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ABSTRACT
Private Stream Aggregation (PSA) schemes are efficient protocols
for distributed data analytics. In a PSA scheme, a set of data produc-
ers can encrypt data for a central party so that it learns the sum of
all (encrypted) values, but nothing about each individual value. Due
to this ability to efficiently enable central data analytics without
leaking individual user data, PSA schemes are often used for IoT
data analytics scenarios where privacy is important, such as smart
metering. However, all known PSA schemes require a trusted party
for key generation, which is undesirable from a privacy standpoint.
Further, even though the main benefit of PSA schemes over alter-
native technologies such as Functional Encryption is that they are
efficient enough to run on IoT devices, there exists no evaluation
of the efficiency of existing PSA schemes on realistic IoT devices.

In this paper, we address both these issues. We first evaluate the
efficiency of the state of the art PSA schemes on realistic IoT de-
vices. We then propose, implement and evaluate a DIstributed setup
PSA scheme for Use in Constrained Environments (DIPSAUCE).
DIPSAUCE is the first PSA scheme that does not rely on a trusted
party. Our security and efficiency evaluation shows that it is indeed
possible to construct an efficient PSA scheme without a trusted
central party. Surprisingly, our results also show that, a side effect,
our method for distributing the setup procedure also makes the
encryption procedure more efficient than the state of the art PSA
schemes which rely on trusted parties.
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Private Stream Aggregation, PSA, Data Analytics, IoT, Smart Me-
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1 INTRODUCTION
Internet of Things (IoT) data analytics enable central parties to
learn statistics derived from device data. This data is often privacy
sensitive, and thus systems must be designed with privacy in mind.

Consider for example the concept of smart metering [27] where
a central party can calculate the sum of readings of household
electricitymeters in real-time. Disclosing individual readings in real-
time reveals a surprisingly high amount of privacy sensitive data
about a household [35]. Thus the central party is often considered
untrusted and cannot be given individual data readings. There exist
works studying how to centrally derive statistics without revealing
individual data points for specific use cases (e.g. [20, 28, 31] in the
case of smart meters). We are however interested in developing
general techniques for IoT data analytics.

IoT devices are often constrained [7], i.e. they have one or more of
the following characteristics: low computational power and mem-
ory, operate over low throughput lossy networks or are battery

powered. The computational and network cost of any scheme for
constrained devices is therefore of high importance, and the perfor-
mance cost of privacy enhancing technologies needs to be minimal
for IoT protocols.

Functional Encryption. A first technique that comes to mind for
IoT data analytics is that of Functional Encryption (FE) [5], which
allows for evaluating a function on encrypted data if the evalu-
ating party knows a functional decryption key for that function.
For IoT data analytics on privacy sensitive data, the FE subclass
of (Decentralized) Multi Client Functional Encryption ((D)MCFE)
is particularly interesting, since it defines FE for multiple parties
contributing encrypted data, and allows a central party to evaluate
a function on the encrypted data. However, even the most efficient
DMCFE schemes [2, 15, 16], which evaluate inner products of en-
crypted data, are too costly for constrained environments since
they rely on bilinear parings or have ciphertext sizes proportional
to the number of data producers.

Private Steam Aggregation. In use cases which only require eval-
uating the sum of encrypted inputs (e.g. smart metering) rather than
a general function or the inner product, we can look to PSA for more
efficient constructions. The notion of PSA was introduced in [41]
and is a similar concept to (D)MCFE. However it is restricted to
computing sums rather than inner products (or general functions),
which allows more efficient constructions.

Both in the original PSA scheme [41] and in follow upworks [3, 4,
12, 18, 19, 26, 30, 43, 44], the setup (which includes key generation)
relies upon a trusted party. Such a design choice erodes trust in a
privacy enhancing technology and is particularly engraving in the
case of PSA schemes, since the purpose of PSA is to avoid a central
party with access to individual data.

We argue that since the purpose of a PSA scheme is to allow an
untrusted party to derive statistics without learning anything about
individual data points, relying on a trusted party is not in line with
the goals of PSA. To the best of the authors knowledge, none of the
known PSA schemes avoids a trusted party. Notably, in current state
of the art PSA schemes [19, 44], there are brief discussions on how
tomodify the schemes to avoid a trusted party by using a distributed
setup inspired by the DMCFE scheme in [16]. However, neither
work has any formal protocol description, security evaluation or
efficiency evaluation of the proposed modification. In Section 3 we
show that such modifications are too inefficient for constrained
environments. There is thus a need to develop a distributed setup
PSA scheme which is efficient and proven secure.
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1.1 Contributions
In this paper we (1) introduce a definition and a security model for a
distributed setup PSA scheme, (2) present DIPSAUCE, the first PSA
scheme which does not rely on a trusted party, (3) prove this scheme
secure under static corruptions (and sketch modifications for se-
curity under mobile corruptions), (4) show its practical feasibility
by implementing it on realistic, off-the-shelf devices advertised as
being suitable for e.g. smart-metering. Since no other PSA scheme
is evaluated on realistic devices, we also (5) implement two state-
of-the-art PSA schemes [19, 44] on the same devices and compare
the performance to our scheme. All code is available at [23], and
the raw measurement data are available at [22].

DIPSAUCE is defined and proved in the standard model. Our
implementation, however, uses a more practical building block
with a hash function assumed to be a random oracle for better
performance. Note that this is implementation specific rather than
a limitation of the protocol.

Looking ahead, when comparing the setup and keygen proce-
dures in DIPSAUCE with the suggestions for a distributed setup
in KH-PRF-PSA [19] and LaSS-PSA [44] with 10000 parties, our
results show a speedup of 78x and 49x respectively. For the encryp-
tion procedure our protocol shows a speedup of 22x compared to
KH-PRF-PSA and 50x compared to LaSS-PSA.

1.2 Our Techniques
Our PSA scheme DIPSAUCE is a variant of LaSS-PSA, and takes
inspiration from the sketches of a distributed setup proposed in [19,
44]. The security of these proposed distributed setups crucially
relies on each party deriving a shared key for each other party. This
approach is secure against an adaptive adversary allowed to corrupt
up to 𝑛 − 2 out of all 𝑛 parties, but not the targeted device itself. As
we show later, the O(𝑛) complexity of this technique makes such a
protocol infeasible on constrained devices for the number of parties
(1000-10000) suggested in [19, 44].

To avoid this situation, we first consider a static adversary which
can corrupt up to 𝑡 out of the 𝑛 parties (where e.g. 𝑡 = 𝑛

2 ). This
allows us to design a more efficient protocol using the technique
of hidden committees [9, 14]. Specifically we leverage a random-
ness beacon to determine a small random committee for each user,
consisting of 𝑘, (𝑘 ≪ 𝑛) other parties to derive a shared key with.
Such a committee (probabilistically) preserves the ratio of corrupted
parties [17], and hides the committee members from a static ad-
versary, preventing it from targeting committee members from
corruption. Thus, the complexity can be reduced from O(𝑛) to
O(𝑘) (𝑘 ≪ 𝑡 < 𝑛), while maintaining security, so that the setup
stage is efficient enough to be feasible.

Then, building upon such an efficient distributed setup, we de-
scribe how to modify the protocol to be secure against a mobile
adversary, by periodically rerunning the setup stage.

1.3 Outline
The rest of this paper proceeds as follows. In Section 2, we intro-
duce notation and recall definitions of well known schemes. Then,
we evaluate the efficiency of the state of the art PSA schemes in
Section 3, and evaluate the efficiency of their proposed methods for
distributing their setup procedures in Section 4. In light of these

results, we then propose our novel PSA scheme and prove it secure
in Section 5, and evaluate its efficiency and compare it to the state
of the art schemes in Section 6. Finally, we conclude and discuss
some practical properties of our protocol in Section 7.

2 PRELIMINARIES
In this section we introduce notation and recall known construc-
tions relevant to our scheme.

Notation. Throughout the paper 𝜆 ∈ N denotes the computa-
tional security parameter. A specific party in a scheme is denoted
as P𝑖 . We will use the notation ®𝑎[𝑖] to denote the 𝑖’th element of
the vector ®𝑎. We use [𝑛] as a short hand notation for {1, . . . , 𝑛}.
We denote the set of permutations of [𝑛] by Perm(𝑛) and the 𝑘 :th
permutation of this set as Perm𝑘 (𝑛). For a permutation of [𝑛],
𝜌𝑘 = Perm𝑘 (𝑛), we denote the value of 𝑖:th element in 𝜌𝑘 as 𝜌𝑘 (𝑖).
We denote a graph as 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices in
the graph and 𝐸 the set of edges. The set of neighbouring vertices
of 𝑣𝑖 ∈ 𝑉 is denoted 𝑁 (𝑣𝑖 ). We also let ®𝐽𝑖 denote the set of all in-
dices of vertices in 𝑁 (𝑣𝑖 ). We denote the floor function of 𝑥 , i.e. the
greatest integer less than or equal to 𝑥 , as ⌊𝑥⌋. As a shorthand we
sometimes write (−1) (𝑖< 𝑗 ) . In this notation (𝑖 < 𝑗) is the boolean
function so that (−1) (𝑖< 𝑗 ) = (−1) when 𝑖 < 𝑗 and (−1) (𝑖< 𝑗 ) = 1
when 𝑖 > 𝑗 . The function is undefined for 𝑖 = 𝑗 .

