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Abstract. The problem of decoding random codes is a fundamental
problem for code-based cryptography, including recent code-based can-
didates in the NIST post-quantum standardization process. In this paper,
we present a novel sieving-style information-set decoding (ISD) algorithm
for solving the syndrome decoding problem. The essential idea is to keep
a list of weight-2p solution vectors to a partial syndrome decoding prob-
lem and then create new vectors by �nding pairs of vectors that collide
in p positions. By increasing the parity-check condition by one position
and then iteratively repeating this process, we �nd the �nal solution(s).
We show that while being competitive in terms of performance, our novel
algorithm requires signi�cantly less memory compared to other ISD vari-
ants. Also, in the case of problems with very low relative weight, it seems
to outperform all previous algorithms. In particular, for code-based can-
didates BIKE and HQC, the algorithm has lower bit complexity than
the previous best results.

Keywords: Code-based cryptography, NIST post-quantum standard-
ization, Information-Set Decoding, Classic-McEliece, BIKE, HQC.

1 Introduction

The recent advancements in the development of quantum computers have greatly
impacted cryptography. There is a threat to current standard cryptographic
algorithms based on factoring and discrete-log problems, leading to an interest
in cryptographic algorithms based on other hardness assumptions. Post-quantum
cryptography revolves around primitives that are not known to be broken by a
large quantum computer.

One leading and promising �eld in post-quantum cryptography is code-based
cryptography. Being introduced already in the 70s, it has a long history with
many proposed primitives that withstand classical as well as quantum attacks.
Code-based cryptography relies on the di�culty of the problem of decoding ran-
dom codes, which has been a very well-studied hardness assumption. The on-
going NIST standardization process for post-quantum cryptography [1] includes
in round 4 several code-based proposals (Classic McEliece [10], BIKE [3], and
HQC [27]).



One major challenge in these schemes is the selection of secure parameter
sets for the proposals, which match the required security levels as decided by
NIST. To determine and evaluate parameter sets, the exact cost of the best
attacks on the proposed schemes and their corresponding hardness assumption
is needed. Developing the best practical attacks is therefore of interest, and their
complexity parameters, such as time and space are important.

Code-based schemes usually rely on the hardness of decoding random codes,
or equivalently, the syndrome decoding problem, which, given a random matrix
H ∈ Fr×n

2 , a syndrome s ∈ Fr
2 and an integer ω asks to �nd an error vec-

tor e ∈ Fn
2 with weight ω such that s = He. The best algorithms to solve

this problem belong to a class of algorithms known as information-set decod-
ing (ISD). The �rst idea of an ISD algorithm was proposed by Prange in 1962
[29], and then a long line of papers have provided subsequent improvements, see
[29,23,24,31,11,19,30,25,8] to mention a few.

Most works study the problem for ω = cn, where c is a constant, and in-
vestigate the asymptotic runtime exponent. However, for all code-based NIST
PQC submissions, as well as other explicit proposals, the asymptotic expressions
do not give the estimated complexity as numbers that can be translated to a
security level. Some of the asymptotic advantages of improved ISD algorithms
have been shown to more or less vanish for certain parameter sets. Therefore,
it is not clear which algorithms actually yield practical improvements. We are
left to study di�erent expressions for the actual complexity of these algorithms.
Another important aspect is that memory requirements are very high in the
improved versions of ISD algorithms and it is likely to be the limiting factor in
practice. Hence any algorithm that requires less memory but a similar computa-
tional complexity is very relevant. Estimators for concrete complexity of solving
the syndrome decoding problem for various algorithms have previously appeared
in [21,6] and most recently in [17]. This last work includes an estimator program
in python that computes complexity numbers for many di�erent algorithms and
is the source for comparisons in our work.

1.1 Related works

An important ISD algorithm is the Stern algorithm [31] that signi�cantly im-
proved the previous work of Prange. Its slightly improved version using the
parity-check matrix as suggested in [19] is used in our work. Other improve-
ments making use of `representation techniques', as in [25,8], are notable among
enumeration-dominated ISD. State-of-the-art variants such as in [26,14] uses
nearest-neighbor search in various steps of the algorithms. These improved ver-
sions of the Stern algorithm share a drawback: they generally require even larger
memory, a bottleneck in many situations. Lattice sieving, a method of �nding
short vectors in a lattice [2,28], is an inspiration for our work. In our case, we are
working with the Hamming metric. Our sieving method is, therefore, di�erent
from the known e�cient lattice sieving methods due to the di�erent metrics.
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1.2 Contributions

We propose a new ISD-like algorithm for solving the syndrome decoding prob-
lem, which we call Sieving-Style ISD. From the simple observation that if two
weight-p vectors x,y collide (i.e., both have a one) in p/2 positions (assuming
p is even), then their sum is also a weight-p vector. Moreover, if we impose a
`syndrome condition', being Hx,Hy ∈ {0, s} for some syndrome s, then again
H(x+ y) ∈ {0, s}. Therefore, instead of using birthday-style arguments like in
the Stern algorithm and its many subsequent improvements, we can construct
new weight-p error vectors by combining in pairs stored weight p vectors, where
the two vectors collide in p/2 positions. This procedure, together with an iter-
ative increase in the number of considered syndrome positions, gives weight-p
vectors ful�lling the syndrome equation.

Given a set L of small weight p vectors, we derive e�cient algorithms for
computing the new set of all weight-p vectors of the form x+y, where x,y ∈ L.
This is used as a part of the proposed ISD algorithm. We then analyze the
concrete complexity of the proposed algorithm and make comparisons with ex-
isting best previous work when considering memory as well as computational
complexity. We argue that our proposed algorithm requires less memory than
other enumeration-based ISD variants. Hence, our algorithm can contribute sig-
ni�cantly to understanding the concrete security of code-based cryptographic
constructions and improve complexity numbers when the memory is limited.

When comparing the complexity to other ISD algorithms, there seems to
be an improvement for instances with very low relative weight. In that case, the
new algorithm outperforms all previous algorithms. In particular, for code-based
candidates BIKE and HQC, the algorithm outperforms the previous best results.

1.3 Organization

We start by giving preliminaries on coding theory and information-set decoding
in Section 2. In Section 3, we explain the new ideas and describe all parts of the
new algorithm. Section 4 presents the complete complexity analysis for the new
algorithm. Section 5 then illustrates the performance by making comparisons
with some of the best-known ISD algorithms for parameter choices selected from
proposed schemes such as Classic McEliece, BIKE, and HQC. Section 6 gives
some results from an actual algorithm implementation, verifying the theoretical
estimations. Section 7 concludes the paper.

2 Preliminaries

Throughout the paper, we use the following notations. We denote by

� bold letters, e.g., v andH, row vectors and matrices. In particular, In denotes
the identity matrix of size n× n.

� ωH(x) the Hamming weight of a vector x.
� x+ y the bit-by-bit XOR between binary vectors x and y.
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� F2 the binary �nite �eld and Fm×n
2 the vector space over F2 of dimension

m× n.
� log the logarithm base 2.
� [i] := 1, . . . , i for an integer i ∈ N.
� O(.) the usual Landau notation for the asymptotic behavior of algorithms,
and Õ(.) means we suppress arbitrary polynomial factor.

We should also point out that all complexity expressions consider the actual
complexity in the number of bit operations and not the corresponding asymptotic
form of complexity expressions.

2.1 Linear codes and related hard problems

Let Fn
2 be the vector space of all n-tuples over the �nite �eld F2. A linear

code, denoted by C, is a vector subspace of Fn
2 . An element of the code c =

(c1, . . . , cn) ∈ C where ci ∈ F2, i = 1, · · · , n is called a codeword. If C is of
dimension k, then we say it to be a [n, k]-linear code over F2. The minimum

distance d of the code is de�ned as the minimum Hamming weight of nonzero
codewords of C.

A code C is often represented by a generator matrix which is a k × n binary
matrix G, where the rows constitute a basis of C. Any set of k independent
columns of G forms an information set of C. It is also a common practice to
denote the remaining coordinate, called redundancy of C, by r = n− k. Another
representation of a code is with a parity check matrix. In particular, there exists
an r × n matrix H such that HcT = 0,∀c ∈ C. In general, there are many
generator and parity check matrices for a code C. When G =

(
Ik A

)
or H =(

AT In−k

)
, we say that they are in systematic form.

