain the
Pedersen commitment scheme. Later, we define the
Y. —protocols and their OR-composition due to their sig-
nificant role in the classical range proof.

2.1. Notations

Over the ring of integers Z, let s, p, g be large primes
such that ¢ =2s+ 1 and p = kg + 1 hold where k is
an even positive integer. Let ¢ € Z;, be an element of
order ¢, and G be a group generated by g. We know
that g7 = 1 mod p. Let f € G be a fixed element gen-
erated by a pseudo-random generator which is seeded
by g, and its discrete logarithm in base g, log, f is un-
known. Throughout the paper, r €g Z), denotes that r is
randomly chosen in Z),. For randomly chosen r, we say
that E = Com(x,r) = g*f" is a commitment to hide x.
We denote the set of integers (1,...,n) as [n].

2.2. Pedersen Commitment Scheme

The idea of the Pedersen commitment with perfectly
hiding and computationally binding properties is pre-
sented for the first time in [22, 23]. The security of the
scheme is based on the hardness of the DLP.

Overall, the scheme has three phases. In the setup
phase, the receiver picks uniformly random primes g
and p with ¢|(p —1). Suppose G is the cyclic sub-
group of Zj, of order ¢, and G =< g >. The receiver
picks an element f in G randomly where log, f is un-
known. In the committing phase, for a randomly chosen
t ER Z,*I to commit a secret x € Z;, the committer com-
putes Com(x,t) = g*f'. In the opening phase, the com-
mitter reveals x and the corresponding ¢ for the opener
to compute Com(x,t) = g*f' to check its correctness.
A Pedersen commitment scheme should satisfy the per-
fectly hiding and binding properties.

2.3. Polynomial Pedersen Commitment Scheme

Suppose G is the cyclic subgroup of Z;, and
g1,--.,8n are random group elements, and our message
space is Z", so we want to commit a vector m with
n instances. We commit this vector as, Com(m,r) =
fTTL, &/". Note that this scheme is homomorphic, per-
fectly hiding, and computationally binding.

2.4. Zero Knowledge ¥-protocol and OR-composition

Definition 1 (X-Protocol). Let P and V refer to the
probabilistic polynomial time machines. For the pro-
tocol system pair (P,V), where % is a binary relation, a
X-Protocol for the relation %, is of the three-movement
form, namely message, challenge, and response.

Let both P and V have x as a common input. P has a
private input w, where (x,w) € Z. A typical X-protocol
needs to achieve three security parameters. These are
(perfect) completeness, special soundness, and special
honest-verifier zero-knowledgeness (SHVZK).

Combining the existing protocol for achieving differ-
ent aims results in compositions. One of these com-
positions is the OR-composition, which establishes the
correctness of one of the given two statements. In Fig-
ure 1, we show the workflow of the OR-composition
of X—protocol for the Schnorr protocol. It is a 3-
movement protocol that is used as a sub-protocol in the
context of range proofs. The details of the workflow
will be explained in detail in the next section.
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Figure 1: OR-composition of X—protocol [18].

3. Classical Range Proof in Discrete Logarithm Set-
ting

The main idea is to prove a secret integer x belongs
to some interval of the form [0,2%*! —1]. For this aim,
we decompose the secret in base-2, then prove that this
decomposition indeed occurs by 0’s and 1’s.

The length of the secret x equals to |log, x| 4 1 in bit-
wise representation, and since x € [0,2¢+! — 1], x can be
written as:

x=x02" 4 x;2 -+ 4 x, 2 (1)



forx; € {0,1} and i = 0,1,... k. The prover randomly

chooses 19,1,...,t €g Z4, and computes ¢ as:
k .
t=Y 12" modg. )
i=0

Then, she computes the following bit commitment
scheme:

E;=E(x;,t;) =g"fimod pfori=0,1,....k. (3)

After that, in each step, the prover proves that the value
committed by E(x;,;) is whether 0 or 1. To this end,
using a zero-knowledge sub-protocol, namely the OR-
composition of X-protocol, one can show that she knows
whether E; is in base f or E;/g is in base f as shown in
the Figure 1.

Finally, after the verifier receives E; and ¢ values, he
requires to check (14) using the homomorphic property.

k )
g'f" =] E¥ mod p. @)
i=0

In each iteration, both the prover and the verifier com-
pute four exponentiation and seven integers, each length
k for communication. In the end, the cost of the expo-
nentiations equals 4k. Similarly, the cost of communi-
cation equals 7K k.

