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Abstract. In this paper we characterize all 2n-bit-to-n-bit Pseudoran-
dom Functions (PRFs) constructed with the minimum number of calls
to n-bit-to-n-bit PRFs and arbitrary number of linear functions. First,
we show that all two-round constructions are either classically insecure,
or vulnerable to quantum period-finding attacks. Second, we categorize
three-round constructions depending on their vulnerability to these types
of attacks. This allows us to identify classes of constructions that could
be proven secure. We then proceed to show the security of the following
three candidates against any quantum distinguisher that asks at most
2n/4 (possibly superposition) queries

TNT(x1, x2) := f3(x2 ⊕ f2(x2 ⊕ f1(x1)))

LRQ(x1, x2) := f2(x2) ⊕ f3(x2 ⊕ f1(x1))

LRWQ(x1, x2) := f3(f1(x1) ⊕ f2(x2)).

Note that the first construction is a classically secure tweakable block
cipher due to Bao et al., and the third construction is shown to be quan-
tum secure tweakable block cipher by Hosoyamada and Iwata with simi-
lar query limits. Of note is our proof framework, an adaptation of Chung
et al.’s rigorous formulation of Zhandry’s compressed oracle technique
in indistinguishability setup, which could be of independent interests.
This framework gives very compact and mostly classical looking proofs
as compared to Hosoyamada and Iwata interpretation of Zhandry’s com-
pressed oracle.
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1 Introduction

Quantum Security. In the past two decades, post-quantum security has attracted
a lot of attention, especially in public-key security. As for symmetric cryptogra-
phy, the consensus used to be that the main threat would come from the speed-up
in exhaustive key search provided by Grover’s algorithm. Hence, a doubling of
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the key length would be sufficient to reach security against quantum distin-
guishers. However, a long line of papers (see e.g. [6,7,8,9,10,13,18,20,21,22,23])
has proven that this was not sufficient, as quantum distinguishers were able to be
significantly more efficient than Grover’s search for some constructions. This has
renewed the interest in formally proving the post-quantum security of symmetric
modes of operation or generic constructions [4,5,12,14,16,17,19,26,28].

Pseudorandom Functions. One of the most studied primitive in symmetric-key
cryptography is the block cipher. Thanks to the classical PRP-PRF Switching
Lemma, block ciphers are known to be secure PRFs in the classical setting as long
as the number of adversarial queries is small in front of 2n/2, where n denotes the
block size. In the quantum setting, this bound degrades to 2n/3 [27], which can be
seen as the quantum equivalent of the so-called birthday bound. Block ciphers
can also be used to build other primitives, such as authenticated encryption
schemes, or message authentication codes, that are secure in the classical sense.
Among these primitives, 2n-bit-to-n-bit PRFs are a key component in building
higher-level optimally-secure (in the classical sense) schemes. Indeed, combining
a universal 2n-bit hash function with a 2n-bit-to-n-bit PRF yields an n-bit
secure variable-input-length PRF, which can be used to create an optimally
secure authenticated encryption scheme using the SIV construction [25]. While
these composition results do not exist yet in the quantum world, constructing a
(quantum secure) contracting PRF from a block cipher is a key component in
building more sophisticated algorithms. A first step in this direction has been
taken by Hosoyamada and Iwata. Indeed, after developing a variant of Zhandry’s
compressed oracle [28] in [14], they have proven that the LRWQ construction

{0, 1}n × {0, 1}n −→ {0, 1}n

(x1, x2) 7−→ LRWQ(x1, x2) := f3(f1(x1)⊕ f2(x2)),

where F1, F2, F3 are random n-bit functions, is a (quantum) secure PRF as long
as the number of queries is small in front of 2n/4 in [17]. Since this construction
uses three PRF calls, two natural questions arise from this result:

– can a construction using only two PRF calls be proven secure?
– does there exist any other secure construction using three PRF calls?

It is worth noting that these questions have conclusively affirmative answers
(see fixed-length CBC-MAC [3]) in the classical setting. In this paper, we aim to
answer the two questions in the quantum settings.

1.1 Our Contributions

Our first contribution is the systematical study of all possible 2n-bit-to-n-bit
PRFs that are built using two or three PRF calls, and only linear function, as
depicted in Fig. 1. In section 2, we start by introducing our notation, and de-
scribing the three main attack strategies that we will rely on. Then, in section 3,
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we prove that all the 2-call constructions are either classically broken, or vulner-
able to a quantum period-finding distinguisher. Furthermore, we identify classes
of 3-call constructions that are insecure, and categorize candidates that may be
secure.

Our second contribution is to prove the security of the following construc-
tions:

TNT(x1, x2) := f3(x2 ⊕ f2(x2 ⊕ f1(x1)))

LRQ(x1, x2) := f2(x2)⊕ f3(x2 ⊕ f1(x1))

LRWQ(x1, x2) := f3(f1(x1)⊕ f2(x2)).

In section 4 we adapt the rigorous formulation of Zhandry’s compressed oracle
technique [28] by Chung et al. [11] in the indistinguishability setting. Using this
framework, in section 5 we prove that all three constructions are secure as long as
the number of adversarial queries is small in front of 2n/4. As a byproduct, we also
prove that the TNT construction [1] is quantum-secure against chosen plaintext
attacks as long as the number of adversarial queries is small in front of 2n/6 by
combining our main result with [17, Theorem 3]. We note that the combination
of Hosoyamada and Iwata’s proof strategy and Chung et al. framework leads
to compact proofs that look mostly classical in nature. As a comparison, we
derive a similar security bound for LRWQ as Hosoyamada and Iwata [17], albeit
without the heavy computations from [17].
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Fig. 1: Graphical representation of the generic 2n-bit-to-n-bit PRF construction
with two (top) and three (bottom) n-bit-to-n-bit PRF calls and linear functions.
In this figure f1, f2, and f3 are n-bit-to-n-bit PRFs, u1, u2, u3, and u4 are
GF(2n)-linear functions, and all wires are n-bit wide.
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2 Preliminaries

The set of all binary strings, including the empty string ⊥, is denoted {0, 1}∗.
For some x, y ∈ {0, 1}∗, x‖y denotes the concatenation of X and Y . For some
positive integer m: [m] denotes the set {1, . . . ,m}, and {0, 1}m denotes the set of
all m-bit binary strings. Throughout this paper, we fix a positive integer n as the
block length. The set {0, 1}n can be viewed as the binary field GF(2n) by fixing
a degree n primitive polynomial. We use ⊕ and � to denote the field addition
(XOR) and field multiplication, respectively, over the finite field GF(2n). For
x, y ∈ GF(2n), we sometimes also write xy to denote x� y.

2.1 Security Definitions

In this paper, a distinguisher is a quantum algorithm that accesses one or more
oracles. The exact model of computation, and the nature and modeling of such
algorithms and oracles are not strictly necessary for the first part of this paper.
So, we postpone a rigorous formalism to a latter section (see section 4). For now,
it suffices to know that we deal with quantum algorithms having access to some
oracle(s). We denote the event that a distinguisher A outputs a bit b after it
runs relative to an oracle O by A O = b.

Pseudorandom Function. Let F : K×{0, 1}m → {0, 1}n be a keyed function,
indexed with keys from K. The pseudorandom function (or PRF) advantage of
some distinguisher A against F is defined as

Advprf
F (A ) :=

∣∣∣Pr
(
A FK = 1

)
− Pr

(
A f = 1

)∣∣∣ , (1)

where K is drawn uniformly at random from K, and f : {0, 1}m → {0, 1}n is a
uniform random function.

Pseudorandom Permutation. Let E : K × {0, 1}n → {0, 1}n be a keyed
permutation, indexed with keys from K. The pseudorandom permutation (or
PRP) advantage of some distinguisher A against E is defined as

Advprf
E (A ) :=

∣∣∣Pr
(
A EK = 1

)
− Pr (A π = 1)

∣∣∣ , (2)

where K is drawn uniformly at random from K, and p is a uniform random
permutation of {0, 1}n.

2.2 Some Useful Attack Strategies

Throughout this paper, we often employ the following attack strategies to con-
struct generic distinguishers against various constructions.
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Proposition 1 (Zero-Sum Four-Cycle). Let f1, f2 : {0, 1}n → {0, 1}n be
two length preserving functions and let (α1, α2) and (β1, β2) be two arbitrary
two dimensional vectors over GF(2n). Consider the function F : {0, 1}2n →
{0, 1}n defined by the mapping (x1, x2) 7→ f1(α1x1 ⊕ α2x2) ⊕ f2(β1x1 ⊕ β2x2).
Then, there exists four distinct pairs (x11, x

1
2), . . . , (x41, x

4
2) ∈ {0, 1}2n such that,

F (x11, x
1
2)⊕ F (x21, x

2
2)⊕ F (x31, x

3
2)⊕ F (x41, x

4
2) = 0.

Proof. First, assume that (β1, β2) is dependent on (α1, α2). In this case one can
always find four distinct pairs (x11, x

1
2), (x21, x

2
2), (x31, x

3
2), (x41, x

4
2) ∈ {0, 1}2n such

that

α1x
1
1 ⊕ α2x

1
2 = α1x

2
1 ⊕ α2x

2
2, α1x

3
1 ⊕ α2x

3
2 = α1x

4
1 ⊕ α2x

4
2.

Since (β1, β2) is dependent on (α1, α2), this straightaway implies that

β1x
1
1 ⊕ β2x12 = β1x

2
1 ⊕ β2x22, β1x

3
1 ⊕ β2x32 = β1x

4
1 ⊕ β2x42,

whence we get the first part of the proposition, as F (x11, x
1
2) = F (x21, x

2
2) and

F (x31, x
3
2) = F (x41, x

4
2). Now, assume that (α1, α2) is independent of (β1, β2),

which implies that the mapping

(x1, x2)
ϕ7−→ (α1x1 ⊕ α2x2, β1x1 ⊕ β2x2)

is a bijection. Fix some y1 6= y′1 ∈ GF(2n) and y2 6= y′2 ∈ GF(2n), and compute

(x11, x
1
2) = ϕ−1(y1, y2) (x21, x

2
2) = ϕ−1(y′1, y2)

(x31, x
3
2) = ϕ−1(y′1, y

′
2) (x41, x

4
2) = ϕ−1(y1, y

′
2),

so that F (x11, x
1
2) ⊕ F (x21, x

2
2) = f1(y1) ⊕ f1(y′1) = F (x31, x

3
2) ⊕ F (x41, x

4
2). This

proves the second part of the proposition. ut

One can extend Proposition 1 to Proposition 2 in a straightforward manner.

Proposition 2 (Generalized Zero-Sum Four-Cycle). Let f1, f2, f3 :
{0, 1}n → {0, 1}n be three length preserving functions and let (α1, α2), (β1, β2),
and (γ1, γ2) be three arbitrary two dimensional vectors over GF(2n). Consider
the function F : {0, 1}2n → {0, 1}n defined by the mapping

(x1, x2) 7→ f1(α1x1 ⊕ α2x2)⊕ f2(β1x1 ⊕ β2x2)⊕ f3(γ1x1 ⊕ γ2x2).

Then, there exists four distinct pairs (x11, x
1
2), . . . , (x41, x

4
2) ∈ {0, 1}2n such that,

F (x11, x
1
2)⊕ F (x21, x

2
2)⊕ F (x31, x

3
2)⊕ F (x41, x

4
2) = 0.

Proof. First, consider the case where (β1, β2) and (γ1, γ2) are depen-
dent on (α1, α2). In this case, one can always find four distinct pairs
(x11, x

1
2), (x21, x

2
2), (x31, x

3
2), (x41, x

4
2) ∈ {0, 1}2n such that

α1x
1
1 ⊕ α2x

1
2 = α1x

2
1 ⊕ α2x

2
2, α1x

3
1 ⊕ α2x

3
2 = α1x

4
1 ⊕ α2x

4
2.
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This straightaway implies that

β1x
1
1 ⊕ β2x12 = β1x

2
1 ⊕ β2x22 γ1x

1
1 ⊕ γ2x12 = γ1x

2
1 ⊕ γ2x22

β1x
3
1 ⊕ β2x32 = β1x

4
1 ⊕ β2x42 γ1x

3
1 ⊕ γ2x32 = γ1x

4
1 ⊕ γ2x42

since (β1, β2) and (γ1, γ2) are dependent on (α1, α2). This proves the first part
of the proposition.