Let y ∈ Fn
2 be an arbitrary vector, we call s = HyT ∈ Fr

2 the syndrome of y
through H. To ease the notation, we omit the transposition and write y instead
of yT , and it should be clear from the context unless otherwise mentioned. We
observe that if y is not a codeword of C, i.e., y = c+ e, for some c ∈ C and an
�error vector� e, then the syndrome of y is nonzero and s = Hy = He.

De�nition 1 Let C be a [n, k]-linear code with a parity check matrix H ∈
F(n−k)×n
2 . Given a noisy codeword y ∈ Fn

2 , its syndrome s = Hy, and an integer

ω > 0, the syndrome decoding problem is to �nd an error vector e ∈ Fn
2 such

that ωH(e) = ω, y + e ∈ C, or equivalently He = s. We say that e solves the

(H, s, ω) instance of the syndrome decoding problem.

The syndrome decoding problem (SDP) is closely related to the coset weights
problem, also known as the decisional syndrome decoding problem (DSDP),
which has been shown to belong to the NP-complete complexity class by Berlekamp
et al. [9].

De�nition 2 Let H be a random r × n matrix, s be a vector in Fr
2, and ω be

a positive integer. The coset weights problem is to determine if there exists a

vector e ∈ Fn
2 such that ωH(e) ≤ ω and He = s.
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Although the search version is �harder� than the decisional variant, Arora et
al., in [4], showed that they are polynomial-time equivalent, i.e., there exists a
polynomial search-to-decision reduction. Therefore, it is common in the literature
to say the SDP is NP-hard, despite the fact that the de�nition of NP applies to
decisional problems.

The SDP has been a well-established problem in cryptography and coding
theory for more than half a century. Throughout history, the NP-complete class
of problems has been building blocks of cryptography. Similarly, the SDP has
proven to be useful in constructing many cryptographic primitives. One can �nd
numerous code-based constructions such as public-key cryptography [1,10,3,27],
stream ciphers [20], hash functions [5,13], signatures [16], zero-knowledge proto-
cols [32,33], etc., just to name a few. In particular, the current NIST standard-
ization project for post-quantum public-key cryptosystems includes code-based
constructions such as McEliece, BIKE, and HQC. With such importance, it is
not surprising that extensive e�orts have been made in cryptanalysis to gain
trust in code-based primitives.

2.2 Information-Set Decoding Algorithms

The most prominent and well-studied approach to solving the Syndrome Decod-
ing Problem is the class of so-called Information-Set Decoding (ISD) algorithms.
In a naive attempt, one can search exhaustively through the space of error vec-
tors with weight ω, which is

(
n
ω

)
and the complexity is Õ

((
n
ω

))
. There has been

a long line of studies going back to Prange in 1962, who realized we could sig-
ni�cantly improve this approach using simple linear algebra. Since then, ISD
algorithms have remained an active �eld of research [29,23,24,31,11,19,30,25,8].
In the followings, we describe the general ISD framework and explain some of
the technical details of relevant ISD algorithm variants. The essential idea of ISD
algorithms is to reduce the search space's dimension with Gaussian elimination.
In short, one applies a random permutation P as

He = HPP−1e = H̄ē = s. (1)

A Gaussian elimination process with some invertible matrix G ∈ F(n−k)×(n−k)
2

results in
GH̄ē =

(
Ĥ In−k

)
ē = Gs = s̄. (2)

Therefore, we can reconstruct a solution of (H, s, ω) by solving a new instance
(GH̄, s̄, ω). The random permutation P imposes a particular weight distribution
to ē = (ē′, ē′′) ∈ Fk

2 × Fn−k
2 , ωH(e′) = p < ω. Therefore, equation (2) becomes

Ĥē′ + ē′′ = s̄. (3)

In the original Prange's ISD algorithm, one looks for P that sends all the
erroneous bits to the second part, i.e., corresponding to a case of p = 0 and
ē′′ = s̄ (equivalently guessing the information-set of H). Therefore, the running
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time of this algorithm is determined by �nding a correct permutation, which
happens with probability

Prsuccess =

(
n−k
ω

)(
n
ω

) . (4)

Let R = k/n be the code rate. Asymptotically, the running time of Prange's ISD
converges to

T =
1

Prsuccess
≈

(
1

1−R

)ω

. (5)

Intuitively, Prange's ISD is suitable for the low-weight error regime as it is
more likely that a random permutation will yield the desired weight distribu-
tion. Hence, the original ISD is still one of many main cryptanalysis tools to
estimate the security of many code-based cryptosystems, most notably NIST
post-quantum candidates such as McEliece, BIKE, or HQC public-key cryp-
tosystems.

In contrast, many modern variants of ISD allow some error weight p > 0
outside the information set. Therefore, one looks for a weight-p vector ē′ such
that

ωH(Ĥē′ + s̄) = ω − p. (6)

Lee and Brickell [23] solved the above equation by simply enumerating (Ĥē′ + s̄)
until a low weight ē′′ is found via (6). Leon in [24] improved this approach by
imposing a ℓ-window of zeroes in ē′′; hence, the contribution from the �rst ℓ bits
of s̄ comes only from e′. In particular, we can write again as ē =

(
ē′,0ℓ, ē′′

)
∈

Fk
2 ×Fℓ

2 ×Fn−k−ℓ
2 . Although such a constraint reduces the probability of a good

permutation, it o�ers a check via the equation

Ĥ[ℓ]ē
′ = s̄[ℓ]. (7)

It has been shown that such versions of ISD can not gain more than a polynomial
factor compared to Prange's ISD.

The �rst asymptotic improvement came from the Stern ISD algorithm [31] by
employing a Meet-in-the-Middle strategy to construct the candidates for equa-
tion (7). The strategy is to further split up ē′ = e1 + e2, where ωH(e1) =
ωH(e2) = p/2. Moreover, this approach also mandates that e1 (and e2) con-
tributes p/2 ones only among the left (right, respectively) k/2 coordinates. This

is done by storing all
(
k/2
p/2

)
possible values of (Ĥ[ℓ]e1 + s̄[ℓ]) in a look-up table

and enumerating all possible values for Ĥ[ℓ]e2. We also notice that the Stern
ISD algorithm was also the �rst variant to introduce a non-polynomial memory
requirement, namely, a look-up table of size

(
k/2
p/2

)
.

Later, Finiasz and Sendrier [30] argued that one can increase the success
probability of each permutation by removing the window of ℓ-zeroes condition
and allowing some error bits to that region. More speci�cally, instead of a full
Gaussian elimination, one can apply a partial Gaussian elimination to (1) (with
an additional parameter ℓ) and obtain the following form(

H′ 0
H′′ In−k−ℓ

)
ē =

(
H′ 0
H′′ In−k−ℓ

)(
ē′ ē′′

)
= s̄ =

(
s̄′

s̄′′

)
, (8)
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where H′ ∈ Fℓ×(k+ℓ)
2 ,H′′ ∈ F(n−k−ℓ)×(k+ℓ)

2 , (ē′, ē′′) ∈ Fk+ℓ
2 × Fn−k−ℓ

2 . Then we
proceed to �nd (almost) all solution for the `small' syndrome decoding instance
(H′, s̄′, p) in the form ē′ = e1 + e2, where ωH(e1) = ωH(e2) = p/2 (in a similar
manner as the Stern algorithm), i.e.,

H′e1 +H′e2 = s̄′ (9)

and then check for
ωH(H′′(e1 + e2), s̄

′′) = ω − p. (10)

The equations (9) and (10) are sometimes called the exact matching and
approximate matching, respectively, in literature. The state-of-the-art ISD algo-
rithms such as MMT/BJMM [25,8] further speed up the process of constructing
ē′ via a representation technique. This practice allows more �exibility on how
p error bits are presented in the vector ē′. We refer the readers to the original
works for more details of the representation technique. Subsequently, Nearest
neighbor search [26] was introduced to amortize the cost of the approximate
matching problem, which gave rise to the optimized versions of MMT/BJMM
in [15].

In comparison with Prange original ISD, whose running time depends on the
number of permutations one has to perform (with a polynomial factor for every
iteration), enumeration-dominated ISD variants raise the success probability in
(4) to

Prsuccess =

(
n−k−ℓ
ω−p

)(
k+ℓ
p

)(
n
ω

) . (11)

Therefore, modern ISD variants are bene�cial in the large weight regime where
a random permutation is not likely to send all the error weight to the informa-
tion set. For concrete security of code-based cryptosystems, enumeration-based
ISD remains an essential cryptanalysis tool. However, asymptotically speaking,
reducing the complexity of �nding a good permutation and spending on enumer-
ating on weight-p vector ē does not pay o�.1 Moreover, it comes at the cost of
introducing signi�cant memory overheads (and cost of accessing memory) owing
to enumeration. Estimates based solely on the algorithmic steps can therefore
lead to security underestimation of code-based cryptosystems. Hence, there has
been skepticism among cryptographers as to how much modern ISD algorithms
can improve code-based cryptanalysis, especially for cryptosystems of interest.

