
Orca: FSS-based Secure Training with GPUs
Neha Jawalkar∗†

Indian Institute of Science
jawalkarp@iisc.ac.in

Kanav Gupta∗
Microsoft Research

kanav0610@gmail.com

Arkaprava Basu
Indian Institute of Science

arkapravab@iisc.ac.in

Nishanth Chandran
Microsoft Research

nichandr@microsoft.com

Divya Gupta
Microsoft Research

divya.gupta@microsoft.com

Rahul Sharma
Microsoft Research

rahsha@microsoft.com

Abstract—Secure Two-party Computation (2PC) allows two
parties to compute any function on their private inputs without
revealing their inputs in the clear to each other. Since 2PC
is known to have notoriously high overheads, one of the most
popular computation models is that of 2PC with a trusted
dealer, where a trusted dealer provides correlated randomness
(independent of any input) to both parties during a preprocessing
phase. Recent works construct efficient 2PC protocols in this
model based on the cryptographic technique of function secret
sharing (FSS).

We build an end-to-end system ORCA to accelerate the
computation of FSS-based 2PC protocols with GPUs. Next, we
observe that the main performance bottleneck in such accelerated
protocols is in storage (due to the large amount of correlated
randomness), and we design new FSS-based 2PC cryptographic
protocols for several key functionalities in ML which reduce
storage by up to 5×. Compared to prior state-of-the-art on secure
training accelerated with GPUs in the same computation model
(PIRANHA, Usenix Security 2022), we show that ORCA has 4%
higher accuracy, 123× lesser communication, and is 19× faster
on CIFAR-10.

I. INTRODUCTION

Machine learning training has emerged as an extremely
important and data hungry application. While the trained
models get better with more data and diverse data, very
often this data is highly sensitive, e.g., financial, healthcare or
browsing data. Use of privacy-preserving technologies such
as secure multiparty computation (MPC) [30], [66] provide
secure training over this sensitive data [39], [46], [47], [58],
[60], [62], [64]. Secure training using MPC allows multiple
mutually distrusting parties to train a model of their joint data
without revealing anything about their data to each other or
to any other party beyond the final trained model. However,
MPC-based secure training has high performance overheads.
Through a series of recent works, the end-to-end time required
to securely train models on the CIFAR-10 dataset has reduced
from years [47], to months [62], to weeks [58], to a day
with PIRANHA [64]. PIRANHA is the current state-of-the-art in
accelerating secure training using GPUs. Our goal is to reduce
these overheads to an hour.

PIRANHA works in the pre-processing model where the
data-independent pre-processing material (or, correlated ran-

* Equal contribution.
† Work partially done while at Microsoft Research.

domness) is provided by a trusted dealer in an offline phase,
and parties use this material during the data-dependent online
phase. Works in this model, including PIRANHA and us,
focus on reducing the online complexity. To obtain efficient
secure training, PIRANHA makes several MPC-friendly ap-
proximations to ML such as replacing maxpools with average
pools [58], local truncations [47], [58] and approximating
exponentiations with piecewise-linear functions. Moreover,
following Falcon [62], they also trade-off security for effi-
ciency, and reveal intermediate values during softmax com-
putation which is a leakage disallowed by standard MPC
security requirements. PIRANHA observes that its ad hoc
approximations lead to a significant loss in model accuracy
w.r.t. PyTorch training. This in turn implies that PIRANHA
has to approximate large models, e.g., VGG16, which give
67% accuracy in PyTorch on CIFAR, to obtain a reasonable
accuracy of 55% with secure training, i.e., the accuracy loss
w.r.t. PyTorch training is as large as 12%.

A. Our Contributions

Unlike [47], [58], [60], [62], [64], our secure training
remains faithful to quantized training algorithms from ML
literature that are known to mirror floating-point PyTorch
training [32]. We show that faithful secure training of small
models (with thousands of parameters) produces more accurate
models than PIRANHA training large models (with millions of
parameters). PIRANHA approximations fail on small models -
training our small models with these reduces the accuracy of
the trained model to that of a random classifier. On CIFAR,
our secure training beats PIRANHA on all metrics. We are
more secure (as we don’t reveal any intermediate value) and
produce models with 4% higher accuracy in 19× less time
while incurring 123× lower communication. In absolute terms,
ORCA reaches a CIFAR accuracy of 59% in an hour and 70%
within 3 hours (vs. PIRANHA’s 55% in a day).

On the technical side, our starting point is recent advances
in function secret sharing (FSS) based secure 2-party compu-
tation (2PC) protocols in the dealer model. A key feature of
these protocols is that they reduce online communication while
increasing compute and storage. The online phase in FSS
requires a large number of AES evaluations and reads huge
FSS keys that are generated during pre-processing. Thus, FSS

shifts the performance bottleneck from the external network
to compute and memory that is scoped to a single machine.
In this work, we significantly reduce the overheads of secure
training by effectively accelerating FSS-based 2PC with GPUs.
However, we face several challenges on both the systems and
cryptographic front, which we discuss next.

1) System optimizations: To accelerate compute, we create
efficient GPU implementations of FSS protocols (Section III)
that are an order of magnitude faster than the CPU-based
protocols. This result is surprising because prior work that
attempted to accelerate FSS with GPUs got only marginal
improvements over the CPU implementation [55]. The key
to our accelerated implementation is a unique combination of
system optimizations guided by the GPU micro-architecture
(Section III) and new cryptographic techniques (Section V).
We leverage several GPU micro-architectural features, such as
using GPU’s scratchpad memory for faster AES computation,
optimizing data layout to improve GPU cache hit rates, and
utilizing GPU’s lockstep execution by groups of threads to
optimally pack intermediate results of cryptographic compu-
tations in the memory (detailed in Section III). Interestingly,
we discovered that once the computation is well-optimized on
the GPU, the time to read GBs of FSS keys from the SSD
to GPU memory becomes the bottleneck. To address this, we
lean on new cryptographic protocols (discussed next) to reduce
key size for commonly occurring nodes in training.

2) Cryptographic improvements: Faithful quantized train-
ing, e.g., Gupta et al. [32], requires efficient protocols for
stochastic truncations of fixed-point values, maxpools, and
floating-point softmax. Stochastic truncations and maxpools
are expensive1 and lead to large keys. We create novel proto-
cols that reduce the key size by up to 5× (Section V). Quan-
tized training performs almost all operations in fixed-point
but uses floating-point arithmetic in softmax computations to
maintain accuracy [32]. In secure training literature, there are
three ways of computing exponentiations occurring in softmax.
First, use the very cheap piecewise-linear approximations [40],
[64]. Second, use fixed-point approximations that are more
expensive [38], [39]. Third, use precise computation over
floating-point [51]. To stay faithful to the computations done
by Gupta et al. [32], we choose the third option. To this end,
we create novel FSS protocols to efficiently stitch protocols
for fixed-point with protocols for floating-point (Section VI).

3) ORCA: We implement our techniques in ORCA, a push-
button tool for secure training, that will be made publicly
available. ORCA sports a library of GPU-accelerated FSS
blocks that future research in this area can build upon (Sec-
tion VII). We show that training small models with ORCA
while staying faithful (see Figure 5) to quantized training [32],
outperforms the approximate large model training of PIRANHA
in accuracy (upto 4%), time (4 − 19×), and communication
(51 − 123×) (Section VIII-A). In a more apples-to-apples
comparison, ORCA outperforms PIRANHA on approximate
training of large models by 2.3 − 4.9× (Section VIII-B1).

1High MPC cost of these functions motivated the approximations in [64].

ORCA also outperforms prior works that don’t use PIRANHA
approximations by 7− 441× (Section VIII-B2). ORCA’s pro-
tocols need smaller FSS keys (by 5×, Table VII) and ORCA’s
GPU-based protocols outperform their CPU counterparts by
an order of magnitude (Table VI). Finally, ORCA achieves
the first ever sub-second ImageNet-scale inference (13s for a
batch of 16 images) by outperforming the state-of-the-art [31]
by over 50× (Table VI).

II. PRELIMINARIES

A. Notation

Let λ denote the computational security parameter. 1{b}
represents the indicator function that outputs 1 when the
predicate b is true and 0 otherwise. Arrays are represented
using boldface, and their elements are represented using the
same symbol in a normal typeface with the index in subscript,
starting from 0. For example x = {x0, x1, . . . }.

a) Datatypes: For N = 2n, UN represents the set of
n-bit unsigned integers. We denote the set of real numbers
using the symbol R. For x ∈ UN , uintn(x) and intn(x)
represent the corresponding unsigned and signed number (in
2’s-complement representation) in Z respectively.
Fixed-point representation. Fixed-point representation, param-
eterized by a bitwidth n and a scale f , encodes a real number
r ∈ R into x ∈ UN such that x = ⌊r · 2f⌋ mod N . For an
unsigned (resp., signed) fixed-point number x ∈ UN with scale
f , JxK+n,f (resp., JxKn,f) denotes it’s underlying real value
uintn(x)

2f
(resp. intn(x)

2f
).

b) Operators: Arithmetic operations in UN , like addition
and multiplication, are followed by a mod N and we omit
this whenever it is clear from the context. For x ∈ UM

and n > m, we use the notation ZeroExtm,n(x) (resp.,
SignExtm,n(x)) to represent a number y ∈ UN such that
uintm(x) = uintn(y) (resp., intm(x) = intn(y)). We use
x≫A f (resp., x≫L f) to represent arithmetic (resp., logical)
right shift of x by f such that the input and the output have
the same bitwidth. For an n-bit number x and f < n, the
operation truncate-reduce, denoted by TR(x, f), is defined as
dropping the lower f bits of input and returning the output as
a (n− f)-bit number. For an array a and i < |a|, we use the
notations a ≫ i and a ≪ i to represent the array rotated to
the right and left, respectively, by i steps.

c) Secret sharing: For x ∈ UN , we define (additive)
secret sharing of x as the process of sampling two random
numbers x0, x1 ∈ UN , such that x = x0 + x1 mod N and
denote it by share(x). For array variables and tuples, this
operation is applied element-wise. When the secret shares are
held by two parties, e.g., P0 holds x0 and P1 holds x1, we
denote the operation of exchanging the shares and adding them
up by x = reconstruct(xb), for b ∈ {0, 1}.

B. Function Secret Sharing

A Function Secret Sharing (FSS) Scheme [19], [20] is a
pair of algorithms (Gen,Eval). Gen splits a function g : Gin →
Gout into two functions (g0, g1) and Eval takes as input the
party identifier b ∈ {0, 1}, function share gb and evaluates gb

on input x ∈ Gin. The correctness property of the FSS scheme
requires g0(x) + g1(x) = g(x). The security property of the
FSS scheme requires that each function gb hides g.

Definition 1 (FSS: Syntax [19], [20]). A (2-party) FSS scheme
is a pair of algorithms (Gen,Eval) such that:

• Gen(1λ, ĝ) is a PPT key generation algorithm that given
1λ and ĝ ∈ {0, 1}∗ (description of a function g) outputs a
pair of keys (k0, k1). We assume that ĝ explicitly contains
descriptions of input and output groups Gin,Gout.

• Eval(b, kb, x) is a polynomial-time evaluation algorithm
that given b ∈ {0, 1} (party index), kb (key defining gb :
Gin → Gout) and x ∈ Gin (input for gb) outputs yb ∈ Gout

(the value of gb(x)).

The keys (k0, k1) output by Gen are called FSS keys. The
size of k0 or k1 is the key size and corresponds to the pre-
processing material required to be stored by a single evaluator.
We formally define the correctness and security properties of
an FSS scheme in Appendix B.

C. Distributed Comparison Function (DCF)

DCFs were introduced by Boyle et al. [20] and provides an
FSS scheme for special interval functions.

Definition 2 (DCF [18], [20]). A special interval function
f<
α,β : UN → Gout, also called comparison function, takes as

an input x ∈ UN and outputs β if x < α and 0 otherwise. The
corresponding FSS scheme for this function (Gen<,Eval<) is
called Distributed Comparison Function.

All our protocols use DCFs for the case when Gout = UL for
some L = 2ℓ, ℓ ⩽ λ. Below, we summarize the cost of such a
DCF using the optimized construction from [18].

Theorem 1 (Cost of DCF [18]). Given a PRG G : {0, 1}λ →
{0, 1}4λ+2, there exists a DCF for f<

α,β : UN → UL for
N = 2n, L = 2ℓ with key size n(λ + ℓ + 2) + λ + ℓ. The
number of PRG invocations in Gen<n is 2n and in Eval<n is n.

In the rest of the paper, we use the notations DCFn,ℓ and
keysize(DCFn,ℓ) to represent this scheme and its key size,
respectively. Similar to prior works [18], [31], we set λ = 126
and realize the required PRG using 4 calls to AES with 128-
bit output in CTR mode. However, as observed in [31], during
evaluation it suffices to make only 2 AES calls because two
out of the four blocks generated are discarded in the evaluation
algorithm of [18] and CTR mode allows us to generate the
required blocks without generating the other two.

D. Secure 2PC with preprocessing using FSS

Threat model. We consider 2-party secure computation (2PC)
in the trusted dealer model. That is, there exists a trusted
dealer that provides correlated randomness to the two parties
in a preprocessing phase (before inputs to the computation
are available). We prove the security of our protocols in the
standard simulation paradigm [22], [30], [44] against a semi-
honest static probabilistic polynomial time (PPT) adversary

that corrupts one of the two parties. For completeness, we
describe the detailed threat model in Appendix C.

Our protocols trivially extend to the “client-server” model,
where m ⩾ 2 clients secret share their inputs with the servers
P0 and P1, thus delegating their computation to these two
parties. Security can be analogously defined in this case and
we can obtain semi-honest security against up to m−1 clients
colluding with one of the two servers.
2PC from FSS. [18], [21] proposed a semi-honest static
secure 2PC in the trusted dealer model using FSS. Consider
the scenario when the two evaluators want to evaluate the
computation circuit with gates {gi}i and wires {wi}i. We
describe the protocol from [18], [21] to evaluate this circuit
securely in two phases - preprocessing and online.

1) Preprocessing Phase: For each wire wi in the compu-
tation circuit, the dealer randomly samples a mask ri. For
each gate g, with input wire wi and output wire wj , the
dealer generates FSS keys (kg0 , k

g
1) for the offset function,

g[ri,rj](x) = g(x− ri) + rj , and sends one key to each party.
For input and output wires wi owned by party b, it sends the
corresponding mask ri to party b.

2) Online Phase: For each input wire wi with value xi

owned by party b, the party b calculates masked wire value
x̂i = xi+ri and sends it to the other party. Now, starting from
the input gates, the two parties process gates in topological
order to receive masked output wire values. To process a gate
g, with input wire wi, output wire wj , and masked input wire
value x̂i = xi+ ri, party b uses Eval with kgb and x̂i to obtain
a share of the masked output wire value x̂j = g[ri,rj](x̂i) =
g(x̂i− ri)+ rj = g(xi)+ rj = xj + rj which they reconstruct
using a single round of communication to obtain x̂j . For output
wires, they subtract the corresponding mask received from the
dealer to obtain clear output values.

