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Abstract

OPAQUE is an Asymmetric Password-Authenticated Key Exchange (aPAKE) protocol being stan-
dardized by the IETF (Internet Engineering Task Force) as a more secure alternative to the traditional
�password-over-TLS� mechanism prevalent in current practice. OPAQUE defends against a variety of
vulnerabilities of password-over-TLS by dispensing with reliance on PKI and TLS security, and ensur-
ing that the password is never visible to servers or anyone other than the client machine where the
password is entered. In order to facilitate the use of OPAQUE in practice, integration of OPAQUE
with TLS is needed. The main proposal for standardizing such integration uses the Exported Authen-
ticators (TLS-EA) mechanism of TLS 1.3 that supports post-handshake authentication and allows for
a smooth composition with OPAQUE. We refer to this composition as TLS-OPAQUE and present a
detailed security analysis for it in the Universal Composability (UC) framework.

Our treatment is general and includes the formalization of components that are needed in the analysis
of TLS-OPAQUE but are of wider applicability as they are used in many protocols in practice. Specif-
ically, we provide formalizations in the UC model of the notions of post-handshake authentication and
channel binding. The latter, in particular, has been hard to implement securely in practice, resulting
in multiple protocol failures, including major attacks against prior versions of TLS. Ours is the �rst
treatment of these notions in a computational model with composability guarantees.

We complement the theoretical work with a detailed discussion of practical considerations for the use
and deployment of TLS-OPAQUE in real-world settings and applications.

*This work was supported by the Swiss National Science Foundation (SNSF) under the AMBIZIONE grant �Cryptographic
Protocols for Human Authentication and the IoT�
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1 Introduction

For a multitude of reasons, passwords remain a ubiquitous type of authenticator. Despite the existence
of tools for improving passwords (password managers) and password-less authentication protocols (e.g.,
WebAuthn), password-based authentication remains commonplace. Legacy software and lack of support
for modern alternatives, integration issues for better tooling to improve password quality , and usability
problems in adopting any new form of authenticator have all contributed in one way or another to the
prolonged usage of passwords for authentication onn the Internet (and beyond).

As a result, much of the security infrastructure depends to a large extent on passwords. And, yet, the
prime mechanism of client-server password authentication in practice has not changed in the last decades
and remains the traditional password-over-TLS (more generally, the transport of passwords over channels
protected by public key encryption). Weaknesses of this mechanism include, though are not limited to:
visibility of plaintext passwords to the application server and to other decrypting intermediaries, accidental
storage of passwords in the clear (as several high-pro�le incidents have shown [1, 2]), and ease of password
leakage in the event of phishing attacks. See Appendix A for a more detailed discussion.

Recently, the IETF (Internet Engineering Task Force) has initiated a process of standardizing a much
stronger mechanism, the so-called Asymmetric Password-Authenticated Key Exchange (aPAKE) that does
not rely on PKI (except, optionally, at user registration time) and ensures that user passwords are never
visible outside the client machine. Essentially, aPAKE protocols are as secure as possible, restricting attacks
to unavoidable password guesses and o�ine attacks upon server compromise. The speci�c protocol chosen
for instantiation of the aPAKE standard is OPAQUE [19, 12]. In addition to enjoying the aPAKE security
(including an enhancement in the form of security against pre-computation attacks), OPAQUE o�ers the
�exibility of working with any authenticated key exchange mechanism. Hence, it is a natural candidate for
integration with existing protocols such as TLS 1.3, IKEv2, etc.

Clearly, integration with TLS is desirable for improving the security of password authentication in TLS,
but also because while OPAQUE provides authentication and key exchange, it does not o�er the secure chan-
nels required to protect data; TLS provides such functionality via its record layer. Additionally, integration
with TLS allows for protection of user account information during a login protocol.

A natural approach to such integration is to use the post-handshake authentication (PHA) mechanism of
TLS 1.31 [29] that allows clients to authenticate after the TLS handshake (the key establishment component
of TLS) has completed, and within the ensuing record-layer session (where data is exchanged under the
protection of the keys established by the handshake). For example, a server can serve public webpages to
an unauthenticated client but may require client authentication once the client requests access to restricted
pages, thus triggering post-handshake authentication by the client. More general support for PHA is provided
in a TLS 1.3 extension standard called Exported Authenticators (TLS-EA) [32] (we often shorten TLS-EA to
EA). EA extends the post-handshake client authentication component of TLS 1.3 and can support multiple
authentications within the same TLS session for both clients and servers. As such, EA is a natural tool
for integrating OPAQUE into TLS 1.3 as a way to enable strong password authentication within TLS
connections. While EA natively supports certi�cate-based authentication, its �elds can easily be repurposed
for transporting OPAQUE's signature-based authentication. This integration of OPAQUE and TLS-EA,
referred to here as TLS-OPAQUE, has been proposed for standardization in the TLS Working Group of the
IETF [33].

In this work we investigate the security of the above schemes: TLS-EA as a general post-handshake
mechanism and TLS-OPAQUE for password-authenticated TLS. However, our treatment is more general
and independent of any particular protocol instantiation. We formalize the notion of post-handshake au-
thentication in the Universal Composability (UC) setting [13] with two authentication �avors: via public-key
certi�cates as the EA protocol [32] speci�es and via passwords as TLS-OPAQUE requires.

While this formalization of PHA serves the analysis of EA and TLS-OPAQUE, post-handshake authenti-
cation is a more general notion implemented in practice as extension to multiple protocols, including IPsec,
SSH as well as previous versions of TLS. In general terms, the PHA main functionality is to enable multiple

1Except if said otherwise, we use `TLS' to refer to TLS 1.3.
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Figure 1: (Post-)Authentication options for TLS channels. Left: The Exported Authenticators TLS ex-
tention (TLS-EA) allows both channel endpoints to subsequently add more public-key identities to a TLS
channel. Right: TLS-OPAQUE allows to subsequently add (asymmetric) password identities to a TLS
channel.

authentications (possibly using di�erent credentials and identities) of a previously established channel be-
tween two endpoints; it guarantees that in each of these authentications, the authenticating parties are the
same as those that established the channel in the �rst place.

Thus, a crucial ingredient in the implementation of any PHA protocol is a mechanism for binding the
PHA authentications to the original channel. A common design, that we follow in our PHA instantiations, is
to de�ne a channel binding value generated at the time of the original channel establishment and passed to
PHA for inclusion in all subsequent authentications. This channel binder can take the form of a handshake
transcript digest, a cryptographic key, or a combination of both. While the notion itself is simple, its
implementation in the real world has been remarkably challenging and has led to serious security failures
against multiple protocols, including major attacks against previous versions of TLS such as the notorious
renegotiation [28, 30, 31] and triple-handshake attacks [8]. See [9] for an account of attacks on multiple
protocols based on PHA failures due to wrong channel binding designs. It is a main goal and motivation of
our work to set an analytical framework and proofs to prevent this type of failures in new designs such as
those presented here.

To capture the channel binding requirements, we extend the traditional formalism of secure channel
functionalities [14] with a channel binder element that is output from the channel generation module (e.g., a
key exchange) and used by parties engaging in a PHA as a way to bind their post-handshake authentication
to the original channel establishment. Informally, we set two requirements on the channel binder: being
unique among all channels established by an honest party and being pseudorandom. The latter property
enables the use of the binder as a cryptographic key in the process of post-handshake authentication. The
uniqueness element is crucial for defeating what is known as channel synchronization attacks [4, 9], the source
of many of the serious attacks against PHA mechanisms in practice. We formally prove in Theorem 4.1 in
Section 4 that TLS 1.3 with its Exporter Main Secret (EMS) implements a secure channel with such binder
qualities.

We frame the security of post-handshake authentication via a UC functionality that enforces that only
valid credentials presented by the original endpoints of the channel (technically, those that know the binder's
cryptographic key) are accepted. Our PHA formalism comes in two �avors: one that supports public keys
as the post-handshake authentication means and one that supports password-based authentication. The
�rst �avor captures the essence of the security requirements of TLS-EA, namely, the ability to support
any number of PK-based authentications2 by the creators of a TLS channel, and only by those. Therefore
formally proving the security of the TLS-EA protocol from [32] reduces to showing that the protocol realizes
the PK-based PHA functionality. This is shown in Theorem 5.1 in Section 5. In particular, the proof of this
theorem validates that the channel binder de�ned by TLS 1.3 (called EMS, for Exporter Master Secret) has
the required properties for the purpose of implementing a secure post-handshake authentication mechanism.

We now consider the TLS-OPAQUE protocol [21, 33] that uses the TLS-EA mechanism to transport
the OPAQUE messages for providing password-based post-handshake authentication to the TLS channel.

2In the particular case of TLS-EA, it is signature-based authentication.
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To prove security of this protocol, we show it realizes our password-based PHA functionality. The latter
functionality essentially ensures that any mechanism that realizes the functionality provides authentication
guarantees similar to those of an aPAKE. Namely, the key established upon channel creation (even if anony-
mous at the time) is authenticated by the client and server; the only way to subvert the protocol is by an
online password guessing attack or an o�ine dictionary attack if the server is compromised. Furthermore,
not only does the password-based PHA functionality ensure the correct authentication by the endpoints of
the original channel but it also guarantees that no other than these endpoints will succeed in such authen-
tication. By proving that TLS-OPAQUE realizes the password-based PHA functionality (Theorem 6.1 in
Section 6) we get that TLS-OPAQUE enjoys all these aPAKE-like security properties.

On a technical level, our analysis of TLS-OPAQUE builds on the proven guarantees of EA detailed above.
In a nutshell, TLS-OPAQUE strips the key exchange part from OPAQUE, and uses only OPAQUE's password
authentication mechanism to authenticate the already established TLS key material. This authentication
is signature-based and can be outsourced to EA. We detail in Section 2 how exactly TLS-OPAQUE is
combined from both EA and (parts of) OPAQUE. A main goal of our analysis is to tame the complexity of
TLS-OPAQUE by modularizing the security proof: we �rst prove the security of EA, and then analyze the
security of TLS-OPAQUE assuming that EA is already secure. We refer the reader to the technical roadmap
below for a summary of all formal results in the paper, and how they combine with each other.

Altogether, our work delivers the �rst formal analysis of TLS-EA in the UC framework, and of TLS-
OPAQUE overall. Our modular approach yields formal models for widely-used concepts such as channel
binders as well as public-key and password-based post-handshake authentication. Our models deepen the
understanding of these concepts, and we expect them to be useful for real-world protocol analysis beyond
our work.

Finally, we would like to highlight a fundamental element in our treatment: We do not assume the original
channel to be authenticated upon creation, only that no one other than the endpoints of the channel can
transmit over the channel (as enforced by the encryption and authentication keys created within the channel,
e.g., via a plain Di�e-Hellman exchange). Therefore, the security of TLS-OPAQUE depends on the Di�e-
Hellman key exchange of TLS 1.3 but not on the server and/or client authentication of this exchange. Thus,
TLS-OPAQUE is secure even if the original channel was anonymous. On the other hand, if this channel was
originally authenticated, say by the server, that authentication property is additional to the password-based
authentication provided by TLS-OPAQUE.

Technical roadmap. The analysis of real-world protocols in abstract complexity-theoretic formalisms like
the UC framework typically requires simpli�cations that ignore many technical aspects of the full speci�ca-
tions. Yet, such analysis serves to validate the core cryptographic design at the basis of the protocols. To be
concrete, in Section 2 (Figures 3 and 5), we present the core cryptographic elements extracted from IETF
RFCs and Internet Drafts [29, 32, 33] that we analyze and that we use as the basis for abstract representation
of these protocols in subsequent sections.

Our formal treatment includes the following elements. In Section 4 we formalize secure channels exporting
pseudorandom and unique channel binders in the UC framework (functionality FcbSC in Figure 9), and prove
in Theorem 4.1 that the TLS handshake protocol implements such functionality. We then formalize in
Section 5 secure channels with post-handshake public-key authentication (functionality FPHA in Figure 11),
and present a modular version of TLS-EA (ΠEA in Figure 12) that uses secure channels with binders (i.e.,
FcbSC) as an abstract building block. Theorem 5.1 proves that this modular version of TLS-EA implements
FPHA. Invoking the UC composition theorem on Theorems 4.1 and 5.1 yields our �rst main result, namely
that �real� EA, which corresponds to ΠEA with calls to the handshake part of TLS 1.3 instead of FcbSC,
securely implements FPHA.

We then turn to analyze TLS-OPAQUE. First, we formalize secure channels with post-handshake pass-
word authentication (functionality FpwPHA in Figure 13), and present a modular version of TLS-OPAQUE
(ΠTLS−OPAQUE in Figure 14) that uses secure channels with post-handshake public-key authentication (i.e.,
FPHA) as an abstract building block. Theorem 6.1 proves that this modular version of TLS-OPAQUE im-
plements FpwPHA. Invoking again the UC composition theorem on Theorems 5.1 and 6.1 yields our second
main result, namely that �real� TLS-OPAQUE, which corresponds to ΠTLS−OPAQUE with calls to TLS-EA
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(i.e., ΠEA) instead of FPHA, securely implements FpwPHA.

The supplementary material of this paper provides previously known security notions for signatures and
MACs, as well as details on Oblivious Pseudorandom Functions (OPRFs) (all in Appendix 3, a detailed
walk-through of functionality FcbSC (Appendix 4.1), considerations for implementing, deploying, operating,
and using TLS-OPAQUE in a variety of use cases (Appendix A), and full proofs and sketches of all our
Theorems (Appendix B).

Related work. TLS 1.3 is perhaps one of the most carefully analyzed security protocols used on the Internet
today. Our work analyzes, in the UC model, the aspects of TLS 1.3 that are directly relevant to TLS-EA and
TLS-OPAQUE, yet it may set a basis for a broader UC analysis of TLS 1.3. Our study of these protocols
also �ts with the analysis-prior-to-deployment approach that characterized the development of TLS 1.3,

Partial study of post-handshake authentication in a game-based model appears in [24] which focused on
post-handshake client authentication as a way of upgrading a unilaterally authenticated key exchange to a
mutually authenticated one, but did not consider the server side or multiple authentications. In particular,
it did not analyze the security of the TLS-EA mechanism.

Most relevant to the subject of our work is the analysis of channel binding and post-handshake authenti-
cation techniques (under the notion of compound authentication) presented in [9]. The paper analyzes these
techniques in several deployed protocols (but not TLS 1.3), showing a variety of attacks due to shortcomings
in the channel binding design. They carry a formal analysis of these mechanisms using the protocol analyzer
ProVerif [11]. Extending this work, [18] presents an automated analysis of the Exported Authenticators
(TLS-EA) protocol [32] based on a symbolic model of the protocol using the Tamarin Prover. Additional
papers relevant to the analysis of channel binding mechanisms in practice (particularly pointing to vulnera-
bilities) include [4, 31, 10, 15, 6].

2 TLS-OPAQUE Speci�cation

In this section we describe the protocols we study in this work: OPAQUE, TLS 1.3 Handshake, TLS-EA,
and TLS-OPAQUE. We start by recalling OPAQUE [19, 12] in schematic form in Figure 2 (more details are
included in the presentation of TLS-OPAQUE in Fig. 5).

Fig. 2 (simplified schematic OPAQUE protocol). During registration, the user creates an �envelope�
containing a user's private key and a server's public key. The envelope is protected (for secrecy and authen-
tication) by a key computed jointly between user and server using an Oblivious PRF (OPRF) (to which
the user inputs its password and the server inputs a secret user-speci�c OPRF key; neither party learns the
other's input). The server stores the envelope as well as the user's public key and the server's own private
key. For login, the user receives the envelope from the server and obtains the key to unlock the envelope
by running the OPRF with the client using the same password as upon registration. Now, user and server
have the keys to run an authenticated key exchange between them (for TLS-OPAQUE, these keys will be
signature keys similar to those used in TLS).

Next, we recall the elements from the TLS 1.3 handshake that play a role in this work, and which serve
as a basis for TLS-EA and TLS-OPAQUE.

Simplified schematic TLS Handshake (Figure 3). The �gure shows a schematic representation of a
subset of the TLS 1.3 handshake, the key exchange part of TLS. It is intended to show the components that
play a role in the protocols studied here. The �rst two �ows show the exchange of nonces (randC , randS)
and an unauthenticated Di�e-Hellman run between client and server resulting in a key gxy from which a
key, HS (for Handshake Secret), is extracted as shown in the key derivation tree in Fig. 4. In the next
message, the server authenticates to the client using TLS's sign-and-mac mechanism. The signature (called
CertificateVerify in TLS) is applied to the handshake transcript and is veri�ed by the client using the
server's public key transported in a certi�cate CertS . The MAC part (known as the Finish message) uses
key HSmS derived from HS and is applied to the transcript as well. The following message shows client
authentication mimicking the server's where the signature part is optional; only the MAC part is mandatory

6



Client (pw) Server

generate (sk, pk) generate keyOPRF and (sk′, pk′)

pw −→ ←− keyOPRF
OPRF

envelope key k ←−

�← AEnck(sk, pk
′) � -

pk′

� , pk
store (� ,sk′, pk, keyOPRF)

pw −→ ←− keyOPRF
OPRF

k ←−
sk← ADeck(� ) � �

sk, pk′ −→ ←− sk′, pk
AKE

output key K ←− −→ output key K

Figure 2: OPAQUE registration (top) and key exchange (bottom).

Client C Server S

randC ← {0, 1}λ, x← Zp � -randC , g
x

randS , g
y

randS ← {0, 1}λ, y ← Zp

m′ ← (CertS ,SigS(tr1),MACHSmS
(tr2))

m← ([CertC ,SigC(tr3), ]MACHSmC
(tr4))

authC ← EncHSeC (m) � -
authS

authC
authS ← EncHSeS (m

′)

Figure 3: Schematic representation of TLS 1.3 Handshake (showing subset considered in our analysis).

gxy

HS

HTS MS

HSe HSm ATS EMS

AEK HSC MK

Figure 4: Key Derivation in TLS 1.3
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C( pw, IDC ,EMS,ATS,EACertC) S( file ,EMS,ATS,EACertS)

-

�Application tra�c (protected by AEK-derived keys)

CCR.nonce← {0, 1}λ

a← OPRF.Blind(pw) -CCR.nonce,CCR.ext( IDC , a )

parse file as (IDC , envC ,K, skS , pkS , pkC)

b← OPRF.Eval(K, a)

σS ← SignskS (H(HSCS ,CCR,EACertS))
macS ← MACMKS

(H(HSCS ,CCR,EACertS , σS))
�EACertS , σS ,macS SCR.nonce← {0, 1}λ

rw← OPRF.Unblind(b) SCR.nonce,SCR.ext( b, envC )

(skC , pkS)← ADec(rw, envC)

abort if σS or macS veri�cation fails
σC ← SignskC (H(HSCC ,SCR,EACertC))
macC ← MacMKC

(H(HSCC ,SCR,EACertC , σC))

-EACertC , σC ,macC abort if σS or macS veri�cation fails
-

�Application tra�c (protected by AEK-derived keys)

Figure 5: The TLS-OPAQUE protocol, formed by the subset of the TLS handshake shown in Fig. 3 and the
present �gure. Omitting blue-colored parts (which correspond to the OPAQUE envelope decryption) one
obtains two TLS-EA instances.

in TLS 1.3. Messages authS and authC are protected using an authenticated encryption with keys HSeS
and HSeC also derived from HS. Our analysis in the following sections proves security of TLS-EA and TLS-
OPAQUE even if the handshake DH is unauthenticated, hence from the point of view of this analysis these
authentication messages can be omitted.3 Each of the transcripts tr1, ..., tr4 cover all previous elements in
the handshake until the point of use of the transcript. However, since our analysis does not require the
sending of the auth messages, we can set tr← (randC , g

x, randS , g
y).

Handshake's key derivation (Figure 4). The �gure shows a key derivation tree used by TLS 1.3.
Some of the keys have separate server and client derivations (e.g., HSCS ,HSCC) but for simplicity we show
them as one key. The root of the tree, gxy, is the product of the handshake's DH exchange. A key HS (for
Handshake Secret) is extracted from gxy and from it a tree of keys is derived; we explain their roles. Key
HTS (for Handshake Tra�c Secret) spawns two keys: HSe for encrypting messages authS and authC , and
HSm used as a MAC key in server and client authentication. Key MS (for Main Secret) has two siblings
ATS (Application Tra�c Secret) and EMS (Exporter Main Secret). Key AEK, derived from ATS, is used to
derive Authenticated Encryption keys for protecting data exchanged in the record layer (that follows the
handshake) - it can be thought as the session key in a traditional AKE. EMS spawns HSC and MK which
play the critical role of channel binders in TLS-EA and TLS-OPAQUE. The extraction of HS from gxy and
the derivation of MS use HKDF-Extract while all other derivations use a PRF implemented via HKDF-Expand
(because of the particular way that the derivation of MS uses HKDF-Extract, also this derivation can be
seen as produced by a PRF). All derivations use public labels and parts of the transcript to enforce domain
separation and (computational) independence of the keys.

Fig. 5 (TLS-EA and TLS-OPAQUE protocols). We are now ready to explain TLS-EA and TLS-
OPAQUE. We show protocol TLS-OPAQUE in Figure 5. However, if one ignores all the blue-colored
elements in Fig. 5, one obtains two instances of the TLS-EA protocol [32], the �rst one authenticating the

3 Proving our results in the case of an unauthenticated handshake, shows that although TLS handshake is commonly
authenticated by the server, TLS-EA's security does not depend on this authentication. On the other hand, when certi�cate-
based server authentication is present during the handshake that precedes a run of TLS-OPAQUE, one gets the bene�ts of both
certi�cate-based and password-based authentications.
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server to the client, the second one vice versa. This presentation shows how TLS-OPAQUE is built as an
extension of TLS-EA, because all the additional cryptography required by OPAQUE is carried using CCR
and SCR extension �elds of TLS-EA. Note that Fig. 5 shows only the post-handshake authentication parts
of TLS-OPAQUE and TLS-EA, while the full protocols are obtained by running the TLS handshake shown
in Fig. 3 followed by the post-handshake authentication shown in Fig. 5.

TLS-EA allows an application that established a TLS connection via the handshake to request its peer
(client or server) to authenticate at any time after the handshake is completed. For the client to request server
authentication, TLS-EA de�nes a message ClientCertificateRequest (abbreviated CCR) that includes a
nonce called certificate_request_context and which we denote by CCR.nonce. In addition, CCR has an
extensions �eld (we denote it CCR.ext) where an application can carry additional auxiliary information. The
analogous message ServerCertificateRequest (SCR) (or simply called CertificateRequest in the case
of the server) is used by the server to request client authentication. The response to such requests is an
authentication message by the responder that includes a certi�cate, a signature and a MAC, implementing
the regular sign-and-mac mechanism of TLS with elements σ and mac (i.e., TLS's CertificateVerify and
Finish messages). The keys for generating and verifying σ correspond to the public keys transported in the
certi�cates (this changes in the case of OPAQUE � see below). The goal of this authentication is not only to
validate the identity of the peer but also to tie this peer to the speci�c connection (or handshake session) on
which TLS-EA is executed and to the secure channel (record layer) established by this handshake. A party
accepting a set of credentials via TLS-EA is linking these credentials to the party with whom it originally
ran the handshake even if that party did not authenticate with these credentials during the handshake, and
possibly did not authenticate during the handshake at all.

Linkage of an authentication to the handshake is obtained via a channel binder that in TLS-EA (and in
our modeling) is composed of two elements: a transcript digest (HSC) included under the signature σ and
a MAC key (MK) used to produce the value mac. Key MK needs to have properties similar to a session
key in a regular key exchange protocol. Informally, it can be seen in the derivation tree of Fig. 4 that MK
is a descendent of the original key gxy and is independent (via PRF derivations) from keys used elsewhere
by the protocol such as ATS and HTS (exact requirements and proofs are provided in our extensive formal
treatment in the following sections). What is less clear is why HSC quali�es as a handshake transcript digest.
This property follows from the fact that EMS is computed as an output of a PRF computed on input the
handshake's transcript tr, with the PRF instantiated by HKDF [23]. Hence EMS is the product of a chain
of hashes computed on tr, and since none of these hash computations is truncated, this ensures that EMS is
an output of a collision resistant function computed on tr. The digest property also applies to HSC which is
derived from EMS using HKDF, hence as the output of a chain of collision resistant hashes.

The uncolored part of Fig. 5 shows the �ows for the case where a client request is followed by a server
response and then a server request is followed by a client response. Protocol TLS-OPAQUE adds the
colored elements that transport OPAQUE messages inside the extension �elds of TLS-EA. This includes
OPAQUE's OPRF messages and the user's envelope transmitted from server to client. In this case, signature
authentication uses the OPAQUE keys rather than the normal certi�cate-based keys of TLS. For the client,
it uses the private key contained in the envelope and for the server it is the server's signing key stored at the
server and whose corresponding public key is included in the envelope. Veri�cation at the server uses the
user's public key stored at the server.