To this end, there have been comprehensive surveys of ISD algorithms such as
Baldi et al. [6], Esser-Bellini [17], where concrete bit security estimates for code-
based schemes are provided. Importantly, in their works, the memory access cost
was taken into consideration to understand better the security of McEliece, HQC,
and BIKE. Recently, Esser et al. [18] provided an e�cient implementation of the
MMT/BJMM algorithm (by deploying multiple techniques and speed-ups such
as the Parity bit trick, Method of the four Russians for Inversions, and Decoding-
one-out-of-Many (DOOM) [30]) with optimized parameters for McEliece and a

1 When n grows very large, optimal p is p = 0.
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quasi-cyclic setting. More notably, they also did cryptanalysis with medium-sized
instances (60 bits). They showed that the data from their record computations
could be used to extrapolate the bit-security of McEliece/HQC parameters in
the NIST standardization process.

3 A new heuristic ISD algorithm

In this section, we describe in brevity the main steps of our new ISD algorithm.

3.1 The setting in the ISD framework

The decoding problem we consider is described in the form of syndrome decoding.
Given a random [n, k] linear code C, a parity check matrix H of C, a positive
integer ω, and a syndrome s ∈ Fn−k

2 , we want to �nd a weight-ω vector e ∈ Fn
2

such that He = s. This condition is equivalently written as s = eHT .
Similarly to other ISD variants, we �rst apply a permutation, denoted P,

on the indices, followed by a partial Gaussian elimination. This results in a
reformulation of the original problem as already given in (8),(

H′ 0
H′′ In−k−ℓ

)
ē =

(
H′ 0
H′′ In−k−ℓ

)(
ē′ ē′′

)
= s̄ =

(
s̄′

s̄′′

)
. (12)

Here ē =
(
ē′ ē′′

)
is a permuted version of the original error vector e. Clearly, a

solution to the above reformulated problem as in (12) is a solution to the original
problem by just permuting the error vector.

As in (9), we are now assuming that the �rst part of the (permuted) error
vector, ē′, is of weight p. So we are looking for all weight-p vectors ē′ ∈ Fk+ℓ

2

that satisfy
H′ē′ = s̄′. (13)

Once such a vector is found, we can directly compute the corresponding ē′′ giving
the desired syndrome and �nally check whether the overall weight is ω. When no
vector of weight ω is found, we apply a new random permutation, a new partial
Gaussian elimination, and the procedure is repeated until success.

Continuing, we assume that the parity check matrix is already in the form
of (12), and from now on, we assume that p is even. Hence, the weight 2p is
used instead. Moreover, we refer to matrix and vectors in (13) as H, e and s. To
summarize, we are searching weight 2p vectors e ∈ Fk+ℓ

2 ful�lling

He = s, (14)

where ℓ is a parameter giving the number of parity check equations used for the
�rst part ē′.
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3.2 New ideas

The new idea behind our approach is to build an algorithm that keeps a list
of weight-2p vectors for which a part of the parity check equations are ful�lled.
From this list, we create a new list of weight-2p vectors for which an even larger
number of the parity check equations are met. Iterating this procedure several
times, we end up with a �nal list of weight-2p vectors for which all considered
parity checks are ful�lled.

We need to introduce some further notation for vectors. For any vector v ∈ Fn
2

of length n, it is written as v = (v1, v2, . . . , vn). The notation v[i], 1 ≤ i ≤ n, is
de�ned as the projection of v onto the coordinates indexed by [i]. So v[1] is (v1);
v[2] is (v1, v2), and so on. A similar notation is adopted for matrices, where we
let H[i] denote the matrix restricted to the i �rst rows of H.

We suggest the following algorithm for computing new weight 2p vectors
from old weight 2p vectors based on a modi�ed form of the sieving idea from
computing short vectors in lattices:

Assume that e, f are two weight-2p vectors. If they collide in p positions,
meaning that ei = fi = 1 for i = {i1, i2, . . . ip}, then their sum is a new weight-
2p vector. In addition, we have one more restriction, namely that the new vector
should ful�ll a parity check equation. Recall that s[i] is the syndrome s restricted
to its �rst i positions. The parity check condition used in the �rst run is

H[1]e ∈ {0, s[1]},

i.e., only weight-2p vectors ful�lling this condition are kept. In the next run, the
parity check will be considered up to the second coordinate, i.e., H[2]e ∈ {0, s[2]}
and so on.

The underlying observation is that if two vectors e1, e2 satisfy H[i]ej ∈
{0, s[i]} for j = 1, 2, then their sum will also have H[i](e1 ⊕ e2) ∈ {0, s[i]}.
Therefore, H[i+1](e1 ⊕ e2) ∈ {0, s[i+1]} is then ful�lled (when the newly added
parity check is applied) with probability roughly one half.

Let us now explain and discuss the algorithmic description that is to be found
in Algorithm 1 and Algorithm 2. This describe the inner parts of the full ISD
algorithm.

Algorithm 1 takes an instance (H, s, 2p) of the syndrome decoding problem as
input. This instance is represented through a parity-check matrix H with k + ℓ
columns and ℓ rows, and a length-ℓ syndrome vector s. The algorithm seeks
solutions e such that He = s and ωH(e) = 2p. The output of the algorithm is a
set of such vectors. There is no full certainty that an existing solution is found
and present in the list. Finally, there is also an algorithmic parameter M that
determines the complexity and required memory for the algorithm.

The algorithm is centered around keeping a set L of M vectors of weight 2p.
A vector e is best represented through (i1, i2, . . . , i2p) where i1 < i2 < . . . < i2p,
being the indices for the 1's.

In each iteration i, we aim to generate a new set of weight-2p vectors with the
same cardinality, where now one additional parity check equation from He = s
is ful�lled. On the one hand, this new set keeps the existing vectors in the set
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Algorithm 1 Sieve_Syndrome_Dec

Input: Parity check matrix H with k + ℓ columns and ℓ rows, a length ℓ
syndrome vector s, the �xed weight 2p of the error vectors and an algorithm
parameters M .
Output: A set of weight 2p vectors e such that He = s.

Initiate a set L0 with M vectors of weight 2p;1

for i = 1 to ℓ do2

Create the new set Li ← {e ∈ Li−1 : H[i]e ∈ {0, s[i]}};3

Mi ← Merge_Set(Li−1, i);4

Li ← Li ∪Mi;5

return Lℓ;6

Li−1 (from the previous iteration), for which one more parity check is still valid
(that keeps roughly half of them). On the other hand, we create new weight-2p
vectors by considering sums of any two vectors in Li−1, which hold the collision
condition and ful�ll the aforementioned parity check. This central part of the
approach, called theMerge_Set subroutine, is extracted as Algorithm 2 and shall
be discussed in detail later.

Let us denote, in the Merge_Set subroutine, by Li−1, the set of vectors from
the previous iteration. The new set is �rst created as

Li = {e ∈ Li−1 : H[i]e ∈ {0, s[i]}},

and then calling Algorithm 2 to produce the set Mi. Then �nally, the set of
vectors for the iteration i is Li = Li ∪Mi.

Algorithm 2 Merge_Set

Input: A set L of vectors of length k+ ℓ and weight 2p, a parity check matrix
H ∈ Fℓ×(k+ℓ)

2 , a syndrome s ∈ Fℓ
2, and an integer i.

Output: A set M of vectors of weight 2p such that for e ∈ M we have
H[i]e ∈ {0, s[i]}.

Initiate a setM← {∅};1

for e, e′ ∈ L do2

If wH(e⊕ e′) = 2p thenM←M∪ (e⊕ e′)3

returnM = {e ∈M : H[i]e ∈ {0, s[i]}};4

The Merge_Set subroutine is called ℓ times, corresponding to the number
of parity-check equations that need to be satis�ed. Note that the parity check
condition in the previous iteration will also be valid in the next. Therefore, we
eventually have a `candidate' list of weight-2p error vectors that match the ℓ
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bits of syndrome s. Such candidates are subsequently tested for the approximate
matching condition as in (10). Putting everything together, we have a high-level
description of our Sieving-style ISD algorithm as in Algorithm 3.