3.1. Classical Range Proof with Base-3 OR-
Construction

In this section, we give the scheme of the secret inte-
ger x belonging to some interval of the form [0,3%! —
1]. To do so, this time, we decompose the secret in
ternary and prove that decomposition truly occurs in
0’s, 1’s, and 2’s. The length of the secret x equals to
|logy x| + 1 in ternary representation and x € [0,3K1 —
1]. Hence, we denote the secret as follows:

x=x03"+x;3" 4 +x3 forx; € {0,1,2}  (5)

and i = 0,1,...,k. The prover randomly chooses

10,11, ... ,1; €R Zy, and computes ¢ as:
]} .
t= Zt,?)’ mod g. (6)
i=0

Later, computes the commitments as:
Ei=E(xi,t;) =g"fimod pfori=0,1,....k. (7)

Then, we need to use the OR-proof. Since the base-
2 OR-proof is not usable for our case, we provide the

base-3 OR-proof to prove the committed value is equal
E;, orE;/g, or E,-/g2 as seen in Figure 2.

After getting E; and ¢ values, the verifier needs to
check the equality of the following property:

xpt ! k 30
g/ =T1E" mod p. (8)
i=0

In each step, six exponentiation need to be computed by
both the prover and the verifier. There are 10 integers to
exchange, which costs 10k". At the end of the protocol,
the overall cost for exponentiation is 6k, and the cost
of exchanging integers is 10k'k. To show the character-
istics of the proof, for [p| = 1024, |¢| = 1024, and the
security parameter t = 90, the completeness holds be-
cause the proof always succeeds if the secret x € [0,b],

where b is of the form 3**! — 1. For the soundness prop-
erty, a cheating prover can succeed with a probability
less than 1 — (1 —38%)?. Finally, the proof is perfectly
zero-knowledge in the random-oracle model described
in [20].

3.2. Generalizations to Base-u and Comparisons

In this section, we investigate the performance of the
base-u decomposition of the secret x. Recall that, for the
complexity of the base-3 construction, both the prover
and the verifier need to compute six exponentiations in
each step. In total, we need 6k exponentiations. We also
consider the number of exchanged integers, each of the
length k', between the prover and the verifier. In this
case, there exist 10 integers to exchange in each itera-
tion. The cost of the exchange then is equal to 10kk’
for the base-3 case. Apparently, the base-3 scheme suc-
ceeds in our case.

Throughout this paper, we use &, .#, and .# to de-
note the cost of the operations of exponentiation, inver-
sion, and multiplication in Z7, respectively. Before gen-
eralizing this scheme to the base-u, it is enough to com-
pute g~ only once. Since we work in Z?, the cost of
the inversion can be considered as . ~ & [24]. We
may also assume that & > 1000.# using the square and
multiply algorithm for cryptographic applications [24].
Therefore other operations can be considered negligi-
ble. Hence, we consider the exponentiations and in-
verses for comparison. Generalizing in base-u, both the
prover and the verifier need to compute 2u exponentia-
tions in each iteration. Additionally, 3u 4 1 numbers are
exchanged in each step of base-u. The required expo-
nentiations are given in Table 1.

The above computations are valid only for one itera-
tion of OR-proof. Since we call the OR-proof as many
times as the secret length, these exponentiations and the
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Figure 2: Base-3 OR-proof [18].

Table 1: Comparisons of the required operations for OR-proof in each step [18].

Basis Base-2 Base-3 Base-4 Base-5 Base-6 Base-u

Cost type
operations 48 + .7 68+ .7 8+ .7 106+ .9 128 +.7 u&+ S
numbers to exchange 7 10 13 16 19 3u+1

number exchanges repeat as many times as the secret
length in base u. Let k = [log,x| and k = [logyx|.
Since log2 = 0.30102 and log3 = 0.47771, in the base-
3 representation k = {%g%k ~ 0.63k. So, we can compare
these two worst-case complexities of the operations ex-
ecuted by the prover as follows:

0.63k(76) 4418
k(56) 58

~0.88. C)]

Approximately 12% efficiency is achieved in the proof
generation when we use the ternary representation in-
stead of the binary representation.

We also analyze other basis complexities in the same
way and generalize this analysis for base-u. In general,
for the base-u representation, the number of required ex-
ponentiations can be formalized as follows:

log2 (2u)k. (10)

logu

After achieving improvements on base-3, base-4, and
base-5 representations, the computation cost increases
starting with base-6. We also observe that, with respect
to computation cost, the base-3 approach has the most
efficient cost.