Note on the record layer protection of TLS-OPAQUE messages. When the TLS-EA messages are transported
over TLS's record layer, all the messages in Figure 5 are protected by the record layer keys (derived from
AEK). In our treatment we ignore this protection as TLS-EA does not mandate transmission within the
channel4. Thus our results establish that TLS-EA and TLS-OPAQUE security does not depend on this
protection. On the other hand, the addition of this layer of protection does not jeopardize security; this is so
since AEK is derived from ATS which is (computationally) independent from any element used in TLS-EA.
Indeed, the latter only uses keys derived from EMS which is a sibling of ATS in the derivation from MS, hence
independent from AEK (formally, one can simulate the record layer encryption using a random independent

4From [32]: �The application MAY use the existing TLS connection to transport the authenticator.� The use of MAY makes
this protected transport optional.
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ATS). Finally, we note that while not required for TLS-OPAQUE security, running TLS-OPAQUE over a
protected record layer can provide privacy to user account information transmitted as part of the protocol.

3 Preliminaries

Notation. We denote by x← A the assigment of the outcome of A to variable x if A is an algorithm or a
function. In case A is a set, x← A denotes that x is sampled uniformly at random from A.

De�nition 3.1 (Digital signature scheme). A digital signature scheme SIG = (KG,Sign,Vfy) for message
spaceM consists of the following three probabilistic polynomial-time algorithms.

� Key generation: Algorithm KG takes as input the security parameter 1λ. It outputs a key pair
(pk, sk).

� Signing: Algorithm Sign takes as input a secret key sk and a message m ∈M and outputs a signature
σ. We use notation σ ← Signsk(m).

� Signature veri�cation: Algorithm Vfy takes as input a veri�cation key pk, signature σ and message
m and outputs 0 (reject) or 1 (accept). We use notation Vfypk(σ,m).

We say that a signature scheme SIG = (KG,Sign,Vfy) for message spaceM is perfectly complete if for all
(pk, sk)← KG(1λ) and for all m ∈M it holds that Vfypk(Signsk(m),m) = 1. We sometimes assume existence
of an e�ciently computable algorithm PKGen which, on input sk outputs pk for all key pairs (pk, sk) in the
range of KG.

De�nition 3.2 (EUF-CMA Security, for signature schemes). The advantage of an adversary against EUF-
CMA security (existential unforgeability under adaptive chosen message attack) of a signature scheme SIG
is de�ned as

Adveuf−cma
A,SIG (λ) := Pr[Vfypk(σ

∗,m∗) = 1|

(σ∗,m∗)← ASignsk(·)(pk)],

where (pk, sk) ← KG(1λ), and m∗ is fresh in the sense that it has never been queried to the signing oracle
Signsk(·).

De�nition 3.3 (Message authentication code (MAC)). A message authentication codeMAC = (Gen,Mac,Vfy)
consists of the following three probabilistic polynomial-time algorithms.

� Key generation: Algorithm Gen takes as input the security parameter 1λ and outputs a key k with
|k| ≥ n.

� Mac generation: Algorithm Mac takes as input a key k and a message m ∈ {0, 1}∗, and outputs a
mac mac. We use notation mac← Mack(m).

� Mac veri�cation: Algorithm Vfy takes as inputs key k, mac mac and message m, and outputs 0
(reject) or 1 (accept). We use notation Vfyk(mac,m)=1.

We say that a mac scheme MAC = (Gen,Mac,Vfy) is perfectly complete if for all k ← Gen(1λ) and for
all m ∈ {0, 1}∗ it holds that Vfyk(Mac(m),m) = 1. For deterministic MAC schemes, note that Vfyk(·, ·)
can be implemented by recomputing the MAC and checking equality. We next recall the standard security
de�nition for a MAC, augmented with a veri�cation oracle [5].

De�nition 3.4 (EUF-CMA Security, for MACs). The advantage of an adversary against EUF-CMA security
(existential unforgeability under adaptive chosen message attack) of a MAC MAC is de�ned as

Adveuf−cma
A,MAC (λ) := Pr[Vfyk(mac∗,m∗) = 1|

(mac∗,m∗)← AMack(·),Vfyk(·,·)(1λ)],

where k ← Gen(1λ), and m∗ is fresh in the sense that it has never been queried to the oracle Mack(·).
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We next de�ne authenticated encryption and properties thereof that we use in this paper following [20].

De�nition 3.5 (CUF-CCA security). We say that E is CUF-CCA secure if it is both CCA-secure and
CUF-secure. The notion of CCA-security of encryption is well-known, while advantage of an adversary
against CUF security (ciphertext unforgeability) [22] of a symmetric encryption scheme E = (Gen,Enc,Dec)
is de�ned as

AdvcufA,E(λ) := Pr[Deck(c) ̸= ⊥|c← AEnck(·)(1λ)],

where k ← Gen(1λ), and c is fresh in the sense that it has never been output by oracle Enck(·).

We next recall a variant of ciphertext unforgeability that was identi�ed to be su�cient for proving security
of the OPAQUE protocol [19]. In a nutshell, the property says that an adversary cannot come up with a
ciphertext that successfully decrypts under two randomly chosen keys, even when knowing these keys.

De�nition 3.6 (RKR security). The advantage of an adversary against RKR security (random-key robust-
ness) of a symmetric encryption scheme E = (Gen,Enc,Dec) is de�ned as

AdvrkrA,E(λ) := Pr[Deck(c) ̸= ⊥ ∧ Deck′(c) ̸= ⊥|c← A(1λ, k, k′)],

where k, k′ ← Gen(1λ).

Lastly, we de�ne encryption equivocability, which requires existence of a simulator which can produce
indistinguishable ciphertexts without knowing the message, and is able to equivoke these ciphertexts after-
wards: when learning the message, the simulator can come up with a key that makes the ciphertext decrypt
to that message. More formally:

De�nition 3.7 (Equivocable encryption). A symmetric encryption scheme E = (Gen,Enc,Dec) is called
equivocable if there exists an e�cient stateful simulator SIMeq, such that for all e�cient stateful adversaries
A the following function is negligible in λ:

AdveqA,E(λ) := Pr[b = b∗|b∗ ← A(1λ, c, k)]− 1

2
,

where b← {0, 1}, and

k ← Gen(1λ), c← Enck(m) if b = 0

k ← SIMeq(m), c← SIMeq(|m|) if b = 1

m← A(1λ).

We refer the reader to [19] for instantiations of encryption scheme which is CUF-CCA-secure, RKR-
secure, and equivocable. On example is Encrypt-then-HMAC with a stream cipher encryption, e.g., counter
mode, where the the stream cipher is modeled as a random oracle, see [19] for details.

De�nition 3.8 (Gap CDH and Gap Square-DH). Let ⟨g⟩ be a cyclic group of order p. Let DDHg be a DDH
oracle, i.e. a function DDHg(g

a, gb, gc) outputs 1 if c = a · b mod p and 0 otherwise. We de�ne an advantage
of adversary A against the Gap CDH and Gap Square-DH assumption on group ⟨g⟩ respectively as follows:

AdvG−CDH
A (⟨g⟩) := Pr[gx·y ← ADDHg (g, gx, gy) |x← Zp, y ← Zp]

AdvG−SqDH
A (⟨g⟩) := Pr[gx

2

← ADDHg (g, gx) |x← Zp]

We say that Gap CDH (resp. Gap Square-DH) holds in the group if for all e�cient attackers Adv the
respective advantage above is a negligible function of the group description size |⟨g⟩|. It is well-known that
the CDH and Square-DH assumptions are equivalent, and the same holds for their Gap versions.
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The functionality FRO proceeds as follows, running on security parameter λ, session identi�er sid, and talking to arbitrary parties
and adversary A:

� FRO keeps a list TH (which is initially empty) of pairs of bit strings.
� Upon receiving a value (sid,m) (with m ∈ {0, 1}∗) from any entity, do:

� If there is a pair (m, h̃) ∈ TH, set h := h̃.
� If there is no such pair, choose uniformly h ∈ {0, 1}λ and store the pair (m,h) ∈ TH.

Once h is set, reply to the caller with (sid, h).

Figure 6: Ideal functionality FRO

3.1 UC functionalities

Random oracle functionality. We recall the Random Oracle (RO) functionality FRO in Figure 6. Some
of our theorems will be proven modeling some hash functions as functionalities FRO, which means that they
are proven in the programmable random oracle model.

Oblivious PseudoRandom Functions. An Oblivious Pseudorandom Function (OPRF) is a 2-party
protocol between an evaluator and a server, where the evaluator contributes an input x and the server
contributes a PRF key k. The outcome of the protocol is that the evaluator learns PRFk(x) but nothing
beyond, and the server learns nothing at all. OPRFs have been extensively used in password-based protocols,
and they are also the main building block of the OPAQUE protocol [19]. We use a UC formalization of
OPRFs by Jarecki et al. [19], modi�ed regarding its output of transcripts which we now describe on a high
level. The OPRF functionality of [19] has a (session-wise unique) �transcript pre�x� prfx that the adversary
contributes. If the view of both parties of this pre�x match, the adversary cannot use the honest evaluation
session anymore to evaluate the PRF himself (e.g., by modifying the transcript). For the purpose of analyzing
TLS-OPAQUE, we introduce two changes to their functionality:

1. We add a �transcript post�x� pstfx, which is also determined by the adversary. prfx and pstfx together
constitute the full transcript of the OPRF protocol. In particular, if the view of both parties on prfx
and pstfx match, then the OPRF output computed by the evaluator is guaranteed to be correct.

2. We let the evaluator output prfx and require the sender to input prfx. Likewise, the sender outputs pstfx
and the evaluator requires it as input to complete the evaluation. These changes are only syntactical
since as outputs both prfx and pstfx are adversarially-determined, and as inputs both are leaked to
the adversary. However, in TLS-OPAQUE the OPRF transcript is transported over EA messages,
hence making it fully visible to the environment enables a modular usage of FOPRF in our analysis of
TLS-OPAQUE.

Furthermore, our functionality FOPRF �xes an important omission in the OPRF functionality as written in
[19]. Namely, if the adversary compromises server PS , the adversary gains the ability not only to o�ine
evaluate the (O)PRF values, via interface Eval (as in [19]), but also to perform server-side operations in the
online protocol instances, via interface SndrComplete. Our functionality FOPRF is shown in Figure 7

We now argue that a slight variation of the 2HashDH OPRF protocol depicted in Figure 8 UC-emulates
our functionality FOPRF. The protocol is modi�ed from [19] by letting the server output b as post�x, and
leaving pre�x and post�x transmission up to the application. We specify how to obtain a simulator S from
simulation S ′ of [19]. S is equal to S ′ with the following two modi�cations:

1. Upon (SndrComplete, ssid, prfx) from FOPRF, simulator S sets pstfx← b for b← S ′ and replies with
pstfx.

2. When S ′ receives a message (ssid, a) fromA to S, S instead obtains this message from (SndrComplete,
ssid, a, S) of FOPRF. Likewise, whenever S ′ receives message (ssid, b) from A to P, simulator S obtains
the payload of this message from (Finalize, ssid, b,P).
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FOPRF takes inputs from arbitrary �server� parties PS , from arbitrary �evaluator� (or �receiver�) parties PR, and from the adversary
A.
Public Parameters: PRF output-length ℓ, polynomial in security parameter λ. For every i, x, value Fsid,i(x) is initially unde�ned,
and if unde�ned value Fsid,i(x) is referenced then FOPRF assigns Fsid,i(x)← {0, 1}ℓ.

Initialization and Compromise
On message (Init, sid) from party PS :

// A server can initialize at most once.
[I.1] If this is the �rst Init message for sid, set tx = 0 and send (Init, sid,PS) to A;
[I.2] Otherwise drop the query.

From now on use tag �PS� to denote the unique entity which sent the Init message for the session identi�er sid.

On (Compromise,PS) from A (requires permission from Z):
[C.1] Declare server PS as compromised.

(If PS is corrupted then it is declared compromised from the beginning.)

O�ine Evaluation
On (OfflineEval, sid, i, x) from P ∈{PS ,A}:

[O.1] Send (OfflineEval, sid, i, x, Fsid,i(x)) to P if any of the following hold:
[O.1.1] PS is corrupted,
[O.1.2] P = PS and i = PS ,
[O.1.3] P = A and i ̸= PS ,
[O.1.4] P = A and PS is marked compromised.

Online Evaluation
On (Eval, sid, ssid,P ′

S , x) from P ∈{PR,A}:
[E.1] Send (Eval, sid, ssid,P,P ′

S) to A and receive back prfx;
[E.2] If prfx was used before drop the query;
[E.3] Record ⟨ssid,P, x, prfx,⊥⟩ and send (Tr, sid, ssid, prfx) to P.

On (SndrComplete, sid, ssid′, prfx) from P ′ ∈{PS ,A}:
[SC.1] If P ′ = A and PS is not marked compromised then drop the query;

[SC.2] Send (SndrComplete, sid, ssid′, prfx,P ′) to A and receive back pstfx;

[SC.3] If pstfx was used before drop the query;

[SC.4] Send (Tr, sid, ssid′, pstfx) to P ′;

[SC.5] If ∃ record ⟨ssid,P, x, prfx,⊥⟩ for P ≠ A, change it to ⟨ssid,P, x, trOK, pstfx⟩, else set tx++.

On (Finalize, sid, ssid, pstfx) from P ∈ {PR,A}:
// Invariant: pstfx = trOK only if prfx = trOK, i.e. if PR's session was passively-connected (HbC) to some PS 's session.

[F.1] If ∃ record ⟨ssid,P, x, trOK, pstfx⟩, change it to ⟨ssid,P, x, trOK, trOK⟩.
[F.2] Send (Finalize, sid, ssid, pstfx,P) to A.

On (RcvComplete, sid, ssid,P, i) from A
[RC.1] If there is no record

〈
ssid,P, x, prfx, pstfx

〉
ignore the query;

// Ensure correct (=w.r.t PS) evaluation if pre�xes and post�xes match:

[RC.2] If (i ̸= PS and pstfx = trOK) ignore the query;

// Server's function evaluated only on pre�x-matching sessions or if there is a ticket:
[RC.3] If (i=PS , prfx ̸= trOK, and tx=0) ignore the query;

// Server's function evaluation on non-HbC session takes a ticket:
[RC.4] If (i=PS and prfx ̸= trOK) set tx−−;
[RC.5] Send (Eval, sid, ssid, Fsid,i(x)) to P;

Figure 7: Functionality FOPRF with adaptive server compromise, transcript pre�x prfx [19] and (newly

introduced) transcript post�x pstfx . For notation brevity, we omit the overall session identi�er of FOPRF

and use sid for (long-lived) function identi�ers and ssid for (short-lived) identi�ers of evaluation instances.
We refer the reader to [19] for a full explanation of the non-gray parts of the functionality.
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Parameters: H hashes to {0, 1}λ, H′ hashes to a group of order q. We omit session
identi�ers sid from all inputs and outputs.

Evaluator P Server S

On input (Init, sid)
On input (Eval, ssid, S, x) k ← Zq

r ← Zq, a← H′(x)r

output (Tr, ssid, a) On input
(SndrComplete, ssid, a)
b← ak

On (Finalize, ssid, b) output (Tr, ssid, b)
else output (Eval, ssid,H(x, b1/r))

Figure 8: Protocol 2HashDH which UC-realizes FOPRF. Since it includes only two messages, (ssid, a) and
(ssid, b), pre�x and post�x can be used for message transport instead of direct communication.

It is straightforward to extend the argument in [19] to verify that the protocol from Figure 8 UC-emulates
FOPRF with the above simulator S, under the Gap CDH assumption in ROM, and with respect to static
malicious corruptions and adaptive server compromise.

We recommend the reader to review again the technical roadmap at the end of Section 1, which describes
the contents of the three upcoming technical sections containing our main results.

Corruption model. In this paper we consider two types of corruption. First, every party can be statically
and maliciously corrupted by the adversary using standard �corrupt party P� instructions that can be issued
by the adversary in the UC model at the beginning of the protocol, against any party P [13]. This means that
party P will be corrupted from its �rst activation on, and can deviate arbitrarily from the protocol code.
Second, our functionalities FOPRF,FPHA,FpwPHA have a special type of corruption we call �compromise�
(modeled, respectively, by adversarial interfaces Compromise and StealPwdFile). If such corruption
happens to a party which stores long-term protocol data, such as in our setting a server storing an OPRF
key or password �les, the adversary obtains the stored data. However, the server continues to follow the
protocol honestly. Formally, a compromise is hence an adaptive but passive corruption.

4 Secure Channels with Binders

In this section we analyze the security of TLS 1.3 Handshake, Fig. 3 as a universally composable unau-
thenticated secure channel establishment protocol. The Key Exchange (KE) part of the TLS 1.3 Handshake
generates a communication key which is subsequently used to implement a secure channel, i.e. the secure
message transmission, and a channel binder, which can be subsequently used by TLS-EA and TLS-OPAQUE
to bind post-execution authentication decisions to this secure channel.5

In Figure 9 we show functionality FcbSC which models both parts, i.e. an (unauthenticated) secure channel
establishment extended by outputting an (exported) channel binder, and a secure communication using this
channel. The �rst part is implemented by interfaces NewSession, Attack, and Connect, the second by
interfaces Send, Deliver, and interface ExpireSession allows any party to close the channel. Functionality
FcbSC in Figure 9 is a standard unauthenticated secure channel functionality (e.g., [14]), extended with a
channel binder CB. We mark this extension with gray boxes. The channel binder CB is output to both
channel endpoints. The code that determines CB is very similar to the way in which (unauthenticated) key
exchange (KE) is modeled in UC [14]. Just like a session key created by KE, CB is a random bitstring if the
adversary allows two parties to passively �connect� by transmitting the messages between them. However,
if the adversary plays a man-in-the-middle, which is modeled by the Attack interface, it can arbitrarily set

5TLS Handshake includes authentication, implemented by messages authS and authC in Fig. 3. However, as mentioned in
footnote 3, we treat it as unauthenticated key exchange / secure channel establishment, because this allows us to show that the
security of TLS-EA and TLS-OPAQUE is independent of the security of the initial authentication performed within the TLS
1.3 Handshake.
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the channel binder the attacked parties output. The contract which FcbSC enforces regarding the CB outputs
is thus the same as keys output in a key exchange: Two passively connected sessions output the same random
CB value unknown to the adversary, while an actively attacked session outputs an adversarially chosen value.
However, crucially, there is one aspect in which FcbSC strengthens this standard contract: On each actively
attacked session its CB output must be chosen subject to the condition that it cannot equal to a CB value
output by any other uncorrupted party.

In a standard key exchange notion it is not excluded if two actively attacked parties output the same key
known by the attacker. However, we need to prevent such collisions for channel binders because binders must
uniquely de�ne a channel, and if parties P and P ′ establish TLS channels with an adversary rather than with
one another than we cannot allow the subsequent TLS-EA or TLS-OPAQUE authentication action issued by
P on its channel with the attacker to be usable by the attacker on its channel with P ′. This is how channel
binders di�er from session keys: It makes no di�erence if P and P ′ use the same session key on two attacked
sessions, because the adversary can anyway decrypt all messages sent by P and it can re-encrypt them so
they are successfully received by P ′. On the contrary, any authentication action, whether via TLS-EA or
TLS-OPAQUE done by P will pertain to its channel binder CB for that session, and because FcbSC enforces
that the channel binder output CB′ of P ′ satis�es CB′ ̸= CB, the signatures issued in protocols TLS-EA and
TLS-OPAQUE protocols by P (cf. Fig. 5) are useless for creating signatures that can be accepted by P ′.
In Fig. 5 the channel binder role is played by key EMS, and since value HSCC is derived from EMS using
HKDF-Expand, which is both a PRF and a collision-resistant hash, if EMS ̸= EMS′ then HSCC ̸= HSC′

C ,
and since HSCC is one of the signed �elds, unforgeability of a signature implies that the signature σC issued
by P is not useful in authenticating to P ′. In our analysis of TLS-HS below we will argue that it realizes
functionality FcbSC with CB implemented as EMS, see Fig. 9.

4.1 Modeling Secure Channel with a Binder

We walk through ideal functionality FcbSC to make it easier to understand how it models a secure channel
(establishment and use) protocol like TLS. Party P can start a Key Exchange (KE) protocol to establish
a secure session using interface (NewSession, cid,P ′, role) [N.1], where cid is the channel identi�er, i.e. a
locally unique handle which P will use for that channel, e.g. a port number for TLS, P ′ is the counterparty
with which P intends to establish a session with, e.g. a domain name or an IP address, and role is a �ag
equal to either clt or srv, which helps to break symmetry in a protocol, e.g. in the TLS handshake the
role bit determines the order in which party's message is placed in the transcript tr = (randC , g

x, randS , g
y).

Since cid is unique per P, we use (P, cid) to designate a unique session started by this interface. Note that
FcbSC, like TLS, is a blind dating functionality, in the sense that entity P ′ speci�ed by P as an intended
counterparty in this handshake, is used only to direct the protocol messages P sends. However, it is not
used otherwise in the protocol processing, hence the network adversary can freely connect party P to party
P∗ ̸= P ′ even though P speci�ed P ′ as its intended counterparty in the NewSession inputs. All these
inputs are considered public hence FcbSC passes them to the adversary. Note that FcbSC does not record
�eld P ′ in the record (session,P, cid, role) labeled wait it creates for session (P, cid), because it is not used
afterwards.

If the real-world adversary is passive and forwards all KE messages between sessions (P, cid) and (P ′, cid′)
then whenever session (P, cid) receives the last message the ideal-world adversary A sends (Connect, P,
cid, P ′, cid′, cid∗, CB∗) to FcbSC for (cid∗,CB∗) = (cid′,⊥). If both parties are honest and session (P, cid) is
the �rst to terminate [C.1.2.1] then FcbSC sends (Finalize, cid, cid∗,CB) to P for a random CB, which causes
(P, cid) to output a uniformly random channel binder CB (just like a session key output by a standard KE
functionality if the adversary is passive). To account [C.2] for this secure connection FcbSC marks (P, cid) as
conn(P ′, cid′) and sets up an initially empty queue on which (P, cid) can securely communicate with (P ′, cid′).
If the counterparty (P ′, cid′) terminated �rst on such passively-connected KE instance then FcbSC created a
random CB′ for it and marked (P ′, cid′) as conn(P, cid), in which case [C.1.1] FcbSC sets CB ← CB′ which
enforces that two passively connected KE sessions establish a secure channel and output same random value
as the channel binder. Note that every CB created by FcbSC is added to set CBset, and with overwhelming
probability these values are all distinct (except for equality of CB's on pairs of passively-connected sessions).

15



The functionality talks to arbitrarily many parties P = {P,P ′, ...} and to the adversary

A. It maintains list CBset of all created channel binders.

Channel establishment

On (NewSession, cid,P ′, role) from party P:
[N.1] If role∈{clt, srv} and ∄ record (session,P, cid, ∗) then create record (session,P, cid, role) labeled

wait and send (NewSession,P, cid,P ′, role) to A.

On (Attack,P, cid, cid∗, CB∗ ) from A:
[A.1] If ∃ record (session,P, cid, role) labeled wait and CB∗ ̸∈ CBset then add CB∗ to CBset , re-label

this record att, and send (Finalize, cid, cid∗, role, CB∗ ) to P.

On (Connect,P, cid,P ′, cid′, cid∗, CB∗ ) from A, if ∃ record (session,P, cid, role) labeled wait:

[C.1] If ∃ rec. (session,P ′, cid′, role′) labeled conn(P, cid) s.t. role′ ̸= role

[C.1.1] then set CB← CB′ for CB′ used in message (Finalize, cid′, cid, role′,CB′) sent formerly to P ′;

[C.1.2] otherwise:

[C.1.2.1] If P honest and (P ′ honest ∨ P ′ = ⊥) then CB← {0, 1}λ;

[C.1.2.2] If P or P ′ is corrupted and CB∗ ̸∈ CBset then CB← CB∗ (if CB∗ ∈ CBset

then drop this query);

[C.2] Initialize an empty queue Queue(P, cid,P ′, cid′), re-label record (session,P, cid, role) as

conn(P ′, cid′), add CB to CBset, and send (Finalize, cid, cid∗, role, CB ) to P.

Using the channel

On (Send, cid,m) from party P, if ∃ record (session,P, cid, role) marked flag then:
[S.1] If flag = att send (Send,P, cid,m) to A;
[S.2] If flag = conn(P ′, cid′) addm to the back of queueQueue(P, cid,P ′, cid′) and send (Send,P, cid, |m|)

to A;
[S.3] If flag ∈ {wait, exp} ignore this query.

On (Deliver,P ′, cid′,m∗) from A, if ∃ record (session,P ′, cid′, role′) marked flag then:
[D.1] If flag = att send (Received, cid′,m∗) to P ′;
[D.2] If flag = conn(P, cid) remove m from the front of Queue(P, cid,P ′, cid′) (ignore this query if this

queue does not exist or is empty) and send (Received, cid′,m) to P ′;
[D.3] If flag ∈ {wait, exp} ignore this query.