E. GPU accelerated computing

While the graphics processing unit (GPU) was originally
designed for accelerating graphics, they have emerged as a
key platform to accelerate parallel computation, including
DNN training, data analytics, graph processing, etc. Even
a mid-range NVIDIA A6000 GPU can execute over five
thousand threads to execute simultaneously. Further, more than
a hundred thousand threads remain ready to run in a GPU
for quickly substituting threads whose execution stalls. GPU
programming languages such as CUDA [2] require program-
mers to arrange threads in a hierarchy to keep GPU’s massive
parallelism tractable. A group of 32 GPU threads called warp
typically executes in lockstep and is the smallest schedulable
unit of work. Up to 32 warps make up a threadblock. A
GPU kernel is often launched with hundreds of threadblocks,
creating a grid of hundreds of thousands of threads.

A GPU’s architecture reflects its programming hierarchy.
Threads of a warp execute in lockstep on a Single Instruction
Multiple Data (SIMD) unit. Several such SIMD units are
placed on a Streaming Multiprocessor (SM). A GPU will have
tens of such SMs; e.g., A6000 has 84 SMs. All threads of a

threadblock are scheduled onto the same SM, while threads
from different threadblocks can run on different SMs.

GPU’s memory subsystem reflects a similar hierarchy. A
GPU would typically sport onboard memory with more than
TB/sec bandwidth but limited to a few tens of GBs in capacity.
Contents from this memory are cached in two levels of
hardware caches. A GPU has several specialized software-
managed hardware caches too. For example, each SM has a
scratchpad (a.k.a, shared memory) for easy sharing of data
amongst the threads of the same threadblock. This is possible
since all threads of a threadblock are guaranteed to execute
on the same SM. Similarly, a constant cache in an SM is
purpose-built for storing frequently used read-only data. Each
thread in CUDA also has tens of fast registers. Since threads
of a warp always execute as a group, CUDA enables collective
operations to exchange and/or reduce data across threads of a
warp using the registers.

Finally, we note that a GPU is always accompanied by
a CPU. It connects to its host CPU over a PCIe inter-
connect [10]. A GPU-accelerated program starts running on
the CPU. Portions of the program running on the CPU
allocates/de-allocates memory on the GPU and also transfer
data to and from the GPU memory over the PCIe bus.
CPU is also responsible for launching GPU “kernels” (GPU-
accelerated function written in CUDA/OpenCL) with a desired
number of threads in the grid to compute on the GPU.

III. ACCELERATING FSS ON A GPU

Accelerating FSS-based secure computation on GPU is an
essential goal of ORCA. Toward this, we make progress in two
key aspects. 1⃝ We demonstrate how a GPU’s architecture
must be leveraged for reasonable speedups in FSS-based
computation. 2⃝ We discover that the time to read FSS keys
from the storage can eclipse the benefits of GPU acceleration.
We propose a combination of new cryptographic techniques
and systems improvisations to limit key read time. Next, we
detail these two aspects in ORCA’s design.

A. Accelerating FSS-based compute on GPU

The prior work that attempted to accelerate FSS-based
protocol on GPU [55] failed to observe any significant speedup
over CPU implementation in the absence of a comprehensive
strategy to leverage idiosyncrasies of a GPU architecture. In
ORCA, we employ three key techniques to harness GPU’s
computing power as follows.
1⃝ Faster AES computation (AES) A key primitive in FSS-

based computation is the Distributed Comparison Function or
DCF (Section IV). We empirically find that computing DCF
can account for the majority of overall computation time. For
example, in the forward pass of CNN3, computing DCFs ac-
counts for about 93% of the overall compute time. Evaluating
a DCF requires 2n invocations of AES (Section II-C).

In the rest of this subsection, we consider the task of
performing 10 million DCF evaluations as a microbenchmark
to quantify the speed-up potentials of different optimizations
we will discuss in this subsection. This choice is driven by the

fact that several models perform many millions of DCFs per
layer. Table I empirically captures the computation time of the
microbenchmark, starting with the baseline discussed next.

To accelerate AES on a GPU, we start by using Py-
Torch’s csprng extension [11] following prior work [55],
[58]. AES requires repeatedly looking up precomputed lookup
tables [59]. Upon analyzing the performance of PyTorch’s
csprng using NVIDIA’s Nsight tool [8], we notice that it
often stalls while accessing the lookup table. It keeps lookup
tables on the constant cache within each SM of the GPU.
While accesses to constant cache are fast, they are suitable
only if the GPU threads access the same address at any
given cycle [3]. Otherwise, the accesses are serialized, stalling
computation. Unfortunately, different threads access different
indexes (thus, different addresses) in the lookup table.

To reduce such stalls, we replicate the lookup table once for
each warp in an SM (here, 32) following the strategy laid out
in a prior work [59]. Further, the replicated tables are placed
onto the scratchpad (shared memory) of each SM in the GPU.
This is because the scratchpad is banked, unlike the constant
cache. Data in different banks can be accessed simultaneously
without stalling. Thus, replicas of the lookup table are placed
in different banks of the scratchpad, alleviating stalls due to
accesses to the AES’s lookup table.

The first entry in Table I shows that the AES implementation
of PyTorch’s csprng extension [11] requires 3305 ms. It
reduces to 840 ms when we use the optimized AES imple-
mentation (“AES” in the Table) giving a 3.9× speedup.
2⃝ Optimized data layout for cache locality (LAYOUT)

Computing a DCF requires the evaluator to perform n chained
PRG (2n AES) [18], [31]. However, the evaluator slightly
modifies the output of the ith PRG invocation before feeding
it to the (i + 1)th PRG invocation with a correction word
(CWi) [18]. Consequently, there are n correction words for
each DCF key. We notice that the layout of these correction
words in the memory impacts performance.

In a parallelized CPU implementation, each thread would
compute a DCF while running independently on a CPU core.
Thus, laying out n correction words for a DCF computation
contiguous in the memory for better cache locality.

In a GPU implementation, however, a group of 32 threads
in a warp execute in lockstep as each thread computes a
DCF. In a lockstep execution, threads in a warp can proceed
to compute its kth PRG only when all threads in the warp
have finished computing (k−1)th PRG. Thus, unlike the CPU
implementation, keeping all the n correction words for a given
DCF contiguously leads to poor cache hit rates. Instead, for
a GPU implementation, one must consider cache locality for
all threads in a warp in aggregate. Therefore, we place the
correction words for a given round of PRG across all threads
in a warp contiguously. In other words, the correction words
for a given (say, kth) round of PRG of all threads in the warp
(DCF computation) are laid contiguously in the memory. The
correction words for the next round of PRG (k+1th) are placed
thereafter in the memory in a similar fashion.

We found that the optimized layout of correction words

Naive AES AES+LAYOUT AES+LAYOUT+MEM
Time (ms) 3305 840 716 523
Speedup 3.9× 4.6× 6.3×

Table I: Speedup of 10M DCFs with our optimizations

improves the L1 cache hit rate from 20% to 49%. As shown
in Table I, this optimization (LAYOUT) further reduces the
time to compute ten million DCFs from 840 ms to 716 ms.
3⃝ Optimizing memory footprint (MEM): FSS-based pro-

tocols lower communication overheads but demand larger key
sizes. The files containing keys would typically reside on
the storage (e.g., SSD) and must be read into the memory
during online computation. Reading large keys from the SSD
can be prohibitively slow (next subsection). We address this
challenge with novel cryptographic protocols for commonly
occurring nodes in training detailed in Sections IV, V and VI.
A key technique is using DCFs with smaller payloads, e.g., 1-
bit instead of 64-bit, and performing comparisons on shorter
inputs, e.g., 40-bit inputs instead of 64-bit inputs wherever
possible. Overall we achieve significant reductions in key size
depending on the function, e.g., 5.8× reduction for truncation
followed by ReLU. Since memory is limited on a GPU, the
smaller payload for DCF key can help reduce the memory
footprint of GPU computation. It can also limit data movement
between the CPU and GPU over the slow PCIe interconnect.

However, harnessing the full benefits of a smaller DCF
payload is not straightforward. A simple implementation that
would keep 1-bit output to a standard data type such as a
byte leads to 8× memory bloat. Instead, in ORCA, 32 threads
of a warp write their 1-bit DCF output into a 32-bits integer
in a lockstep fashion. This avoids memory bloat but requires
threads in a warp to write to a single integer without needing
locks. Locks are prohibitively slow in GPUs [63]. ORCA lever-
ages CUDA’s warp-synchronization primitives to ensure that
each thread can write its output without interfering with writes
from other threads in the warp. Specifically, it uses CUDA’s

ballot sync() and shfl down sync() intrinsic methods for
warp-level synchronized data exchange without locks [13].

Table I shows further speedup thanks to this optimization
(MEM). The time to perform ten million DCFs drops to 523
ms (27% speedup), capping a 6.3× improvement over the
naive implementation of DCFs on the GPU.

B. Reducing time to read FSS keys

A key advantage of FSS-based secure computing protocol is
that it limits communication between the parties. However, it
necessitates reading large amounts of pre-generated keys while
performing online computation. We discovered that once the
computation is accelerated on the GPU through the above-
mentioned strategies, the time to read the FSS keys from the
storage (here, SSD) to GPU’s memory becomes the bottleneck.
We adopt a three-prong approach to address this bottleneck.
1⃝ Bypassing OS page cache: By default, the OS caches file

contents on the CPU’s DRAM in the hope that a file’s data
will be accessed repeatedly over time. However, page cache

can add overhead in the critical path of accessing file contents.
Since an FSS key is used only once, there is no reuse. Thus,
files containing FSS keys don’t benefit from the page cache
but pay the overheads. For example, one of the models that
we train, P-VGG16 from prior work [64], needs 17GB of key
per iteration. The time for reading this key reduces from 19.7s
to 6.3s, thanks to bypassing the OS’s page cache.
2⃝ Overlapping key read with computation: To further

reduce the impact of the key read time, we overlap the
computation of the ith training iteration with the reading of
the key for the (i+1)th iteration. This ensures that the entire
key read time is not in the critical path.
3⃝ New cryptographic technique to limit key size: Even

after the above-mentioned optimizations, the time to read the
keys from the storage can overshadow the computation time
on the GPU for training larger networks. We observe that key
read time becomes the bottleneck only when the computation
is accelerated well on the GPU as in ORCA. This is not
the case for a CPU-only implementation of FSS protocols or
for the GPU-based implementation without the optimizations
discussed in this subsection.

In ORCA, we construct new FSS protocols to reduce keysize
in popular non-linearities like ReLU and maxpool that result
in reduced online communication as well when combined with
truncations that need to be performed for fixed-point training
(Sections IV,V). Overall, as we show in Section VIII, over the
entire network, we get up to 3.4× reduction in key size.

IV. PROTOCOLS FOR BASIC BUILDING BLOCKS

Protocols in this section and in Sections V and VI will use
the following protocol syntax.
Syntax. We use (̂·) to denote masked values, e.g., x̂. We
describe our protocols (denoted by Π) for the setting when
evaluators hold masked values of input x, denoted by x̂, and
the dealer holds the mask rin. After the protocol, the evaluators
hold the shares of the masked output, that is, ŷ = y+ rout for
output y. The corresponding protocols Π̂ where evaluators end
with masked output ŷ in the clear can be easily constructed
from Π by adding a round of reconstruct. We denote the key
size required by the protocol Π by keysize(Π).

Unlike the previous works on FSS-based 2PC [18], [21],
[31] where the online phase for a gate was non-interactive,
in this work, we construct more complex protocols, where
the online phase is allowed to be multi-round. However, this
does not pose any issue w.r.t. stitching together protocols as
evaluators still end up with masked values or shares of the
same, where the mask is known to the dealer.

Below, we first provide new FSS-based protocols for simple
functions Select and Signed Extension that would be used as
building blocks in the protocols described in later sections.
Later, we summarize the result from prior work for multiple
interval containment that will also be used as a building block.

A. Select

Select function, selectn : {0, 1} × UN → UN , takes as
input a selector bit s ∈ {0, 1} and an n-bit payload x ∈

Select Πselect
n

Genselectn ((rin1 , r
in
2), r

out) :

1: u = extend(rin1 , n)
2: w = extend(rin1 , n) · rin2 + rout

3: z = 2 · extend(rin1 , n) · rin2
4: share (u, rin2 , w, z)
5: For b ∈ {0, 1}, kb = ub||rin2,b||wb||zb

Evalselectn (b, kb, (ŝ, x̂)) :

1: Parse kb as ub||rin2,b||wb||zb
2: if ŝ = 0 then
3: return ŷb = ub · x̂+ wb − zb
4: else
5: return ŷb = b · x̂− ub · x̂− rin2,b + wb

6: end if

Fig. 1: Protocol for Select.

UN , and returns x if s = 1 and 0 otherwise. It is equivalent
to unsigned mixed-bitwidth multiplication between x and s.
That is, selectn(s, x) = s · n. Using the expression for offset
function of unsigned mixed-bitwidth multiplication from [31],
the offset function for selectn would be:

selectn
[(rin

1 ,r
in
2),r

out](ŝ, x̂) = (ŝ− rin1 + 2 · 1{ŝ < rin1 }) · (x̂− rin2)

+ rout mod 2n

= ŝ · x̂− rin1 · x̂− ŝ · rin2 + rin1 · rin2 + rout

+ 2 · 1{ŝ = 0 and rin1 = 1} · (x̂− rin2) mod 2n

Here, we use the fact that 1{ŝ < rin1 } = 1{ŝ = 0 and rin1 = 1}
as ŝ and rin1 are single bit values. Using this expression, we
describe the protocol Πselect

n for select in Figure 1.

Theorem 2. Πselect
n in Figure 1 realises selectn securely with

keysize(Πselect
n) = 4n and no communication.

B. Signed Extension

[31] provides the following expression for the offset
function of SignExt functionality (Section II):

SignExt[r
in,rout]

m,n (x̂) = x̂′ − rin + 2m · 1{x̂′ < rin} − 2m−1 + rout

where x̂′ = x̂ + 2m−1 mod 2m. [31] also provides a non-
interactive protocol for implementing it securely but suffers
from a large key size (of keysize(DCFm,n) + n). We provide
a protocol with a smaller key size at the cost of an additional
round and 2 bits of online communication. We describe the
protocol ΠSignExt

m,n in Figure 2. In the protocol, we calculate the
value of 1{x̂′ < rin} as a one-bit masked value ŵ in the first
round with mask r(w). The dealer also sends shares of (0, 2m)
or (2m, 0) depending on the mask r(w). Evaluators use ŵ to
select between 2m and 0 as n-bit shares. As we only need the
output of comparison as a single bit, we achieve a smaller key
size compared to [31] due to a smaller DCF payload.