Private Stream Aggregation. A Private Stream Aggregation (PSA)
scheme is a scheme which for each label 𝑙 allows an evaluator
to learn the sum of inputs {𝑚1, . . . ,𝑚𝑛}, from a set of parties
{P1, . . . ,P𝑛} without learning the individual inputs.

In existing PSA schemes, a trusted party executes the setup
procedure and distributes the secret keys to the aggregator and
clients. We here recall the definition of such centralized setup PSA
schemes and their corresponding security notion of aggregator
obliviousness, as defined in [19].

Definition 1 (Private Stream Aggregation). A PSA scheme
is defined by the procedures:

• Setup(𝜆, 𝑛): On input the security parameter 𝜆 and the number
of parties 𝑛, output public parameters pp and 𝑛 + 1 secret
symmetric encryption keys {ek𝑖 }𝑖∈[𝑛+1] (where ek𝑛+1 is the
aggregator key, sometimes alternatively denoted as ek𝑎).
• Enc(pp, ek𝑖 ,𝑚𝑖 , 𝑙): On input the public parameters pp, an en-
cryption key ek𝑖 , 𝑖 ≤ 𝑛, a message𝑚𝑖 ∈ Z𝑅, 𝑅 ∈ N and a label
𝑙 ∈ L, output the ciphertext 𝑐𝑖 .
• Aggr(pp, ek𝑎, {𝑐𝑖 }𝑐∈[𝑛] , 𝑙): Given the public parameters pp,
the aggregator key ek𝑎 , a set of 𝑛 ciphertexts {𝑐𝑖 }𝑐∈[𝑛] , and a
label 𝑙 , it outputs the sum of all plaintexts,𝑀 (mod 𝑅).

A PSA scheme PSA = (Setup, Enc,AggrDec) must satisfy cor-
rectness. For any 𝑛, 𝜆 ∈ N,𝑚1, . . . ,𝑚𝑛 ∈ Z𝑅 and any label 𝑙 ∈ L,
so that (pp, {ek𝑖 }𝑖∈[𝑛+1] ) ← Setup(𝜆, 𝑛), and ∀{𝑐𝑖 }𝑖∈[𝑛] : 𝑐𝑖 =

Enc(pp, ek𝑖 , 𝑙,𝑚𝑖 ), correctness is satisfied if:

AggrDec(pp, ek𝑎, 𝑙, {𝑐𝑖 }𝑖∈[𝑛] ) =
∑︁
𝑖∈[𝑛]

𝑚𝑖 (mod 𝑅)

Further, a secure PSA scheme must satisfy Aggregator Oblivious-
ness (AO). The below definition of AO regards encrypt-once security,
where a client only encrypt one value per label.
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Definition 2 (Aggregator Obliviousness). Let PSA be a PSA
scheme. Let the experiment 𝐴𝑂𝑏 in Figure 1 be defined with the fol-
lowing oracles:

• QCorrupt(𝑖): The oracle outputs the encryption key ek𝑖 of user
𝑖 . For 𝑖 = 𝑛 + 1, it outputs the aggregator key ek𝑎 .
• QEnc(𝑖,𝑚𝑖 , 𝑙∗): The oracle outputs 𝑐𝑡𝑖 = Enc(ek𝑖 ,𝑚𝑖 , 𝑙∗) on a
query.
• QChallenge(U, {𝑚0

𝑖
}𝑖∈U , {𝑚1

𝑖
}𝑖∈U , 𝑙∗): The adversary spec-

ifies a set of user indicesU ⊆ [𝑛], a label 𝑙∗ and two challenge
messages for each user fromU. The oracle answers with en-
cryptions of𝑚𝑏

𝑖
, that is {𝑐𝑖 ← Enc(pp, ek𝑖 ,𝑚𝑏𝑖 , 𝑙

∗)}𝑖∈U . This
oracle can only be queried once during the game. If the adver-
sary does not query this oracle,U = ∅.

At the end of the game,A outputs a guess𝛼 , whether𝑏 = 0 or𝑏 = 1.
A PSA scheme is Aggregator Oblivious, if for every PPT adversary
A there exists a negligible function negl such that for all sufficiently
large 𝜆, Adv𝐴𝑂A,PSA (𝜆, 𝑛) = negl(𝜆).

AO𝑏 (𝜆,𝑛,A)

(pp, {ek𝑖 }𝑖∈ [𝑛+1] ) ← Setup(𝜆,𝑛)
𝛼 ← 𝐴QCorrupt( ·),QEnc( ·),QChallenge( ·,·,·,·) (pp)
if condition (∗) is satisfied then

Output 𝛼 ?
= 𝑏

else
Output 0

end if

Figure 1: The aggregator obliviousness game defining secu-
rity for a PSA scheme.

To formally define the condition (∗), the following sets are in-
troduced:
• Let E∗

𝑙
⊆ [𝑛] be the set of all users for which A has asked

an encryption query on label 𝑙 .
• Let CS ⊆ [𝑛] be the set of users for which A has asked a
corruption query. Even if the aggregator is corrupted, this
set only contains the corrupted users and not the aggregator.
• Let Q𝑙∗ := U ∪ E𝑙∗ be the set of users for which A asked a
challenge or encryption query on label 𝑙∗.

Condition (∗) is satisfied (as used in Figure 1), if all of the follow-
ing conditions are satisfied:
• U∩CS = ∅. This means that all users for whichA received
a challenge ciphertext must stay uncorrupted during the
entire game.
• A has not queried QEnc(𝑖,𝑚𝑖 , 𝑙∗) twice for the same (𝑖, 𝑙∗).
Doing so would violate the encrypt-once restriction.
• U∩E𝑙∗ = ∅. This means thatA is allowed to get a challenge
ciphertext only from users for which they ask an encryption
query on the challenge label 𝑙∗. Doing so would violate the
encrypt-once restriction.
• If A has corrupted the aggregator and Q𝑙∗ ∪ CS = [𝑛] the
following equality must hold in order to prevent trivial wins
by using the knowledge of the aggregators knowledge of the

sum of all honest parties plaintexts.∑︁
𝑖∈𝑈

𝑥0𝑖 =
∑︁
𝑖∈𝑈

𝑥1𝑖

This condition is called the balance-condition.
In [44] and [19] the authors consider adaptive corruptions. A’s

advantage is defined as

Adv𝐴𝑂A,PSA (𝜆, 𝑛) =| 𝑃𝑟 [AO𝑂 (𝜆, 𝑛,A) = 1] −𝑃𝑟 [AO1 (𝜆, 𝑛,A) = 1] |

𝑘-Regular Graphs. A 𝑘-regular graph is a graph in which each
vertex has exactly 𝑘 neighbours. Efficient algorithms for generating
regular graphs are well known [34].

Randomness Beacons. A beacon [6] is a function 𝑟 = Beacon(𝑡)
which returns an𝑚-bit near-uniformly random value 𝑟 at each time
interval 𝑡 . Informally, a secure beacon should be unpredictable, i.e.
the advantage for an adversary predicting 𝑟 before time 𝑡 should be
negligible, unbiased, i.e. 𝑟 is statistically close to an𝑚-bit uniformly
random string, universally samplable, i.e. any party should be able
to obtain 𝑟 after time 𝑡 , and universally verifiable i.e. any party
can verify that no party had access to the random sample used to
construct 𝑟 before time 𝑡 .

Non-interactive Key Exchange. We here recall Non-Interactive
Key Exchange (NIKE) as defined in [16].

Definition 3 (Non-Interactive Key Exchange). A scheme for
Non-Interactive Key Exchange consists of the following algorithms:

Setup(𝜆): On input a security parameter 𝜆, output public parame-
ters pp.

KeyGen(pp): On input the public parameters pp, output a party’s
public key pk𝑖 and corresponding secret key sk𝑖 .

SharedKey(pp, pk𝑖 , sk𝑗 ): On input the public parameters pp, a
public key pk𝑖 and secret key sk𝑗 , deterministically output a shared
key 𝐾 .

We say that a NIKE scheme is correct if Pr[SharedKey(pp, pk𝑖 ,
sk𝑗 ) = SharedKey(pp, pk𝑗 , sk𝑖 )] = 1. We say that a NIKE scheme is
secure against a computationally bounded adversary given (pp, pk𝑖 ,
pk𝑗 ) if it cannot distinguish the output of SharedKey(pp, pk𝑖 , sk𝑗 )
from from a random string of the same length, when both P𝑖 and
P𝑗 are honest. We refer to [16, Def. 15] for a full definition of the
security game.