On (ExpireSession, cid) from P, if ∃ record (session,P, cid, role):
[E.1] label it exp and send (ExpireSession,P, cid) to A.

Figure 9: Secure channel functionality FcbSC. Without gray parts, the functionality implements secure
unauthenticated channels. The gray parts provide both ends of a channel with a high-entropy unique
�channel binder� CB that can be used for, e.g., subsequent authentication.
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Note that the output of session (P, cid) includes counterparty's channel identi�er cid∗. A can set it
as cid∗ = cid′, which models transmission of cid′ without interference, but A can also set it arbitrarily
even for passively-connected sessions, which models modifying this �eld in transmission. Note that in
TLS 1.3 Handshake, Fig. 3, session keys are derived from the Di�e-Hellman key gxy and the transcript
tr = (randC , g

x, randS , g
y), which does not include addresses P,P ′ or port numbers cid, cid′, hence the two

parties can �nalize TLS 1.3 handshake with matching (and secure) keys but with incompatible notions of
each other's (P, cid) values. (In Section 2 we explain that tr used for key derivation is appended by authP
values but that also do not bind to P, cid.)

If the adversary actively attacks session (P, cid), which includes man-in-the-middle attacker which inter-
feres in the transmitted messages otherwise than just changing �elds cid, cid′, we model it via adversarial
interface (Attack,P, cid, cid∗,CB∗) [A.1]. In this case FcbSC marks session (P, cid) as att and sends Finalize
to P with values which make session (P, cid) outputs adversarially chosen values (cid∗,CB∗). Functionality
FcbSC allows A an arbitrary choice of CB∗ except for choosing any value in CBset. In other words, an actively
attacked party establishes an insecure channel (where the adversary has a receiving and sending capability,
see below), but the channel binder it outputs on that insecure channel is guaranteed to di�er from the channel
binders output by any other honest party, on either secure or insecure channels these parties create. Note
that Connect also allows A to set CB to arbitrary CB∗ ̸∈ CBset [C.1.2.2] but it is used only if connecting a
corrupted party.

Finally, interface Send models session (P, cid) sending message m on a secure channel created above,
allowed if the channel is active [S.3]. If (P, cid) terminated KE by creating a secure channel with some
(P ′, cid′) then [S.2]messagem is placed on the (P, cid)-to-(P ′, cid′) queue, but if (P, cid) was actively attacked
in KE, i.e. the channel is hijacked by the adversary, then [S.1] message m is sent to the adversary. Likewise,
if the real-world adversary successfully delivers message sent on such channel from (P, cid) to (P ′, cid′) this
is modeled by interface (Deliver,P ′, cid′,m∗): If (P ′, cid′) has a secure channel with (P, cid) [D.2] then
m∗ is ignored and (P ′, cid′) gets the next message from the (P, cid)-to-(P ′, cid′) queue, and if the adversary
hijacked this channel in KE [D.1] then (P ′, cid′) receives the adversarial message m∗.

4.2 TLS 1.3 as UC secure channel with binder

We analyze TLS 1.3 as a realization of the ideal functionality FcbSC. In Figure 10 we specify how TLS 1.3
implements FcbSC commands NewSession and Send, used resp. to start a handshake, shown in Fig. 3, and
to send a message on a secure channel established by it, and we show how parties form their outputs based
on received network messages, resp. in Finalize which �nalizes the handshake, and Received which stands
for receiving a message on the channel.

The implementation in Fig. 10 follows the schematic protocol of Fig. 3 except for adding cid �elds to the
handshake messages, which model sender TCP port number. Also, in Fig. 10 for brevity we denote function
HKDF-Extract used to derive the handshake secret HS from the Di�e-Hellman value gxy as H, treated as a
Random Oracle in the security analysis, and we shortcut the derivation of the Exporter Main Secret EMS
(which is output as channel binder) and the tra�c-encrypting keys AEKC ,AEKS from HS using key derivation
function KDFf (MS, tr) for �ags f ∈ {0, 1, 2}, where KDFf (k, x) stands for KDF(k, (x|f)). The key derivation
procedure in Fig. 3 can be rendered by setting each derived key in this way. Since function HKDF-Expand
used in TLS 1.3 is implemented as HMAC, it implies that KDF is both a secure PRF and a collision-resistant
hash on full input (k, x|f) [23], and we use both properties in the security analysis. Finally, we emulate
TLS message transport by implementing command (Send, cid,m) of P as sending (cid′, c) where cid′ is the
presumed counterparty channel identi�er for session (P, cid) and c = AEnc(AEKP , (ctr,m)) where ctr is the
current value of the counter for this tra�c direction. (Note that each direction, P-to-P ′ and P ′-to-P, uses
a separate key AEK and counter ctr.)

The security of TLS handshake and message transport is captured as follows:

Theorem 4.1 (Security of TLS as unauthenticated secure channel). TLS 1.3 handshake and message trans-
port protocol speci�ed in Fig. 10 UC-emulates functionality FcbSC in the FRO-hybrid model, with H modeled
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parameters: group ⟨g⟩ of order p, sec. par. λ, hash H onto {0, 1}λ

Party P on input (NewSession, cidC ,P ′, clt) [here P is a Client]:
� Pick randC ← {0, 1}λ, x← Zp, send (cidC , randC , g

x) to P ′;
� On receiving network message (cid′S , rand

′
S , Y

′),
� set K ← (Y ′)x,HS← H(K), tr← (randC , g

x, rand′S , Y
′),

� EMS ← KDF0(HS, tr), AEKC ← KDF1(HS, tr), AEKS ←
KDF2(HS, tr),

� save (cidC ,P ′, cid′S ,AEKC ,AEKS , 0, 0),
� output (Finalize, cidC , cid

′
S , clt,EMS).

Party P on input (NewSession, cidS ,P ′, srv) [here P is a Server]:
� On receiving network message (cid′C , rand

′
C , X

′),
� pick randS ← {0, 1}λ, y ← Zp, send (cidS , randS , g

y) to P ′,
� set K ← (X ′)y,HS← H(K), tr← (rand′C , X

′, randS , g
y),

� EMS ← KDF0(HS, tr), AEKC ← KDF1(HS, tr), AEKS ←
KDF2(HS, tr),

� save (cidS ,P ′, cid′C ,AEKS ,AEKC , 0, 0),
� output (Finalize, cidS , cid

′
C , srv,EMS).

Party P on local input (Send, cid,m):
� Retrieve (cid,P ′, cid′,AEK,AEK′, ctr, ctr′) (abort if it is not found),

� send (cid′,AEnc(AEK, (ctr,m))) to P ′ and increment ctr.

Party P on network message (cid′, c):
� Retrieve (cid,P ′, cid′,AEK,AEK′, ctr, ctr′) (abort if it is not found),

� (ctr∗,m)← ADec(AEK′, c), abort if output doesn't parse as such pair
� if ctr∗ = ctr′ then output (Received, cid,m) and increment ctr′.

Party P on input (ExpireSession, cid):
� Erase record (cid,P ′, cid′,AEK,AEK′, ctr, ctr′).

Figure 10: TLS 1.3 as realization of functionality FcbSC

as random oracle, if function KDF is both a PRF and a CRH, AEnc is CUF-CCA secure, and the Gap CDH
assumption holds on group ⟨g⟩, assuming static malicious corruptions.

We refer to Section 3 for the cryptographic assumptions in this theorem, and to Appendix B.1 for the
full proof. Sketching it brie�y, we exhibit simulator S which sends Zi = gzi for random zi on behalf of each
session i = (P, cid), hence it can predict its outputs in case of active attacks, but if two honest parties are
passively connected S picks a random key AEK (which it uses to emulate secure channel communication)
while FcbSC picks channel binder EMS independently at random. Since in the protocol AEK and EMS are
derived via KDF from HS = H(K) for K = gzi∗zj , computing this value given passively observed values
Zi = gzi and Zj = gzj is related to breaking Di�e-Hellman. By hybridizing over all sessions, and guessing
the identity of a passively connected counterparty and the H query which computes the key, it is possible
that one could base security on a standard computational DH assumption, albeit with very loose security
reduction. Instead, we show a tight reduction to the gap version of the Square DH assumption (which is
equivalent to Gap CDH). The reduction embeds a randomization of a single SqDH challenge into all Zi

values, and uses the DDH oracle to detect hash queries H(K) for K = DH(Z ′
i, Z

′
j) into which it can either

embed a chosen key HS, if one of Z ′
i, Z

′
j is adversarial, or which it can map to the SqDH challenge, if both

Z ′
i and Z ′

j come from honest parties.

5 Post-Handshake Authentication

In this Section we provide a model for post-handshake authentication (PHA), that is, a secure channel that
allows for later public key authentication of the channel endpoints after already establishing the (unauten-
ticated) channel. As a side product, we will prove security of �real-world� TLS-EA. Namely, we demonstrate
that Exported Authenticators is a secure post-handshake authentication protocol.
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The functionality talks to arbitrarily many parties P = {P,P ′, ...} and to the adversary A. It
maintains lists pkReg (all registered public keys), pkComp (all compromised keys), pkey[pid]
(standard public keys generated by party pid), keReg (all key envelopes) and an array tkey[aux, h]
associating transportable keys with handle h and auxiliary information aux.

Channel establishment and Use

[C.1] NewSession, Attack, Connect, Send, Deliver, and ExpireSession, as in FcbSC,
Figure 9, but without gray parts.

Key Generation and Corruption

On (KeyGen, kid, ak, aux, mode) from pid ∈ P ∪ {A}:
[G.1] Send (KeyGen, kid, pid, aux, mode) to A and receive back (kid, ske, pk).
[G.2] If (pid ̸= A ∧ pk ∈ pkReg), or if (mode = tk ∧ ske ∈ keReg) then abort;
[G.3] Else,

� If mode = std then add pk to pkey[pid];
� If mode = tk then set tkey[ak, ske]← (aux, pk);
� Add pk to pkReg, and if pid = A then also add pk to pkComp;
� Finally, output (key, kid, ak, ske, aux, pk) to party pid.

On (Compromise,P) from A (requires permission from Z):
� Add pkey[P] to pkComp.

On (GetAuxData, ak, ske) from pid ∈ P ∪ {A}:
[T.1] If pid = A then parse (∗, pk)← tkey[ak, ske] and add pk to pkComp;
[T.2] Output tkey[ak, ske] to pid;

Active Attack

On (ActiveAttack,P, cid, ssid, ctx∗, pk∗) from A
[A.1] If ∃ record (session,P, cid, role) marked att, or ∃ record (session,P, cid, role) marked

conn(P ′, cid′) with P ′ corrupt, then do:
� If pk∗ /∈ pkReg \ pkComp then record (Auth, ε, ε,P, cid, ssid, ctx∗, pk∗).

[A.2] Output (AuthSend, cid′, ssid) to P ′.

Unilateral Public-Key Authentication

On (AuthSend,P ′, cid, ssid, ctx, ak, ske, pk, mode) from P:
[S.1] If mode = tk and tkey[ak, ske] is not de�ned then send (ssid, ak, ske) to A and receive back

activation;
[S.2] If ∃ record (session,P, cid, role) marked conn(P ′, cid′) then initialize b← 0 and:

� If mode = std and [S.2.1] pk ∈ pkey[P] then set b← 1;
� If mode = tk and tkey[ak, ske] = (∗, pk′) then set pk← pk′ and b← 1.
� If b = 1 then record (Auth,P, cid,P ′, cid′, ssid, ctx, pk)

[S.3] Send (AuthSend,P,P ′, cid, ssid, ctx, pk, mode, b) to A and receive back activation.
[S.4] Output (AuthSend, cid′, ssid) to P ′.

On (AuthVerify, cid′, ssid, ctx, pk) from P ′

[V.1] Send (AuthVerify,P ′, cid′, ssid, ctx, pk) to A and receive back �ag f .
[V.2] If f = 1 and ∃ record (Auth, ∗, ∗,P ′, cid′, ssid, ctx, pk) then b← 1 else b← 0;
[V.3] Send (AuthVerify, cid′, ssid, b) to P ′.

Figure 11: FPHA model for post-handshake authentication, which allows for public key authentication on an
already existing unauthenticated channel. FPHA o�ers mode = std key generation as used by, e.g., EA, as well
as transportable-key mode tk, which makes FPHA a useful modular building block for, e.g., TLS-OPAQUE.
For brevity we omit the overall session identi�er from all interfaces.
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5.1 Post-Handshake Authentication Model

Figure 11 shows a UC model FPHA for post-handshake authentication, which allows establishing an unau-
thenticated secure channel between any two parties, and then performing subsequent authentication of that
channel with public keys. On a very high level, FPHA provides the following guarantees:

� Unforgeability: Eve cannot authenticate to Bob under Alice's public key;

� Channel binding: Eve cannot authenticate (even with her own keys) on channels that she is not an
endpoint of.

An honest walk-through. We exemplarily describe channel establishment and authentication for two
parties C and S, with C authenticating to S. We ask the reader to ignore �elds mode, ak, ske of FPHA for the
sake of this walk-through; an explanation of these special �elds follows further below.
FPHA inherits [C.1] all channel interfaces of FcbSC, but without channel binder CB, imlementing secure but

unauthenticated channels. Both C and S call NewSession of FPHA to establish a channel. Let us assume
that the adversary decides to connect their requests. Both parties receive a Finalize noti�cation and learn
the channel identi�er cidC/cidS under which the other endpoint knows the channel. We note however that
neither C nor S learn with whom they actually got connected. The established channel can be used to send
messages securely.

To tell his peer on channel cidC who he is actually connected to, C �rst generates a key by querying
FPHA with (KeyGen, kid, ε, ε, std), resulting in output (key, kid, ε, ε, ε, pk) with [G.1] adversarially-chosen
but [G.2] fresh pk. kid denotes a non-secret identi�er which helps C managing her public keys. ε denotes an
empty string � these �elds are only used in a special mode of FPHA called transportable key mode (mode = tk,
see explanation further below). For this walkthrough, we use standard key generation (mode = std). FPHA

adds pk to [G.3] lists pkReg and pkey[C]. pkReg contains all public keys generated through FPHA (in any
mode). pkey[C] is a list containing all standard public keys that C generated through FPHA, and which C
can use for authenticating on her channels.

Now that C has created pk, C wants to use pk to authenticate to S on channel cidC . To do so, C
queries (AuthSend, S, cidC , ssid, ctx, ε, ε, pk, std). ctx denotes optional auxiliary public context information
that C wants to transmit alongside the authentication request. If [S.2.1] C is allowed to authenticate under
pk, FPHA records (Auth, C, cidC , S, cidS , ssid, ctx, pk), representing the fact that C successfully performed
authentication under pk in this channel. FPHA then informs the adversary about the authentication attempt,
including all its data and whether authentication was successful (the bit b).

To receive the result of C's authentication, the receiver S has to choose a public key and a context for
veri�cation. This data is contributed by S via interface AuthVerify, allowing applications to actively
choose under which public key and context veri�cation should be performed. Hence, we assume these public
values to be transmitted by the application. In case the veri�er wants to perform veri�cation under the same
pk and ctx that C performed the authentication with, FPHA [V.2] outputs success.

Transportable key mode. FPHA as described above binds usage of pk to S, the party who generated pk
via interface KeyGen. This is however not realistic in dynamic settings, where, e.g., S transfers her keys to
another machine in encrypted form. A concrete example is OPAQUE, where secret keys are encrypted and
the resulting envelopes are sent to the server, who then stores them. In order to enable a modular analysis
of such �key-handling� protocols, we introduce the notion of transportable keys to the UC framework, and
to our FPHA. When generating a transportable key by querying (KeyGen, kid, ak, aux, tk), a party provides
a key identi�er kid, an application key ak and an optional label aux. FPHA keeps the application key secret
but [G.1] leaks all other values to the adversary. The requesting party then receives back [G.1] adversarially-
generated key envelope ske and public key pk. One can think of these values as ske being an encryption of sk
belonging to pk, encrypted symmetrically with key ak. FPHA stores (aux, pk) in tkey[ak, ske]. The semantics
of the tkey array are as follows: whoever provides input i, where tkey[i] = (aux, pk), can authenticate under
pk (see below), and [T.2] retrieve label aux and public key pk via interface GetAuxData. Hence, knowledge
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of both application key ak and envelope ske will be su�cient to authenticate under pk. Since the requesting
party outputs ske, ske can be used by applications which require secret keys to be objects that can be sent
around, stored, further encrypted etc.

To authenticate with transportable keys, S calls AuthSend with inputs ak, ske and mode = tk. In case
[S.1] ak, ske are not known to FPHA (i.e., tkey[ak, ske] does not store any pk), no security is guaranteed and
the adversary obtains ak, ske. FPHA then [S.2] checks again whether tkey[ak, ske] stores pk, and if so, it grants
authentication by creating the corresponding Auth record including pk, and noti�es the adversary about
the authentication attempt, including all its data and whether authentication was successful (bit b). We
note that the double check of tkey[ak, ske] is necessary since the adversary could have registered ak, ske in
between both checks.

Adversarial interfaces. The adversary A can register both std and tk keys via interface KeyGen.
FPHA adds such compromised keys to set pkComp. For transportable keys ak, ske, the adversary can also
reveal which public key they �work for�, by querying (GetAuxData, ak, ske). FPHA returns [T.2] (aux, pk) =
tkey[ak, ske] (or ⊥ if empty) and [T.1] adds pk to pkComp, accounting for A now knowing transportable
keys for pk. Altogether, in pkComp we �nd all keys generated in any mode by FPHA that are compromised:
the adversary can authenticate with these keys (as well as unknown keys /∈ pkReg) on his channels [A.1]

using the ActiveAttack interface. A can always make authentication fail by [V.1-2] sending f = 0 in its
AuthVerify query to FPHA. Regarding leakage, A learns all inputs ofAuthSend except for uncompromised
transportable keys ak, ske, as well as public veri�cation values pk, ctx. With such a strong adversary, FPHA

guarantees that an authentication mechanism does not rely on the secrecy of messages.

On usage of party identifiers. Our modeling of PHA, just as our modeling of unauthenticated channels
in Section 4, does not provide any initial guarantees about the identity of a peer. Hence, throughout this
paper, party identi�ers are interpreted only as process identi�ers. For example, pid could be a unique
combination of IP address and port, and we make only the minimal assumption that it is always the same
process sending from this addresses' port. Consequently, party identi�ers are used by functionalities only to
determine which messages were generated by the same process. In protocol instructions, sending a message
requires speci�cation of an intended recipient, and hence we add the intended recipient to inputAuthSend of
FPHA. However, since our modeling of unauthenticated channels is weak in the sense that parties are oblivious
of which process (i.e., which pid) their channel actually got connected to, the intended recipient might not
coincide with the process holding the other end of the channel. By this we capture an authentication-less
setting with a network adversary who is freely rerouting/rewriting messages. Consequently, FPHA overlooks
any mismatch in a party's perception and instead bases authentication decisions for a speci�c channel and
pk solely on whether an endpoint (=pid) is eligible to authenticate under pk.

5.2 The Exported Authenticators Protocol

The EA protocol that we consider for our analysis is depicted in Figure 12. It generalizes Exported Au-
thenticators as speci�ed in 2 in several aspects: (1) ΠEA abstracts from the channel establishment and can
provide post-handshake authentication for any �handshake� protocol that securely instantiates FcbSC, (2)
ΠEA works with standard signature keys and transportable keys (see below), which enable ΠEA to use key
material provided by an application, (3) ΠEA does not hash messages before signing/mac'ing, (4) ΠEA sends
messages in the clear instead of sending them over the channel-to-authenticate, (5) public key and context
are veri�cation is provided by the application instead of being sent by the authenticator, and (6) �elds EACert
and extensions ext are subsumed in the ctx object, about which no further assumptions are made.

In ΠEA, parties can establish channels by calling FcbSC. If the channel is �nalized, the endpoints share a
unique channel binder EMS (cf. Section 4 for details). The endpoints, let's call them C and S, then derive
transcript digest and MAC keys MKC ,MKS ,HSCC ,HSCS from EMS. We note that this is the only place in
this paper where the roles clt, srv have an e�ect: these are roles that parties have in some application,
such as TLS, and they help us here to derive di�erent digest and MAC key for C and S from public labels
lblMK,clt, lblMK,srv, lblHSC,clt, lblHSC,srv that re�ect these roles.
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C public parameters: PRF, λ, lblMK,clt, lblHSC,clt, sid S
SIG = (KG,PKGen,Sign,Vfy),MAC = (Gen,Mac,Vfy)

Channel creation

On input (NewSession, cidC , S, clt) On input (NewSession, cidS , C, srv)

-(NewSession, cidC , S, clt) �(NewSession, cidS , C, srv)

FcbSC

sid
�(Finalize, cidC , cidS , clt,EMS) -(Finalize, cidS , cidC , srv,EMS)

MKC = PRF(EMS, lblMK,clt) /* MAC Key Client */
HSCC = PRF(EMS, lblHSC,clt) /* Handshake Context C */

On input (Send, ·, ·) or (ExpireSession, ·) forward this query to FcbSC.
On output (Received, ·, ·) from FcbSC output this query.

Key generation and retrieval of auxiliary data from transportable keys (can be called by any party)

On input (KeyGen, kid, ak, aux, mode) with mode ∈ {std, tk} On input (GetAuxData, ak, ske)

(pk, sk)← KG(1λ), (ak, ske)← (ε, ε) parse (nonce, ae)← ske

If mode = tk then k ← H(ak, nonce), (aux, sk)← ADeck(ae)

nonce← {0, 1}λ, k ← H(ak|nonce), ae← AEnck(aux, sk) pk← PKGen(sk)

ske← (nonce, ae), erase sk, k Output (aux, pk)

Output (key, kid, ak, ske, pk)

Unilateral public-key authentication (exemplarily for C-to-S authentication)

On input (AuthSend, S, cidC , ssid, ctx, ak, ske, pk, mode)
Get cidS from output (Finalize, cidC , cidS , ∗, ∗)
If mode = tk then

parse (nonce, ae)← ske, k ← H(ak, nonce), (aux, sk)← ADeck(ae)

If mode = std retrieve sk associated with pk
m← (HSCC , ssid, ctx)
σ ← Signsk(m), mac← MacMKC

(m,σ) -ssid, cidS , σ,mac
Output (AuthSend, cidS , ssid)

On input (AuthVerify, cidS , ssid, ctx, pk)
m′ ← (HSCC , ssid, ctx)

If SIG.Vfypk(σ,m
′) = 1 and MAC.VfyMKC

(mac, (m′, σ)) = 1
then output (AuthVerify, cidS , ssid, 1)
else output (AuthVerify, cidS , ssid, 0)

Figure 12: Protocol ΠEA is a unidirectional post-handshake authentication of channel binder EMS pro-
vided by hybrid functionality FcbSC. We depict a C-to-S authentication �ow with either std key mode or
transportable key mode tk . For brevity we omit the functionality's identi�er sid from all queries and mes-
sages.
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ΠEA is a multi-party protocol that allows arbitrary parties to establish channels with each other, allows
unlimited generation of keys and unlimited numbers of unilateral authentication sessions per channel. We
exemplarily describe such an authentication performed by C for a channel with S as depicted in Figure
12. We start with standard signing keys and for now ignore the gray parts of the �gure. Upon input
(KeyGen, kid, ak, aux, std), C generates a key pair (sk, pk) by running the key generation of the signature
scheme (values ak, aux are ignored in normal mode), and outputs pk to the application. When C wants to
authenticate on her channel cidC , she looks up

6 identi�er cidS in the Finalize output of FcbSC, and signs
message (HSCC , ssid, ctx) with sk, where ssid is the EA nonce and ctx is the EACert �eld (containing identity
information such as, e.g., a certi�cate) that C wants to convey. Then C macs the message together with the
signature under mac key MKC . C then sends all values to S, who accepts or rejects depending on whether
signature and mac verify for HSCC ,MKC that S computes from channel binder EMS for her channel cidS .

Instantiating transportable keys. A transportable key is a protected secret key, also called envelope
throughout the paper. One can think of an envelope as, e.g., an encryption of the secret key. ΠEA allows
parties to export such envelopes to the application. Since this way envelopes can �travel� to other parties
who can then attempt to extract the secret key from them, transportable keys can be used by any party who
possesses both the envelope and whatever is required to unlock the secret key from it. A transportable key
requires a signature key pair (pk, sk)← KG(1λ). Then, an encryption key k is generated as k ← H(ak, nonce),
where ak is an application key, and H hashes to the key space of a symmetric cipher. The envelope is then
ske ← (nonce, ae), where ae is an encryption of aux, sk under k, for auxiliar information (e.g., a label) aux.
Obviously, the application key ak is enough to decrypt sk from envelope ske. Hence, the authentication step
in ΠEA can alternatively be conducted by an authenticator C running on inputs ak, ske, pk (cf. gray parts in
Figure 12): before signing and mac'ing, C �rst recovers sk from ak, ske.