Theorem 3. ΠSignExt
m,n in Figure 2 realizes SignExtm,n securely

such that keysize(ΠSignExt
m,n) = keysize(DCFm,1) + 2n + 1. In

Signed Extension ΠSignExt
m,n

GenSignExtm,n (rin, rout) :

1: t = rout − extend(rin, n)− 2m−1

2: (k<0 , k
<
1)← Gen<m(1λ, rin, 1,U2)

3: r(w) $← U2

4: p = {t, t+ 2m}≫ r(w) ∈ U2
N

5: share (r(w),p)

6: For b ∈ {0, 1}, kb = k<b ||r
(w)
b ||pb

EvalSignExtm,n (b, kb, x̂) :

1: Parse kb as k<b ||r
(w)
b ||pb

2: ŵb ← Eval<m(b, k<b , x̂) + r
(w)
b mod 2

3: ŵ = reconstruct (ŵb)
4: return ŷb = b · x̂+ pb,ŵ

Fig. 2: Protocol for SignExt.

the online phase, the protocol requires 1 evaluation of DCFm,1

and communication of 2 bits in 1 round.

C. Multiple Interval Containment

For public parameter arrays p, q ∈ Um
N , multiple interval

containment function, MICn,m,p,q : UN → Um
N , calculates a

vector y ∈ Um
N for a given input x ∈ UN , such that ∀i ∈

[0,m− 1], we have:

yi =

{
1 if pi ⩽ x ⩽ qi

0 otherwise

[18] provides a protocol ΠMIC
n,m,p,q for MICn,m,p,q . We omit

the details of the protocol and use it as a black box in further
protocols. We further restrict our discussion to the special case
when p0 = 0, qm−1 = 2n−1 and pi = qi−1+1∀i ∈ [1,m−1].

Theorem 4 (Multiple Interval Containment [18]). ΠMIC
n,m,p,q

realizes MICn,m,p,q securely such that keysize(ΠMIC
n,m,p,q) =

keysize(DCFn,n) + mn. In the online phase, the protocol
requires m evaluations of DCFn,n.

V. PROTOCOLS FOR SECURE TRAINING

Training Functionalities. To implement secure training, we
need protocols for the following functionalities: a) Linear
layers, such as matrix multiplications and convolutions; and
b) Activation functions, such as ReLU and Maxpool. Linear
layers are computed securely using the same method from
LLAMA [31] (i.e., through the use of Beaver triples that are
provided as the key by the dealer). In fixed-point arithmetic,
multiplications must be followed by a truncate operation in
order to maintain scale. That is, multiplying two fixed-point
values with scale f over integers, results in a fixed-point value
with implicit scale as 2f and hence, we need a truncation by
f to obtain result with scale f . The literature considers three
kinds of truncations when implementing fixed-point arithmetic
in secure computation: faithful truncation or arithmetic right
shift, stochastic truncation [32], [33], [39], and local trunca-
tions [47]. Most prior works on secure training [47], [58],

[60], [64] use local truncations as they are most efficient
due to being local operations. LLAMA [31] provides an
FSS protocol for faithful truncation. Inspired by the work of
Gupta et al. [32] and Keller and Sun [39], we provide FSS
protocols for stochastic truncation (defined in Section V-B)
that has been observed to result in better training accuracy.
In ML inference and training, linear layers are followed by
activation functions. When implementing fixed-point training,
this would correspond to linear layers being followed by a
truncation, which is then followed by ReLU and sometimes
Maxpool. In such cases, we observe that it is more efficient to
fuse and compute these nodes together (instead of computing
truncation, ReLU and Maxpool separately).
Section Overview. We begin by describing our new pro-
tocols for ReLU (Section V-A) and stochastic truncation
(Section V-B) with reduced key size. Next, in Section V-C, we
show how to fuse the stochastic truncate nodes with activation
functions such as ReLU and ReLU+Maxpool to obtain an even
lower key size and compute compared to the naive approach of
sequential computation. Throughout, our focus is on reducing
the key size (even if we sometimes pay slightly in terms of
number of online rounds of communication).

A. ReLU

For a signed value x, the ReLU functionality returns
max(x, 0). So, when x ∈ UN is an n-bit 2’s-complement
representation of an underlying signed value, the ReLU func-
tionality is equivalent to:

ReLUn(x) = x · 1{x < 2n−1}

1{x < 2n−1} is also called the Derivative of ReLU or DReLU.

DReLUn(x) = 1{x < 2n−1}
ReLUn(x) = select(DReLUn(x), x)

AriaNN [55] provides a 1-round protocol for ReLUn (with
a 1-bit error) with a key size of ≈ (n+1)(λ+2n), while [18]
constructed a non-interactive protocol (with no error) with the
same key size. Here, we construct a 1-round ReLUn protocol
(with no error) with a key size of n(λ+7)+λ+2. We do this
by first calculating DReLUn(x) in the first round with a single
bit output and then using the protocol Πselect

n to output x or
0 based on the comparison output. Since we only need the
comparison output as a single bit, the key size of this protocol
is smaller than the spline-based protocol in [18]. Concretely,
for n = 64, this results in a ≈ 2× reduction in key size at the
cost of one additional round and 2 additional bits of online
communication compared to [18].

We use the following expression for the offset function of
DReLUn (proved in Appendix E): For ŷ = x̂+2n−1 mod 2n

DReLU[rin,rout]
n (x̂) = 1{ŷ < rin} − 1{x̂ < rin}
+ 1{ŷ ≥ 2n−1}+ rout mod 2

Based on this, we describe the protocol for DReLUn, ΠDReLU
n ,

in Figure 3. Protocol for ReLUn, ΠReLU
n , is obtained by running

ΠDReLU
n followed by a round of reconstruction for ŷ and Πselect

n .

DReLU ΠDReLU
n

GenDReLU
n (rin, rout) :

1: (k<0 , k
<
1)← Gen<n (1

λ, rin, 1,U2)
2: share rout

3: For b ∈ {0, 1}, kb = rout
b ||k

<
b

EvalDReLU
n (b, kb, x̂) :

1: Parse kb as rout
b ||k

<
b

2: ŷ = x̂+ 2n−1 mod 2n

3: ub ← Eval<n (b, k
<
b , x̂)

4: vb ← Eval<n (b, k
<
b , ŷ)

5: return ŷb = vb−ub+b·1{ŷ ⩾ 2n−1}+rout
b mod 2

Fig. 3: Protocol for DReLU.

Theorem 5. ΠReLU
n realizes ReLUn securely such that

keysize(ΠReLU
n) = keysize(DCFn,1) + keysize(Πselect

n) + 1. In
the online phase, the protocol requires 2 evaluations of DCFn,1

and communication of 2 bits in 1 round.

B. Stochastic Truncation

Gupta et al. [32] demonstrated the importance of stochastic-
truncation (as a replacement for round-to-nearest truncation)
for machine learning training with limited precision. In this
technique, the result of truncation is rounded up or down, with
a probability depending on the truncated fractional part.

Definition 3. Let x ∈ UN be an n-bit number. The stochastic-
truncation of x with f , represented by y = x≫st f , is an n-bit
number y ∈ UN such that:

y =

{
(x≫A f) with probability 1− t · 2−f

(x≫A f) + 1 with probability t · 2−f

where t = x mod 2f .

We prove the following lemma (proof provided in Ap-
pendix D) that allows us to securely realize stochastic trunca-
tion at the cost of signed extension from n− f to n bits.

Lemma 1. Consider a masked value x̂ ∈ UN with underlying
value x and random mask r(x). Let ŷ = TR(x̂, f) and r(y) =
TR(r(x), f). Then the following holds:

x≫st f = SignExtn−f,n(ŷ − r(y))

Protocol. As a result of this lemma, the evaluators and dealer
can locally truncate-reduce x̂ and r(x) to get ŷ and r(y)

respectively. Then, by setting the input masked-value to ŷ and
the input mask to r(y), the protocol ΠSignExt

n−f,n can be used to
extend the value to n bits. We denote the protocol by ΠstTr

n,f .

Theorem 6. ΠstTr
n,f realizes stochastic-truncation by f securely

such that keysize(ΠstTr
n,f) = keysize(ΠSignExt

n−f,n). In the online
phase, the protocol requires 1 evaluation of ΠSignExt

n−f,n and
communication of 2 bits in 1 round.

LLAMA [31] had an implementation for stochastic trun-
cation with key size keysize(DCFn−1,2n) + 3n using relation
from [33]. For n = 64, f = 24, our key size is 3× lower.

C. Stochastic-Truncation + Activations

As discussed earlier, when linear layers are followed by
activations such as ReLU and Maxpool, we fuse the stochastic
truncation node along with ReLU (or ReLU and Maxpool,
depending on the nodes present) to obtain a single protocol
for the fused functionality. In this section, we describe how
this is done for the case of ReLU; in Appendix F, we describe
the case of ReLU+MaxPool.

As mentioned before, linear layer is computed over UN

followed by stochastic truncation by a public scale f . We
define a fused functionality, stochastic-truncation + ReLU,
which takes as input x ∈ UN , stochastically-truncates it by
f , and returns the ReLU over the truncated value. Formally,

stTrReLUn,f (x) = ReLUn(x≫st f)

The above expression can be realized in 2-rounds by running
the protocol Π̂stTr

n,f followed by ΠReLU
n . We improve over this

significantly in 2 steps described below.
First, based on Lemma 1, in stochastic truncation, the dealer

and the evaluators do truncate-reduce of mask and masked
input to (n−f)-bits, followed by a signed extension to n-bits.
In the above protocol, this is followed by a ReLU computation
on n-bit inputs. We observe that we can switch the order of
ReLU and extension that allows us to compute ReLU on (n−
f) bits instead of n-bits, reducing the key size and online
compute as well. Moreover, since ReLU output is always non-
negative, we can use zero extension, whose protocol is very
similar to signed extension (Section IV-B).

Second, we improve upon above by providing a new
protocol that does ReLU and zero extension together
by leveraging similar comparisons done for DReLU and
ZeroExt. We call this functionality ReLU-Extend, denoted by
ReLUExtn−f,n(x) = ZeroExtn−f,n(ReLUn−f (x)).

For a value x ∈ U2n−f , mask rin and masked value x̂, let
d = DReLU(x) and w = 1{x̂ < rin}. Moeover, from [31],

ZeroExt
[rin,rout]
n−f,n (x̂) = x̂− rin + 2n−f · w + rout

Then, the offset gate for ReLUExtn−f,n can be written as

ReLUExt
[rin,rout]
n−f,n (x̂) =

0 + rout d = 0, w = 0

0 + rout d = 0, w = 1

x̂+ rout − rin d = 1, w = 0

x̂+ 2n−f + rout − rin d = 1, w = 1

That is, we need to compute a 1-out-of-4 selection based on
values of d and w. Now, both d and w use comparisons with rin

and hence can be computed using a single DCF key and their
masked value can be obtained in a single round of interaction.
Now the selection can be done using 2 consecutive calls to
select, resulting in an overall 2 round protocol. We improve
this further to 1 round below.

We compute d,w over U4 instead of U2. Let i = 2 ·d+w ∈
U4 be the index of this 1-out-of-4 selection. We denote
the masked value and the secret mask of i by î and r(i),
respectively. Note that the underlined values in the above
expression are known to both parties. To obliviously select
between these 4 values, the dealer gives out shares of an array
p ∈ U4

N such that pk = 1 when k = 4− r(i) and 0 otherwise.
In the online phase, evaluators rotate pb to the right by î places
to get shares of a one-hot array which is 1 at position i. Inner-
product of this array with {0, 0, x̂, x̂+2n−f} produces shares
of the selected underlined value.

Based on the value of d, the evaluators need to obliviously
select between rout and rout−rin, where both values are known
to the dealer. To do this, the dealer gives out shares of an array
q ∈ U2

N with elements rout and rout − rin, swapped when r(d)

mod 2 = 1. In the online phase, evaluators index the array qb
at d̂ mod 2. Adding the two selected shares results in shares
of the required masked output.

We present the protocol ΠReLUExt
n−f,n for ReLUExtn−f,n in

Figure 4 and proof of its security in Appendix G. Using this,
we can trivially obtain a protocol for stTrReLUn,f by locally
truncate-reducing the input, followed by the protocol ΠReLUExt

n−f,n .

Theorem 7. ΠstTrReLU
n,f realizes stTrReLUn,f securely such

that keysize(ΠstTrReLU
n,f) = keysize(DCFn−f,2)+ 6n+4. In the

online phase, the protocol requires 2 evaluations of DCFn−f,2

and communication of 8 bits in 1 round.

In contrast, the naive way of implementation using stochas-
tic truncation followed by ReLU requires a key size of
keysize(DCFn−1,2n)+keysize(DCFn,2n)+8n in LLAMA [31]
and key size of keysize(DCFn−f,1)+keysize(DCFn,1)+6n+2
using our protocols. Hence, for n = 64, f = 24 our key size
is 5.8× and 2.5× lower, respectively. Over LLAMA, we also
have 2.4× lower AES evaluations in Eval (6n vs 4(n− f)).

VI. PROTOCOLS FOR SOFTMAX

As discussed earlier, to mirror the exact computation
performed in [32], we calculate softmax accurately in floating-
point. To do this securely, we make use of the state-of-the-art
floating-point computations library, SECFLOAT [51]. However,
in order for the parties to invoke the softmax protocol from
this library, they must hold secret shares of the floating-point
representation of the input. Hence, we require a protocol
that would convert masked fixed-point values (from an FSS
scheme) into secret shares of the corresponding floating-point
values according to the representation of [51]. Similarly, in
order to use the output of the softmax computation in the
rest of the training protocol, we require a protocol that would
convert secret shares of floating-point values back to the
corresponding (masked) fixed-point values. We begin with
background on floating-point representations and softmax
followed by our protocols for FixToFloat and FloatToFix in
Section VI-A and Section VI-B.

