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Abstract. Hierarchical Identity Based Encryption (HIBE) is a well studied, versatile tool used
in many cryptographic protocols. Yet, since the performance of all known HIBE constructions
is broadly considered prohibitive, some real-world applications avoid relying on HIBE at the ex-
pense of security. A prominent example for this is secure messaging: Strongly secure messaging
protocols are provably equivalent to Key-Updatable Key Encapsulation Mechanisms (KU-KEMs;
Balli et al., Asiacrypt 2020); so far, all KU-KEM constructions rely on adaptive unbounded-depth
HIBE (Poettering and Rösler, Jaeger and Stepanovs, both CRYPTO 2018). By weakening security
requirements for better efficiency, many messaging protocols dispense with using HIBE.

In this work, we aim to gain better efficiency without sacrificing security. For this, we observe
that applications like messaging only need a restricted variant of HIBE for strong security. This
variant, that we call Unique-Path Identity Based Encryption (UPIBE), restricts HIBE by requiring
that each secret key can delegate at most one subordinate secret key. However, in contrast to
fixed secret key delegation in Forward-Secure Public Key Encryption, the delegation in UPIBE,
as in HIBE, is uniquely determined by variable identity strings from an exponentially large space.
We investigate this mild but surprisingly effective restriction and show that it offers substantial
complexity and performance advantages.

More concretely, we generically build bounded-depth UPIBE from only bounded-collusion IBE
in the standard model; and we generically build adaptive unbounded-depth UPIBE from only selec-
tive bounded-depth HIBE in the random oracle model. These results significantly extend the range
of underlying assumptions and efficient instantiations. We conclude with a rigorous performance
evaluation of our UPIBE design. Beyond solving challenging open problems by reducing complex-
ity and improving efficiency of KU-KEM and strongly secure messaging protocols, we offer a new
definitional perspective on the bounded-collusion setting.

1 Introduction

Traditionally, Hierarchical Identity Based Encryption (HIBE) [HL02, GS02] is motivated by a real-world
scenario in which a sender wants to securely encrypt a message to a receiver without knowing their
individual public key. Using a global main public key as well as a string that identifies the receiver
(e.g., their email address bob@pc.2023.ec.iacr.org), the sender can encrypt the message via (H)IBE.
To decrypt a ciphertext, the receiver can obtain their individual secret key by requesting delegation
from the global main secret key. The hierarchy in HIBE provides a fine grained, leveled delegation: the
secret key of bob@pc.2023.ec.iacr.org is delegated from secret key of pc.2023.ec.iacr.org which
proceeds up to delegation from secret key of org. Thereby, each secret key can only delegate secret keys
of subordinate identities. For the specific case of Identity Based Encryption (IBE) [Sha84, BF01], only
the global main secret key can delegate identity-specific secret keys, which reduces the level depth to 1.

HIBE as a Powerful Building Block. Independent of this real-world use case, HIBE turns out
to be a versatile, powerful tool in the design of larger cryptographic protocols. For example, HIBE is
used as the main component in designs of Broadcast Encryption (BE) [DF02], Forward-Secure Public
Key Encryption (FS-PKE) [CHK03], Puncturable FS-PKE [GM15], 0-RTT Key Exchange with Forward
Secrecy [GHJL17, DJSS18], and Key-Updatable Key Encapsulation Mechanisms (KU-KEM) for Ratch-
eted Key Exchange (RKE) [PR18b]. In most of these cases, the reason for relying on HIBE is rather
the strength of HIBE secret key delegation than the traditional motivation of encrypting messages to an
identity whose individual public key is unknown.

Notably, not all of these constructions utilize the full power of standard HIBE. For instance, FS-
PKE can be based on relaxed Binary-Tree Encryption (BTE) [CHK03, Kat04]. Furthermore, KU-KEM
constructions [PR18b, JS18, JMM19b, BRV20] only delegate secret keys along a single path of identities.
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Introducing Unique-Path IBE. Motivated by such restricted delegations, we introduce the notion
of Unique-Path Identity Based Encryption (UPIBE). As in HIBE, UPIBE allows a sender to encrypt
messages to a receiver whose individual public key is unknown by using only a string that specifies the
receiver’s identity as well as a global main public key. On the receiver side, UPIBE assumes that a
secret key in one level delegates at most one secret key of the subjacent level. In contrast to FS-PKE,
unique-path delegation in UPIBE still respects identity (sub-)strings from an exponential size string
space on each level. Consequently, a receiver with email address bob@pc.2023.ec.iacr.org cannot
decrypt ciphertexts encrypted to identity charlie@pc.2023.ec.iacr.org. Beyond the cryptographic
utility, there are real-world examples for such a unique-path delegation behavior in linear vertical or
horizontal hierarchies.3

One perspective on UPIBE could be that it lifts the bounded-collusion setting from IBE [DKXY02] to
HIBE by restricting adversaries in corrupting at most one delegated secret key in the identity hierarchy.
Instead, we view the characteristic of UPIBE complementary or even orthogonal to the bounded-collusion
setting: While bounded collusion means that the overall number of corrupted secret keys is limited,
UPIBE limits the number of delegations—and, hence, corruptions—structurally per delegated secret key.
In the specific case of UPIBE, we permit one delegation per secret key, but this can be extended to
two or more delegations per secret key. Indeed, one of our results motivates research on HIBE with at
most two delegations per secret key (see Section 4), which we leave as a question for future work and
concentrate on UPIBE here.

UPIBE as an Abstraction of KU-KEM. In the context of strongly secure messaging, many cryp-
tographic protocols use a building block called Key-Updatable Key Encapsulation Mechanism (KU-
KEM) [PR18b, JS18, JMM19b, BRV20]. This extended form of standard KEM provides an update
mechanism with which public keys and secret keys can be updated independently with respect to ar-
bitrary bit strings. In addition to the security guarantees of a standard KEM, updates in KU-KEM
are required to achieve forward-secrecy and effective divergence. This means that an updated secret key
cannot decrypt ciphertexts directed to prior versions of the secret key; and an incompatibly updated
secret key cannot decrypt ciphertexts produced with a corresponding (incompatible) public key.

The only known construction of KU-KEM relies on black-box HIBE with unbounded hierarchy depth
secure against adaptive adversaries [PR18b, JS18, JMM19b, BRV20]. This induces a significant perfor-
mance penalty and limits the choice of underlying assumptions (e.g., no practical4 unbounded-depth
HIBE from lattices is known). Intuitively, KU-KEM secret key updates are realized via sequential HIBE
delegations. Replacing black-box HIBE in this construction by black-box UPIBE is trivial. Thus, using
a black-box HIBE scheme to realize UPIBE is henceforth referred to as trivial UPIBE construction. By
introducing UPIBE as a more general notion for KU-KEM, we are the first to lift this specific tool to
a suitable abstraction and reduce the power of (underlying) HIBE to the essential. As we will see, this
also allows for a substantial gain in efficiency.

Definitions and Constructions of Secure Messaging. KU-KEM was developed as a building
block for constructions of secure messaging protocols.5 Interestingly, the impractical performance of prior
KU-KEM constructions even affected security definitions in the messaging literature. These definitions
can be divided into two categories: (1) those that require full security with respect to the modeled threats
and (2) those that relax the security requirements by limiting adversarial power. Generally, relaxed
definitions allow for more efficient constructions. Specifically, the majority of fully secure messaging
protocols relies on KU-KEM [PR18b, JS18, JMM19b, BRV20], whereas the main motivation for relaxing
security definitions was to analyze or develop practical protocols that can dispense with employing KU-
KEM for better efficiency [JMM19a, ACD19, DV19]. To emphasize and substantiate this partition of
the literature, Balli et al. [BRV20] proved that KU-KEM is equivalent to fully secure messaging under
weak randomness. Concretely, implementing KU-KEM in a messenger allows for diverging the secrets of
3 E.g., the chronological succession of presidents in a particular state or a ranking list that results from a

competition.
4 We stress that the construction of selective-secure HIBE with unbounded delegations from CDH [DG17b] or

from any fully secure IBE [DG17a] is an impressive, yet rather theoretic result.
5 Note that, instead of building full messaging protocols, the literature usually focuses on ratcheting (aka.

continuous key exchange) protocols that relate to the former in the same way as KEM relates to PKE:
Reaching analogous security guarantees, the former transmits encrypted messages and the latter establishes
symmetric keys.
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communication partners Alice and Bob when an adversary impersonates Alice towards Bob. Hence, the
price that practical messengers—including all protocols deployed in practice—pay is reduced resilience
against such impersonations. We conclude that KU-KEM and, therefore, UPIBE play a central role in
(strongly) secure messaging.

Efficiency of UPIBE and KU-KEM. The inefficiency of the trivial KU-KEM construction from
black-box HIBE leads to two questions that were posed as open problems in prior work [PR18b, JS18,
BRV20] and which we will address via the UPIBE approach:

(1) Can we build (KU-KEM from) UPIBE based on weaker assumptions?
(2) Can we build (KU-KEM from) UPIBE with better efficiency?

We are the first to affirm both questions in three steps.6 But instead of only giving answers for the
specific case of KU-KEM, we generalize it to the UPIBE setting which highlights the reasons for our
improvements.

First, we consider bounded-depth UPIBE, which means that the maximal number of secret-key dele-
gation levels is bounded a priori. Our generic construction of bounded-depth UPIBE is based on bounded-
collusion IBE, for which we have practical instantiations from standard assumptions like DDH or QR in
the standard model [DKXY02, GLW12, TW14].7 In a second step, we extend the design of our bounded-
depth UPIBE construction to obtain an unbounded-depth UPIBE scheme. This unbounded-depth UPIBE
construction with adaptive security can be based on bounded-depth HIBE with only selective security in
the random oracle model. Finally, we prove that KU-KEM can be based on UPIBE, where the number
of key updates in KU-KEM is proportionate to the number of key delegations in UPIBE.

Instantiating our unbounded-depth UPIBE construction with the bounded-depth HIBE by Boneh et
al. [BBG05] reveals the strengths of our approach. We compare this instantiation to the best known in-
stantiation of trivial unbounded-depth UPIBE via the unbounded-depth HIBE by Gong et al. [GCTC16].
This comparison shows that our construction is significantly more efficient by most relevant measures.
In particular, it outperforms the trivial approach substantially in terms of performance, ciphertext sizes,
and encryption key sizes.

A notable feature of our unbounded-depth UPIBE construction is that its efficiency can be dynami-
cally configured via a parameter ε. Roughly, ε trades ciphertext size against secret key size. Depending
on the performance priorities in a setting (bandwidth, algorithm runtime, etc.) and depending on the
expected user behavior (average length of identity strings, average number of encryptions per identity,
etc.), this parameter can optimize our construction for deployment under various conditions. Setting the
parameter ε to infinity yields the known trivial UPIBE construction [PR18b, JS18]; consequently, there
always exists an ε for which our new UPIBE construction is indeed the best known one.

Contributions. Our first contribution is to abstract the tools in KU-KEM constructions to the more
general field of Identity Based Encryption by, simultaneously, reducing the power of standard HIBE
to the essential: Unique-Path IBE. Our definition from Section 2 shows that this new perspective on
structurally limited delegation and collusion is seamlessly embedded in existing (H)IBE notions.

For comprehensibility, we start with building the simpler bounded-depth UPIBE construction in
Section 3, which is secure in the standard model (StM):

Adaptive Bounded-Collusion IBE =⇒ StM Adaptive Bounded-Depth UPIBE

This construction shows that UPIBE can be based on significantly reduced complexity assumptions with
a practically4 relevant design. We also give a concrete instantiation with small ciphertexts (two group
elements) and secret keys (six group elements and one symmetric key) from DDH that takes advantage
of construction internals of a bounded-collusion IBE by Dodis et al. [DKXY02].
6 An independent, concurrent article accepted at PKC’22 claimed to present a new direct KU-KEM construction

with reduced complexity, too. The authors of the article shared their final version after acceptance. We identified
a fatal security weakness in their KU-KEM construction and reported this weakness to the authors who then
withdrew the article:
Collins D., Vaudenay S.: Reducing the Complexity of Optimally Secure Ratcheted Key Exchange, https:
//pkc.iacr.org/2022/acceptedpapers.php.

7 An alternative approach from standard assumptions would be to rely on the fully secure IBE from CDH by
Garg and Döttling [DG17b]. Unfortunately, this will not yield a practical instantiation.
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By developing two powerful extensions on top of our first generic UPIBE construction, we are ulti-
mately able to build unbounded-depth UPIBE:

Adaptive Bounded-Depth HIBE =⇒ StM Adaptive Unbounded-Depth UPIBE

While conceptually inheriting core ideas of our bounded-depth UPIBE, this second unbounded-depth
UPIBE construction in Section 4 unfolds the full strength of our approach. Its efficiency is dynamically
configurable for different deployment settings and, instantiated with the most suitable bounded-depth
selective HIBE [BBG05], it reaches the best performance results compared to existing work. Along the
way, inspired by techniques that turn selective secure bounded-depth HIBEs adaptive secure [BB04,
BBG05], we develop a guessing technique which allows for a significantly broader choice of underlying
assumptions and more efficient instantiations in the random oracle model (ROM):

Selective Bounded-Depth HIBE =⇒ ROM Adaptive Unbounded-Depth UPIBE

We note that when instantiating our construction with lattice HIBEs [ABB10, CHKP10], we obtain the
first KU-KEM secure under conjectured post-quantum assumptions.

We systematically analyze the performance of our approach when being used to instantiate KU-
KEM in Section 7. It is notable that all prior KU-KEM constructions are a trivial special case of our
new techniques. This means that our new constructions always offer the best (known) performance.
For clarity, we first present semantically secure constructions of UPIBE. Using techniques known from
KEM combiners [GHP18], we show in Section 5 that our constructions can also be made secure against
chosen-ciphertext attacks if the underlying (H)IBE schemes are.

Future Directions. We believe that generalizing our UPIBE approach by increasing the bound of
delegations/corruptions per secret key is promising and relevant. For example, our unbounded-depth
UPIBE relies on bounded-depth HIBE where delegations per secret key can be bounded to 2. Utilizing
the delegation bound of 2 in order to enhance performance compared to black-box bounded-depth HIBE
(with unbounded delegation per secret key) would be beneficial. Another direction for future work is
to enhance our generic results by designing (more) direct constructions that carefully take advantage of
internals of specific (H)IBE schemes for better efficiency.

1.1 Technical Overview

To understand the core idea of our UPIBE constructions, we briefly discuss the subtle difference between
the security definitions of standard HIBE and UPIBE. Although these definitions are conceptually iden-
tical, the crucial limitation of UPIBE is that at most one delegation per secret key is permitted. This
means that the large tree of delegated secret keys in HIBE is reduced to a unique delegation path in
UPIBE. Consequently, adversaries will essentially expose at most one UPIBE secret key—all descendant
UPIBE keys can be obtained via delegation by the adversary itself. Consider the identity string that
corresponds to this exposed UPIBE secret key. In relation to this identity string, our natural security
definition requires only two types of challenge ciphertexts to remain secure: (1) those that are encrypted
to true prefix identity strings and (2) those that are encrypted to identity strings branching off the
exposed key’s identity string. All remaining challenges can be solved trivially with the exposed secret
key. Our UPIBE constructions exploit this fact to turn all prefix identity strings (case 1) into branched
off identity strings (case 2) by adding a special suffix at the end of every UPIBE identity string.

Combined HIBE Exposure. Having the definitional difference in mind, we will see that multiple
colluding exposures in HIBE can be significantly more damaging than the single permitted exposure
in UPIBE. More concretely, HIBE constructions have to make sure that challenge ciphertexts remain
secure under any combination of (non-trivial) secret key exposures in the delegation hierarchy. Since the
unique-path delegation in UPIBE permits at most one exposure, UPIBE constructions have to protect
challenge ciphertexts only against the single most damaging secret key exposure. We illustrate this gap
by considering the effect of a specific combination of HIBE secret key exposures.

For this we let two exposed HIBE secret keys have identities idex,1 = (id ′
1) and idex,2 = (id1, id ′

2), and
a single HIBE challenge have identity idch = (id1, id2), such that id1, id ′

1, id2, id ′
2 ∈ {0, 1}λ, where λ is

the bit-length per delegated sub-identity string. This means, idex,2 and idch branch in delegation level 2
with id ′

2 ̸= id2, and idex,1 branches off the former two identity strings in level 1 with id ′
1 ̸= id1. Observe

that the exposed key with identity idex,1 still contains information for delegating subordinate keys to
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the second level, e.g., to sub-identity id2 which results in full identity id∗ = (id ′
1, id2). In contrast, the

exposed key with identity idex,2 does not (need to) contain this information anymore as it is delegated
to level 2 already. However, exposed key with identity idex,2 may contain information about its own
delegation path along the first level with sub-identity string id1, which differs from the information
contained in exposed key with identity idex,1 = (id ′

1). One major difficulty for building HIBE is to
make sure that the information about delegation along id1 from exposed key idex,2 cannot be combined
harmfully with the secrets available for delegation to level 2 from exposed key idex,1. In particular, this
combination should not suffice to obtain a secret key for identity (id1, id2) = idch because this would
solve the challenge. Since the single permitted exposure in UPIBE prevents such combined exposures,
we can simplify the design of our UPIBE constructions, which makes them more efficient. We stress that
this difference between HIBE and UPIBE is an inevitable implication of our natural definition.