Similar computations can be done for total communi-
cation cost. While in the binary representation TkK bits
are exchanged, In the ternary representation 10kK bits
are exchanged, and as we mentioned before:

0.63k(10k)  6.309&

) ~0.90.
k(7K 78

(1)

Therefore, approximately 10% efficiency is executed
in the ternary approach compared with the binary ap-
proach. It can be formalized for a general base-u
as %(?m + 1), and the most efficient computations
reached in base-3. In Table 2, the total required oper-
ations are tabulated.

We also sketch the total required exponentiations in



Table 2: Table that compares the total computation cost [18].

Basis Base-2 Base-3 Base-4 Base-5 Base-6 Base-u
Cost type
operations 5k 441k 45k 47k 5.02% 122 (2u)k
numbers to exchange | 7k 6309k 6.5k  6.88k  7.22k 2 (Bu+ 1) K

the first of the following graphs of Figure 3a. The graph
shows the maximum efficiency working in base-3, i.e.,
it has the minimum value in (3,4.41), which is our most
efficient point.

The second graph 3b, on the other hand, illustrates
the number of bits used in communication. Although in
folklore bit-representation it equals 7, in base-3, base-
4 and base-5, the scheme has better results. Still, the
minimum value is achieved in (3,6.31), which is our
most efficient point. As a result of both comparisons,
the construction achieves the most efficiency while us-
ing the ternary approach.
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x: base
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Figure 3: Comparison of different base approaches [18].

Note that, instead of Pedersen commitment, this
scheme can be constructed using any homomorphic en-

cryption. For example, ElGamal encryption can be used
due to its homomorphic property. Though changing the
base gives the exact same communication efficiency as
using the Pedersen commitment case, for the computa-
tion cost, the most efficient base is base-3 with 5.5%
efficiency compared with the base-2 case.

4. Classical Range Proof in Elliptic Curve Setting

We can also represent Mao’s range proof in the ellip-
tic curve setting. This time we have point multiplica-
tions and additions. Suppose we have two points G and
F on the elliptic curve. Where G is a publically pre-
agreed point on the curve, F is a point derived from
G. The process is quite similar to the discrete loga-
rithm case. First, the prover represents the secret in its
bits. For randomly chosen #y,t,...,t €g Z,, values,
the prover computes t = Y'X_,£,2/. After that, for each
bit of the secret, the prover computes the elliptic curve
Pedersen Commitment as:

E,-:E(x,-,ti):x,-G—l—t,-Ffori:O,l,...,k. (12)

For each committed bit, the elliptic curve OR-proof as
seen in Figure 4 is called.

Prover (Alice) Verifier (Bob)
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Figure 4: Elliptic Curve Base-2 OR-proof.



At the end of the protocol verifier needs to check the
equality of the following property:

2 k -
xG+tF =Y 2E;. (13)
i=0

Note that both the prover and the verifier need to com-
pute four elliptic curve multiplications and two addi-
tions in each OR-proof. Supposing k = |log, x| holds,
at the end of the range proof, 4k point multiplication
and 2k point additions would be computed. Integers ex-
changed between the prover, and the verifier will be the
same as the discrete logarithm setting.

4.1. Elliptic Curve Classical Range Proof with Base-3
OR-Construction

Instead of using the classical bit-wise approach, sup-
pose we use ternary representation. This time we check
if each term is equal to 0, 1, or 2. To do so, after
representing the secret in its trits, the prover computes
t= Zf:o 1;3' for randomly chosen #o,?1,...,t; €g Z,. For
each trit of the secret, a Pedersen Commitment is com-
puted as equation (12). Later the prover calls a modified
OR-proof, as seen in Figure 5, for each committed se-
cret trits.

i
xG+1F =Y 3, (14)
i=0

4.2. Generalizations to Base-u and Comparisons

Consider that in this case, both the prover and the
verifier need to compute six elliptic curve multiplica-
tions, four additions, and one doubling operation in each
OR-proof. The required multiplications in each step are
given in Table 3.