This concludes our description of ΠEA, and we are ready to state its security. We refer to Section 3 for
formal de�nitions of the cryptographic assumptions within the Theorem and to Appendix B.2 for the full
proof.

Theorem 5.1 (Security of ΠEA). Protocol ΠEA depicted in Figure 12 UC-emulates functionality FPHA in the
(FRO,FcbSC)-hybrid model, PRF is both a secure PRF and a collision-resistant hash function, with H mod-
eled as random oracle, (KG,PKGen,Sign,Vfy) a perfectly complete and EUF-CMA-secure signature scheme,
MAC is perfectly complete and EUF-CMA-secure MAC, and (AEnc,ADec) a CUF-CCA- and RKR-secure
encryption scheme that is equivocable, and restriction to static malicious corruptions and adaptive server
compromise.

There are 6 discrepancies described above between ΠEA and EA as described in Section 2. As already
argued in Section 1, (4) does not void security, and neither does hashing (3). (1),(2),(5),(6) are strict
generalizations of the Exported Authenticators protocol. Hence, the security of TLS-EA follows from the
security of ΠEA, with FcbSC instantiated with the TLS-HS through the standard UC composition theorem
[13].

Corollary 5.2. Protocol TLS-EA speci�ed in Section 2 securely realizes FPHA.

6 Security of TLS-OPAQUE

6.1 Password-based post-handshake authentication

We give a model FpwPHA for password-based post-handshake authentication in Figure 13. On a high level,
FpwPHA guarantees the following:

6We assume C to learn this information as otherwise, when sending messages over plain connections, we would have no
mean of informing S which channel the authentication is intended for. This can be avoided by instead sending messages over

the secure channel.
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� Limitation to one guess per online attack: Each run of the protocol reveals at most one bit of
information about the opponent's password to each participant;

� Resistance to o�ine attacks: Dictionary attacks on passwords are prevented unless a server is
compromised;

� Resistance to precomputation attack: An attacker cannot speed up dictionary attacks through
computation performed prior to server compromise;

� Enable rate limiting: Servers can map login attempts to registered user accounts;

� Channel binding: One cannot authenticate (even with correct password) on channels one is not an
endpoint of;

We explain how the functionality can be used by a client C and server S to �rst establish an unauthenti-
cated channel, and then subsequently authenticate to each other using a password (client) and password �le
(server). We emphasize how FpwPHA enforces the above guarantees alongside our explanation. To start, the
client registers [F.1] with the server by storing some password-dependent information (called password �le),
under some user name uid. This results in FpwPHA registering that a �le with uid, pw was stored at S, by [C.1]

installing record file. This process can be stopped by the adversary by not sending StorePwdComplete,
allowing analysis of protocols with interactive registration phase and without guaranteed delivery of mes-
sages.

Parties C and S can establish an unauthenticated channel by calling FpwPHA's NewSession interface. See
Sec. 4 or description of FPHA in Sec. 5.1 for more details. We note that registration and channel establishment
do not rely on each other and can thus be performed in arbitrary order.

Having concluded registration and channel establishment, parties connected via a channel can now au-
thenticate to each other using password (client) and �le (server). Password authentication is always initialized
by the client calling pwInit with credential uid, pw. The client also speci�es the channel to authenticate,
cidC , and intended recipient S. Similar to our modeling of EA, FpwPHA ignores intended recipients and in-
stead [In.4] refers to (session, ∗, ∗) records to �gure out who the end points of a channel are. Assuming that
C's channel cidC is with S, FpwPHA [In.4] stores a record (pwAuth, ssid, C, cidC , S, cidS , uid, pw, init, 0) and
[In.5] noti�es S of the authentication session, the channel and the uid, where disclosure of the uid enables
rate-limiting. This record re�ects initiator and responder roles by order of mention. Having been noti�ed,
S can now either accept or decline to participate by calling pwProceed for said session. An application can
hence apply rate-limiting policies, such as �at most 5 authentication attempts for uid per minutes� by calling
pwProceed in a policy-conforming way. pwProceed will only move authentication forward [P.3] if there
is a �le stored for S and uid: if the password in that �le matches pw, then the state of the pwAuth record is
rewritten to match, otherwise it is rewritten to fail. It is instructive to see that FpwPHA bases this decision
on password data held by corresponding channel endpoints [In.4], ensuring that authentication can only be
successful for parties sharing a channel (channel binding). Finally, FpwPHA creates adversarially-scheduled
(via interface pwDeliver) outputs [D.4] re�ecting the state of the pwAuth record [D.2-3], namely fail or
match, towards both C and S, notifying them about the outcome of authentication. As soon as two outputs
are delivered, FpwPHA [D.3] marks a record as completed, which concludes the authentication �ow.

Adversarial interfaces. FpwPHA has a very simple leakage pattern - all inputs are public except for
passwords (see messages to A in [F.1],[In.2] and [P.1]). To account for interactive protocols, we let adversary
A acknowledge all honest inputs ([C.1],[In.1] and [P.1]), modeling Denial-of-Service attacks at di�erent stages
of the execution, and we let A make any authentication session fail [D.1]. StealPwdFile,OfflTestPwd
and Impersonate model adaptive compromise of server's password �les. If the attacker wants to com-
promise a �le, say, for uid stored at server S, it informs FpwPHA by sending (StealPwdFile, S, uid).
FpwPHA [S.2] marks the corresponding �le as compromised, which �unlocks� interfaces OfflTestPwd and
Impersonate (resistance to o�ine attacks): A can now make unlimited password guesses against the
�le via OfflTestPwd [O.1], and it can use the �le to actively play the role of the honest server S in
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The functionality talks to arbitrarily many parties P = {P,P ′, ...} and to the adversary A. It maintains
counters ctr[P, uid] initially set to 0.
Channel establishment and Use

NewSession, Attack, Connect, Send, Deliver, and ExpireSession, as in FcbSC, Figure 9, but
without gray parts.

Password Registration, Compromise, and O�ine Dictionary Attack

On (StorePwdFile, ssid,P, uid, pw, ) from P ′:
[F.1] If ∄ record (Store,P, ssid, ·, ·), record (Store,P, ssid, uid, pw) and send (Store,P ′, ssid,P, uid)

to A.

On (StorePwdComplete,P∗, ssid) from A:
[C.1] If ∃ record (Store, ∗, ssid, uid, pw) but ∄ record (file,P∗, uid, ·) then record (file,P∗, uid, pw) and

mark it uncompromised.

On (StealPwdFile,P, uid) from A (requires permission from Z):
[S.1] If ∄ record (file,P, uid, pw), return �no �le� to A;
[S.2] Else mark this record compromised and return ��le stolen�.

On (OfflTestPwd,P, uid, pw′) from A (requires permission from Z):
[O.1] If ∃ record (file,P, uid, pw) marked compromised then return �correct guess� if pw = pw′ and

�wrong guess� if pw ̸= pw′.

Active Attacks
On (ActiveAttack, ssid′,P, cid, uid) from A:
[A.1] If ∃ record (session,P, cid) marked att, or if ∃ record (session,P ′, cid′) marked conn(P, cid)

where P ′ is corrupted, then create record (pwAuth, ssid′,A, ε,P, cid, uid, ε, init, 0)
[A.2] Output (pwInit, ssid′, cid, uid) to P.

On (TestPwd,P, uid, pw′) from A:
[T.1] If ∃ record (file,P, uid, pw) and ctr[P, uid] > 0 then do:

[T.1.1] If pw = pw′ then return �correct guess� and rewrite init to match in all records
(pwAuth, ∗,A, ε,P, ∗, uid, ε, init, 0);

[T.1.2] If pw ̸= pw′ then return �wrong guess�;
[T.1.2] Set ctr[P, uid]−−.

On (Impersonate, ssid′,P, uid, pw∗) from A:
[Im.1] If pw∗ = ε and ∃ record (file,P, uid, pw′) marked compromised and record

(pwAuth, ssid′, ∗, ∗,A, ε, uid, pw, init, 0), if pw = pw′ overwrite init with match and reply
with �correct guess�, otherwise overwrite init with fail and reply with �wrong guess�;

[Im.2] If pw∗ ̸= ε and ∃ record (pwAuth, ssid′, ∗, ∗,A, ε, uid, pw, init, 0), if pw = pw∗ then overwrite
init with match and reply with �correct guess�, otherwise overwrite init with fail and reply with
�wrong guess�.

Asymmetric Password Authentication

On (pwInit,P ′′, cid, ssid′, uid, pw) from P ∈ P:
[In.1] Drop the query if it is not the �rst one for ssid′;
[In.2] Send (pwInit,P,P ′′, cid, ssid′, uid) to A and receive back (pwInit,P,P ′′, cid, ssid′, uid, ok);
[In.3] If ∃ record (session,P, cid)marked att, create record (pwAuth, ssid′,P, cid,A, ε, uid, pw, init, 0),

set P ′′ ← A;
[In.4] If ∃ record (session,P, cid) marked conn(P ′, cid′) create record

(pwAuth, ssid′,P, cid,P ′, cid′, uid, pw, init, 0), set P ′′ ← P ′, cid← cid′;
[In.5] Output (pwInit, cid, ssid′, uid) to P ′′

On (pwProceed, ssid′) from P:
[P.1] Send (pwProceed,P, cid, ssid′, uid) to A;
[P.2] If ∃ record (pwAuth, ssid′,A, ε,P, ∗, uid, ε, init, 0) then set ctr[P, uid] + +;
[P.3] If ∃ records (pwAuth, ssid′, ∗, ∗,P, ∗, uid, pw, init, 0) with pw ̸= ε and (file,P, uid, pw′), then

overwrite init with match if pw = pw′ and with fail otherwise.

On (pwDeliver, ssid′,P, b) from A
[D.1] If b = 0 output (pwDecision, ssid′, fail) to P.
[D.2] Find record (pwAuth, ssid′,P ′, ∗,P ′′, ∗, ∗, ∗, state, ctr) with P = P ′′ or P = P ′′, otherwise drop

query;
[D.3] Rewrite state from init to fail, then set result = state and ctr++; if ctr = 2 overwrite state

with completed in the record;
[D.4] Output (pwDecision, ssid′, result) to P.

Figure 13: FpwPHA model of password-based post-handshake authentication, again omitting session identi�er
sid.
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authentication sessions described above, using (Impersonate, ssid, S, uid, ε) [Im.1]. We capture the ability
of the attacker of compute its own password �les by an optional input pw to Impersonate. If this input
[Im.2] is set, A is specifying which password it wants to use for �le creation. A can only mount such at-
tacks on an attacked channel, which is enforced by FpwPHA by [In.3] checking whether the attacked client
a channel that is �agged att. If so, FpwPHA creates [In.3] a pwAuth record with A as server and follows
the procedure of honest authentication, except that it expects A to use an Impersonate query instead of
pwProceed. This concludes already the description of active attacks that FpwPHA allows to mount against a
client. We further note that FpwPHA features a strong OfflTestPwd interface since it enforces resistance
to precomputation attacks [19]: FpwPHA does not allow to pre-register guesses7 and obtain a batched
reply upon �le compromise. Further, as common for asymmetric password authentication models, server
compromise constitutes a form of corruption, which requires permission from the environment Z, and hence
StealPwdFile and OfflTestPwd can only be queried by A upon being instructed by Z.

ActiveAttack and TestPwd interfaces allow an adversary to actively attack server S, guessing which
password was used to generate a �le. A initializes such attack by calling ActiveAttack, specifying S, uid.
FpwPHA initializes the [A.1] corresponding pwAuth record with A in client role and [A.2] noti�es the server.
A can postpone the password guess, allowing analysis of protocols such as TLS-OPAQUE, where the at-
tacker is not committed to a password guess from the very beginning of the attack. We complement the
ActiveAttack interface with interface TestPwd, with inputs S, uid and password guess pw. Since cracking
a password �le of S, uid results in the insecurity of all ongoing and future authentication session with S, uid,
interface TestPwd is not session-based but �le-based, and a successful guess results in all ongoing active
attacks against this �le being successful (i.e., FpwPHA [T.1.1] rewrites the corresponding pwAuth records
to match). To make sure that the number of adversarial TestPwd queries does not exceed the number of
active attacks against a speci�c �le, i.e., to ensure limitation to one guess per online attack, we let
FpwPHA maintain a counter ctr[S, uid] for every �le ([P.2],[T.1] and [T.1.2]), indicating the remaining password
guesses that A can issue against the �le for uid.

On registration and authentication. Typically, user registration will assume some form of authenticated chan-
nels for the user and servers to identify each other. This authentication can take many forms from PKI to
physical rendezvous. However, we do not force authentication into the model so it can also support, for exam-
ple, anonymous settings where no authentication, or one-way authentication, is deemed su�cient. We stress
that besides optional authentication during registration, our modeling (and TLS-OPAQUE in particular) is
�password-only" where the user is not assumed to carry any information other than the password.

6.2 A UC version of TLS-OPAQUE

We now give a modular representation of TLS-OPAQUE in Figure 14, called ΠTLS−OPAQUE, which allows
for asymmetric password authentication on an unauthenticated channel. ΠTLS−OPAQUE is a UC protocol
where parties issue calls to one instance of each functionality FPHA for PHA , and FOPRF for an oblivious
pseudorandom function (OPRF), see Section 3.1 for details on OPRFs.

In a nutshell, parties use the OPRF to turn their passwords into an application key rw. During registra-
tion, rw is used to generate a key pair at FPHA, of which the server stores the public key. To authenticate, a
client then recomputes rw from pw, then uses rw to recover (pk, sk) from FPHA, and subsequently authenticates
to the server using sk and the public-key authentication interface of FPHA.

ΠTLS−OPAQUE consists of three phases: registration, channel establishment and asymmetric password
authentication.

Registration: If client C with username uidC and password pwC wants to register with server S, then
C initiates by sending uidC to S. S then creates a (normal) public key pkS at FPHA and sends it to C.
Both parties engage in an OPRF protocol, where S plays the server role on random key K and C evaluates
rw = PRFK,S||uid(pwC). Finally C then generates a transportable key at FPHA with ak = rw and aux = pkS ,

7As a real-world example of an attack that is excluded by FpwPHA, imagine an adversary preparing a list of hashed password
guesses and, upon compromise, searching this list for a match. See [16] for a �non-strong� aPAKE functionality allowing for
such attacks.
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receiving back ske, pkC , C sends ske, pkC to S and erases her memory, and S stores (uidC , ske, pkS , pkC) as
the password �le.

Channel Establishment: C and S establish an unauthenticated channel as in Figure 12. If establish-
ment goes unattacked, the channel is established between C and S, but both parties are oblivious of whether
they actually got connected to the intended process. From their point of view, they might be connected to
the adversary, or to a di�erent honest process.

Password Authentication: In order to establish some knowledge about the counterparty in their
channel, a party can initiate a password authentication. In our example, C initiates such authentication
on his channel cidC , with username uidC and password pwC . On a high level, both C and S will now
each perform one public-key authentication, where S uses pkS stored in the password �le, and C uses key
material contained in the envelope ske that S piggy-backs to his own authentication �ow using the ctx
�eld of FPHA's interface AuthSend. To authenticate with public keys, both parties invoke FPHA. S, using
�normal� public key pkS to authenticate, invokes it in std mode. C, who receives ske from S, recovers
application key rw = PRFK,S||uid(pwC) by engaging with S in one PRF evaluation of FOPRF with session
identi�er sid = S||uid. C then starts an authentication using transportable keys rw, ske. Both parties piggy-
back the OPRF transcript values a′, b′ to their authentication �ows using ctx �elds of FPHA. If C sees a
successful authentication under public key pkS , which C retrieves as auxiliary data from ske using FPHA

interface GetAuxData, then C outputs success, else it outputs failure. If S sees a successful authentication
under pkC from the password �le, C outputs success, else C outputs failure. Due to the guarantees of FPHA,
both parties can only output success if they are connected to each other, and if S has a password �le that
corresponds to pwC entered by C.

ΠEA generalizes TLS-OPAQUE as speci�ed in 2 in several aspects:
(1) ΠTLS−OPAQUE abstracts from the exact secure channel with post-handshake public-key authentication and
can provide post-handshake password authentication based on any protocol that securely instantiates FPHA,
(2) ΠTLS−OPAQUE sends messages in the clear instead of sending them over the channel-to-authenticate, (3)
ΠTLS−OPAQUE abstracts from the underlying OPRF protocol and can be instantiated with any OPRF that
securely realizes FOPRF.

We are now ready to state the security of TLS-OPAQUE. We refer to Section 3 for the de�nition of
FOPRF, and to Appendix B.3 for the full proof.

Theorem 6.1 (Security of ΠTLS−OPAQUE). Protocol ΠTLS−OPAQUE (Figure 14) UC-emulates functionality
FpwPHA in the (FPHA,FOPRF)-hybrid model with respect to static malicious corruptions and adaptive server
compromise.

Corollary 6.2. Protocol TLS-OPAQUE speci�ed in Section 2 securely realizes FpwPHA.

The corollary follows from instantiating FPHA with ΠEA (Thm. 5.1) using the UC composition theorem
[13], where in turn FcbSC is instantiated with the TLS 1.3 protocol snippet from Figure 10 (Thm. 4.1), and
FOPRF instantiated with 2HashDH of Figure 8.
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C public parameters: λ S

Registration phase (creating a password �le)

On input (StorePwdFile, ssid, S, uidC , pwC)
Ignore if not the �rst for the pair S, uidC -ssid, uidC choose fresh kid′, set sid← S||uidC

(KeyGen, kid′, std)→ FPHA

set sid← S||uidC (key, kid′, ε, ε, pkS)← FPHA

FOPRF ← (Eval, sid, ssid, S, pwC) (Init, sid)→ FOPRF

FOPRF → (Tr, sid, ssid, a) -ssid, a
(SndrComplete, sid, ssid, a)→ FOPRF

�ssid, pkS , b (Tr, sid, ssid, b)← FOPRF

FOPRF ← (Finalize, sid, ssid, b)

FOPRF → (Eval, sid, ssid, rw)

choose fresh kid

FPHA ← (KeyGen, kid, rw, pkS , tk)

FPHA → (key, kid, rw, ske, pkS , pkC) -ssid, ske, pkC if no �le (uidC , ...) stored yet then

erase memory store (uidC , ske, pkS , pkC)

On input (pwInit, S, cidC , ssid
′, uidC , pwC)

Get cidS from output (Finalize, cidC , cidS , ∗, ∗)
set sid← S||uidC
FOPRF ← (Eval, sid, ssid′, S, pwC)

FOPRF → (Tr, sid, ssid′, a′) -ssid′, cidS , uidC , a
′

Output (pwInit, cidS , ssid
′, uidC)

On input (pwProceed, ssid′)
ignore if 0 or multiple (pwInit, ∗, ssid′, ∗) outputs
retrieve �le (uidC , ske, pkS , pkC)

�(AuthSend, ssid
′, cidC) �(AuthSend, C, cidS , ssid

′, (uidC , a
′), ε, ε, pkS , std)FPHA

(SndrComplete, sid, ssid′, a′)→ FOPRF

FOPRF ← (Finalize, sid, ssid′, b′) � ske, b′ (Tr, sid, ssid′, b′)← FOPRF

FOPRF → (Eval, sid, ssid′, rw)

FPHA ← (GetAuxData, rw, ske)

FPHA → (pkS , pkC)

FPHA ← (AuthVerify, cidC , ssid
′, (uidC , a

′), pkS)

FPHA → (AuthVerify, cidC , ssid
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ssid′′ ← ssid′||ssid∗, ssid∗ ← {0, 1}λ

-(AuthSend, S, cidC , ssid
′′, (ske, b′), rw, ske, ε, tk) -(AuthSend, ssid′′, cidS)FPHA

parse ssid′′ = ssid′||∗, else ignore
(AuthVerify, cidS , ssid

′, (ske, b′), pkC)→ FPHA

(AuthVerify, cidS , ssid
′′, d′′)← FPHA

If d′ = 0 output (pwDecision, ssid′, fail) If d′′ = 0 output (pwDecision, ssid′, fail)
Else output (pwDecision, ssid′, match) Else output (pwDecision, ssid′, match)

Figure 14: Protocol ΠTLS−OPAQUE, using channel and public-key authentication facilities provided by FPHA.
We exemplarily show C registering a password with S, and subsequent authentication of a channel between
C, providing a clear-text password, and S, using the data stored at registration. ε denotes the empty string.
For brevity we omit handling of NewSession, Send and ExpireSession inputs, which are simply relayed
to FPHA. We also omit the identi�ers with which FPHA and FOPRF are called. An application can simply set
those to be, e.g., tls-opaque_pha and tls-opaque_oprf.
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A Real World Considerations

In this section we discuss considerations for implementing, deploying, operating, and using TLS-OPAQUE
in a variety of use cases.

30

https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-06.txt
https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-06.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
https://datatracker.ietf.org/doc/html/rfc9261
https://datatracker.ietf.org/doc/html/rfc9261
https://datatracker.ietf.org/doc/html/draft-sullivan-tls-opaque
https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report
https://www.f5.com/labs/articles/threat-intelligence/2021-credential-stuffing-report


A.1 TLS Integration

OPAQUE, as is currently undergoing standardization in the IRTF CFRG [12], encapsulates an AKE and
uses it to produce fresh secrets. In contrast, TLS-OPAQUE reuses the output of an existing AKE � TLS � for
authentication. In the former variant, the client and server run OPAQUE over any arbitrary channel. This
could be a raw, unencrypted and unauthenticated connection, or it could be a secure channel such as TLS.
However, the privacy posture of OPAQUE is improved with a secure channel, since OPAQUE necessarily
reveals the client identity to the server during the exchange. Therefore, running OPAQUE over a secure
channel is superior, and TLS-OPAQUE does this by leveraging TLS record layer encryption. Moreover, since
TLS-OPAQUE binds itself to the underlying TLS connection. As a result, the protocol has �best of both
worlds� security, whereby security only fails if both the underlying TLS authentication fails and OPAQUE
fails.

A result of this design is that implementing TLS-OPAQUE requires changes at the application-layer and
at the TLS layer. Depending on the use case or deployment model, this may or may not be feasible. For
example, TLS-OPAQUE deployed in a web browser without access to the underlying TLS connection state
(via the EA protocol) is not currently feasible. However, for applications and services with control over the
TLS stack, this integration is feasible.

A.2 Password Hiding

A hallmark of TLS-OPAQUE is that the protocol does not leak any plaintext password to the server. Only
the client has knowledge of the password. This has numerous bene�ts, though the primary bene�t is in
mitigating misuse of sensitive authentication state. (Servers only store or derive per-client OPRF keys, and
compromise of these keys does not immediately lead to account compromise.)

One consideration of this property is that it may require alternative techniques for detection of credential
stu�ng attacks. A credential stu�ng attack is one in which an attacker automates using compromised
account credentials, such as username and password tuples, to take over user accounts [34]. These attacks
are often performed at scale, meaning that login attempts occur in very large bursts.8 Common approaches
for detecting such attacks rely on access to the plaintext password [35].

A.3 Key Management

TLS-OPAQUE requires servers to store or derive unique keying material for each registered client. In general,
this requirement is not unique compared to existing authentication protocols, such as password-over-TLS.
However, some authentication protocols such as mutual TLS do not necessarily require such per-client state.
For example, if a typical PKI is used for mutual TLS, servers need only store intermediate certi�cates that
attest to client certi�cates, rather than per-client certi�cates.

TLS-OPAQUE does not currently support such generalized forms of client authentication, though it
can outsource OPRF key derivation to a separate, secure, and isolated service. Speci�cally, when creating
the server's credential response, the server can relay the client identity to a central service which stores a
single key generation seed used to derive the per-user OPRF key. One important consequence is that this
separates sensitive key material used for multiple clients from the rest of the server-side implementation. In
the event of server compromise, the only per-client secrets available to the server are those that were queried
for individual users. This design is similar to Keyless SSL [7], which separates processes responsible for TLS
functionality from TLS private key management. A consequence of this decoupled design is that loss of the
key server state requires each client to re-register with the application.

A.4 Phishing Hardening

Phishing is a well-known attack wherein an attacker attempts to trick users into revealing their authentication
information to a malicious server. Mitigating phishing depends on the deployment model. Speci�cally, if it is

8Akamai estimated that 30 billion credential stu�ng attacks occurred in 2018 [3].
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possible for an attacker to downgrade a client from use of TLS-OPAQUE, which does not reveal the plaintext
password to the attacker, to more classical authentication mechanisms, phishing may be applicable. One
example setting wherein such downgrades are not possible include app-based deployments of TLS-OPAQUE,
since the client simply lacks support for weaker authentication protocols. In these scenarios, an attacker that
is able to redirect clients to a malicious server can only recover information that is revealed through TLS-
OPAQUE protocol messages. In the context of the web, the situation is di�erent, as clients will necessarily
fall back to password-over-TLS for backwards compatibility reasons.