Trivial UPIBE Bounded-Depth UPIBE

Unbounded-Depth UPIBE
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Fig. 1: Conceptual illustration of delegations in the trivial, bounded-depth, and unbounded-depth UPIBE con-
structions (here with ε = 2). The black (path of) arrows realize delegation of a UPIBE identity string with level
depth 8. Light gray arrows indicate alternative and further delegations. White circles represent the (composed)
main public key(s) and filled dots represent the (composed) delegated secret key(s).

Bounded-Depth UPIBE. One interpretation of the above observation is that our constructions can
assume key material for lower level delegations to be per se harmless. Using this guarantee, our bounded-
depth UPIBE construction implements each UPIBE delegation level with an individual IBE instance.
Intuitively, this turns the vertical delegation path into a horizontal delegation sequence, as illustrated in
Figure 1. Our construction’s UPIBE main public and secret key consist of all underlying IBE instances’
main public and secret keys, respectively. For encryption, the UPIBE identity string is split into multiple
IBE sub-strings. The UPIBE ciphertext is then obtained by executing IBE encryption for each level’s
sub-string and concatenating the resulting IBE ciphertexts. On UPIBE delegation, the respective level’s
IBE main secret key is removed after delegating an identity-specific secret key for that level. To prove
security of this construction, we use the fact that every challenge identity branches off the exposed key’s
identity in one of it’s passed delegation levels. Our reduction embeds an underlying IBE challenge in
this branching level, which turns a successful UPIBE adversary into a successful IBE adversary. The
above description of our scheme is highly simplified and neglects subtle enhancements that lead to better
performance. Although conceptually simple in the bounded-depth case, this construction does not extend
(trivially) to the unbounded-depth setting.

Unbounded-Depth UPIBE. Therefore, we develop two crucial extensions: First, we replace each
delegation level by an ε-level delegation epoch. In every such epoch, ε many sequential delegations can be
processed. (See Figure 1 where ε = 2.) This reduces the number of concatenated ciphertexts by a factor
of 1/ε. Then, we add an epoch-progression mechanism on top of our construction. With this mechanism,
delegation from a fully-delegated epoch progresses dynamically to the next fresh epoch. This allows
us to dispose of the static list of IBE instances from our bounded-depth construction. One can think
of the epoch-progression mechanism as a Forward-Secure PKE scheme that generates at every step a
fresh starting point for a multi-level epoch in which the actual UPIBE delegations are conducted. The
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security proof for our unbounded-depth UPIBE follows the same idea as the one for our bounded-depth
construction, only that it reduces to bounded-depth HIBE. To rely on only selective bounded-depth
HIBE, we develop a special guessing technique that avoids the exponential loss factor induced by known
techniques [BB04, BBG05] for turning selective HIBE adaptive secure. We believe that the solid design—
in addition to its enhanced performance—makes our construction attractive for practical applications
(such as secure messengers).

Chosen-Ciphertext Security. We investigate the options to obtain CCA security for UPIBE. Unfor-
tunately, the well known generic BCHK (often also called CHK) compiler for HIBEs [CHK04, BCHK07]
is not applicable to UPIBE. While opting for a form of verification-by-re-encryption akin to the Fujisaki-
Okamoto (FO) transform [FO99] is applicable, one introduces significant computational overhead as well
as is bound to the ROM. Instead, we leverage chosen-ciphertext security of the underlying building blocks
by effectively tying together the concatenated ciphertexts in every UPIBE ciphertext. For simplicity, we
referred to UPIBE as a Message Encryption primitive so far, but all our results actually consider Key
Encapsulation. Therefore, in the case of bounded-depth UPIBE we can make use of techniques developed
in the context of KEM combiners [GHP18]. These versatile techniques only change the final computa-
tion of the encapsulated UPIBE key instead of explicitly authenticating the concatenated ciphertext.
A similar idea, though in the ROM, can be applied in the case of unbounded-depth UPIBE where the
underlying HIBE instances can be efficiently made CCA secure via the BCHK compiler. As a result,
our chosen-ciphertext secure constructions are only minimally less efficient than our semantically secure
ones.

2 UPIBE Definition

For clarity, we consider Identity Based Key Encapsulation primitives instead of Identity Based Message
Encryption in this work. In line with this, we call public and secret keys encapsulation and decapsulation
keys, respectively. Since Unique-Path IBE is a special case of Hierarchical IBE, we introduce all relevant
IBE notions modularly at once.

Syntax. All of the considered Identity Based Encapsulation (IBE) schemes are quadruples IE = (IE.gen,
IE.enc, IE.dec, IE.del) of algorithms with encapsulation and decapsulation key spaces EK and DK, re-
spectively, symmetric key space K, and ciphertext space C.

We specify the considered types of IBE via parameters L, λ, and D. L fixes the maximal number
of sequential delegations (i.e., the maximal number of levels aka. the depth), λ fixes the bit-length of
identity strings for each delegation, and D fixes the maximal number of delegations per decapsulation
key. That means, for unbounded-depth HIBE we have (L, D) = (∞, 2λ), for bounded-depth HIBE we
have (L, D) = (L, 2λ) for some fixed value L, for unbounded-depth UPIBE we have (L, D) = (∞, 1), and
for bounded-depth UPIBE we have (L, D) = (L, 1) for some fixed value L. (Bounds that are exponential
in the security parameter are considered practically unbounded, too.) We treat bounded-collusion IBE as
a bounded-depth HIBE with L = 1 such that the number of colluding users is encoded as the number of
maximal delegations for the main decapsulation key D = D for some constant D.

The four IBE algorithms’ syntax is defined as follows:

– IE.gen : ∅ →$ EK ×DK
– IE.enc : EK × {0, 1}l·λ →$ C × K, where 0 < l ≤ L
– IE.dec : DK × C → K
– IE.del : DK × {0, 1}λ →$ DK

For efficiency reasons, we add derivation algorithm IE.der : EK × {0, 1}λ →$ EK that computes
(compact) identity-specific encapsulation keys. This allows for reducing the combined size of a main en-
capsulation key ek and a multi-level identity string id = (id1, . . . , id l), such that IE.enc(ek, (id1, . . . , id l))
can be turned into IE.enc(IE.der(. . . IE.der(ek, id1) . . . , id l), ϵ).

Correctness. For correctness of all considered types of IBE with parameters L, λ, and D, we require for all
(ek, dk0)←$ IE.gen, all id = (id1, . . . , id l) with idi ∈ {0, 1}λ, 0 < i ≤ l ≤ L, all dki ←$ IE.del(dki−1, idi),
and all (c, k)←$ IE.enc(ek, id), that IE.dec(dkl, c) = k.
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Security. We define experiment INDb
IE(A), b ∈ {0, 1} that models multi-instance key indistinguishability.

For all considered types of IBE schemes IE, this experiment provides the following oracles to adversary A
for which we provide a full pseudo-code specification in Figure 2:

– Gen: Generates a fresh main key pair (ek, dk)←$ IE.gen and returns ek
– Del(i, id, id∗): Delegates decapsulation key dki,(id,id∗) ←$ IE.del(dki,id , id∗) from dki,id with identity

string id∗ ∈ {0, 1}λ, unless dki,id results from L sequential delegations from a main decapsulation
key, or D delegations from dki,id were already queried

– Chall(i, id): Issues a challenge encapsulation (c, k0)←$ IE.enc(eki, id) to main encapsulation key eki

and identity string id ∈ {0, 1}l·λ, 0 < l ≤ L and returns c as well as key kb, where k1 ←$ K, unless
an exposed decapsulation key was delegated from eki’s main decapsulation key dki with an identity
string that equals or is a prefix of id

– Exp(i, id): Exposes decapsulation key dki,id , generated or delegated from main decapsulation key dki

and identity string id, unless a challenge encapsulation to eki and identity string id ′ was queried,
such that (eki, dki) form a main key pair and id equals or is a prefix of id ′

Eventually, the adversary terminates by outputting a guess b′ and wins iff b = b′.

Game INDb
IE,L,λ,D(A)

00 n← 0
01 b′ ←$ A
02 Stop with b′

Oracle Gen
03 (ekn, dkn)←$ IE.gen
04 DKn[·]← ⊥
05 DKn[ϵ]← dkn

06 CH n[·]← ∅; XPn ← ∅
07 n← n + 1
08 Return ekn−1

Oracle Chall(i, id)
09 Require 0 ≤ i < n
10 Require id ∈ {0, 1}l·λ, 0 < l ≤ L
11 Require id /∈ XPi

12 (c, k0)←$ IE.enc(eki, id)
13 CH i[id] ∪← {c}
14 k1 ←$ K
15 Return (c, kb)

Oracle Del(i, id, id∗)
16 Require id ∈ {0, 1}l·λ, 0 ≤ l < L
17 Require DK i[id] ̸= ⊥
18 Require D > |{id ′DK i[id∥id ′] ̸= ⊥}|
19 dk ←$ IE.del(DK i[id], id∗)
20 DK i[id∥id∗]← dk
21 Return

Oracle Exp(i, id)
22 Require DK i[id] ̸= ⊥
23 XP ′ ← {id∗ ∈ {0, 1}∗ : id ⪯ id∗}
24 Require ∀id∗ ∈ XPi ∪XP ′ : CH i[id∗] = ⊥
25 XPi

∪← XP ′

26 Return DK i[id]

Oracle Dec(i, id, c)
27 Require DK i[id] ̸= ⊥
28 Require c /∈ CH i[id]
29 k ← IE.dec(DK i[id], c)
30 Return k

Fig. 2: Game IND for defining security of (un-)bounded-depth (Bounded-Collusion/Hierarchical/Unique-Path)
IBE. By allowing queries to oracle Dec, we model chosen-ciphertext attacks (instead of only chosen-plaintext
attacks). {0, 1}∗ is the set of arbitrary bit-strings, and x ⪯ y tests if bit-string x equals or is a prefix of bit-
string y.

If adversary A specifies the challenge(s) at the beginning of the game without adaptively seeing the
return values of other queries, we call A selective and otherwise adaptive.

With the above adversarial oracles, we capture chosen-plaintext attacks. Selective chosen-plaintext
attacks is a rather weak adversary model that helps us focusing on the core of our novel ideas when
presenting our constructions. Yet, we also present adaptive chosen-ciphertext secure constructions.
An adversary, attacking such constructions, can additionally query the following oracle:

– Dec(i, id, c): Decapsulates k ← IE.dec(dki,id , c) of ciphertext c under dki,id and returns k, unless c
was given to A as a challenge encapsulation to eki and id, dki,id was (sequentially) delegated from
dki with respect to id, and (eki, dki) form a main key pair

Definition 1. The advantage of adversary A in winning INDb
IE is

Advind
IE (A) :=

∣∣Pr[IND0
IE(A) = 1]− Pr[IND1

IE(A) = 1]
∣∣ .

Compared to standard (bounded-depth) (H)IBE security experiments, the only difference is our
restriction to at most D delegation queries per decapsulation key. Yet, challenges can be queried without
limiting the choice of identity strings, even for UPIBE.
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3 Bounded-Depth UPIBE from Bounded-Collusion IBE

We present our bounded-depth UPIBE construction in Figure 3 by explaining its components one after
another, starting with decapsulation keys and ciphertexts.

Structure of Keys and Ciphertexts. The core idea behind our UPIBE constructions is that delegations
along the unique ‘vertical’ path of identity levels are realized ‘horizontally’. That means, for each delega-
tion level in our UPIBE construction from Figure 3 with bounded-depth L, we use a separate bounded-
collusion IBE instance. Think of these IBE instances being placed horizontally next to one another from
left to right as shown in Figure 1.

To understand this idea, we describe the structure of UPIBE decapsulation keys. A UPIBE decapsu-
lation key delegated to level l contains three different types of keys, two of which are IBE decapsulation
keys: (1) One ordinary delegated IBE decapsulation key for each of the first l levels, (2) an additional
special delegated IBE decapsulation key for only level l, and (3) a symmetric forwarding key from which
(un-delegated) IBE main decapsulation keys for all remaining L − l levels are computed. See Figure 3
lines 02-06 for UPIBE key generation that consists of generating all IBE main encapsulation keys and
sampling the initial symmetric forwarding key.

Proc IE.gen
00 E[·]← ⊥; D[·]← ⊥
01 fk0 ←$ {0, 1}λ

02 For l = 0 to L− 1:
03 (fkl+1, s)← G(fkl)
04 (ek′, dk′)← IE.gen′(s)
05 E[l]← ek′

06 ek ← E; dk ← (0,⊥, fk0)
07 Return (ek, dk)

Proc IE.del(dk, id)
08 Require id ∈ {0, 1}λ

09 (l, D, fk)← dk
10 Require l < L
11 If l > 0:
12 (dk′

0, dk′
1)← D[l − 1]

13 D[l − 1]← dk′
1

14 (fk′, s)← G(fk)
15 (ek′, dk′)← IE.gen′(s)
16 dk′

0 ←$ IE.del′(dk′, id∥0)
17 dk′

1 ←$ IE.del′(dk′, id∥1)
18 D[l]← (dk′

0, dk′
1)

19 dk ← (l + 1, D, fk′)
20 Return dk

Proc IE.enc(ek, id)
21 Require id ∈ {0, 1}l·λ, 0 < l ≤ L
22 E ← ek
23 id0∥ . . . ∥idl−1 ← id with idj ∈ {0, 1}λ

24 For j = 0 to l − 2:
25 (c′

j , k′
j)←$ IE.enc′(E[j], idj∥1)

26 (c′
l−1, k′

l−1)←$ IE.enc′(E[l − 1], idl−1∥0)
27 C ← c′

0∥ . . . ∥c′
l−1

28 K ←W(k′
0, . . . , k′

l−1, C)
29 Return (C, K)

Proc IE.dec(dk, C)
30 (l, D, fk)← dk
31 c0∥ . . . ∥cl′−1 ← C with cj ∈ C
32 Require l = l′

33 For j = 0 to l − 2:
34 k′

j ←$ IE.dec′(D[i], cj)
35 (dk′

0, dk′
1)← D[l − 1]

36 k′
l−1 ←$ IE.dec′(dk′

0, cl−1)
37 K ←W(k′

0, . . . , k′
l−1, C)

38 Return K

Fig. 3: Construction of bounded-depth UPIBE IE with parameters (L, λ, D = 1) from PRG G and bounded-
collusion IBE scheme IE′ with parameters (L′, λ′, D′) = (1, λ + 1, 2) and ciphertext space C. Core function W is
realized as XOR-sum

⊕l−1
j=0 k′

j and ignores input C. In our chosen-ciphertext secure instantiation, we additionally
generate a dummy ciphertext ĉ ←$ C and key k̂ ←$ K in IE.gen, which is included into ek and W to pad all
unused indices i ≤ L with ĉ and k̂ respectively.

A UPIBE ciphertext, encapsulated to level l (i.e., to identity id ∈ {0, 1}l·λ), consists of one IBE
ciphertext for each of the first l − 1 levels encoded with suffix 1 (lines 23-25) and one additional IBE
ciphertext that targets the special delegated IBE decapsulation key at level l encoded with suffix 0
(line 26). To decapsulate the former l− 1 ciphertexts (lines 33-34), the receiver needs to be in possession
of the first l− 1 ordinary delegated IBE decapsulation keys. Hence, successful decapsulation shows that
the receiver holds a UPIBE decapsulation key that was correctly delegated along the first l − 1 levels
of the identity path. By also being able to decapsulate the special lth IBE ciphertext (lines 35-36), the
receiver additionally shows that it holds the full UPIBE decapsulation key that was delegated along all l
levels—and particularly not a UPIBE decapsulation key that was delegated along an extended identity
path.

While a UPIBE ciphertext is a concatenation of all l IBE ciphertexts, the encapsulated UPIBE
key is an XOR-sum of all l encapsulated IBE keys (lines 27-28). We generalize the computation of
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the encapsulated key via core function W to simplify the description of our chosen-ciphertext secure
construction in Section 5.

Delegation of a UPIBE decapsulation key is in line with the above ideas by conducting four steps:
(a) Removing the special IBE decapsulation key at current level l, yet keeping all ordinary IBE de-
capsulation keys until level l (lines 11-13), (b) computing the next forwarding key as well as a seed by
evaluating a PRG on the current forwarding key (line 14), (c) generating the main IBE decapsulation
key at level l + 1 from the obtained seed (line 15), and delegating both the special delegated IBE decap-
sulation key for level l +1 (line 16) as well as the ordinary delegated IBE decapsulation key for level l +1
(line 17) from this new main IBE decapsulation key, and, lastly, (d) removing the just obtained main
IBE decapsulation key at level l + 1 as well as the old forwarding key.