Now, assume that (α1, α2) and (β1, β2) are independent, but (γ1, γ2) is a
linear combination of (α1, α2) and (β1, β2). In other words, we have

(γ1, γ2) = (aα1 ⊕ bβ1, aα2 ⊕ bβ2) (3)

for some {a, b} 6= {0}. Now, we can fix some (y1, y2) 6= (y′1, y
′
2) ∈ GF(2n) ×

GF(2n), such that

ay1 ⊕ by2 = ay′1 ⊕ by′2. (4)

Since, (α1, α2) is independent of (β1, β2), the mapping (x1, x2)
ϕ7−→ (α1x1 ⊕

α2x2, β1x1 ⊕ β2x2) is bijective. Let

(x11, x
1
2) = ϕ−1(y1, y2) (x21, x

2
2) = ϕ−1(y′1, y2)

(x31, x
3
2) = ϕ−1(y′1, y

′
2) (x41, x

4
2) = ϕ−1(y1, y

′
2)

From (3) and (4), we have

γ1x
1
1 ⊕ γ2x12 = γ1x

3
1 ⊕ γ2x32

γ1x
2
1 ⊕ γ2x22 = γ1x

4
1 ⊕ γ2x42

This proves the second part of the proposition. ut

Note that, Proposition 1 is a special case of Proposition 2, where f3 is a constant
function.

Proposition 3 (Period Finding). For any f1, f2, f3 : {0, 1}n → {0, 1}n, sup-
pose F : {0, 1}2n → {0, 1}n is defined by the mapping (x1, x2) 7→ f3(x2⊕f1(x1))⊕
f2(x1). Then, for any x01 6= x11 ∈ {0, 1}n, the function Gx0

1,x
1
1

: {0, 1}n → {0, 1}n

defined by the mapping x2 7→ F (x01, x2) ⊕ F (x11, x2) is periodic and the period
s(x01, x

1
1) = f1(x01)⊕ f1(x11).

Proof. For any x2 ∈ {0, 1}n, we have

Gx0
1,x

1
1
(x2 ⊕ s(x01, x11)) = F (x01, x2 ⊕ s(x01, x11))⊕ F (x11, x2 ⊕ s(x01, x11))

= f3(x2 ⊕ f1(x01)⊕ f1(x11)⊕ f1(x01))

⊕ f3(x2 ⊕ f1(x01)⊕ f1(x11)⊕ f1(x11))

= F (x01, x2)⊕ F (x11, x2) = Gx0
1,x

1
1
(x2).
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While the first two Propositions are interesting even in the classical setting,
Proposition 3 is mainly useful in the quantum setting. Specifically, it facilitates
the application of Simon’s algorithm (see [24] for details). We often employ
Proposition 3 in conjunction with the following useful result [20] due to Kaplan
et al., which greatly extends the scope of Simon’s algorithm.

Let f : {0, 1}n → {0, 1}n be a random function with some period s 6= 0. In
[20], Kaplan et al. define

ε(f, s) := max
t∈{0,1}n\{0,s}

Pr
f,x

(f(x) = f(x⊕ t)) (5)

Theorem 1 ([20], Theorem 1). Let f : {0, 1}n → {0, 1}n be a random func-
tion with some period s 6= 0. If ε(f, s) ≤ p0 < 1, then Simon’s algorithm returns

s with cn queries, with probability at least 1−
(

2
(
1+p0

2

)c)n
.

Note that choosing c > 3/(1−p0) ensures that the error decreases exponentially
with n. Thus, it is sufficient to show that ε(f, s) < 1. Specifically, it is well-known
that ε(f, s) = Θ(n2−n) when f is a random function. Then, Simon’s algorithm
returns the period with probability close to 1.

3 Characterizing 2n-to-n-bit Functions

Our first goal is to identify the minimum number of secret random functions
and arbitrary linear functions, required to construct a secure 2n-to-n-bit PRF.
Actually, we go a step further and characterize all the secure (and interesting)
PRFs with minimum number of calls. Since, LRWQ [17] by Hosoyamada and
Iwata, can also be considered as a secure PRF, we already have an upper bound
of three calls. So we limit ourselves to at most three calls constructions. The
attacks presented here are apparent enough to verify that the query complexity
is at most polynomial in n to achieve a constant PRF advantage. So, for the
sake of simplicity, we skip computing the exact query complexity and attack
advantage for the attacks. Further, to start off, we observe that functions based
on just one random function are trivially broken in the classical sense as well.
So, we skip them from our discussions, and move on to two or more random
functions.

Let f1, f2, f3; {0, 1}n → {0, 1}n, be three independent secret random func-
tions. Let α = (α1, α2) ∈ {0, 1}2n and β = (β1, β2, β3) ∈ {0, 1}3n, γ =
(γ1, γ2, γ3, γ4) ∈ {0, 1}4n, δ = (δ1, δ2, δ3, δ4, δ5) ∈ {0, 1}5n be some public pa-
rameters.

3.1 Constructions Based on Two Calls

For a 3× 4 matrix

A =

α1 α2 0 0
β1 β2 β3 0
γ1 γ2 γ3 γ4


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our candidate function FA,f1,f2 : {0, 1}2n → {0, 1}n indexed by A, f1, and f2 is
described below.
On input (x1, x2) ∈ {0, 1}2n:

1. u1(x1, x2) = α1x1 ⊕ α2x2

2. v1(x1, x2) = f1(u1(x1, x2))

3. u2(x1, x2, v1) = β1x1 ⊕ β2x2 ⊕ β3v1
4. v2(x1, x2) = f2(u2(x1, x2, v1))

5. u3(x1, x2, v1, v2) = γ1x1 ⊕ γ2x2 ⊕ γ3v1 ⊕ γ4v2
6. FA,f1,f2(x1, x2) = y = u3(x1, x2, v1, v2)

With a slight abuse of notation, we simply write ui and vj to denote ui(·) vj(·)
for all i ∈ [3] and j ∈ [2], whenever the input is known from the context, or the
stated fact is independent of the inputs. With this slight simplification, we can
represent the entire function using the following system of equations,

A ·


x1
x2
v1
v2

 =

u1u2
u3


First, notice that some straightforward simplifications can be done with respect
to A:

1. Without loss of generality, we assume that γ1 = γ2 = 0, since the adversary
can easily create u′3 = u3 ⊕ γ1x1 ⊕ γ2x2 for any pair of inputs (x1, x2) ∈
{0, 1}2n.

2. We assume that each row of A is non-zero. Otherwise, there exists i ∈ [3]
such that ui = 0, whence either F is independent of f1 or f2, or it is a
constant.

3. We assume that each column of A is non-zero as well. Otherwise, for all
i ∈ [3], ui is independent of one of x1, x2, v1, and v2, whence F is independent
of f1 or f2 or it is independent of one of its inputs.

4. We can multiply any row by a non-zero constant. Indeed, for the first two
rows, multiplying the input of a uniformly random function by a non-zero
constant does not change the distribution of the outputs. For the final row,
the adversary can multiply the outputs of the construction by any constant.

Using the above simplifications, from now on we can assume that γ4 = 1 by
normalizing the final row by γ−14 . Given these initial simplifications, we do the
characterization of FA,f1,f2 into three cases:

Case 1: β1 = β2 = 0. Then, according to our simplification β3 = 1. Therefore,

F (x1, x2) = (γ3f1(u1))⊕ (f2(f1(u1))).

Using Proposition 1, we can find (x1, x2) 6= (x′1, x
′
2) such that F (u1(x1, x2)) ⊕

F (u1(x′1, x
′
2)) = 0. That gives a classical collision attack.
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Case 2: (β1 6= 0 or β2 6= 0) and α1β2 = α2β1. Then, there exists a non-zero
c ∈ GF(2n), such that (β1, β2) = (cα1, cα2). So for every pair of inputs (x1, x2) 6=
(x′1, x

′
2), such that α1x1⊕α2x2 = α1x

′
1⊕α2x

′
2, we must have β1x1⊕β2x2 = β1x

′
1⊕

β2x
′
2. Therefore, u1(x1, x2) = u1(x′1, x

′
2) and u2(x1, x2, v1) = u2(x′1, x

′
2, v1) which

implies that u3(x1, x2, v1, v2) = u3(x′1, x
′
2, v1, v2). This clearly gives a collision

attack on the construction for inputs (x1, x2) and (x′1, x
′
2).

Case 3: (β1 6= 0 or β2 6= 0) and α1β2 6= α2β1. Then the construction is
reduced to,

F (x1, x2) = γ3f1(α1x1 ⊕ α2x2)⊕ f2 (β1x1 ⊕ β2x2 ⊕ β3f1(α1x1 ⊕ α2x2)) .

Let f ′1 = γ3f1, and f
′′

1 = β3f1, and u′2(x1, x2) = β1x1 ⊕ β2x2. Then, the above
construction reduces to

F (x1, x2) = f ′1(u1(x1, x2))⊕ f2
(
u′2(x1, x2)⊕ f

′′

1 (u1(x1, x2))
)
.

Using Proposition 3, we can come up with a periodic function, and hence using
Theorem 1, we can find the period in polynomial number of queries.

This concludes the characterization of two call constructions. Through our analy-
sis, we have established that two calls are not sufficient to construct a 2n-to-n-bit
quantum secure PRF.

3.2 Constructions Based on Three Calls

For a 4× 5 matrix

A =


α1 α2 0 0 0
β1 β2 β3 0 0
γ1 γ2 γ3 γ4 0
δ1 δ2 δ3 δ4 δ5


our candidate function FA,f1,f2,f3 : {0, 1}2n → {0, 1}n indexed by A, f1, f2, and
f3 is described below.

On input (x1, x2) ∈ {0, 1}2n:

1. u1(x1, x2) = α1x1 ⊕ α2x2

2. v1(x1, x2) = f1(u1(x1, x2))

3. u2(x1, x2, v1) = β1x1 ⊕ β2x2 ⊕ β3v1
4. v2(x1, x2) = f2(u2(x1, x2, v1))

5. u3(x1, x2, v1, v2) = γ1x1 ⊕ γ2x2 ⊕ γ3v1 ⊕ γ4v2
6. v3(x1, x2) = f3(u3(x1, x2, v1, v2))

7. u4(x1, x2, v1, v2, v3) = δ1x1 ⊕ δ2x2 ⊕ δ3v1 ⊕ δ4v2 ⊕ δ5v3
8. FA,f1,f2,f3(x1, x2) = y = u4(x1, x2, v1, v2, v3)
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With similar simplifications as in the case of two call analysis, we can represent
the entire function using the following system of equations,

A ·


x1
x2
v1
v2
v3

 =


u1
u2
u3
u4

 (6)

Further, we can make the same initial simplifying assumptions, as made in case
of two call constructions, namely

– δ1 = δ2 = 0;
– each row of the matrix is non-zero; and
– each column of the matrix is non-zero.

Further, from now on we assume that δ5 = 1. Moreover, we claim that the
following preconditions are necessary to get a secure construction:

Precondition 1: (α1, α2) should be independent of (β1, β2).

Precondition 2: γ4 6= 0 or
(a) (α1, α2) should be independent of (γ1, γ2); and

(b) (β1, β2, β3) should be independent of (γ1, γ2, γ3).

Precondition 3:

(
β3 γ3
γ4 0

)
6=
(

0 0
0 0

)
.

Indeed, in Proposition 4, we show that the construction is susceptible to efficient
(quantum) attack if any one of the three conditions are violated.

Proposition 4. The Precondition 1, 2, and 3, as stated above are necessary for
FA,f1,f2,f3 to be a quantum secure PRF.

Proof. First consider the Precondition 1. Our analysis is divided into two cases.

– If α1γ2 = α2γ1, then we can construct a collision attack on F using a similar
argument as used in Case 2 for two call constructions.

– Otherwise, the function (x1, x2) 7→ (α1x1⊕α2x2, γ1x1⊕γ2x2) is a bijection.
Moreover, there exists c 6= 0 such that, (α1, α2) = (cβ1, cβ2). Let u′3(x1, x2) =
γ1x1 ⊕ γ2x2. Then we can rewrite F (x1, x2) as

δ3f1(u1)⊕δ2f2(cu1⊕β3f1(u1))⊕f3 (u′3 ⊕ γ3f1(u1)⊕ γ4f2(cu1 ⊕ β3f1(u1))) .

We define F1, F2 : {0, 1}n → {0, 1}n by

F1(u1) = δ3f1(u1)⊕ δ2f2(cu1 ⊕ β3f1(u1)),

F2(u1) = γ3f1(u1)⊕ γ4f2(cu1 ⊕ β3f1(u1)),

This reduces F (x1, x2) to F1(x1)⊕f3(x2⊕F2(x1)), which, as we show in Propo-
sition 3, is susceptible to period finding, and hence hence distinguishable in
polynomial number of queries using Theorem 1.
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Next, we take Precondition 2. Without loss of generality, assume that Pre-
condition 1 holds, otherwise a similar attack will work in this case as well (irre-
spective of γ4 = 0 or not). First, consider the case when (α1, α2) and (γ1, γ2)
are dependent. Then, there exists c 6= 0 such that (cα1, cα2) = (γ1, γ2). Let
u′2 = β1x1 ⊕ β2x2, then we can rewrite F (x1, x2) as

δ3f1(u1)⊕ δ2f2(u′2 ⊕ β3f1(u1))⊕ f3 (cu1 ⊕ γ3f1(u1)) .