Algorithm 3 Full_ISD

Input: Matrix H with k rows and n columns, received length n vector y,
minimum weight ω and algorithm parameter ℓ.
Output: A weight-ω vector e such that Hy = He.

Compute the syndrome s = Hy;1

repeat2

Pick a random column permutation π;3

Perform Gaussian elimination on π(H) resulting in4

Ĥ =

(
H′ 0
H′′ In−k−ℓ

)(
ē′ ē′′) = s̄ =

(
s̄′

s̄′′

)
;

Let H′ = Ĥ[ℓ] and s̄′ = s̄[ℓ];5

L ← Sieve_Syndrome_Dec(H′, s̄′, 2p);6

for e ∈ L do7

if ωH(H′′e− s) = ωH(e′′) = ω − 2p then return π−1(e, e′′)8

until solution is found9

3.3 The Merge_Set algorithm

As introduced above, the Merge_Set algorithm operates on a set of weight-2p
vectors and should return any weight-2p sum of two such vectors. There is an
additional parity check requirement, but since this is valid for half of the vectors,
it does not pose a problem. We simply check for each sum vector of weight 2p.

In short, the problem is to �nd an e�cient way of generating pairs of vectors
that sum to a new weight-2p vector. A direct implementation of Algorithm 2
would require checking all pairs of vectors, hence requiring complexity about
M2, where M is the cardinality of a set of vectors. This approach is obviously
not the best choice and we are looking for more e�cient solutions.

Recall that a (low weight) vector e is represented by the indices of its ones,
i.e., (i1, i2, . . . , i2p) in rising order, written e ∼ (i1, i2, . . . , i2p). We want to �nd
two vectors that share p indices. In a �rst attempt to �nd an e�cient solution,
we could generate

(
2p
p

)
labels for each vector. A label would be a selection of

p out of the 2p indices for the vector. With M vectors in total, we would have(
2p
p

)
·M such labels. They would then be stored in a sorted way so that collisions

among them are detected. Labels of the form (i1, i2, . . . , ip) can be mapped to
integers and, with a hash table, one can then get close to complexity

(
2p
p

)
· M

and the same memory.

11



Algorithm 4 Merge_Set_Implementation0

Input: A set L of vectors of length k+ ℓ and weight 2p, a parity check matrix
H ∈ Fℓ×(k+ℓ)

2 , syndrome s ∈ Fℓ
2, integer i and algorithmic parameters p′, p′′.

Output: A set M of vectors of weight 2p such that for e ∈ M we have
H[i]e ∈ {0, s[i]}.

Declare and initiate parameter (set of vectors)M← ∅;1

Find_Collision(L, p, p′,1);2

returnM = {e ∈M : H[i]e ∈ {0, s[i]}};3

However, we propose an even more e�cient implementation, where we, in
particular, reduce the amount of memory. This approach is described in Al-
gorithm 4 together with Algorithm 5. For the latter, we use iterative calls to
ease the description of the procedure. We �rst describe the basic ideas of the
procedure, and later we revisit the exact steps of Algorithm 4 and Algorithm 5.

We split p (and vectors, correspondingly) into two parts as p = p′+ p′′. Each
vector given by (i1, i2, . . . , i2p) will now have (i1, i2, . . . , ip′) as a �rst part and
(ip′+1, i . . . , i2p−1) as a second part. We consider the set L of length-(k+ ℓ) and
weight-2p vectors to be arranged in a number of `buckets', where each bucket
initially contains the vectors, of which the �rst part is (i1, i2, . . . , ip′).

It means that the number of buckets is
(
k+ℓ
p′

)
. Note that each vector is only

in one bucket. Furthermore, p′ should be chosen in such a way that it is likely
that there will occur some collision inside each bucket. Now we consider the �rst
bucket, indexed by (1, 2, . . . , p′). The vectors in this bucket already collide in p′

positions, and we seek pairs of vectors that collide in an additional p′′ positions
out of the 2p− p′ remaining ones. This is done in the following way. We assume
we have access to an array A of size

(
k+ℓ
p′′

)
, indexed by p′′ positions. For each

vector in the bucket, we create the
(
2p−p′

p′′

)
di�erent possible combinations of the

remaining p′′ positions and write a one in the corresponding position in A. Also,
if there was already a one in that position, we have found a collision, and it is
recorded. Finally, after all collisions in a bucket are found, the vectors are placed
in their `next bucket', which is the bucket indexed by the next value for the p′

positions.
We may illustrate the ideas by describing the procedure in an iterative

way as in Algorithm 5. To give a brief explanation, it starts with a call to
Find_Collision(), looking for collisions in p positions. It has a bucket (list) of
vectors as input. These vectors are now placed in new buckets, depending on the
vector's �rst index value i1. A vector is put in bucket Bi1 and the same for all
other vectors. In bucket B1, all vectors have a one in position 1, so within B1,
we only need to look for collisions in p − 1 additional positions. Therefore, the
call to Find_Collision(B1, p− 1, p′− 1, i+1). Once this call has returned possible
collisions, the vectors in B1 may still collide in other ways, excluding position 1.
This is why we then move the vectors to the next bucket corresponding to the

12



second lowest index in the vector. Since the position 1 was removed from further
combinations, the vector now has only 2p− 1 indices.

Algorithm 5 Find_Collision()

Input: A set B of vectors of length k + ℓ; collision weight p; depth sizes p′;
�rst index x.
Output: All vectors of the form x + y, where x,y ∈ B and they collide in p
positions, written to global parameterM.

if p′ > 0 then1

Put the vectors in B in new buckets Bx+1, . . . ,Bk+ℓ depending on2

its �rst index greater than x
for i = x+ 1 . . . k + ℓ do3

Find_Collision(Bi, p− 1, p′ − 1, i+ 1)4

Move the vectors in Bi to new buckets in Bi+1, . . . ,Bk+ℓ5

depending on its �rst index greater than i

else6

Initiate two arrays A← 0, D← 07

for each vector v ∼ (ij , ij+1, . . . , i2p) in B where j > x do8

create a set Y of all its p′′-tuples.9

for each p′′-tuple y = (y1, y2, . . . , yp′′) ∈ Y do10

A[y]← A[y] + 111

if A[y] ≥ 2 then12

store v +D[y] as collisions inM13

D[y]← D[y] ∪ v14

Let us give a more detailed description of Algorithm 5. First, we assume a few
global parameters, such as M and p′′, set in the outer Algorithm 4, to simplify
the description. The input is a list of weight-2p vectors B, the collision weight
p, the remaining depth p′, and an index x where vectors are considered to start.
The output is a set of all pairs colliding in p positions.

If the depth is not zero (checked in Line 1), we are simply going to put the
vectors in di�erent buckets Bi+1, . . . ,Bk+ℓ depending on their next index that
is greater than x. For instance, if the next index in order is y, the vector is put
in bucket By (Line 2). Then we go through all these buckets in order and �nd
all collisions in bucket Bi by the call Find_Collision(Bi, p− 1, p′ − 1, i+ 1) (Line
4). Note that since all vectors in bucket Bi already collide in position i, we thus
only require collision in p− 1 positions, and we decrease the depth and increase
the index by one.

Once all collisions in Bi have been found, these vectors may provide further
collisions in indices i. Thus, we must move the vectors in Bi to the next bucket
corresponding to the next index that is greater than i. This is done according
to Line 5.
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When p′ = 0, there are not enough vectors in the input bucket to further
motivate a split in smaller buckets. Instead, we now directly �nd the collisions.
For this purpose, we use an array A, indexed by p′′-tuples. For each vector, we
create all possible p′′-tuples of its remaining indices (ij , ij+1, . . . , i2p) and we
write up A by one in each such position (Line 11). We also keep the address to
the vector v in an array D where we assume that in each entry, we can store a
few elements (Line 14). While updating the array, one may hit an index where
A is already non-zero. This means that there will be one or several collisions.
One directly writes them to the global output parameter M.
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Li
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Fig. 1: Cheking vector in Li and Merge_Set.

Example 1. We can visualize the checking step and Merge_Set (Lines 3 and 4
in Algorithm 1) by Figure 1. For simplicity, let p = 3, p′ = 1, and p′′ = 2. In
the i-th iteration, we have a list Li of vectors. First, we put vectors in Li in B
corresponding to their �rst coordinate. Assume we have xi,xj ,xk ∈ Li where
xi ∼ (i1, . . . , i2p) (and so forth), and they have the same �rst coordinate, i.e.,
they are put in Bi1 . Then we only need to proceed with their shortened versions,
written x∗

i ∼ (i2, . . . , i2p), etc., as we have excluded the �rst coordinate. We
then detect collisions in this `bucket' by producing p′′ labels for each vector and
marking them on A correspondingly. For example, if both x∗

i ,x
∗
j include (i2, i3),

then we potentially have xi + xj as a `good' combination to be added in Li+1.
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After processing Bi1 , we move (dashed red line) vectors in this bucket to their
next buckets. For instance, xi to Bi2 , xj to Bj2 and so forth. We now exclude
the �rst two coordinates of xi (hence, we use x∗∗

i ∼ (i3, . . . , i2p)). Note that in
the list Li+1, we also have half the vectors from Li that survive the syndrome
condition.