Intuition for Security. The security argument for this construction uses the fact that adversaries can
expose at most one UPIBE decapsulation key per instance during the security experiment.8 This single
exposure reveals precisely one special delegated IBE decapsulation key—the current one—, the chain
of ordinary IBE decapsulation keys that were delegated along the exposed UPIBE key’s identity path,
and the current symmetric forwarding key from which future levels’ IBE main decapsulation keys can
be obtained. After such an exposure, two types of UPIBE ciphertexts must remain secure: Those that
target true prefixes of the exposed key’s identity string, and those that target identity strings branching
off the exposed key’s identity string.9 Ciphertexts targeting a true prefix identity string, indeed, remain
secure because their decapsulation requires the use of a higher level special delegated IBE decapsulation
key. Such prior level special IBE keys were removed before the exposure and are, therefore, not contained
in the exposed UPIBE key. Similarly, the decapsulation of ciphertexts that target a branched off identity
string require the use of an inaccessible IBE decapsulation key—namely, an ordinary IBE decapsulation
key that was delegated along this branch. Consequently, exposed UPIBE decapsulation keys do not affect
ciphertexts that are required to remain secure. Finally, we note that at most two delegated decapsulation
keys per IBE instance are leaked at an exposure of a UPIBE decapsulation key. Thus, relying on bounded-
collusion IBE suffices, where the number of colluding users is at most 2.

Performance. Bounded-depth UPIBE (and bounded-depth KU-KEM) actually often suffice for secure
messaging protocols.10 So far, the only known instantiation of bounded-depth UPIBE is trivially derived
from bounded-depth HIBE. With our bounded-depth UPIBE construction we demonstrate a signifi-
cant reduction in complexity of the underlying hardness assumption: bounded-collusion IBE instead of
bounded-depth HIBE. Furthermore, we use this construction to make the reader familiar with the core
ideas of our unbounded-depth UPIBE construction in Section 4.

Without any additional assumptions on the underlying bounded-collusion IBE, the size of UPIBE
encapsulation keys in our construction is linear in the maximal level depth L, UPIBE decapsulation keys
grow with the number of conducted delegations, and UPIBE ciphertexts grow in the bit-length of their
corresponding identity string.

When instantiating our construction with the DDH-based bounded-collusion IBE by Dodis et al.
[DKXY02], we can take advantage of the group structure to aggregate and shrink encapsulation keys,
decapsulation keys, and ciphertexts. We give the concrete instantiation in Appendix E in which a UPIBE
decapsulation key consists of 6 exponents and 1 symmetric key, a UPIBE ciphertext consists of 2 group
elements, and a UPIBE encapsulation key consists of 2 + 3(L− l) group elements, where l is the level for
which the current encapsulation key is derived via algorithm IE.der. This is highly efficient for settings
in which distribution and storage of large encapsulation keys is cheap.11 Enhancing this construction to
also obtain a compact, constant size encapsulation key remains an interesting open problem.
8 With the exposed UPIBE decapsulation key, the adversary can compute all subsequent delegations and decap-

sulations itself, so further exposures are meaningless.
9 Branching here means that for two identity strings id, id∗ with ℓ∗ = min(|id|, |id∗|), strings id and id∗ differ

in at least one of the first ℓ∗ bits.
10 E.g., the number of conducted key delegations in the bidirectional messaging protocol in [PR18a, see page 22]

is upper-bounded by the maximal number of ciphertexts that cross the wire during a round-trip time (i.e., at
most a few dozens).

11 Consider asymmetric communication for which ciphertexts should be small and encapsulation keys can be
large: E.g., sending large encapsulation keys on hardware memory from time to time via resupply flights to
the International Space Station, and sending ciphertexts over the air back to earth.
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Security. For clarity, we first consider chosen-plaintext security INDb
IE of our UPIBE construction:

Theorem 1. Bounded-depth UPIBE protocol IE from Figure 3 offers adaptive key indistinguishability in
the standard model. More precisely, for every adaptive chosen-plaintext adversary A attacking protocol IE
in games INDb

IE according to Definition 1 with parameters (L, λ, D = 1), there exists an adversary BG
attacking PRG G according to Definition 3 and an adaptive chosen-plaintext adversary BIE′ attacking
bounded-collusion IBE IE′ in games INDb

IE′ according to Definition 1 with parameters (L′, λ′, D′) =
(1, λ + 1, 2) such that Advind

IE (A) ≤ qGen ·L2 ·Advind
G (BG) + qGenl · qChall ·L ·Advind

IE′ (BIE′), where qGen and
qChall are the number of queries to oracles Gen and Chall by adversary A, respectively, and the running
time of BG and BIE′ is about that of A.

Security Proof Overview. For clarity in notation, we refer to oracles in game INDb
X by adding the scheme’s

identifier X as a subscript to the oracle names (i.e., GenX , ChallX , etc). Also, we first sketch our proof
by focusing on a reduction from single-instance security of UPIBE to multi-instance security of IBE.

Using the PRG, we begin with a hybrid argument that replaces all unexposed symmetric forwarding
keys and IBE main key pairs with independently sampled ones. Our reduction BIE′ then almost directly
passes oracle queries from adversary A against our UPIBE construction IE in game INDIE to oracles
of game INDIE′ against the underlying bounded-collusion IBE scheme IE′. The responses of oracles in
game INDIE′ can then be used almost directly to answer adversaryA’s oracle queries in game INDIE. That
means, A’s queries to oracle GenIE can be answered by using responses of simple queries to oracle GenIE′ ;
the same holds for queries to oracle DelIE.

However, embedding challenges from game INDIE′ in challenges of game INDIE is non-trivial. To
understand this, we observe that the hardness of a challenge in game INDIE depends on the delegation
path of the first (and w.l.o.g. only) exposed UPIBE decapsulation key in game INDIE. More precisely,
let id∗ be the identity string that corresponds to the delegation path of the first exposure via ora-
cle ExpIE. A challenge directed to identity string id is only considered hard if id is a true prefix of id∗,
or if id and id∗ differ in at least one of their first ℓ∗ bits, where ℓ∗ = min(|id|, |id∗|). On a query to
oracle ChallIE with identity string id, our reduction BIE′ splits id into its λ-long sub-strings and then
identifies in which of these sub-strings the first difference between id and id∗ occurs. For this branching
sub-string, reduction BIE′ queries an IBE challenge via oracle ChallIE′ . The resulting IBE challenge-
ciphertext and IBE challenge-key are then embedded in the corresponding UPIBE challenge-ciphertext
and UPIBE challenge-key output of oracle ChallIE. However, reduction BIE′ learns string id∗ only as
soon as adversary A calls oracle ExpIE. Hence, for each challenge issued before this first exposure query,
reduction BIE′ has to guess in which sub-string the identities branch. Embedding this guessing step in
a hybrid argument introduces a loss factor of at most qGen · qChall · L, where qGen and qChall are the
numbers of queries to oracles GenIE and ChallIE by adversary A, resp., and L is the maximal number of
delegation levels for our UPIBE construction. We provide our formal proof for multi-instance security in
Appendix B.1.

4 Unbounded-Depth UPIBE from Bounded-Depth HIBE

Our unbounded-depth UPIBE construction extends our bounded-depth construction from Section 3
twofold: Horizontally, it replaces each level—realized by an IBE instance in our bounded-depth construc-
tion—by a multi-level epoch. Each epoch can internally handle up to ε sub-identity levels/delegations.
The second extension replaces the static list of IBE main keys at the top of our bounded-depth UPIBE
construction by a dynamic epoch-progression mechanism. This mechanism realizes a dynamic progres-
sion from one epoch to another and, thereby, eliminates the a-priori bounded number of sub-identity
levels/delegations; see Figure 1 for a schematic illustration.

The only component used to build our unbounded-depth UPIBE construction is a single bounded-
depth HIBE scheme. To understand how the (unbounded number of) UPIBE delegations are processed
by this bounded-depth HIBE, we invite the reader to look at the tree of identities/delegations in this
HIBE that is indicated by gray (dotted) lines and arrows in Figure 1.

Epoch-Progression via Forward-Secure PKE Technique. In the top α levels of the HIBE tree, we im-
plement the epoch-progression mechanism, where α = ⌈log(2κ/ε)⌉ and κ is the security parameter. Of
these α top HIBE delegation levels, we only make use of a binary delegation (sub-)tree. Each path in
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this binary tree part of the HIBE tree is the binary-encoding of an epoch number, where first epoch 0 is
encoded as the left-most path and last epoch 2κ/ε−1 is encoded as the right-most path. The lowest nodes
in this top binary tree part (i.e., nodes in level α) represent epoch starting nodes. The first epoch starts
at the left-most node which corresponds to the identity string that binary-encodes 0 (i.e., 0α·λ′ , where λ′

is the bit-length of HIBE identity sub-strings per level/delegation). We defer the explanation of how
UPIBE delegations are realized within epochs to the next paragraph. As soon as an epoch is completed,
the next epoch starts at the adjacent binary-tree node to the right in level α. (That is, starting nodes of
epochs 2 and 3 correspond to identity strings 0α·λ′−1∥1 and 0(α−1)·λ′−1∥1∥0λ′ , respectively, where each
level’s identity sub-string contains a (λ′ − 1)-long 0-bit padding prefix.)

Progression from one epoch starting node to the next one follows the well known idea of Forward-
Secure PKE from Binary Tree Encryption [CHK03].12 Roughly, the epoch-progression mechanism iter-
atively delegates HIBE decapsulation keys along the α-long path from the root to the current epoch
starting node. During this path delegation, also decapsulation keys of (binary-tree) siblings along this
path are delegated. After each delegation on this path, the respective parent node’s key from which the
two sibling keys were delegated is deleted. Only the first epoch progression starts at the root of the
HIBE tree. All following epoch progressions start from the lowest level for which a delegated sibling key
exists. This mechanism ensures that only starting nodes of future epochs but not of previous epochs are
accessible.

Multi-Level Epochs. Our UPIBE construction splits identity strings of length l · λ into ε · λ-long epoch
sub-strings. Each individual epoch sub-string is delegated in ε steps vertically in the HIBE tree under its
epoch starting node (i.e., each epoch contains ε delegation levels). Hence, every epoch sub-string in the
HIBE tree looks exactly the same as its UPIBE identity sub-string counterpart (see Figure 1). However,
instead of being concatenated vertically in the HIBE tree, one can think of the vertical epoch sub-strings
hanging next to one another from left to right under their epoch starting nodes in level α.

Structure of Keys and Ciphertexts. Despite these two crucial extensions, the overall idea of our unbounded-
depth UPIBE construction is very close to its bounded-depth counterpart from Section 3. This becomes
evident when looking at the structure of UPIBE decapsulation keys and ciphertexts.

A UPIBE decapsulation key at delegation level l contains three types of delegated HIBE decapsulation
keys: (1) up to α epoch-progression decapsulation keys, (2) one ordinary decapsulation key for each of
the previous ⌈l/ε⌉−1 epochs and, potentially, one ordinary decapsulation key for the current epoch, and
(3) a special decapsulation key for the current epoch. The epoch-progression decapsulation keys replace
the single symmetric forwarding key from our bounded-depth construction. This allows for efficient
delegation of future epochs’ initial decapsulation keys, yet preventing access to previous epochs’ initial
decapsulation keys. Ordinary and special decapsulation keys are used for the actual decapsulation of
UPIBE ciphertexts (almost) as in our bounded-depth construction.

The concrete components of a UPIBE decapsulation key are as follows. One ordinary HIBE decapsu-
lation key, delegated to the lowest HIBE tree level α + ε, is stored for each finished epoch. All remaining
HIBE decapsulation keys, ever delegated in these prior epochs, are removed from the (delegated) UPIBE
decapsulation key. For the current epoch, a special decapsulation key delegated to HIBE level α + (l
mod ε) in that epoch is stored in the UPIBE decapsulation key, where l is the overall number of UPIBE
delegations so far. When delegating the UPIBE decapsulation key, this special HIBE decapsulation key
is replaced by a new one for the next level. Only in the last level α+ε of the current epoch where (l = −1
mod ε), the UPIBE decapsulation key contains two HIBE keys: a special and an ordinary HIBE decap-
sulation key.

A UPIBE ciphertext for level l consists of one HIBE ciphertext per existing epoch, where ⌈l/ε⌉ is
the number of existing epochs. Each of the first ⌈l/ε⌉ − 1 ciphertexts is directed to its epoch’s ordinary
decapsulation key, and the last ciphertext is directed to the current epoch’s special decapsulation key.

All UPIBE delegations within an epoch delegate a new special HIBE decapsulation key from the
previous level’s special HIBE decapsulation key. After each delegation, this previous special HIBE de-
capsulation key is removed. In the lowest level of an epoch—in HIBE tree level α + ε—an additional
12 For clarity in our explanation, we slightly deviate from the original BTE-to-FS-PKE idea by Canetti et

al. [CHK03]: We do not use all nodes in the BTE tree as epoch starting points but only nodes in the lowest
level of this BTE component.
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ordinary HIBE decapsulation key is delegated the from previous level’s special HIBE decapsulation key.
This ordinary HIBE decapsulation key is never removed from the UPIBE decapsulation key.

Intuition for Security. The intuitive security argument for this construction resembles the one from
Section 3. Recall that, on exposure of a UPIBE decapsulation key, only those UPIBE encapsulations
must remain secure whose targeted identity string either is a true prefix of the exposed key’s identity
string or branches off the exposed key’s identity string.9 Encapsulations to true prefix identity strings
have their last HIBE encapsulation directed to an earlier special HIBE decapsulation key. This special
key is not stored in the exposed UPIBE decapsulation key anymore, since the latter only contains the
current level’s special HIBE decapsulation key. Encapsulations to branched off identity strings have
the HIBE encapsulation of the branching epoch directed to an ordinary HIBE decapsulation key that
was never stored in the exposed UPIBE decapsulation key. Finally, all exposed decapsulation keys of
the epoch-progression mechanism only reveal parts of the HIBE tree from which future epochs can
be delegated. Thus, UPIBE encapsulations of our unbounded-depth construction remain secure under
non-trivial exposures of UPIBE decapsulation keys.

Construction. We specify our unbounded-depth UPIBE construction formally in Figure 4. This con-
struction uses a bounded-depth HIBE with maximal level depth L = α + ε = ⌈log(2κ/ε)⌉+ ε, where κ is
the security parameter.

Proc IE.gen
00 E[·]← ⊥; Dep[·]← ⊥; Dfs[·]← ⊥
01 (ek′, dk′

0)←$ IE.gen′

02 For j = 0 to α− 1:
03 dk′′

0 ←$ IE.del′(dk′
0, 0λ+1)

04 dk′′
1 ←$ IE.del′(dk′

0, 0λ∥1)
05 dk′

0 ← dk′′
0 ; Dfs[j]← dk′′

1
06 Dep[0]← dk′

0
07 ek ← ek′; dk ← (0, Dfs, Dep)
08 Return (ek, dk)

Proc IE.enc(ek, id)
09 Require id ∈ {0, 1}l·λ, l ∈ N+

10 id0∥ . . . ∥idl−1 ← id with idj ∈ {0, 1}λ

11 d← l mod ε; e← ⌈l/ε⌉
12 For e′ = 0 to e− 2:
13 id ′ ← ϵ
14 (e′

0, . . . , e′
α−1)← e′ with e′

j ∈ {0, 1}
15 For j = 0 to α− 1:
16 id ′ q← 0λ∥e′

j

17 For d′ = 0 to ε− 2:
18 id ′ q← ide′·ε+d′∥1
19 id ′ q← ide′·ε+ε−1∥0
20 (c′

e′ , k′
e′ )← IE.enc′(ek, id ′)

21 id ′ ← ϵ
22 (e′

0, . . . , e′
α−1)← e− 1 with e′

j ∈ {0, 1}
23 For j = 0 to α− 1:
24 id ′ q← 0λ∥e′

i

25 For d′ = 0 to d− 1:
26 id ′ q← id(e−1)·ε+d′∥1
27 (c′

e−1, k′
e−1)← IE.enc′(ek, id ′)

28 C ← c′
0∥ . . . ∥c′

e−1
29 K ←W(k′

0, . . . , k′
e−1, C)

30 Return (C, K)

Proc IE.dec(dk, C)
31 (l, Dfs, Dep)← dk
32 d← l mod ε; e← ⌈l/ε⌉
33 c0∥ . . . ∥ce′−1 ← C with cj ∈ C
34 Require e = e′

35 For j = 0 to e− 2
36 k′

j ←$ IE.dec′(Dep[j], cj)
37 If d ̸= ε− 1: dk′

1 ← Dep[e− 1]
38 Else: (dk′

0, dk′
1)← Dep[e− 1]

39 k′
e−1 ←$ IE.dec′(dk′

1, ce−1)
40 K ←W(k′

0, . . . , k′
e−1, C)

41 Return K

Proc IE.del(dk, id)
42 Require id ∈ {0, 1}λ

43 (l, Dfs, Dep)← dk
44 d← l mod ε; e← ⌊l/ε⌋
45 If d = 0 ∧ e > 0:
46 (dk′

0, dk′
1)← Dep[e− 1]

47 Dep[e− 1]← dk′
0

48 j ← msdb(e− 1, e)
49 dk′

0 ← Dfs[j]; Dfs[j]← ⊥
50 For j to α− 1:
51 dk′′

0 ←$ IE.del′(dk′
0, 0λ+1)

52 dk′′
1 ←$ IE.del′(dk′

0, 0λ∥1)
53 dk′

0 ← dk′′
0 ; Dfs[j]← dk′′

1
54 Dep[e]← dk′

0
55 If d ̸= ε− 1:
56 Dep[e]←$ IE.del′(Dep[e], id∥1)
57 Else:
58 dk′

0 ←$ IE.del′(Dep[e], id∥0)
59 dk′

1 ←$ IE.del′(Dep[e], id∥1)
60 Dep[e]← (dk′

0, dk′
1)

61 dk ← (l + 1, Dfs, Dep)
62 Return dk

Fig. 4: Generic construction of unbounded-depth UPIBE IE with parameters (L =∞, λ, D = 1) from bounded-
depth HIBE scheme IE′ with ciphertext space C with parameters (L′, λ′, D′) = (α + ε, λ + 1, 2), where α =
⌈log(2κ/ε)⌉. Additional parameter ε fixes the epoch depth in the lower path component and κ is the security
parameter. Function msdb(x, y) computes the most significant bit in which the bit-representations of x and y
differ and core function W is realized as XOR-sum

⊕e−1
j=0 k′

j and ignores input C. In our chosen-ciphertext secure
instantiation we instantiate W with random oracle H⋆.