In general, if the attacker can successfully direct the client to its attacker-controlled domain, it can force
the client to login with its real credentials without using TLS-OPAQUE. Clients could remember whether
or not a given domain supports TLS-OPAQUE and choose not to fall back to a less-secure protocol, though
pinning this information raises deployment concerns, especially if the application needs to safely disable
OPAQUE without breaking authentication.

Phishing mitigations for this use case therefore require solutions external to TLS-OPAQUE. In particular,
they may require client-side changes. Some browsers such as Google Chrome already include user-facing
warnings to protect against such phishing attacks. Other options might be to change the client password
entry interface from something implemented using server-provided Javascript to something natively built
into the browser. This may present downstream usability issues. Any such proposal requires an appropriate
user study to determine its e�cacy and impact; see A.5.

A.5 User Interface Implications

As an authentication protocol, the user experience and its impact on overall system security is paramount.
For example, applications which do not need to support legacy protocols and cannot migrate to password-
less alternatives such as WebAuthn [17], adopting TLS-OPAQUE may be trivial. In contrast, much of the
deployment challenges in PAKEs stem from their interaction with existing protocols, legacy software, and
user interfaces, all of which relate to the user experience.

Passwords will likely remain as an authentication mechanism for legacy and modern clients and appli-
cations for some time. This raises an opportunity for authentication mechanisms built on TLS-OPAQUE.
Speci�cally, TLS-OPAQUE mitigates server-side risk inherent in password-based authentication by mini-
mizing information stored about clients. Compromise of a web application that uses TLS-OPAQUE for
password authentication, for example, does not immediately put client passwords at risk. (OPAQUE pre-
vents pre-computation attacks, though it does not prevent online attacks.) Adoption of TLS-OPAQUE
therefore bene�ts applications which adopt it.

It is also worth noting that, in many scenarios, it is unlikely that TLS-OPAQUE will be deployed as the
only possible authentication system. For example, in the context of the web, many di�erent authentication
protocols must necessarily be supported to account for legacy clients and servers. In such environments,
understanding the user experience is critical. For example, what is the user experience for a web application
that uses both TLS-OPAQUE and legacy password-over-TLS authentication mechanisms? Does the UI �ow
be similar in both cases to avoid confusion, or can PAKE-based authentication use a di�erent UI, such as a
browser-based prompt for passwords?

User studies to assess the feasibility of new user interface mechanisms are needed to ensure that any
changes here do not further confuse users or cause security regressions. Such studies must carefully consider
complementary technologies, such as password-less authentication, and the e�ect of o�ering both as a choice
to clients. Moreover, such studies must assess the ease of adopting new authentication �ows. Adoption
of passwordless authentication protocols like WebAuthn and password managers is still a problem in the
industry [26, 27, 25] due to such usability obstacles.
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B Proofs

B.1 Proof of Theorem 4.1

We �rst give a brief sketch of the proof. We will use Πi and rolei for i = (P, cid) to refer to session (P, cid),
invoked with role �ag rolei. Let us �rst brie�y describe the simulation algorithm, included in Figure 15.
To simulate honest session Πi simulator S picks randi ← {0, 1}λ, zi ← Zp, sets Zi ← gzi and sends out
(cid, randi, Zi). If A sends message (cid∗, rand∗i , Z

∗
i ) to Πi then S checks if (rand∗i , Z

∗
i ) = (randj , Zj) for any

Πj for j = (P ′, cid′) and role′j ̸= rolei. If so then S marks Πi as �connected to Πj�, connects these two
sessions via FcbSC, it picks random key AEKi (the two connected sessions will have independent AEK keys
but these correspond to AEKC and AEKS on this channel) and then emulates the TLS transport for Πi as
follows: First, given (Send,P, cid, ℓ) from FcbSC it forms a ciphertext as c = AEnc(AEK, (ctr, 0ℓ)) for the
current counter value ctr and saves (Πi,Πj , ctr, c). Second, if A sends (cid, c′) to P then S delivers the
corresponding message via Deliver message to FcbSC if and only if it saved tuple (Πj ,Πi, ctr

′, c′) for the
correct value ctr′ of the incoming message counter of Πi. In the other case, i.e. if A does not forward to Πi a
message from some Πj with an opposing role then S computes everything as the real-world Πi would, i.e. it
derives EMS,AEKC ,AEKS via KDF(H((Z∗

i )
zi), (tri|f)) for f = 0, 1, 2 and tri formed by ordering (randi, Zi)

and (rand∗i , Z
∗
i ) appropriately, sets EMS as P's channel binder output via the Attack message to FcbSC,

and then it encrypts and decrypts TLS transported messages as the real party would using the above keys,
because FcbSC will mark this session as att, so it will pass all the messages it sends to S, and it will accept
any received message S processes via the Deliver interface.

To argue that this simulation creates an indistinguishable view from the real execution we �rst eliminate
the negligible probability event that two honest sessions output the same rand or gz values, which guarantees
that two honest sessions have the same transcripts only if they are �connected�. Since the channel binders
EMS∗ are computed for attacked sessions via KDF(HSi, (tri|0)) the probability that any of them collide is
negligible by CRH property of KDF. These values can also not collide with CB's picked by FcbSC on the
connected sessions: Finally, the only divergence between the real world and the ideal world is due to
connected sessions on which the EMS and AEK values are random in the ideal world, whereas in the real
world they are computed via KDF(H(·), tr) applied to the Di�e-Hellman key K = gzi·zj . However, all values
H(gzi·zj ) (some of these can be used by sessions treated as �actively attacked�, e.g. because A exchanges the
Zi, Zj values between two sessions but not the nonces, or because of mismatch in the roles) can be replaced
by random by a reduction to Gap CDH, which embeds DH challenges in all Zi's and uses the DDH oracle
to emulate computing H((Z∗

i )
zi) because for any A's query H(K) it can check if (Z∗

i , Zi,K) is a DH tuple.
Finally, the PRF property of KDF and the fact that tr's cannot collide unless on mutually connected sessions,
imply the pseudorandomness of their EMS and AEK outputs.

We proceed to the formal proof. Let Z be an e�cient environment and A the �real-world adversary�
interface of Z. Let win(Gi) be the event that Z outputs 1 when interacting with Game Gi.

Game G0: The real execution. Here Z interacts with parties running the TLS1.3 handshake and
message transport as speci�ed in Figure 10, with all network messages sent to (and received from)
Z's adversary interface A. However, all actions of honest parties are implemented by a single entity,
denoted G0. Since this protocol is mostly symmetric for client and servers (the only symmetry-breaker
is in ordering inputs to key derivation hash H) we will use denote the DH contributions of session Πi

party as Zi = gzi for zi ← Zp, regardless if rolei = clt or rolei = srv.

Game G1: Eliminating nonce or DH contribution collisions. This game runs just like G0, i.e. it
follows the protocol on behalf of each honest party, except that the game aborts if for any honest
session Πj the game picks randj ← {0, 1}λ and zj ← Zp s.t. either randj = randi or zj = zi for some
previously invoked honest session Πi. It follows that

|Pr[win(G1)]− Pr[win(G0)]| ≤
(qSC)

2

2 · p
+

(qSC)
2

2 · 2−λ
,

where qSC counts Z's NewSession queries.
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The simulator talks to FcbSC and to the dummy network adversary A, which formally is
an interface of environment Z. S queries RO function H which it implements honestly.

On (NewSession,P, cid,P ′, role) from FcbSC:
� set i← (P, cid), pick rand← {0, 1}λ and z ← Zp, set Z ← gz,
� save record (i, role, rand, z, Z,⊥,⊥) marked wait, send (cid, rand, Z) to A.

On receiving A's message (cid∗, rand∗, Z∗) to session Πi for some i = (P, cid):
� Retrieve rec = (i, role, rand, z, Z,⊥,⊥) marked wait (abort if not found);
� If ∃ record rec′ = (j, role′, rand′, z′, Z ′,AEK′,⊥)
(1) rec′ is marked either wait [in which case AEK′ = ⊥] or conn(i),
(2) furthermore (rand′, Z ′) = (rand∗, Z∗) and role′ ̸= role;
then do the following:
pick AEK← {0, 1}λ;
replace record rec with (i, role, rand, z, Z,AEK,⊥) marked conn(j, cid∗);
set ctrs(i)← (0, 0);
parse (P ′, cid′)← j and send (Connect,P, cid,P ′, cid′,⊥,⊥) to FcbSC;

� In any other case do the following:
set K ← (Z∗)z and HS← H(K);
if role = clt then set tr← (rand, Z, rand∗, Z∗);
if role = srv then set tr← (rand∗, Z∗, rand, Z);
set EMS← KDF0(HS, tr), AEKC ← KDF1(HS, tr), AEKS ← KDF2(HS, tr);
if role = clt then set (AEK,AEK′)← (AEKC ,AEKS);
if role = srv then set (AEK,AEK′)← (AEKS ,AEKC);
replace rec with (i, rand, z, Z,AEK,AEK′) marked att(cid∗);
set ctrs(i)← (0, 0);
send (Attack,P, cid, cid∗,EMS) to FcbSC.

On receiving (Send,P, cid, t) from FcbSC for t ∈ N:
� Retrieve rec. (i, rand, z, Z,AEK,⊥) marked conn(j, cid∗) for i = (P, cid) and:
retrieve (ctr, ctr′)← ctrs(i);
set c[i, ctr]← AEnc(AEK, (0|ctr|+t)) and send (cid∗, c[i, ctr]) to A;
set ctrs(i)← (ctr + 1, ctr′).

On receiving (Send,P, cid,m) from FcbSC for m ∈ {0, 1}∗:
� Retrieve rec. (i, rand, z, Z,AEK,AEK′) marked att(cid∗) for i = (P, cid) and:
retrieve (ctr, ctr′)← ctrs(i);
send (cid∗,AEnc(AEK, (ctr,m))) A;
set ctrs(i)← (ctr + 1, ctr′).

On receiving A's message (cid∗, c∗) to session Πi for some i = (P, cid):
� Retrieve record rec = (i, rand, z, Z,AEK,AEK′) and (ctr, ctr′)← ctrs(i);
� If record rec is marked conn(j, cid∗) for some j then:
retrieve record rec′ = (j, [...]) [other values in record rec′ are ignored];
abort if rec′ is not marked conn(i) or c∗ ̸= c[j, ctr′];
else set ctrs(i)← (ctr, ctr′ + 1) and send (Deliver,P, cid,⊥) to FcbSC.

� If record rec is marked att(cid∗) then:
set (ctr∗,m∗)← ADec(AEK′, c∗);
abort if output doesn't parse correctly or if ctr∗ ̸= ctr
else set ctrs(i)← (ctr, ctr′ + 1) and send (Deliver,P, cid,m∗) to FcbSC.

� If record rec is marked with some identi�er cid′ ̸= cid∗ then ignore this messge.

On (ExpireSession,P, cid):
� Retrieve record (i, ...) for i = (P, cid) and erase it.

On A's query x to hash function H, respond with H(x).

Figure 15: Simulator for Theorem 4.1
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Game G2: Eliminating EMS collisions. We will call sessions Πi and Πj passively matched (by the
adversary) under three conditions: (1) Πj receives (cid

∗, rand∗, Z∗) from the network adversary A s.t.
(rand∗, Z∗) = (randi, Zi), i.e. Πj receives the values sent by Πi (note that value of cid

∗ received by Πj is
immaterial, e.g. it does not have to match cid sent by Πi), (2) Πi receives (cid

∗, rand∗, Z∗) from A s.t.
(rand∗, Z∗) = (randj , Zj), i.e. Πi receives the values sent by Πj (value cid

∗ received by Πi is immaterial),
and (3) rolei ̸= rolej . Note that this condition is equivalent with the condition that tri = trj , i.e. that
Πi and Πj compute the same transcripts, because conditions (1) and (2) enforce that they use the
same (rand, Z) tuples, (3) assures that they order them in the same way in inputs to the key derivation
hash H, and by the rules of G1 the correct ordering is necessary because the tuples sent by Πi and Πj

cannot be the same.

Using this notation, G2 runs just like G1 except that it adds an abort if any honest session Πi

computes EMSi s.t. EMSi = EMSj for some previously �nalized honest session Πj where Πi and Πj

are not passively matched. In other words G2 enforces that two honest sessions output the same EMS
values only if they are passively matched. Since EMSi = KDF0(HSi, tri) = KDF(HSi, tri|0) and by
the above argument failure of the passive-matching condition implies that tri ̸= trj , a straitghforward
reduction to collision resistance of KDF shows that

|Pr[win(G2)]− Pr[win(G1)]| ≤ AdvcrhA′,KDF(λ),

where AdvcrhA′,KDF(λ) is the bound on adversary's advantage in CRH game against function KDF for A′

which has the computing power of Z and the reduction, which simply emulates game G2 and monitors
for the H collision.

Note that by the tuple uniqueness constraint imposed by G1, if Πi,Πj are passively matched then Πi

cannot be passively matched to any other party, which implies that in G2 the same EMS value can
occur for at most two sesions.

Game G3: Hash H as a random table. This game proceeds like G2 except for emulating RO hash H
di�erently, using an initially empty table TH. Namely, whenever Πi needs to compute Ki = H((Z ′

i)
zi) =

H(DHg(Z
′
i, g

zi)), where Z ′
i is the DH value Πi received from A and DHg is the Di�e-Hellman func-

tion DHg(g
a, gb) = gab, G3 �rst checks for any prior entry ((Z ′

j , zj), h) in TH s.t. DHg(Z
′
i, g

zi) =
DHg(Z

′
j , g

zj ), which holds i� (Z ′
i)

zi = (Z ′
j)

zj , in which case G3 returns h. Otherwise it returns a new
random λ-bit value h and adds ((Z ′

i, zi), h) to TH. On A's direct queries K to H, the game services
them the same way as (Z ′

i, zi) = (K, 1). Since this is only a syntactic change it follows that

Pr[win(G3)] = Pr[win(G2)]

Game G4: Random keys on passively-connected sessions. We will call session Πi passively connected
(to Πj) if Πi receives (cid

∗, rand∗, Z∗) from A s.t. (rand∗, Z∗) = (randj , Zj) for some honest session Πj .
Using this terminology Πi,Πj are passively matched if and only if they are both passively connected
to each other and they have di�erent roles.

Using this notation, G4 proceeds as G3 except for introducing an abort if A ever sends a query K to H
which matches key Ki computed on some passively connected session Πi. We argue that distinguishing
between G4 and G3 implies breaking the Gap CDH assumption on group ⟨g⟩. It is well-known that

CDH is equivalent to SquareDH, i.e. hardness of computing gx
2

on input (g, gx) for random x, and the
presence of DDH oracle which de�nes the gap version of CDH and SquareDH does not a�ect that. We
will thus show a reduction to Gap SquareDH.

The reduction gets a SquareDH challenge (g,X) where X is a random element of ⟨g⟩, and it emulates
G4 except that (1) for each honest session Πi it sets Zi ← (X)ti for ti ← Zp, i.e. all DH values sent
by honest parties are randomizations of the SquareDH challenge, (2) in servicing hash H queries the
reduction makes the following adjustments: First, it keeps entries in the form ((Z ′

i, ti), h) instead of
((Z ′

i, zi), h) where ti is the randomization coe�cient used on session Πi, i.e. entry ((Z ′
i, ti), h) signi�es
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that H(DHg(Z
′
i, Zi)) = h for Zi = Xti ; Second, the direct queries are kept in the same way as before,

i.e. in the form ((K, 1), h) if H(K) = h; Third, when the reduction needs to check if there if an entry
((Z ′

j , tj), h) in TH de�nes the same value as used by session Πi, it checks if DHg(Z
′
j , X

tj ) = DHg(Z
′
i, X

ti),
by checking if (Z ′

j)
tj = (Z ′

i)
ti ; Fourth, when the reduction needs to check if any pair (Zi, ti) [either

in prior query or in current one] collides with explicit H query K, i.e. with pair (K, 1), it does so
consulting a DDH oracle on tuple (g, Zi, X

ti ,K).

Thus, reduction emulates game G4 perfectly, except that it monitors for an event that A queries H
on K equal to the key on a passively connected session Πi. If session Πi is connected to Πj , this
corresponds to the case that K = DHg(Zj , Zi) = DHg(X

tj , Xti), hence K1/(titj) = DHg(X,X) is a
solution to the SquareDH challenge. This implies

|Pr[win(G4)]− Pr[win(G3)]| ≤ AdvG−SqDH
A′ (⟨g⟩),

where AdvG−SqDH
A′ (⟨g⟩) is the bound on adversary's advantage against Gap SquareDH in group ⟨g⟩, for

A′ which has the computing power of Z and this reduction.

Note that since in G4 the adversary cannot access any key HSi = H(Ki) for any passively-connected
session via a call to H, the game can just as well pick each such HSi value at random independently of
hash H.

Game G5: Random outputs on passively-connected sessions. This game emulates G4 except that
for each passively-connected session Πi the game does not compute values EMSi,AEKC,i,AEKS,i from
HSi via KDF, but picks each of them directly as random λ-long bitstrings. (For a pair of two passively
matched sessions, Πi,Πj , since their keys Ki,Kj are equal, the game picks these EMS,AEKC ,AEKS

triples as also equal on such two sessions.) Since by game G4 keys HSi on passively connected sessions
are all independent, an easy reduction to PRF property of KDF shows that each (EMSi,AEKC,i,AEKS,i)
tuple can be replaced, one by one, from KDF outputs to independent random values. A hybrid over
qSC of such reductions implies that

|Pr[win(G5)]− Pr[win(G4)]| ≤ qSC · AdvPRFA′,KDF(λ),

where AdvPRFA′,KDF(λ) is the bound on adversary's advantage against the PRF property of KDF, for A′

which has the computing power of Z and the above reduction.

Game G6: Privacy on passively-connected sessions. In this game each time a passively-connected
session Πi encrypts a (counter,message) pair (ctr,m), the game instead uses Πi's encryption key AEKi

to encrypt an all-zero string of the same length. Moreover, if the resulting ciphertext c is delivered
without change to session Πj which is matched with Πi, assuming such session exists, the game does
not decrypt c, but instead retrieves plaintext (ctr,m) which was supposed to be encrypted in it,
and continues processiing on Πj 's side from that point on. This game is indistinguishable from G5

under CCA security of authenticated encryption AEK. The argument proceeds by a hybrid over each
encryption key AEKi used in the game, i.e. over all passively connected sessions Πi. Using the standard
�single challenge ciphertext� version of CCA security of symmetric encryption, for each Πi we must
also perform a hybrid over all messages sent by Πi, i.e. over qSnd queries Send issued by Z on session
Πi. For each index i = 1, ..., qSnd, the reduction, interacting with CCA challenger who holds a random
key AEKi, accesses the encryption oracle using that key to service Send queries except for the i-th
one. On the i-th query the reduction gets ciphertext c as an encryption challenge, either encrypting
(ctr,m) pertaining to this query, or an all-zero string. To service decryption on behalf of session Πj

which is passively matched with Πi (if such session exists), the reduction uses the decryption oracle
interface of the CCA challenger. This series of hybrids implies that

|Pr[win(G6)]− Pr[win(G5)]| ≤ qSC · qSnd · AdvCCAA′,AEnc(λ),

where AdvCCAA′,AEnc(λ) is the bound on adversary's advantage against the CCA security of the authenti-
cated encryption scheme AEnc, for A′ which has the computing power of Z and the above reduction.
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Game G7: Authenticity on passively-connected sessions. In the previous game the passively-
connected sessions encrypt all-zero strings instead of actual messages, and decryption of ciphertexts
created in this way is skipped by sessions which are passively matched with such senders. However,
passively connected sessions still use their keys AEK′ to decrypt all incoming tra�c except for the
ciphertexts created in this special way by a matching sender. In game G7 we eliminate the usage
of decryption keys AEK′

i for each passively connected session Πi. Instead, reception of an incoming
ciphertext c on any passively connected session Πi is processed as follows: If c is generated by session
Πj which is matched with Πi (assuming such session exists), and moreover c was created using (ctr,m)
for counter value ctr which matches the current counter used by Πi for incoming messages, then G7

passes message m as an output of the party running Πi. In any other case, i.e. if c is not output on
behalf of the (unique) session which matches Πi (e.g. because such session doesn't exist), or if it was
sent by G7 on behalf of such party, but A delivers it to Πi out of order, the game just drops such
ciphertext when it is delivered to Πi.

Distinguishing G6 and G7 implies attacking the CUF (ciphertext unforgeability) property of the au-
thenticated encryption scheme AEK. The argument proceeds by a hybrid over each key AEKi, i.e. over
all passively connected sessions Πi, and a hybrid over all messages an adverasry A sends to session
Πi. For each index i = 1, ..., qRcv where qRcv is an upper-bound on the number of messages received by
Πi, the reduction queries the encryption oracle of CUF challenger for each ciphertext it needs to send
(which is always an encryption of an all-zero), and it outputs the i-th ciphertext which A delivers to
Πi as a CUF forgery. This series of hybrids implies that

|Pr[win(G7)]− Pr[win(G6)]| ≤ qSC · qRcv · AdvCUFA′,AEnc(λ),

where AdvCUFA′,AEnc(λ) is the bound on adversary's advantage against the CUF property of the authenti-
cated encryption scheme AEnc, for A′ which has the computing power of Z and the above reduction.

Game G8: The ideal-world execution. At this point the game is identical to the ideal-world, where
Z interacts with dummy parties interacting with functionality FcbSC which interacts with simulator
S described in Figure 15, where S in turn interacts with Z's interface A which models a real-world
adversary. Just like game G7, the ideal-game de�ned by simulator S and functionality FcbSC creates
random tuples (EMSi,AEKi,AEK

′
i) for each passively connected session Πi that �nalizes, and copies

these tuples to a session Πj that �nalizes by being passively matched with Πi. When any such session
then uses the established secure channel, the ideal-world interaction does the same as G7, i.e. the
sender sends encryptions of all-zero strings under encryption key AEKi, the decryption key AEK′

i is
never used, and the only ciphertexts which are not ignored by the receiver are the ones sent by the
matching session, and only if they are received in order. Also as in G7, the ideal-world interaction
emulates behavior of real-world sessions which are not passively connected, because in both G7 and
G8 such sessions e�ectively follow the real-world protocol. We conclude that

Pr[win(G8)] = Pr[win(G7)]

which completes the proof.

B.2 Proof of Theorem 5.1

We �rst give only some intuitions that readers might �nd helpful before reading the full proof.
For simulating channel establishment, Figure 17 visualizes the three instances of the channel functionality

FcbSC within Theorem 5.1: ΠEA calls an instance of FcbSC with channel binder, while in the ideal execution
with FPHA, an instance of FcbSC without channel binder is run as part of FPHA. Also, S maintains a copy
of FcbSC with channel binders, mimicking the one in the real world. See Figure 17 for an illustration. Both
worlds would be easily distinguishable if the channels in those three instances of FcbSC di�er. Our simulation
strategy is to run FcbSC with inputs obtained from FPHA (note that FPHA relays all channel-related inputs to
the adversary), and it replicates adversarial instructions intended for the simulated FcbSC instance, removing
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all CB-related artifacts from them, and feeds them into FPHA. As an example, if A decides to connect two
parties with channel binder CB, S relays the request to FcbSC unmodi�ed. Then, S immediately sends a
request to connect the two parties to FPHA.

We next explain simulation of the key generation. Normal key generation is trivial to simulate: S
generates a random key pair and keeps the secret key to simulate signatures of honest parties. Simulation
of transportable keys cannot use application keys ak, since FPHA keeps them secret: S chooses a random k
for every request (instead of deriving it from a hash of ak) and create the envelope ske with such k. When
Z wants to open ske by hashing (ak, nonce), S queries GetAuxData of FPHA to �nd out whether ak �works
for� ske. If so, S answers the hash query with k, resolving all unmet dependencies. For this part of the proof,
usage of an idealized assumption to control sk extraction from envelopes performed by Z seems inherent,
and is why Theorem 5.1 relies on the random oracle model. We further rely on the encryption of secret
keys to be unforgeable and random-key robust [19], i.e., it must be hard to create a ciphertext decrypting
successfully under an (unknown) key even when seeing a valid ciphertext, and it must be hard to create a
ciphertext that decrypts successfully under two randomly chosen keys. We need these properties to ensure
that FPHA knows all �working� key pairs ak, ske. If the �rst property is void, Z could compute a forgery ae′

containing some secret key, such that (ak, (nonce, ae′)) would be a working tk key pair in the real world but
an unknown (and hence, non-functional) one in an ideal world with FPHA. Similarly, Z coming up with a
ciphertext decrypting successfully under two randomly chosen keys breaks the uniqueness property of ske
that FPHA enforces.