Pseudo Random Functions. Let F denote a family of efficiently-
computable functions 𝐹𝑘 : 𝐾 × 𝑋 → 𝑌 indexed by 𝑘 ∈ 𝐾 . The
family F is said to be a (𝑡, 𝜖) strong PRF if for every 𝑘 ∈ 𝐾 , and all
adversaries A running in time 𝑡 can not distinguish 𝐹 (𝑘, .) from a
random function 𝑓 : 𝑋 → 𝑌 . To be formal, we write:

|𝑃𝑟 [A𝐹𝑘 (.) = 1] − 𝑃𝑟 [A 𝑓 (.) = 1] | < 𝜖

To aid the reader, we will denote such a function 𝐹𝑘 PRF𝑘 from
here on. (F )KH-PRF ⊂ F is said to be additively key-homomorphic
if for 𝐹𝑘𝑖 , 𝐹𝑘 𝑗 ∈ (F )KH-PRF the following condition holds

𝐹𝑘𝑖 (𝑥) + 𝐹𝑘 𝑗 (𝑥) = 𝐹𝑘𝑖+𝑘 𝑗 (𝑥)

We will denote such a function KH-PRF𝑘 .
3



3 EVALUATING THE PERFORMANCE OF
STATE OF THE ART PSA SCHEMES

In this section, we evaluate the performance of the client side oper-
ations (i.e. the encryption procedure, since the schemes are defined
with a centralized setup) of the PSA schemes in [19] and [44], which
can be considered the current state of the art due to them being the
most efficient schemes. While the recent scheme in [43] claims to
be more efficient, their construction relies on an alternate security
model which introduces one trusted, powerful, device for each con-
strained device. The efficiency claims of [43] are only possible due
to this alternate security model, which allows offloading of com-
putations onto the trusted more powerful devices. We therefore
consider [19] and [44] to still be the state of the art.

The first scheme [19], which we will call KH-PRF-PSA is based
on a Key Homomorphic PRF. The second scheme [44], which we
refer to as LaSS-PSA is based upon a primitive called Labeled Secret
sharing (LaSS), which is also introduced in [44].

Both these works evaluate the performance of their schemes on
Intel i5 CPUs, rather than on constrained devices. Therefore, these
performance evaluations gives little insight into how the schemes
perform on realistic hardware. We therefore investigate whether
these schemes can be run on constrained devices. The code for our
experiments and protocol implementation is available at [23]. The
raw data of the results are available at [22].

3.1 Scenario and Experiment Setup
Scenario. In our IoT data analytics scenario, a set of𝑛 Clients, each

measures some statistic, e.g. power in a smart metering scenario,
and wishes to communicates the sum of the measurements to a
Server (without revealing individual measurements).

Setup. We evaluate the client side operations of PSA schemes
on devices from the CC1352 series of devices with ARM Cortex
M4 processors. These devices can be considered “mid-range" con-
strained devices, as they are classified as C3 devices in the IETF
draft for terminology on constrained devices [8]. The CC1352 plat-
form has hardware acceleration for Elliptic Curve Diffie-Hellman,
AES and SHA256, as well as a True Random Number Generator
(TRNG) and a capabilities to run the wireless protocol IEEE802.15.4
Low Power Personal Area Network (LoWPAN). The computer run-
ning the Server, i.e. the aggregating party, has a Border-Router with
IEEE802.15.4 capabilities that connects to the Client. We provide
additional details on the experiment setup and the CC1352 platform
in Appendix A.

Experiments. We evaluate the client side efficiency of LaSS-PSA
andKH-PRF-PSA bymeasuring the execution time of the respective
Enc procedures. Time is measured from the start of the process until
the ciphertext is ready to be transmitted. No network operations
are included in this test. In the experiments in [19, 44], the number
of clients (i.e. 𝑛) tested are groups of 1000 to 10000 clients in even
increments of 1000. Our tests are done for𝑛 = 1024, 2025, 3025, 4096,
5041, 6084, 7056, 8100, 9025 and 10000. These sizes are selected to be
comparable with the experiments in previous works, while remain-
ing compatible with requirements in our specific implementation
of the DIPSAUCE protocol, which has additional requirements on
the group sizes as explained in Section 6.1. The encrypt procedure

was repeated 10 times for each group size, and our results are the
average of these 10 runs.

3.2 Protocol Definitions and Implementations
3.2.1 KH-PRF-PSA. Let us recall the definition of theKH-PRF-PSA
protocol from [19] in Protocol 1.

Protocol 1 – The KH-PRF-PSA scheme in [19].

Setup(𝜆, 𝑛):

1: ∀𝑖 ∈ [𝑛] : ek𝑖
$←− Z𝜆

𝑅
2: ek𝑎 =

∑
𝑖∈[𝑛] ek𝑖

3: return ek𝑎, {ek𝑖 }𝑖∈[𝑛]
Enc(ek𝑖 ,𝑚𝑖 , 𝑙):

1: 𝑡𝑖 = KH-PRFek𝑖 (𝑙)
2: 𝑐𝑖 = (𝑡𝑖 +𝑚𝑖 ) (mod 𝑅)
3: return 𝑐𝑖

Aggr(ek𝑎, {𝑐𝑖 }𝑖∈[𝑛] , 𝑙):

1: 𝑚𝑎 =
∑
𝑖∈𝑛 𝑐𝑖 − KH-PRFek𝑎 (𝑙) (mod 𝑅)

2: return𝑚𝑎

We have implemented the KH-PRF-PSA realization in [19, Sec.
4], which uses a KH-PRF based on a hash function 𝐻 (), and which
is secure in the Random Oracle Model (ROM). The implementation
uses parameter 𝑅 ∈ N and security parameters 𝜆 = 2096, 𝑞 = 2128
and 𝑝 = 285. The encryption key ek is a vector of 𝜆 elements from
Z𝑞 and thus has size 𝜆 · 𝑞 = 33536 bytes.

The KH-PRF is defined as the inner product of the ek and the
output of the function 𝐻 ′ (𝑙) (where 𝑙 is the given label):

KH-PRFek (𝑙) = ⌊⟨𝐻 ′ (𝑙), ek⟩⌋𝑝 (1)
This definition uses the syntax of [19], where: ⌊𝑥⌋𝑝 = ⌊𝑥 · 𝑝/𝑞⌋.
The function 𝐻 ′ (𝑙) is in turn defined as a vector of 𝜆 hashes of the
label concatenated with a counter, and reduced modulo 𝑞:

𝐻 ′ (𝑙) =
©«
𝐻 (𝑙 | |””| |”1”) (mod 𝑞)

.

.

.

𝐻 (𝑙 | |””| |”𝜆”) (mod 𝑞)

ª®®¬ (2)

In the instantiation in [19] SHA3-512 is used for the hash function
𝐻 (). For a fair comparison, we however select a more efficient hash
function, SHA256, which is hardware accelerated on the CC1352
platform.

3.2.2 LaSS-PSA. Let us also recall the LaSS-PSA scheme from [44],
presented in Protocol 2. The LaSS-PSA realization is presented us-
ing the notation (−1) (𝑖< 𝑗 ) , introduced in Section 2. The realization
uses parameter 𝑅 ∈ N and the security parameter 𝜆 = 128. Note that
𝐾𝑖,𝑖 is left undefined. LaSS-PSA uses LaSS to mask the message.
We here implement the version which instantiates the PRF using
AES-128, since its the most efficient instantiation of LaSS in the
measurements of [44], and is hardware accelerated on the CC1352
platform. The encryption key ek consists of a vector of 𝑛 elements
from Z𝑅 , where 𝑛 is the number of users in the system, and thus
has size 𝑛 · 𝑙𝑜𝑔2 (𝑅).
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Protocol 2 – The LaSS-PSA scheme [44].

Setup(𝜆, 𝑛):

1: ∀𝑖 ∈ [𝑛 + 1],∀𝑗 s.t. 𝑛 ≤ 𝑗 > 𝑖 : 𝐾𝑖, 𝑗
$←− Z𝑅

2: ∀𝑖 ∈ [𝑛 + 1],∀𝑗 s.t. 𝑛 ≤ 𝑗 < 𝑖 : 𝐾𝑖, 𝑗 = 𝐾𝑗,𝑖
3: let ek𝑖 = ®𝐾𝑖 be the vector s.t. ∀𝑗 ∈ [𝑛] : ®𝐾𝑖 [ 𝑗] = 𝐾𝑖, 𝑗
4: return {ek𝑖 }𝑖∈[𝑛+1]

Enc(ek𝑖 = ®𝐾𝑖 ,𝑚𝑖 , 𝑙):

1: 𝑡𝑖 ←
∑
𝑗∈[𝑛+1]\{𝑖 } (−1)𝑖< 𝑗 · PRF ®𝐾𝑖 [ 𝑗 ] (𝑙)

2: 𝑐𝑖 = (𝑡𝑖 +𝑚𝑖 ) (mod 𝑅)
3: return 𝑐𝑖

Aggr(ek𝑎 = ®𝐾𝑛+1, {𝑐𝑖 }𝑖∈[𝑛] ):

1: 𝑚𝑎 =
∑
𝑖∈𝑛 𝑐𝑖 +

∑
𝑗∈[𝑛] PRF ®𝐾𝑛+1 [ 𝑗 ] (𝑙) (mod 𝑅)

2: return𝑚𝑎

3.3 Results

Figure 2: Execution time in seconds of the Enc procedure in
KH-PRF-PSA and LaSS-PSA.