The UPIBE encapsulation key consists solely of the main HIBE encapsulation key. The initial UPIBE
decapsulation key is generated by executing the epoch-progression mechanism with the main HIBE
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decapsulation key to derive the first epoch’s starting decapsulation key (Figure 4, lines 02-06). More
concretely, this mechanism delegates one ephemeral and one stored decapsulation key in each of the
first α HIBE levels (lines 03-04). Ephemeral key dk ′

0 is replaced after delegating the two decapsulation
keys of the next level. Stored key dk ′

1 will be used for future epoch progressions. In level α, ephemeral
key dk ′

0 is set as the first epoch’s starting decapsulation key. We explain the specific encoding- and
padding-scheme for identity strings at the end of this paragraph.

UPIBE encapsulation splits the targeted identity string id into ε · λ-long epoch sub-strings. Our
pseudo-code separates the processing of the first e − 1 epoch sub-strings (lines 12-20) from the last
epoch’s sub-string (lines 21-27). Roughly, each epoch sub-string (composed in lines 17-19 resp. 25-26)
is prepended with a binary encoding of the corresponding epoch number (lines 14-16 resp. 22-24). The
binary encoding prefix represents the epoch-progression path to the epoch’s starting node. For every
epoch, an HIBE encapsulation directed to the concatenated string of binary-encoded epoch number
and epoch identity sub-string is executed (line 20 resp. 27). The final UPIBE ciphertext is a simple
concatenation of all epoch HIBE ciphertexts; the output UPIBE key is an XOR-sum of all encapsulated
epoch HIBE keys.

On UPIBE decapsulation, the input ciphertext is decomposed, and each of the resulting HIBE ci-
phertexts is decapsulated. For all previous epochs, the stored lowest level ordinary decapsulation key is
used for decapsulation (lines 35-36). In the current epoch, the special decapsulation key is used for this
(line 39). Depending on whether the current epoch reached its lowest level or not, the special decapsu-
lation key is stored solitarily (line 37) or together with the ordinary decapsulation key (line 38).

In most cases, UPIBE delegation simply uses the current epoch’s special HIBE decapsulation key
together with input identity string id to delegate a new special HIBE decapsulation key that replaces
the prior one (lines 56). Only if the lowest level of the current epoch is reached, an additional ordinary
HIBE decapsulation key is delegated and stored (line 58-60). A subsequent delegation starts a new
epoch and, therefore, uses the epoch-progression mechanism (lines 45-54). This mechanism starts by
deleting the previous epoch’s special decapsulation key (lines 46-47). Then, it identifies the lowest existing
decapsulation key in the underlying binary-tree structure (line 48) with which the next epoch starting
node is delegated (lines 50-54). This subsequent starting node—basically the immediate neighbor node
in the binary tree—is used as the new epoch’s initial decapsulation key.

We elaborate on some implementation details. To realize a binary tree in the epoch-progression
mechanism, the binary encoding of epoch numbers is padded with (λ′ − 1 = λ) leading 0-bits in every
level (lines 03-04, 16, 24, 51-52). For the composition of epoch sub-strings, each level’s identity sub-string
is appended with a 1-bit (lines 18, 26) except for the last level in any previous epoch; previous epochs’
last level sub-strings have an appended 0-bit (lines 19). This corresponds to the use and delegation of
special and ordinary decapsulation keys (lines 56, 58-59).

Depth of Epoch-Progression Mechanism. To allow for sufficiently many epoch progressions, the depth
of the upper binary tree within the HIBE tree is α = ⌈log2(2λ/ε)⌉. One can reduce α by 1 if not only
leafs in this binary tree represent epoch starting decapsulation keys, but also all inner nodes in this tree.
This would resemble the original Forward-Secure PKE idea by Canetti et al. [CHK03]. Furthermore,
one can reduce α by increasing the number of delegations per decapsulation key in the tree (e.g., from
binary to ternary tree). Although this decreases the HIBE depth, it would increase the size of UPIBE
decapsulation keys.

Depth of Multi-Level Epochs. Our unbounded-depth UPIBE construction is parameterized by variable ε
that determines the number of delegations per epoch. We note that for ε =∞, our UPIBE construction
reduces to the known trivial delegation design via unbounded-depth HIBE [PR18b, JS18, BRV20]. Thus,
there is always an ε for which our construction is at least as efficient as the previous approach. Beyond
that, using the flexibility of parameter ε, our construction’s performance can be adapted to different
use cases. For example, depending on whether ciphertexts or decapsulation keys should be small, and
depending on the expected number of delegations in a setting, an optimal value ε can be configured. Our
full evaluation is in Section 7.

2-Delegation HIBE. We want to note that each HIBE decapsulation key in our construction from Fig-
ure 4 delegates at most two child decapsulation keys. Thus, while reducing the level depth parameter L
substantially from infinity in UPIBE to a bounded value in the underlying HIBE, parameter D only grows

13



from 1 delegation per secret key in UPIBE to 2 in the underlying HIBE. With our definition framework
from Section 2 and our new perspective on delegation-restricted HIBE, we lay the foundation for future
work that may investigate whether bounded-depth HIBE with limited delegation of D = 2 can be built
more efficiently than general bounded-depth HIBE.

Security. To support comprehensibility and avoid idealized assumptions, we first reduce adaptive chosen-
plaintext security INDb

IE of our UPIBE construction to adaptive security of the underlying HIBE in the
standard model. In Section 4.1, we augment our reduction with a new guessing technique that allows us
to trade the strength of the underlying HIBE (only selective security instead of adaptive security) against
idealized assumptions (random oracle model instead of standard model). Relying only on selective secure
HIBEs for adaptive security of our UPIBE significantly extends the class of available HIBE constructions
from the literature. For full security against chosen-ciphertext attacks, we consider different generic and
direct techniques in Section 5.

Theorem 2. Unbounded-depth UPIBE protocol IE from Figure 4 offers adaptive key indistinguishabil-
ity in the standard model. More precisely, for every adaptive chosen-plaintext adversary A attacking
protocol IE in games INDb

IE according to Definition 1 with parameters (L = ∞, λ, D = 1), there exists
an adaptive chosen-plaintext adversary B attacking bounded-depth HIBE IE′ in games INDb

IE′ accord-
ing to Definition 1 with parameters (L′, λ′, D′) = (⌈log(2κ/ε)⌉ + ε, λ + 1, 2) such that Advind

IE (A) ≤
qGen · qChall · ⌈llong/ε⌉ ·Advind

IE′ (B), where κ is the security parameter, ε is the construction’s epoch-depth
parameter, qChall and qChall are the numbers of queries to oracles Gen and Chall by adversary A, respec-
tively, llong is the level-depth of the longest identity string queried to oracle Chall by adversary A, and
the running time of B is about that of A.

Security Proof Overview. Our security proof for Theorem 2 is very similar to the one for Theorem 1.
The major technical difference is that here the security of each UPIBE instance is reduced to only one
bounded-depth HIBE instance’s security. Reduction B, again, simulates all oracle queries of adversary A
in game INDIE via queries to oracles in game INDIE′ . As in our proof from Section 3, for certain
UPIBE challenge queries to oracle ChallIE, the reduction has to guess where to embed underlying HIBE
challenges of game INDIE′ . A hybrid argument that implements theses guesses cause the loss factor in our
advantage bound. The general strategy for embedding challenges is to determine where the identity string
input of oracle ChallIE branches off the delegation path of (potentially) exposed UPIBE decapsulation
keys. In contrast to our proof of Theorem 1, reduction B here only needs to guess the epoch of the sub-
string in which the identity strings of challenge and exposure branch lie. We provide our formal proof in
Appendix B.2.

4.1 Relaxing Assumptions: Adaptive UPIBE from Selective HIBE

The above outlined standard model proof for our unbounded-depth UPIBE construction from Fig-
ure 4 relies on adaptive secure bounded-depth HIBE. Yet, the most suitable bounded-depth HIBEs
(e.g., [BBG05]) are only selective secure. Generic techniques for turning selective secure schemes adap-
tive secure, as done in [BB04, BBG05, ABB10, CHKP10], rely on the random oracle model and induce
an exponential loss factor in the HIBE’s maximal level depth L. The simple idea of these techniques is
to replace each identity sub-string in the construction by the output of a random oracle evaluated on
this identity sub-string (i.e., id0∥ . . . ∥id l is replaced by H(id0)∥ . . . ∥H(id l)). The reduction then embeds
sub-strings of the selective challenge identity in randomly chosen random-oracle-outputs. A reduction
succeeds if it embeds the selective challenge sub-strings in those random-oracle-outputs whose input
identity sub-strings form the adaptive challenge. This induces an exponential loss in the maximal num-
ber of identity sub-strings per adaptive challenge. This is problematic because our UPIBE construction
relies on an adaptive secure bounded-depth HIBE with parameter L = α + ε = ⌈log(2κ/ε)⌉ + ε, which
is linear in the security parameter κ. Thus, the loss factor would be exponential in κ when following
the generic approach of turning the underlying HIBE adaptive secure [BB04, BBG05, ABB10, CHKP10]
before using this HIBE to instantiate our unbounded-depth UPIBE construction.

Solution: Guessing Essentials Only. Due to the way our construction makes use of the underlying
bounded-depth HIBE, we can carefully change the generic approach from [BB04, BBG05] in order to
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relax the assumption on the HIBE from adaptive to selective security. Thus, we significantly extend the
set of bounded-depth HIBE schemes from the literature with which we can instantiate our unbounded-
depth UPIBE construction. Our main observation is that the two (virtual) components in our UPIBE
construction—epoch-progression mechanism and multi-level epochs—encode information of different den-
sity. For this, consider an HIBE identity string to which our UPIBE encapsulation internally issues an
HIBE encapsulation. The first part of such an HIBE identity string encodes an integer that represents
the epoch number in the upper epoch-progression mechanism. The second part encodes a sub-string of
the actual UPIBE identity string (i.e., the identity sub-string for one epoch).

In order to embed a selective HIBE challenge in the adaptive UPIBE challenge, our reduction has to
predict the branching epoch’s full HIBE identity string in advance. In this epoch, the UPIBE challenge
identity branches off the delegated identity of the corresponding (exposed) UPIBE decapsulation key. To
predict this epoch’s full HIBE identity string, we treat the two parts—epoch number and sub-string of
UPIBE identity—differently. The branching epoch number can simply be guessed with high probability.
The reason is that polynomially bounded users (and adversaries) only issue UPIBE identity strings
of polynomial length. Thus, also the number of epochs used to represent a UPIBE identity string is
polynomially bounded. To predict the second part of the HIBE identity string—the branching epoch’s
sub-string of the actual UPIBE identity string—we employ the generic technique [BB04, BBG05] based on
the random oracle model. Since the depth of each multi-level epoch is bounded by constant parameter ε,
the loss induced by this technique is only polynomial (not exponential) in κ.

Concrete Adjustments. We interpose a random oracle H in the following lines of our construction in
Figure 4: 18: id ′ q← H(ide′·ε+d′∥1); 19: id ′ q← H(ide′·ε+ε−1∥0); 26: id ′ q← H(id(e−1)·ε+d′∥1); 56: Dep[e]←$
IE.del′(Dep[e], H(id∥1)); 58: dk ′

0 ←$ IE.del′(Dep[e], H(id∥0)); 59: dk ′
1 ←$ IE.del′(Dep[e], H(id∥1)). How-

ever, we leave the identity sub-strings of the upper epoch-progression mechanism untouched. Thus,
lines 03-04, 16, 24, and 51-52 remain the same. A full proof of following Theorem 3 is given in Ap-
pendix B.3.

Theorem 3. Adjusting unbounded-depth UPIBE protocol IE from Figure 4 offers adaptive key indis-
tinguishability in the random oracle model. More precisely, let H be a random oracle, then for ev-
ery adaptive chosen-plaintext adversary A attacking protocol IE in games INDb

IE according to Defini-
tion 1 with parameters (L = ∞, λ, D = 1), there exists a selective chosen-plaintext adversary B attack-
ing bounded-depth HIBE IE′ in games INDb

IE′ according to Definition 1 with parameters (L′, λ′, D′) =
(⌈log(2κ/ε)⌉+ ε, λ + 1, 2) such that Advind

IE (A) ≤ qGen · qChall · ((llong)2 · (qH)ε) ·Advind
IE′ (B), where κ is the

security parameter, ε is the construction’s epoch-depth parameter, qGen, qChall, and qH are the number of
queries to oracles Gen, Chall and the random oracle by adversary A, respectively, llong is the level-depth
of the longest identity string queried to oracle Chall by adversary A, and the running time of B is about
that of A.

5 CCA Secure UPIBE

Now we turn our focus on the task of achieving chosen-ciphertext security for bounded- and unbounded-
depth UPIBE. While it might be tempting to think that similar to HIBEs one could generically convert
CPA-secure UPIBE into CCA-secure ones using the BCHK (often also called CHK) compiler [CHK04,
BCHK07], this unfortunately does not work: BCHK needs one delegation per decapsulation from the
same decapsulation key, but UPIBE only offers one delegation for each decapsulation key in total. Thus,
we need to adopt different strategies for constructing CCA-secure UPIBE.

5.1 Bounded-depth UPIBE

FO-Transform. Having in mind that we construct bounded-depth UPIBE from (bounded-collusion) IBE,
a natural choice is to apply the Fujisaki-Okamoto (FO) transform [FO99] and in particular one of its
modular variants [HHK17]. FO typically considers single instances, but in our construction of UPIBE
one has to deal with multiple parallel IBE ciphertexts and this requires some care. Recently, Cini et al.
in [CRSS20] considered this issue of parallel ciphertexts in FO for reducing decryption errors as well as
constructing Bloom-Filter KEMs (BFKEMs) from IBE. Though [CRSS20] relies on a single IBE instance,
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it is quite straightforward to adapt their approach to UPIBE.13 Unfortunately, using FO in this way,
besides being bound to the random oracle model (ROM), requires an overhead of l encryptions of the
underlying IBE during decapsulation, which can be significant.

Split-Key PRF. An alternative, more efficient, and more flexible approach is made possible when we view
our UPIBE construction in Section 3 as parallel bounded-collusion IBE and take inspiration from Giacon
et al. [GHP18]. In particular, recall that our overall ciphertext C = c′

0∥ . . . ∥c′
l−1 is the concatenation of

l ciphertexts of independent IBEs and the encapsulation key is computed as K ← W(k′
0, . . . , k′

l−1, C),
where W represents what is called a core function by Giacon et al. [GHP18]. We note that [GHP18]
focuses on parallel KEM combiners, and show that if W is a split-key pseudorandom function (skPRF),
it yields a CCA-secure KEM if at least one of the l KEMs is CCA secure. Various instantiations of
skPRFs in the ROM and standard model with different types of trade-offs are discussed in [GHP18]. For
instance the PRF-then-XOR composition W(k′

0, . . . , k′
l−1, C) :=

⊕l−1
i=0 Fi(k′

i, C), where Fi’s are PRFs,
is a skPRF in the standard model. Our focus now is not on combiners and as the use of our instances
is dynamic (i.e., the depth can vary), this does not work for UPIBE. Here we need to require that all
instances are CCA secure. Nevertheless, as we discuss below, the use of an skPRF still gives advantages
when it comes to standard model constructions.

Achieving CCA-secure IBE. While CCA security can be easily achieved in the ROM by starting from
a CPA-secure (bounded-collusion) IBE and applying the FO transform, the overall overhead due to the
FO is identical when directly applying FO (as discussed above). However, we can obtain CCA-secure
bounded-depth UPIBE in the standard model when relying on an IBE scheme that directly provides
CCA security in the standard model (e.g,. [Gen06] or the CCA-secure version of the bounded-collusion
IBE in [DKXY02]). Alternatively, if one accepts that the IBEs are replaced by CPA-secure depth 2
HIBEs, one can simply use the BCHK compiler [CHK04, BCHK07].

Now, we will show that the bounded-depth UPIBE protocol from Figure 3 is CCA-secure when the
underlying bounded-collusion IBE IE′ is CCA-secure (e.g., [DKXY02]) and the core function W is based
on a split-key pseudorandom function F with n = L (cf. Appendix A for the definition). For reasons that
we will discuss below, we include a special KEM key k̂ and a special ciphertext ĉ into ek of the UPIBE
protocol IE in order to “pad” calls to W to always take L inputs (for all cases where depth l < L).