Simulation of authentication on unattacked channels is trivial: since S knows secret keys and channel
binders, S holds keys for creating signatures and MACs for honest parties. The main challenge is to argue
that FPHA outputs are indistinguishable from the real world, since FPHA has strict rules regarding adversarial
authentication: they can only happen on attacked channels or through corrupt parties in connected channels,
and only with respect to compromised or unknown public keys. Our proof relies on the unforgeability of
signatures, the above described unforgeability of envelopes & replay security of the SIGMA protocol (=A
cannot authenticate with uncompromised public keys), and secrecy of EMS & unforgeability of MACs (=A
cannot authenticate on honest channels). The reductions are complicated by several dependencies of the
simulation. For example, to reduce to the EUF-CMA security of the MAC scheme, we �rst need to randomize
all PRF-derived MAC keys. To reduce to the EUF-CMA security of the signature scheme, S cannot use
any signing keys, e.g., to create envelopes. This can be resolved by �rst switching to simulated envelopes,
exploiting the equivocability of the encryption scheme. This concludes the proof sketch. We provide an
overview of the hybrids in Figure 16.

Fix a probabilistic polynomial-time environment Z, and assume that a real-world adversary is a dummy
adversary, i.e., it is an interface of algorithm Z. Let win(Gi) stand for the event that Z outputs 1 after an
interaction with Game Gi.

Game G0: The real execution. Z interacts with parties running protocol ΠEA depicted in Figure 12,
and with a dummy adversary A.

Game G1: Introducing simulator and ideal functionality. We group all machines except for Z into
one new machine and call it simulator S. For each party, a dummy party is added between Z and
S. We also add a machine F between dummy parties and S, and add to it NewSession, Attack,
Connect, Send, Deliver, ExpireSession as in Figure 9, omitting all gray parts. F serves as a relay
for all messages that are not send to these interfaces. Looking ahead, we will gradually change F until
it is equal to FPHA. To account for the changes introduced by F we detail what S does whenever A
(hence, Z) sends a message to the simulated FcbSC, and whenever the new machine F sends a message
to S:

� (G1) On (Attack,P, cid, cid∗,CB∗) from A, if CB∗ ∈ CBset then ignore the query. Otherwise
send message (Attack,P, cid, cid∗,CB∗) to FcbSC and send message (Attack,P, cid, cid∗) to F ;

� (G1) On (Connect,P, cid,P ′, cid′, cid∗,CB∗) fromA, if there exists a record (session,P, cid, role)
labeled wait, then do:
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Game Change functionality F Change simulator S Ind. argument/assumption

G0 (starts with empty F) real execution

G1 add channel interfaces relay queries between simulated FcbSC, F and A syntactical change

G2 - abort upon nonce collision during key generation Birthday bound

G3 - abort upon ae collision during key generation RKR security of (AEnc,ADec)

G4 - abort upon pk collision during key generation EUF-CMA security of SIG

G5 add KeyGen interface compute key material for F syntactical change

G6 - abort if Z generates a working transportable key pair CUF-CCA security of (AEnc,ADec)

G7 - register adversarial keys in F syntactical change

G8 add AuthSend interface use simulated secret key material syntactical cange

G9 - abort upon honest party computing non-verifying signature completeness of SIG

G10 - abort upon honest party computing non-verifying MAC completeness of MAC scheme

G11 - simulate AEnc ciphertexts equivocability of (AEnc,ADec)

At this point, S does not use knowledge of secret keys sk.

G12 - abort upon signature forgery EUF-CMA security of SIG

G13 - produce real ciphertexts from sk again equivocability of (AEnc,ADec)

G14 - randomize PRF outputs pseudorandomness of PRF

G15 - abort upon PRF collision Birthday Bound

G16 - abort upon receiving a MAC forgery EUF-CMA sec. of MAC scheme

G17 add AuthVerify for honest
channels

acknowledge AuthVerify or signal DoS attack syntactical change

G18 add AuthVerify for attacked
channels

acknowledge AuthVerify or signal DoS attack syntactical change

Figure 16: Hybrids of the proof of Theorem 5.1.

� (G1) if ∄ record (session,P ′, cid′, role′) labeled conn(P, cid) and CB∗ ∈ CBset, then ignore
the query;

� (G1) otherwise query FcbSC with (Connect,P, cid,P ′, cid′, cid∗,CB∗) and send (Connect,
P, cid,P ′, cid′, cid∗) to F .

� (G1) On (Deliver,P ′, cid′,m∗) from A forward the query to F ;
� (G1) On (NewSession,P, cid,P ′, role) from F , simulate party P inputting (NewSession, cid,P ′, role)
to FcbSC;

� (G1) On (Send, ·, ·) from F forward the query to Z;
� (G1) On (ExpireSession,P, cid) from F send (ExpireSession, cid) to FcbSC.

The transition between this and the previous game is visualized in Figure 17.

We will �rst argue that the set of channels, i.e., the set of records (session, . . . ), is the same in all
three instances of FcbSC that appear in Figure 17: the hybrid one in game G0, the simulated one in
game G1 and the one within F in game G1. First of all, CB values, which only appear in interfaces
Attack,Connect, do not in�uence session records unless the adversary provides non-fresh CB values
in Attack or in Connect and when case 2 happens. In these cases, FcbSC in G0 will not create
a record. The simulation in G1 will drop the corresponding queries, hence also F in G1 will not
establish any session record. Equality of session records hence follows from the fact that all other
information relevant to session record establishment is exchanged between the FcbSC instances in G1:
NewSession,ExpireSession inputs are forwarded as they are by F to simulated parties via S, and
S forwards all relevant adversarial queries Attack,Connect to F . In particular, protocol ΠEA never
lets parties create or expire channels without receiving explicit instructions (i.e., inputs) by Z.
Since ΠEA relays all channel-related inputs (namely NewSession, Send and ExpireSession) to FcbSC

and S in G1 forwards Deliver queries to F , it follows from matching session records that the view of
Z for these interfaces is equally distributed in both games. Further, the output distribution of other
interfaces (KeyGen,AuthSend,AuthVerify) accessible by Z is equal in both games since all these
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A

Figure 17: Transition from real execution (game G0, left) to game G1 (right), showing a setting with
two honest parties C and S, (dummy) adversary A and hybrid functionalities FRO,FcbSC. In game G1, the
real execution is grouped into one machine called simulator S. Further, the hybrid functionality FcbSC is
replicated in the newly introduced machine F except for its CB-related parts, which remain inaccessible for
the environment Z. Empty boxes denote dummy parties, which simply relay all messages.

interfaces only read session records but never manipulate them. This concludes our indistinguishability
argument and hence we have that

Pr[win(G1)] = Pr[win(G0)].

Looking at Figure 17 we are now at a point in G1 where two instances of FcbSC exist: one instance in
F which can be used by Z for establishing channels and sending messages over them, and one instance
maintained by S which replicates all channels that exist in the other instance. It is crucial for our
proof that S has consistent views on all channels despite the fact that FPHA handles them.

Game G2: Rule out nonce collisions in KeyGen. We change S as follows. Upon (KeyGen, kid, ak,
aux, tk), S aborts if it picks a nonce that was already picked before or that was input by Z via
AuthSend value ske = (nonce, ∗). By the Birthday Bound we have

|Pr[win(G2)]− Pr[win(G1)]| ≤
q(q − 1)

2 · 2−λ
,

with q = qKG + qAS being the number of KeyGen and AuthSend queries issued by Z.

Game G3: Handling ske collisions. We let S abort whenever a simulated party generates a non-fresh
ae. Since nonces are fresh as of the previous game, this can only occur if AEnc() produces a ciphertext
that decrypts faithfully under two di�erent, randomly chosen keys, which is ruled out by the RKR
security of the encryption scheme.

Game G4: Handling public key collisions. We let S abort whenever a simulated party, upon input
KeyGen, generates a key pair (pk, sk)← KG(1λ) where pk has been part of a key output orAuthSend
input already. We call this event BADpk and show that it happens only with negligible probability if
SIG = (KG,Sign,Vfy) is a CMA-secure signature scheme. Consider the following EUF-CMA attacker
B against SIG. The EUF-CMA challenger picks (sk, pk) ← KG(1λ) and hands pk to B. B picks
(sk′, pk′) ← KG(1λ) and produces his forgery with signing key sk′. If BADpk occurs we have pk = pk′

and the forgery veri�es under pk. Hence,
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|Pr[win(G4)]− Pr[win(G3)]| ≤ Pr[BADpk] ≤ Adveuf−cma
B,SIG (1λ).

Game G5: Adding KeyGen interfaces to F . We add the interfaces KeyGen, GetAuxData and
Compromise of FPHA to F . We change S as follows: upon receiving (key, kid,P, aux, std) from F ,
we let S provide the simulated P with input (KeyGen, kid, ε, aux, std); when P computes key pair
(pk, sk) and outputs (KeyGen, kid, ε, ε, pk), we let S send query (kid, ε, pk) to F .
Upon receiving (KeyGen, kid, pid, aux, tk) from F for any pid, including A, simulator S picks k ←
{0, 1}λ, computes (pk, sk)← KG(1λ), ae← AEnck(aux, sk), ske← (nonce, ae) and stores all elements of
this KeyGen request (except for the unknown ak) in a record (k, sk, ske, aux, pk). S sends (kid, ske, pk)
to F . Upon (Compromise,P) from Z to A, S queries F with (Compromise,P).
On FRO query H(ak, nonce), if there is no corresponding record in TH, simulator S additionally looks for
a record (k, ∗, ske, aux, pk) with ske = (nonce, ∗). For every such record, S sends GetAuxData(ak, ske)
to F . Upon reply (aux′, pk′), if pk = pk′ and aux = aux′, then S adds ((ak, nonce), k) to TH and replies
with k. If no such match is found among all records with nonce, S draws a fresh k, adds (ak, nonce), k)
to TH and replies with k.

Due to uniqueness of nonces, k is distributed as before (every new KeyGen request has a randomly
sampled k ← {0, 1}λ). In G5, F aborts upon receiving a non-fresh pk or ske from S, which does not
make a di�erence since S aborted already as of G4 upon event BADpk, and upon ske collision in G3.
Apart from pkReg, the newly introduced records in F only have an e�ect when honest parties query
(GetAuxData, ak, ske). Since in G4, such party outputs (aux, pk) which is stored in tkey[ak, ske] by
F in G5, the outputs of the GetAuxData interface of honest parties is equally distributed in both
games. Hence, the changes are only syntactical and we have

Pr[win(G5)] = Pr[win(G4)].

Game G6: Dealing with ciphertext authenticity breaks. We change S upon input AuthSend re-
layed by F with values ak, ske, pk, and where ske = (∗, ae) and there is a key record (k, ∗, (nonce′, ae′), ∗,
pk) with ae ̸= ae′: in case (ak, nonce′) /∈ TH (i.e., environment Z does not know k, sk) and ADeck(ae) ̸=
⊥ then S aborts. We call this event BADauthEnc and show that it happens only with negligible proba-
bility if the encryption scheme is CUF-CCA secure.

Since we only let S inspect values and abort if indicated, this and the previous game only di�er if
event BADauthEnc occurs. We construct a CUF-CCA adversary B against the authenticated encryption
scheme (AEnc,ADec) as follows. B implements F and S of G6 for a distinguisher Z, and picks a
KeyGen query of Z at random. Let ak, ske′ = (nonce′, ae′), sk, aux, pk denote values corresponding
to this special KeyGen query. For this query, B does not choose a key k but uses his encryption
oracle to produce ae′ ← OAEnck(·)(aux, sk). B leaves the key �eld (value k) in the corresponding record
empty. In case Z wants to see the key by querying H(ak, nonce) then B aborts. B waits for Z issuing
an AuthSend query that triggers event BADauthEnc as de�ned above, i.e., sends (AuthSend, ∗, ∗,
, ∗, ∗, ak, ske, pk, ∗, tk), where ske = (nonce, ae) and there is a key record (ε, ∗, (nonce′, ae′), ∗, pk) with
ae ̸= ae′, and (ak, nonce′) /∈ TH, and B's decryption oracle returns a value other that ⊥ on input ae. If
this happens, then B sends ae from that query as forgery to the CUF-CCA challenger.

In case of BADauthEnc, ADeck(ae) ̸= ⊥ for the same k that is implemented by the oracle OAEnck(·). Due
to the random choice of KeyGen request, the probability that B does not abort is at least 1/q, where
qKG is the number of KeyGen queries issued by Z. Overall, we have

|Pr[win(G6)]− Pr[win(G5)]| ≤ qKGAdv
cuf−cca.

We note that G6 excludes that Z transforms a previously received ae′ into some ae that decrypts to
something meaningful under the same key k. With this, we can now be sure that Z cannot create a
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working key handle for an uncompromised pk. The next game will deal with Z creating working key
handles for compromised pk.

Game G7: Registering adversarial keys in F . We change S upon getting relayed input AuthSend
with with mode = tk and value ske, ak. S parses (nonce, ae) ← ske. In case of (ak, nonce) /∈ TH then
S does nothing. Otherwise, S �nds ((ak, nonce), k) ∈ TH and computes (aux, sk)← ADeck(ae), and sk
from pk. If (sk, pk) is a valid output of SIG.KG, S stores key record (k, sk, (nonce, ae), aux, pk), chooses
a random kid and queries F with (KeyGen, kid, ak, aux, tk) and (kid, ske, pk).

Since key records in S and tkey[], pkComp lists in F do not have any e�ect yet, the changes in this
game are only syntactical and hence Pr[win(G7)] = Pr[win(G6)].

We note that public keys registered in this game will automatically be added to pkComp by F . Further,
as of this game, key records (∗, ∗, ∗, ∗, pk) are no longer unique w.r.t pk or nonces. The same holds
for entries of the list tkey[] of F . Indeed, for a compromised pk (i.e., either a registered one where Z
hashed to obtain k, to subsequently decrypt ae to sk, or one that Z created himself), Z can create many
valid tk key handles ak, ske by computing encryption keys through hashing arbitrary pairs (ak, nonce).
With this game, we ensured that F is aware of all these valid key handles. Lastly, we note that S still
maintains unique key records for uncompromised pk.

Game G8: Add the AuthSend interface to F . We add interface AuthSend of FPHA to F . To
account for this change, we adapt S as follows. First, S runs the code newly introduced in G7 to
register a maliciously generated transportable key not upon getting relayed AuthSend, but upon
(ak, ske, ε) from F . Second, upon receiving (AuthSend,P,P ′, cid, ssid, ctx, pk, mode, b) from F , if
mode = std, S sends input (AuthSend,P ′, cid, ssid, ctx, ε, ε, pk) to simulated P. Otherwise we have
mode = tk and S already received values ak, ske before. If S �nds a record (k, sk, ske, aux, pk), then S
skips the �rst part ofKeyGen in the simulation of P and jumps right to signature generation, and using
sk. Otherwise, no such record exists. In this case, S sends input (AuthSend,P ′, cid, ssid, ctx, ak, ske, ε)
to simulated P.
Regarding indistinguishability, Auth records do not have any e�ect yet in F and thus we only have
to analyze whether (a) the information kept from S by AuthSend causes a di�erence in the output
distribution, and (b) the code of G7 only has an e�ect in case F sends (ak, ske, pk).

Regarding (a), in case of a malicious transportable key (the �otherwise� case above), F separately
informs S about (ak, ske) and hence no information is kept from S. The same holds in the mode = std

case, since P does not access ak, ske inputs in this mode. Hence, the only interesting case is mode = tk

where pk is a public key that was output by a KeyGen query in tk mode. In this case, F keeps ak, ske
private. However, since pk was registered through KeyGen, S �nds the (not necessarily unique)
record (∗, sk, ∗, ∗, pk) with a secret key sk that signs correctly for pk. Regarding (b), we distinguish two
cases upon S storing key record (k, sk, (nonce, ae), aux, pk) in G7: (1) the exact same record already
existed, (2) either a di�erent record or no record for pk existed. Case (1) corresponds to Z using
formerly generated tk key material, and hence the KeyGen query of S did not have e�ect in G7

since pk was already in pkReg due to KeyGen and in pkComp due to S issueing GetAuxData upon
query H(ak, nonce). Case (2) corresponds to Z using tk key material that Z computed locally. Hence,
tkey[ak, ske] is not set yet and thus F sends (ak, ske, ε) to S.
Altogether, this shows that the changes in G8 are only syntactical and we have

Pr[win(G8)] = Pr[win(G7)].

Game G9: Completeness of the signature scheme. We change S as follows: in case (AuthSend,P,P ′′,
cid, ssid, ctx, pk, mode, 1) is received from F and cid connects P,P ′, if the simulated P, in session ssid,
computes a signature that is not valid for message (PRF(EMS, lblHSC,clt), ssid, ctx, pk) under pk, with
EMS output by FcbSC to P,P ′ for the corresponding channel, then S aborts.
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Outputs in G9 and G8 are equally distributed unless the simulator aborts in G9. Since in both modes,
P uses sk with (sk, pk) output by KeyGen, the abort is ruled out by the perfect completeness of the
signature scheme, and we have

Pr[win(G9)] = Pr[win(G8)].

Game G10: Completeness of MAC scheme. Similar toG9, if S receives message (AuthSend,P,P ′′, cid,
ssid, ctx, pk, mode, 1) from F , where cid connects P,P ′, if the simulated P, in session ssid, com-
putes a MAC for message (PRF(EMS, lblHSC,clt), ssid, ctx, pk, σ) that does not verify under MAC key
PRF(EMS, lblMK,clt), then S aborts.

Distributions are equal unless S aborts, which is ruled out by perfect completeness of the MAC scheme
and hence

Pr[win(G10)] = Pr[win(G9)].

From here on we can be sure that if an Auth record was created by F while processing AuthSend,
and if A delivers the last protocol message faithfully, then the verifying party will output success.

Game G11: Simulate ciphertexts. We de�ne a set of hybrid games G10 = G11.0,G11.1, . . . ,G11.q =
G11, where q is an upper bound on the number of KeyGen requests issued by Z . For i = 0, . . . , q,
in game G11.i we change KeyGen as follows. If this is the i-th KeyGen query, we do not let S pick
an encryption key but use the simulator SIMeq to compute ae ← SIMeq(|sk|) and leave the encryption
key (value k) �eld empty in the record. If Z wants to see the encryption key via hashing, we use the
simulator to �nd k ← SIMeq(sk) to ensure that ADeck(ae) = sk. We store those values in TH and reply
with them. For clarity, the simulation of KeyGen and hash queries is depicted in �g. 19.

Replacement of k by ⊥ in records has no e�ect as this part of the record is never accessed from the
rest of the code of S in G10. To see this, we depict the full simulator's code of G10 in �g. 18. The
full code of the simulator in G11 is obtained by replacing KeyGen and hash interface in �g. 18 with
the ones in �g. 19. For S's code in both this and the previous game, we can easily see from the code
that, besides KeyGen and hash, the only interface which accesses the key record is AuthSend. In
AuthSend, only pk, sk parts of the record are looked at, and hence the output distribution of S is not
a�ected by storing k ← ⊥ in the key record. Therefore, a distinguishing environment Z between G11.i

and G11.i+1 can e�ciently distinguish real from simulated ciphertexts and hence yields an e�cient
attacker breaking equivocability of (AEnc,ADec). We thus have

|Pr[win(G11)]− Pr[win(G10)]| ≤ qAdveq.

Game G12: Dealing with signature forgeries. We change the simulation upon receiving message
(ssid, cid, σ, ∗) from A as a message to an honest P, where (ssid, cid, ∗, ∗) was never sent by an-
other honest party to P, and S either has key record (⊥, ∗, ∗, ∗, pk) (as of G11, k = ⊥ means sk
is unknown to Z), or pk was output of a (KeyGen, ∗, ∗, ∗, std) request to some honest party. If
Vfypk(σ, (HSC, ssid, ctx)) = 1, where

� HSC = PRF(EMS, lblHSC,role), where EMS is taken from a former output (Finalize, cid, cid′, role′,EMS)
of FcbSC to P,

� role ̸= role′,

then S aborts.

The output distribution is only a�ected if S aborts. We call this event BADsforgery and show that it
happens only with negligible probability if the signature scheme is EUF-CMA secure.

Let B denote an attacker in a CMA security game. B emulates game G12 as follows: B obtains pk from
the CMA challenger and randomly picks a query (KeyGen, kid, ak, aux, mode) of Z. If mode = std, B
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The simulator talks to F and Z as only external entities. Communication with Z goes via simulated dummy adversary A. Hence,
in the simulation below, a message by A comes directly from Z, and messages sent to A are assumed to immediately be forwarded
to Z. See �g. 17, right-hand side, for a picture of the setting. S initializes empty sets nonceFresh, keReg.

Channels

S maintains an instance of FcbSC as in �g. 9.
� (G1) On (Attack,P, cid, cid∗,CB∗) from A, if CB∗ ∈ CBset ignore the query. Otherwise send message
(Attack,P, cid, cid∗,CB∗) to FcbSC and message (Attack,P, cid, cid∗) to F ;

� (G1) On (Connect,P, cid,P ′, cid′,CB∗) from A, if ∃ record (session,P, cid, role) labeled wait, then do:
� (G1) if ∄ record (session,P ′, cid′, role′) labeled conn(P, cid) and CB∗ ∈ CBset, then ignore the query;
� (G1) otherwise, send message (Connect,P, cid,P ′, cid′,CB∗) to FcbSC and message (Connect,P, cid,P ′, cid′) to F .

� (G1) On (Deliver,P ′, cid′,m∗) from A forward the query to F ;
� (G1) On (NewSession,P, cid,P ′, role) from F , send input (NewSession, cid,P ′, role) to FcbSC;
� (G1) On (Send, ·, ·) from F forward the query to A;
� (G1) On (ExpireSession,P, cid) from F send input (ExpireSession, cid) to FcbSC.

Hash queries:

(G1) On input m to FRO, parse m = (ak, nonce).
� (G1) If there is a pair ((ak, nonce), h̃) ∈ TH then reply with h̃;
� (G5) For every key record (k, ∗, (nonce, ae), aux, pk), send (GetAuxData, ak, (nonce, ae)) to F . Upon reply (aux′, pk′), if
pk′ = pk and aux = aux′, then add ((ak, nonce), k) to TH and reply with k; else, set h← {0, 1}λ, store (m,h) ∈ TH and reply
with h.

� (G1) If none of the above cases apply, then choose uniformly h← {0, 1}λ, store (m,h) ∈ TH and reply with h.

Key generation and authentication:

On input (KeyGen, kid, ak, aux, mode)
� (G1) compute (pk, sk)← KG(1λ) (G4) and abort if pk not fresh.
� (G1) If mode = tk then set nonce← {0, 1}λ and (G2) abort if nonce ∈ nonceFresh. Add nonce to nonceFresh.
� (G5) Set k ← {0, 1}λ, (G1) ae ← AEnck(aux, sk) and (G3) abort if ae ∈ keReg. Compute ske ← (nonce, ae), (G5) store
(k, sk, ske, aux, pk) and send (kid, ske, pk) to F .

� (G5) If mode = std send (kid, ε, pk) to F .

On input (Compromise,P) from Z to A:
� (G5) Send (Compromise,P) to F .

On (ssid, ak, ske) from F :
� (G7) Parse (nonce, ae) ← ske. If ((ak, nonce), k) ∈ TH for some k, set (aux, sk) ← ADeck(ae) and compute pk from sk. If
(sk, pk) is a valid output of KG(1λ), then store (k, sk, (nonce, ae), pk), choose fresh kid and send (KeyGen, kid, ak, aux, tk) to
F . Upon (KeyGen, kid,A, aux, tk) from F , reply with (kid, ske, pk).

On (AuthSend,P,P ′′, cid, ssid, ctx, pk, mode, b) from F :
� If mode = std then do:

� (G8) Resume simulation of P with input (AuthSend,P ′′, cid, ssid, ctx, ε, ε, pk) as in ΠEA;
� (G9) if b = 1 and the signature created by P for some m does not verify under pk, then abort;
� (G10) if b = 1 and the MAC computed by P does not verify under key PRF(EMS, lblMK,clt), then abort.

� If mode = tk, then do:
� If ∃ record (∗, sk, ∗, pk), then

* (G8) Resume simulation of P at signature generation using (sk, pk) and message m ←
(PRF(EMS, lblHSC,role), ssid, ctx), where EMS corresponds to cid;

* (G9) If b = 1 and the signature for m does not verify under pk, then abort;
* (G10) If b = 1 and the MAC computed by P does not verify under key PRF(EMS, lblMK,clt), then abort.

� (G8) Otherwise, retrieve the corresponding message (ssid, ak, ske) from F , set ske = (nonce, ∗), add nonce to nonceFresh
and resume simulation of P with input (AuthSend,P ′′, cid, ssid, ctx, ak, ske, pk) as in ΠEA.

Figure 18: Simulator in G10, omitting session identi�er sid of ΠEA in all inputs, outputs and messages.
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On j-th input (KeyGen, kid, ak, mode)
� If j ≤ i, then do:

� (G1) compute (pk, sk)← KG(1λ) (G4) and abort if pk not fresh.
� (G1) If mode = tk then set nonce← {0, 1}λ and (G2) abort if nonce not fresh.