Floating-point representation. Similar to SECFLOAT [51], we
represent a 32-bit floating-point number α using four values

ReLU-Extend ΠReLUExt
n−f,n

GenReLUExtn−f,n (rin, rout) :

1: (k<0 , k
<
1)← Gen<n−f (1

λ, rin, 1,U4)

2: r(d)
$← U4

3: r(w) $← U4

4: r(i) = 2 · r(d) + r(w)

5: p = {1, 0, 0, 0}≪ r(i) ∈ U4
N

6: q = {rout, rout − rin}≫ (r(d) mod 2) ∈ U2
N

7: share (r(d), r(w),p, q)

8: For b ∈ {0, 1}, kb = k<b ||r
(d)
b ||r

(w)
b ||pb||qb

EvalReLUExtn−f,n (b, kb, x̂) :

1: Parse kb as k<b ||r
(d)
b ||r

(w)
b ||pb||qb

2: ŷ = x̂+ 2n−f−1 mod 2n−f

3: wb ← Eval<n−f (b, k
<
b , x̂)

4: ŵb ← wb + r
(w)
b mod 4

5: d̂b ← Eval<n−f (b, k
<
b , ŷ)−wb+ b ·1{ŷ ⩾ 2n−f−1}+

r
(d)
b mod 4

6: (ŵ, d̂) = reconstruct (ŵb, d̂b)
7: î = 2 · d̂+ ŵ mod 4
8: p′

b = pb ≫ î
9: ĵ = d̂ mod 2

10: return ûb = p′b,3 ·(x̂+2n−f)+p′b,2 ·x̂+qb,ĵ mod N

Fig. 4: Protocol for ReLUExt.

(z, s, e,m) ∈ FP where z ∈ {0, 1} represents zero-bit (set
when α = 0), s ∈ {0, 1} represents the sign bit (set when
α < 0), e ∈ U210 represents the unbiased signed exponent
with values lying in the range [−127, 128] and m ∈ U224

represents normalized unsigned fixed-point mantissa with
scale 23, taking values in the range [223, 224 − 1] ∪ {0}.
Moreover, α = (z, s, e,m) represents the real number
(1− z) · (1− 2s) · 2int10(e) · JmK+24,23. When α = 0, e = −126
and m = 0 holds.

Softmax. For a d-dimensional vector x ∈ Rd of real
numbers, softmax calculates a vector y ∈ Rd such that:

∀i ∈ [0, d− 1], yi =
exi∑d−1
i=0 exi

=
exi−xmax∑d−1
i=0 exi−xmax

(1)

where xmax = max(x0, x1, . . . xd−1). The latter expression
is usually preferred as exponentials in the former expression
can become arbitrarily large leading to overflows. The second
expression on the other hand limits the exponential outputs to
lie in the range (0, 1].

A. FixToFloat

To convert a fixed point number x ∈ UN with scale f to the
equivalent floating-point number (z, s, e,m) ∈ FP, we have to

find (z, s, e,m) such that the underlying real values are close.
So, the following relation2 should hold:

JxKn,f = (1− z) · (1− 2s) · 2int10(e) · JmK+24,23
intn(x)

2f
= (1− z) · (1− 2s) · 2int10(e) · uint24(m)

223

As z and s denote the zero and sign bit respectively, calculat-
ing them is trivial using the following relations:

z = 1{x = 0}
s = 1{x ⩾ 2n−1}

Note that when z = 1, e = −126 and m = 0 holds. In the
case when z = 0, it only remains to find e and m such that:∣∣∣∣ intn(x)2f

∣∣∣∣ = 2int10(e) · uint24(m)

223

=⇒ |intn(x)| = 2int10(e+f−23) · uint24(m)

Computing e. For a given x, there can be multiple solutions
to this equation. However, as m has to be normalized, i.e., lies
in the range [223, 224−1], there is a unique pair (m, e) which
satisfies both these constraints. Let k ⩽ n be a number such
that 2k−1 ⩽ |intn(x)| < 2k. Then, 223 ⩽ 224−k · |intn(x)| <
224. Multiplying 224−k to both sides of the above equation,

224−k · |intn(x)| = 2int10(e+f+1−k) · uint24(m)

As the LHS and uint24(m) both lie in the range [223, 224−1],
the above equation can only hold when:

2int10(e+f+1−k) = 1 =⇒ e = k − f − 1

Computing m. Now we have that:

uint24(m) = 224−k · |intn(x)|

Note that |intn(x)| can be calculated as an n-bit number using
the relation |x| = 2 ·ReLUn(x)−x. To calculate m, we have:

uint24(m) = 224−k · |intn(x)| =
2n−k · |intn(x)|

2n−24

In the fraction above, we notice that as |intn(x)| < 2k, the
numerator 2n−k · |intn(x)| < 2n can be represented accurately
as an n-bit unsigned number. As we need to calculate m as a
24-bit number, it suffices to truncate-reduce the numerator by
n− 24 to get an accurate approximation of m.

Putting things together, for a given n-bit fixed-point number
x with precision f , we define functionality FixToFloatn,f :
UN → FP which calculates the floating-point number
(z, s, e,m) ∈ FP where:

z = 1{x = 0}; s = 1{x ⩾ 2n−1}

e =

{
k − f − 1 if x ̸= 0

−126 if x = 0

m = TR(|x| · 2n−k, n− 24)

2For reals a and b, we abuse a = b to mean |a− b| < 2−23.

with |x| and k defined similarly as above. A natural way
to compute FixToFloatn,f securely is by using the existing
protocols for Zero-Test [21], DReLU, multiple interval con-
tainment (to compute 2n−k) and ReLU. However, each of these
protocols would require a DCF key (DPF key, in case of Zero-
Test) and hence, the overall protocol would incur a key size
of ≈ n(4λ+3n+15)+ 4λ+3 bits. We describe an alternate
approach to achieve the same result using a single DCF key
and a key size of n(λ+ 3n+ 9) + λ+ 2 bits.

Let p(n) and q(n) be two constant series’ of length 2n,
representing 2n disjoint intervals in UN , such that:

p
(n)
i =

0 if i = 0

2i−2 if i ∈ [1, n− 1]

2n−1 if i = n

2n − 22n−i+1 + 1 if i ∈ [n+ 1, 2n− 1]

q
(n)
i =

{
2n − 1 if i = 2n− 1

p
(n)
i+1 − 1 otherwise

Let u = 2n−k. We observe that for all values of x
lying in the interval [p

(n)
i , q

(n)
i], u, e, z, and s hold constant

values. Hence, we can use the protocol for multiple interval
containment (Section IV-C) to get shares of a one-hot vector
that specifies which interval x belongs to. We can now get
shares of values u, e, z, and s by elementwise-multiplying
the shares of the vector with the correct constant value in
the corresponding interval and adding them. Then, we can
calculate |x| = 2ReLUn(x) − x cheaply by reusing the sign
bit. The resulting value when multiplied with u and truncate-
reduced by (n− 24), gives mantissa m.

We provide the formal protocol ΠFixToFloat
n,f and its security

proof in Appendix H with cost summarized below.

Theorem 8. ΠFixToFloat
n,f realizes FixToFloatn,f securely

such that keysize(ΠFixToFloat
n,f) = keysize(ΠMIC

n,2n,p(n),q(n)) +

keysize(Πselect
n) + 3n + 1. In the online phase, the protocol

requires 1 evaluation of ΠMIC
n,2n,p(n),q(n) and costs communica-

tion of 4n+ 2 bits in 2 rounds.

B. FloatToFix

Given a secret-shared floating-point value (z, s, e,m) ∈ FP,
we need to compute shares of one of the two closest n-bit
fixed-point number x with scale f . Our protocol ΠFloatToFix

n,f

that realizes the above functionality FloatToFixn,f for softmax
outputs uses similar ideas as above and we delegate details to
Appendix I. The following theorem summarizes its cost.

Theorem 9. ΠFloatToFix
n,f realizes FloatToFixn,f securely

such that keysize(ΠFloatToFix
n,f) = keysize(DCF24,U2) +

keysize(Πselect
n)+2049n+35. In the online phase, the protocol

requires 1 evaluation of DCF24,U2 and costs communication
of 2n+ 70 bits in 2 rounds.

C. End-to-end training

As discussed earlier in Section V, individual FSS-based pro-
tocols for convolution, matrix multiplications, ReLU, Maxpool

and so on can be combined to build end-to-end protocols.
When convolutions (or matrix multiplications) are followed by
ReLU (or ReLU+Maxpool), they are replaced by the protocols
for convolutions (correspondingly matrix multiplications) fol-
lowed by ΠstTrReLU

n,f (or ΠTRM
n,f respectively). Training protocols

require softmax computation at the end of the forward pass
and here we first convert masked fixed-point outputs to secret-
shared floating point numbers using ΠFixToFloat

n,f , call the proto-
col for softmax from SECFLOAT [51], and then finally convert
the secret-shared floating point numbers back to masked fixed-
point numbers using ΠFloatToFix

n,f . To compute the backward
pass for ReLU and Maxpool, we re-use the comparison outputs
from the forward pass and combine them with Πselect

n and
bitwise-AND; hence, there is no benefit in fusing nodes here.
The security of the end-to-end protocol can be argued in the
simulation paradigm. For details, see Appendix J.

VII. IMPLEMENTATION

We implement ORCA as a C++ library for easy use. It
contains optimized GPU kernels for the FSS gates described
in Sections IV and V. ORCA’s software framework supports
the key functionalities necessary to implement GPU-optimized
FSS protocols. We leverage optimized kernels from NVIDIA’s
CUDA libraries where available and write our own CUDA
kernel where necessary. Unlike a prior work CryptGPU [58],
we do not embed 64-bit integers into 64-bit floating-point
numbers for leveraging optimized floating-point kernels from
NVIDIA’s cuBLAS [1] and cuDNN [7] libraries. Instead, we
stick to integer kernels to avoid the overheads of embedding,
as did the prior work of PIRANHA [64].

Table II lists the key functionalities that our framework
implements as GPU kernels. It also reports which ones are
written by us (ORCA). We use well-optimized CUDA kernels
from NVIDIA’s CUTLASS [5] for convolutions and matrix
multiplications in the linear layers. The rest of the optimized
kernels were implemented as part of this work. In Section III,
we described various optimization that we perform (AES,
LAYOUT, MEM) to speed up DCF. We apply several of the
same GPU-centric optimizations to other kernels as suitable.
The table lists optimizations applicable to each kernel.

Some parts of our framework run on the CPU. As mentioned
in Section VI, we use SECFLOAT [12] to compute softmax in
floating point on the CPU. We did not accelerate the protocols
for softmax with GPUs since we find that for larger models
(Table IX, Appendix A) we are bottlenecked by key read and
not softmax. Furthermore, to go from fixed-point to floating
point and back, we implement the protocols FixToFloat and
FloatToFix outlined in Figures 7 and 8 on the CPU as these
conversions have tiny overheads.

Beyond the design optimizations mentioned in Section III,
we also ensure optimized implementation of the software stack
through several practical considerations as follows. For every
invocation of an FSS function (e.g., a DCF) on the GPU,
GPU memory needs to be allocated to hold the function’s
key. Same needs to be de-allocated after the completion of
the function. The repeated allocation/de-allocation of GPU

Func. Description Source Optimizations
Matrix
mult.

Multiplies two matrices CUTLASS –

Conv Performs convolution CUTLASS –
DCF The DCF described in [18] ORCA AES, LAYOUT,

MEM
DReLU The DReLU protocol in Figure 3 ORCA AES, LAYOUT,

MEM
Select The Select protocol in Figure 1 and its

variants in Figures 2 and 4
ORCA LAYOUT, MEM

Bitwise
AND

Securely computes AND of two bits ORCA LAYOUT, MEM

Table II: Key components of accelerated FSS

memory adds overheads. Toward this, we leverage a new
feature introduced in a recent CUDA release (CUDA 11.2),
called CUDA memory pools [6], to reserve GPU memory
for fast allocation/de-allocation of keys. Further, we pre-
allocate host-side communication buffers on the CPU to avoid
overheads of dynamic memory allocations at runtime. We also
pin host memory on the CPU, allowing for faster data transfers
between GPU and CPU using DMA [9]. We use multiple
CPU threads to overlap the CPU tasks of reading keys from
the SSD to the CPU DRAM, launching GPU kernels, and to
communicate with the other party.

Besides accelerating FSS evaluation, we also accelerate the
FSS dealer. We use NVIDIA’s cuRAND library [4] to generate
the randomness on the GPU for the dealer. We will opensource
the framework along with the publication of this work.

Further, we extended LLAMA [31], the state-of-the-art tool
for FSS-based ML on CPUs, to support training by combining
its protocols for inference with our softmax and call its
protocols for operations occurring in training. We name this
LLAMA extended to support training as LLAMA in the sequel
and use it to show our systems and cryptographic contributions
quantitatively in Section VIII-C.

VIII. EVALUATION

We compare ORCA against the state-of-the-art secure 2PC
training tools that support the same threat model as ours, i.e., a
trusted dealer provides correlated randomness to two parties in
an offline phase, and then the two parties run a 2PC protocol
for an ML task on their sensitive data. We provide an empirical
evaluation to justify the following claims:
• ORCA faithfully implements the quantized training algo-

rithms in ML literature [32] that mix floating-point and fixed-
point arithmetic (Figure 5). ORCA matches the accuracy of
PIRANHA (the current state-of-the-art in accelerating secure
training with GPUs) generated models in 4− 19× less time
and with 51− 123× less communication (Table III).

• On identical training and inference tasks, ORCA outperforms
(GPU-based) PIRANHA by up to 9× in latency and up to
14× in communication (Table IV). ORCA also outperforms
state-of-the-art CPU-based secure training [39] by up to
441× (Table V).

• ORCA’s GPU-based protocols are up to 29× more efficient
than their CPU counterparts (Table VI). Moreover, the size of

FSS keys required by ORCA’s protocols is up to 5× lower
(see Table VII) than LLAMA, the state-of-the-art tool for
FSS-based ML.

• ORCA enables sub-second ImageNet-scale inference (Sec-
tion VIII-C).

Parameter setting: We evaluate ORCA and PIRANHA on a
fixed-point representation with bitwidth n = 64 and precision
f = 24. The CPU-baseline [39] also uses a bitwidth of 64.

Datasets and models: We use the same datasets as PI-
RANHA for our training evaluation, i.e., 10-class MNIST and
CIFAR. The training set of MNIST has 60,000 monochromatic
28 × 28 images and the test set has 10,000 images. The
training set of CIFAR has 50,000 RGB images and the test
set has 10,000 images. We annotate the names of models for
MNIST and CIFAR with subscripts M and C, respectively.
PIRANHA [64] uses the following models: P-SecureMLM and
P-LenetM for MNIST, and P-AlexNetC and P-VGG16C for
CIFAR. P-VGG16C has over 100 million parameters and is the
largest model of PIRANHA. These models use approximations,
e.g., local truncations, that are not used by state-of-the-art
CPU-based secure training tools. To compare against them
we use the following models in [39]: Model-BM [39] and
AlexNetC [58]. For small models, we use the 36k parameter
CNN2M model with 2 convolutions and the 200k parameter
CNN3C model with 3 convolutions from Gupta et al. [32].