Theorem 4. Bounded-depth UPIBE protocol IE from Figure 3 offers adaptive key indistinguishabil-
ity under chosen-ciphertext attacks in the standard model. More precisely, for every adaptive chosen-
ciphertext adversary A attacking protocol IE in games INDb

IE according to Definition 1 with parame-
ters (L, λ, D = 1), there exists an adversary BG attacking PRG G according to Definition 3, an adver-
sary BW against the split-key pseudorandomness of W according to Definition 2, and an adaptive chosen-
ciphertext adversary BIE′ attacking bounded-collusion IBE IE′ in games INDb

IE′ according to Definition 1
with parameters (L′, λ′, D′) = (1, λ+1, 2) such that Advind

IE (A) ≤ qGenL2 ·
(

qGenqChallL ·Advind
G (BG) + 1

)
+

2qGenqChallL ·
(

qChall ·Advpr
Fi

(BW) + Advind
IE′ (BIE′)

)
, where qChall and qGen are the number of queries to

oracle Chall and Gen by adversary A, and the running times of BG, BW, and BIE′ is about that of A.

Security Proof Overview. The strategy for the proof is analogous to that of Theorem 1, but we will
proceed in a sequence of Games moving from the game IND0

IE to IND1
IE, which allows us to follow the

strategy by Giacon et al. [GHP18]. In contrast to their proof, in our case all instances are required to be
CCA secure. This is since we require CCA security of the underlying IBE IE′ at the branching positions of
identities that are asked to the challenge oracle, which can be placed at any of the L positions adaptively.
We need to take some care when using the pseudorandomness of the split-key pseudorandom function
for W, as we use n = L but the number of required inputs vary with the actual depth of the identities l.
Therefore, we always use L inputs for calls to W where for the L − l rightmost inputs we simply use a
fixed key k̂ and ciphertext ĉ (we will not make this fact explicit in the proof). We provide a formal proof
in Appendix C.1.
13 We would sample a random key k and derive (r0, . . . , rl−1, k′) = G(k) from a random oracle G and encapsulate

ki with randomness ri for the i’th instance such that K = k0 ⊕ . . . ⊕ kl−1 and then use k′ as the overall
encapsulation key.
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5.2 Unbounded-depth UPIBE

For the same reasons as discussed in Section 5.1 we prefer to avoid a generic use of the FO transform
for proving CCA security of our unbounded-depth UPIBE. Unfortunately, the generic skPRF approach
pursued in Section 5.1 requires an a priori bound on the depth, which is not the case for unbounded-depth
UPIBE.

Consequently, although we follow the same overall idea, as already mentioned in Figure 4, we in-
stantiate the core function W directly by a random oracle H⋆, i.e., derive the overall key as K ←
H⋆(k1, . . . , kl, c1, . . . , cl) where (ki, ci) are the encapsulation outputs of the chosen-ciphertext secure
bounded HIBE. Since our focus is on efficiency, and the strategy to prove Theorem 3 already requires the
ROM, this seems to be a meaningful choice. For CCA security of the single ciphertexts of the underlying
bounded-depth HIBE, the most efficient approach is a use of the BCHK compiler [CHK04, BCHK07].
This yields a very flexible approach as due to the choice of the required strongly secure signature scheme
there are many performance and bandwidth trade-offs available (see also Section 7). Using this strategy
we can show the following for our unbounded-depth UPIBE.

Theorem 5. Adjusting unbounded-depth UPIBE protocol IE from Figure 4 as described in Section 4.1
offers adaptive key indistinguishability under chosen-ciphertext attacks in the random oracle model. More
precisely, let H and H⋆ be random oracles, then for every adaptive chosen-ciphertext adversary A attacking
protocol IE in games INDb

IE according to Definition 1 with parameters (L = ∞, λ, D = 1), there exists
a selective chosen-ciphertext adversary B attacking bounded-depth HIBE IE′ in games INDb

IE′ according
to Definition 1 with parameters (L′, λ′, D′) = (⌈log(2κ/ε)⌉ + ε, λ + 1, 2) such that Advind

IE (A) ≤ qGen ·
qChall · ((llong)2 · (qH)ε) ·

(
Advind

IE′ (B) + qChall·qH⋆

|K|

)
where κ is the security parameter, ε is the construction’s

epoch-depth parameter, qChall, qGen, qH and qH⋆ are queries to oracles Chall, Gen and random oracles
H and H⋆ by adversary A, respectively, llong is the level-depth of the longest identity string queried to
oracle Chall by adversary A, and the running time of B is about that of A.

Security Proof Overview. The proof of Theorem 5 is very similar to that of Theorem 3 and the main
difference to the CCA secure bounded-depth UPIBE, we do not use the split-key pseudorandomness of
W, but directly model it as a random oracle. This simplifies the proof significantly, as we can replace
the keys obtained from calls to the challenge oracle simply via a modification of the random oracle
simulation and then bounding the probability of detecting this departure. We provide a formal proof in
Appendix C.2.

6 Key-Updatable KEM from UPIBE

A Key-Updatable Key Encapsulation Mechanism (KU-KEM) [JS18, PR18b] is a KEM K = (K.gen,
K.enc, K.dec, K.up) with additional update algorithms K.up for encapsulation keys and decapsulation
keys. The computation of each update ek ′ ←$ K.up(ek, ad) resp. dk ′ ←$ K.up(dk, ad) is determined
by a bit string ad that is arbitrarily chosen by the user. One can think of these update bit strings as
new information (aka. associated data) that is added to the context of the ongoing session. Updates of
encapsulation keys and decapsulation keys can be conducted independently without information being
transmitted between holders of encapsulation and decapsulation key. The feature of independent updates
with respect to bit strings constitutes the crucial difference to significantly weaker notions like Updatable
PKE [JMM19a, DKW21] that offer more efficient instantiations. We refer the interested reader to a
discussion by Balli et al. [BRV20] who elaborate on the shortcomings of Updatable PKE in the context
of strongly secure messaging.

As long as both components of a KU-KEM key pair are updated with respect to the same bit strings—
meaning, their context is updated compatibly—, the key pair remains compatible. More precisely, a
generated pair consisting of encapsulation key and decapsulation key remains compatible if the list of bit
strings for updates applied on the encapsulation key equals the list of bit strings for updates applied on
the decapsulation key. We follow the slightly stronger variant of KU-KEM by Balli et al. [BRV20] that
furthermore requires for compatibility of a key pair that the list of bit strings for updates together with
the list of sent and received encapsulation ciphertexts equals on both sides.

For security of KU-KEM, two goals beyond pure key-indistinguishability are required: (1) Forward-
secrecy, meaning that an updated future version of the current decapsulation key can be exposed to an
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adversary without harming confidentiality of ciphertexts produced with a current or previous (compat-
ible) version of the corresponding encapsulation key—in short, old ciphertexts remain secure if future
decapsulation keys are exposed; (2) Effective divergence, meaning that an incompatible decapsulation
key can be exposed to an adversary without harming confidentiality of ciphertexts produced with the
corresponding (incompatible) encapsulation key—in short, any difference in update bit strings makes
encapsulation key and decapsulation key fully independent.

KU-KEM is a special form of UPIBE where KU-KEM update bit strings are implemented via UPIBE
identity sub-strings, KU-KEM decapsulation key updates are realized via UPIBE delegations, and KU-
KEM encapsulation key updates are realized via UPIBE derivations. The construction of KU-KEM
from UPIBE is, therefore, straight forward: K.gen := IE.gen; K.up(ek, ad) := IE.der(ek, ad = id) resp.
K.up(dk, ad) := IE.del(dk, ad = id); K.enc(ek) executes IE.enc(ek, ϵ) and updates ek via IE.der(ek, ad =
c); K.dec(dk, c) executes IE.dec(dk, c) and updates dk via IE.del(dk, ad = c). (Pseudo-code is given in
Figure 5.) This construction was first proposed by Poettering and Rösler [PR18b] and slightly adapted
in other works [JS18, BRV20]. Yet, we are the first to reduce the underlying assumption from general
unbounded-depth HIBE to unbounded-depth UPIBE.

Proc K.gen
00 (ekIE, dkIE)←$ IE.gen
01 Return (ekIE, dkIE)

Proc K.up(ek, ad)
02 ek ← IE.der(ekIE, ad)
03 Return ek

Proc K.enc(ek)
04 (c, k)←$ IE.enc(ekIE, ϵ)
05 ek ← IE.der(ekIE, c)
06 Return (ek, c, k)

Proc K.up(dk, ad)
07 dk ←$ IE.del(dk, ad)
08 Return dk

Proc K.dec(dk, c)
09 k ← IE.dec(dk, c)
10 dk ←$ IE.del(dk, c)
11 Return (dk, k)

Fig. 5: Generic construction of KU-KEM K from a UPIBE scheme IE. This construction (almost) equally appears
in [PR18b, JS18, BRV20] but these variants assume full HIBE functionality and security for IE instead.

We defer the formal definition of KU-KEM by Balli et al. [BRV20] as well as our proof of Theorem 6
to Appendix D. This proof tightly reduces the security of the KU-KEM construction to adaptive chosen-
ciphertext security of the underlying unbounded-depth UPIBE scheme.

Theorem 6. KU-KEM protocol K from Figure 5 offers one-wayness of encapsulated keys. More pre-
cisely, for every adaptive chosen-ciphertext adversary A attacking protocol K in game KUOWK from
Figure 9, there exists an adaptive chosen-ciphertext adversary B attacking unbounded-depth HIBE IE in
games INDb

IE according to Definition 1 with parameters (L′, λ′, D′) = (∞, λ, 1) such that Advkuow
K (A) ≤

Advind
IE (B), where the running time of B is about that of A.

Necessity of UPIBE for KU-KEM. Despite a subtle syntactical difference between these two primitives,
the chosen KU-KEM notion is (likely) equivalent to UPIBE. The difference is that UPIBE encapsulation
and decapsulation are stateless but their KU-KEM counterparts are stateful. More concretely, KU-KEM
en- and decapsulation output and, thereby, may change the input en- resp. decapsulation key. In contrast,
UPIBE encapsulation and decapsulation only take these keys as inputs (i.e., without changing them).

To prove that KU-KEM implies UPIBE, a direct simulation of UPIBE en- resp. decapsulation based
on KU-KEM en- resp. decapsulation would, therefore, need to ignore changes applied to the KU-KEM
keys. This works well for a simulating a single encapsulation (aka. challenge) query and a single decap-
sulation query, resp. Moreover, using a standard hybrid argument, one can amplify the single permitted
challenge query for the multi-challenge setting. However, lifting the limitation of only a single decapsu-
lation query seems more complicated. Thus, the described approach would (only) prove that KU-KEM
implies 1-CCA secure UPIBE. We leave a full proof as an open problem for future work.

7 Evaluation

Our evaluation considers (asymptotic and concrete) parameter sizes of one-way CCA (formally, KUOW)
secure KU-KEMs built trivially from unbounded-depth HIBEs on the one side and KU-KEMs based
on our UPIBE construction that relies on bounded-depth HIBEs from Section 5.2 on the other side. A
compact summary of how UPIBE variable sizes relate generically to the underlying HIBE variable sizes is
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given in Appendix D.1. Before starting the concrete analysis, we note that CCA security of (un)bounded-
depth HIBEs can be generically achieved efficiently via the BCHK transform [CHK04, BCHK07] using
a strongly secure one-time-signature scheme.14

Since we have applicability and performance in mind for our application towards optimally secure
messaging protocols, we include bounded-depth HIBE schemes that are secure in the random-oracle
model (ROM). Moreover, we looked at all applicable unbounded-depth HIBEs and selected three con-
structions [Lew12, LP20, GCTC16] that suit the application we have in mind best. Depending on the
concrete bounded-depth HIBE scheme, it is a common technique to reduce public parameter sizes in
the ROM [BBG05]. This, however, does not work generically. Particularly, in the HIBE scheme by
Gong et al. (GCTC) [GCTC16], the underlying encapsulation key structure seemingly prevents this
form of parameter compression. The same seems to be the case for Langrehr-Pan (LP) [LP20], while
Lewko (L) [Lew12] already has compact encapsulation keys (however, with a large constant).

For our KU-KEM construction via the UPIBE paradigm (where we only require a selectively se-
cure HIBE with polynomially bounded depth), the strongest candidate is the Boneh-Boyen-Goh (BBG)
HIBE [BBG05]. Here, encapsulation key size is only two group elements using the ROM. However, we
cannot utilize the ROM to reduce the size of BBG decapsulation keys since these keys require a certain
structure. Hence, the BBG HIBE has linear-size decapsulation keys, but enjoys constant-size encapsula-
tion keys and ciphertexts (all in the maximal depth).

By considering the most efficient (un)bounded-depth HIBE schemes, we conduct a fair comparison
between KU-KEMs from trivial UPIBE via unbounded-depth HIBE and KU-KEMs from our novel
UPIBE construction. In Table 1, we list CCA secure KU-KEMs from CCA secure (un)bounded-depth
HIBEs with relevant size and performance parameters.

UPIBE Via HIBE Encapsulation key size Ciphertext size Decapsulation key size Model

Triv. L [Lew12] 60|G1|+ 2|GT |+ lλ (10l + 12)|G1| (10l + 60)|G2| StM

Triv. LP [LP20] (2γ + 4)|G1|+ (2γ + 6)|G2|+ lλ (7l + 11)|G1| (7l + 2)|G2| StM

Triv. GCTC [GCTC16] (3n + 9 + ⌈l/n⌉)|G1|+ 3|GT | (9⌈(l + 1)/n⌉+ 2)|G1| ((9 + 3n)⌈l/n⌉+ 3n + 9− 3l)|G2| StM

Ours BBG [BBG05] (1 + ⌈l/ε⌉)|G1|+ 1|G2| (3⌈l/ε⌉)|G1| (O(α · (α + ε)) + ⌈l/ε⌉+ α)|G2| ROM

UPIBE Via HIBE Key generation (# exp.) Encapsulation (# exp.) Decapsulation (# exp., # pairings) Ass.

Triv. L [Lew12] 60 (G1), 80 (G2), 2 (GT ) 60l + 62 (G1), 2 (GT ) (61l (G2), 10l + 1) DLIN

Triv. LP [LP20] (2γ + 4) (G1), (2γ + 6) (G2) (7l + 11) (G2), 2 (GT ) ((7(l + 1) + 2) (G2), (7l + 2) + 1) SXDH

Triv. GCTC [GCTC16] 6(n + 3) (G2), 1 (GT ) (15⌈l/n⌉+ 3l) (G1), 3 (GT ) (15⌈l/n⌉+ 3l (G2), 9⌈l/n⌉+ 1) SXDH

Ours BBG [BBG05] 1 (G1), 1 (G2) ((⌈l/ε⌉+ 5) (G1), 1 (GT ) (ε + α/ε + 2) (G2), 2⌈l/ε⌉) BDHE

Table 1: Comparison of CCA secure KU-KEMs with parameter sizes and performance instantiated from
the standard-model unbounded-depth HIBEs L [Lew12], LP [LP20], and GCTC [GCTC16] (trivially) and the
bounded-depth HIBE BBG [BBG05] (via our KU-KEM-from-UPIBE approach from Section 6). Here, α+ε is the
maximum level (and α can be considered linear in the security parameter), l is the current number of key updates,
γ is the output bit length of a collision-resistant hash function, and ε is the epoch-depth in our UPIBE. n ≥ 1 is
the performance parameter of GCTC [GCTC16]. We use the type-3 pairing setting with e : G1 × G2 → GT for
prime-order groups G1, G2, and GT . Here, we do not consider the tightness of the reductions to the underlying
assumptions.

We see that all but one known trivial KU-KEM instantiations via [Lew12, GCTC16, LP20] have
ciphertext and decapsulation-key sizes that scale linearly in the number of delegations (which corresponds
to KU-KEM key updates). Only GCTC [GCTC16] has a trade-off for ciphertext and key sizes via their
performance parameter n. With our non-trivial UPIBE approach from bounded-depth HIBEs, taking the
BBG scheme [BBG05] as instantiation, we obtain ciphertext sizes that only scale linearly in the number
of epochs, which can be adjusted by the depth-parameter ε as described in Section 4. Moreover, our
KU-KEM approach via BBG enjoys very short encapsulation keys. This yields a significant reduction in
encapsulation key and ciphertext sizes for KU-KEMs compared to other approaches (see Table 1).
14 In our concrete setting, for standard-model HIBEs, we use Groth’s pairing-free signature scheme [Gro06] while

for HIBEs in the ROM, we use Schnorr signatures [Sch90].
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Fig. 6: Comparison of CCA secure KU-KEM encapsulation and decapsulation key as well as ciphertext sizes in
kilobytes (KB) from (un)bounded-depth HIBEs. For the pairing group, we chose BLS12-381 (which gives around
128 bit security); this means per element in G1, G2, and GT , we have 382, 764, 4572 bits.