4 Analysis of the new ISD algorithm

This section provides estimations on the time complexity, denoted C, and the
space complexity. The space is essentially the number of stored vectors M (so it
is not given in bits). Some smaller additional memory is required for other parts
of the algorithm.

4.1 Memory requirements and parameters selection

We �rst determine the list size M required for the new algorithm to work. Let
us recall that the inner iteration of our ISD algorithm, i.e., the Sieve Syndrome
Decoding (Algorithm 1), consists of two steps: the Merge_Set subroutine, and
verifying the next parity check for vectors in the list that we are processing.
Assume that we initiate Algorithm 1 with a list L0 where |L0| = M and we aim
to keep the list size constant after every (or the majority of) iteration of the
parity check condition. At the i-th iteration, one has for each e ∈ Li that

ωH(e) = 2p, and H[i]e ∈ {0, s[i]}.

We observe that, on average, half of them shall satisfy the next parity-check
condition, i.e., H[i+1]e ∈ {0, s[i+1]}. Therefore, we choose M that yields another
M/2 `good' combinations. We denote the probability of two random weight-2p
vectors of length k + ℓ colliding in precisely p positions (of the ones) by q, then

q =

(
2p
p

)(
k+ℓ−2p

p

)(
k+ℓ
2p

) .

Given a list ofM vectors, we can form M(M−1)
2 ≈ M2

2 combinations. However,
as will be explained later, some of the newly created vectors will be duplicates
of already existing or created vectors. For this purpose, we introduce δ as the
fraction of all combinations that give rise to new vectors. Continuing, on av-
erage, new weight-2p vectors survive the parity check with probability 1/2. In
conclusion, we require

δ ·M2 · q
2 · 2

≈ M

2
or

M ≈ 2

δ · q
. (15)

Let us de�ne
N = {e ∈ Fk+ℓ

2 |ωH(e) = 2p and He = s},
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which is the number of solutions for the exact matching equation (9) (not to be
confused with the original syndrome decoding problem). One can expect that
the cardinality of N is around (

k+ℓ
2p

)
2ℓ

.

The �nal list of Sieve_Syndrome_Dec contains around M/2 solutions of the
exact matching equation (the other half yields null syndrome). If ℓ is not too
large, there will be many possible solutions, and they all need to be stored in
the �nal list. Therefore, to guarantee that our ISD algorithm is able to retrieve
all (or most) solutions of the exact matching problem, we need that

M ≥
(
k+ℓ
2p

)
2ℓ−1

. (16)

In conclusion, the list size is �rst set by (15). Then, to �nd the optimal
parameters for our algorithm, we search for p ∈ [0, ω], and ℓ in a `reasonable'
range2, so that (16) holds, and we select the parameters that yield the lowest
complexity.

4.2 Duplicated vectors

In this subsection, we consider the fact that due to dependency in the iterative
process, there will be some vectors that are duplicated. We determine how this
a�ects the choice of M and determine the ratio of duplicated vectors.

Let us assume that the list in the i-th iteration contains the vectors x1,x2, . . . ,xM ,
all ful�lling the syndrome condition up to iteration i. When moving to the (i+1)-
th iteration, by considering the syndrome conditions, vectors can be split into
two sets. Let S1 be the set of vectors from the i-th iteration that also ful�ll the
syndrome condition up to iteration i + 1, and let S2 be the set of vectors that
do not. In particular, the list of vectors in iteration i + 1 now consists of three
sets T1, T2, and T3. Vectors from T1 = S1 = {x1,x2, . . .} which is a set of size
M/2; T2 as sums of two vectors both from S1 which is a set of size M/4; �nally,
T3 as sums of two vectors both from S2 which is also a set of size roughly M/4.
Note that there can be no sum of one vector from S1 and one from S2, as then
the syndrome condition is not ful�lled.

Entering iteration i + 2, we now have a list of M vectors divided into three
sets T1, T2, T3. We now look at all the di�erent combinations that we can form
(before the syndrome condition), in total M2/2. We can see that some of them
will generate duplicates. First, any combination of two vectors from T1 will gen-
erate already existing vectors (in T2). They will account for (M/2)2/2 = M2/8
such combinations that do not contribute. Then there are also duplicates when
combining T1 and T2. When a vector xi1 + xi2 ∈ T2 is added to either xi1 ∈ T1
or xi2 ∈ T1, there will be a duplicate. Since |T2| = M/4, and for each xi1 + xi2 ,

2 Similar to Baldi et al. in [6]. We extend the range of ℓ until the optimal value of ℓ is
no longer on the edge of the range.
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we can have two duplicates which are xi1 and xi2 in T1. Therefore, the number
of generated duplicates is of order M/2. Then we may also have additional du-
plicates from other combinations. We also stress that since T1 and T2 contain
vectors that are not independent, we obtain more combinations than what is
estimated from the random case.

Because of the �rst case, only a fraction 3/4 of all combinations (which are
formed from uniformly independent vectors in T1) will contribute, which corre-
sponds to selecting δ = 3/4 in Equation (15). However, this is not su�ciently
small due to the other (rarer) duplicates, but selecting δ = 2/3 is more than
su�cient according to simulations.

It is then also interesting to estimate the total number of valid combinations,
including duplicates, as it is relevant to estimating the computational cost. For
the combinations originating from T1, we estimate the number of duplicates as

M2

8
· q =

M2

8
· 3 · 2
2 ·M

=
3 ·M
8

.

As explained previously, we also have M/2 duplicates from combining T1 and
T2. In conclusion, the total number of duplicates is around 7 · M/8, excluding
other rarer patterns of duplicates. We are motivated by this heuristic estimate
and expect to have to create around 2 · M combinations for each iteration.
Therefore, we stop Merge_Set once we observe that the list size is maintained,
and we look at the number of total combinations we have done.

Example 2. We veri�ed our heuristic arguments with simulations. We test vari-
ous sets of parameters and simulations con�rm the heuristic arguments. In par-
ticular, (k, ℓ, p) = (500, 20, 2) and (k, ℓ, p) = (1000, 30, 2). We record the total
amount of collisions and duplicates for each iteration.

� For (k, ℓ, p) = (1000, 30, 2), we have M ≈ 215.35. For the majority of iter-
ations, we obtain M unique vectors (hence, M/2 survive after the check).
The ratio between duplicates and M varies around 7/8 and peaks at 0.93
(i.e. we create at most 0.93 ·M duplicates).

� For (k, ℓ, p) = (500, 30, 2), we have M ≈ 213.43. We observe similar behavior,
the ratio between duplicates and M peaks at 1.

4.3 The probability of �nding a desired vector

We next provide some heuristic arguments concerning the probability of �nd-
ing one or several desired vectors, i.e., if the code contains a weight-2p code-
word, what is the probability that it is included in the list given as output from
Sieve_Syndrome_Dec?

Recall the assumption that, throughout the Sieve_Syndrome_Dec, we have
M unique vectors moved from one iteration to the next. However, when i is
large enough, this will no longer be true. We now introduce M ′

i as the expected
number of weight-2p vectors that ful�ll up to i parity checks conditions. Then

M ′
0 =

(
k + ℓ

2p

)
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and

M ′
i =

(
k+ℓ
2p

)
2i

.

Note that we also have the same amount of weight 2p vectors that ful�ll the null
syndrome 0[i].

Now the heuristic argument is that the set of generated vectors in iteration
i is a random selection among all M ′

i vectors. So for each created vector in the
iteration, we view it as a random pick. Let Mi = |Li| denote the list size in
iteration i, where Mi ≤ M . Then the Mi vectors come from the primary check
and Merge_Set (Lines 3 and 4 in Algorithm 1). We denote the cardinality of

these two sets by M
(1)
i and M

(2)
i , respectively. Then,

Mi = min
(
M,M

(1)
i +M

(2)
i

)
.

The primary check contributes, on average, M
(1)
i = Mi−1/2 distinct vectors

from the previous iteration.