We define F1, F2 : {0, 1}n → {0, 1}n by

F1(u1) = δ3f1(u1)⊕ f3 (cu1 ⊕ γ3f1(u1)) , F2(u1) = β3f1(u1).

This reduces F (x1, x2) to F1(u1)⊕ δ3f2(u′2⊕F2(u1)), which is susceptible to pe-
riod finding (using Proposition 3 and Theorem 1). For the case when (β1, β2, β3)
and (γ1, γ2, γ3) are dependent, we can argue similarly that the resulting con-
struction is susceptible to period finding.

Finally, we consider Precondition 3. In this case, the adversary can deduce
and to some extent manipulate u1, u2, u3 (since he knows the parameters). More
precisely, we can rewrite F (x1, x2) as

F (x1, x2) = δ3f1(α1x1 ⊕ α2x2)⊕ δ4f2(β1x1 ⊕ β2x2)⊕ δ5f3(γ1x1 ⊕ γ2x2).

Using Proposition 2, we can find four queries whose outputs sum to 0. This gives
a simple classical distinguisher. ut

Onwards, using our simplifications and preconditions, we can rewrite the
three call system given in (6) as

α1 α2 0 0 0
β1 β2 β3 0 0
γ1 γ2 γ3 γ4 0
0 0 δ3 δ4 1



x1
x2
v1
v2
v3

 =


u1
u2
u3
u4

 (7)

In the following discussion, we divide our analysis into two cases:

Case 1: γ4 = 0. Without loss of generality assume δ4 = 1, and consider
the three sub cases below.
(a) β3 = 0. By Precondition 3, we must have γ3 6= 0. For simplicity assume

γ3 = 1. Moreover, notice that Precondition 1 implies that without loss of
generality, (

α1 α2

β1 β2

)
=

(
1 0
0 1

)
Next, note that γ2 6= 0, otherwise this violates Precondition 2. Therefore,
we are left with the following general matrix,

1 0 0 0 0
0 1 0 0 0
γ1 γ2 1 0 0
0 0 δ3 1 1

 (8)
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where the blue colored elements indicate strictly non-zero values only.
We further, simplify the above matrix, by setting γ1 = δ3 = 0, and
γ2 = 1. This simplification stems from the point of view of efficiency. A
simple XOR is always preferable to a finite field multiplication followed
by an XOR. Finally, we arrive to the following matrix:

ALRQ :=


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 1

 (9)

and the resulting construction is defined as

LRQ(x1, x2) := f2(x2)⊕ f3(x2 ⊕ f1(x1)) (10)

(b) γ3 = 0. By Precondition 3, we must have β3 6= 0. For simplicity, assume
β3 = 1. Moreover, notice that Precondition 2 implies that without loss of
generality, (

α1 α2

γ1 γ2

)
=

(
1 0
0 1

)
Next , note that we must have β2 6= 0, otherwise this violates Precondition
1. Therefore, we are left with the following general matrix,

1 0 0 0 0
β1 β2 1 0 0
0 1 0 0 0
0 0 δ3 1 1

 (11)

On further simplification, by setting β1 = δ3 = 0 and β2 = 1, we observe
that this corresponds to the same construction as (9) up to a relabeling
of functions.

(c) β3, γ3 6= 0. Without loss of generality assume that β3 = 1. Then, we are
left with the following general matrix,

α1 α2 0 0 0
β1 β2 1 0 0
γ1 γ2 γ3 0 0
0 0 δ3 1 1

 (12)

where the red colored submatrix represents the fact that it satisfies Pre-
condition 1 and 2, i.e., we must have (α1, α2) independent of (β1, β2) and
(γ1, γ2), and (β1, β2, 1) independent of (γ1, γ2, γ3). Using similar simpli-
fying arguments as before, and preserving isomorphism up to relabeling
of functions, we arrive at the following interesting matrices

ACSUMQ :=


1 0 0 0 0
0 1 1 0 0
1 1 1 0 0
0 0 0 1 1

 , ALMQ :=


1 1 0 0 0
0 1 1 0 0
1 0 1 0 0
0 0 0 1 1

 (13)
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and the resulting constructions are defined as

CSUMQ(x1, x2) := f2(x2 ⊕ f1(x1))⊕ f3(x2 ⊕ x1 ⊕ f1(x1)) (14)

LMQ(x1, x2) := f2(x2 ⊕ f1(x1 ⊕ x2))⊕ f3(x1 ⊕ f1(x1 ⊕ x2)) (15)

Case 2: γ4 6= 0. Without loss of generality, assume that γ4 = 1. Consider
the following three sub cases:
(a) β3 = γ3 = 0. Then, using Precondition 1, we are left with the following

general matrix, 
1 0 0 0 0
0 1 0 0 0
γ1 γ2 0 1 0
0 0 δ3 δ4 1

 (16)

where blue colored elements indicate strictly non-zero values only. The
condition γ1 6= 0 can be easily argued as follows: Suppose, γ1 = 0. Then,
using Proposition 1, one can find four queries such that the outputs
sum to 0, resulting in a classical distinguishing attack. Similarly, δ3 6= 0,
since each column must have one non-zero entry. Further, by setting
γ2 = δ4 = 0 and γ1 = δ3 = 1, we arrive at the same construction as in
(9) up to a relabeling of functions and input variables.

(b) β3 = 0 and γ3 6= 0. Then, using Precondition 1, we are left with the
following general matrix, 

1 0 0 0 0
0 1 0 0 0
γ1 γ2 γ3 1 0
0 0 δ3 δ4 1

 (17)

where blue colored elements indicate strictly non-zero values only. By
setting γ1 = γ2 = δ3 = δ4 = 0 and γ3 = 1, we arrive at the following
matrix

ALRWQ :=


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 1

 (18)

which corresponds to the LRWQ construction [17] by Hosoyamada and
Iwata. The function is defined as

LRWQ(x1, x2) := f3 (f1(x1)⊕ f2(x2)) (19)

(c) γ3 = 0 and β3 6= 0. Without loss of generality, we assume that β3 = 1.
Then, using Precondition 1, we are left with the following general matrix

1 0 0 0 0
0 1 1 0 0
γ1 γ2 0 1 0
0 0 δ3 δ4 1

 (20)
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where red colored elements indicate that they cannot all be 0. This can
be easily argued by looking at the resulting construction. Suppose, γ1 =
γ2 = 0. Then, the second and third calls can be clubbed together (since
the output of the second call is directly fed into the third call), resulting
in a reduction to an equivalent two call construction, which is already
shown to be insecure. Now, using the simplification steps, we get the
following two matrices

AEDMQ :=


1 0 0 0 0
0 1 1 0 0
1 0 0 1 0
0 0 0 0 1

 , ATNT :=


1 0 0 0 0
0 1 1 0 0
0 1 0 1 0
0 0 0 0 1

 (21)

where the second matrix, i.e., ATNT corresponds to the TNT construction
[2] by Bao et al. The corresponding constructions are defined as follows:

EDMQ(x1, x2) := f3(x1 ⊕ f2(x2 ⊕ f1(x1))) (22)

TNT(x1, x2) := f3(x2 ⊕ f2(x2 ⊕ f1(x1))) (23)

(d) β3, γ3 6= 0. In this case, using Precondition 1, we can have the following
general matrix, 

1 0 0 0 0
0 1 β3 0 0
γ1 γ2 γ3 1 0
0 0 δ3 δ4 1

 (24)

where blue colored elements indicate strictly non-zero values only. Fur-
ther, by setting γ1 = γ2 = δ3 = δ4 = 0, and β3 = γ3 = 1, we get

AEDMDQ :=


1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1

 (25)

and the corresponding construction is defined as

EDMDQ(x1, x2) := f3(f1(x1)⊕ f2(x2 ⊕ f1(x1))) (26)

A Summary of Interesting Candidates. In Table 1, we summarize the
definitions and special features of the seven candidate PRF constructions. Three
of the seven candidates, namely, LRQ, LRWQ [17], and TNT [2], are special as
they can act as a tweakable permutation when the underlying primitives are
permutations. Further, they are also among the most favorable candidates in
terms of desirable implementation features like XOR counts, parallelizability, and
state size. So, we concentrate on proving the security of these three candidates. In
this paper, we mainly consider the PRF security of these constructions. However,
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the TPRP security can be easily recovered using a well-known switching result
[14,15] due to Hososyamada and Iwata.1

Table 1: Summary of the possibly secure PRF candidates with minimum number
of random function calls.

Candidate Definition Memory XORs Invertible Parallel

LRQ f2(x2)⊕ f3(x2 ⊕ f1(x1)) 2n 2 X X

CSUMQ f2(x2 ⊕ f1(x1))⊕ f3(x2 ⊕ x1 ⊕ f1(x1)) 2n 3 × X

LMQ f2(x2 ⊕ f1(x1 ⊕ x2))⊕ f3(x1 ⊕ f1(x1 ⊕ x2)) 2n 4 × X

LRWQ [17] f3(f1(x1)⊕ f2(x2)) 2n 1 X X

EDMQ f3(x1 ⊕ f2(x2 ⊕ f1(x1))) n 2 × ×

TNT [2] f3(x2 ⊕ f2(x2 ⊕ f1(x1))) n 2 X ×

EDMDQ f3(f1(x1)⊕ f2(x2 ⊕ f1(x1))) n 2 × ×

4 Quantum Proof Framework

Let Y denote {0, 1}n. Let BC := {|y〉 | y ∈ Y} denote the computational basis
of the n-qubit space C2n . For each y ∈ Y let ŷ denote the group homomorphism
z 7→ (−1)y •z from Y to {1,−1} (the latter a group under multiplication). Then

Ŷ := {ŷ | y ∈ Y} forms a group under the group operation ŷ+ ẑ := ŷ ⊕ z (where

⊕ denote bitwise XOR, the group operation in Y); we call Ŷ the dual group of Y.

(The definition of the group operation for Ŷ also implies that y 7→ ŷ is a group

isomorphism from Y to Ŷ.)

For each ŷ ∈ Ŷ define∣∣ŷ〉 :=
1

2n/2

∑
z∈Y

ŷ(z) |z〉 =
1

2n/2

∑
z∈Y

(−1)y
•z |z〉 .

Then BF := {
∣∣ŷ〉 | ŷ ∈ Ŷ} also constitutes a basis of C2n ; we call it the

Fourier basis. The reverse basis transformation from the Fourier basis to the
computational basis is given by

|y〉 :=
1

2n/2

∑
ẑ∈Ŷ

ẑ(y)
∣∣ẑ〉 =

1

2n/2

∑
ẑ∈Ŷ

(−1)z
•y
∣∣ẑ〉 .

Next, let Z denote the set Y ∪ {⊥} for a special symbol ⊥; similarly Ẑ will

denote Ŷ ∪ {⊥}. We also choose a corresponding norm-1 vector |⊥〉 orthogonal

1 Remark that the TPRP security would only hold against unidirectional quantum
distinguishers.
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to C2n , so that the span of both BC := {|y〉 | y ∈ Z} and BF := {
∣∣ŷ〉 | ŷ ∈

Ẑ} is C2n+1; we’ll call BC and BF the computational basis and Fourier basis
respectively of the extended space C2n+1.

Functions and Databases. Let X denote {0, 1}m for some arbitrary m, and
let F denote the set of m-bit-to-n-bit classical functions f : X −→ Y. The
quantum truth table of f is defined as

|f〉 :=
⊗
x∈X
|x〉 |f(x)〉 .

Let F̂ denote the set of Fourier functions f̂ : X −→ Ŷ. The quantum truth table
of f̂ is defined similarly as ∣∣f̂ 〉 :=

⊗
x∈X
|x〉
∣∣f̂(x)

〉
.

For a subset S ⊆ X , a function f : S −→ Y will be called a partial function
from X to Y. A partial function f can be extended to a function df : X −→ Z
by defining df (y) = ⊥ for all y ∈ X \ S. We call df the database representing
f , with ⊥ denoting the cells where f is not defined. (When f is a full function,
df coincides with f .) The database will also be represented as a quantum truth
table

|df 〉 :=
⊗
x∈X
|x〉 |df (x)〉 .

Similarly we define partial Fourier functions f̂ : S −→ Ŷ, databases df̂ : X −→ Ẑ
representing partial Fourier functions, and their quantum truth tables

∣∣df̂〉 .

When f and f̂ are clear from context, we’ll find it convenient to drop the sub-
scripts and write df and df̂ simply as d and d̂ respectively. We’ll write D (resp.

D̂) to denote the set of all databases d : X −→ Z (resp. all Fourier databases

d̂ : X −→ Ẑ). When convenient we will treat a database d as a relation on X ×Y
and write (x, y) ∈ D to denote d(x) = y; |d| will then denote the size of this
relation, i.e., the size of {x ∈ X | d(x) ∈ Y}.

Our notation allows us to define an easy correspondence between classical
functions and Fourier functions: for any function f ∈ F , let f̂ ∈ F̂ be defined as

the map x 7→ f̂(x). Then we have∣∣f̂ 〉 =
1

2n2m/2

∑
g∈F

(−1)f
•g |g〉 , (27)

where f • g is defined as
∑
x∈X f(x) • g(x). (For a proof of (27) see App. B.)