Finally, we also do a preliminary evaluation on
VGG16I [14], [57] for ImageNet-1000 [27] dataset. This
model is much larger than the other models as it operates on
224× 224 RGB images, which are 7× 7 bigger than CIFAR
images. In particular, compared to P-VGG16C, the largest
model in PIRANHA, VGG16I has 49× more multiplications
and 73× more comparisons. It also has 6× the parameters
of ResNet50 for ImageNet-1000, a commonly used model
in prior secure inference works [31], [33], [53], [58]. We
evaluate secure VGG16I inference with maxpools and
stochastic truncations to match its floating-point accuracy. We
omit its secure training as it is currently impractical; even with
ORCA’s speedups, end-to-end training on ImageNet-1000
will take years.

Evaluation setup: We perform our experiments on two
virtual machines, connected in a LAN setup with 9.4 Gbps
bandwidth and 0.05 ms RTT, each equipped with an NVIDIA
RTX A6000 GPU with 42GB of onboard memory and an
AMD Epyc 7742 processor. Each machine sports nearly a TB
of RAM and a Micron 7300 NVMe SSD connected with a
PCIe3 bus. The SSD supports 2.9GBps of sequential read
bandwidth. We use four of the CPU cores for CPU-only
experiments and use three cores for the GPU experiments.

The training times reported for ORCA are inclusive of the
time required to move FSS keys from SSD to RAM, as keys
required in training for many iterations over many epochs will
not fit in RAM. This is not an issue for inference and the
inference time measurements assume that the keys reside in
RAM. Note that the time measurements of inference/training
for the baselines don’t include the time to load keys or pre-

Accuracy Time (in min) Comm. (in GB)
Dataset PIRANHA ORCA PIRANHA ORCA PIRANHA ORCA

MNIST 96.8
(−0.3%) 97.1 56

(4×) 14 2,168.4
(51×) 42.9

CIFAR-10
55

(−4%) 59 1179
(19×) 63 65231.3

(123×) 532.5

55
(−15%) 70 1179

(7.5×) 158 65231.3
(49×) 1331.3

Table III: ORCA matches accuracy of PIRANHA in lesser time
on MNIST and CIFAR-10.

processing material into RAM. Similar to [64], for all the
baselines and ORCA, we only report the online time3.

A. End-to-end training with ORCA

Our goal is to show that for a given classification task,
ORCA can train a model that matches the accuracy of the
models trained by PIRANHA, while incurring significantly less
time and communication. Recall that PIRANHA’s implemen-
tation of softmax leaks private information [62], while ORCA,
with its floating-point softmax, provides end-to-end security.

On the MNIST dataset, PIRANHA reports an accuracy of
96.8% while training P-LeNetM, incurring about an hour in
training time and about 2TB of communication. Table III
shows that ORCA matches this accuracy with 4× less time
and 51× less communication while training the CNN2M
model [32]. We evaluate ORCA on P-LenetM in Table IV.

On the CIFAR dataset, which is a harder classification
problem than MNIST, the improvements are even more pro-
nounced. While training CNN3C [32], ORCA outperforms
PIRANHA’s training of P-VGG16C by 4% in accuracy, by
19× in latency, and by 123× in communication. We achieve
the reported accuracy of 59% by running just 2 training
epochs. When training for 5 epochs, we achieve a much
higher accuracy of 70% (15% better than PIRANHA) while
still being 7× faster and requiring 49× lower communication
than PIRANHA. We evaluate ORCA on P-VGG16C in Table IV.

Accuracy: Since ORCA evaluates the models by Gupta et
al. [32] faithfully, there are no accuracy gaps between cleartext
training and secure training. We show this empirically as well
in Figure 5. The minor deviations between the two are be-
cause of the randomness introduced by stochastic truncations.
Training these models with PIRANHA approximations leads to
10% accuracy.

B. Comparison with baselines

Next, we compare ORCA and baselines on identical models.
In particular, we compare ORCA with GPU-based PIRANHA
on the models that PIRANHA supports in Section VIII-B1. In
Section VIII-B2, we compare ORCA and state-of-the-art CPU-
based secure training [39].

1) GPU baselines: We compare ORCA and PIRANHA in
Table IV on the benchmarks used by PIRANHA for both
training and inference tasks. We observe that ORCA is up to

3Since the key generation in ORCA is GPU-optimized, almost all of the
offline time of ORCA is spent in moving keys (of sizes given in Table VII)
from the machine running the dealer to the machines holding secret data.

0

0.5

1

1.5

2

2.5

0 200 400 600

Cr
os

s-
en

tr
op

y
lo

ss

Number of iterations

Cleartext

ORCA

(a) CNN2 on MNIST (trained for
1 epoch with batch size 100).

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

0 250 500 750 1000

Cr
os

s-
en

tr
op

y
lo

ss

Number of iterations

Cleartext

ORCA

(b) CNN3 on CIFAR-10 (trained
for 2 epochs with batch size 100).

Fig. 5: Cross-entropy loss over the test set as a function of the
number of training iterations.

Time (ms) Comm. (MB)
Model Task PIRANHA ORCA PIRANHA ORCA

P-SecureMLM
training 166

(2.3×) 72 31
(5.68×) 5.45

inference 57
(9.5×) 6 21

(8.2×) 2.56

P-LeNetM
training 720

(4×) 180 474
(7.52×) 63

inference 402
(8.37×) 48 335

(8.81×) 38

P-AlexNetC
training 984

(4.94×) 199 606
(5.56×) 109

inference 424
(7.06×) 60 324

(8.9×) 36

P-VGG16C
training 18096

(2.81×) 6441 17083
(10.05×) 1700

inference 14106
(9.39×) 1503 13589

(14.91×) 911

Table IV: Comparison against GPU baseline PIRANHA for one
training iteration and inference with a batch size of 128.

9× better in latency and 14× better in communication. In this
evaluation, both ORCA and PIRANHA use average pools, linear
approximations in softmax, and local truncations. Protocols in
ORCA for these approximations are provided in Appendix K.

Since the communication of ORCA is an order of magnitude
lower than PIRANHA, in settings with lower bandwidth (e.g.,
WAN settings), these improvements will be even higher. Using
newer PCIe4-enabled SSDs will also further improve ORCA’s
runtime. For example, one training iteration of P-VGG16C
requires ORCA to transfer a key of 17.2GB in size from SSD
to RAM that takes 6.4s in time on our PCIe3-based SSD
(Table IX, Appendix A). Once the keys are in RAM then
ORCA takes only 2.4s for the rest of the computation (inclusive
of the communication time). If we were to use latest generation
PCIe4 enabled SSD, such as Samsung 980 PRO [15], which
has double the read bandwidth of our setup’s SSD, the time to
transfer the key will reduce to 3.2s. Consequently, the latency
improvement4 over PIRANHA will rise from 2.81× to 5.65×.

2) CPU baselines: The latest work in CPU-based secure
training is by Keller and Sun [39], shown as KS in Table V.
Secure training in KS uses faithful maxpools and stochastic

4ORCA hides the 2.4s of the current iteration by overlapping it with the
3.2s key read of the next iteration (2⃝ of Section III-B).

Time (in sec) Comm. (in MB)
Model KS ORCA KS ORCA

CNN2M
10

(7.12×) 1.404 3102
(42×) 73

Model-BM
17.2

(11.64×) 1.478 5796
(58×) 100

AlexNetC
299.3

(111.06×) 2.695 46213
(155×) 299

CNN3C
1685

(441.21×) 3.819 177152
(325×) 545

Table V: Comparison against CPU baseline KS [39] for one
training iteration with batch size of 100.

Dataset Model Task LLAMA Our CPU Our GPU

MNIST CNN2M
training 3.3

(2.35×)
2.8

(2×) 1.404

inference 1.5
(37.5×)

1.0
(25×) 0.040

CIFAR-10 CNN3C
training 33.4

(8.75×)
22.8

(5.97×) 3.819

inference 28.2
(42.15×)

18.6
(27.8×) 0.669

ImageNet VGG16I inference 688
(53.7×)

370
(29×) 12.8

Table VI: Comparison of latency (in seconds) of a single
iteration of training and inference between LLAMA, our CPU
and GPU implementations. For ImageNet, batch size is 16 and
the others use batch size of 100.

truncations, and does not support local truncations. To measure
running time of KS, we instrument MP-SPDZ [37] to measure
the time taken by one iteration of online phase after the
preprocessing material has been loaded in RAM. Table V
shows that ORCA (with stochastic truncations, maxpools and
floating-point softmax) is up to 441× faster than KS, while
incurring up to 325× less communication.

C. Improvements breakup

LLAMA [31] is the state-of-the-art in FSS-based proto-
cols for ML tasks, and outperforms other tools such as
AriaNN [55]. Conceptually, ORCA makes two performance
improvements over LLAMA. It provides new protocols for
operations occurring in ML tasks with smaller FSS keys
and accelerates these protocols with GPUs. In Table VI, we
investigate the individual contributions of protocols and GPUs
to the overall speedups over LLAMA. Note that ORCA incurs
slightly lower communication than LLAMA (Appendix A).
Hence, we only compare time in Table VI.

The protocols of ORCA, described in Section V show up to
5× reduction in key size over LLAMA and < 2× reduction
in number of AES calls (see Table VII). As key read is
not the performance bottleneck in CPU implementation, new
protocols translate to < 2× improvement in running time
of ORCA run on CPU over LLAMA in Table VI. GPU
acceleration of our protocols brings running time further down
by 2− 29×. Reading huge FSS keys becomes a performance
bottleneck after accelerating compute with GPUs and key size
reduction through our new protocols becomes crucial. It is
easy to see that without our new protocols, runtime of ORCA

Dataset Model Task LLAMA ORCA

MNIST CNN2M
training 1.97

(3.34×) 0.59

inference 1.45
(3.82×) 0.38

CIFAR-10 CNN3C
training 32.90

(3.20×) 10.28

inference 28.46
(3.38×) 8.43

ImageNet VGG16I inference 714
(4.86×) 147.2

Table VII: Comparison of key size (in GB) against LLAMA
for a single iteration of training and inference. For ImageNet,
batch size is 16 and the others use batch size of 100.

with GPUs would worsen by up to 5×, that is exactly by the
factor of improvement in key size (calculated based on read
bandwidth from SSD to RAM).

The inference tasks show better acceleration than training
tasks because of floating-point softmax. Recall that softmax
is only present in training, not in inference, and softmax’s
exponentiations use a floating-point 2PC protocol from prior
work [51] that hasn’t been accelerated with either FSS or
GPUs. We find that once the rest of the compute has been
accelerated with GPUs, softmax accounts for a considerable
portion of the training runtime. For example, one training
iteration of CNN2M takes about 1.4s once keys are in RAM.
Of this, softmax takes ≈1.3s, which is ≈ 92% of training time.

We show that GPU accelerates both linear and non-linear
layers by an order of magnitude in Figure 6, Appendix A.

ImageNet inference. The last row of Table VI shows that
ORCA enables sub-second ImageNet-scale inference, which
is an order of magnitude better than what is reported by
the prior secure inference works [31], [33], [58] over models
with fewer parameters like ResNet50/ResNet152. The Top-1
accuracy of secure inference is 71% and matches the floating-
point accuracy over a validation set of 50,000 images.

IX. RELATED WORK

Secure training is a rich area with various techniques. There
are solutions that lack cryptographic security guarantees like
Trusted Execution Environments [67] and Federated Learn-
ing [56]. There are complementary techniques like Differential
Privacy (DP) [16], [61] that dictate what training algorithms
preserve privacy and ORCA can run such algorithms securely.
Among the cryptographic techniques for secure multiparty
training, various threat models have been explored:
Two party training. Two parties holding secret data train a
joint model with 2PC protocols [17], [36], [47].
Two party training with dealer. A trusted dealer provides
correlated randomness to two parties that can then run their
2PC protocols more efficiently. FSS-based protocols fall in
this category [55], [65].
Three party honest majority. Three non-colluding parties run
a secure training protocol [41], [46], [49], [58], [60], [62].
M-party dishonest majority. M parties, each holding secret
data, train a joint model while honest parties are protected
from any number of dishonest parties [25], [39], [40], [68].

Works that accelerate non-FSS protocols with GPUs in-
clude [29], [34], [45], [48], [50], [58], [64]. Prior works in
secure inference that don’t address training include [23], [24],
[31], [33], [35], [42], [43], [45], [52]–[54]. Similar to all
prior works on secure training of DNNs, we have limited
ourselves to semi-honest adversaries as malicious security
entails additional performance overheads [26], [28], [37], [41],
[49], [68].

X. CONCLUSION

ORCA takes a step towards practical secure inference and
training by accelerating FSS-based protocols through both
system advances with GPUs and new cryptographic techniques
to reduce the size of FSS keys. Together, the time to securely
train CIFAR models has reduced to an hour and ImageNet-
scale inference runs in sub-second. We also identify concrete
challenges for future work: integrating newer hardware (PCIe5
comes out this year) and GPU-accelerated FSS-based proto-
cols for accurate softmax.

REFERENCES

[1] “Basic Linear Algebra on NVIDIA GPUs,” https://developer.nvidia.com/
cublas.

[2] “CUDA,” https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/
contents.html.

[3] “CUDA C++ Programming Guide,” https://docs.nvidia.com/cuda/
cuda-c-programming-guide/.

[4] “cuRAND,” https://developer.nvidia.com/curand.
[5] “CUTLASS,” https://github.com/NVIDIA/cutlass.
[6] “Enhancing Memory Allocation with New NVIDIA

CUDA 11.2 Features,” https://developer.nvidia.com/blog/
enhancing-memory-allocation-with-new-cuda-11-2-features/.

[7] “NVIDIA cuDNN,” https://developer.nvidia.com/cudnn.
[8] “NVIDIA Nsight Compute,” https://developer.nvidia.com/

nsight-compute.
[9] “Page-Locked Host Memory,” https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html#page-locked-host-memory.
[10] “PCI Express,” https://en.wikipedia.org/wiki/PCI Express.
[11] “PyTorch/CSPRNG,” https://github.com/pytorch/csprng.
[12] “SecFloat: Accurate floating-point meets secure 2-party computation,”

https://github.com/mpc-msri/EzPC.
[13] “Using CUDA Warp-Level Primitives,” https://developer.nvidia.com/

blog/using-cuda-warp-level-primitives/.
[14] “VGG16 for ImageNet,” https://github.com/minar09/VGG16-PyTorch.
[15] “Samsung 980 PRO SSD,” https://www.samsung.

com/us/computing/memory-storage/solid-state-drives/
980-pro-pcie-4-0-nvme-ssd-2tb-mz-v8p2t0b-am/, 2016.

[16] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[17] N. Agrawal, A. S. Shamsabadi, M. J. Kusner, and A. Gascón, “QUO-
TIENT: two-party secure neural network training and prediction,” in
CCS, 2019.