The results of the experiments are available in Figure 2. The
KH-PRF construction used in KH-PRF-PSA has an execution time
independent of the number of parties. Our measurements show this
constant execution time to be 230 ms, regardless of the numbers of
parties. The execution time of LaSS-PSA is linear with a coefficient
of 0.05 ms per party in the system. The lines intersect at approx-
imately 4200 users. These trends correspond to the results from
[19, Section 4.4], but the execution times for both KH-PRF-PSA and
LaSS-PSA are around 200x longer in our measurements compared
to the numbers presented in [19]. This discrepancy stems from the
fact that our experiments are executed on a constrained devices
whereas the experiments in [19] are executed on an Intel Core i5
CPU.

4 EVALUATING THE METHODS FOR A
DISTRIBUTED SETUP PROPOSED IN [19, 44]

Recall that all previous PSA schemes, including KH-PRF-PSA and
LaSS-PSA, are presented with a trusted party for key distribution.
Both KH-PRF-PSA [19] and LaSS-PSA [44], briefly discuss an ap-
proach to distribute the setup by negotiating a key between each
party in the scheme, but does not give details on how to do this. In
this section, we give details on how a distributed setup procedure for
KH-PRF-PSA and LaSS-PSA can be constructed using the proposed
method, implement the resulting schemes on the CC1352 platform
with an ARMCortex M4 processor, and evaluate the performance of
the client side operations (i.e. both setup and encryption since the
setup is now performed by the clients instead of by a trusted party).
This gives us an estimate for the performance of this approach to
distributing the setup of PSA scheme. The code for our experiments
and protocol implementation is available at [23]. The raw data of
the results are available at [22].

It is not our intent to prove the security of this distributed setup
procedures. We here only wish to show its (in)efficiency. Definitions
and proofs for distributed setup are instead available for the scheme
in Section 5.

4.1 A Distributed Setup for KH-PRF-PSA
Ernst and Koch propose a decentralized setup protocol in [19, Sec-
tion 5.1] based on the sum-of-PRF technique. Let us here briefly
recall this technique.

Sum-of-PRFs. The sum-of-PRFs technique, first introduced as
part of a scheme in [13] and later used in e.g. [16, Sec. 6.2], allows
the parties {P1, . . . ,P𝑛} to derive a sum of their respective inputs
{𝑚1, . . . ,𝑚𝑛} without revealing the individual 𝑚𝑖 :s from honest
users. An adversary who corrupts the aggregator and𝑚 < 𝑛 − 2
parties can then only learn the sum of the inputs of the honest
users. The technique assumes that each pair of users, P𝑖 ,P𝑗 has
a shared secret 𝐾𝑖, 𝑗 . To mask its message 𝑚𝑖 , P𝑖 derives 𝑐𝑖 ←
𝑚𝑖+

∑
𝑗∈[𝑛]\{𝑖 } (−1)𝑖< 𝑗 ·PRF𝐾𝑖,𝑗

(𝑥) (note the (−1)𝑖< 𝑗 notation from
Section 2). Then, the sum of all𝑚𝑖 can be calculated as

∑𝑛
𝑖=1 𝑐𝑖 =∑𝑛

𝑖=1𝑚𝑖 . Summing any set smaller than 𝑛 of 𝑐𝑖 containing at least
2 ciphertexts from honest users will result in a random output.

Decentralizing the Protocol. Protocol 3 introduces a detailed real-
ization of the suggested approach to decentralize the KH-PRF-PSA
protocol. Note that in order for this distributed setup to be compat-
ible with Protocol 1, the evaluator must derive 𝑘𝑎 as the sum of all
aks𝑖 , i.e. 𝑘𝑎 =

∑
𝑖∈[𝑛] aks𝑖 .

In our implementation of Protocol 3, we use a python based
PKI with a CoAP [40] interface where all keys of other parties are
registered. We have instantiated NIKE using ECDH P-256. ECDH
P-256 is hardware accelerated on the CC1352 platform. The PRF
was instantiated using hardware accelerated AES-128.

4.2 A Distributed Setup for LaSS-PSA
Waldner et al. propose a decentralized setup protocol in [44, Sec.
7], which we give details on how to construct in Protocol 4. Note
that to make this setup compatible with Protocol 2, the aggregator
must also execute the setup protocol.
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Protocol 3 – Distributed Setup for KH-PRF-PSA

Setup(𝜆, 𝑛, 𝑘, 𝑖):

1: let ®𝐸𝑖 be a vector where ∀𝑗 ∈ {1, . . . , 𝜆} : ®𝐸𝑖 [ 𝑗]
$←− Z𝑅

2: ek𝑖 ← ®𝐸𝑖 [1] | | . . . | | ®𝐸𝑖 [𝜆]
3: npp← NIKE.Setup(𝜆)
4: (pk𝑖 , sk𝑖 ) ← NIKE.KeyGen(npp)
5: Post (P𝑖 , pk𝑖 ) to the PKI
6: Wait until the PKI returns a pk𝑗 for each 𝑗 ∈ [𝑛]
7: for 𝑗 ∈ [𝑛] \ {𝑖} do
8: 𝐾𝑗 ← NIKE.SharedKey(pk𝑗 , sk𝑖 )
9: end for
10: for ℓ ∈ {1, . . . , 𝜆} do
11: 𝑏𝑖,ℓ ←

∑
𝑗∈[𝑛]\{𝑖 } (−1)𝑖< 𝑗 · PRF𝐾𝑗

(ℓ)
12: ®𝐴𝑖 [ℓ] = ®𝐸𝑖 [ℓ] + 𝑏𝑖,ℓ (mod 𝑅)
13: end for
14: 𝑎𝑘𝑠𝑖 ← ®𝐴𝑖 [1] | | . . . | | ®𝐴𝑖 [𝜆]
15: return ek𝑖 , aks𝑖

Protocol 4 – Distributed Setup for LaSS-PSA.

Setup(𝜆, 𝑘, 𝑛, 𝑖):

1: npp← NIKE.Setup(𝜆)
2: (pk𝑖 , sk𝑖 ) ← NIKE.KeyGen(npp)
3: Post (P𝑖 , pk𝑖 ) to the PKI
4: Wait until the PKI returns a pk𝑗 for each P𝑗 ∈ P
5: for 𝑗 ∈ [𝑛] \ {𝑖} do
6: 𝐾𝑗 ← NIKE.SharedKey(pk𝑗 , sk𝑖 )
7: end for
8: return ek𝑖 = ®𝐾𝑖

In our implementation of Protocol 4, we use a python based
PKI with a CoAP [40] interface where all keys of other parties are
registered. We have instantiated NIKE using ECDH P-256. ECDH
P-256 is hardware accelerated on the CC1352 platform. The PRF
was instantiated using hardware accelerated AES-128.

4.3 Experiments and Results
The setup and experiments described in this section is the same
as described in Section 3.1 and Appendix A, however instead of
measuring Enc, we measure the Setup execution times. The results
of the experiments are available in Figure 3.

The figure shows that the execution times of the setup parts of
both KH-PRF-PSA and LaSS-PSA grow linearly with the number of
users in the system. The coefficient for KH-PRF-PSA is higher than
that for LaSS-PSA. The reason for this difference in performance
is that KH-PRF-PSA, in addition to deriving pairwise shared keys
for all users (which is done in both Protocol 3 and Protocol 4), also
generates a larger secret key 𝑒𝑘𝑖 (steps 1-2 in Protocol 3) and masks
𝑒𝑘𝑖 before it is sent to the aggregator (steps 10-14 in Protocol 3).
Thus LaSS-PSA outperforms KH-PRF-PSA for all number of users
in the system.

Figure 3: Execution time in seconds of the Setup procedure
in KH-PRF-PSA and LaSS-PSA.

5 EFFICIENT DISTRIBUTED SETUP PSA
The results in the previous section show that the existing sugges-
tions for obtaining a distributed setup for PSA schemes in [19, 44]
are infeasible in practice. To address this, we now present our pro-
tocol DIPSAUCE. It can be seen as a distributed setup variation of
the protocol in [44, Section 4], modified so that the Setup procedure
no longer generates keys centrally. Instead, we introduce a KeyGen
procedure which each party executes independently.

Although we here present a specific protocol, our approach can
be used to distribute the setup of other PSA schemes, for example
the scheme in [19].

Approach. The distributed setup procedures in Section 4 use the
sum-of-PRFs technique, which works by each party evaluating a
PRF once for each party in its committee. This committee consists of
all other parties, and thus its size is𝑛−1. In these schemes, a targeted
device is secure against an adaptive adversary which corrupts up
to 𝑛 − 2 of the committee parties (but not the targeted device itself).
While this is a very strong security guarantee, we have shown
in previous sections that the resulting protocol is rendered too
inefficient for practical use. The main bottleneck giving rise to this
inefficiency is the size of the committee.