We call OR-proof till the term size of the decomposed
secret. Regarding k = |log; x|, in total 6k point multi-
plications and 4k point additions are computed. We may
assume that M ~ 8A using the double and add algorithm
in elliptic curve cryptography. That is why we will only
take account of multiplications to compare overall effi-
ciency. We can compare these two worst-case complex-
ities of the operations executed by the prover as follows:

0.63k(6.4)  3.78.4
k(a.n) 4

~0.945. (15)

The required multiplications in each step are given in
Table 3. This corresponds to approximately 5.5% effi-
ciency in both proof generation and verification when
we use the base-3 instead of the base-2 in the elliptic
curve. For the characteristics of the proof, completeness

trivially holds with probability 1, i.e., if x is in the given
range, then the verifier always accepts. For the sound-
ness property, the length of the challenge c is such that
the number of possible c-values is super-polynomial in
bit size k. Assuming any other prover, say P* since ¢ # ¢
holds, a witness set holding our relation can be com-
puted in polynomial time. This prof is also perfectly
zero-knowledge in the random-oracle model described
in [20].

In the first graph of Figure 6, we sketch the total re-
quired multiplications on different basis. Maximum ef-
ficiency can be observed when the base is selected as
three. In the first graph 3a, one may find the number
of elliptic curve point multiplications for the different
basis. The graph has its minimum value in (3,3.78),
which is our most efficient point. The second graph 3b
is the same as the discrete logarithm setting, and we
can see the number of bits exchanged. The construc-
tion achieves the most efficiency when we use the base-
3 representation.

Similar to DLP-setting, instead of an elliptic curve
Pedersen commitment, this scheme can be constructed
using any homomorphic encryption. For example,
elliptic-curve ElGamal encryption can be used due to
its homomorphic property. Though changing the base
gives the exact same communication efficiency as us-
ing the Pedersen commitment case, for the computation
cost, the most efficient base is base-3 with 5.5% effi-
ciency compared with the base-2 case.

5. A Batched Range Proof for Low Degree Polyno-
mial Relations

Bootle et al.[21] proposed a zero-knowledge argu-
ment allowing to prove many instances of the same re-
lation to be proved and verified in a single argument.
Their protocol is based on discrete logarithm assump-
tion in groups with prime order p. It can easily in-
stantiate as polynomial evaluation proofs, membership
proofs, and range proofs. They also give the most effi-
cient parameters to use the protocol. In the scope of this
study, we include their structure as range proofs to ex-
emplify range proofs using polynomial commitments.
In this protocol, ¢ denotes the number of batched in-
stances. We will consider the t = 1 case, where we have
a single relation.

The secret a, represented in its bits as
ap,ay,...,ay—1. We know that for each bit
a;(1 —a;) = 0 should be satisfied. So that we de-
fine the vectors a and b as:

a=(ao,ar,...,am1), b=(2°2",...,2"7"). (16)
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Figure 5: Elliptic Curve Base-3 OR-proof.

Table 3: Comparisons of the required operations for OR-proof in each step

Basis Base-2 Base-3 Base-4 Base-u
Cost type
operations AM 42 6.4 +44 8M +44 2uM +usf
numbers to exchange 7 10 13 . 3u+1
Table 4: Table that compares the required operations for range proof in total
Basis
Base-2  Base-3  Base-4 Base-u
Cost type
operations 4k 3.78k 4k L (U)K
numbers to exchange 7K 6.309% 6.5k’ . % (Bu+1) K
The polynomials we use in the protocols are defined where commitment key ck <—Gen(1’l), and

as:

P(a,b) =ao(1—a), (17)
m—1

Q(a,b) =Y a2, (18)
i=0

where we use the Hadamard product to show a;(1 —
a;) = 0 for each bit. Note that we define /, as the length
of the secret a, and P, and Q are length [p, [y vectors of
polynomials of degree dp, dg respectively.

Common reference strings are crs = (ck,z1,...,2m),

2l,...,Zm are points defining Lagrange polynomi-
als [1(X), ..., [u(X). We define lo(X) =TT}, (X —z;).
The workflow of the general protocol can be summa-
rized as follows:

P — V The prover picks ro,so,...,#m < Z, and
I
a9,1,..., 80, < Zs and co,...,c, < L.
Then computes: Cy = Comg(cy,...,¢,;70) and A; =
Come(ag 1,...,a0,;s;) for i € OU [m]
Defines:



55

y: operation

x:base

(a) Required exponentiation

75

6.5

y: cost of exchanged numbers

x: base
(b) Number of exchanged integers

Figure 6: Comparison of different base approaches in the elliptic
curve setting.

a;(X)=Y a;;j;(X) b;(X)=Y b;;;(X), (19
=0 -

P(ﬁj(X)’B (X))