Thus, {|f〉 | f ∈ F} and {
∣∣f̂ 〉 | f̂ ∈ F̂} span the same space (isomorphic to

C2n2m

). Similarly we can show that {|d〉 | d ∈ D} and {
∣∣d̂ 〉 | d̂ ∈ D̂} span the

same space isomorphic to C(2n+1)2
m

; we call this space the database space D.
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Letting 0 denote the constant 0n function and observing that 0 • g = 0 for any
g ∈ F , we have ∣∣0̂〉 =

1

2n2m/2

∑
g∈F
|g〉 ,

the uniform superposition over all functions in F .

The Fourier Oracle. Given a truth-table representation
∣∣f〉 of a function

f ∈ F , the standard oracle acts on the adversary registers |x〉 |y〉 and the truth-
table registers

∣∣f〉 as

stO |x〉 |y〉 ⊗
∣∣f〉 = |x〉

∣∣y ⊕ f(x)
〉
⊗
∣∣f〉 .

If we first put the adversary’s response register and the truth-table register in
the Fourier basis first, we have

stO |x〉
∣∣ŷ〉 ⊗ ∣∣f̂ 〉 = |x〉

∣∣ŷ〉 ⊗ ∣∣f̂ + δ̂xy
〉
, (28)

where δxy is the function in F defined as

δxy(z) = y, when z = x,

= 0, otherwise,

and the operations ⊕ in F and + in F̂ are defined point-wise. (For a proof of (28)
see App. B.) We define the operator Oxŷ on the truth-table register as

Oxŷ
∣∣f̂ 〉 :=

∣∣f̂ + δ̂xy
〉
.

Then we can write

stO |x〉
∣∣ŷ〉 ⊗ ∣∣f̂ 〉 = |x〉

∣∣ŷ〉 ⊗ Oxŷ
∣∣f̂ 〉 .

The Compressed Oracle. The cell compression unitary comp0 on C2n+1 is
defined on the basis BF as

comp0 := |⊥〉〈0̂| + |0̂〉〈⊥| +
∑

ŷ∈Ŷ\{0̂}

|ŷ〉〈ŷ| .

Then, for any
∣∣ŷ〉 ∈ BF , we have

comp0
∣∣ŷ〉 = |⊥〉 , when ŷ = 0̂,

=
∣∣0̂〉 , when ŷ = ⊥,

=
∣∣ŷ〉 , otherwise.

For any r let Ir denote the identity operation over r qubits. Then the database
compression unitary comp on D is defined as

comp :=
⊗
X

(Im ⊗ comp0).
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The compressed oracle cO is defined jointly on the adversary’s registers and the
oracle’s database registers as

cO := (Im+n ⊗ comp) ◦ stO ◦ (Im+n ⊗ comp).

For a database d̂ we have

cO |x〉
∣∣ŷ〉 ⊗ ∣∣d̂ 〉 = |x〉

∣∣ŷ〉 ⊗ cOxŷ
∣∣d̂ 〉 ,

where cOxŷ := comp ◦ Oxŷ ◦ comp.

Domain-Restricted Databases. For a subset X̃ of X we will write D|X̃ to

denote the set of databases restricted to X̃ , defined equivalently as {d|X̃ | d ∈ D}
or the set of databases d : X̃ −→ Z. While this is technically equivalent to a
partial function from X to Z, we emphasise the distinction that in the case of a
domain-restricted database, we do not expect it to be queried on any x /∈ X̃ .

Since D is a basis of the database space D, a domain-restricted database

space will span a subspace of D isomorphic to C(2n+1)|X̃ | ; usually we won’t need
to refer to this space explicitly. We continue to represent elements of X̃ as m-bit
numbers.

Transition Capacity. For a domain-restricted database-set D|X̃ , a subset P ⊆
D|X̃ will be called a database property on D|X̃ . We also define the projection

ΠP :=
∑
d∈P

|d〉〈d| .

For a database d ∈ D|X̃ and an x ∈ X̃ define

d|x := {d′ ∈ D|X̃ | d
′(x′) = d(x′)∀x′ ∈ X̃ \ {x}}.

In other words, d|x is the set of databases in D|X̃ which are identical to d except
(possibly) at x. (Note that since d (resp. x) is also in D (resp. X ), d|x is only
well-defined when we specify D|X̃ as well; however, since D|X̃ will usually be
clear from the context, for notational convenience we leave the dependence of
d|x on D|X̃ implicit.)

For two properties P and P ′, the transition capacity from P to P ′ is defined
as

JP ↪→ P ′K := max
x∈X̃ ,ŷ∈Ŷ,d∈D|X̃

∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x∥∥.
The transition capacity JP ↪→ P ′K is roughly a measure of an upper bound for
how likely it can be that a database in P will transition into a database in P ′
after a single query to cO.

For any property P let Π̄P := Im+n ⊗ ΠP . We adapt the following useful
proposition from an intermediate result in [11, Proof of Lemma 5.6]. (For a proof
see App. C.)
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Proposition 5. For any pair of properties P and P ′,

JP ↪→ P ′K ≥
∥∥Π̄P′ ◦ cO ◦ Π̄P∥∥.

For a property P ⊆ D|X̃ , let Pc denote its negation, i.e., D|X̃ \ P. Then we
have the following lemma, adapted from [11, Theorem 5.17]. (For a proof see
App. D.)

Lemma 1 (Transition Capacity Bound). Let P,P ′ be properties on D|X̃
such that for every x ∈ X̃ and d ∈ D|X̃ , we can find a set SPc↪→P′

x,d ⊆ Y satisfying

P ′ ∩ d|x ⊆ {d′ ∈ d|x | d′(x) ∈ SP
c↪→P′

x,d } ⊆ P ∩ d|x. (29)

In other words, for any database d′ ∈ d|x,

d′ ∈ P ′ =⇒ d′(x) ∈ SP
c↪→P′

x,d =⇒ d′ ∈ P.

Then we have

JPc ↪→ P ′K ≤ max
x∈X̃ ,d∈D|X̃

√
10|SPc↪→P′

x,d |
2n

.

Size-restricted Properties. For a domain-restricted database-set D|X̃ , a

property P ⊆ D|X̃ , and some i ≤ |X̃ |, we define

P[≤i] := {d ∈ P | |d| ≤ i}.

Then the transition capacity JPc[≤i−1] ↪→ P[≤i]K is a measure of the maximum
probability of a database outside P with at most i − 1 entries changing to a
database in P after a single application cOxŷ . (Note that Pc[≤i−1] denotes the

size-restriction of Pc, and not the complement of P[≤i−1].)

Let ⊥ := {d⊥} denote the empty property (where d⊥ is the empty database,
i.e., the constant-⊥ function). Then for P such that d⊥ /∈ P, ⊥ = P[≤0]. We
define ⊥ q

 P
 :=

q∑
i=1

JPc[≤i−1] ↪→ P[≤i]K,

the q-query transition bound from ⊥ to P. In other words,
⊥ q
 P

is a measure

of the probability that the empty database changes into a database in P at any
point during q successive queries. We point out that this is different from the q-
query transition capacity defined in [11], which only considers a transition after
exactly q queries.
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Two-Domain Systems. Fix two domains X̃0, X̃1 ⊆ X , and define D0 := D|X̃0

and D1 := D|X̃1
. Consider properties B0 ⊆ D0 \ ⊥ and B1 ⊆ D1 \ ⊥, and

define G0 := D0 \ B0 and G1 := D1 \ B1. In addition let I ⊆ X be an additional
domain called the input domain, along with two injective input-preparation maps
p0 : I −→ X̃0 and p1 : I −→ X̃1 that cast an input from I into their respective
domains. Let the oracles cO0 and cO1 be defined as

cO0 |x〉
∣∣ŷ〉 ⊗ ∣∣d̂0〉 = |x〉

∣∣ŷ〉 ⊗ cOp0(x)ŷ
∣∣d̂0〉 ,

cO1 |x〉
∣∣ŷ〉 ⊗ ∣∣d̂1〉 = |x〉

∣∣ŷ〉 ⊗ cOp1(x)ŷ
∣∣d̂1〉 ,

for any x ∈ I, ŷ ∈ Ŷ, d0 ∈ D0 and d1 ∈ D1. Let ID denote the identity over
D (which is also the identity over the subspaces of D spanned by D0 and D1).
Finally, denoting |ψ⊥〉 := |0〉

∣∣0̂〉 ⊗ |d⊥〉, define

T q0 (U0, . . . , Uq) :=
∥∥∥(Uq ⊗ ID) ◦ cO0 ◦ (Uq−1 ⊗ ID) ◦ cO0 ◦ . . .

◦ cO0 ◦ (U1 ⊗ ID) ◦ cO0 ◦ (U0 ⊗ ID) |ψ⊥〉
∥∥∥,

T q1 (U0, . . . , Uq) :=
∥∥∥(Uq ⊗ ID) ◦ cO1 ◦ (Uq−1 ⊗ ID) ◦ cO1 ◦ . . .

◦ cO1 ◦ (U1 ⊗ ID) ◦ cO1 ◦ (U0 ⊗ ID) |ψ⊥〉
∥∥∥,

for unitaries U0, . . . , Uq acting on m+ n qubits.
The central tool of our proof technique will be the following result, adapted

from [17, Proposition 3].

Lemma 2 (Two-Domain Distance Lemma). Suppose we can find a map
h : G0 −→ G1 such that the following hold:

– h is a bijection from G0 to G1 (and hence |G0| = |G1|);
– For every i ∈ [q − 1] ∪ {0}, h|G0[≤i]

is a bijection from G0[≤i] to G1[≤i] (and
hence |G0[≤i]| = |G1[≤i]|);

– For every i ∈ [q], x ∈ I, ŷ ∈ Ŷ, d ∈ G0[≤i−1], and d′ ∈ G0[≤i],〈
d′
∣∣cOp0(x)ŷ ∣∣d〉 =

〈
h(d′)

∣∣cOp1(x)ŷ ∣∣h(d)
〉
.

Then we have

sup
U0,...,Uq

∣∣∣T q0 (U0, . . . , Uq)− T q1 (U0, . . . , Uq)
∣∣∣ ≤⊥ q

 B0


0 +
⊥ q
 B1


1,

where the transition bounds
⊥ q
 •


0 and

⊥ q
 •


1 are defined for queries

to cO0 and cO1 respectively, and the supremum is taken over all unitaries
U0, . . . , Uq acting on m+ n qubits.

When the oracle in use is clear from the context, we will drop the subscripts for

the transition bounds and simply write both as
⊥ q
 •

. We’ll also keep the

input-preparation maps implicit when there’s not scope for ambiguity.
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Proof. Fix U0, . . . , Uq, and let T0 and T1 denote T q0 (U0, . . . , Uq) and

T q1 (U0, . . . , Uq) respectively. We’ll use the shorthand notation Üi := Ui ⊗ ID
for any i ∈ [0..q]. Let |ψ0〉 := Ü0 |ψ⊥〉 = (U0 |0〉

∣∣0̂〉 ) ⊗ |d⊥〉. For each i ∈ [q]

define Wi,0 := Üi ◦ cO0, Wi,1 := Üi ◦ cO1. Then we can write

T0 :=
∥∥∥Wq,0 ◦Wq−1,0 ◦ . . . ◦W1,0 |ψ0〉

∥∥∥,
T1 :=

∥∥∥Wq,1 ◦Wq−1,1 ◦ . . . ◦W1,1 |ψ0〉
∥∥∥.

For each i ∈ [q] define

W b
i,0 := Π̄B0[≤i]

◦Wi,0, W b
i,1 := Π̄B1[≤i]

◦Wi,1,

W g
i,0 := Π̄G0[≤i]

◦Wi,0, W g
i,1 := Π̄G1[≤i]

◦Wi,1.

Then we can write

Wi,0 = W b
i,0 +W g

i,0, Wi,1 = W b
i,1 +W g

i,1.

For each i ∈ [q] further define

|ψi,0〉 := Wi,0 ◦ . . . ◦W1,0 |ψ0〉 , |ψi,1〉 := Wi,1 ◦ . . . ◦W1,1 |ψ0〉 ,∣∣ψgi,0〉 := W g
i,0 ◦ . . . ◦W

g
1,0 |ψ0〉 ,

∣∣ψgi,1〉 := W g
i,1 ◦ . . . ◦W

g
1,1 |ψ0〉 .

Claim. For every i ∈ [q],∥∥|ψi,0〉 − ∣∣ψgi,0〉∥∥ ≤⊥ i
 B0


0,

∥∥|ψi,1〉 − ∣∣ψgi,1〉∥∥ ≤⊥ i
 B1


1.