[18] E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, and
M. Rathee, “Function secret sharing for mixed-mode and fixed-point
secure computation,” in EUROCRYPT, 2020.

[19] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in EURO-
CRYPT, 2015.

[20] ——, “Function secret sharing: Improvements and extensions,” in CCS,
2016.

[21] ——, “Secure computation with preprocessing via function secret shar-
ing,” in TCC, 2019.

[22] R. Canetti, “Security and Composition of Multiparty Cryptographic
Protocols,” J. Cryptology, 2000.

[23] N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah, “Simc:
Ml inference secure against malicious clients at semi-honest cost,” in
USENIX Security Symposium, 2022.

[24] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh, “Astra: High
throughput 3pc over rings with application to secure prediction,” in
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, ser. CCSW’19, 2019.

[25] H. Chen, M. Kim, I. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh,
“Maliciously secure matrix multiplication with applications to private
deep learning,” in Advances in Cryptology – ASIACRYPT 2020, S. Mo-
riai and H. Wang, Eds. Cham: Springer International Publishing, 2020,
pp. 31–59.

[26] A. P. K. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of
quantized neural networks,” PoPETs, 2020.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[28] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Improved
primitives for MPC over mixed arithmetic-binary circuits,” in CRYPTO,
2020.

[29] T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen, “Faster maliciously
secure two-party computation using the gpu,” in Security and Cryptog-
raphy for Networks, M. Abdalla and R. De Prisco, Eds. Cham: Springer
International Publishing, 2014, pp. 358–379.

[30] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority,”
in STOC, 1987.

[31] K. Gupta, D. Kumaraswamy, N. Chandran, and D. Gupta, “Llama: A
low latency math library for secure inference,” in PETS, 2022.

[32] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision.” in ICML, vol. 37, 2015, pp.
1737–1746.

[33] Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference,” in USENIX Security
Symposium, 2022.

[34] N. Husted, S. Myers, A. Shelat, and P. Grubbs, “Gpu and cpu paralleliza-
tion of honest-but-curious secure two-party computation,” in Proceed-
ings of the 29th Annual Computer Security Applications Conference,
2013.

[35] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” in USENIX
Security Symposium, 2018.

[36] M. Kelkar, P. H. Le, M. Raykova, and K. Seth, “Secure poisson
regression,” in 31st USENIX Security Symposium, USENIX Security
2022, Boston, MA, USA, August 10-12, 2022, K. R. B. Butler and
K. Thomas, Eds. USENIX Association, 2022, pp. 791–808.

[37] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in CCS, 2020.

[38] M. Keller and K. Sun, “Effectiveness of mpc-friendly softmax replace-
ment,” arXiv preprint arXiv:2011.11202, 2020.

[39] ——, “Secure quantized training for deep learning,” in International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, 2022.

[40] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in NeurIPS, 2021.

[41] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: super-fast
and robust privacy-preserving machine learning,” in USENIX Security
Symposium, 2021.

[42] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in IEEE S&P,
2020.

[43] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, “Muse: Secure
inference resilient to malicious clients,” in USENIX Security Symposium,
2021.

[44] Y. Lindell, “How to simulate it – a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography, 2017.

[45] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security Symposium, 2020.

[46] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework for
Machine Learning,” in CCS, 2018.

[47] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable Privacy-
Preserving Machine Learning,” in IEEE S&P, 2017.

[48] L. K. L. Ng and S. S. M. Chow, “Gforce: Gpu-friendly oblivious and
rapid neural network inference,” in USENIX Security Symposium, 2021.

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/contents.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/contents.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://developer.nvidia.com/curand
https://github.com/NVIDIA/cutlass
https://developer.nvidia.com/blog/enhancing-memory-allocation-with-new-cuda-11-2-features/
https://developer.nvidia.com/blog/enhancing-memory-allocation-with-new-cuda-11-2-features/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#page-locked-host-memory
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#page-locked-host-memory
https://en.wikipedia.org/wiki/PCI_Express
https://github.com/pytorch/csprng
https://github.com/mpc-msri/EzPC
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://github.com/minar09/VGG16-PyTorch
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-2tb-mz-v8p2t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-2tb-mz-v8p2t0b-am/
https://www.samsung.com/us/computing/memory-storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-2tb-mz-v8p2t0b-am/

[49] A. Patra and A. Suresh, “Blaze: Blazing fast privacy-preserving machine
learning,” in NDSS, 2020.

[50] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa, “Vi-
sor: Privacy-preserving video analytics as a cloud service,” in USENIX
Security Symposium, 2020.

[51] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and
A. Rastogi, “SecFloat: Accurate Floating-Point meets Secure 2-Party
Computation,” in IEEE S&P, 2022.

[52] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran,
and A. Rastogi, “SIRNN: A math library for secure inference of RNNs,”
in IEEE S&P, 2021.

[53] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,” in
CCS, 2020.

[54] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in ASIACCS, 2018.

[55] T. Ryffel, D. Pointcheval, and F. Bach, “ARIANN: Low-interaction
privacy-preserving deep learning via function secret sharing,” in PETS,
2022.

[56] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J. Bossuat,
J. S. Sousa, and J. Hubaux, “POSEIDON: privacy-preserving federated
neural network learning,” in NDSS, 2021.

[57] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[58] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the GPU,” in IEEE S&P, 2021.

[59] C. Tezcan, “Optimization of advanced encryption standard on graphics
processing units,” IEEE Access, vol. 9, pp. 67 315–67 326, 2021.

[60] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” PoPETs, 2019.

[61] S. Wagh, X. He, A. Machanavajjhala, and P. Mittal, “Dp-cryptography:
Marrying differential privacy and cryptography in emerging applica-
tions,” Commun. ACM, 2021.

[62] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” PoPETs, 2021.

[63] K. Wang, D. Fussell, and C. Lin, “Fast Fine-Grained Global Synchro-
nization on GPUs,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 2019, pp. 793–806.

[64] J.-L. Watson, S. Wagh, and R. A. Popa, “Piranha: A GPU Platform for
Secure Computation,” in USENIX Security Symposium, 2022.

[65] P. Yang, Z. L. Jiang, S. Gao, J. Zhuang, H. Wang, J. Fang, S. Yiu,
and Y. Wu, “Fssnn: Communication-efficient secure neural network
training via function secret sharing,” Cryptology ePrint Archive, Paper
2023/073, 2023, https://eprint.iacr.org/2023/073. [Online]. Available:
https://eprint.iacr.org/2023/073

[66] A. C. Yao, “Protocols for secure computations,” in FOCS, 1982.
[67] P. Yuhala, P. Felber, V. Schiavoni, and A. Tchana, “Plinius: Secure

and persistent machine learning model training,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2021.

[68] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously
secure coopetitive learning for linear models,” in IEEE S&P, 2019.

APPENDIX

A. Additional Empirical Results

1) Microbenchmarks: We show acceleration of GPUs for
linear layers and non-linear layers separately in Figure 6.
Across, microbenchmarks of varying sizes, the GPU-based
protocols in ORCA are an order of magnitude more efficient
compared to their CPU counterparts.

2) Online communication: We show that our new protocols
in ORCA not only reduce key size and online compute but
also online communication. Concrete numbers are provided
in Table VIII.

Dataset Model Task LLAMA ORCA

MNIST CNN2M
training 76

(1.04×) 73

inference 22
(1.19×) 19

CIFAR-10 CNN3C
training 579

(1.06×) 545

inference 365
(1.19×) 307

Table VIII: Comparison of communication (in MB) of a
single iteration of training and inference between LLAMA
and ORCA. Batch size of 100 is being used.

Model Key size
(in GB)

Key read
(ms)

Compute
(ms)

ORCA
(ms)

P-SecureMLM 0.04 12 72 72
P-LeNetM 0.41 169 180 180
CNN2M 0.59 251 1404 1404

Model-BM 0.98 413 1478 1478
P-AlexNetC 0.38 172 199 199
AlexNetC 7.17 2695 1921 2695
CNN3C 10.28 3819 2247 3819

P-VGG16C 17.2 6441 2422 6441

Table IX: Key size, time of key read and compute for ORCA
for different models. The last column reports the larger of key
read time and compute time.

3) Split of ORCA time between key read and compute:
Table IX shows the time ORCA spends on reading keys and
on compute (including time spent on communication) for one
training iteration. Since key read and compute overlap in
ORCA, a training iteration takes the larger of the two times.
As the models become bigger, key read starts to dominate.

B. Formal Correctness and Security of FSS Scheme

Definition 4 (FSS: Correctness and Security [19], [20]). Let
G = {g} be a function family, PG = {ĝ} be the set of
descriptions of functions in G, and Leak be a function spec-
ifying the allowable leakage about ĝ. When Leak is omitted,
it is understood to output only Gin and Gout. We say that
(Gen,Eval) as in Definition 1 is an FSS scheme for G (with
respect to leakage Leak) if it satisfies the following.

• Correctness: For all ĝ ∈ PG describing g : Gin → Gout,
and every x ∈ Gin, if (k0, k1) ← Gen(1λ, ĝ) then
Pr [Eval(0, k0, x) + Eval(1, k1, x) = g(x)] = 1.

• Security: For each b ∈ {0, 1} there is a PPT algo-
rithm Simb (simulator), such that for every sequence
(ĝλ)λ∈N of polynomial-size function descriptions from
G and polynomial-size input sequence xλ for gλ, the
outputs of the following Real and Ideal experiments are
computationally indistinguishable:
– Realλ: (k0, k1)← Gen(1λ, ĝλ); Output kb.
– Idealλ: Output Simb(1

λ, Leak(ĝλ)).

C. Our Threat Model

2-party secure computation (2PC) enables two parties P0

and P1, with private inputs x0 and x1 respectively, to compute
any public joint function y = f(x0, x1) on their inputs.
Informally, security requires that they only learn y and nothing

https://eprint.iacr.org/2023/073
https://eprint.iacr.org/2023/073

10

100

1,000

10,000

1,00,000

10,00,000

16 32 64 128 256 512

O
nl

in
e

 ti
m

e
(m

s,
 lo

g
sc

al
e)

Input dimension, n (log scale)

CPU GPU

(a) Convolution on an n × n × 64 input with a
5 × 5 kernel, 64 output channels, stride 1, and
padding 1. n = 28, 32, 64, 128, 224, 320.

1

10

100

1,000

10,000

1,00,000

10,000 1,00,000 10,00,000 1,00,00,000O
nl

in
e

 ti
m

e
(m

s,
 lo

g
sc

al
e)

Input size (log scale)

CPU GPU

(b) Stochastic-Truncation + ReLU on inputs of in-
creasing sizes. Input size = 104, 105, 106, 107.

100

1,000

10,000

1,00,000

10,00,000

16 32 64 128 256O
nl

in
e

 ti
m

e
(m

s,
 lo

g
sc

al
e)

Input dimension, n (log scale)

CPU GPU

(c) Stochastic-Truncation + ReLU + MaxPool on
an n×n×64 input with a 3×3 kernel and stride
1. n = 28, 32, 64, 128, 224.

100

1,000

10,000

1,00,000

10,00,000

1,00,00,000

16 32 64 128O
nl

in
e

 ti
m

e
(m

s,
 lo

g
sc

al
e)

Input dimension, n (log scale)

CPU GPU

(d) Stochastic-Truncation + ReLU + MaxPool on
an n × n × 64 input with a 11 × 11 kernel and
stride 1. n = 28, 32, 64, 128.

Fig. 6: Comparison of online time on CPU and GPU

else through the course of an interactive protocol which they
execute. We consider 2PC in the trusted dealer model. That
is, there exists a trusted dealer that provides correlated ran-
domness to the two parties in a pre-processing phase (before
inputs to the computation are available). Security is proven
in the simulation paradigm [22], [30], [44] against a semi-
honest static probabilistic polynomial time (PPT) adversary
that corrupts one of the two parties. That is, the adversary
corrupts either P0 or P1 before the protocol begins. The cor-
rupted party is guaranteed to follow the protocol specification
but may try to learn additional information from the protocol.
Security is modelled by defining two worlds: a real world in
which P0 and P1 interact with each other through the protocol
in the presence of adversary A and the environment Z; and an
ideal world in which the parties send their inputs to a trusted
functionality computing f(x0, x1) faithfully. Security requires
that for every real-world adversary, there exists an ideal world
adversary (called the simulator S) such that no environment
Z can distinguish between the two worlds.

D. Proof of Lemma 1

Lemma 1. Consider a masked value x̂ ∈ UN with underlying
value x and random mask r(x). Let ŷ = TR(x̂, f) and r(y) =
TR(r(x), f). Then the following holds:

x≫st f = SignExtn−f,n(ŷ − r(y))

Proof. To prove the above lemma, it suffices to show that
ŷ − r(y) mod 2(n−f) is equal to x ≫st f in (n − f) bits
as it is then sign-extended to n bits. We begin the proof by
stating the fact that when output bitwidth is (n−f), the output
of logical right-shift is the same as arithmetic right-shift, as
the two only differ in the most significant f bits, which are
removed when the output is reduced to (n− f) bits.
So, for a given masked input x̂ ∈ UN , with underlying value
x ∈ UN and random mask r ∈ UN , it suffices to prove that:

TR(x̂, f)− TR(r, f) =

{
TR(x, f) with prob. 1− t

TR(x, f) + 1 with prob. t

where t = (x mod 2f) · 2−f . To show this, consider:

TR(x, f) = TR(x̂− r mod 2n, f)

= TR(x̂− r + 2n · 1{x̂ < r}, f)
= (x̂− r + 2n · 1{x̂ < r})≫L f mod 2(n−f)

= (x̂− r)≫L f + 2n−f · 1{x̂ < r} mod 2(n−f)

= (x̂− r)≫L f

Let x̂1, r1 ∈ U2n−f and x̂0, r0 ∈ U2f be numbers such that,
x̂ = x̂1 · 2f + x̂0, r = r1 · 2f + r0. So, x̂1 = TR(x̂, f) and

r1 = TR(r, f).

TR(x, f) = (x̂− r)≫L f

= x̂1 − r1 + (x̂0 − r0)≫L f

= x̂1 − r1 + (x̂0 − r0)≫A f

Note that the term (x̂0 − r0)≫A f can only take values 0 or
−1 as −2f < x̂0 − r0 < 2f . So, we have:

TR(x, f) = x̂1 − r1 − 1{x̂0 < r0}
=⇒ x̂1 − r1 = TR(x, f) + 1{x̂0 < r0}

TR(x̂, f)− TR(r, f) = TR(x, f) + 1{x̂0 < r0}

Now, to complete the proof, we only need to show that the
term 1{x̂0 < r0} takes values 0 with probability 1 − t. We
have:

x̂ = x+ r mod 2n

=⇒ x̂0 = (x mod 2f) + r0 mod 2f

r0 is a uniformly random value. Consider the case when r0 <
2f − (x mod 2f). In this case,

r0 + (x mod 2f) < 2f

=⇒ x̂0 = (x mod 2f) + r0 mod 2f

= (x mod 2f) + r0

=⇒ x̂0 ⩾ r0

=⇒ 1{x̂0 < r0} = 0

For this to happen, r0 needs to randomly assume the value
from the set {0, 1, . . . 2f − (x mod 2f)− 1} which happens
with probability (2f − (x mod 2f))/2f = 1− t.