Detailed Analysis. For our following analysis concerning parameter sizes and performance, from the three
trivial standard-model KU-KEMs based on unbounded-depth HIBEs [Lew12, GCTC16, LP20], we chose
GCTC [GCTC16] which outperforms the other two—particularly because of their scalability parameter
n that allows to trade-off ciphertext and encapsulation/decapsulation key sizes.15 Hence, the GCTC
scheme is the best suitable reference instantiation of KU-KEM via the trivial UPIBE construction for a
concrete comparison regarding the applications we have in mind.

Application Requirements. Our focus is on short ciphertexts and encapsulations keys (for bandwidth
reasons) while on the sender and the receiver sides, we want fast encapsulation and fast decapsulation,
respectively. As we argue now, our non-trivial UPIBE approach with BBG outperforms the trivial KU-
KEM construction with GCTC in all of the metrics mentioned above. We recall that our KU-KEM
decapsulation is based on the actual ciphertext decapsulation and an additional key delegation of the
underlying HIBE. Moreover, we can compress the identity string via algorithm IE.der to compute an
identity-specific encapsulation key for BBG and GCTC. We currently do not see how to perform this
compression for [Lew12, LP20].

Bandwidth Comparison. We observe that the performance parameter n in GCTC plays a similar role as
our depth parameter ε in UPIBE; hence, we compare it at the same level. As illustrative examples, we
choose ε = n = 6 and ε = n = 40. From the graphs in Figures 6 and 7, we see that the encapsulation
key for the BBG-based KU-KEM is very short. The ciphertext size of all KU-KEMs scales with ε and n.
Our BBG-based approach has the shortest ciphertext sizes of all. For decapsulation key sizes, the GCTC
approach is more efficient; however, as we argued with the application of secure messaging in mind,
this is tolerable. Hence, concerning parameter sizes, we conclude that the BBG approach has shorter

15 Essentially, GCTC [GCTC16] improves Lewko [Lew12] towards shorter ciphertext sizes and LP [LP20] deals
with tightness of the Lewko scheme [Lew12], at the expense of rather large encapsulation keys (see γ-factor).
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Fig. 7: Comparison of CCA secure KU-KEM key generation, encapsulation, and decapsulation performance from
un-/bounded-depth HIBEs. We estimate that a G1 exponentiation is 10 times more efficient than a pairing.

ciphertexts and smaller encapsulation key at the expense of slightly larger decapsulation keys compared
to the trivial GCTC-based KU-KEM approach.

Computation Comparison. In terms of computation complexity (Figure 7), we see that the BBG approach
significantly outperforms the GCTC-based approach for encapsulation and decapsulation. The (initial)
key generation for the BBG-based and for GCTC-based approaches are comparable efficiency-wise and
constant in the number of key updates; our approach needs α many exponentiations while GCTC’s
number of exponentiations scales linearly in their performance parameter n. For encapsulation and
decapsulation (where latter uses key delegation and decryption of the underlying HIBE), the BBG-based
KU-KEM is more efficient; particularly, in situations when a large number of key updates is needed.
See that the larger ε, the more efficient is the decapsulation of the BBG-based KU-KEM approach.
The reason is that the BBG HIBE ciphertexts are of constant size and need only a constant number of
pairings per ciphertext for decryption.

Summary. In conclusion, a KU-KEM via our unbounded-depth UPIBE construction, instantiated with
the BBG HIBE, has shorter ciphertext and encapsulation-key sizes compared to the GCTC-based so-
lution with analogous parameter choices (being the most efficient unbounded-depth HIBE known for
trivial UPIBE) at the expense of a slightly larger decapsulation key. Additionally, the decapsulation and,
particularly, the encapsulation of the BBG-based KU-KEM are significantly more efficient compared
to the GCTC-based trivial KU-KEM. Hence, for our envisioned application of strongly secure messag-
ing, we can tolerate slightly larger decapsulation keys while achieving more efficient decapsulation and
encapsulation as those operations happen rather often in KU-KEMs.
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A Basic Definitions

Split-Key Pseudorandom Functions. A split-key pseudoranom function [GHP18] is a function that be-
haves like a random function if at least one component of its key is picked uniformly at random (while the
other components may be known or even chosen by the adversary). In the following let K = K1× . . .×Kn

be finite key, X a finite input and Y a finite output space. We consider a function F : K × X → Y and
for each i ∈ [n] associate to each adversary A its advantage Advpr

F,i(A).

Definition 2 ( [GHP18]). We say that F is a split-key pseudorandom function (skPRF) if the advan-
tages Advpr

F,i(A) := |Pr[PR0
i (A) = 1] − Pr[PR1

i (A) = 1]| are negligible for all PPT adversaries, where
the experiment is given in Figure 8.

23

https://eprint.iacr.org/2018/296


Game PRb
i (A)

00 X ← ∅
01 ki ←$ Ki

02 b′ ←$ AEval

03 Stop with b′

Oracle Eval(k′, x)
04 If x ∈ X : Abort
05 X ← X ∪ {x}
06 k1 . . . ki−1ki+1 . . . kn ← k′

07 y ← F (k1 . . . ki . . . kn, x)
08 y0 ← y; y1 ←$ Y
09 Return yb

Fig. 8: Security experiment PRb
i , 1 ≤ i ≤ n, modeling the split-key pseudorandomness of function F .

Pseudo-Random Generator. We use the following standard security notion for PRGs.

Definition 3. The advantage of an adversary A in breaking the security of a pseudo-random gen-
erator G : {0, 1}n → {0, 1}m with l outputs is defined as Advind

G := |Pr[AG(G(s)) = 1 : s ←$
{0, 1}n]− Pr[AG(r) = 1 : r ←$ {0, 1}m]|.

B Full Proofs for UPIBE Constructions

Our proofs of theorems 1, 2, and 3 are sketched on a high level in sections 3, 4, and 4.1 already. These
proofs are conceptually very similar but differ both in the guessing step that induces the loss factor and
in the reduction to multi-instance vs. single-instance assumptions. In particular, the selective-to-adaptive
security proof in Appendix B.3 provides an evolved guessing technique.

B.1 Bounded-Depth UPIBE

We proceed with our formal proof of Theorem 1 for multi-instance security of our bounded-depth UPIBE
from Figure 3 in three game-hops.

Hybrid 1: Replacing PRG Outputs. Game 1 implements a hybrid argument of qGen steps, that internally
consist of up to L sub-steps each, where qGen is the number of queries to oracle GenIE by adversary A.
In every step ι ∈ [qGen], oracle ExpIE is changed as follows: At the beginning of each step, a variable
l ∈ [L] is randomly sampled. If the instance generated with the ιth query to oracle GenIE is ever exposed,
then oracle ExpIE aborts on the following condition: The number of delegations previously applied to
this instance’s exposed UPIBE decapsulation key differs from l. If oracle ExpIE does not abort, step ι
internally proceeds in l sub-steps in which oracles GenIE and DelIE are changed as follows: For the first l
delegation steps of this instance, instead of computing forwarding key fk and seed s as the PRG output,
both values are sampled uniformly at random. An adversary that successfully distinguishes between two
subsequent sub-steps is turned directly into an adversary BG that breaks PRG G, which leads to a
loss bounded by Advind

G (BG). The number of sub-steps is l, which is at most L, leading to a loss of L.
Furthermore, the loss, induced by guessing the correct number of delegations that are conducted before
an exposure, is bounded by L. Having qGen steps in total for this hybrid leads to full loss of:

qGen · L2 ·Advind
G (BG).

At the end of this hybrid, all IBE main key pairs, whose IBE main decapsulation keys are never
exposed, are freshly generated. The remaining IBE main key pairs, in particular those that are exposed,
are generated as in the original construction.

Hybrid 2: Guessing Branched Sub-String. Game 2 implements a hybrid argument of qChall steps, where
qChall is the number of queries to oracle ChallIE by adversary A. In every sub-step ι ∈ [qChall], the ιth
query to oracle ChallIE and a corresponding query to oracle ExpIE are changed. Queries to oracles GenIE
and DelIE are, in contrast, processed as at the end of the previous hybrid.

At the beginning of each hybrid step, integer i∗ is sampled uniformly at random from space [qGen],
where qGen is the overall number of queries to oracle GenIE. If the ιth query to oracle ChallIE has inputs
(i, id) such that i ̸= i∗, then Game 2 in sub-step ι aborts.

Furthermore, if the ιth query to oracle ChallIE with inputs (i, id) is issued as long as XPi = ∅, ora-
cle ChallIE changes its behavior for this query as follows: Oracle ChallIE samples an integer l∗ uniformly
at random from space [L] and stores (i, id, l∗) as a guess. On the first corresponding subsequent successful
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query to oracle ExpIE (i.e., when set XPi initially becomes non-empty) with inputs (i, id ′), Game 2 in
sub-step ι aborts if this prior guess was wrong. That is, if a guess of the form (i, id, l∗) was stored, such
that id and id ′ equal in the l∗th identity sub-string, Game 2 in sub-step ι aborts, unless id is a true prefix
of id ′. More precisely, let id = (id0, . . . , id |id|/λ−1) and id ′ = (id ′

0, . . . , id ′
|id′|/λ−1) be concatenations of

sub-strings, such that all sub-strings idj and id ′
j are in set {0, 1}λ. Then, Game 2 in sub-step ι aborts if

id l∗ = id ′
l∗ unless for all j ∈ [|id|/λ] it holds that idj = id ′

j .
We observe that all valid challenges that target identity string id must differ from the exposed

decapsulation key’s identity string id ′ in some sub-string, unless id is a true prefix of id ′. Hence, the
guess in the ιth query to oracle ChallIE is correct with probability at least 1/L, leading to a loss factor
of L per step in this hybrid argument. Furthermore, the guess at the beginning of a hybrid sub-step
about the instance targeted in the ιth query to oracle ChallIE is correct with probability at least 1/qGen,
leading to a loss factor of qGen per step in this hybrid argument. Therefore, the entire hybrid argument
induces a loss factor of at most:

qGen · qChall · L,

where qGen and qChall are the numbers of queries to oracles GenIE and ChallIE by adversary A, respec-
tively.

Enhanced Hybrid 2: Only Guessing Necessary Information. By sampling variable l∗ from set [|id|/λ],
one can more precisely guess the index of the branching sub-string, where id is the challenge identity
string for instance i in the ιth query. This reduces the loss factor from qChall · L to qChall · llong, where
llong is the level-depth of the longest identity string id long queried to oracle ChallIE by adversary A
(i.e., llong = |id long|/λ). This enhancement becomes (more) important when proving security of our
unbounded-depth UPIBE in Appendix B.2.

Game 3 in Hybrid 2. After guessing the instance and the branching level for the challenge query targeted
by current hybrid step ι, we randomize the challenge keys in each of the first ι queries to oracle ChallIE
in Game 3. More concretely, in Game 3 the first ι − 1 queries to oracle ChallIE output a randomly
sampled challenge key. In addition to that, the ιth query to oracle ChallIE replaces the l∗th component
of the challenge key with a randomly sampled key component. That is, if l∗ was sampled in prior
Game 2, then this is the branching level in which Game 3 embeds a random key component of the ιth
challenge. If, otherwise, l∗ was not sampled for the ιth query in Game 2 because a prior exposure of
the corresponding decapsulation key already fixed the branching level, then this fixed branching level
determines the component of the challenge key that is randomly sampled for the output of this ιth
challenge query. All subsequent queries to oracle ChallIE remain unchanged in the ιth step of Hybrid 2
in Game 3.

Reduction. Our reduction BIE′ uses an adversary that successfully distinguishes between hybrid steps ι−
1 and ι in Game 3 to succeed in game INDIE′ against the underlying bounded-collusion IBE. This
reduction simulates the l∗th execution of algorithm IE.gen′ in the i∗th query to oracle GenIE via a
query to oracle GenIE′ ; all remaining key pairs (of other instances as well as other levels of instance
i∗) are generated honestly by the reduction itself. The reduction simulates both potential executions of
algorithm IE.del′ in oracle DelIE for instance i∗’s level l∗ via queries to oracle DelIE′ . Furthermore, it
obtains a potentially exposed delegated IBE decapsulation key for level l∗ in a query to oracle ExpIE
with input instance i∗ via a query to oracle ExpIE′ .

For the ιth query to oracle ChallIE with inputs (i∗, id), reduction BIE′ either uses guess (i∗, id, l∗) from
Game 2 or, if XPi∗ ̸= ∅, identifies branching level l∗ directly (by comparing input id and the exposed
identity string) to assemble the challenge ciphertext. Let id = (id0, . . . , id |id|/λ−1) be a concatenation of
sub-strings, such that all sub-strings idj are in set {0, 1}λ. Reduction BIE′ issues a query to oracle ChallIE′

with inputs (1, id l∗∥suf ), where suf = 0 if l∗ = |id|/λ−1, and suf = 1 otherwise. Oracle ChallIE′ responds
with a ciphertext-key pair (c∗, k∗). Ciphertext c∗ replaces c′

l∗ in the concatenated UPIBE challenge
ciphertext and key k∗ replaces k′

l∗ in the XORed UPIBE challenge key for the simulation of the l∗th
execution of algorithm IE.enc′ in oracle ChallIE. (All remaining IBE ciphertexts and keys in a challenge
query are computed honestly by BIE′ itself.) Thus, only IBE ciphertext and key of branching level l∗ are
replaced in the composed UPIBE ciphertext and key, respectively. All challenge keys for the first ι − 1
queries to oracle ChallIE were replaced by random keys in hybrid step ι− 1 already.
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Finally, we observe that the only difference between sub-steps ι − 1 and ι is that the ιth query to
oracle ChallIE returns a key with a single randomized key component. This randomization matches the
behavior of the embedded IBE challenge. We now argue that this embedded IBE challenge remains valid
if the ιth query to oracle ChallIE remains valid, too. This means that a successful distinguisher between
sub-steps ι− 1 and ι indeed successfully solves the embedded IBE challenge.

Note that UPIBE challenges are enforced to remain valid by security experiment INDIE. This enforce-
ment forbids the exposure of a UPIBE decapsulation key with delegation identity string id ′ if there exists
a challenge with identity string id such that id ′ is a prefix of id. Our reduction uses this mechanism
by identifying the (IBE) identity sub-string in which id ′ and id differ. This difference is either based
on a real branch in UPIBE identity strings id ′ and id, or based on a special branch in the underlying
IBE identity sub-string. (The latter is induced if id is a prefix of id ′, such that the last IBE identity
sub-string of UPIBE string id has an attached special suffix 0-bit.) On exposure of UPIBE decapsulation
key with id ′ = (id ′

0, . . . , id ′
|id′|/λ−1), only those IBE decapsulation keys are revealed that were delegated

to (encoded variants of) sub-strings of id ′. That is, for UPIBE instance i∗, IBE decapsulation keys of
levels j delegated to identity sub-string id ′

j∥suf are exposed, where suf = 1 if j∗ ̸= |id ′|/λ − 1, and
suf = 0 otherwise. That means, IBE challenges that were directed to different identity sub-strings (on
the branching level aka. of the branching IBE instance) remain valid because the corresponding IBE
decapsulation keys were not revealed. Thus, the embedded IBE challenge remains valid.

Consequently, a successful distinguisher between two subsequent hybrid sub-steps is reduced to the
security of the underlying IBE. After all hybrid sub-steps, all queried challenges have random keys such
that output bit b′ of adversary A is independent of challenge bit b, which concludes our proof with:

Advind
IE (A) ≤ qGen · L2 ·Advind

G (BG) + qGen · qChall · L ·Advind
IE′ (BIE′)

⊓⊔

B.2 Unbounded-Depth UPIBE

We proceed with our formal proof of Theorem 2 for multi-instance security of our unbounded-depth
UPIBE from Figure 4 in two game-hops.

Hybrid: Guessing Branched Sub-String. Game 1 implements a hybrid argument of qChall steps, where
qChall is the number of queries to oracle ChallIE by adversary A. In every sub-step ι ∈ [qChall], the ιth
query to oracle ChallIE and a corresponding query to oracle ExpIE are changed. Queries to oracles GenIE
and DelIE are, in contrast, processed exactly as in the original Game INDIE.

At the beginning of each hybrid step, integer i∗ is sampled uniformly at random from space [qGen],
where qGen is the overall number of queries to oracle GenIE. If the ιth query to oracle ChallIE has inputs
(i, id) such that i ̸= i∗, then Game 1 in sub-step ι aborts.

Furthermore, if the ιth query to oracle ChallIE with inputs (i, id) is issued as long as XPi = ∅, ora-
cle ChallIE changes its behavior for this query as follows: Oracle ChallIE samples an integer e∗ uniformly
at random from space [⌈|id|/(ε·λ)⌉] and stores (i, id, e∗) as a guess. On the first corresponding subsequent
successful query to oracle ExpIE (i.e., when set XPi initially becomes non-empty) with inputs (i, id ′),
Game 1 in sub-step ι aborts if this prior guess was wrong. That is, if a guess of the form (i, id, e∗) was
stored, such that id and id ′ equal in the e∗th epoch sub-string, Game 1 in sub-step ι aborts, unless id is
a true prefix of id ′. More precisely, let id = (id0, . . . , id⌈|id|/(ε·λ)⌉−1) and id ′ = (id ′

0, . . . , id ′
⌈|id′|/(ε·λ)⌉−1)

be concatenations of epoch sub-strings, such that all sub-strings idj and id ′
j except for the respective last

ones are in set {0, 1}ε·λ; The last epoch sub-strings id⌈|id|/(ε·λ)⌉−1 and id ′
⌈|id′|/(ε·λ)⌉−1 are in set {0, 1}l·λ

and {0, 1}l∗·λ, respectively, where l ≤ ε and l∗ ≤ ε. Then, Game 1 in sub-step ι aborts if ide∗ = id ′
e∗

unless for all j ∈ [⌈|id|/(ε · λ)⌉] it holds that idj = id ′
j .