P(X) . (X)f ,

J

(20)

Y Qai),bi ) (X)) —Q(@;(X),b;(X))

Q] ( ) Cj + lO (X)
21
As a sub-protocol polynomial commitment Poly-
Commit (ck,P}(X) jc[y) is called. In this sub-protocol,

for randomly chosen by,...,b, € Zﬁf, the prover ar-
ranges a matrix as described in [14], with the entries

10

of P3(X) as:

Po bl bnfl bn

P1 Pd+1 P(n-2)m+d+1 P 1)m+d+1
Ps—by . by,

0 Prm+1

0 Pm+d-1 P(n-2)m+d—1 PN-1

0 Pm+d — b2 Pi-2)m+d —bu PN

(22)
For each row of the matrix, the prover ran-
domly selects r; € Z,, and computes the com-
mitment corresponding row. Output of this sub-
protocol is msgp;) = ({H;})) and a statement st =
(P5(X), {b;}jor {ri}ilo)-
Similarly, we call polynomial commitment for Q; (X),
as PolyCommit(ck, Q}(X) jc[,)). This protocol outputs
(msgo,1),5t0)-
The prover sends the {A; }ic(,]> m5g(0,1)» and msg(g,1)
to the verifier.

P < V The verifier chooses a challenge
x<Zp\{z1,...,2m}, and sends it to the prover.

P — V After getting the challenge x, the prover
evaluates the polynomials in the point x using the
statements stp and stg. To this end, the prover calls
PolyEval(stp,x). In this evaluation step the prover
computes:

P =) p ¥, (23)
i=0

together with # = Y™ rix!. Output of this step is
msgp2 = ({P;},7). Similarly, the prover calls the eval-
uation step for the polynomial Q as PolyEval(stg,x),
and get the msgg».

The prover computes:
(24)

Then sends {dj}je[n], 7, §, msgpa, msgo 2 to the verifier.
The verifier runs the Poly Verify(ck,msgp1,msgp2,x).
In this step, the verifier checks :

=&

This step outputs p = (py, ..., Pu). Similarly he runs the
PolyVerify (ck,msgp.1, msgp2,x), which outputs § =

Com(po, ..., Pn37) (25)



(G1,---,Gn). Then he checks:

Com(ay,...,an;5) = [ JA!. (26)
i=0

After computing b; = b;j(x), he checks:

P(a},bj) = pjlo(x). 27
Lastly checks:
- ()
Come({glo(x) +Q(a;,bj)}jep:P) =[G (28)
i=0

To make the complexity analysis, we need to consider
the polynomial multi-exponentiations in the prover’s
part. With the help of the techniques presented in
[25], which we will call Pippenger’s algorithm from
the rest of the paper, n multi-exponentiation costs ap-
proximately @. Note that we have such multi-
exponentiations while we were computing A;, Cp,
msgp1, and msgo 1.

First, we want to get the cost of computing A; =
Comy (aq,1,...,80,;5;) for i € 0U [m]. For each A;
we have n instances; each has length /,. So we have
lon multi-exponentiation, which will cost ; Olg“l';n by us-
ing Pippenger’s algorithm. Since we call these multi
exponentiations m + 1 times, in total the operation will

cost (m—+ 1)%‘;2—”. Considering t = mn, we will take this

cost roughly Toglan®
Second, while computing Cy =Comg(cy,...,€s;70),
we have n instances each of them have length [y. There-

fore, we have [pn multi-exponentiation, which will cost
lon

loglgn®

Third, while generating msg(p,1) = ({H;}) we have
row-by-row polynomial commitments on the matrix
generating with the entries of P;(X). We have n+ 1
instances in each row, each length /p, and the degree dp.
Therefore, we compute /,dp(n+ 1) exponentiations for
each of the m+ 1 rows. In total generating the msgp )
will cost roughly 54

Lastly, very similar to msgp1), the cost of generating

. lpdot

the msg(p,1y will cost roughly %.

We find that the prover’s computational costs are
dominated by the following:

leQt

It
0 .
(log lan * log leQn)
29)

Note that work on # = 1. For base-2 we set the lengths
la=1p=1,and lp = 1, the degrees dp = 2,dp = 1, so

lat

lpdpt
lOg lpdpn

lQn

loglpn

11

that the bit-wise computation costs are dominated by:
(30)

In the communication complexity, when r = 1, we
have a single relation. The prover sends {A;}ic(u),
msgpy), and msg g 1) to the verifier, which corresponds
to 6 group clements. The verifier, in return, sends the
challenge x point, which costs 1 group element. As a re-
sponse, the prover sends {a,} jeln)s T S, msgp2, msgo 2,
costing I, + Ipdp + lpdg + 4 field elements to the veri-
fier.