We now estimate M
(2)
i as the expected number of unique new vectors

from Merge_Set. Intuitively, when M ′
i ≫ M , it is unlikely that we will generate

the same vector twice or more, and we have a high chance to reach Mi = M new
vectors for the next iteration. However, when M ′

i gets closer to M as i grows,
we are forced to have more duplicates, and Merge_Set we will not generate M/2
new vectors.

Our choice of M makes Merge_Set create
M2

i−1·q
4 =

M2
i−1

2δM combinations in
iteration i. Although a fraction 1/4 of them are duplicates from dependencies
among vectors, as previously shown, we picked δ = 2/3 to ensure that we expect
to generate more new vectors than needed. We have an expected number of
3/4·M2

i−1

2δM =
9·M2

i−1

16·M new vectors.

A vector is unique if it is not among the M
(1)
i vectors in the �rst part and

not the same as any previously kept one. Hence, the �rst vector has probability

1 −M
(1)
i /2 ·M ′

i of being unique, the second vector has probability larger than

1− (M
(1)
i +1)/2 ·M ′

i , and so on. In total, the expected number of unique vectors
is estimated around

9 ·M2
i−1

16 ·M
− M

(1)
i + (M

(1)
i + 1) + . . .

2 ·M ′
i

≈
9 ·M2

i−1

16 ·M

1−
M

(1)
i +

9·M2
i−1

32·M
2 ·M ′

i

 .

We expect M
(2)
i to be the minimum of M/2 and the above expression.

Now assume e is a desired weight-2p vector that ful�lls ℓ parity checks. Then
we know that if e has appeared in an iteration i, it continues to be present in all
subsequent iterations j ≥ i. Recall that we initialize Sieve_Syndrome_Dec with
a list of size M . The probability that e is not randomly selected is(

1− 1

M ′
0

)M

.
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For i = 1, · · · , ℓ, as the primary check does not produce new vectors, then e
is not present after each iteration if it is not produced from Merge_Set. This
routine produces Mi

(2) more vectors; hence the probability is(
1− 1

2 ·M ′
2

)M
(2)
i

where the factor 2 can be explained by: the newly created vectors can be those
whose syndromes are either s[i] or 0[i]. Therefore, the probability that e is not
found after Sieve_Syndrome_Dec is(

1− 1

M ′
0

)M

·
ℓ∏

i=1

(
1− 1

2 ·M ′
i

)M
(2)
i

.

In other words, our algorithm �nds e with probability

1−
(
1− 1

M ′
0

)M

·
ℓ∏

i=1

(
1− 1

2 ·M ′
i

)M
(2)
i

.

We stress that the quantities above are, for a large part, heuristic estimates
for the expected number of vectors in Sieve_Syndrome_Dec; hence, the math-
ematics is not rigorous. In fact, from simulation, we can see that we slightly

overestimate M
(2)
i and underestimate the probability calculation. However, we

can use the expressions to roughly estimate the desired probability for cases
where we cannot simulate. If we do that, we observe that the probability typ-
ically lies in the range 50 − 100%. In section 6, we give some examples from
implementations that show that the above heuristic approach is somewhat rea-
sonable.

4.4 Complexity Estimation

We study the complexity in the RAM model, i.e., the cost of reading and writing
to one memory address is O (1) operations, with the memory access cost set to
1. This method is the most traditional way of estimating the complexity, used
in many previous papers and also in the complexity estimator given in [17].

Outer iterations Let us recall that the probability that a permutation yields
the correct weight distribution, that is, 2p in the �rst k + ℓ bits and ω − 2p in
the remaining n− k − ℓ bits, is

Prsuccess =

(
k+ℓ
2p

)(
n−k−ℓ
w−2p

)(
k+r
w

) .

Therefore, we have to perform, on average, 1
Prsuccess

iterations. We subsequently
examine the cost for each iteration, denoted by Citer.
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This probability can be adjusted in two ways. On the one hand, the probabil-
ity of actually �nding a valid vector was argued for in Subsection 4.3. If ℓ is large
enough, it was indicated that this probability is mostly larger than 0.5. On the
other hand, the parity trick in the Gaussian elimination part, explained in [18],
can force the weight of all codewords to be even and then Prsuccess increases by a
factor around 2. We adopt the approximation that these two factors cancel each
other out.

Gaussian Elimination The following is often referred to as the FS-ISD frame-
work [19]. Firstly, we perform a partial Gaussian elimination on the parity check
matrix,

Ĥ =

(
H′ 0
H′′ In−k−ℓ

)
,

where H′ is a matrix of dimension ℓ× (k+ℓ), 0 is an all-zero matrix, and In−k−ℓ

is the identity matrix with dimension (r − ℓ)× (r − ℓ), where r = n− k.
Similarly to recent ISD analysis works [17,18], we employ the Method of Four

Russian for Gaussian Elimination, which was proposed in [12,11]. There also
exists a theoretical analysis [7], along with open source version of this method,
which was later adopted by Esser et. al. [17] for performing the partial Gaussian
Elimination that is necessary for our framework. The asymptotic cost of this

improved Gaussian elimination is O( n3

logn ). For concrete complexities and fair
comparison in our estimate, we excerpt the python script for this step directly
from [17].3 Note that their function give the number of �eld operations; therefore,
in bit-complexity, we include a factor of log n. This bit complexity is denoted by
CGauss.

Sieve_Syndrome_Dec This routine consists of performing Merge_Set ℓ times,
corresponding to ℓ parity checks. Let us recap the Merge_Set subroutine of our
ISD algorithm. Assume that a list of size M is su�cient, as stated in Section 4.1.
In Algorithm 4, we go through the list to check if vectors ful�ll the parity check
conditions. For every sample of weight 2p, the checking corresponds to summing
2p bits in the parity check matrix and the syndrome bit. Therefore, the cost for
this step is about

Ccheck = 2p ·M.

The next step is Algorithm 5, which combines samples so that we create
another M/2 vectors for the next iteration. By parsing p = p′ + p′′, we put our
vectors in an ordered table of size

(
k+ℓ
p′

)
and distribute our vectors according to

their �rst p′ coordinates (in the representation form). This way, when we move
our vectors, we only need to read the value of the `next' p′ coordinate and move
correspondingly; thus, the cost of moving is constant for each vector. Assume
we are at the �rst `bucket', i.e., examining all the vectors with 1 in their �rst
p′ coordinates. We produce all p′′ labels for each vector, and we make use of

3 https://github.com/Crypto-TII/syndrome_decoding_estimator.
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an array A of size
(
k+ℓ
p′′

)
to keep track of how many times the labels have been

produced (recall that we index A using the p′′ labels). We then run through the
list of labels that occurred more than once to �nd the vectors that need to be
combined. This routine then ends by moving its content to the next `bucket'.
Note that, for every sample, we do not have to produce labels that include
previous coordinates (as those labels are already processed in past buckets).
The cost of this step can be broken down into the following parts:

� For each vector, we create precisely
(
2p
p

)
markings on the array A. This is

the total number of times Lines 11-14 executes for each vector. It consists of
two assignments and one comparison. On rare occasions, we additionally get
collisions to handle. We also include the cost of creating a p′′ label (Line 9-
10). Assume that the cost of reading and marking each label in A is clabel
operations. Then we need

Clabel =

(
2p

p

)
· clabel ·M,

operations for this part.
� The cost of moving vectors (Line 5). Since the remaining number of coordi-

nates of a vector has to be at least p′′, we only have to move a vector
(
2p−p′′

p′

)
times. Therefore, moving vectors cost

Cmove =

(
2p− p′′

p′

)
·M.

� The cost of combining vectors. In the worst case, we have 2 · M collisions,
but only M/2 new unique vectors are kept (as explained in Section 4.2). For
each collision, the cost of producing the new vector is the cost of creating
the new 2p positions. Colliding positions are known, so it reduces to copying
the other positions in an ordered form. We also need to compute the other
parts of the vector representation and check for duplicates. This last part
corresponds to bit-wise adding two values of bit size slightly larger than
logM and then checking in a hash table if it is a duplicate. It may cost
2 logM operations.4 Therefore, this step is estimated to cost

Ccombine = (2p+ 2 logM) · 2 ·M.