We observe that all valid challenges that target identity string id must differ from the exposed
decapsulation key’s identity string id ′ in some epoch sub-string, unless id is a true prefix of id ′. Hence,
the guess in the ιth query to oracle ChallIE is correct with probability at least 1/⌈ε/llong⌉, where llong is the
level-depth of the longest identity string queried to oracle ChallIE by adversary A (i.e., llong = |id long|/λ).
Thus, the loss factor induced per step in this hybrid argument is ⌈ε/llong⌉. Furthermore, the guess at
the beginning of a hybrid sub-step about the instance targeted in the ιth query to oracle ChallIE is
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correct with probability at least 1/qGen, leading to a loss factor of qGen per step in this hybrid argument.
Therefore, the entire hybrid argument induces a loss factor of at most:

qGen · qChall · ⌈ε/llong⌉,

where qGen and qChall are the numbers of queries to oracles GenIE and ChallIE by adversary A, respec-
tively.

Game 2 in Hybrid. After guessing the instance and the branching epoch for the challenge query targeted
by current hybrid step ι, we randomize the challenge keys in each of the first ι queries to oracle ChallIE in
Game 2. More concretely, in Game 2 the first ι− 1 queries to oracle ChallIE output a randomly sampled
challenge key. In addition to that, the ιth query to oracle ChallIE replaces the e∗th epoch component of
the challenge key with a randomly sampled key component. That is, if e∗ was sampled in prior Game 1,
then this is the branching epoch in which Game 2 embeds a random key component of the ιth challenge. If,
otherwise, e∗ was not sampled for the ιth query in Game 1 because a prior exposure of the corresponding
decapsulation key already fixed the branching epoch, then this fixed branching epoch determines the
component of the challenge key that is randomly sampled for the output of this ιth challenge query. All
subsequent queries to oracle ChallIE remain unchanged in the ιth step of Hybrid 1 in Game 2.

Reduction. Our reduction B uses an adversary that successfully distinguishes between hybrid steps ι− 1
and ι in Game 2 to succeed in game INDIE′ against the underlying bounded-depth HIBE. This reduction
simulates the execution of algorithm IE.gen′ in the i∗th query to oracle GenIE via a query to oracle GenIE′ ;
all remaining key pairs (of other UPIBE instances) are generated honestly by the reduction itself. (Note
that, for the i∗th UPIBE instance in Game INDIE, reduction B maintains a single HIBE instance in
Game INDIE′ .) The reduction simulates all executions of algorithm IE.del′ in oracle DelIE for instance
i∗ via queries to oracle DelIE′ . Furthermore, it obtains exposed delegated HIBE decapsulation keys for
instance i∗ in a query to oracle ExpIE via a query to oracle ExpIE′ .

For the ιth query to oracle ChallIE with inputs (i∗, id), reduction B either uses guess (i∗, id, e∗) from
Game 1 or, if XPi∗ ̸= ∅, identifies branching epoch e∗ directly (by comparing input id and the exposed
identity string) to assemble the challenge ciphertext. Let id = (id0, . . . , id⌈|id|/(ε·λ)⌉−1) be a concatenation
of epoch sub-strings, such that all sub-strings idj except for the last one are in set {0, 1}ε·λ. Reduction B,
modifies epoch sub-string ide∗ by appending a 1-bit or 0-bit to each level’s sub-string, depending on
whether it is the last level in that epoch, and depending on whether it is the last epoch of the entire
string (see Figure 4 lines 17-19 resp. 25-26). Furthermore, modified epoch sub-string ide∗ is prepended
by a binary encoding of e∗ according to the epoch-progression mechanism (see Figure 4 lines 14-16).
Finally, a query to oracle ChallIE′ with inputs (i, ide∗) is issued, where ide∗ is the modified epoch sub-
string. Oracle ChallIE′ responds with a ciphertext-key pair (c∗, k∗). Ciphertext c∗ replaces c′

e∗ in the
concatenated UPIBE challenge ciphertext and key k∗ replaces k′

e∗ in the XORed UPIBE challenge key
for the simulation of algorithm IE.enc in oracle ChallIE. (All remaining HIBE ciphertexts and keys in this
challenge query are computed honestly by B itself.) Thus, only HIBE ciphertext and key of branching
epoch e∗ are replaced in the composed UPIBE ciphertext and key, respectively. All challenge keys for
the first ι− 1 queries to oracle ChallIE were replaced by random keys in hybrid step ι− 1 already.

Finally, we observe that the only difference between sub-steps ι − 1 and ι is that the ιth query to
oracle ChallIE returns a key with a single randomized key component. This randomization matches the
behavior of the embedded HIBE challenge. We now argue that this embedded HIBE challenge remains
valid if the ιth query to oracle ChallIE remains valid, too. That means that a successful distinguisher
between sub-steps ι− 1 and ι indeed successfully solves the embedded HIBE challenge.

Note that UPIBE challenges are enforced to remain valid by security experiment INDIE. This enforce-
ment forbids the exposure of a UPIBE decapsulation key with delegation identity string id ′ if there exists
a challenge with identity string id such that id ′ is a prefix of id. Our reduction uses this mechanism
by identifying the (HIBE) epoch sub-string in which id ′ and id differ. This difference is either based
on a real branch in UPIBE identity strings id ′ and id, or based on a special branch in the underlying
HIBE identity sub-string. (The latter is induced if id is a prefix of id ′, such that the last HIBE identity
sub-string of UPIBE string id has an attached special suffix 0-bit.)

On exposure of UPIBE decapsulation key with id ′ = (id ′
0, . . . , id ′

⌈|id′|/(ε·λ)⌉−1), the following HIBE
decapsulation keys are revealed: (1) epoch-progression keys for future epochs and (2) multiple ordinary
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keys and one special key that were all delegated to (encoded variants of) epoch sub-strings of id ′. We
observe that any issued HIBE challenge must be embedded in the current or in one of the previous
epochs—with respect to a branch of an exposed UPIBE decapsulation key. This means that no HIBE
challenge is directed to decapsulation keys of descendants of revealed epoch-progression keys. Thus,
neither of the revealed epoch-progression keys invalidates an issued HIBE challenge. Similarly, every
HIBE challenge is directed to an epoch identity sub-string that differs from a revealed HIBE decapsulation
key’s epoch identity sub-string in this epoch (i.e., in the branching epoch). Thus, a HIBE challenge is
neither invalidated due to exposed ordinary or special HIBE decapsulation keys. Hence, the embedded
HIBE challenge remains valid.

Consequently, a successful distinguisher between two subsequent hybrid sub-steps is reduced to the
security of the underlying HIBE. After all hybrid sub-steps, all queried challenges have random keys such
that output bit b′ of adversary A is independent of challenge bit b, which concludes our proof with:

Advind
IE (A) ≤ qGen · qChall · ⌈llong/ε⌉ ·Advind

IE′ (B).

⊓⊔

B.3 Unbounded-Depth UPIBE from Selective Bounded-Depth HIBE

Our proof of Theorem 2 in prior Section B.2 assumes adaptive security of the employed bounded-depth
HIBE. We now relax this assumption to selective security only. Thus, we significantly extend the set of
bounded-depth HIBE schemes from the literature with which we can instantiate our unbounded-depth
UPIBE construction.

Shortcoming of Generic Selective-to-Adaptive-Proof. In order to relax the assumption from adaptive
to selective security, we extend a known technique from the literature [BB04, BBG05]. This technique
generically lifts bounded-depth HIBEs from selective to adaptive security by using a programmable
random oracle: Intuitively, every identity (sub-)string id is hashed by the random oracle and the hash
output H(id) is used as the actual input to the encapsulation and delegation algorithms, respectively.
In the reduction proof, the selective challenge identity sub-strings are programmed as random oracle
outputs. The probability that these outputs are programmed on inputs that form the adaptive challenge
identity is exponential in the depth of the HIBE. Since our UPIBE construction uses a bounded-depth
HIBE where the depth is linear in the security parameter, applying this technique directly leads to a
meaningless result.

Solution: Guess Branch-Epoch First. Due to the way our construction makes use of the underlying
bounded-depth HIBE, we can carefully change the approach from [BB04, BBG05] for relying only on
a selectively secure HIBE. For this purpose, we observe that our proof from Section B.2 always only
relies on the security guarantees of the so called branching epoch. In this epoch, the respective challenge
identity branches off the identity that is delegated with a corresponding (exposed) decapsulation key.
Following our proof strategy from Section B.2, this branching epoch will fix the epoch in which the
underlying (selective) HIBE challenge is embedded.

Epoch-Delegations via Random Oracle. We recall that the generic approach to turn selectively-secure
HIBE into adaptive-secure HIBE simply hashes every identity sub-string id via a random oracle H(id)
before this hash is given as input to HIBE algorithms IE.enc′ and IE.del′ (instead of having the plain
sub-strings id as inputs). We apply the same change to our unbounded-depth UPIBE construction for all
identity sub-strings processed in the lower multi-level epoch component. That is, we implement random
oracle H in the following lines of our construction from Figure 4:

18: id ′ q← H(ide′·ε+d′∥1)
19: id ′ q← H(ide′·ε+ε−1∥0)
26: id ′ q← H(id(e−1)·ε+d′∥1)
56: Dep[e]←$ IE.del′(Dep[e], H(id∥1))
58: dk ′

0 ←$ IE.del′(Dep[e], H(id∥0))
59: dk ′

1 ←$ IE.del′(Dep[e], H(id∥1))
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However, we leave the identity sub-strings of the upper epoch-progression mechanism untouched. Thus,
lines 03-04, 16, 24, and 51-52 remain the same.

The idea behind these changes is as follows: In each hybrid step that covers a single UPIBE challenge,
we guess one epoch at the beginning of Game INDIE. For this targeted epoch, we guess the entire HIBE
identity sub-string. The special property of this guessed epoch is that the UPIBE identity string branches
off the corresponding (potentially) exposed UPIBE decapsulation key’s identity string. By implementing
these guesses in a way that increases their success probability, we can commit to a selective bounded-
depth HIBE challenge identity string at the beginning of underlying HIBE Game IND. Thus, we turn
the adaptive adversary against the UPIBE scheme into a selective adversary. The guess for a UPIBE
challenge consists of two components: (1) the epoch number of the epoch in which the UPIBE challenge
identity string branches of the identity string on decapsulation side and (2) the actual identity sub-strings
in the lower multi-level epoch part for this branching epoch.

Clever Guessing. We start with guessing the UPIBE epoch number in which the challenge identity
branches off its counterpart on the decapsulation side. This guess fixes the branched epoch’s identity
path in the upper epoch-progression mechanism of our UPIBE construction, which induces a polynomial
loss factor per challenge.

Next, we would guess the actual identity sub-strings in the lower multi-level epoch part of our UPIBE
construction for the branching epoch. Instead of guessing these (up to) ε identity sub-strings in plain, we
use the random oracle to increase the probability of guessing correctly. That is, we guess for each of the ε
levels in the branching epoch when their identity sub-string is queried to the random oracle for the first
time. By programming the a priori committed (selective) HIBE identity sub-strings as random oracle
outputs into these ε random oracle queries, we obtain a selective HIBE adversary. The probability of
guessing these random oracle queries correctly for one UPIBE challenge is bounded by 1/(qH)ε, where qH
is the total number of random oracle queries. Using this approach in a hybrid argument to cover all UPIBE
challenges, we obtain a loss factor that is polynomial (and not exponential!) in the security parameter.

We proceed with our formal proof of Theorem 3 for multi-instance security of our unbounded-depth
UPIBE from Figure 4.

Hybrid 1: Instances. Game 1 implements a hybrid argument of qGen steps, where qGen is the number of
queries to oracle GenIE by adversary A. In every step ρ ∈ [qGen], queries to oracles ChallIE and ExpIE are
changed when being directed to instance i = ρ. All remaining queries to these oracles as well as queries
to oracles GenIE and DelIE are processed exactly as in the original Game INDIE. The changed behavior
of oracles ChallIE and ExpIE is implemented in the following hybrid.

Hybrid 2: Challenge Epoch Branch & Oracle Queries. Game 2 implements a hybrid argument of qChall,ρ
steps, where qChall,ρ is the number of queries to oracle ChallIE with inputs (ρ, · ) by adversary A. Note
that qChall,ρ ≤ qChall, where qChall is the total number of queries to oracle ChallIE by adversary A.

In every step ι ∈ [qChall,ρ], we change the behavior of the ιth query to oracle ChallIE(ρ, id) as well as
the behavior of a corresponding query to oracle ExpIE(ρ, · ). For clarity, we split each step ι into three
sub-steps:

a) In the first sub-step, we guess the length lid of challenge identity string id that is input to the ιth
query of instance ρ to oracle ChallIE(ρ, id). If this guess is wrong, the game aborts. The guess is
correct with probability at least 1/llong, where llong is the level-depth of the longest identity string
queried to oracle ChallIE by adversary A (i.e., llong = |id long|/λ).

b) Consider the full identity string id ′ according to which the decapsulation key of instance ρ is delegated
via oracle DelIE throughout the entire game. In the second sub-step, we guess the first position βid
in identity string id ′ in which it branches off the challenge identity string id that is input to the
ιth query of instance ρ to oracle ChallIE(ρ, id). If this guess is wrong, the game aborts. This guess
is also correct with probability at least 1/llong as βid is guessed on a sub-string (and not on a bit)
granularity.

c) In the third sub-step, we consider the (up to) ε identity sub-strings of id in the epoch that contains
the βidth sub-string of id (i.e., the branching epoch), where id is the challenge identity to the ιth
query to instance’s ρ oracle ChallIE(ρ, id). For each sub-string in this epoch, we guess when it is
queried to the random oracle for the first time. If this guess is wrong, the game aborts. The guess is
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correct with probability at least (qH)ε, where qH is the total number of queries to random oracle H
by adversary A.

ι.a) String Length. Consider queries to oracle ChallIE with inputs (i, id). Overall, the behavior of the
original oracle ChallIE is changed for all of these queries that are directed to instances i < ρ as well as
for the first ι queries that are directed to instance i = ρ. We call these queries the relevant queries in
step ι subsequently. All remaining irrelevant queries to oracle ChallIE remain unchanged in this hybrid
step.

At the beginning of the game, we sample an integer lid for the most recent relevant challenge query
(i.e., the ιth challenge query for instance ρ). This integer lid is sampled uniformly at random from
space [llong], where llong is the level-depth of the longest identity string queried to oracle Chall by
adversary A (i.e., llong = |id long|/λ).

We then check for this integer if it correctly predicts the respective challenge identity’s length. That
means, the most recent relevant query (i, id) to challenge oracle ChallIE aborts the game if lid ̸= |id|/λ,
where lid is the respective prediction for this query.

Each prediction lid is correct with probability at least 1/llong, where llong is the level-depth of the
longest identity string queried to oracle ChallIE by adversary A (i.e., llong = |id long|/λ). Thus, the loss
factor induced per step ι.a in this hybrid argument is

1/llong.

ι.b) Identity String Branch. After sampling the prediction of string length, we sample another integer βid
for the most recent relevant query (i, id) at the beginning of the game. This integer βid is also sampled
uniformly at random from space [llong].

We then check for this integer βid if it correctly predicts the respective branch between challenge
identity string id and delegation identity string id ′. For this, consider most recent relevant query (i, id)
and the full identity string id ′ with which the decapsulation key of instance i is delegated throughout
the game. To check if id branches off id ′ in position βid , we have to distinguish two cases: (A) The
first exposure of instance i is queried before the respective most recent relevant challenge query with
inputs (i, id). In this case, challenge oracle ChallIE checks if the branch prediction was correct. (B) The
respective most recent relevant challenge (i, id) is queried before instance i is exposed for the first time.
In this case, the expose oracle ExpIE checks if the branch prediction was correct.

In either case, the game aborts if the branch prediction was not correct. That is, if integer βid was
sampled for the most recent relevant challenge query (i, id) such that id and id ′ differ in a sub-string β′ <
βid or equal in the βidth sub-string, hybrid step ι.b aborts, unless id is a true prefix of id ′. More precisely,
let id = (id0, . . . , id lid−1) and id ′ = (id ′

0, . . . , id ′
⌈|id′|/λ⌉−1) be concatenations of sub-strings, such that all

sub-strings idj and id ′
j are in set {0, 1}λ. Then, hybrid step ι.b aborts if ∃β′ < βid : ⊥ ≠ idβ′ ̸= id ′

β′ ̸= ⊥
or if ⊥ ≠ idβid = id ′

βid
̸= ⊥, unless βid = lid and for all j ∈ [lid ] it holds that idj = id ′

j ̸= ⊥.
We observe that all valid challenges of instance i that target identity string id must differ from

the exposed corresponding decapsulation key’s identity string id ′ in some epoch sub-string, unless id
is a true prefix of id ′. Hence, the respective prediction of β is correct with probability at least 1/llong,
where llong is the level-depth of the longest identity string queried to oracle ChallIE by adversary A (i.e.,
llong = |id long|/λ). Thus, the loss factor induced per step ι.b in this hybrid argument is

1/llong.