In total, when ¢t = 1, 7 group elements and [, +
Ipdp +lgdg + 4 field elements are used for communi-
cation. While working on base-2, 7 group elements and
[+ 21+ 5 ficld elements are used for communication.

5.1. Generalizations to Base-u and Comparisons
Consider that if we generalize this protocol to u-
ary representation, we first represent the secret a as
ap,dly ..., Am—1.
We set Iy, Iy, lp =1, dp = u, lg = dp = 1. We have
vectors:

a= (ap,ai,...,am-1), b= (uo,ul,...,u'hfl). 31

The polynomial we use in the protocols are defined
as follows:

P(a,b):ao(l—a)o-~-o(a—u+1), (32)

m—1
Q(a,b) =Y aud. (33)
i=0

In this case, the ternary-base computation cost will be

approximately:

0.63/
log0,63!

3(0.631)
log (0.631)

+1. (34)

When we change it to other bases, though the length
of the polynomials will decrease, the degree of them
will increase. To compare the different bases, we set
some values to length [; if we take the / as 32-bit, the
change in the computation cost is sketched in Figure 7.
The graph 7a has its minimum value when we work on
base-4, which corresponds to approximately 13.4% ef-
ficiency compared with the base-2 approach.

When it comes to communication, under the condi-
tion that = 1, remember we have a single relation so
that 7 group elements and [, + lpdp + lpdg + 4 field el-
ements are used. When we change it to other bases,
though the length of the polynomials will decrease, the



degree of them will increase. As an example, though
7 group elements are the same for all bases, for bit-
wise representation cost will be [ +2/ 45 field elements,
for the ternary base representation 0.63/ +3(0,631) + 5
field elements. We sketch the total communication cost
for field elements in the following graph of Figure 7b.
The graph has its minimum value in 4, as stated in
the original paper [21], while ¢+ = 1, the construction
achieves the most efficiency when using the base-4 rep-
resentation. Compared with the base-2 scheme, the
base-4 scheme has approximately 24% improvement.

iy o @ o @ ol
@ @ ] I¥] e a

y: total computation cost

o
4

u
K

2 3 4 5 6 7 8 E] 10
x base

(a) Computation cost

5

y: total communication cost

o
@

)
8

2 3 q 5 & 7 8 9 10 11 12
x:base

(b) Communication cost

Figure 7: Comparison of different base approaches in the finite field
setting.

If we instantiate this protocol using an elliptic curve
group, instead of multi-exponentiation we have elliptic
curve multiplications while we were computing A;, Co,
msgp and msgp 1. Using the simultaneous multiple-
point multiplication technique, see Algorithm 3.48 in
[26], also known as Shamir’s trick, these multiplica-
tions would be computed more efficiently. Shamir’s
trick states that where k and [ are ¢-bit numbers, P and Q
are two elliptic curve points, given width w, computing

12

kP 410 has an expected running time approximately:

22w=1) . .
(sz — 1) additions + (d — 1)w doublings. (35)
Also, to compute the kP one can use the fixed-base win-
dowing method for point multiplication, see Algorithm
3.41 in [26]. This operation has an expected running
time of approximately:

(2" +d-3) (36)
additions. Nevertheless, we work t = mn = 1, which
means we have a single instance. In our case,
while computing A;, Cp we do not need such multi-
multiplications so we will not consider these efficiency
methods in our study. Although we do not use the corre-
sponding efficiency methods described above, we note
that they can be used if deemed necessary.

First, to get the «cost of computing
A; =Comy(ag ,...,a0,;s;) for i € OU [m].  For
each A; we have n instances, each of them has length
l,. So we have [,n multi-multiplications. Since we call
these multi exponentiations m + 1 times, in total we
have (m+1)(l,n+ 1) multiplications.

Second, while computing Co =Com(¢1,...,¢;r0),
we have n instances each of them have length /. There-
fore, we have lgn elliptic curve multiplications.