Proof (of Claim). We will show the first inequality by induction, and claim the
second one by symmetry. For the base case of i = 1, we have∥∥|ψ1,0〉 −

∣∣ψg1,0〉∥∥ =
∥∥W1,0 |ψ0〉 −W g

1,0 |ψ0〉
∥∥ =

∥∥W b
1,0 |ψ0〉

∥∥.
Since d⊥ ∈ G0, and Ü1 commutes with Π̄B0[≤1]

, we have∥∥W b
1,0 |ψ0〉

∥∥ =
∥∥Π̄B0[≤1]

◦W1,0 ◦ Π̄G0[≤0]
|ψ0〉

∥∥
=
∥∥∥Π̄B0[≤1]

◦ Ü1 ◦ cO0 ◦ Π̄G0[≤0]
|ψ0〉

∥∥∥
=
∥∥∥Ü1 ◦ Π̄B0[≤1]

◦ cO0 ◦ Π̄G0[≤0]
|ψ0〉

∥∥∥
≤
∥∥Π̄B0[≤1]

◦ cO0 ◦ Π̄G0[≤0]

∥∥ ≤ JG0[≤0] ↪→ B0[≤1]K0 =
⊥ 1
 B0


0,

where the last inequality in the last line follows from Proposition 5. This proves
the base case. Our induction hypothesis will be that for some i ≥ 2,∥∥|ψi−1,0〉 − ∣∣ψgi−1,0〉∥∥ ≤⊥ i−1

 B0


0.
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Then we have∥∥|ψi,0〉 − ∣∣ψgi,0〉∥∥ =
∥∥Wi,0 |ψi−1,0〉 −W g

i,0

∣∣ψgi−1,0〉∥∥
=
∥∥Wi,0 |ψi−1,0〉 −Wi,0

∣∣ψgi−1,0〉+Wi,0

∣∣ψgi−1,0〉−W g
i,0

∣∣ψgi−1,0〉∥∥
=
∥∥Wi,0(|ψi−1,0〉 −

∣∣ψgi−1,0〉) + (Wi,0 −W g
i,0)
∣∣ψgi−1,0〉∥∥

≤
∥∥Wi,0(|ψi−1,0〉 −

∣∣ψgi−1,0〉)∥∥+
∥∥W b

i,0

∣∣ψgi−1,0〉∥∥
≤
∥∥|ψi−1,0〉 − ∣∣ψgi−1,0〉∥∥+

∥∥Π̄B0[≤i]
◦Wi,0

∣∣ψgi−1,0〉∥∥.
By definition of

∣∣ψgi−1,0〉, it is in the column space of Π̄G0[≤i−1]
. Thus, by reasoning

as in the base case above, we have∥∥Π̄B0[≤i]
◦Wi,0

∣∣ψgi−1,0〉∥∥ ≤ ∥∥Π̄B0[≤i]
◦ cO0 ◦ Π̄G0[≤i−1]

∥∥ ≤ JG0[≤i−1] ↪→ B0[≤i]K0.

Using the above inequality and the induction hypothesis we get∥∥|ψi,0〉 − ∣∣ψgi,0〉∥∥ ≤ ∥∥|ψi−1,0〉 − ∣∣ψgi−1,0〉∥∥+
∥∥Π̄B0[≤i]

◦Wi,0

∣∣ψgi−1,0〉∥∥
≤
⊥ i−1
 B0


0 + JG0[≤i−1] ↪→ B0[≤i]K0 =

⊥ i
 B0


0,

thus completing the proof of the first inequality in the claim. The second in-
equality follows by symmetry. ut

For any x ∈ I, ŷ ∈ Ŷ, d ∈ D0, let |ϕx,ŷ,d〉 denote the basis state |x〉 |ŷ〉⊗ |d〉, and
let
∣∣ϕx,ŷ,h(d)〉 denote the basis state |x〉 |ŷ〉 ⊗ |h(d)〉. We next observe that for

any x, ŷ, any i ∈ [q], and any d ∈ G0[≤i],〈
ϕx,ŷ,d

∣∣ψgi,0〉 =
〈
ϕx,ŷ,h(d)

∣∣ψgi,1〉 . (30)

This can be shown inductively by carefully tracking the coefficients on both sides
and using the third condition of the lemma statement. (For a detailed proof see
App. B.) Using this observation we can show that for any i ∈ [q],∥∥ψgi,0∥∥ =

√ ∑
x,ŷ,d∈G0[≤i]

〈
ϕx,ŷ,d

∣∣ψgi,0〉2 =

√ ∑
x,ŷ,d′∈G1[≤i]

〈
ϕx,ŷ,d′

∣∣ψgi,1〉2 =
∥∥ψgi,1∥∥.

(31)

Thus we have∣∣T0 − T1∣∣ =
∣∣‖|ψq,0〉‖ − ‖|ψq,1〉‖∣∣

≤
∣∣∣‖|ψq,0〉‖ − ∥∥∣∣ψgq,0〉∥∥∣∣∣+

∣∣∣‖|ψq,1〉‖ − ∥∥∣∣ψgq,1〉∥∥∣∣∣+
∣∣∣∥∥∣∣ψgq,0〉∥∥− ∥∥∣∣ψgq,1〉∥∥∣∣∣

=
∣∣∣‖|ψq,0〉‖ − ∥∥∣∣ψgq,0〉∥∥∣∣∣+

∣∣∣‖|ψq,1〉‖ − ∥∥∣∣ψgq,1〉∥∥ (32)

≤
∥∥|ψq,0〉 − ∣∣ψgq,0〉∥∥+

∥∥|ψq,1〉 − ∣∣ψgq,1〉∥∥ (33)

≤
⊥ q
 B0


0 +
⊥ q
 B1


1, (34)

where (32) follows from (31), (33) uses the triangle inequality for norms, and (34)
follows from the claim. Since the bound above is free of U0, . . . , Uq, taking supre-
mum over U0, . . . , Uq completes the proof the lemma. ut
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5 Post-Quantum PRF Security of TNT, LRQ and LRWQ

Equipped with the quantum proof machinery developed in section 4, we now
delve into the security proofs for the three PRF candidates, namely, TNT, LRQ,
and LRWQ.

5.1 Security of TNT

f1 f2 f3x1 v3
v1 u2 v2 u3

x2

Fig. 2: The TNT construction by Bao et al. [2].

In this section, we analyse the post-quantum security of TNT (see Fig. 2), defined
as

gTNTre (x1, x2) := f3(f2(f1(x1)⊕ x2)⊕ x2)

for three n-bit-to-n-bit random functions f1, f2, f3. We want to bound the distin-
guishing advantage between gTNTre (the real world) and a 2n-bit-to-n-bit random
function gid (the ideal world).

Theorem 2. Let A be a (q, τ)-quantum adversary distinguishing gTNTre from gid.
Then there exists (O(q), τi)-quantum distinguishers Bi against fi, such that

Advqprf
TNT(A ) ≤

3∑
i=1

Advqprp
fi

(Bi) + 4

√
10q4

2n
,

where τi ∈ Õ(τ + q2), for all i ∈ {1, 2, 3}.

Formulation of the Proof. As a first step, we observe that in order to establish
Theorem 2, it is enough to show that when f1, f2, f3 are perfect PRF’s,

Advqprf
TNT(A ) ≤ 4

√
10q4

2n
.

We will look at a slightly modified representation of the game. Let X :=
{0, 1}3n+2, and let f : X −→ Y be a (3n + 2)-bit-to-n-bit random function,
such that for each x, x′ ∈ Y,

f1(x) = f(00‖x‖02n), f2(x) = f(01‖x‖02n),

f3(x) = f(10‖x‖02n), gid(x1, x2) = f(11‖x‖x′‖0n).
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The distinctness of the first two bits ensures that f1, f2, f3, gid are all indepen-
dent. Thus, this game is identical to the one we began with. Next, we replace
gid by g∗id, defined as

g∗id(x1, x2) := f(11‖x1‖x2‖f2(f1(x1)⊕ x2)⊕ x2),

where we also call f1 and f2 in the ideal world. Since f2(f1(x1) ⊕ x2) ⊕ x2 is a
function of x1 and x2, g∗id is still a random function of x1‖x2, making this game
to behave identically with the one we started with.

This setup allows us to use a single database df : X −→ Z to keep track of
f1, f2, f3, and g∗id; we refer to this database as dre in the real world (tracking f1,
f2, and f3) and did in the ideal world (tracking f1, f2, and g∗id). Let Dre (resp.
Did) be the set of all possible choices for dre (resp. did).

Let [x]1 denote 00‖x‖02n, [x]2 denote 01‖x‖02n, and [x]3 denote 10‖x‖02n.

Define X̃re := {[x]1, [x]2, [x]3 | x ∈ Y} and X̃id := {[x]1, [x]2, 11‖x‖x′‖y | x, x′, y ∈
Y}. Then it is easy to see thatDre = D|X̃re

andDid = D|X̃id
. Thus we can represent

our game as a two-domain system, with the labels re and id replacing 0 and 1
from Sect. 4; we extend this convention to the rest of the notation developed in
Sect. 4 to avoid defining everything all over again. Then we can say

Advqprf
TNT(A ) ≤ sup

U0,...,Uq

∣∣∣T 3q
re (U0, . . . , Uq)− T 3q

id (U0, . . . , Uq)
∣∣∣,

since there are 3q calls to f (and hence to cO) during the game.
Let Bre be the set of databases dre satisfying the following condition: we can

find x1, v1, x
′
1, v
′
1, x2, v2, x

′
2, v
′
2, v3 ∈ Y such that

– ([x1]1, v1), ([x′1]1, v
′
1), ([v1 ⊕ x2]2, v2), ([v′1 ⊕ x′2]2, v

′
2) ∈ dre;

– v2 ⊕ x2 = v′2 ⊕ x′2;
– ([v2 ⊕ x2]3, v3) ∈ dre.

Next, let Bid be the set of databases did satisfying the following condition: we
can find x1, v1, x

′
1, v
′
1, x2, v2, x

′
2, v
′
2, v3 ∈ Y such that

– ([x1]1, v1), ([x′1]1, v
′
1), ([v1 ⊕ x2]2, v2), ([v′1 ⊕ x′2]2, v

′
2) ∈ did;

– v2 ⊕ x2 = v′2 ⊕ x′2;
– One of (11‖x1‖x2‖(v2 ⊕ x2), v3) and (11‖x′1‖x′2‖(v2 ⊕ x2), v3) ∈ did.

Let Gre := Dre \Bre and Gid := Did \Bid. Thus the above definitions mean that
in both Gre and Gid, each u3 := v2 ⊕ x2 is associated with a unique pair (x1, x2).
Then we can define the bijection h : Gre −→ Gid as follows: for each dre we define
did := h(dre) such that

– for each x1 ∈ Y, did([x1]1) = dre([x1]1);
– for each u2 ∈ Y, did([u2]2) = dre([u2]2);
– for each x1, x2 ∈ Y and the associated u3, did(11‖x1‖x2‖u3) = dre([u3]3).

Then h satisfies the conditions of Lemma 2. To complete the proof of Theorem 2,
we just need to show that⊥ 3q

 Bre
+

⊥ 3q
 Bid

≤ 4

√
10q4

2n
.
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Sequence of Actions. Each query by the adversary to its oracle results in a
sequence of three queries to f , one each to f1, f2, and one to f3 in the real world
or g∗id in the ideal world, in that order. We view the query response phase as a
sequence of 3q (possibly duplicate) actions and analyze the transition capacity
at each action.

Action of f1: For i ∈ {3k+ 1 : 0 ≤ k ≤ q − 1}, we first look at the transition
capacity JBcre[≤i−1] ↪→ Bre[≤i]K. For any dre with |dre| ≤ i− 1 and any x ∈ Y, we
have

SB
c
re↪→Bre

x,d = {dre([u2]2)⊕ u2 ⊕ u3 | dre([u2]2) 6= ⊥, dre([u3]3) 6= ⊥} .

There are at most d(i− 1)/3e2 choices for the pair (u2, u3), so |SB
c
re↪→Bre

x,d | ≤
d(i− 1)/3e2 ≤ q2, and from there using Lemma 1 we have

JBcre[≤i−1] ↪→ Bre[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 1 : 0 ≤ k ≤ q − 1}. (35)

By the same arguments we can also show that

JBcid[≤i−1] ↪→ Bid[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 1 : 0 ≤ k ≤ q − 1}. (36)

Action of f2: Next we look at the transition capacity JBcre[≤i−1] ↪→ Bre[≤i]K
for i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. For any dre with |dre| ≤ i − 1 and any x ∈ Y,
we have

SB
c
re↪→Bre

x,d := {dre([x1]1)⊕ x⊕ u3 | dre([x1]1) 6= ⊥, dre([u3]3) 6= ⊥}.