How then to enable more efficient constructions by reducing the
size of the committee, without sacrificing security? For example
a committee of size

√
𝑛 would be much more efficient, but if it is

only secure against up to
√
𝑛 − 1 corruptions it cannot be said to be

as secure. A key insight is that a static or mobile adversary cannot
target devices in a committee for corruption (within an epoch) if
it cannot predict what devices constitutes the committee. Using
an unpredictable committee of size 𝑘 < 𝑛 we can create a more
efficient construction, secure in the presence of a static or a mobile
adversary capable of corrupting up to 𝑡 devices, where 𝑘 < 𝑡 < 𝑛.

The technical novelty of the protocol lays in how it uses a 𝑘-
regular graph and a randomness beacon to efficiently establish
unpredictable committees. The protocol defines each committee
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using the output of a public randomness beacon. However, an ef-
ficient protocol cannot directly use the output of the beacon to
determine the committees. Sampling 𝑛 committees of size 𝑘 and
transferring this data to the devices would mean transferring 𝑛𝑘
group elements to each device, which is not feasible in scenarios
with constrained devices or networks. Instead, we first let each
device be represented as a vertex in a 𝑘-regular graph which is part
of the system configuration. Then, a single output of the beacon is
used to determine a pseudorandom permutation of this graph. The
committee of each party is then determined by the 𝑘 neighbours
in the randomly permuted graph. This committee is then used in
a threshold sum-of-PRFs where each party evaluates a PRF for 𝑘
other parties.

Aggregation output. In line with [19, 44], we consider a definition
for PSA which outputs the sum of all plaintexts to the aggregator,
i.e. we do not strive to achieve differential privacy. In contrast to
existing definitions of PSA, no secret key is needed to aggregate the
sum of plaintexts. This is a more general definition. If it is a desired
system property to specifically allow only one particular aggregator
party to aggregate, then this property can be obtained by sending
the ciphertexts over an encrypted channel to the aggregator party,
or alternatively by including the aggregator among the encrypting
parties and letting it encrypt zero without publishing the ciphertext.

5.1 Definition
Assumptions. We assume that all parties have access to a Ran-

domness Beacon (RB) and a Public Key Infrastructure (PKI). We
presuppose that each node in𝐺 is assigned an index to indicate its
corresponding vertex in the graph during setup.

Corruptions. We consider an adversary A capable of corrupting
any party P𝑖 , up to a threshold of 𝑡 parties. Once a party is corrupt,
A takes full control of the execution of that party, meaning that it
controls the actions and learns the internal state of a corrupt party
throughout the execution of the protocol. The set of corrupt parties
is denoted C.

Definition 4 (Distributed Setup Private Stream Aggrega-
tion). A Distributed Setup Private Stream Aggregation (DS-PSA)
scheme over Z𝑅 , where 𝑅 ∈ N, is defined for a set of parties P =

{P1, . . . ,P𝑛} and a special party called the evaluator E, and consists
of the following procedures:

• Setup(𝜆, 𝑐𝑜𝑛𝑓 ): On input a security parameter 𝜆 and optional
configuration parameters 𝑐𝑜𝑛𝑓 , the procedure outputs the sys-
tem parameters pp.
• KeyGen(pp, 𝑖) On input the system parameters pp and the
users index in the system 𝑖 , the procedure outputs an encryption
key ek𝑖 .
• Enc(pp, ek𝑖 ,𝑚𝑖 , 𝑙): On input the system parameters pp, an
encryption key ek𝑖 , a message𝑚𝑖 and a label 𝑙 , the procedure
outputs an encryption 𝑐𝑖 of𝑚𝑖 under ek𝑖 .
• Aggr(pp, {𝑐𝑖 }𝑖∈[𝑛] ): On input the system parameters pp, a set
of 𝑛 ciphertexts {𝑐𝑖 }𝑖∈[𝑛] and a label 𝑙 , the procedure outputs
the sum of all plaintexts,𝑀 (mod 𝑅).

Note that, as is often the case in PSA, our scheme returns the sum
of the encrypted values modulo 𝑅, where 𝑅 is a system parameter.

AO𝑏 (𝜆,𝑛,A)

𝐿 ← ∅
pp← Setup(𝜆, 𝑐𝑜𝑛𝑓 )
for 𝑖 ∈ [𝑛] do

ek𝑖 ← KeyGen(pp, 𝑖 )
end for
𝛾 ← AQEnc,QLeftRight

return 𝛾 ?
= 𝑏

Figure 4: The aggregator obliviousness experiment defining
security for a distributed setup PSA scheme.

We say that a Distributed Setup PSA scheme is correct if for all
pp← Setup(𝜆, 𝑐𝑜𝑛𝑓 ),𝑚𝑖 , 𝑙 , {ek𝑖 ← KeyGen(pp, 𝑖)}𝑖∈[𝑛] , we have:

Pr
[
Aggr

(
{Enc(pp, ek𝑖 ,𝑚𝑖 , 𝑙)}𝑖∈[𝑛]

)
=

𝑛∑︁
𝑖=1

𝑚𝑖

]
= 1

A DS-PSA scheme is secure if an adversary has a negligible
probability of winning the game for Aggregator Obliviousness (AO)
in Definition 5.

Definition 5 (Aggregator Obliviousness (AO)). Security is
defined via the game of Aggregator Obliviousness AO𝑏 (𝜆, 𝑛,A), 𝑏 ∈
{0, 1} in Figure 4.A denotes the adversary with access to the following
oracles:
• QEnc(𝑖,𝑚𝑖 , 𝑙∗): Given a user index 𝑖 , a message𝑚𝑖 and a label
𝑙∗, if (𝑖, 𝑙∗) ∉ 𝐿 then it lets 𝐿 ← 𝐿 ∪ {(𝑖, 𝑙∗)} and answers the
query with 𝑐𝑖 = Enc(ek𝑖 ,𝑚𝑖 , 𝑙∗).
• QLeftRight(U, {𝑚0

𝑖
}𝑖∈U , {𝑚1

𝑖
}𝑖∈U , 𝑙∗): Given a setU of user

indices, two sets {𝑚0
𝑖
}𝑖∈U and {𝑚1

𝑖
}𝑖∈U , and a label 𝑙∗, it

checks if ∀𝑖 ∈ U : (𝑖, 𝑙∗) ∉ 𝐿 and {P𝑖 }𝑖∈U ∩ C = ∅
and no previous calls has been made to QLeftRight. If fur-
ther {P𝑖 }𝑖∈U ∪ C = {P𝑖 }𝑖∈[𝑛] it also checks if

∑
𝑖∈U𝑚

0
𝑖
=∑

𝑖∈U𝑚
1
𝑖
. If all checks return true, it lets 𝐿 ← 𝐿∪{(𝑖, 𝑙∗)}𝑖∈U

and answers the query with {𝑐𝑖 }𝑖∈U s.t. 𝑐𝑖 = Enc(ek𝑖 ,𝑚𝑏𝑖 , 𝑙
∗).

At the end of the game, A outputs a guess 𝛾 of whether 𝑏 equals 0
or 1.

This security definition models encrypt-once security, i.e. the
restriction that each party only encrypts a single message per label
(which is the natural usage of the scheme). This is enforced by
both QEnc and QLeftRight maintaining the set 𝐿, where they store
which label has been used for each user and ignores any requests
of label reuse. Further, since any party has the ability to aggregate
in Definition 4, the QLeftRight enforces that

∑
𝑖∈U𝑚

0
𝑖
=
∑
𝑖∈U𝑚

1
𝑖

when all honest users are part of the QLeftRight call. This prevents
A from trivially winning the game by receiving a ciphertext for
each honest user and then checking whether the output of Aggr
contains {𝑚0

𝑖
}𝑖∈U or {𝑚1

𝑖
}𝑖∈U .

We note that this AO-game is similar to the AO-games in [19, 44].
The main differences are that we model corruptions as a full party
takeover rather than as a key leaking oracle, and the lack of a
dedicated key for the aggregator.