Third, while generating msgp1) = ({H;}-) we have
row-by-row polynomial commitments on the matrix
generating with the entries of P; (X). In each row, we
have n + 1 instances, each of the length /p and the de-
gree dp. Therefore, we compute [,dp(n+ 1) multipli-
cations for each of the m + 1 rows. So that in total to
generate msg(p) we compute (m+1)(lpdpn + 1) mul-
tiplications.

Lastly, very similar to msgp), the cost of the gen-
erating msg(g,1) Will cost roughly (m +1)(lgdgn +1)
multiplications.

Therefore, the computation cost is roughly:

(m=+1)(lan+1)+Ipn+ (m+1)(lpdpn+1)
+(m—|— 1)(leQn+ 1)

(37)
(38)

multiplications. While # = 1, in binary representation
it costs 2(l; + 1) +2+42(lpdp + 1) +2(lpdp + 1) multi-
plications. If we put the corresponding lengths for our
case, the cost is:

21+1)4+2+22+1)+4=(61+10)  (39)

multiplications.
If we turn this protocol to base-3 total cost is
2(0.631+ 1) +2+2(3(0,63]) + 1) +4) = (5.04/ + 10)



multiplications. This corresponds to approximately
20.4% efficiency in proof generation. Similarly for
base-4, the total cost is 2(0.5/ + 1) +2 + 2(4(0,51) +
1) +4) = (51 +10) multiplications. The generalization
of this protocol to base-u is sketched in Figure 8b. The
graph 8a has its minimum value when we work on base-
4 with approximately 24.2% efficiency in proof genera-
tion.

It is stated in the original paper that after some ap-
propriate settings, the total communication cost will be
minimized by roughly /Ipdp + +/lgdg + 5 group el-
ements, and [, + /Ipdp + /lpdp + 4 field elements.
We refer to the original paper [21], for the details of the
corresponding settings. Change for the different bases
is sketched in the graph 8b. We show that this protocol
has always decreased communication costs in the ellip-
tic curve case.

y: total computation cost

X base

(a) Computation cost

70

65

80

y: total communication cost

x: base

(b) Number of exchanged integers

Figure 8: Comparison of different base approaches in the elliptic
curve setting.

As a proof size, we may compare these novel alterna-
tives, while /, is the bit length of the range, and ¢ is the
number of instances to proved. Consider t = 1 for the
case where only a single instance is proved. Note that

13

Bulletproof transmits 2(log, (/) +log,(¢)) +4 group el-
ements and 5 ficld elements. Bulletproof+ on the other
hand, transmits 2(log, (1) +1og, (t)) +3 group elements
and 3 fields elements. In Table 5, transmitted group and
field elements are tabulated.

Table 5: Table that compares the proof size

Basis Group elements
Cost type ’ :

Field elements

Base-u Classical t%(h Y
EC Base-u Classical - t{ggi(?»u +1)K
Base-u batched 7 lo+1pdp+lgdo +4
EC Base-u batched 4\/Tpdp+ \[lgdg+5  lo+ VIpdp+ /lpdg +4
Bulletproof 2(logy (Ir) +log, (1)) +4 5
Bulletproof+ 2(log, (1) +log, (1)) +3 3

6. Conclusion

We have presented a modified OR-composition of the
Shnorr protocol to base-u in both the discrete logarithm
setting and the elliptic curve setting. We computed the
overall complexity in the context of required exponenti-
ations and the cost of the number of exchanged integers.
After our derivations, we showed that the cost has a pat-
tern, so we have generalized and formalized the proof
for different bases. At the end of these comparisons,
we have observed that the computational complexity of
the base-3 representation in the discrete logarithm set-
ting is 12% more efficient than the other base represen-
tations. Similarly, base-3 representation is 5.5% more
efficient in the elliptic curve setting than bit-wise repre-
sentation. Additionally, comparing in the context of the
communication complexity, we showed that the base-
3 approach is 10% more efficient with respect to the
other base approaches. We have also observed that if
we use El-Gamal encryption instead of Pedersen com-
mitments, the base-3 representation is 5.5% more effi-
cient in both discrete logarithm and elliptic curve-based
constructions. Moreover, we have analyzed the range
poof proposed by Bootle et al. in both finite fields and
elliptic-curve settings. We obtained that when 7 = 1,
the protocol has the minimum cost for computation in
base-4 representation with 13.4% improvement and for
communication in base-4 representation with 24% im-
provement. Similarly, if we set this protocol using ellip-
tic curve cryptography, base-4 representation gives the
lowest computation cost with 24.2% improvement.
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