Again, there are at most d(i− 1)/3e2 choices for the pair (x1, u3), and arguing
as before we have

JBcre[≤i−1] ↪→ Bre[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. (37)

By the same arguments we can also show that

JBcid[≤i−1] ↪→ Bid[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. (38)

Action of f3 (resp. g∗id): Finally, for i ∈ {3k : 1 ≤ k ≤ q}, for any dre with
|dre| ≤ i− 1 (resp. any did with |did| ≤ i− 1) and any x ∈ Y, since the property
Bre (resp. Bid) does not depend on dre([x]3) (resp. did(11‖x1‖x2‖x)), we have

SB
c
re↪→Bre

x,d = ∅ (resp. SB
c
id↪→Bid

x,d = ∅). Thus,

JBcre[≤i−1] ↪→ Bre[≤i]K = 0, ∀ i ∈ {3k : 1 ≤ k ≤ q}, (39)
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and also,
JBcid[≤i−1] ↪→ Bid[≤i]K = 0, ∀ i ∈ {3k : 1 ≤ k ≤ q}. (40)

From (35)-(40), we get⊥ 3q
 Bre

≤ 2

√
10q4

2n
,

⊥ 3q
 Bid

≤ 2

√
10q4

2n
. (41)

Adding the two inequalities completes the proof of Theorem 2.

5.2 Security of LRQ

f1

f2 f3

x1

x2

y

v2

v1

u3 v3

Fig. 3: The LRQ construction.

In this section, we analyze the post-quantum security of LRQ (see Fig. 3), defined
as

gLRQre (x1, x2) := f1(x1)⊕ f3(x1 ⊕ f2(x2)).

Note that, we have swapped the labels, x1 with x2, and f1 with f2. This is just
an administrative step to aid our proof. The construction remains exactly the
same as before up to relabeling.

Theorem 3. Let A be a (q, τ)-quantum adversary distinguishing gLRQre from gid.
Then there exists (O(q), τi)-quantum distinguishers Bi against fi, such that

Advqprf
LRQ(A ) ≤

3∑
i=1

Advqprp
fi

(Bi) + 2

√
10q4

2n
,

where τi ∈ Õ(τ + q2), for all i ∈ {1, 2, 3}.

Since the proof follows the same approach of the proof of Theorem 2, we will
skip some details of the formulation which are very similar to the earlier proof
and can be surmised from the context.

Formulation of the Proof. As before we will simulate all the random functions
using a single random function f : {0, 1}3n+2 → {0, 1}n. For each x ∈ Y,

f1(x) = f(00‖x‖02n), f2(x) = f(01‖x‖02n),
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f3(x) = f(10‖x‖02n), g∗id(x1, x2) = f(11‖x1‖x2‖x1 ⊕ f2(x2)).

Here we replace gid with the map (x1, x2) 7→ g∗id(x1, x2) ⊕ f1(x1). Since g∗id is a
random function of (x1, x2) and is independent from f1, g∗id(x1, x2) ⊕ f1(x1) is
identically distributed with gid(x1, x2).

Let Dre,Did, X̃re, X̃id be as before. Let Bre be the set of databases dre satisfying
the following condition: we can find x1, v1, x

′
1, v
′
1, x2, v2, x

′
2, v
′
2, v3 ∈ Y such that

– ([x1]1, v1), ([x′1]1, v
′
1), ([x2]2, v2), ([x′2]2, v

′
2) ∈ dre;

– v2 ⊕ x1 = v′2 ⊕ x′1;
– ([v2 ⊕ x1]3, v3) ∈ dre.

Next, let Bid be the set of databases did satisfying the following condition: we
can find x1, v1, x

′
1, v
′
1, x2, v2, x

′
2, v
′
2, v3 ∈ Y such that

– ([x1]1, v1), ([x′1]1, v
′
1), ([x2]2, v2), ([x′2]2, v

′
2) ∈ did;

– v2 ⊕ x1 = v′2 ⊕ x′1;
– One of (11‖x1‖x2‖(v2 ⊕ x1), v3) and (11‖x′1‖x′2‖(v2 ⊕ x1), v3) ∈ did.

As before et Gre := Dre \ Bre and Gid := Did \ Bid. Thus the above definitions
mean that in both Gre and Gid, each u3 := v2 ⊕ x1 is associated with a unique
pair (x1, x2). Then we can define the bijection h : Gre −→ Gid as follows: for each
dre we define did := h(dre) such that

– for each x1 ∈ Y, did([x1]1) = dre([x1]1);
– for each x2 ∈ Y, did([x2]2) = dre([x2]2);
– for each x1, x2 ∈ Y and the associated u3, did(11‖x1‖x2‖u3) = dre([u3]3).

Then h satisfies the conditions of Lemma 2. To complete the proof of Theorem 3,
we just need to show that

⊥ 3q
 Bre

+
⊥ 3q
 Bid

≤ 2

√
10q4

2n
.

Sequence of Actions. As before, we deal with three main actions, one each
corresponding to f1, f2, and f3 or g∗id.

Action of f1: For i ∈ {3k + 1 : 0 ≤ k ≤ q − 1}, for any dre with |dre| ≤ i− 1
and any x ∈ Y, since the property Bre does not depend on dre([x]1), we have

SB
c
re↪→Bre

x,d = ∅. Thus,

JBcre[≤i−1] ↪→ Bre[≤i]K = 0, ∀ i ∈ {3k + 1 : 0 ≤ k ≤ q − 1}. (42)

By the same arguments

JBcid[≤i−1] ↪→ Bid[≤i]K = 0, ∀ i ∈ {3k + 1 : 0 ≤ k ≤ q − 1}. (43)
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Action of f2: Next we look at the transition capacity JBcre[≤i−1] ↪→ Bre[≤i]K
for i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. For any dre with |dre| ≤ i − 1 and any x ∈ Y,
we have

SB
c
re↪→Bre

x,d := {x1 ⊕ u3 | dre([x1]1) 6= ⊥, dre([u3]3) 6= ⊥}.

There are at most d(i− 1)/3e2 choices for the pair (x1, u3), so from Lemma 1
we have

JBcre[≤i−1] ↪→ Bre[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. (44)

By the same arguments

JBcid[≤i−1] ↪→ Bid[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. (45)

Action of f3 (resp. g∗id): Finally, for i ∈ {3k : 1 ≤ k ≤ q}, for any dre with
|dre| ≤ i− 1 (resp. any did with |did| ≤ i− 1) and any x ∈ Y, since the property
Bre (resp. Bid) does not depend on dre([x]3) (resp. did(11‖x1‖x2‖x)), we have

SB
c
re↪→Bre

x,d = ∅ (resp. SB
c
id↪→Bid

x,d = ∅). Thus,

JBcre[≤i−1] ↪→ Bre[≤i]K = 0, ∀ i ∈ {3k : 1 ≤ k ≤ q}, (46)

and also,
JBcid[≤i−1] ↪→ Bid[≤i]K = 0, ∀ i ∈ {3k : 1 ≤ k ≤ q}. (47)

From (42)-(47), we get⊥ 3q
 Bre

≤√10q4

2n
,

⊥ 3q
 Bid

≤√10q4

2n
. (48)

Adding the two inequalities completes the proof of Theorem 3.

5.3 Security of LRWQ

f1 f3x1 v3
v1 u3

f2x2
v2

Fig. 4: The LRWQ construction by Hosoyamada et al. [17].

In this section, we analyze the post-quantum security of LRWQ (see Fig. 4),
defined as

gLRWQ
re (x1, x2) := f3(f1(x1)⊕ f2(x2)).
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Theorem 4. Let A be a (q, τ)-quantum adversary distinguishing gLRWQ
re from

gid. Then there exists (O(q), τi)-quantum distinguishers Bi against fi, such that

Advqprf
LRWQ(A ) ≤

3∑
i=1

Advqprp
fi

(Bi) + 4

√
10q4

2n
,

where τi ∈ Õ(τ + q2), for all i ∈ {1, 2, 3}.

Formulation of the Proof. As before we will simulate all the random functions
using a single random function f : {0, 1}3n+2 → {0, 1}n. For each x ∈ Y,

f1(x) = f(00‖x‖02n), f2(x) = f(01‖x‖02n),

f3(x) = f(10‖x‖02n), g∗id(x1, x2) = f(11‖x1‖x2‖f1(x1)⊕ f2(x2)).

Using a similar argument as before we can conclude that this game behaves
identical with the standard PRF game.

Let Dre,Did, X̃re, X̃id be as before. Let Bre be the set of databases dre satisfying
the following condition: we can find x1, v1, x

′
1, v
′
1, x2, v2, x

′
2, v
′
2, v3 ∈ Y such that

– ([x1]1, v1), ([x′1]1, v
′
1), ([x2]2, v2), ([x′2]2, v

′
2) ∈ dre;

– v1 ⊕ v2 = v′1 ⊕ v′2;

– ([v1 ⊕ v2]3, v3) ∈ dre.

Next, let Bid be the set of databases did satisfying the following condition: we
can find x1, v1, x

′
1, v
′
1, x2, v2, x

′
2, v
′
2, y ∈ Y such that

– ([x1]1, v1), ([x′1]1, v
′
1), ([x2]2, v2), ([x′2]2, v

′
2) ∈ dre;

– v1 ⊕ v2 = v′1 ⊕ v′2;

– One of (11‖x1‖x2‖(v1 ⊕ v2), v3) and (11‖x′1‖x′2‖(v1 ⊕ v2), v3) ∈ did.

As before et Gre := Dre \ Bre and Gid := Did \ Bid. Thus the above definitions
mean that in both Gre and Gid, each u3 := v1 ⊕ v2 is associated with a unique
pair (x1, x2). Then we can define the bijection h : Gre −→ Gid as follows: for each
dre we define did := h(dre) such that

– for each x1 ∈ Y, did([x1]1) = dre([x1]1);

– for each x2 ∈ Y, did([x2]2) = dre([x2]2);

– for each x1, x2 ∈ Y and the associated u3, did(11‖x1‖x2‖u3) = dre([u3]3).

Then h satisfies the conditions of Lemma 2. To complete the proof of Theorem 4,
we just need to show that

⊥ 3q
 Bre

+
⊥ 3q
 Bid

≤ 4

√
10q4

2n
.
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Sequence of Actions. As before, we deal with three main actions, one each
corresponding to f1, f2, and f3 or g∗id.

Action of f1: For i ∈ {3k+ 1 : 0 ≤ k ≤ q − 1}, we first look at the transition
capacity JBcre[≤i−1] ↪→ Bre[≤i]K. For any dre with |dre| ≤ i− 1 and any x ∈ Y, we
have

SB
c
re↪→Bre

x,d = {dre([x2]2)⊕ u3 | dre([x2]2) 6= ⊥, dre([u3]3) 6= ⊥} .

There are at most d(i− 1)/3e2 choices for the pair (x2, u3), so |SB
c
re↪→Bre

x,d | ≤
d(i− 1)/3e2 ≤ q2, and from there using Lemma 1 we have

JBcre[≤i−1] ↪→ Bre[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 1 : 0 ≤ k ≤ q − 1}. (49)

By the same arguments

JBcid[≤i−1] ↪→ Bid[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 1 : 0 ≤ k ≤ q − 1}. (50)

Action of f2: Next we look at the transition capacity JBcre[≤i−1] ↪→ Bre[≤i]K
for i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. For any dre with |dre| ≤ i − 1 and any x ∈ Y,
we have

SB
c
re↪→Bre

x,d := {dre([x1]1)⊕ u3 | dre([x1]1) 6= ⊥, dre([u3]3) 6= ⊥}.

Again, there are at most d(i− 1)/3e2 choices for the pair (x1, u3), and arguing
as before we have

JBcre[≤i−1] ↪→ Bre[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. (51)

By the same arguments

JBcid[≤i−1] ↪→ Bid[≤i]K ≤
√

10q2

2n
, ∀ i ∈ {3k + 2 : 0 ≤ k ≤ q − 1}. (52)

Action of f3 (resp. g∗id): Finally, for i ∈ {3k : 1 ≤ k ≤ q}, for any dre with
|dre| ≤ i− 1 (resp. any did with |did| ≤ i− 1) and any x ∈ Y, since the property
Bre (resp. Bid) does not depend on dre([x]3) (resp. did(11‖x1‖x2‖x)), we have

SB
c
re↪→Bre

x,d = ∅ (resp. SB
c
id↪→Bid

x,d = ∅). Thus,

JBcre[≤i−1] ↪→ Bre[≤i]K = 0, ∀ i ∈ {3k : 1 ≤ k ≤ q}, (53)

and also,
JBcid[≤i−1] ↪→ Bid[≤i]K = 0, ∀ i ∈ {3k : 1 ≤ k ≤ q}. (54)

From (49)-(54), we get⊥ 3q
 Bre

≤ 2

√
10q4

2n
,

⊥ 3q
 Bid

≤ 2

√
10q4

2n
. (55)

Adding the two inequalities completes the proof of Theorem 4.
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6 Conclusion

In this work, we show that 2n-bit-to-n-bit compressing PRFs that are built using
two n-bit-to-n-bit PRF calls are insecure in the quantum setting. Furthermore,
we identify classes of constructions using three PRF calls that are also broken.
Among the constructions that may be secure, we select TNT, LRQ, and LRWQ,
as they are the most efficient invertible ones, which allows them to also be used
as tweakable block ciphers. We then prove their PRF security against quantum
distinguishers that use less than 2n/4 queries.