The Merge_Set routine is then repeated ℓ times. Thus, if we introduce
CSyndrome_Dec as the bit complexity of performing all these steps then

CSyndrome_Dec =

(
2p+

(
2p

p

)
· clabel +

(
2p− p′′

p′

)
+ 4(p+ logM)

)
· ℓ ·M

4 Here, we assume that the vector representation includes a "key" of bit-length larger
than logM . We check if the key is already present, which, in such a case, means that
we created a duplicate. When we add two vectors, we also add their keys. The keys
can be constructed as a syndrome vector for a random code.
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Testing candidates Finally, we have to go through the last list and check
for weight-(ω − 2p) solutions, i.e., via the identity ωH(H′′e− s) = ω − 2p. This
corresponds to adding 2p length-(n−k−ℓ) columns inH′′; moreover, the number

of solutions for the exact matching equation (9) is
(k+ℓ

2p )
2ℓ

. Hence

Csolution_check = 2p · (n− k − ℓ) ·
(
k+ℓ
2p

)
2ℓ

.

Theorem 1 The bit complexity C of the Sieving-Style ISD algorithm is

C =
1

Prsuccess
·
(
CGauss + CSyndrome_Dec + Csolution_check

)
, (17)

where CGauss is the cost of the Gaussian elimination step.

The complexity given here is only an "as good as possible" estimation of the
actual complexity. Some observations that decrease the complexity slightly are:
For the case of one or a small number of valid solutions, the list size will decrease,
and hence the complexity drops in later iterations; In the �rst few iterations, we
can generate weight-2p vectors that can be included in a faster way by exhaustive
search.

We can note that if p is not very small, then the dominating part of the
complexity expression is (

(
2p
p

)
· clabel · ℓ ·M)/Prsuccess.

5 Numerical results

In this section, we provide the concrete complexity of our described sieving-style
ISD algorithm when considering some proposed code-based schemes and also its
comparison with other ISD algorithms.

Our analysis focuses �rst on the Classic McEliece parameter sets, with an
extension to HQC and BIKE presented in Subsection 5.2. For reference in com-
parisons, we use the Syndrome decoding estimator by Esser et al. [17] as it covers
most recent developments in this �eld.

5.1 Numerical results for Classical McEliece

In this section, as well as in Section 5.2, we examine the security estimates with
two values of clabel, namely clabel = 2 and clabel = 5. The �rst case, correspond-
ing to a value of 2, represents the optimal scenario and is intended to allow
for comparisons with previous works, as the constant in the big O (·) notation
corresponding to using a hash table or similar, is typically set to 1. The second
case, corresponding to a value of 5, re�ects more of the actual computational
cost, when calculated step-by-step.

Table 1 provides the security parameter sets of the Classic McEliece cryp-

tosystem. The error weight, denoted by ω, has been chosen as O
(

n
log(n)

)
. Five
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parameter sets are published, including one for Category 1, one for Category 3,
and three sets for Category 5.

In Table 2, we present the bit security estimates of our new sieving-style
ISD algorithm on these Classic McEliece parameter sets. The reference values
are from the estimator in [17]. The complexity numbers presented in the table
demonstrate the superiority of our algorithm over the Stern algorithm, in terms
of both time and memory complexity. It is noteworthy that, despite having a
comparable time complexity to the other modern ISD variants, our algorithm re-
quires signi�cantly less memory. Furthermore, when the size of the list is limited
to 260, our new ISD algorithm outperforms all other ISD variants.

Table 1: Security parameters of the Classical McEliece scheme.

Category n k ω

1 3488 2720 64
3 4608 3360 96
5 6688 5024 128
5 6960 5413 119
5 8192 6528 128

Table 2: Bit security estimates of the Classic McEliece scheme. Here T is the log
of the bit complexity and M̂ is the log of the number of stored samples.

Category 1 Category 3 Category 5 Category 5 Category 5
(n = 3488) (n = 4608) (n = 6688) (n = 6960) (n = 8192)

T M̂ T M̂ T M̂ T M̂ T M̂
Prange 173 22 217 23 296 24 297 24 334 24
Stern 151 50 193 60 268 80 268 90 303 109
Both-May 143 88 182 101 250 136 249 137 281 141
May-Ozerov 141 89 180 113 246 165 246 160 276 194
M ≤ 60 145 60 187 60 262 58 263 60 298 59
Our ISD, M ≤ 60
clabel = 2 143.4 46 184.4 53 257.7 57 258.1 58 293.8 54
clabel = 5 144.6 46 185.7 53 259.0 57 259.4 58 295.1 54
Our ISD, any M
clabel = 2 143.4 46 184.4 53 256.7 78 256.8 79 290.6 82
clabel = 5 144.6 46 185.7 53 258.0 78 258.1 79 291.9 82
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5.2 Applications to BIKE and HQC

In this section, we apply the new algorithm to attack BIKE and HQC, two
round-4 KEM candidates in the NIST PQC project. Note that NIST expects to
standardize at most one of these two code-based KEM candidates at the end of
the fourth round.

The parameter sets of BIKE and HQC are listed in Table 3. These two
schemes both select low-weight vectors that are sparser than the Classic McEliece
scheme. The row weights of BIKE and HQC are of the order of O (

√
n). In the

concrete setting, HQC has an even sparser low-weight vector than BIKE. It
is a commonly held belief that there have been limited advancements in the
enhancement of modern ISD algorithms for sparse parameters as proposed in
BIKE and HQC, as evidenced in [17]. It has been shown, as given in Table 4,
that the recent ISD methods of Both-May and May-Ozerov have not made
a signi�cant improvement to Stern regarding these sparse parameters.

The bit security estimates on the new sieving-like ISD algorithm are shown
in Table 4. The complexity numbers regarding the reference algorithms, i.e.,
Prange, Stern, Both-May, andMay-Ozerov are from the recent work [17].
As being described in [17], the quasi-cyclic structure gives us k cyclic shifts of
the searched secret key. The complexity of a key-recovery attack on BIKE can
be reduced by log(k) bits since BIKE is homogeneous. For key-recovery attacks
on HQC and message-recovery attacks on BIKE, the complexity number can be
reduced by log(k)/2 due to the technique of `decoding one out of many' [22,30].

The newly developed sieving-like ISD algorithm has shown appealing results
for the BIKE and HQC parameter sets in Table 4. Compared with the state-of-
the-art algorithms (see the estimator in [17]), a gain of up to 6 bits in Category 1
and 8 bits in Category 5 has been observed. It is noteworthy that the complexity
of the attacks, in all cases, falls below the NIST requirements, namely 143 bits
for Category 1, 207 bits for Category 3, and 272 bits for Category 5. The security
degradation may reach a maximum of 4 bits even in Category 1 parameters.

We emphasize the novelty of this improvement and demonstrate the superior-
ity of our newly proposed ISD algorithm for sparse parameter sets. An intuitive
explanation for this advantage is that our new ISD algorithm is capable of sig-
ni�cantly enhancing the Stern algorithm for sparse parameter sets, while other
modern ISD algorithms are not.

The value of clabel has a minimal e�ect on the time complexity in contrast
to the Classic McEliece scenario. This is primarily due to the fact that the
parameter p is set to 3 when solving these highly sparse instances, and thus
the cost associated with Clabel is not the primary contributing factor to the
complexity.

Also, the memory requirement of the new sieving-like ISD is much smaller
than the previous ISD algorithms except for the original Prange algorithm
requiring much more computational cost.

Example 3. We present a decomposition of the algorithm complexity into dis-
tinct components that pertain to the check, label, move, combine, and �nal solu-
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Table 3: BIKE and HQC security parameters.

Category n k w

1 24646 12323 134
BIKE (message) 3 49318 24659 199

5 81946 40973 264

1 24646 12323 142
BIKE (key) 3 49318 24659 206

5 81946 40973 274

1 35338 17669 132
HQC 3 71702 35851 200

5 115274 57637 262

Table 4: Bit security estimates of the BIKE and HQC schemes. Here T is the
log of the bit complexity and M̂ is the log of the number of stored samples.

Category 1 Category 3 Category 5

T M̂ T M̂ T M̂

BIKE (key)
Prange 169 28 234 30 304 32
Stern 147 40 211 43 279 45
Both-May 148 38 211 60 278 63
May-Ozerov 147 55 210 57 278 61
Our ISD, clabel = 2 140.7 31 203.6 34 270.6 36
Our ISD, clabel = 5 141.1 31 203.9 34 271.0 36

BIKE (message)
Prange 167 28 235 30 301 32
Stern 146 40 211 43 277 45
Both-May 147 38 212 41 276 63
May-Ozerov 146 55 211 57 276 61
Our ISD, clabel = 2 139.9 31 204.1 34 268.6 36
Our ISD, clabel = 5 140.3 31 204.5 34 268.9 36

HQC (key)
Prange 166 29 237 31 300 33
Stern 145 41 213 44 276 46
Both-May 146 39 214 42 276 39
May-Ozerov 145 39 214 42 276 44
Our ISD, clabel = 2 139.1 32 206.2 36 267.6 38
Our ISD, clabel = 5 139.5 32 206.5 36 268.0 38

tion check operations and employ as an example the bit estimates from Table 4
for key-recovery attack on the Category 1 BIKE parameter set.