5.2 Construction
The protocol is described in Protocol 5.
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Protocol 5 – DIPSAUCE

Setup(𝜆, 𝑐𝑜𝑛𝑓 = {𝑛, 𝑘, 𝑡𝑖𝑚𝑒}):

1: Generate a 𝑘-regular graph 𝐺 = (𝑉 , 𝐸) where |𝐺 | = 𝑛
2: 𝑟 ← Beacon(𝑡𝑖𝑚𝑒)
3: npp← NIKE.Setup(𝜆)
4: return pp = {npp, 𝑛, 𝑘,𝐺, 𝑟, 𝑅}

KeyGen(pp, 𝑖):

1: (pk𝑖 , sk𝑖 ) ← NIKE.KeyGen(npp)
2: Post (P𝑖 , pk𝑖 ) to the PKI
3: 𝑟 ← Beacon(𝑡𝑖𝑚𝑒)
4: 𝜌 ← Perm𝑟 (𝑛)
5: Let ®𝐽𝑖 be the vector s.t ∀®𝐽𝑖 [ℓ] = 𝑗 : 𝑣 𝑗 ∈ 𝑁 (𝑣𝜌 (𝑖 ) ), (i.e.

the indices of P𝑖 :s neighbors in the permuted graph)
6: for ℓ ∈ {1, . . . , 𝑘} do
7: ℓ′ = ®𝐽𝑖 [ℓ]
8: Wait until the PKI returns an entry pkℓ ′ for Pℓ ′
9: ®𝐾𝑖 [ℓ] ← NIKE.SharedKey(pkℓ ′ , sk𝑖 )
10: end for
11: return ek𝑖 = ( ®𝐾𝑖 , ®𝐽𝑖 )

Enc(pp, ek𝑖 = ( ®𝐾𝑖 , ®𝐽𝑖 ),𝑚𝑖 , 𝑙):

1: 𝑡𝑖 ←
∑𝑘
ℓ=1 (−1)𝑖<

®𝐽𝑖 [ℓ ] · PRF ®𝐾𝑖 [ℓ ] (𝑙)
2: 𝑐𝑖 = (𝑡𝑖 +𝑚𝑖 ) (mod 𝑅)
3: return 𝑐𝑖

Aggr(pp, {𝑐𝑖 }𝑖∈[𝑛] ):

1: 𝑀 =
∑
𝑖∈𝑛 𝑐𝑖 (mod 𝑅)

2: return𝑀

Correctness. By definition we have

DIPSAUCE.Aggr ({𝑐𝑖 }𝑖∈𝑛) =
∑︁
𝑖∈𝑛

𝑐𝑖 =
∑︁
𝑖∈𝑛

𝑚𝑖 + 𝑡𝑖 =
∑︁
𝑖∈𝑛

𝑚𝑖 +
∑︁
𝑖∈𝑛

𝑡𝑖 .

Since 𝐺 is 𝑘-regular and there exists a one-to-one mapping (bijec-
tion) between every vertex 𝑣𝑖 and its neighbour set 𝑁 (𝑣𝑖 ), there
exist unique indices 𝑖1, . . . , 𝑖𝑘 with 𝑖 𝑗 ≠ 𝑖 for 𝑗 = 1 . . . , 𝑘 such that

𝑖 ∈ ®𝐽𝑖 𝑗 for 𝑗 = 1, . . . , 𝑘 .

For simplicity we let 𝑖′ denote any one of the indices 𝑖 𝑗 above.
Furthermore, since NIKE is correct – that is, since

NIKE.SharedKey(pk𝑖 , sk𝑖′ ) = NIKE.SharedKey(pk𝑖′ , sk𝑖 ),

we also have

∀𝐾𝑖 [ℓ] : ∃𝐾𝑖′ [ℓ′] s.t. 𝐾𝑖 [ℓ] = 𝐾𝑖′ [ℓ′]

Thus DIPSAUCE is correct as long as NIKE is correct and 𝐺 is 𝑘-
regular, since then all 𝐾𝑖 [ℓ] will cancel out during aggregation s.t.∑
𝑖∈𝑛 𝑡𝑖 = 0.

5.3 Security Analysis
Since DIPSAUCE is a variation of [44], it can be proven using the
same proof strategy (originating from [1] and also used in [19]),
which consists of a series of games forming a hybrid argument, and

Game Definition of QLeftRight-oracle Argument

G0
𝑡𝑖 ←

∑𝑘
ℓ=1 (−1)𝑖<

®𝐽𝑖 [ℓ ] · PRF ®𝐾𝑖 [ℓ ] (𝑙)
𝑐𝑖 ←𝑚0

𝑖
+ 𝑡𝑖

G1
𝑡 ′
𝑖
← ∑𝑘

ℓ=1 (−1)𝑖<
®𝐽𝑖 [ℓ ] · PRF ®𝐾𝑖 [ℓ ] (𝑙) 𝑡𝑖 indisting.

𝑡𝑖 ← 𝑡 ′
𝑖
+ PSS(0, 𝑖, 𝑛 − |C|) from rand.

𝑐𝑖 ←𝑚0
𝑖
+ 𝑡𝑖

G2
𝑡 ′
𝑖
← ∑𝑘

ℓ=1 (−1)𝑖<
®𝐽𝑖 [ℓ ] · PRF ®𝐾𝑖 [ℓ ] (𝑙) one-time-pad

𝑡𝑖 ← 𝑡 ′
𝑖
+ PSS(0, 𝑖, 𝑛 − |C|) info. theo.

𝑐𝑖 ← 𝑚1
𝑖
+𝑡𝑖 secure

G3
𝑡𝑖 ←

∑𝑘
ℓ=1 (−1)𝑖<

®𝐽𝑖 [ℓ ] · PRF ®𝐾𝑖 [ℓ ] (𝑙) 𝑡𝑖 indisting.

𝑐𝑖 ←𝑚1
𝑖
+ 𝑡𝑖 from rand.

Table 1: Strategy for proving AO-Security of DIPSAUCE. The
change in each game is highlighted by boxing.

where each game changes the definition of the QLeftRight-oracle.
We recall this strategy in Table 1.

The game G0 corresponds to the AO0-game where QLeftRight
queries are answered with the encryption of𝑚0

𝑖
. G3 corresponds

to the AO1-game where QLeftRight queries are answered with the
encryption of𝑚1

𝑖
. Thus, if the security of the transitions between

the games hold, the adversary cannot tell the AO0-game from the
AO1-game.

The transition from G0 to G1 consists of adding a perfect secret
sharing (denoted PSS in Table 1) of zero to the threshold-sum-of-
PRFs, so that all 𝑡𝑖 are perfectly random without destroying the
correctness of the scheme. Thus this transition is justified if the
threshold-sum-of-PRFs produces 𝑡𝑖 so that it is indistinguishable
from randomness. Next, consider the transition from G1 to G2,
where 𝑐𝑖 now encrypts𝑚1

𝑖
instead of𝑚0

𝑖
. This transition is justi-

fied since 𝑡𝑖 is perfectly random, and thus an adversary cannot
distinguish whether 𝑐𝑖 is an encryption of𝑚0

𝑖
or𝑚1

𝑖
. Finally, the

transition from G2 to G3 consists of undoing the change made in
G1 (with the same security argument). We arrive at the following
theorem.

Theorem 5.1. If 𝑡𝑖 is indistinguishable from randomness for a com-
putationally bounded adversary except with a negligible advantage,
then DIPSAUCE is AO-secure.

5.3.1 Proving the threshold sum-of-PRFs technique. We now prove
that 𝑡𝑖 is indistinguishable from randomness in the presence of a
static malicious adversary, i.e. an adversary limited to corrupting
parties only before the start of protocol execution. In DIPSAUCE 𝑡𝑖
is generated with a threshold version of the Sum-of-PRFs technique,
where for each P𝑗 , the selection of which PRFs to include in its
sum is determined by its 𝑘-sized committee, equal to the set of
neighbours to the users vertex in a random permutation of the
graph 𝐺 .

Proof Outline. The outline of the proof is as follows. We first for-
malize the security of our known building blocks of NIKE and sum-
of-PRFs in the context of our scheme in Lemma 5.2 and Lemma 5.3.
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Intuitively Lemma 5.2 states that all NIKE derived keys are private
to the negotiating parties, and Lemma 5.3 states that the sum-of-
PRF output, 𝑡𝑖 , is secret to an adversary which corrupts all but one
out of the parties in a sum-of-PRFs committee.

We are then ready to consider the DIPSAUCE method, where
𝑘-sized committees are selected at random from a population of 𝑛
parties with a threshold 𝑡 of corrupt parties. This is formalized in
Theorem 5.4.

We then conclude by formalizing the indistinguishably of 𝑡𝑖 as a
consequence of the previous theorem and lemmas in Theorem 5.5.

Details of the proof. Let us now detail the different parts, be-
ginning with restating the security of NIKE in the context of our
scheme, i.e. that each NIKE derived key derived for a committee
member, is does not leak anything to the adversary for all hon-
est parties in the users committee. As a direct consequence of the
security of NIKE, Lemma 5.2 is true.

Lemma 5.2 (Pseudo-Random SharedKeys). DIPSAUCE.KeyGen
outputs ek𝑖 = ( ®𝐾𝑖 , ®𝐽𝑖 ) s.t each key ®𝐾𝑖 [ℓ] is indistinguishable from
randomness to a computationally bounded adversary when P𝑖 and
the committee counterparty P®𝐽 [ℓ ] (whose index is defined in ®𝐽 [ℓ])
are both honest.

Let us also briefly restate the security of the sum-of-PRFs tech-
nique in our setting. If a key ®𝐾𝑖 [ℓ] is (pseudo)-random (i.e. when
P®𝐽 [ℓ ] is honest), the output of PRF ®𝐾𝑖 [ℓ ] (𝑙) is also (pseudo)-random.
Then since 𝑡𝑖 is the sum of all such values, a single honest P𝑗 ren-
ders 𝑡𝑖 (pseudo)-random. Thus, an adversary must corrupt all 𝑘
parties in the committee to learn anything about 𝑡𝑖 for the label 𝑙 .
We get 𝐿𝑒𝑚𝑚𝑎 5.3.