We leave the issue of improving the security bound of these constructions to
2n/3 adversarial queries as an interesting open problem.
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A Linear Algebra Results

Operator Norm. For any finite set X , C[X ] will denote the span of the or-
thonormal basis B := {|x〉 | x ∈ X}, which is a Hilbert space of dimension |X |.
(We will interchangeably write C[B] to denote the same Hilbert space.) For a
linear operator A : C[X0] −→ C[X1], we define the operator norm of A as

‖A‖ = sup
|ψ〉∈C[X1],‖|ψ〉‖=1

‖A |ψ〉‖,

where the norm on the right hand side is the norm over the Hilbert space C[X1].
If

A =

r∑
i=1

σi |xi〉〈yi|

is the singular value decomposition of A (where r is the rank of A and
x1, . . . , xr ∈ X1, y1, . . . , yr ∈ X0), then we have

‖A‖ = max
i
σi.

For four finite sets X0, X1, X ′0, and X ′1, let A : C[X0] −→ C[X1] and A′ :
C[X ′0] −→ C[X ′1] be linear operators with singular value decompositions

A =

r∑
i=1

σi |xi〉〈yi| and A′ =

r′∑
i′=1

σ′i′ |x′i′〉〈y′i′ | .

Then we have

A ⊗ A′ =

(
r∑
i=1

σi |xi〉〈yi|

)
⊗

 r′∑
i′=1

σ′i′ |x′i′〉〈y′i′ |


=
∑
i,i′

σiσ
′
i′ (|xi〉〈yi| ⊗ |x′i′〉〈y′i′ |)

=
∑
i,i′

σiσ
′
i′ (|xi〉 ⊗ |x′i′〉) (〈yi| ⊗ 〈y′i′ |) .

Since |x1〉 , . . . , |xr〉 are independent and orthonormal and |x′1〉 , . . . , |x′r′〉 are
independent and orthonormal, {|xi〉 ⊗ |x′i′〉 | 1 ≤ i ≤ r, 1 ≤ i′ ≤ r′} also
forms a set of independent and orthonormal vectors in the tensor product space
C[X1] ⊗ C[X ′1], and similarly, {|yi〉 ⊗ |y′i′〉 | 1 ≤ i ≤ r, 1 ≤ i′ ≤ r′} also
forms a set of independent and orthonormal vectors in the tensor product space
C[X0]⊗ C[X ′0]. Thus,

A ⊗ A′ =
∑
i,i′

σiσ
′
i′ (|xi〉 ⊗ |x′i′〉) (〈yi| ⊗ 〈y′i′ |)

is a singular value decomposition of A ⊗ A′, and consequently

‖A ⊗ A′‖ = max
i,i′

σiσ
′
i′ =

(
max
i
σi

)
·
(

max
i′

σ′i′
)

= ‖A‖ · ‖A′‖.
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Frobenius Norm. The Frobenius Norm of the operator A is defined as

‖A‖F :=

√∑
x∈X1

‖A |x〉‖2 =

√ ∑
x∈X1,y∈X0

∣∣ 〈y|A|x〉 ∣∣2.
We can relate the two norms as follows: for any |ψ〉 ∈ C[X1], we have

‖A |ψ〉‖ =

∥∥∥∥∥A ∑
x∈X1

|x〉〈x| |ψ〉

∥∥∥∥∥
≤
∑
x∈X1

‖〈x|ψ〉A |x〉‖ (Triangle Inequality)

=
∑
x∈X1

| 〈x|ψ〉 | · ‖A |x〉‖

≤
√∑
x∈X1

| 〈x|ψ〉 |2 ·
√∑
x∈X1

‖A |x〉‖2 (Cauchy-Schwarz)

= ‖ψ‖ · ‖A‖F .

This gives the inequality

‖A‖ = sup
‖|ψ〉‖=1

‖A |ψ〉‖ ≤ ‖A‖F .

Control Registers. Consider a linear operator A : C[X ] ⊗ C[X ′0] −→ C[X ] ⊗
C[X ′1], and a set of linear operators {Ax : C[X ′0] −→ C[X ′1] | x ∈ X}, such that
for every x ∈ X and every |ψ〉 ∈ C[X ′0], we have

A(|x〉 ⊗ |ψ〉) = |x〉 ⊗Ax |ψ〉 .

Then the register containing the part of the input corresponding to C[X ] is called
the control register of A. For any |φ〉 ∈ C[X ] and any |ψ〉 ∈ C[X ′0], we have

‖A(|φ〉 ⊗ |ψ〉)‖ =

∥∥∥∥∥∑
x∈X
〈x|φ〉A(|x〉 ⊗ |ψ〉)

∥∥∥∥∥
=

∥∥∥∥∥∑
x∈X
〈x|φ〉 |x〉 ⊗Ax |ψ〉

∥∥∥∥∥
=

∥∥∥∥∥ ∑
x∈X ,y∈X ′0

〈x|φ〉 〈y|ψ〉 |x〉 ⊗Ax |y〉

∥∥∥∥∥
=

∥∥∥∥∥ ∑
x∈X ,y∈X ′0,z∈X ′1

〈x|φ〉 〈y|ψ〉 〈z|Ax|y〉 |x〉 ⊗ |z〉

∥∥∥∥∥
=

∥∥∥∥∥ ∑
x∈X ,z∈X ′1

〈x|φ〉

( ∑
y∈X ′0

〈y|ψ〉 〈z|Ax|y〉

)
|x〉 ⊗ |z〉

∥∥∥∥∥
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=

√√√√√ ∑
x∈X ,z∈X ′1

| 〈x|φ〉 |2 ·

∣∣∣∣∣ ∑
y∈X ′0

〈y|ψ〉 〈z|Ax|y〉

∣∣∣∣∣
2

=

√√√√√∑
x∈X
| 〈x|φ〉 |2 ·

∑
z∈X ′1

∣∣∣∣∣ ∑
y∈X ′0

〈y|ψ〉 〈z|Ax|y〉

∣∣∣∣∣
2

=

√√√√√∑
x∈X
| 〈x|φ〉 |2 ·

∥∥∥∥∥ ∑
z∈X ′1

( ∑
y∈X ′0

〈y|ψ〉 〈z|Ax|y〉

)
|z〉

∥∥∥∥∥
2

=

√√√√√∑
x∈X
| 〈x|φ〉 |2 ·

∥∥∥∥∥ ∑
y∈X ′0

〈y|ψ〉

( ∑
z∈X ′1

〈z|Ax|y〉 |z〉

)∥∥∥∥∥
2

=

√√√√√∑
x∈X
| 〈x|φ〉 |2 ·

∥∥∥∥∥ ∑
y∈X ′0

〈y|ψ〉Ax |y〉

∥∥∥∥∥
2

=

√∑
x∈X
| 〈x|φ〉 |2 · ‖Ax |ψ〉‖2

≤
√∑
x∈X
| 〈x|φ〉 |2 ·max

x∈X
‖Ax |ψ〉‖ = max

x∈X
‖Ax |ψ〉‖.

This gives the useful inequality

‖A‖ ≤ max
x∈X
‖Ax‖. (56)

B Miscellaneous Proofs

Proof of Equation (27). From the definition of
∣∣f̂ 〉 , we have∣∣f̂ 〉 =

⊗
x∈X
|x〉
∣∣f̂(x)

〉
=
⊗
x∈X
|x〉
∣∣f̂(x)

〉
=
⊗
x∈X

 1

2n/2

∑
y∈Y

(−1)f(x)
•y |x〉 |y〉


=

1

2n2m/2

∑
y0,...,y2n−1∈Y

[⊗
x∈X

(−1)f(x)
•yx |x〉 |yx〉

]
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=
1

2n2m/2

∑
g∈F

[⊗
x∈X

(−1)f(x)
•g(x) |x〉 |g(x)〉

]

=
1

2n2m/2

∑
g∈F

(−1)f
•g |g〉 ,

as claimed. ut

Proof of Equation (28). Substituting the definitions of
∣∣ŷ〉 and

∣∣f̂ 〉 in the
oracle equation of stO gives

stO |x〉
∣∣ŷ〉 ⊗ ∣∣f̂ 〉

= stO |x〉 1

2n/2

(∑
z∈Y

(−1)y
•z |z〉

)
⊗

 1

2n2m/2

∑
g∈F

(−1)f
•g |g〉


=

1

2n(2m+1)/2

∑
z∈Y

∑
g∈F

(−1)y
•z⊕f •g (stO |x〉 |z〉 ⊗ |g〉)

=
1

2n(2m+1)/2

∑
z∈Y

∑
g∈F

(−1)y
•z⊕f •g |x〉

∣∣z ⊕ g(x)
〉
⊗
∣∣g〉

=
1

2n(2m+1)/2

∑
z′∈Y

∑
g∈F

(−1)y
•(z′⊕g(x))⊕f •g |x〉

∣∣z′〉 ⊗ ∣∣g〉
=

1

2n(2m+1)/2

∑
z′∈Y

∑
g∈F

(−1)y
•z′⊕(f⊕δxy) •g |x〉

∣∣z′〉 ⊗ ∣∣g〉

= |x〉 1

2n/2

(∑
z′∈Y

(−1)y
•z′
∣∣z′〉)⊗

 1

2n2m/2

∑
g∈F

(−1)(f⊕δxy) •g |g〉


= |x〉

∣∣ŷ〉 ⊗ ∣∣ ̂f ⊕ δxy〉 = |x〉
∣∣ŷ〉 ⊗ ∣∣f̂ + δ̂xy

〉
,

as required. ut

Proof of Observation (30). We can prove this by induction on i. For the base
case of i = 1, considering some d ∈ G0[≤1], we have∣∣ψg1,0〉 = W g

1,0

∣∣ψ0

〉
= Π̄G0[≤1]

◦ Ü1 ◦ cO0 ◦ Ü0

∣∣ψ⊥〉 .
Let |γx,ŷ〉 denote the basis state |x〉 |ŷ〉. Then we have

Ü1 ◦ cO0 ◦ Ü0 |ψ⊥〉

=
∑
x,ŷ

Ü1 ◦ cO0 ◦ Ü0

∣∣γ0,0̂〉 ⊗ |d⊥〉
=
∑
x,ŷ

〈
γx,ŷ

∣∣U0

∣∣γ0,0̂〉 Ü1 ◦ cO0

∣∣γx,ŷ〉 ⊗ |d⊥〉
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=
∑
x,ŷ

〈
γx,ŷ

∣∣U0

∣∣γ0,0̂〉 Ü1

( ∣∣γx,ŷ〉 ⊗ cOp0(x)ŷ |d⊥〉
)

=
∑

x,ŷ,d∈D0

〈
γx,ŷ

∣∣U0

∣∣γ0,0̂〉 〈d∣∣cOp0(x)ŷ∣∣d⊥〉 Ü1

∣∣γx,ŷ〉 ⊗ |d〉
=

∑
x,x′,ŷ,ŷ′,d∈D0

〈
γx,ŷ

∣∣U0

∣∣γ0,0̂〉 〈d∣∣cOp0(x)ŷ∣∣d⊥〉 〈γx′,ŷ′ ∣∣U1

∣∣γx,ŷ〉 ∣∣γx′,ŷ′〉 ⊗ |d〉 ,
where x, x′ vary over I, and ŷ, ŷ′ vary over Ŷ in all the sums. Thus,

Π̄G0[≤1]
◦ U1 ◦ cO0 ◦ Ü0 |ψ⊥〉

=
∑

x,x′,ŷ,ŷ′,d∈G0[≤1]

〈
γx,ŷ

∣∣U0

∣∣γ0,0̂〉 〈d∣∣cOp0(x)ŷ∣∣d⊥〉 〈γx′,ŷ′ ∣∣U1

∣∣γx,ŷ〉 ∣∣ϕx′,ŷ′,d〉 ,
which gives, for any x′ ∈ I, ŷ ∈ Ŷ, and d ∈ G0[≤1],〈

ϕx′,ŷ′,d
∣∣ψg1,0〉 =

∑
x,ŷ

〈
γx,ŷ

∣∣U0

∣∣γ0,0̂〉 〈d∣∣cOp0(x)ŷ∣∣d⊥〉 〈γx′,ŷ′ ∣∣U1

∣∣γx,ŷ〉 .
Similarly, we can show that〈

ϕx′,ŷ′,h(d)
∣∣ψg1,1〉 =

∑
x,ŷ

〈
γx,ŷ

∣∣U0

∣∣γ0,0̂〉 〈h(d)
∣∣cOp1(x)ŷ∣∣d⊥〉 〈γx′,ŷ′ ∣∣U1

∣∣γx,ŷ〉 .
Since G0[≤0] = G1[≤0] = {d⊥}, we have h(d⊥) = d⊥, and the third condition of

the lemma gives us
〈
ϕx′,ŷ′,d

∣∣ψg1,0〉 =
〈
ϕx′,ŷ′,h(d)

∣∣ψg1,1〉 , thus establishing the base
case.