� (G11) Set ae← SIMeq(|sk|) and (G3) abort if ae not fresh. Compute (G5) ske ← (nonce, ae), (G11) store

( ⊥ , sk, ske, pk) and send (kid, ske, pk) to F .
� (G5) If mode = std send (kid, ε, pk) to F .

� If j > i, then do:
� (G1) compute (pk, sk)← KG(1λ) (G4) and abort if pk not fresh.
� (G1) If mode = tk then set nonce← {0, 1}λ and (G2) abort if nonce ∈ nonceFresh. Add nonce to nonceFresh.
� (G5) Set k ← {0, 1}λ, (G1) ae← AEnck(sk), ske← (nonce, ae), (G5) store (k, sk, ske, pk) and send (kid, ske, pk) to F .
� (G5) If mode = std send (kid, ε, pk) to F .

(G1) On input m to FRO, parse m = (ak, nonce).
� (G1) If there is a pair ((ak, nonce), h̃) ∈ TH then reply with h̃;
� (G5) For every key record (k, ∗, (nonce, ae), pk), send (GetAuxData, ak, (nonce, ae)) to F . Upon reply pk′, if pk′ = pk then

(G11) if k = ⊥ set k ← SIMeq(sk), (G5) add ((ak, nonce), k) to TH and reply with k; If none of the GetAuxData replies

equal pk, then set h← {0, 1}λ, store (m,h) ∈ TH and reply with h.
� (G1) If none of the above cases apply, then choose uniformly h← {0, 1}λ, store (m,h) ∈ TH and reply with h.

Figure 19: Simulator's KeyGen and hash interfaces in Hybrid G11.i. Changes from G10 are marked gray .
Namely, for the �rst i KeyGen requests, instead of drawing a random encryption key k, ciphertexts ae are
simulated using SIMeq of the equivocable encryption scheme. Whenever the corresponding key is revealed
via a hash query, a suitable key can be produced by the simulator SIMeq.

replies with (key, ε, ε, pk). If mode = tk, CMA attacker B computes ae← SIMeq(λ), ske← (nonce, ae)
and stores key record (⊥,⊥, ske, aux, pk). In any case, if later a signature needs to be created w.r.t
pk by an honest party while processing AuthSend, B obtains the signature from his signing oracle
OSignsk(·)(). In case of B reaching event BADsforgery upon signature σ for message m ← (HSC, ssid, ctx)
under pk, instead of aborting B submits (m,σ) as forgery to the CMA challenger.

Since one condition of event BADsforgery is that the corresponding key record (⊥,⊥, ske, ∗, pk) does not
contain any encryption key k, if S of this game aborts wrt pk, then B never needs to compute k. Since
computation of k and signing are the only two parts in the code of G12 which depend on sk, B's output
distribution towards Z is equal to G12. Because σ is a verifying signature for a message that was never
signed before, B wins the CMA game whenever BADsforgery happens w.r.t pk in G12. Thus we have
that

|Pr[win(G12)]− Pr[win(G11)]|
≤ Pr[BADsforgery] ≤ qAdveuf−cma

B,SIG (1λ),

where q is an upper bound on the number of KeyGen requests by Z.

Game G13: Back to real ciphertexts. Similar to game G11, we de�ne a series of hybrids to switch
the simulation of KeyGen queries back to ciphertexts produced as ae ← AEnck(sk). Again, with q
an upper bound on the number of KeyGen queries issued by Z, by equivocability of the encryption
scheme we have

|Pr[win(G13)]− Pr[win(G12)]| ≤ qAdveq.

Note that S now draws encryption keys k ← {0, 1}λ again and hence we have these keys k back in the
key records.

Game G14: Randomizing all PRF values. We change the simulation for connected channels, i.e., where
A already sent (Connect,P, cid,P ′, cid′,CB∗) to FcbSC and P,P ′ are both honest. S draws PRF
outputs PRF(EMS, lblHSC,role), PRF(EMS, lblMK,role) for P and P uniformly at random.
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The execution ofG14 is independent of values EMS output by FcbSC, since in particular we only consider
static corruptions. We can thus construct a PRF adversary which emulates G13 if talking to the oracle
implementing the PRF, and which emulates G14 if talking to an oracle implementing a truly random
function. Hence, we have

|Pr[win(G14)]− Pr[win(G13)]| ≤ Advprf .

Game G15: Excluding CB and MK collisions. S aborts whenever a collision upon PRF output sampling
occurs. Due to the Birthday bound, this and the previous game are computationally indistinguishable.

Game G16: Dealing with MAC forgeries. We change S upon receiving adversarially-generated message
(ssid, cid, ctx, σ,mac) from A as message from P ′ to simulated P, where (ssid, cid, ctx, σ, ∗, ∗) was never
sent by P ′. Let (Finalize, cid, cid′, role′,EMS) denote a former FcbSC output towards P. If FcbSC

maintains a record (session,P, cid, role) marked conn(P ′, cid′) and a record (session,P ′, cid′, role)
marked conn(P, cid), P,P ′ are both honest and MAC veri�cation succeeds, i.e., MAC.Vfyk(mac,m) = 1
for the messagem = (HSC, ssid, ctx, σ) and k,HSC the uniformly random MAC key and channel binding
secret (cf. G14) for this channel, then S aborts.

The output distribution is only a�ected if S aborts. We call this event BADmforgery and show that it
happens only with negligible probability if the MAC scheme is EUF-CMA secure.

Let B denote an attacker against MAC in an EUF-CMA security game. B emulates game G16 as
follows: B implements G16 but randomly picks a NewSession query by Z. B aborts if the channel
corresponding to this query is never �nalized, or if it is �nalized but �agged att, or if any of the
two corresponding parties is corrupted. Otherwise, B simulates both parties on this channel not with
sampling a uniform MAC key, but by using his oracle OMack(·)() to compute any message authenti-
cation code for authentication requests on this channel, and using oracle OVfyk(·,·)() for verifying a
mac/message pair. In case of reaching event BADmforgery upon message M = (ssid, ctx, σ,mac) from A,
which can be detected by B by using his veri�cation oracle OVfyk(·,·)(), B submits (mac,M) as forgery
to its challenger.

Since we restrict to static corruptions, honest parties never reveal their MAC keys corresponding to
non-attacked channels, and these keys are never used anywhere except in interfaces AuthSend and
AuthVerify, which are now implemented with the oracles. We thus only need to verify that, in case
event BADmforgery happens for a message M , M was never submitted to oracle OMack(·)(). But this is
easy to verify: since BADmforgery is conditioned on P ′ never sending M , consequently B never submitted
M to oracle OMack(·)().

|Pr[win(G16)]− Pr[win(G15)]|
≤ Pr[BADmforgery] ≤ qAdveuf−cma

B,MAC (1λ),

where q is an upper bound on the number of KeyGen requests by Z.

Game G17: F decides authentications on honest channels. We add a partial version of theAuthVerify
interface to F , namely one that can only be used by honest parties P ′, and only on channels cid′ that
are connected to some other honest party. This way, we let F compute the result of the authentication
only on honest connected channels.

We change S as follows: upon receiving (AuthVerify,P ′, cid′, ssid, ctx, pk) from F , if FcbSC has record
(session,P, cid, role′) marked conn(P ′, cid′), and record (session,P ′, cid′, role) marked conn(P, cid),
and P,P ′ are both honest, and A delivered message ssid, cid′, σ,mac from honest P to P ′ unchanged,
then S replies with �ag 1. If A changed any of σ,mac, then S replies with �ag 0.
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For indistinguishability, we argue separately for the cases where A delivers message ssid, cid′, σ,mac
honestly or not. In the honest case, in G16 P ′ outputs 1 i� both σ and mac verify wrt. ctx, pk from
the AuthVerify input to P ′, and if the sending party P found either pk that she knows sk for in the
AuthSend input, or a transportable key pair from which she can retrieve sk. The latter two conditions
translate to either pkey[P] or tkey[ak, ske] = (∗, pk) (as of game G6, if the honest P reconstructs sk
from ak, ske, it follows that tkey[ak, ske], i.e., Z cannot manufacture �working� transportable key pairs
without the help of the KeyGen interface of F). In this case F of G17 creates a corresponding Auth
record containing pk, and hence P ′ will output 1 in G17 if both ctx, pk from AuthVerify correspond
to the inputs of AuthSend to P, and 0 otherwise. It is important to note that this argument is
simpli�ed by the fact that an honest party will never produce a non-verifying mac or signature (cf.
games G9 and G10); it will at most abort in case it does not �nd honestly produced key material.

For the case of an adversarially-generated σ or mac reaching P ′, as of games G16 and G12 we know
that P ′ will not verify both of these successfully and hence outputs 0. In this game, F will output 0
to P ′ because S sends f = 0.

Hence, the output distribution does not change and we have Pr[win(G17)] = Pr[win(G16)].

Game G18: F decides authentication for attacked parties. We add the ActiveAttack interface
to F , as well as the full AuthVerify interface, i.e., F does not only use AuthVerify for honest
connections, but now also for connected channels where one party is corrupt, and for att channels.

We change S as follows. Whenever an honest party P receives an adversarially-generated message
ssid, sid, σ∗,mac∗, S chooses a random ctx∗, pk∗ and sends (ActiveAttack,P, cid, ssid, ctx∗, pk∗) to F .
Subsequently, upon F sending message (AuthVerify,P, cid, ssid, ctx, pk) to S, if σ∗ and mac∗ both
verify wrt. message (HSC, ssid, ctx), where HSC is produced from binder EMS of channel cid, and using
veri�cation keys pk for the signature and MK computed from EMS for the MAC, then the simulator
queries F with (ActiveAttack,P, cid, ssid, ctx, pk).
AuthSend outputs of honest parties are distributed as in the previous game, since F outputsAuthSend
to an attacked honest party whenever that honest party would have produced such output in game
G17, namely upon receiving an ssid, cid, ... message.

Regarding AuthVerify outputs, we �rst show: P outputs 1 in G17 ⇒ P outputs 1 in G18. In the
previous game, P outputs 1 i� it �nds a signature and mac verifying for the channel and the key pk
and context ctx from the AuthVerify input. The simulator of G18 sends an ActiveAttack message
with results in creation of a corresponding (Auth, . . . , ctx, pk) record. However, F only installs such
record if pk /∈ pkReg \ pkComp. As of game G12 we know that F has neither record (⊥, ∗, ∗, ∗, pk)
nor was pk ever output of a (KeyGen, ∗, ∗, ∗, std) request. Hence, pkReg \ pkComp, F creates record
(Auth, . . . , ctx, pk) and P outputs 1 in G18 as well.

P outputs 0 in G17 ⇒ P outputs 0 in G18: P outputs 0 in the previous game if either the mac or the
signature does not verify. The simulator computes the exact same check on behalf of the simulated P,
and indicates failure by sending f = 0 to F . F then outputs 0 as decision to P, and hence the output
is the same as in G17.

Altogether, this and the previous game produce equally distributed outputs.

It now holds that F = FPHA. This can be seem from the proof, where we subsequently added all
the interfaces of FPHA to F . Hence, it follows from the negligible distinguishing advantages between
subsequent games that

|Pr[win(G18)]− Pr[win(G0)]| ≤ η,

where η is a function that is negligible in the security parameter λ, G0 is the real execution of ΠEA

with dummy adversary A and G18 is the ideal execution with dummy parties, FPHA and a simulator
S depicted in Figure 20.
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The simulator talks to FPHA and Z as only external entities. Communication with Z goes via simulated dummy adversary A. Hence, in the simulation below, a message
by A comes directly from Z, and messages sent to A are assumed to immediately be forwarded to Z. See �g. 17, right-hand side, for a picture of the setting. S initializes
empty sets nonceFresh, keReg.

Channels

S maintains an instance of FcbSC as in �g. 9.
� (G1)On (Attack,P, cid, cid∗,CB∗) from A, if CB∗ ∈ CBset ignore the query. Otherwise,

� if ∃ record (session,P, cid, role) labeled wait then
* (G14)store record (P, cid, cid∗,A,PRF(CB∗, lblHSC,clt),PRF(CB

∗, lblMK,clt),PRF(CB
∗, lblHSC,srv),PRF(CB

∗, lblMK,srv));
* send message (Attack,P, cid, cid∗,CB∗) to FcbSC and message (Attack,P, cid, cid∗) to FPHA;

� (G1)On (Connect,P, cid,P ′, cid′,CB∗) from A, if ∃ record (session,P, cid, role) labeled wait, then do:
� if ∄ record (session,P ′, cid′, role′) labeled conn(P, cid) and CB∗ ∈ CBset, then ignore the query;
� (G14)if there is no record (P, cid, cid′,P, ...) or (P ′, cid′, cid,P, ...) yet then do:

* if P,P ′ are both honest, choose HSCrole ← {0, 1}λ,MKrole ← {0, 1}λ, role ∈ {clt, srv} and store record (P, cid, cid′,P ′,HSCclt,MKclt,HSCsrv,MKsrv)
* otherwise store record (P, cid, cid′,P ′,PRF(CB∗, lblHSC,clt),PRF(CB

∗, lblMK,clt),PRF(CB
∗, lblHSC,srv),PRF(CB

∗, lblMK,srv));
� send message (Connect,P, cid,P ′, cid′,CB∗) to FcbSC and message (Connect,P, cid,P ′, cid′) to FPHA.

� (G1)On (Deliver,P ′, cid′,m∗) from A forward the query to FPHA;
� (G1)On (NewSession,P, cid,P ′, role) from FPHA, send input (NewSession, cid,P ′, role) to FcbSC;
� (G1)On (Send, ·, ·) from FPHA forward the query to A;
� (G1)On (ExpireSession,P, cid) from FPHA send input (ExpireSession, cid) to FcbSC.

Hash queries:

(G1)On input m to FRO, parse m = (ak, nonce).
� (G1)If there is a pair ((ak, nonce), h̃) ∈ TH then reply with h̃;
� (G5)For every key record (k, ∗, (nonce, ae), aux, pk), send
(GetAuxData, ak, (nonce, ae)) to FPHA. Upon reply (aux′, pk′), if pk′ = pk
then add ((ak, nonce), k) to TH and reply with k; If none of the GetAuxData
replies contains pk, then set h← {0, 1}λ, store (m,h) ∈ TH and reply with h.

� (G1)If none of the above cases apply, then choose uniformly h ← {0, 1}λ,
store (m,h) ∈ TH and reply with h.

Key generation:

On input (KeyGen, kid, ak, aux, mode)
� (G1)compute (pk, sk)← KG(1λ) (G4)and abort if pk not fresh.
� (G1)If mode = tk then set nonce ← {0, 1}λ and (G2)abort if nonce ∈
nonceFresh. Add nonce to nonceFresh.

� (G5)Set k ← {0, 1}λ, (G1,G13)ae ← AEnck(aux, sk) and (G3)abort if ae ∈
keReg. Compute (G5)ske ← (nonce, ae), store (k, sk, ske, aux, pk) and send
(kid, ske, pk) to FPHA.

� (G5)If mode = std send (kid, ε, pk) to FPHA.

On input (Compromise,P) from Z to A:
� (G5)Send (Compromise,P) to FPHA.

Authentication:

On (AuthSend,P,P∗, cid, ssid, ctx, pk, mode, b) from FPHA:
� (G14)Retrieve record (P ′, cid′, cid′′,P ′′,HSCclt,MKclt,HSCsrv,MKsrv) with (P ′, cid′) = (P, cid) or (P ′′, cid′′) = (P, cid); Let role denote P's role in channel cid;
� If mode = std then do:

� (G8)Resume simulation of P with input (AuthSend,P∗, cid, ssid, ctx, ε, ε, pk) as in ΠEA, (G14)but with HSCrole,MKrole from record.
� (G9)if b = 1 and the signature created by P for some m does not verify under pk, then abort;
� (G10)if b = 1 and the MAC computed by P does not verify under key MKrole from record, then abort.

� If mode = tk, then do:
� If ∃ record (∗, sk, ∗, ∗, pk), then

* (G8)Resume simulation of P at signature generation using (sk, pk), message m← (HSCrole, ssid, ctx), with (G14)HSCrole,MKrole from the channel record;
* (G9)If b = 1 and the signature for m does not verify under pk, then abort;
* (G10)If b = 1 and the MAC computed by P does not verify under key MKrole, then abort.

� (G8)Otherwise, parse leakedKeys = (ak, ske), ske = (nonce, ∗), add nonce to nonceFresh and resume simulation of P with input
(AuthSend,P∗, cid, ssid, ctx, ak, ske, pk) as in ΠEA, (G14)but with HSCrole,MKrole from record.

On (ssid, cid, σ,mac) from A as message to honest P:
� (G14)Retrieve record (P ′, cid′, cid′′,P ′′,HSCclt,MKclt,HSCsrv,MKsrv) with
(P ′, cid′) = (P, cid) or (P ′′, cid′′) = (P, cid); Let role denote the role of P
in channel cid;

� (G12)Abort if all of the following conditions hold:
� (G12)(ssid, cid, ∗, ∗) was never sent by another honest party to P;
� (G13)FcbSC already produced output (key, ∗, ∗, ∗, pk);
� (G12)Vfypk(σ, (HSCrole, ssid, ctx)) = 1, where HSCrole is taken from the
record;

� (G16)Abort if all of the following conditions hold:
� P ′,P ′′ are both honest;
� (ssid, cid, σ,mac) was never sent by pid, where pid ∈ {P ′,P ′′} and pid ̸=
P;

� MAC.VfyMKrole′
(mac,m) = 1 for m = (HSCrole′ , ssid, ctx, σ), where role ̸=

role′.
� (G18)If σ or mac are adversarially-generated, send
(ActiveAttack,P, cid, ssid, ctx∗, pk∗) to FPHA for randomly chosen
ctx∗, pk∗.

On (ssid, ak, ske) from FPHA:
� (G7)Parse (nonce, ae) ← ske. If ((ak, nonce), k) ∈ TH for some k, set sk ←
ADeck(ae). If (sk, pk) valid, then store (k, sk, (nonce, ae), pk), choose fresh kid
and send (KeyGen, kid, ak, tk) to FPHA. Upon (KeyGen, kid,A, tk) from
FPHA, reply with (kid, ske, pk).

On (AuthVerify,P, cid, ssid, ctx, pk) from F :
� (G17)if ∃ record (session,P, cid, role′) marked conn(P ′, cid′), and record
(session,P ′, cid′, role) marked conn(P, cid), and P,P ′ are both honest, and
A delivered message ssid, cid′, σ,mac from honest P to P ′ unchanged, then S
replies with �ag 1. If A changed any of σ,mac, then S replies with �ag 0.

� (G18)if ∃ record (session,P, cid) marked att, or if ∃
record (session,P, cid, role′) marked conn(P ′, cid′), and record
(session,P ′, cid′, role) marked conn(P, cid) with P ′ corrupt, then do:
let ssid, cid, σ∗,mac∗ denote the message delivered to honest P, and let
m = (HSC, ssid, ctx), where HSC is produced from binder EMS of channel
cid. If SIG.Vfypk(σ,m) = 1 and MAC.VfyMKC

(mac, (m,σ)) = 1 then send
(ActiveAttack,P, cid, ssid, ctx, pk) to F .

Figure 20: Simulator for Theorem 5.1. We omit session identi�er sid of ΠEA in all inputs, outputs and
messages.
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B.3 Proof of Theorem 6.1

The proof is simpli�ed by the following facts: (1) there are no messages contents to simulate (all the messages
sent during registration and authentication are adversarially-determined, i.e., their contents are given either
as input by the environment or to FOPRF or FPHA by the adversary), and (2) apart from sampling and table
lookups, the protocol only uses calls to ideal functionalities. Hence, the challenge lies in simulating the
instances of FPHA and FOPRF without the knowledge of secret inputs pw, such that these instances appear to
the distinguishing environment Z as in the real protocol execution, running on passwords. Our simulator
compensates for not knowing passwords by using the adversarial interfaces of FpwPHA.

Before describing simulation, we mention two subtleties of modularity that at �rst sight makeΠTLS−OPAQUE

appear insecure. First, Z determines all public keys via FPHA � so Z may know all secret keys! It hence
looks like we cannot guarantee anything since all keys are compromised. However, with the modular usage
of FPHA, we abstract from objects such as secret keys and signatures; these objects become meaningless on
the level of ΠTLS−OPAQUE. Indeed, a party running the code of ΠTLS−OPAQUE does not �understand� anything
from receiving a signature under some pk. Instead, it can only be convinced of an authentication by receiving
(AuthVerify, ..., 1) from FPHA.

The second �scary subtlety� is Z knowing all password �les, even without compromising or corrupting
anybody: all �le values are given by A. While this makes the simulation of such �les trivial, it does not mean
that Z can freely run dictionary attacks against these �les. To complete such an attack, Z must turn each
password guess into a �le decryption key by interacting with FOPRF. Unless the �le is compromised, this
requires interaction with the honest party storing the �le. Hence, guesses are still limited to one guess per
session (= the unavoidable online dictionary attack in password-based protocols) with an honest server P,
which is the exact same number of guesses that FpwPHA allows S to make through TestPwd with �honest
session� counter ctr[P, uid]. We note that this proof strategy of controlling adversarial guesses strongly
resembles usage of idealized assumptions for analyzing password-based protocols, such as a random oracle.
Since instantiating FOPRF is believed to require an idealized assumption itself, it seems natural that we can
exploit FOPRF as such.

We now describe our simulation in more detail. To simulate the registration phase, S omits password
inputs completely and starts by simulating FOPRF output (Tr, sid, ssid, a) towards parties, with a given by
the adversary A. The simulation of messages is trivial, as none are generated by honest parties: uid is
received from FpwPHA, a, b are both received from A through FOPRF, and pkS , pkC , ske are received from A
via FPHA.
Z can make a password guess against a �le (uid, ske, pkS , pkC) stored by P by querying FOPRF with

sid = uid||P and pw (through a corrupt evaluator, or interface OfflineEval) and receiving back rw;
then, Z can test whether envelope ske can be decrypted with rw to (pkS , pkC) by querying FPHA with
(GetAuxData, rw, ske). Since S did not know neither password nor PRF value used during registration, it
now extracts the password guess pw from Z's query to FOPRF and submits (TestPwd,P, uid, pw) to FpwPHA.
Upon answer �correct guess�, S answers the GetAuxData query of Z with (pkS , pkC), otherwise S replies
with (⊥,⊥). We note that password guesses are not per individual authentication sessions but per �le.
Consequently, FpwPHA allows S to successfully �nish all pending authentication sessions for uid with honest
P as soon as a successful password guess for the corresponding ske was issued. Depending on whether the
real-world adversary successfully �nishes those sessions or not (via sending f = 1 for success, and f = 0
for failure in AuthVerify), S �nishes the corresponding session at FpwPHA likewise using pwDeliver and
b = 1 for success, b = 0 for failure.

Impersonation attacks are dictionary attacks mounted with a compromised password �le. InΠTLS−OPAQUE,
their simulation is more straightforward than the above guesses against a �le. This is because an imper-
sonator must commit to which �le to use already when sending the �rst authentication message including
ske (note: FPHA enforces uniqueness of envelopes, otherwise there would be no commitment here). Hence,
S simply derives which P, uid such ske belongs to and uses (Impersonate, ssid,P, uid, ε) of FpwPHA, leaving
the authentication decision up to FpwPHA. If Z happens to use an envelope ske that was not created dur-
ing registration, but one that Z created locally, S extracts password guess pw from the corresponding ske
generation at FPHA and FOPRF and issues (Impersonate, ssid, ε, uid, pw) for session ssid under attack.
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The formal proof proceeds in a series of games, starting with the real execution and ending up with the
ideal execution.

Game G0: The real execution. Z interacts with parties running protocol ΠTLS−OPAQUE depicted in
Figure 14, making calls to ideal functionalities FPHA,FOPRF and interacting with a dummy adversary
A.

Game G1: Introducing simulator and ideal functionality. We group all machines except for Z into
one new machine and call it the cimulator S. For each party, a dummy party is added between Z and
S. We also add a machine F between dummy parties and S, and add to it NewSession, Attack,
Connect, Send, Deliver, ExpireSession as in FPHA. F serves as a relay for all messages that are
not send to these interfaces. To account for these changes, we let S send exact copies of all adversarial
NewSession, Attack, Connect, Send, Deliver, ExpireSession queries directed at FPHA to F ,
and forward all messages from F intended for A to the internal simulation. More formally:

� On (Attack,P, cid, cid∗) from A, send (Attack,P, cid, cid∗) to FPHA and (Attack,P, cid, cid∗)
to F ;

� On (Connect,P, cid,P ′, cid′, cid∗) from A, if there is a (session,P, cid, role) record labeled wait,
then do:
� if ∄ record (session,P ′, cid′, role′) that is labeled conn(P, cid) then ignore the query;
� otherwise send (Connect,P, cid,P ′, cid′, cid∗) to FPHA and (Connect,P, cid,P ′, cid′, cid∗)
to F .