When clabel is set to be 2, the attack parameters are p = 3, ℓ = 48 and
p′ = 1, and as presented in Table 4, the list size requirement is 231 and the time
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complexity amounts to 2140.7. In this setting, the cost CGauss of the Gaussian
elimination step is 239.54, the cost CSyndrome_Dec of the Sieve_Syndrome_Dec
step is 244.27, and the cost Csolution_check of the �nal candidate test step is 240.24.
Moreover, the formulae Ccheck · ℓ, Clabel · ℓ, Cmove · ℓ, and Ccombine · ℓ entail costs
of 239.31, 242.04, 238.72, and 243.81, respectively.

When clabel is set to be 5, the attack time complexity rises to 2141.1 due to
the corresponding increase in the cost CSyndrome_Dec of the Sieve_Syndrome_Dec
step to 244.67. Notably, the cost of Clabel · ℓ increases from 242.04 to 243.37, but
this cost does not assume a dominant position, and hence the overall impact on
the reported complexity is insigni�cant.

In addition, we have computed the probability of �nding the desired vector
by numerical means for this particular example, using the method presented in
Section 4.3; our calculation results in an estimated value of 53.5%. The �gure
con�rms that for the reported attack parameters, the success probability are
usually larger than 50%. We have veri�ed this observation on other parame-
ter sets as well, thereby a�rming the soundness of our complexity analysis in
conjunction with the parity bit trick.

6 Simple implementations for Merge_Set with smaller
parameters

In this section, we provide some simple implementations5 with smaller param-
eters to verify arguments and assumptions that we have made throughout the
papers. It is valuable to show in simulation that Sive_Syndrome_Dec is capable
of producing solutions for the exact matching equation as theory predicts, and
the parameters such as list size can be sustained.

Example 4. One of many implemented parameter sets is k = 300, 2p = 6, i.e.,
p = 3. We set p′ = 1, p′′ = 2 for the Merge_Set algorithm. For the parameter

ℓ, we choose ℓ ≈ 28 (recall Equation (16), we also need M
2 ≥ (k+ℓ

2p )
2ℓ

) which
corresponds to the exponentially many solution.

The probability that the XOR of two weight-6 vectors results in another
weight-6 vector is

q =

(
2p
p

)(
k+ℓ−2p

p

)(
k+ℓ
2p

) ≈ 2−13.86.

M ≈ 2

δq
≈ δ−1 · 214.86.

As explained in Section 4.3, we increase M with a factor δ−1 ≈ 3/2 so that
we can keep the list size relatively constant for the majority of iterations (until
Merge_Set can not produce M/2 new vectors). Hence, we select M = 215.44.

5 We will aim to have an public version of the code as soon as possible. When
prompted, the implementation can be provided for the reviewing process.
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In the implementation, we generate a random target error vector e and ob-
serve whether this vector can be found by Sieve_Syndrome_Dec. We run the
implementation 102 times and �nd e in 60 runs, i.e., a 60% success rate.

Table 5: Comparison between the heuristic arguments and the actual implemen-
tation for k = 300, ℓ = 28, p = 3.

Iteration 1 . . . 14 15 16 . . . 24 25 26 27 28

log(Mi) (pred.) 15.46 . . . 15.46 15.46 15.46 . . . 15.46 15.44 14.80 13.96 13.09
log(Mi) (impl.) 15.46 . . . 15.46 15.46 15.46 . . . 15.44 15.22 14.71 13.91 12.96

Success Prob. (pred.) 0 . . . 22 · 10−5 45 · 10−5 9 · 10−4 . . . 0.204 0.363 0.441 0.477 0.507

We note that any su�ciently large enough ℓ can be chosen. As an example,
in the case where ℓ = 50 (i.e., on average, only one solution), our algorithm still
�nds the target e with promising probability (> 50%). It can also be inferred
from Table 5 that one can choose ℓ in order to raise the success probability to a
desired range as claimed in Section 4.3.

Example 5. It is also of interest to see how our implementation fares with larger
instance of k (e.g., close to the medium-sized instance of McEliece). In particular,
we proceed with k = 1000 and 2p = 4. We choose a smaller values of p to have
a manageable memory requirement for a commercial computer. The following
numerical values are derived in the same manner as in Example 1.

For ℓ = 27, it gives M ≈ 215.42. A target vector e is found in 56 out of 102

tests, i.e., a 56% success probability.

Table 6: Comparison between the heuristic arguments and the actual implemen-
tation for k = 1000, ℓ = 27, p = 2.

Iteration 1 . . . 19 20 21 22 23 24 25 26 27

log(Mi) (pred.) 15.42 . . . 15.42 15.35 14.64 13.82 12.94 12.01 11.05 10.08 9.09
log(Mi) (impl.) 15.42 . . . 15.33 14.97 14.32 13.46 12.50 11.51 10.49 9.50 8.41

Success Prob. (pred.) 0 . . . 0.221 0.380 0.442 0.482 0.511 0.529 0.539 0.545 0.548

Discussions. We have observed that the actual implementation results are com-
parable to or even surpass the estimation results obtained using the method
described in Section 4.3. Moreover, in Table 7, we present the evolution of the
estimated list size and estimated success probability over the course of various
iterations, utilizing an attack instance on Classic McEliece as reported in Ta-
ble 2. In both our theoretical calculations and empirical investigations, we have
identi�ed a critical juncture, referred to as a `breaking point', which corresponds
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to the iteration at which the list size of Mi begins to decrease. While the initial
decline is gradual, it gains momentum as subsequent iterations progress.

One favorable aspect in this iterative process is that upon reaching the `break-
ing point', the success probability becomes non-negligible and quickly rises above
50%. Subsequent iterations will result in a further reduction of the list size, lead-
ing to a slower increase in the success probability in �nding the targeted vector.

We have observed that the attack instances reported in the previous section
all select the parameter ℓ several iterations after the occurrence of the `breaking
point', thereby guaranteeing a success probability exceeding 50%. Additionally,
our experiments demonstrate that, for a choice of ℓ close to the `breaking point',
the actual list size is consistent with the theoretical estimation and the observed
success probability meets (or even surpasses) the estimated value.

Table 7: The estimated success probability for attacking a Classic McEliece in-
stance with k = 3360, ℓ = 96, p = 8.

Iteration 1 . . . 89 90 91 92 93 94 95 96

log(Mi) (pred.) 53.03 . . . 53.03 52.93 52.60 51.99 51.18 50.28 49.34 48.37
Success Prob. (pred.) 0 . . . 0.138 0.242 0.358 0.441 0.485 0.509 0.523 0.529

7 Concluding remarks

We have presented a novel sieving-style information-set-decoding algorithm for
solving the syndrome decoding problem and made a heuristic analysis. The algo-
rithm makes signi�cant advancements of state-of-the-art algorithms when com-
plexity is considered in the RAM model and is characterized by its memory e�-
ciency. For instance, in many code-based cryptographic schemes, an attack using
the algorithm achieves competitive computational complexity while asking for
signi�cantly less memory, which is of value when we take into account di�erent
memory-access cost models. Interestingly, it was also shown that the low-weight
regime (in constructions such as BIKE and HQC) bene�ts our algorithm com-
pared to the state-of-the-art. This �nding is of great interest as the advantage of
enumeration-based ISD variants is believed to diminish with sparse parameters.
Newly improved complexity results were given for the proposed parameter sets
of BIKE and HQC.

Besides the described implementation, many other versions of the algorithms
can be considered. For instance, we can amend the problem of duplicates by only
combining vectors in the �rst few iterations and including the checking routine
later. The motivation is that the correct error vector will not likely be created in
early iterations, and combining vectors does not result in noticeable dependencies
between vectors. Moreover, in speci�c settings, such as BIKE and HQC, where
the optimal value of p is small and the memory requirement is not high, more
e�cient implementation could be achieved.
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Lastly, we note that accelerating the new ISD algorithm using sophisticated
instruction sets such as AVX-256 in practical software design seems non-trivial.
Further exploration of this intriguing topic and actual, full-scaled implementa-
tions of concrete parameters of code-based schemes are left for future endeavors.
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