Our induction hypothesis will be that for some i ≥ 2, for all x,∈ I, ŷ ∈ Ŷ,
and d ∈ G0[≤i−1], 〈

ϕx,ŷ,d
∣∣ψgi−1,0〉 =

〈
ϕx,ŷ,h(d)

∣∣ψgi−1,1〉 =: αx,ŷ,d.

Then (since h|G0[≤i−1]
is bijective) we have∣∣ψgi−1,0〉 =

∑
x,ŷ,d∈G0[≤i−1]

αx,ŷ,d
∣∣ϕx,ŷ,d〉 ,

∣∣ψgi−1,1〉 =
∑

x,ŷ,d′∈G1[≤i−1]

〈
ϕx,ŷ,d′

∣∣ψgi−1,1〉 ∣∣ϕx,ŷ,d′〉 ,
=

∑
x,ŷ,d∈G0[≤i−1]

αx,ŷ,d
∣∣ϕx,ŷ,h(d)〉 .

This gives∣∣ψgi,0〉 = W g
i,0

∣∣ψgi−1,0〉
= Π̄G0[≤i]

◦ Üi ◦ cO0

∣∣ψgi−1,0〉
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=
∑

x,ŷ,d∈G0[≤i−1]

αx,ŷ,d Π̄G0[≤i]
◦ Üi ◦ cO0

∣∣γx,ŷ〉 ⊗ |d〉
=

∑
x,ŷ,d∈G0[≤i−1]

αx,ŷ,d Π̄G0[≤i]
◦ Üi

( ∣∣γx,ŷ〉 ⊗ cOp0(x)ŷ |d〉
)

=
∑

x,ŷ,d′∈D0,
d∈G0[≤i−1]

αx,ŷ,d
〈
d′
∣∣cOp0(x)ŷ∣∣d〉 Π̄G0[≤i]

◦ Üi
∣∣γx,ŷ〉 ⊗ |d′〉

=
∑

x,x′,ŷ,ŷ′,d′∈D0,
d∈G0[≤i−1]

αx,ŷ,d
〈
d′
∣∣cOp0(x)ŷ∣∣d〉 〈γx′,ŷ′ ∣∣Ui∣∣γx,ŷ〉 Π̄G0[≤i]

∣∣ϕx′,ŷ′,d′〉
=

∑
x,x′,ŷ,ŷ′,d′∈G0[≤i],

d∈G0[≤i−1]

αx,ŷ,d
〈
d′
∣∣cOp0(x)ŷ∣∣d〉 〈γx′,ŷ′ ∣∣Ui∣∣γx,ŷ〉 ∣∣ϕx′,ŷ′,d′〉 ,

so that for any x′ ∈ I, ŷ ∈ Ŷ, and d′ ∈ G0[≤i], we have〈
ϕx′,ŷ′,d′

∣∣ψgi,0〉 =
∑

x,ŷ,d∈G0[≤i−1]

αx,ŷ,d
〈
d′
∣∣cOp0(x)ŷ∣∣d〉 〈γx′,ŷ′ ∣∣Ui∣∣γx,ŷ〉 .

Similarly, we can show that〈
ϕx′,ŷ′,h(d′)

∣∣ψgi,1〉 =
∑

x,ŷ,d∈G0[≤i−1]

αx,ŷ,d
〈
h(d′)

∣∣cOp1(x)ŷ∣∣h(d)
〉 〈
γx′,ŷ′

∣∣Ui∣∣γx,ŷ〉 .
Then the third condition of Lemma 2 gives us〈

ϕx′,ŷ′,d′
∣∣ψgi,0〉 =

〈
ϕx′,ŷ′,h(d′)

∣∣ψgi,1〉 ,
thus completing the proof of the observation by induction. ut

Proof of (31). Using Observation (30) we get∥∥ψgi,0∥∥ =

∥∥∥∥∥ ∑
x,ŷ,d∈G0[≤i]

〈
ϕx,ŷ,d

∣∣ψgi,0〉 ∣∣ϕx,ŷ,d〉
∥∥∥∥∥

=

√ ∑
x,ŷ,d∈G0[≤i]

〈
ϕx,ŷ,d

∣∣ψgi,0〉2
=

√ ∑
x,ŷ,d∈G0[≤i]

〈
ϕx,ŷ,h(d)

∣∣ψgi,1〉2
=

√ ∑
x,ŷ,d′∈G1[≤i]

〈
ϕx,ŷ,d′

∣∣ψgi,1〉2
=

∥∥∥∥∥ ∑
x,ŷ,d′∈G1[≤i]

〈
ϕx,ŷ,d′

∣∣ψgi,1〉 ∣∣ϕx,ŷ,d′〉
∥∥∥∥∥ =

∥∥ψgi,1∥∥,
as claimed. ut
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C Proof of Proposition 5

Proposition 5. For any pair of properties P and P ′,

JP ↪→ P ′K ≥
∥∥Π̄P′ ◦ cO ◦ Π̄P∥∥.

Proof. We first observe that∥∥Π̄P′ ◦ cO ◦ Π̄P∥∥ ≤ max
x∈X̃ ,ŷ∈Ŷ

‖ΠP′ ◦ cOxŷ ◦ΠP‖ (57)

by (56). Fix any x, ŷ, and d. Then, by the definition of d|x, for any |∆〉 ∈ C[d|x],
we have cOxŷ |∆〉 ∈ C[d|x], i.e., cOxŷ is a unitary on C[d|x]. Thus, for any
|∆〉 ∈ C[d|x],

ΠP′ ◦ cOxŷ ◦ΠP |∆〉 = ΠP′ ◦ cOxŷ ◦ΠP∩d|x |∆〉
= ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x |∆〉 ,

where for the last equality we use the fact that ΠP∩d|x |∆〉 ∈ C[d|x], and thus
cOxŷ ◦ΠP∩d|x |∆〉 ∈ C[d|x]. Thus, for any x, ŷ, we have

‖ΠP′ ◦ cOxŷ ◦ΠP‖ = sup
|∆〉∈C[D|X̃ ]

‖ΠP′ ◦ cOxŷ ◦ΠP |∆〉‖

= max
d∈D|X̃

sup
|∆〉∈C[d|x]

‖ΠP′ ◦ cOxŷ ◦ΠP |∆〉‖

= max
d∈D|X̃

sup
|∆〉∈C[d|x]

∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x |∆〉∥∥
= max
d∈D|X̃

∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x∥∥, (58)

where for the last equality we observe thatΠP′∩d|x◦cOxŷ ◦ΠP∩d|x takes any state
orthogonal to C[d|x] to 0, so for any |∆〉 ∈ C[D|X̃ ] we have |∆′〉 := Πd|x |∆〉 ∈
C[d|x] such that∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x |∆〉∥∥ ≤ ∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x |∆′〉∥∥.
Plugging (58) in (57) gives∥∥Π̄P′ ◦ cO ◦ Π̄P∥∥ ≤ max

x∈X̃ ,ŷ∈Ŷ,d∈D|X̃

∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠP∩d|x∥∥ = JP ↪→ P ′K,

thus establishing the proposition. ut

D Proof of Lemma 1

Before proving Lemma 1, we introduce some more setup and borrow a counting
result from [11]. We begin by singling out the unitary that acts on the cell |d(x)〉
when cOxŷ acts on |d〉. Let Vŷ be the unitary defined on the basis BF as

Vŷ |ẑ〉 := |ẑ + ŷ〉 =
∣∣ẑ ⊕ y〉 .
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Then we can write

Oxŷ =
⊗
X̃

[ |x〉〈x| ⊗ Vŷ + (Im − |x〉〈x| )⊗ In] ,

which applies the same cell unitary |x〉〈x| ⊗ Vŷ + (Im − |x〉〈x| ) ⊗ In to every
cell. For the cell |x〉 |d(x)〉, this cell unitary is identical to Im ⊗ Vŷ, while for all
other cells it is identical to Im+n. Thus we can more simply write

Oxŷ = Im+n ⊗ . . .⊗ Im+n ⊗ (Im ⊗ Vŷ)⊗ Im+n ⊗ . . .⊗ Im+n.

We extend Vŷ to BF by defining

Vŷ |⊥〉 = |⊥〉 .

Next we define
cVŷ := comp0 ◦ Vŷ ◦ comp0.

Recalling that

comp =
⊗
X̃

(Im ⊗ comp0),

we have

cOxŷ = comp ◦ Oxŷ ◦ comp

=
⊗
X̃

[ |x〉〈x| ⊗ cVŷ + (Im − |x〉〈x| )⊗ In]

= Im+n ⊗ . . .⊗ Im+n ⊗ (Im ⊗ cVŷ)⊗ Im+n ⊗ . . .⊗ Im+n.

Note that even though Oxŷ and cOxŷ are defined on the entire C[D] and not just
C[D|X̃ ], in these calculations we continue to ignore the cells with labels outside

X̃ ; since we are only dealing with databases restricted to X̃ , the other cells will
always remain empty at the beginning of each oracle call and will get set back to
empty at the end of each oracle call, and hence won’t affect our computations.

The transition matrix of cVŷ is described in detail in [11, Lemma 4.3] (and
is in fact also implicitly derived in [14, Proposition 2]). For our purposes it will
be sufficient to borrow [11, Sect. 4.3, Eq. 8], which states that for any subset S
of Y, ∑

w∈S,z∈Y,z 6=w

| 〈w|cVŷ|z〉 |2 ≤
10|S|

2n
.

Note that the condition S ⊆ Y is important, as this result may not hold when
⊥ ∈ S. Using this result, we can now proceed to prove Lemma 1.

Lemma 1 (Transition Capacity Bound). Let P,P ′ be properties on D|X̃
such that for every x ∈ X̃ and d ∈ D|X̃ , we can find a set SPc↪→P′

x,d ⊆ Y satisfying

P ′ ∩ d|x ⊆ {d′ ∈ d|x | d′(x) ∈ SP
c↪→P′

x,d } ⊆ P ∩ d|x. (59)
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In other words, for any database d′ ∈ d|x,

d′ ∈ P ′ =⇒ d′(x) ∈ SP
c↪→P′

x,d =⇒ d′ ∈ P.

Then we have

JPc ↪→ P ′K ≤ max
x∈X̃ ,d∈D|X̃

√
10|SPc↪→P′

x,d |
2n

.

Proof. Fix x ∈ X̃ and d ∈ D|X̃ . Let S denote SPc↪→P′
x,d , and ΠS denote the

projection onto S, defined by

ΠS :=
∑
y∈S
|y〉〈y| .

Let P† denote the property {d′ ∈ d|x | d′(x) ∈ SPc↪→P′
x,d }. Then we have

ΠP† =
∑
d∈P†

|d〉〈d| =
⊗
x′∈X̃

 |x〉〈x| ⊗ΠS +
∑
x′ 6=x

|x′〉〈x′| ⊗ |d(x′)〉〈d(x′)|

 .
Since P ′∩d|x ⊆ P†, we have ΠP′∩d|x ◦ΠP† = ΠP′∩d|x . Moreover, since Pc∩d|x ⊆
Pc† , we have ΠPc

†
◦ΠPc∩d|x = ΠPc∩d|x . Then for any ŷ ∈ Ŷ we have∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠPc∩d|x

∥∥ =
∥∥∥ΠP′∩d|x ◦ΠP† ◦ cOxŷ ◦ΠPc

†
◦ΠPc∩d|x

∥∥∥
≤
∥∥∥ΠP† ◦ cOxŷ ◦ΠPc

†

∥∥∥.
Applying ΠP† ◦ cOxŷ ◦ΠPc

†
to a database is equivalent to applying ΠS ◦ cVŷ ◦

(In −ΠS) to the cell labelled x and Im+n to all other cells. Thus,∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠPc∩d|x
∥∥ ≤ ‖ΠS ◦ cVŷ ◦ (In −ΠS)‖
≤ ‖ΠS ◦ cVŷ ◦ (In −ΠS)‖F

=

√ ∑
w,z∈Y

∣∣ 〈w|ΠS ◦ cVŷ ◦ (In −ΠS)|z〉
∣∣2

=

√ ∑
w∈S,z /∈S

∣∣ 〈w|cVŷ|z〉 ∣∣2
≤
√ ∑
w∈S,z∈Y,z 6=w

∣∣ 〈w|cVŷ|z〉 ∣∣2 ≤√10|S|
2n

,

where we can apply the last inequality because S ⊆ Y. Thus we have

JPc ↪→ P ′K = max
x∈X̃ ,ŷ∈Ŷ,d∈D|X̃

∥∥ΠP′∩d|x ◦ cOxŷ ◦ΠPc∩d|x
∥∥

≤ max
x∈X̃ ,d∈D|X̃

√
10|SPc↪→P′

x,d |
2n

,

thus completing the proof. ut
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