Lemma 5.3 (Sum-of-PRFs). An adversary given 𝑙 and up to 𝑘 − 1
entries in ®𝐾𝑖 has a negligible advantage in distinguishing

𝑡𝑖 =

𝑘∑︁
ℓ=1
(−1)𝑖< ®𝐽𝑖 [ℓ ] · PRF ®𝐾𝑖 [ℓ ] (𝑙)

from randomness.

By relying on just Lemma 5.3, we can only say that the protocol
is secure against an adversary corrupting up to 𝑡 = 𝑘 − 1 parties.
Let us therefore transfer from the standard sum-of-PRFs technique
to our threshold version.

Theorem 5.4 informally states that if we randomize the commit-
tee members, an adversary corrupting up to 𝑡 parties will have a
negligible chance to corrupt all 𝑘 committee members of a user
with these 𝑡 corruptions.

In the proof of this theorem, we first argue that the permutation
of the graph is pseudorandom.

Then, as a stepping stone, we first consider the advantage of the
adversary in guessing a specific random committee. Intuitively, if we
randomize the committees for each user, a static adversary has no
better strategy than to randomly guess the 𝑘 users in the committee.
To then put an upper bound on the advantage when attempting to
guess the committee of any honest user, and fully prove the security
of the scheme, we then finally consider an adversarywhich attempts
to learn any 𝑡𝑖 .

Theorem 5.4 (Incorruptible Committee). DIPSAUCE.KeyGen
outputs ek𝑖 = (·, ®𝐽𝑖 ) s.t a static adversary allowed to corrupt up to
𝑡 parties, 𝑘 < 𝑡 < 𝑛, has a negligible probability in guessing ®𝐽 ′ s.t.
| ®𝐽 ′ | = 𝑘 and ∀𝑗 ∈ ®𝐽 ′ : 𝑗 ∈ ®𝐽𝑖 , for some 𝑖 .

Proof. The permutation 𝜌 is determined by the output 𝑟 of the
randomness beacon. Since 𝑟 is thus unbiased and unpredictable
to a static A, it cannot predict anything about 𝜌 except with a
negligible advantage. Then, since |𝐺 | = |𝜌 |, the adversary has a
negligible advantage in determining which P𝑖 is associated with
which 𝑣 𝑗 ∈ 𝐺 .

Consider the number of possible 𝑘-sized committees and the
number of𝑘-sized committees an adversary can form from 𝑡 random
corruptions. The total number of possible unordered sets of size 𝑘
within the 𝑛 parties is

(𝑛
𝑘

)
. An adversary allowed to corrupt up to

𝑡 out of 𝑛 parties can form
(𝑡
𝑘

)
sets of 𝑘 corrupt parties. Thus, the

probability of obtaining a specific 𝑘-sized committee of a specific
party when corrupting 𝑡 out of 𝑛 parties is (

𝑡
𝑘)
(𝑛𝑘)

.
An upper bound on the capability to corrupt all members in the

committee of any honest party for a static adversary allowed to
corrupt up to 𝑡 out of 𝑛 parties can thus be calculated as 𝑛 · (

𝑡
𝑘)
(𝑛𝑘)

.
In conclusion, the advantage to corrupt all committee members

of some party is at most 𝐴𝑑𝑣𝑏𝑒𝑎𝑐𝑜𝑛 + 𝑛 ·
(𝑡𝑘)
(𝑛𝑘)

, which is negligible
for realistic values of 𝑛, 𝑡, 𝑘 (see Section 5.5 for a discussion on the
values of 𝑛, 𝑡, 𝑘).

□

Now, since a static adversary cannot corrupt all nodes in the
committee of any honest party (Theorem 5.4), and the sum-of-PRFs
technique is secure if there is at least one honest committee member
(Lemma 5.3), 𝑡𝑖 is indistinguishable from randomness.

Theorem 5.5 (𝑡𝑖 Indistinguishability). InDIPSAUCE.Enc, each
𝑡𝑖 is indistinguishable from randomness to a static adversary allowed
to corrupt up to 𝑡 parties except with a negligible advantage.

5.4 Proactively secure DIPSAUCE
The above section proves the DIPSAUCE protocol secure in the
static security setting. In this section we will sketch how to con-
struct a proactively secure version of DIPSAUCE, i.e. a version se-
cure in the presence of a mobile adversary. Trivially, by re-running
the Setup and KeyGen procedures at the beginning of each epoch,
proactive security is achieved. Since the Setup and KeyGen pro-
cedures are efficient in DIPSAUCE, this modification is feasible in
practice.

5.4.1 Modelling proactive security. Wemodel the proactive security
property according to [38], allowing corruptions and uncorruptions
at epoch changes as follows.

Epochs Time is divided into consecutive epochs, where each epoch
is indexed by an incrementing epoch counter.

Corruptions A mobile adversary A is allowed to corrupt any
party P𝑖 .The adversary must make its selection of corrupt parties
before an epoch is started, but will gain no information from the
corrupt parties until that epoch is started. An adversary can addi-
tionally uncorrupt (leave) a corrupted party. When doing so, the
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adversary retains all knowledge of secrets it previously learned
from that party, but has no further control of the execution of that
party and learns no further secrets. The total number of corrupt
parties at the start of an epoch can never exceed 𝑡 . As a conse-
quence, all parties can be corrupt during some stage of the protocol
execution, but the adversary learns secrets from at most 𝑡 parties
during each individual epoch.

5.4.2 Achieving proactive security for DIPSAUCE. By discarding
all secrets and starting an epoch with fresh secrets, we can achieve
proactive security. For brevity, we have so far omitted how the PKI
trust relation is achieved, i.e. how the PKI verifies that a posted
public key actually belongs to the claimed identity. The caveat to
discarding all secrets is how to maintain this PKI trust relation, in
order to to prevent impersonations, over epochs. This problem has
been studied in the literature before [38].Let us go into some detail
of the known solutions.

When the adversary leaves a party, it still retains all variables
learnt during corruptions, including any secret used to establish the
trust relation with the PKI. Thus, in the mobile scenario, we must
additionally prevent the adversary from using this knowledge to
impersonate previously corrupt parties, during subsequent epochs
whenever the party is honest. Otherwise, another honest party
might derive a shared key by using a public key posted to the PKI
by the adversary, believing it to be the public key of an honest
party. When secrets are deleted at the end of an epoch, this includes
any secret related to the trust relation with the PKI, and the trust
relation is then destroyed. The challenge of achieving proactive
security for DIPSAUCE thus hinges on maintaining a trust relation
with the PKI in between epoch changes.

In [38] two methods of maintaining such trust relations are
described. In the first method, the device is assumed to be able to
store a secret key that cannot be learned by an adversary corrupting
the device. This can be realized using a Trusted Platform Module
(TPM) [21] or trusted execution techniques that provide secure
storage [39] for a PKI relation root key.

The second method consists of updating keys by generating
a new key-pair and posting the new public key signed with the
previous secret key. An adversary can of course also post a new
key signed with the previous key. However, in that case, since an
honest party will also post a new key, the system will notice that
two public keys have been published, signed with the same secret
key. The system can then deduce that the corresponding device
has been compromised. This assumes that the adversary cannot
suppress legitimate messages reaching their destination.

Details on how to implement this in DIPSAUCE. We divide the
execution of the protocol into a setup phase comprised of the Setup
and KeyGen procedures, and an operational phase comprised of
any number of Enc and Aggr procedures.

When an epoch ends, each party erases all secrets (except the PKI
relation secret), and then enters the setup phase once the next epoch
begins. In this phase, it awaits the system parameters pp as output
of the Setup procedure. It then calls the KeyGen procedure (using
one of the PKI relation maintaining methods described above) to
generate new secrets. This concludes the setup phase, and initiates
the operational phase.

We arrive at the following informal theorem:

𝑛 𝑘 𝑡 Advantage
1024 62 512 2−55
2025 88 1012 2−78
3025 108 1512 2−99
4096 126 2048 2−117
5041 140 2520 2−131
6084 154 3042 2−144
7056 166 3528 2−156
8100 178 4050 2−168
9025 188 4512 2−178
10000 198 5000 2−188

Table 2: Adversary advantage in DIPSAUCE with a rook’s

graph given by𝑛· (
𝑡
𝑘)
(𝑛𝑘)

for different values of𝑛 and a corruption

ratio of 0.5.

Theorem 5.6 (informal). Let there be a scheme such that the
PKI will not accept more than one (P𝑖 , 𝑝𝑘𝑖 ) for each P𝑖 . Further, let
there be at least one fresh output from the randomness beacon every
epoch. Then the above transformation of DIPSAUCE is secure against
a mobile adversary, corrupting up to 𝑡 parties.