� On (Deliver,P ′, cid′,m∗) from A forward the query to F ;
� On (NewSession,P, cid,P ′, role) from F , send (NewSession, cid,P ′, role) to FPHA;
� On (Send, ·, ·) from F forward the query to Z;
� On (ExpireSession,P, cid) from F send the query (ExpireSession, cid) to FPHA.

These changes do not in�uence the output distribution of this game, as the set of channels is simply
replicated from FPHA to F and hence we have

Pr[win(G1)] = Pr[win(G0)].

Game G2: Let F maintain a password �le.
Changes to F : We add the interfaces StorePwdFile, StorePwdComplete, StealPwdFile,
OfflTestPwd to F as in FpwPHA (Fig. 13), but let F still inform the simulator about the passwords
within StorePwdFile queries of honest parties.
Changes to simulation: S relays StorePwdFile queries with passwords as input to simulated honest
parties, and send (StorePwdComplete,P, ssid) to F whenever a simulated party P stores a �le
in session ssid. Upon Z sending StealPwdFile for P, uid, S sends (StealPwdFile,P, uid) to F ,
(Compromise,P) to FOPRF and to FPHA, and the password �le stored by the simulated P to A.
Further, S extracts registration passwords pw of corrupt client P with honest server P ′ from FOPRF

where sid = P ′||uid, where uid is sent by P. In case the corrupt client uses an unknown rw, S sets
pw = ⊥. S then submits (StorePwdFile, ssid,P ′, uid, pw) to FpwPHA.

This concludes the changes of this game. For indistinguishability, we need to argue that introduction
of the new interfaces in F and the changes in the simulation both go unnoticed by the environment.
First, note that FpwPHA does not make use yet of any �les. The new interfaces a�ect (1) password �les
in the simulation, (2) registration transcripts, and the changes in the simulation additionally a�ect
(3) outputs of FOPRF,FPHA. For (1), indistinguishability is trivial since all elements of the �les are
known to Z already since they are either input to FpwPHA or adversarially-determined values in FPHA.
Likewise, registration transcripts (2) are trivially indistinguishable since they are purely Z-generated.
For (3), party outputs remain the same as in the last game since party simulation still runs with the
password. For adversarial outputs of FOPRF and FPHA, all adversarial outputs generated from the
protocol run, e.g., the Init and SndrComplete outputs of FOPRF, are produced automatically by the
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simulation running the protocol code as of game G1, and the same holds for FPHA's communication
with the adversary. We hence have

Pr[win(G2)] = Pr[win(G1)].

.

We note that the changes made in this game demonstrate already how S exploits the OfflTestPwd
interface to answer to a Z who wants to check whether an honestly generated password �le by P ′

(for which Z gave inputs pw and ske) is �good�. Checking whether a �le �works� can be done by �rst
turning pw into rw via FOPRF with sid = uid||P ′, and then testing whether rw, ske is a working key pair
via interface GetAuxData at FPHA. Looking ahead, this is already the �rst step towards simulating
without passwords.

Game G3: Let F handle initialization.
Changes to F : We add the pwInit and ActiveAttack interfaces of FpwPHA to F , but still let F relay
passwords of pwInit to the simulator.
Changes to the simulation: Upon receiving (pwInit,P,P ′, cid, ssid, uid) and password pw from the
functionality FpwPHA, S starts the simulated party P with input (pwInit,P ′, cid, ssid, uid, pw) to
FpwPHA. Upon A or a corrupt P sending (AuthSend,P ′, cid, ssid, (uid, a)) or a corresponding query
(ActiveAttack,P, cid, ssid, (uid, a), ∗) to FPHA, the simulator queries FpwPHA with (ActiveAttack,
ssid,P ′, cid, uid).

For indistinguishability, we �rst note that (1) interface pwDeliver is not used yet, so pwAuth records
in F do not have any e�ect yet, (2) interface pwInit produces the same output towards parties as the
ΠTLS−OPAQUE protocol/the previous game, and (3) S receives the same inputs as in the previous game.
(1) and (3) are straightforward to see. For (2), note that ΠTLS−OPAQUE lets parties output whatever is
received as message from the other party.

Overall, this game does not change the output distribution towards Z, and hence we have

Pr[win(G3)] = Pr[win(G2)].

Game G4: Rule out rw collisions.
Changes to the simulation: We let S abort whenever FOPRF samples a random value rw that was
already sampled before.

This and the previous game are identical except if a collision in drawing a random value from {0, 1}λ
occurs, which is negligible in λ by the Birthday Bound and hence

|Pr[win(G4)]− Pr[win(G3)]| ≤
q(q − 1)

2 · 2−λ
,

with q = qI + qR, qI being the number of pwInit queries issued by Z towards honest parties and qR
the number of StorePwdFile queries.

Game G5: Abort upon rw guesses.
Changes to the simulation: We let S abort whenever the adversary sends an rw that FOPRF has already
sampled and which was not previously given to the adversary.

This and the previous game are identical except if any of the adversarially-submitted rw coincides with
any of the randomly sampled rw of the OPRF instances. The adversary has at most q = qI+qT guesses,
qI being the number of pwInit queries issued by Z towards honest parties and qT being the number of
adversarial GetAuxData queries. GetAuxData queries count to adversarial guesses because they
contain rw values, and pwInit queries count because the adversary can send rw within AuthSend in
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attacked sessions. Hence, the probability of an abort is upper bounded by the Birthday bound over
q := 2qI + qT as

|Pr[win(G5)]− Pr[win(G4)]| ≤
q(q − 1)

2 · 2−λ
.

We now demonstrate how the simulator extracts password guesses from a corrupt server. For this,
note that the authentication phase of ΠTLS−OPAQUE does not send a single message over the network.
Indeed, it only makes the parties use the hybrid functionalities. Hence, the adversary cannot mount
any meaningful attack over an attacked channel, since there is simply no message that A can send to
an honest party that this party would even consider processing. Therefore, we can restrict ourselves
to extraction from corrupt parties (who, opposed to the adversary, can actually call the user inter-
faces of FOPRF and FPHA), and ignore all messages that the adversary sends over the network during
authentication.

Game G6: Extracting from corrupt server (Impersonate).
Changes to F : We add the Impersonate interface to F .
Changes to S: Upon (AuthSend,P, cid, ssid, ε, ε, ε, pkS , std) as input to FPHA from corrupt P ′ and
message ssid, cid, (ske, b) for a channel cid connecting P ′ and simulated P, who formerly received a
corresponding input (pwInit,P ′, cid′, ssid, uid, ∗) for such session, S distinguishes the following cases:

� S �nds a registration transcript uid, ske, pkS between P and some compromised party P ′′. If such a
transcript is found, and corrupt P ′ subsequently followsΠTLS−OPAQUE (i.e., sends (SndrComplete,
P ′′||uid, ssid′, a) for a, b received from FOPRF with sid = P ′′||uid and A acknowledges the authenti-
cation by sending bit 1 inAuthVerify, then simulator S queries FpwPHA with (Impersonate, ssid,
P ′′, uid,⊥).

� S �nds a former (key, kid, rw, ske, pkS , ∗) output of FPHA towards a corrupt party or the ad-
versary. If S �nds pw corresponding to rw in FOPRF for sid = P ′, uid), and additionally A ac-
knowledges the authentication by sending bit 1 in AuthVerify, then S queries FpwPHA with
(Impersonate, ssid, ε, uid, pw).

� If none of the above happens, S sends (Impersonate, ssid, ε, uid,⊥) to FpwPHA.

The changes only a�ect pwAuth records in FpwPHA, and hence the output distribution is unchanged
compared to the previous game. We have

Pr[win(G6)] = Pr[win(G5)].

Game G7: Abort upon ssid collision.
Changes to S: We let S abort if a simulated party samples a value ssid∗ in registration that was already
used as ssid before anywhere else.

Due to the Birthday bound we have

|Pr[win(G7)]− Pr[win(G6)]| ≤
q(q − 1)

2 · 2−λ
,

with q = qI + qR, qI being the number of pwInit queries and qR being the number of StorePwdFile
queries issued by Z towards honest parties.

Game G8: F decides connected honest channels.
Changes to F : We add the pwProceed and pwDeliver interfaces to F .
Changes to S: On A sending f to FPHA during AuthVerify, if P, cid corresponds to an unattacked
channel with some P ′ where both P,P ′ are honest, and simulated P had already sent (AuthVerify, cid,
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ssid, ctx, pk) to FPHA, then S does the following. Let uid denote the user identi�er used in authentica-
tion session ssid. Let ssid′ denote the session identi�er of the registration session between P and P ′

where uid got delivered, and set b∗ = f .

� If A modi�ed at least one of pkS , ske in session ssid′, or if A delivered a message ssid, cid, ske′, ∗
for some ske′ ̸= ske to P, where ske was sent by P in session ssid′, then set b∗ = 0;

� If A uses i in session ssid′ of FOPRF, and i′ in session ssid of FOPRF with i ̸= i′, then S sets b∗ = 0.
� If A uses i = P = P ′′ and additionally A modi�ed any of a, b in ssid or of a′, b′ in authentication
session ssid via AuthSend, then S sets b∗ = 0.

� Send (pwDeliver, ssid,P, b∗) to FpwPHA.

For indistinguishability, note that the pwDeliver interface lets F only create outputs for parties if it
is called by S, and hence the changes in this game only concern connected and fully honest channels.
We consider several cases conditioned on which role P plays (initiator or responder), and which output
it produced in the previous game.

First, we consider the trivial case of P not producing any output at all in the previous game. This
happens only if P receives output AuthVerify of FPHA but is not expecting it, because it did not
yet provide a public key for veri�cation via query AuthVerify to FPHA. The simulation in this
game ensures that P in this game will also not produce any output, since S conditions the sending of
pwDeliver on input AuthVerify being already sent.

1. Initiator P outputs fail in the previous game. This can happen because FPHA either detects
mismatching passwords, does not have a corresponding Auth record, or the adversary sent f = 0
to FPHA's AuthVerify interface.

(i) Due to f = 0 by A to FPHA: The initiator outputs fail in this game as well due to S
sending b∗ = 0 via pwDeliver.

(ii) Due to f = 1 and an Auth record with a di�erent public key: In G7, this happens
i� P submits (AuthVerify, ssid, cid, pkS) but FPHA has stored a di�erent pk′S in the corre-
sponding Auth record. FPHA stores pk′S input by P ′ via AuthSend, where pk′S is an uncom-
promised public key that was generated by P ′ via KeyGen. P retrieves via GetAuxData
either (a) an adversarial pkS ̸= pk′S that was sent during registration, or (b) pkS = ⊥. In case
(b), since rw is unique and not known to the adversary, we can further partition in cases (b-i)
A modifying ske (during registration by message tampering, or during authentication via an
adversarial AuthSend or ActiveAttack), or P using a di�erent rw than in registration
due to (b-ii) A sending di�ering i, i′ to FOPRF, (b-iii) A sending i = i′ = P ′′ to FOPRF and
additionally tampering with any of the OPRF transcript values a, b, a′, b′. Finally, we have
(b-iv) P using a di�erent password in authentication than in registration. In cases (a),(b-
i),(b-ii),(b-iii), our S of this game sets b∗ = 0 and hence P outputs fail in this game as well.
In the latter case (b-iv), FpwPHA has set state = fail in the pwAuth record. Altogether,
P will output fail in this game as well.

(iii) Due to f = 1 but no Auth record: In the previous game, at the time where honest party
has sent query AuthVerify, non-existence of an Auth record cannot be due to missing
inputs or adversarial acknowledgements, but only because the authenticating party used a
public key not owned by it, or an invalid transportable key pair (see [S.2] in FPHA for the
conditions under which the Auth record is created). In this game, in case P is the initiator,
honest P ′ will always use the correct key, and hence this case cannot occur.

2. Initiator P outputs success in the previous game. This implies that FPHA generated output
(AuthVerify, ..., 1) towards P after sending (AuthVerify, . . . , ctxS , pkS), where pkS was previ-
ously received via GetAuxData by P ⇒ Auth record with pkS exists in FPHA and A sends f = 1
via AuthVerify ⇒ P ′ sent AuthSend. Additionally, A sends the same i in SndrComplete
for the two corresponding FOPRF evaluations, and it does not set it to be i = P ′ in case A
tampered with the registration transcript (except maybe pkC). In this case, in this game, we
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know that S acknowledged pwInit and hence the pwAuth record got initialized in FpwPHA. The
pwProceed interface, which must have been queried before P ′ sent AuthSend, rewrites the
state in that record: since ske is unique, the only entry tkey[ak, ske] for ske has ak = rw with
rw output by FOPRF on input pw, where pw is the password that P used when �le ∗, ske, pkS , ∗
was stored. Hence, for GetAuxData to not return (⊥,⊥), P must have input pk to pwInit ⇒
FpwPHA rewrites state to match in the pwAuth record. Together with Sim sending b∗ = 1, we
conclude that P outputs match in this game as well.

3. Responder P outputs fail in the previous game. This works almost as the initiator case above,
with the di�erence that initiator P ′ can indeed use an invalid transportable key pair (⊥,⊥), which
can happen if A tampered with ske or the OPRF evaluation as described above. In all cases these
cases, S of this game sets b∗ = 0 and hence P outputs fail in this game as well.

4. Responder P outputs success in the previous game. The argument is almost analoguous to the
initiator case.

Hence we have

Pr[win(G8)] = Pr[win(G7)].

Game G9: F decides sessions with corrupt server.
Changes to S: Upon A sending f to FPHA during AuthVerify, if simulated P had already sent
AuthVerify to FPHA and P, cid, ssid correspond to a channel with honest P who initiated authenti-
cation session ssid, where the other endpoint, say, P ′, is corrupt, then S does the following. Let uid
denote the uid used by P in authentication session ssid. Let ssid′ denote the session identi�er of the
registration session between P and P ′. Set b∗ = f .

� If A submits pkS in AuthSend that it had not previously generated via KeyGen, or one that
di�ers from the public key sent to P during registration session ssid, then set b∗ = 0.

� If corrupt P ′ sent message ssid, cid, , ske′, ∗ for a ske′ ̸= ske, where ske was sent by P in session
ssid′, then set b∗ = 0;

� If A uses i in session ssid′ of FOPRF, and i′ in session ssid of FOPRF with i ̸= i′, then S sets b∗ = 0.
� If A uses i = P = P ′′ and additionally A modi�ed any prfx, pstfx value of the two corresponding
FOPRF sessions (either by sending di�erent values to P than to FOPRF via its adversarial interface
there, or by not taking the values received from P as input to Finalize), then S sets b∗ = 0.

� Send (pwDeliver, ssid,P, b∗) to FpwPHA.

For indistinguishability, the argument in case of P not producing any output is the same as in the
previous game. We now do the same case distinction as before, but with partly di�ering arguments of
indistinguishability.

� P outputs fail in the previous game.

(i) Due to f by A to FPHA: As before.

(ii) Due to f and an Auth record with di�erent public key: We now have to distin-
guish a di�erent set of cases since, opposed to the previous game, rw values are not secret
anymore. Case (a) remains unchanged, as well as its argument for indistinguishability. To
argue for case (b), namely P obtaining (⊥,⊥) via GetAuxData, we have to consider Game
G6, where S issues (Impersonate, ssid, ∗, uid, ∗). We show that this query cannot result in
FpwPHA rewriting the corresponding record's state to match. In case P obtains (⊥,⊥) upon
(GetAuxData, rw, ske), FPHA does not have (rw, ske) registered as transportable key pair.
Consequently, there was no output of such key pair towards A yet, and we know that S of
Game G6 will not use an extracted password. We consider the �rst bulletpoint in Game
G6. Assuming S �nds a transcript containing ske submitted by P. GetAuxData returning
(⊥,⊥) implies that this ske was not computed from rw, and hence in this case, P was using
a di�erent password in registration than in authentication. Therefore, the pwAuth record
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in FpwPHA will get rewritten to fail due to mismatching passwords. In all other cases, the
Impersonate query with empty server and password �elds will result in the pwAuth record
to be rewritten to fail. Altogether, P ′ outputs fail also in this game.

(iii) Due to f = 1 but no Auth record: This happens if A uses an uncompromised pkS in
AuthSend. S of G6 will neither �nd a registration transcript with a compromised server,
nor a former key output towards A containing pkS . Hence, S will issue Impersonate with
empty server and password �elds, resulting in fail in the corresponding pwAuth record in
FpwPHA and hence P outputs fail also in this game.

� P outputs match in the previous game. This happens i� FPHA outputs (AuthVerify, ..., 1)
to P who previously sent (AuthVerify, ..., pkS), where pkS ̸= ⊥ was previously received via
(GetAuxData, rw, ske) by P ⇒ Auth record with pkS exists in FPHA and A sends f = 1 via
AuthVerify⇒P ′ sent (AuthSend,P, cid, ssid, ε, ε, ε, pkS , std). Additionally, A sends the same
i in SndrComplete for the two corresponding FOPRF evaluations, and it does not set it to be
i = P ′ in case A tampered with the registration transcript (except maybe pkC). For rw, ske, pkS
to be a valid password �le with compromised pkS , either rw, ske was generated by A, or it was
generated by an honest party that got compromised (these are the only two ways in which FPHA

puts public keys in the list pkComp, which decides whether the adversary may use it or not).
Our S of Game G6 correspondingly runs Impersonate on either the compromised party, or the
password extracted from the adversarial OPRF evaluation. FpwPHA will rewrite the corresponding
record to match, which P hence outputs in this game as well.

Altogether, we have

Pr[win(G9)] = Pr[win(G8)].

Note that the simulation at this point still works with real passwords, e.g., FPHA's GetAuxData
interface, which can be accessed by Z via A or via corrupt parties, runs on rw values produced from
the real passwords, ensuring indistinguishability from the real execution. We change this particular
aspect in the next game and simulate GetAuxData replies and registration without knowledge of
passwords. For this, note that GetAuxData allows to test whether envelopes ske can be �openend�
with a value rw. The interface returns (⊥,⊥) for all wrong rw/pw, and public keys for the correct rw.
The simulation will exploit the link between rw and pw, established by FOPRF: each password guess
has to be submitted to FOPRF (and hence is seen by the simulator), to compute the corresponding rw
value. Consequently, our simulator will submit adversarial OPRF evaluations as password guess via
TestPwd, and uses the answer to simulate the GetAuxData reply correctly. The challenge is to
ensure that there cannot be more such adversarial OPRF evaluations as available TestPwd queries.

Game G10: Extracting from a corrupt client (TestPwd).
Changes to F : We add the TestPwd interface to F .
Changes to S: We let S simulate honest parties who input StorePwdFile without a password and
leave the corresponding input �eld in the PRF table of FOPRF empty. Upon (GetAuxData, rw, ske)
from A, if ske was previously output by an honest party P, let uid, pkS , pkC denote the rest of the
registration transcript as seen by P, and let P ′ denote the server. S retrieves input pw correspond-
ing to rw from FOPRF with sid = P ′||uid. If such input is found, if P ′′ is declared compromised
in that OPRF instance, S sends (OfflTestPwd,P ′, uid, pw) to FpwPHA. If P ′′ is honest, S sends
(TestPwd,P ′, uid, pw) to FpwPHA. If no pw is found or the reply to the query is �wrong guess�, then
S replies with (⊥,⊥). Otherwise, S replies with (pkS , pkC). If S submits a password guess but does
not get a reply, it aborts.

For indistinguishability, �rst note that TestPwd a�ects �ags in pwAuth records in FpwPHA where
the client is corrupt, which are however not used yet by FpwPHA to create output (only pwAuth
records of fully honest sessions or ones with a corrupt server have an e�ect at this point). An abort
happens only if FpwPHA does not reply to S, which happens if there is either no record (file,P ′, uid, ∗),
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or ctr[P ′, uid] = 0 and P ′ is not compromised. The former does not happen, because a completed
registration transcript with both uid and ske implies that simulator S sent StorePwdComplete to
FpwPHA (as of Game G2), and hence there exists a �le (file,P ′, uid, ∗). Regarding the counter, we
need to ensure that there cannot be more adversarial evaluations of the OPRF with sid = P ′||uid than
password guesses available via FpwPHA if P ′ is not corrupt or compromised. Since FOPRF grants one
PRF evaluation per input SndrComplete of P ′, which in turn is only issued by the honest P ′ after
receiving pwProceed, and pwProceed increases the counter in this case, an abort never happens. It
remains to argue that the output of GetAuxData is not distinguishable from the one in the last game.
In case the reply was (pkS , pkC) in the previous game, A used the same value rw in GetAuxData that
P used in the registration, which was computed from pw that P received as input. Due to uniqueness
and secrecy of rw values (cf. Games G4 and G5), there must be an entry pw, rw in FOPRF which was
queried by the adversary. Hence, S of this game �nds pw, TestPwd will result in �correct guess�, and
S outputs (pkS , pkC) in this game as well. In case GetAuxData response was (⊥,⊥) in the previous
game, A did not use the same rw as used by P in registration, and there is either no pair (pw′, rw′) in
FOPRF or one where pw′ ̸= pw. Consequently, S also replies with (⊥,⊥) in this game.

Hence we have

Pr[win(G10)] = Pr[win(G9)].

Game G11: F decides sessions with corrupt client.
Changes to S: Upon A sending f to FPHA during AuthVerify, if simulated P had already sent
AuthVerify to FPHA and P, cid, ssid correspond to a channel with honest P who did not initiate
authentication session ssid, where the other endpoint, say, P ′, is corrupt, then S does the following.
Let again uid denote the uid used in authentication session ssid. Let ssid′ denote the session identi�er
of the registration session of P where uid got delivered.

� In case P ′ uses a di�erent pkC (either in std or tk mode) in AuthSend in session ssid than what
was registration session ssid′, then set b∗ = 0.

� In case P ′ uses an uncompromised pkC in std mode in AuthSend in session ssid, or a tk key
pair that was not previously output to A, then set b∗ = 0.

� In case P ′ uses a compromised pkC inAuthSend (in any mode), S submits (TestPwd,P ′, uid, pw)
if it �nds pw, rw in FOPRF corresponding to rw used to generate pkC in FPHA.

� Send (pwDeliver, ssid,P, b∗) to FpwPHA.

We proceed similar to the previous games regarding indistinguishability, and consider the following
cases:

� P outputs fail in the previous game.

(i) Due to f = 0 from A to FPHA: As before.

(ii) Due to f = 1 and Auth record with di�erent public key: This corresponds to the
corrupt party using inconsistent keys pkC in registration and authentication, in which case
the simulation of this game will set b∗ = 0.

(iii) Due to f = 1 but no Auth record: This corresponds to corrupt P ′ using an uncompro-
mised public key, or an invalid transportable key pair, in AuthSend. The simulation of this
game ensures that S will overwrite b∗ with 0.

� P outputs match in the previous game. This happens i� FPHA outputs (AuthVerify, ..., 1)
towards P, where P previously received input (AuthVerify, ..., pkC), where pkC was received
by P in the registration session for uid of ssid. Hence, FPHA holds an Auth record with pkC ,
meaning that pkC is a compromised key. Additionally, A acknowledged the authentication by
sending bit 1 in AuthVerify. If pkC was generated by the adversary, due to uniqueness of
public keys enforced by FPHA, the registration must have been through a corrupt client. The
simulation of Game G2 ensures that the password used by the client is registered in FpwPHA as a
�le, and the simulation of this game ensures that a TestPwd query for that password is submitted
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to FpwPHA, rewriting the corresponding pwAuth record to match. If pkC was not generated by
the adversary but an honest client, the simulation of GameG10 ensures that S submits TestPwd
with an extracted password pw used by A to generate rw and to unlock usage of pkC in FPHA

by using GetAuxData. The TestPwd query will rewrite the corresponding pwAuth record in
FpwPHA to match and hence P outputs match in this game as well.

Altogether, we have

Pr[win(G11)] = Pr[win(G10)].

Game G12: Remove passwords from the simulation
Changes to F : We stop the forwarding of passwords of honest party to S.
Changes to S: Whenever a simulated party initializes registration, S submits a dummy value to FOPRF

instead, and it leaves the rw �eld empty in the key generation of FPHA. For simulating honest clients
in authentication, S submits a dummy value to FOPRF. AuthVerify messages of FPHA are simulated
according to �correct guess� or �wrong guess� answers of TestPwd and Impersonate.

For indistinguishability, note that outputs of simulated parties are not used anymore as of Games G8,
G9 and G11. Since AuthVerify queries are simulated using FpwPHA's answers, Z does not see any
rw-dependent values from the internal simulation, and hence we conclude that the changes do not a�ect
the output distribution of the previous game.

It can be seen from the sequence of games that F of this game is equal to FPHA, and the overall
distinguishing advantage between the �rst and this game is negligible in λ. This concludes our proof.
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