E. Proof for the correctness of DReLU offset function

While there exists an expression for the offset function of
DReLU in the previous work of [18], we derive an alternate
expression that benefits from the fact that all the private
comparisons done in it are by the corresponding input mask
only and hence, the DCF key required to do this can be re-used
in other protocols like Sign-Extension.

Lemma 2. Offset function for DReLUn, defined as
DReLUn(x) = 1{x < 2n−1} for x ∈ UN is:

DReLU[rin,rout]
n (x̂) = 1{ŷ < rin} − 1{x̂ < rin}

+ 1{ŷ ⩾ 2n−1}+ rout

where ŷ = x̂+ 2n−1 mod 2n.

Proof. Starting with the definition of offset function, we get:

DReLUn
[rin,rout](x̂) = DReLUn(x̂− rin mod 2n) + rout

= 1{x̂− rin mod 2n < 2n−1}+ rout

Let ŷ = x̂ + 2n−1 mod 2n and r′ = rin + 2n−1 mod 2n.
According to the above equation, the indicator function above
returns 1 when x̂ lies in the region starting from rin until r′,
taking care of wraps. Now, we will simplify this expression

by considering two cases.

Case 1: rin < 2n−1: This implies that rin + 2n−1 < 2n and
r′ = rin + 2n−1. Hence, the expression becomes:

DReLU[rin,rout]
n (x̂) = 1{x̂ ∈ [rin, r′)}+ rout

= 1{x̂ < r′} − 1{x̂ < rin}+ rout

Case 2: rin ⩾ 2n−1: This implies that rin + 2n−1 ⩾ 2n and
r′ = rin − 2n−1. Hence, the expression becomes:

DReLU[rin,rout]
n (x̂) = 1{x̂ ∈ [0, r′) ∪ [rin, 2n − 1]}+ rout

= 1{x̂ < r′}+ 1{x̂ ⩾ rin}+ rout

= 1{x̂ < r′}+ 1− 1{x̂ < rin}+ rout

Since the expressions in the two cases differ exactly by 1,
combining the two cases, we get:

DReLU[rin,rout]
n (x) = 1{rin ⩾ 2n−1}+ 1{x̂ < r′}

− 1{x̂ < rin}+ rout (2)

Now, to further simplify the 1{x̂ < r′} term, we use the
following lemma from [18]:

Lemma 3 (Lemma 1 from [18]). Let a, ã, b, b̃, r ∈ UN , where
a ≤ b, ã = a + r mod N and b̃ = b + r mod N . Define
4 boolean predicates over UN → {0, 1} as follows: P (x)
denotes x < ã, P ′(x) denotes x ≤ ã, Q(x) denotes (x+(b−
a) mod N) < b̃, Q′(x) denotes (x + (b − a) mod N) ≤ b̃.
Then, the following holds:

P (x) = Q(x) + (ea − ex) and P ′(x) = Q′(x) + (ea − ex)

where ea = 1{ã+ (b− a) > N − 1} and
ex = 1{x+ (b− a) > N − 1}

In the above lemma, if we set a = 0, b = 2n−1, r = rin, x = ŷ,
we get:

ã = a+ r mod N

= rin

b̃ = b+ r mod N

= rin + 2n−1 mod N

= r′

P (ŷ) = 1{ŷ < ã}
= 1{ŷ < rin}

Q(ŷ) = 1{ŷ + (b− a) mod N < b̃}
= 1{ŷ + 2n−1 mod N < r′}
= 1{x̂ < r′}

ea = 1{ã+ (b− a) > N − 1}
= 1{rin + 2n−1 > 2n − 1}
= 1{rin > 2n−1 − 1}
= 1{rin ⩾ 2n−1}

eŷ = 1{ŷ + (b− a) > N − 1}
= 1{ŷ + 2n−1 > 2n − 1}

= 1{ŷ > 2n−1 − 1}
= 1{ŷ ⩾ 2n−1}

We observe that Q(ŷ) is the term we need. So:

Q(ŷ) = P (ŷ)− ea + eŷ

1{x̂ < r′} = 1{ŷ < rin} − 1{rin ⩾ 2n−1}
+ 1{ŷ ⩾ 2n−1}

Plugging this result in Equation 2, we get:

DReLUn
[rin,rout](x̂) = 1{x̂ < r′}+ 1{rin ⩾ 2n−1}
− 1{x̂ < rin}+ rout

= 1{ŷ < rin} − 1{rin ⩾ 2n−1}+ 1{ŷ ⩾ 2n−1}
+ 1{rin ⩾ 2n−1} − 1{x̂ < rin}+ rout

= 1{ŷ < rin} − 1{x̂ < rin}+ 1{ŷ ⩾ 2n−1}+ rout

F. Stochastic-Truncation + ReLU + MaxPool

In many networks, it is common to have a convolution
layer, a ReLU layer, and a MaxPool layer in succession.
Since convolution is always followed by truncation in the
case of fixed-point training, truncation, ReLU, and MaxPool
occur in succession. Hence, we need a protocol for stochastic-
truncation + ReLU + MaxPool. We note that the result of this
fused operation doesn’t depend on the order in which they are
applied. As a result, many existing works carry out ReLU after
MaxPool [42], [53], as this reduces the number of elements
on which ReLU is calculated.

LLAMA [31] provides a protocol for MaxPool, which
internally uses the spline-based protocol for ReLU from [18]
to calculate max of two elements. First, we replace this ReLU
with our protocol ΠReLU and follow a three-step approach
to implement a protocol for stochastic-truncation + ReLU +
MaxPool with bitwidth n and precision f :

1) Locally truncate-reduce the input to (n− f)-bits.
2) Apply the modified protocol for uniform bitwidth

MaxPool to the (n− f)-bit truncated output.
3) Apply the protocol for ReLUExtn−f,n to the resulting

(n− f)-bit values to get result in n-bits.
In the above protocol, all the comparisons are done over

(n − f)-bits instead of n bits and use our key optimized
ReLU protocol, giving us significant savings over a protocol
designed using building blocks in [31]. The following theorem
summarizes the cost when the MaxPool is done over k
elements.

Theorem 10. There exists a protocol ΠTRM
n,f,k which realizes

stochastic-truncation + ReLU + MaxPool of k elements se-
curely such that keysize(ΠTRM

n,f,k) = (k− 1) · keysize(Π̂ReLU
n−f) +

keysize(ΠReLUExt
n−f,n). Its online phase requires k− 1 evaluations

of Π̂ReLU
n−f , 1 evaluation of ΠReLUExt

n−f,n and communication of
2(k − 1)(n− f + 1) + 8 bits in 2k − 2 rounds.

In contrast, the baseline [31] has keysize roughly k ·
keysize(DCFn,2n + 5n) + keysize(DCFn−1,2n) + 3n. For n =

64, f = 24 used in our benchmarks, for a MaxPool of size
3× 3, that is, k = 9, we get a key size reduction of 3.4×.

G. Security proof of ΠReLUExt
n−f,n

For b ∈ {0, 1}, the simulator SimReLUExt
b for ReLUExt

is given x̂ and ub, and has to simulate the view of party
b, i.e., messages k<b ||r

(d)
b ||r

(w)
b ||pb||qb from the dealer and

ŵ1−b||d̂1−b from the other evaluator. The simulator follows
the following steps:

1) Randomly samples wb,sim and generates k<b,sim using
Sim<

b with input x̂ and output wb,sim.
2) Randomly samples r

(w)
b,sim, r

(d)
b,sim, ŵ1−b,sim, d̂1−b,sim ∈ U4.

3) Calculates ŵb,sim and d̂b,sim using steps 2, 4 and 5 from
EvalReLUExtn−f,n .

4) Sets ŵsim = ŵb,sim+ŵ1−b,sim mod 4 and d̂sim = d̂b,sim+
d̂1−b,sim mod 4.

5) Sets îsim = 2 · d̂sim + ŵsim mod 4.
6) Randomly samples pb,sim ∈ U4

N and sets p′
b,sim =

p′
b,sim ≫ isim.

7) Sets ĵsim = d̂sim mod 2.
8) Randomly samples qb,sim,1−ĵsim

∈ UN .
9) Sets qb,sim,ĵsim

= ûb − p′b,sim,3 · (x̂+ 2n−f) + p′b,sim,2 · x̂.
10) Sets qb,sim = {qb,sim,0, qb,sim,1}

H. Protocol and security proof for ΠFixToFloat
n,f

We describe the protocol for FixToFloatn,f in Figure 7.
We now provide simulation-based proof of its security. For
b ∈ {0, 1}, the simulator SimFixToFloat

b for FixToFloat is given
x̂ and (zb, sb, eb,mb) and has to simulate the view of party b,
i.e., messages k

(MIC)
b ||k(select)b ||r(s)b ||r

(u)
b ||r

(y)
b ||cb from dealer

and ŝ1−b||û1−b||ŷ1−b from the other evaluator. The simulator
follows the following steps:

1) Randomly samples r
(s)
b,sim and ŝ1−b,sim from U2.

2) Randomly samples r(y)b,sim, ŷ1−b,sim and û1−b,sim from UN .
3) Sets ŝsim = sb + r

(s)
b,sim + ŝ1−b,sim.

4) Randomly samples ŷb,sim constrained to the condition that
LSB of ŷb,sim + b · x̂ is 0.

5) Invokes Simselect
b with input (1 − ŝsim, x̂) and output

(ŷb,sim + b · x̂)≫L 1 to generate kselectb,sim .
6) Sets ŷsim = ŷb,sim + ŷ1−b,sim

7) Randomly samples ûsim from UN and frac from U2n−24 .
8) Sets cb,sim = mb · 2n−24 + frac − b · ŷsim · ûsim + r

(y)
b,sim ·

ûsim + r
(u)
b,sim · ŷsim.

9) Sets ûb,sim = ûsim − û1−b,sim.
10) Randomly samples tb,sim from U2n

N subject to constraints
in line 4,5 and 7 in EvalFixToFloatn,f .

11) Calculates r
(u)
b,sim according to line 8 in EvalFixToFloatn,f .

12) Invokes SimMIC
b with input x̂ and output tb,sim to generate

kMIC
b,sim.

FixToFloat ΠFixToFloat
n,f

GenFixToFloatn,f (rin) :

1: Let p = p(n) and q = q(n)

2: (k
(MIC)
0 , k

(MIC)
1)← GenMIC

n,p,q(r
in, 0)

3: r(s)
$← U2

4: r(u)
$← UN

5: r(select)
$← UN

6: (k
(select)
0 , k

(select)
1)← Genselectn (r(s), rin, r(select))

7: r(y) = 2 · r(select) − rin

8: c = r(u) · r(y)
9: share (r(s), r(u), r(y), c)

10: ∀b ∈ {0, 1}, kb = k
(MIC)
b ||k(select)b ||r(s)b ||r

(u)
b ||r

(y)
b ||cb

EvalFixToFloatn,f (b, kb, x̂) :

1: Let p = p(n) and q = q(n)

2: Parse kb as k
(MIC)
b ||k(select)b ||r(s)b ||r

(u)
b ||r

(y)
b ||cb

3: tb ← EvalMIC
n,p,q(b, k

(MIC)
b , x̂)

4: zb = tb,0 mod 2
5: sb =

∑2n−1
i=n tb,i mod 2

6: ŝb = sb + r
(s)
b

7: eb = −126 · tb,0 + (n− f − 1) · tb,n +
∑n−1

i=1 (tb,i +
tb,2n−i) · (i− f − 2)

8: ûb = r
(u)
b + tb,n +

∑n−1
i=1 (tb,i + tb,2n−i) · 2n−i

9: (ŝ, û) = reconstruct (ŝb, ûb)

10: ŷb ← 2 · Evalselectn (b, k
(select)
b , 1− ŝ, x̂)− b · x̂

11: ŷ = reconstruct (ŷb)

12: mb = TR(b · ŷ · û− r
(y)
b · û− r

(u)
b · ŷ + cb, n− 24)

13: return (zb, sb, eb,mb)

Fig. 7: Protocol for FixToFloat.

I. FloatToFix

For a given floating-point number (z, s, e,m) ∈ FP, the
functionality FloatToFixn,f calculates a fixed-point number
x ∈ UN with precision f such that:

JxKn,f = (1− z) · (1− 2s) · 2int10(e) · JmK+24,23
=⇒ x = (1− z) · (1− 2s) · ⌊m · 2int10(e)+f−23⌉

But since we are only concerned with softmax output, we
restrict the discussion to the case when s = 0, z = 0, and
int10(e) < 0. Note that the protocol can be generalized to
other cases trivially using calls to the protocol for select. So,
we can simplify the above equation to:

x = ⌊m · 2int10(e
′)⌉

where e′ = e + f − 23. Note that since int10(e
′) < f − 23,

int10(e
′) can take both positive or negative values5. Also, as

m contains a 24-bit value, x = 0 when int10(e
′) ⩽ −24.

5In the special case when f = 24, int10(e′) is always non-positive.

So, for m ∈ U224 and e ∈ U210 , let us define a functionality
adjustn : U224 × U210 → UN such that:

adjustn(m, e′) =

0 if int10(e′) ⩽ −24
m · 2int10(e′) if int10(e′) ⩾ 0

m≫L (−int10(e′)) otherwise

Then, we can rewrite the expression for FloatToFixn,f as:

x = adjustn(m, e′)

Hence, to implement FloatToFixn,f , we need to devise a pro-
tocol for adjustn. One way to do this would be to calculate the
value of x for all possible values of e and then use a lookup-
table protocol to get the correct value of x. However, this
approach would incur a high online communication cost, as
each of the output values of adjustn needs to be reconstructed.
We explain our alternative approach in two steps. First, we
derive a unified formula for the offset function of adjustn for
a public value of e′. Then, we discuss techniques to support
masked ê′ in the same formula.

Consider the case when −24 < int10(e
′) < 0 first. In

this case, adjustn is equivalent to a logical right-shift by
−int10(e′). Using the expression for logical right-shift by a
public scale −e from [18], ignoring the one-bit term, we get:

adjust[r
in,rout]

n (m̂, e′) = (m̂≫L int10(−e′))
− (rin ≫L int10(−e′)) + 224+int10(e

′) · 1{m̂ < rin}+ rout

= adjustn(m̂, e′)− adjustn(r
in, e′)

+ adjustn(1, e
′ + 24) · 1{m̂ < rin}+ rout

For the case when 0 ⩽ int10(e
′) < f − 23, adjustn

is equivalent to mixed-bitwidth multiplication with 2int10(e
′).