5.5 Parameter Selection for 𝑛, 𝑡 and 𝑘
The adversary advantage (excluding the potential advantage result-
ing from the beacon) is calculated as 𝑛 · (

𝑡
𝑘)
(𝑛𝑘)

in Theorem 5.4. Table 2
shows this advantage for realistic 𝑛, 𝑡 and 𝑘 , where 𝑡 = 𝑛/2 and
𝑘 = 2

√
𝑛 − 2) in a rook’s graph which is the 𝑘-regular graph which

was used in our implementation. Code to calculate this advantage
for different values of is available in Appendix B.

6 EXPERIMENTAL EVALUATION
In this section we describe our implementation of DIPSAUCE and
perform a comparative evaluation of DIPSAUCE against the state
of the art protocols KH-PRF-PSA and LaSS-PSA modified to utilize
distributed setup as described in Section 4. The code for our experi-
ments and protocol implementation is available at [23]. The raw
data of the results are available at [22].

6.1 Implementation of DIPSAUCE
Let us now describe our implementation of Protocol 5. The Setup
procedure is hard-coded into the source code. Here we have im-
plemented the graph 𝐺 as a rook’s graph. As a consequence all 𝑛
must be square numbers and 𝑘 = 2

√
𝑛 − 1. We remark that this is an

implementation property, and that regular graphs for other 𝑘, 𝑛 can
be generated [34]. The KeyGen procedure is straightforwardly im-
plemented according to Protocol 5, using a python based PKI with
a CoAP [40] interface where all keys of other parties are registered,
using the Drand public randomness beacon [37], and instantiating
NIKE as ECDSA on the P-256 curve. We have implemented the Enc
procedure by instantiating the PRF using AES-128. Both AES-128
and ECDSA P-256 utilizes the hardware acceleration of the CC1352
platform.
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6.2 Experimental Setup
We have used the same experimental setup as described in Sec-
tion 3.1 with the same suite of experiments, i.e. measuring the
setup, (including keygen for DIPSAUCE) and encrypt procedures
described in Section 3.1 and Section 4.3.

Execution times for the setup procedure are measured from the
start of the process, including the time needed to transfer data, such
as keys, over the network. For the encryption procedure, execution
times excludes the time needed to transfer the encrypted message.

6.3 Results
6.3.1 Setup and KeyGen. Our evaluation shows that DIPSAUCE
significantly outperforms bothKH-PRF-PSA and LaSS-PSA in terms
of execution time for the setup (and keygen) procedure. We show
a plot of the execution times of these procedures in Figure 5. The
slope of the graphs mean that DIPSAUCE will have the shortest ex-
ecution time of the protocols for all number of users in the system.
The execution time of DIPSAUCE grows with the number of users
at rate of 3.2 ms per user, a lower rate than KH-PRF-PSA which
grows with 330 ms per user and LaSS-PSA which grows with 210
ms per user.

This is due to DIPSAUCE only generating 𝑘 = 2
√
𝑛 − 1 NIKE

shared secrets for 𝑛 users, rather than 𝑛 derived secrets as in
LaSS-PSA, and LaSS-PSA in turn, as explained in Section 4.3, be-
ing more efficient than KH-PRF-PSA. Compared to LaSS-PSA, our
protocol DIPSAUCE shows a speedup of 66x.

Figure 5: Execution time in seconds of the Setup procedure
of KH-PRF-PSA and LaSS-PSA and the Setup and KeyGen pro-
cedure of DIPSAUCE

.

6.3.2 Encrypt. Our evaluation of the Enc procedures show that
DIPSAUCE outperform KH-PRF-PSA and LaSS-PSA for all mea-
sured number of users in the system. We show the measured exe-
cution times of the encrypt procedure in Figure 6. LaSS-PSA and
DIPSAUCE show a linear performance, depending on the number of
users. The execution time of the Enc procedure grows with 0.052 ms

per user for LaSS-PSA and with 0.00075 ms per user forDIPSAUCE.
The speedup per user of DIPSAUCE compared to LaSS-PSA is 69x.

KH-PRF-PSA shows a constant execution time of 230 ms for any
number of users in the system. Thus, it will eventually outperform
DIPSAUCE. Extrapolating from the measured execution times, this
will be the case when 𝑛 ≈ 300000.

Figure 6: Execution time in seconds of the Encrypt procedure
of of KH-PRF-PSA, LaSS-PSA, and DIPSAUCE.

7 DISCUSSION
In this paper we have evaluated two state-of-the-art PSA schemes
that rely on a centralized setup. We have experimentally evaluated
proposed ways to bypass the centralized setup, but found the so-
lutions infeasible in a practical environment. The reason for this
is the computational complexity which grows with the number of
users. To address this, we have provided a formal definition of PSA
with a distributed setup, suggested a new PSA scheme adhering
to this definition, proved it secure and implemented it on realistic
hardware. We found its performance sufficient to be deployed in
practice.

Let us further elaborate on the following discussion points.

Client Failures. If a single ciphertext from an honest client is
missing at the aggregator, the security definition of a PSA scheme
requires that the aggregator learns nothing. This is the point of a
PSA scheme and considered a feature. However this feature can be a
problem in practice if ciphertexts are lost due to client failures. This
practical problem is dealt with in [12], which proposes a general
solution for dealing with client errors and which is applicable to
all PSA schemes including ours. Since the setup in DIPSAUCE is
efficient, another alternative to deal with client failures can be to
exclude failing clients from the protocol and re-execute the setup,
if the failures are fairly infrequent.

Relying on an external PKI and Randomness Beacon. The dis-
tributed KeyGen procedure in DIPSAUCE relies on a PKI to sup-
ply the correct public key for each user, which is often imple-
mented as a central entity. While this is a standard assumption,
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we note that it is possible to distributively audit a PKI for correct
behaviour [29, 32, 33].

Analogously, DIPSAUCE relies on a randomness beacon. We
therefore remark that one must be careful when realizing the bea-
con, in order to not introduce a trusted party. Multiple solutions
for beacons which do not rely on a trusted party exist, for example
beacons based on multiparty randomness generation protocols [10]
or beacons utilizing the existing distributed security of Bitcoin [6].
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A EXPERIMENTAL SETUP
A.1 CC1352R SimpleLink
The CC1352R SimpleLink [25] is a series of micro controllers (MCU)
sold by Texas Instruments. Its intended application areas include:
building automation, grid infrastructure, water meters, electricity
meters, gas meters, and personal electronics. It features a 48 MHz
ARM Cortex-M4F CPU, with 88KB of RAM and 602KB of ROM.
It also features a wide variety of peripherals. Of special interest
in this work are the hardware accelerated cryptography periph-
erals for AES-128, SHA256, ECC, and a TRNG. Elliptic Curves on
Short Weierstrass form are fully supported and include NIST-P224,
NIST-P256, NIST-P384, and NIST-P512, Brainpool-256R1, Brainpool-
384RR1, and Brainpool-512R1. Elliptic curves on Montgomery form
such as Curve25519 have limited hardware support. The built in
TRNG has a self test required by FIPS 140.

A.2 Operating System and Software
The experiments are implemented on the Contiki-NG operating
system [36], designed for constrained devices, with a its built in
network stack. All hardware accelerated cryptographic operations
were performed using the default drivers included in Contiki-NG.
Furthermore we used the BigUint128 library [42] to perform 128-bit
arithmetics, and the libtprpg [11] library to generate the pseudo-
random permutation used in DIPSAUCE.

A.3 Communication
In our experiments we have used the IEEE 802.15.4 [24] physical
layer operating on the 2.4 GHz band. The network stack is the
Contiki-NG networking stack with IPv6, UDP and CoAP with de-
fault settings. An RPL-border-router is required, since IEEE 802.15.4
is not supported on the laptop we used in the experiments. The
RPL-border-router was run on another CC1352R device with the
standard RPL-border-router application provided in Contiki-NG.

A.4 Experimental Setup
We executed the protocols on a CC1352R device, which we denote
as the Client. The Client communicates with a Server running on a
laptop. The RPL-border-router is connected to the laptopwith a USB
cable. The Client can then communicate with the Server running
on the laptop via the border-router. The Client and the RPL-border-
router were placed close to each other, with the antennas facing
each other to minimize packet-loss. Figure 7 illustrates the setup.

Figure 7: An illustration of the experimental setup.
.

B PYTHON CODE FOR CALCULATING
ADVANTAGE FOR DIFFERENT 𝑛, 𝑡, 𝑘

#rook's graph adversary advantage
import math
from decimal import Decimal

for n in [1024, 2025, 3025, 4096, 5041, 6084, 7056, 8100,
9025, 10000]:

# number of columns/rows
x=float(math.sqrt(n))
#corruption threshold
thresh = 0.5

k = 2*x-2
t = n*thresh

nc = Decimal(math.comb(int(t),int(k)))
npc = Decimal(math.comb(int(n),int(k)))

print("all: n =", int(n), ", k =", int(k), ", t =",
int(t), ", advantage =", Decimal(n) * nc/npc)
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