Hence, the expression for adjustn can be written as:

adjust[r
in,rout]

n (m̂, e′) = 2int10(e
′) · (m̂− rin + 224 · 1{m̂ < rin})

+ rout

= adjustn(m̂, e′)− adjustn(r
in, e′)

+ adjustn(1, e
′ + 24) · 1{m̂ < rin}+ rout

Hence, we arrive at a formula that works for both cases.
Note that this formula automatically handles the remaining
case (i.e. int10(e′) ⩽ −24) due to our definition of adjustn.
Now, we need to modify the above expression to work when
e′ is not public. We describe techniques to calculate the
shares of the four important terms in the above expression,
namely adjustn(m̂, e′), adjustn(r

in, e′), adjustn(1, e
′+24) and

1{m̂ < rin}. The four terms can then be combined trivially
using local additions and a call to the protocol for select.

Notice that for a given e′, the terms adjustn(m̂, e′) and
adjustn(1, e

′+24) can be calculated locally. So, if the evalua-
tors have secret shares of the one-hot vector of e′, shares of the
terms, adjustn(m̂, e′) and adjustn(1, e

′+24) can be calculated
locally by elementwise-multiplying the shares of the vector
with the correct constant value for the corresponding e′ value
and adding them. To get the one-hot vector of e′, we employ
the following technique. Dealer sends shares of the one-hot

vector of 210 − r(e
′), where r(e

′) is the random mask chosen
for e′. Evaluators can then rotate this shared array to the right
by ê′ to get the shares of the one-hot vector of e′. Similarly,
to get shares of the term adjustn(r

in, e′), the dealer sends an
array of shares of all possible values of adjustn(r

in, e′) rotated
to the right by r(e

′). Evaluators can then simply index the
secret-shared array at ê′ to get the shares of adjustn(r

in, e′).

FloatToFix ΠFloatToFix
n,f

GenFloatToFixn,f (rout) :

1: r(m) $← U224

2: r(e
′) $← U1024

3: r(w) $← U2

4: r(t)
$← UN

5: (k<0 , k
<
1)← Gen<24(1

λ, r(m), 1,U2)
6: Let p = {1{i = 1024− r(e

′)}}i ∈ U1024
N .

7: Let q = {rout − adjust(r(m), i)}i ∈ U1024
N .

8: q = q ≫ r(e
′)

9: share (r(m), r(e
′), r(w), r(t),p, q)

10: (k
(select)
0 , k

(select)
1)← Genselectn (r(w), r(t), 0)

11: For b ∈ {0, 1}, kb = k<b ||kselectb ||r(m)
b ||r(e

′)
b ||r(w)

b ||
r
(t)
b ||pb||qb

EvalFloatToFixn,f (b, kb, (mb, eb)) :

1: Parse kb as k<b ||kselectb ||r(m)
b ||r(e

′)
b ||r(w)

b ||r
(t)
b ||pb||qb

2: m̂b = mb + r
(m)
b

3: ê′b = eb + r
(e′)
b + b · (f − 23)

4: (m̂, ê′) = reconstruct (m̂b, ê
′
b)

5: ŵb ← Eval<24(b, k
<
b , m̂) + r

(w)
b mod 2

6: p′
b = pb ≫ ê′

7: t̂b = r
(t)
b +

∑1023
i=0 adjustn(1, i+24 mod 1024) ·p′b,i

8: (ŵ, t̂) = reconstruct (ŵb, t̂b)

9: x̂b = qb,ê′ + Eval(select)n (b, k
(select)
b , ŵ, t̂) +∑1023

i=0 adjust(m̂, i) · p′b,i
10: return x̂b

Fig. 8: Protocol for FloatToFix.

Based on the above discussion, we present the protocol
ΠFloatToFix

n,f for FloatToFixn,f in Figure 8. Note that, un-
like other protocols, ΠFloatToFix

n,f starts with secret shares, as
SECFLOAT returns shares of m and e. We now provide the
simulator-based security proof of the protocol.

Proof. For b ∈ {0, 1}, the simulator Simb for FloatToFix is
given (mb, eb) and x̂b and has to simulate the view of party
b, i.e., messages k<b ||kselectb ||r(m)

b ||r(e
′)

b ||r(w)
b ||r

(t)
b ||pb||qb from

dealer and m̂1−b||ê′1−b||ŵ1−b||t̂1−b from the other evaluator.
The simulator follows the following steps:

1) Randomly samples r
(m)
b,sim and m̂1−b,sim from U224 .

2) Randomly samples r
(e′)
b,sim and ê′1−b,sim from U210 .

3) Sets m̂sim = mb + r
(m)
b,sim + m̂1−b,sim and ê′sim = eb +

r
(e′)
b,sim + ê′1−b + b · (f − 23).

4) Randomly samples r
(w)
b,sim, ŵb,sim and ŵ1−b,sim from U2.

5) Generates k<b,sim using Sim<
b with input m̂sim and output

ŵb,sim − r
(w)
b,sim.

6) Randomly samples pb,sim from U1024
N .

7) Sets p′
b,sim = pb,sim ≫ ê′sim.

8) Randomly samples r
(t)
b,sim and t̂1−b,sim from UN .

9) Calculates t̂b,sim using step 7 from EvalFloatToFixn,f .
10) Sets ŵsim = ŵb,sim + ŵ1−b,sim

11) Sets t̂sim = t̂b,sim + t̂1−b,sim.
12) Generates kselectb,sim using Simselect

b with input (ŵsim, t̂sim)
and output h randomly sampled from UN .

13) Calculates qb,sim,ê′sim
= x̂b − h −

∑1023
i=0 adjust(m̂sim, i) ·

p′b,sim,i.
14) For k ∈ [0, 1023]−{ê′sim}, randomly samples qb,sim,k and

sets qb,sim = {qb,sim,i}i.

Note. The key size of ΠFloatToFix
n,f can be further reduced by

only sending the elements in arrays p and q which needs to
be accessed in the evaluation, based on the constraints on the
value of e. Moreover, as the array p is set to 1 at a single
index, it can be replaced with a Distributed Point Function
key [19] to further reduce the key size at the cost of increased
compute. We omit these optimizations for simplicity.

J. End-to-end training protocols

Given the protocols discussed in the previous sections, we
now discuss how they can be stitched together to obtain
an end-to-end protocol for securely computing any function.
Let us assume that the cleartext function comprises of two
functionalities A : G1 → G2 and B : G2 → G3 that are
sequentially invoked and let us assume that their corresponding
secure protocols are ΠA and ΠB , respectively. To devise
a secure protocol for B(A(x)), the dealer simply sets the
input random mask of ΠB equal to the output random mask
of ΠA and runs the respective Gen algorithms to generate
the FSS keys. The evaluators can then pass the output of
Π̂A to the input of Π̂B to get the required masked output.
Arbitrary number of protocols can also be composed in a
similar way. The security of this protocol can be argued in
the simulation paradigm as follows. Since each individual
protocol returns values masked by a random value, it suffices
to set these intermediate values to a random value (from
the corresponding group) during simulation. Simulators for
the constituent protocols can then be sequentially invoked to
complete the simulation of the overall protocol.

Now we consider the case of fixed-point training. Let the
global fixed-point scale be f . A typical machine learning
model contains layers like convolution, matrix multiplication,
ReLU, MaxPool, and so on, where convolutions and matrix
multiplications are followed by truncations. A single training
iteration constitutes three steps: forward pass, softmax cal-
culation and backward pass. Once we have a protocol for a
single iteration that outputs updated masked weights, multiple
iterations can be trivially composed.

Forward Pass. Any sequence of the form convolution-ReLU-
MaxPool is computed securely using the protocol for convo-
lution followed by ΠTRM

n,f . Sequences of the form convolution-
ReLU in the remaining layers are computed securely using
the protocol for convolution followed by ΠstTrReLU

n,f . Similar
computations are done for matrix multiplications (in place of
convolutions) as well. For the remaining truncation and ReLU
layers, we use the protocols ΠstTr

n,f and ΠReLU
n , respectively.

Softmax. The masked fixed-point outputs of the forward pass
protocol are then converted into secret-shared floating point
numbers using the protocol ΠFixToFloat

n,f . These secret shares are
then passed into the protocol for softmax from SECFLOAT,
which returns the output as a secret shared floating point
numbers, which are then converted back to masked fixed-point
numbers using ΠFloatToFix

n,f . The masked one-hot vector of the
training label is then locally subtracted from the output to
calculate the required input to the backward pass.
Backward Pass. The outputs of DReLU that were computed
during the forward pass can be reused during the backward
pass; ReLU is hence realized using a call to Πselect

n , while for
MaxPool, the protocol for bitwise-AND and Πselect

n suffices
(along with the stored forward pass values). Hence there is
no benefit in fusing layers as was done in the forward pass.
Backward pass of convolution and matrix multiplication are
realized using the protocols for convolutions, matrix multipli-
cations and ΠstTr

n,f .

K. Piranha Functionalities using FSS protocols

In this section, we show how to build FSS-based protocols
for functionalities used by PIRANHA [64]. These function-
alities are implemented in our library in order to directly
compare the performance of ORCA with PIRANHA on the
same benchmarks.

1) Local-Truncation + ReLU: As discussed several prior
works on secure training use local truncations, i.e., parties
locally truncate their secret shares. In the FSS setting, this
translates to the dealer truncating the mask and the evaluators
truncating the masked value. While comparing with these
works, to be apples-to-apples, we provide FSS-based protocols
and optimizations for this setting. In particular, our ideas
of fusing truncations will non-activations such as ReLU or
ReLU+Maxpool are also applicable for local truncations and
result in lower key size compared to the naive approach of
sequential computation.

A straightforward way to realize a protocol for Local-
Truncation + ReLU for an n-bit input x with public scale f ,
with an error similar to the local truncation protocol [47], is
to locally truncate x by f and use the result as an input to the
protocol for ReLU from [18]. Over this protocol, we perform
two optimizations:

1) We replace the single-round protocol for ReLU from [18]
with the two-round protocol (Section V-A) with a smaller
key size.

2) Since the value x≫A f can be represented accurately in
(n − f)-bits, we optimize the comparisons required for

the calculation of DReLU bit to be done over a reduced
bitwidth of (n− f).

Using the above-described optimizations, we present the pro-
tocol for Local-Truncate + ReLU in Figure 9 and summarize
its costs in the following theorem:

Local-Truncate + ReLU ΠlocalTrReLU
n,f (Gout = UN)

GenlocalTrReLUn,f (rin, rout) :

1: r′ = rout ≫L f
2: (k<0 , k

<
1)← Gen<n−f (1

λ, r′, 1,U2)

3: r(d)
$← U2

4: share r(d)

5: (k
(select)
0 , k

(select)
1)← Genselectn (r(d), r′, rout)

6: For b ∈ {0, 1}, kb = k<b ||r
(d)
b ||k

(select)
b

EvallocalTrReLUn,f (b, kb, x̂) :

1: Parse kb as k<b ||r
(d)
b ||k

(select)
b

2: x̂′ = x̂≫L f
3: ŷ′ = x̂′ + 2n−f−1 mod 2n−f

4: tb ← Eval<n−f (b, k
<
b , ŷ

′)− Eval<n−f (b, k
<
b , x̂

′)

5: d̂b = tb + b · 1{ŷ′ ⩾ 2n−f−1}+ r
(d)
b mod 2

6: d̂ = reconstruct (d̂b)

7: return ûb ← Evalselectn−f (b, k
(select)
b , d̂, x̂′)

Fig. 9: Protocol for Local-Truncate + ReLU. b refers to the
party id.

Theorem 11. ΠlocalTrReLU
n,f realizes local-truncation

+ ReLU securely such that keysize(ΠlocalTrReLU
n,f) =

keysize(DCFn−f,1) + keysize(Πselect
n) + 1. In the online

phase, the protocol requires 2 evaluations of DCFn−f,1 and
costs communication of 2 bits in 1 round.

The naive unoptimized approach costs a key size of
keysize(DCFn,2n) + 5n bits. For n = 64 and f = 24, our
protocol costs 3× less key size. In the case when local-
truncation is followed by MaxPool followed by ReLU, we
follow the idea described in Appendix F to calculate all the
internal DReLU bits on a reduced bitwidth of n− f .

2) Approximate Softmax: PIRANHA used Equation 1 to
implement softmax with the following approximations for
exponential and inverse.

˜exp(x) =

{
x+2
2 if − 2 < x ≤ 0

0 if x ≤ −2
= relu(x+ 2)/2

˜inv(x) =

{
2.63x2 − 5.857x+ 4.245 if 0.5 ≤ x < 1
˜inv(x/2k) · 2−k if 2k−1 ⩽ x < 2k

The expression for ˜exp(x) can be trivially realized using the
protocol for local-truncation + ReLU (Section K1). For ˜inv(x),

PIRANHA calculated k securely but revealed its value in the
clear, leaking the range of x. To mimic this behaviour, we first
calculate k using the protocol for multiple interval containment
(Section IV-C) and reveal its value to the evaluators. Then the
above polynomial can be trivially evaluated using protocols
for multiplication and local-truncation.

	Introduction
	Our Contributions
	System optimizations
	Cryptographic improvements
	Orca

	Preliminaries
	Notation
	Function Secret Sharing
	Distributed Comparison Function (DCF)
	Secure 2PC with preprocessing using FSS
	Preprocessing Phase
	Online Phase

	GPU accelerated computing

	Accelerating FSS on a GPU
	Accelerating FSS-based compute on GPU
	Reducing time to read FSS keys

	Protocols for Basic Building Blocks
	Select
	Signed Extension
	Multiple Interval Containment

	Protocols for Secure Training
	ReLU
	Stochastic Truncation
	Stochastic-Truncation + Activations

	Protocols for Softmax
	FixToFloat
	FloatToFix
	End-to-end training

	Implementation
	Evaluation
	End-to-end training with Orca
	Comparison with baselines
	GPU baselines
	CPU baselines

	Improvements breakup

	Related Work
	Conclusion
	References
	Appendix
	Additional Empirical Results
	Microbenchmarks
	Online communication
	Split of Orca time between key read and compute

	Formal Correctness and Security of FSS Scheme
	Our Threat Model
	Proof of [lem:stochastictruncation]Lemma 1
	Proof for the correctness of DReLU offset function
	Stochastic-Truncation + ReLU + MaxPool
	Security proof of ReLUExtn-f,n
	Protocol and security proof for FixToFloatn,f
	FloatToFix
	End-to-end training protocols
	Piranha Functionalities using FSS protocols
	Local-Truncation + ReLU
	Approximate Softmax