ι.c) Random Oracle Queries. For the most recent relevant challenge (i, id), we now look at the up to ε
sub-strings of id that are contained in the branching epoch that also contains the βidth sub-string. That
means, we look at all identity sub-strings contained in the branching epoch of this most recent relevant
challenge. For all these sub-strings, we identify the respective random oracle queries that take them as
input.

To prepare this step, we first calculate the number of actual identity sub-strings contained in this
epoch. Consider the most recent relevant query (i, id) with (predicted) length lid and (predicted) branch
position βid . If ⌊lid/ε⌋ > ⌊βid/ε⌋, then epoch ⌈βid/ε⌉ − 1 is filled with r = ε sub-strings. Otherwise,
epoch ⌈lid/ε⌉ − 1 = ⌈βid/ε⌉ − 1 is filled with only r = (lid mod ε) sub-strings.

For each of these r identity sub-strings processed in epoch ⌈βid/ε⌉ − 1, we guess when it is queried
as input to the random oracle for the first time. That is, we sample integers ϕ1, . . . , ϕr uniformly at
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random from set [qH], where qH is the total number of queries to the random oracle throughout the
game. Then we consider the r identity sub-strings processed in the actual lower multi-level epoch part of
epoch ⌈βid/ε⌉ − 1 in our UPIBE construction. We abort if the ℓth of these identity sub-string processed
in epoch ⌈βid/ε⌉ − 1 was not input to random oracle query ϕℓ.

Each of these guesses is correct with probability at least 1/qH and all guesses together are correct
with probability at least

1/(qH)ε.

Loss Factor of Hybrids. The two hybrid arguments induce a loss factor of at most

qGen · qChall((llong)2 · (qH)ε),

where qGen and qChall are the numbers of queries to oracle GenIE and ChallIE by adversaryA, respectively.

Selective Adversary. We maintain the perspective of the hybrid argument from above for the actual
reduction to selective security of the underlying bounded-depth HIBE. Thus, our proof reduces the
security of one relevant UPIBE challenge to the security of an underlying HIBE challenge after another.

Consider one relevant challenge (i, id) with (predicted) length lid , (predicted) branch position βid ,
and (predicted) random oracle queries ϕ1, . . . , ϕr. In order to embed a selective HIBE challenge in this
(relevant) UPIBE challenge, we commit at the beginning of the game to the following HIBE identity
string. This identity string begins with a padded binary encoding of epoch number ⌈βid/ε⌉ − 1, where
padding and encoding are conducted according to the epoch-progression mechanism of our unbounded-
depth UPIBE construction. For the appended UPIBE epoch identity sub-string, we pre-sample r random
oracle output strings of length λ′ each. These r strings are concatenated and then appended to the padded
binary encoding of the epoch number. This combined identity string constitutes the selective HIBE
challenge that is embedded in one relevant adaptive UPIBE challenge. To maintain a sound simulation,
random oracle query ϕℓ outputs the ℓth of the initially r pre-sampled strings.

Reduction. Since this reduction recycles many parts of the proof of Theorem 2, we keep its description
brief. We now concentrate on the relevant challenge (ρ, id) added in step ι of the hybrid argument with
length lid and branch βid . Note that the end of the corresponding ιth query to oracle ChallIE of instance ρ,
UPIBE challenge-key from HIBE keys K = (k0, . . . , klid−1) and UPIBE challenge-ciphertext from HIBE
ciphertexts C = (c0, . . . , clid−1) are assembled. The reduction for this hybrid step ι replaces the (⌈βid/ε⌉−
1)th components of K and C with the corresponding selective HIBE challenge-key k∗ and challenge-
ciphertext c∗, respectively. Thus, the actual UPIBE challenge-key and ciphertext query is computed as
(K∗, C∗) = (k0, . . . , k⌈βid/ε⌉−2, k∗, k⌈βid/ε⌉, . . . , klid−1, c0, . . . , c⌈βid/ε⌉−2, c∗, c⌈βid/ε⌉, . . . , clid−1).

Finally, we see that a UPIBE adversary winning in step ι of instance ρ directly breaks IND security of
the underlying selective secure bounded-depth HIBE scheme IE′. As described above, our reduction Bρ,ι

uses the committed HIBE identity string at the beginning of Game IND to fix the selective HIBE
challenge, which is embedded in UPIBE epoch ⌈βid/ε⌉− 1 of UPIBE challenge ι for instance ρ. We omit
repeating the arguments from the proof of Theorem 2 for why HIBE challenges remain valid based on
the validity of UPIBE challenges.

Proof Result. After combining all game hops of our hybrid arguments, an adversary in final step ρ =
qGen, ι = qChall can only guess the challenge bit randomly. Thus, combining the loss factors from all game
hops, we obtain

Advind
IE (A) ≤ qGen · qChall · ((llong)2 · (qH)ε) ·Advind

IE′ (B).
⊓⊔

C CCA Security Proofs for UPIBE

C.1 Bounded-Depth UPIBE

We proceed with our formal proof via game-hops and for simplicity we focus on a reduction from single-
instance security of UPIBE IE to multi-instance security of IBE IE′ and use the simple guessing strategy
from Theorem 1. For clarity in notation, we refer to oracles in game INDb

X by adding the scheme’s
identifier X as a subscript to the oracle names (i.e., GenX , ChallX , DelX , ExpX , DecX).
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Game 0. This game represents the original game IND0
IE, and thus AdvG0 = Pr[IND0

IE(A) = 1].

Game 1. Game 1 implements a hybrid argument via qGen steps exactly as done in the proof of Theorem
1 to make all of the IBE main keys independent.

Transition Game 0-1. An adversary that successfully distinguishes between two sub-steps can be turned
directly into an adversary BG that breaks PRG G, which leads to a loss bounded by Advind

G (BG). The
number of sub-steps is l, which is at most L, leading to a loss of L. Furthermore, the loss, induced by
guessing the correct number of delegations that are conducted before an exposure, is bounded by L.
Having qGen steps we obtain that AdvG0 ≤ AdvG1 + qGen · L2 ·Advind

G (BG).

Game 2. Game 2 implements a hybrid argument of qChall steps, where qChall is the number of queries
to oracle ChallIE by adversary A. In every sub-step ι ∈ [qChall], the ιth query to oracle ChallIE and a
corresponding query to oracle ExpIE are changed. Queries to oracles GenIE and DelIE are, in contrast,
processed as at the end of the previous hybrid.

At the beginning of each hybrid step, integer i∗ is sampled uniformly at random from space [qGen],
where qGen is the overall number of queries to oracle GenIE. If the ιth query to oracle ChallIE has inputs
(i, id) such that i ̸= i∗, then Game 2 in sub-step ι aborts.

Furthermore, if the ιth query to oracle ChallIE with inputs (i, id) is issued as long as XPi = ∅, ora-
cle ChallIE changes its behavior for this query as follows: Oracle ChallIE samples an integer l∗ uniformly
at random from space [L] and stores (i, id, l∗) as a guess. On the first corresponding subsequent successful
query to oracle ExpIE (i.e., when set XPi initially becomes non-empty) with inputs (i, id ′), Game 2 in
sub-step ι aborts if this prior guess was wrong. That is, if a guess of the form (i, id, l∗) was stored, such
that id and id ′ equal in the l∗th identity sub-string, Game 2 in sub-step ι aborts, unless id is a true prefix
of id ′. More precisely, let id = (id0, . . . , id |id|/λ−1) and id ′ = (id ′

0, . . . , id ′
|id′|/λ−1) be concatenations of

sub-strings, such that all sub-strings idj and id∗
j are in set {0, 1}λ. Then, Game 2 in sub-step ι aborts if

id l∗ = id ′
l∗ unless for all j ∈ [|id|/λ] it holds that idj = id ′

j .
We observe that all valid challenges that target identity string id must differ from the exposed

decapsulation key’s identity string id ′ in some sub-string, unless id is a true prefix of id ′. Hence, the
guess in the ιth query to oracle ChallIE is correct with probability at least 1/L, leading to a loss factor
of L per step in this hybrid argument. Furthermore, the guess at the beginning of a hybrid sub-step
about the instance targeted in the ιth query to oracle ChallIE is correct with probability at least 1/qGen

Transition Game 1-2. We observe that all valid challenges that target identity string id must differ from
the exposed decapsulation key’s identity string id ′ in some sub-string, unless id is a true prefix of id ′.
Hence, the ιth guess in oracle ChallIE is correct with probability at least 1/L, leading to a loss factor
of L per step in this hybrid argument. Furthermore, the guess at the beginning of a hybrid sub-step
about the instance targeted in the ιth query to oracle ChallIE is correct with probability at least 1/qGen.
Therefore, the entire hybrid argument induces a loss factor of at most qGen · qChall · L, where qGen and
qChall are the number of queries to oracles GenIE and ChallIE by adversary A. Consequently, AdvG1 =
qGen · qChall · L ·AdvG2

Game 3. In this Game 3 we change how the challenge oracle ChallIE works and for that maintain a list
LC∗. In particular, for a challenge query to oracle ChallIE with input id, either use the guess (id, l∗) from
game 2 or, if XP ̸= ∅, identify the branching level l∗ directly. For each such (id, l∗) sent to ChallIE it runs
(cl∗ , kl∗) ← IE′.enc(ekl∗ , id∥suf ), where suf = 0 if l∗ = |id|/λ− 1, and suf = 1 otherwise, then samples
k ←$ Kl∗ and sets (cl∗ , kl∗)← (cl∗ , k), i.e., replaces the key of the l∗’th instance with a uniform random
key, and then assembles the challenge ciphertext c∗ and key k∗. We set LC∗ [cl∗ ] ← k, so that on every
decapsulation query that contains this ciphertext component, we use the respective key consistently.

Transition Game 2-3. We can argue this via the chosen-ciphertext security of IE′. Reduction BIE′ issues
a query to oracle ChallIE′ with inputs (l∗, id l∗∥suf ), where suf = 0 if l∗ = |id|/λ − 1, and suf = 1 oth-
erwise. Oracle ChallIE′ responds with a ciphertext-key pair (cl∗ , kl∗) and the final concatenated UPIBE
challenge ciphertext c∗ contains cl∗ and for the final key k∗ is obtained by using kl∗ in W. (All remaining
IBE IE′ ciphertexts and keys in a challenge query are computed honestly by BIE′ itself.) Thus, only
IBE IE′ ciphertext and key of branching level l∗ are replaced in the composed UPIBE ciphertext and
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key, respectively. Depending on the challenge bit of BIE′ ’s challenger in the experiment INDb
IE′ we either

simulate Game 2 or Game 3 and thus as a result we have that AdvG2 ≤ AdvG3 + Advind
IE′ (BIE′).

We now construct a hybrid over qChall steps in order to replace the key k∗ output by calls to ChallIE with
uniformly random keys. However, since this change will add an artifact to the decapsulation procedure,
i.e., queries that contain a ciphertext cl∗ corresponding to the respective branching identity id l∗ are not
answered with W but with uniform keys k, we need to add another qChall hybrids to remove this artifact
again. We will use two consecutive hybrids to do (the odd ones i = 1, 3, . . .) and undo (the even ones
j = 2, 4, . . .) these changes.

Game 4.i. Initialize variables C, Ci and a list L. On the i’th query to ChallIE with branching identity
id on position l∗ we replace the key k∗ obtained from W by a uniformly random key k∗ ←$ K (and note
that we already sample kl∗ uniformly at random). Let cl∗ be the corresponding IBE IE′ ciphertext in
the overall ciphertext C∗ of IE, then we keep track of the l∗’th ciphertext Ci ← cl∗ and C ← C∗. On
each query to IE.dec with ciphertext C we do the following (if C = C the query is not allowed and we
return ⊥): If we already have the ciphertext in the list, i.e., L[c] ̸= ⊥, we return L[c]. Otherwise if the
l∗’th ciphertext component of C equals Ci, we use kl∗ as the corresponding key, evaluate W and save
its output to L[c]. Now, if cl∗ = Ci, then we overwrite L[c] with a random key k ←$ K and finally we
return L[c].

Game 4.j. Here, we undo the changes from the j − 1’th ChallIE query and in particular, if cl∗ = Cj, we
no longer overwrite L[c] with a uniformly random key k ←$ K but use the output of W again.

Transition Game 3-4.1/4.2-4.2qChall − 1. We can argue this via the split-key pseudorandomness of W.
In particular within the i’th call to oracle ChallIE we compute all the ciphertexts and thus the overall
ciphertext C∗ using the single IBE IE′ instances (padded accordingly with the ciphertext ĉ). Except for
the l∗’th position of the branching identity id, reduction BW issues a call to Eval(k′, C∗), where k′ is the
padded key that omits the key at position l∗. Similarly for every call to IE.dec which contains cl∗, i.e.,
cl∗ = Ci, BW equivalently makes a call to Eval. Depending on the challenge bit of BW’s challenger in the
experiment PRb

i we either simulate Game 3/4.j (where in case of PR0
i we implicitly set kl∗) or Game 4.i

and thus as a result we have that AdvG3 ≤ AdvG4.qChall + qChallAdvpr
Fi

(BW).

Transition Game 4.1-4.2qChall. We can argue this via the split-key pseudorandomness of W and the
reduction works analogous to above with the only difference that for l∗’th position of the branching
identity id in the ChallIE, the reduction no longer needs to call Eval(k′, C∗), but again choose a uniform
key k∗ ←$ K. As a result, we have AdvG4.qChall ≤ AdvG4.2qChall + qChallAdvpr

Fi
(BW).

Game 5. In this Game we revert the change from Game 3 and in particular for each branching identity
id on position l∗ send to ChallIE we no longer use the randomly sampled key k ←$ Kl∗ to replace the key
kl∗ obtained via (cl∗ , kl∗)← IE′.enc(ekl∗ , id∥suf ), where suf = 0 if l∗ = |id|/λ−1, and suf = 1 otherwise.
Consequently, we again is the use the real output of the l∗’th IBE IE′ instance and then assemble the
challenge ciphertext. Note that keys k∗ output by ChallIE are still chosen uniformly at random from K.

Transition Game 4.2qChall-5. This is identical to the transition from Game 3 to Game 4 and follows from
the chosen-ciphertext security of IE′. As a result, we have AdvG4.2qChall ≤ AdvG5 + Advind

IE′ (BIE′).

Game 6. In this Game we revert the change from Game 2. Consequently, we have that AdvG5 ≤
AdvG6 + qGen · L2 ·Advind

G (BG).

Game 7. This Game represents the game IND1
IE and thus AdvG7 = Pr[IND1

IE(A) = 1].

Note that Game 6 and Game 7 are identical up to the fact that we no longer need to guess any branch
identities for ChallIE, i.e., AdvG6 = 1

qGen·qChall·L ·AdvG7 .

Proof Result. Overall we obtain Advind
IE (A) ≤

qGen · L2 ·
(

qGen · qChall · L ·Advind
G (BG) + 1

)
+ 2qGen · qChall · L ·

(
qChall ·Advpr

Fi
(BW) + Advind

IE′ (BIE′)
)

which concludes the proof. ⊓⊔
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C.2 Unbounded-Depth UPIBE

To prove Theorem 5, we can follow exactly the same strategy as in the proof of Theorem 3, but before
the final reduction step, we introduce an additional hybrid to consider the core function W modeled as
a random oracle H⋆.

Randomize Challenge Key. We now use a second random oracle H⋆ that implements the core function W.
As in our proof of Theorem 3, we use this random oracle to replace the challenge key of ιth relevant
challenge query of instance ρ by a random key.

We now concentrate on the relevant challenge (ρ, id) added in step ι of the hybrid argument with
length lid and branch βid . Note that the end of the corresponding ιth query to oracle ChallIE of instance ρ,
a query to random oracle H⋆ with inputs (K, C) = (k0, . . . , klid−1, c0, . . . , clid−1) is issued. Before issuing
this random oracle query, in hybrid step ι one replaces the (⌈βid/ε⌉ − 1)th key component of K with a
randomly sampled key. Thus, the actual issued random oracle query at the end of this challenge query
has input (K∗, C) = (k0, . . . , k⌈βid/ε⌉−2, k∗, k⌈βid/ε⌉, . . . , klid−1, c0, . . . , clid−1). If the adversary ‘externally’
issued a query to the random oracle with the same inputs (K∗, C), too, the hybrid in step ι of instance ρ
aborts. Note that the total number of challenge keys is bounded by qChall and the total number of guesses
by the adversary A is bound by qH⋆ . Consequently, the probability to abort in this hybrid is qChall·qH⋆

|K| .

Reduction. Finally, we see that distinguishing between hybrids in step ι of instance ρ can be reduced
to breaking IND security of the underlying chosen-ciphertext selectively secure bounded-depth HIBE
scheme IE′. This is true because our reduction Bρ,ι can use the committed HIBE identity string at
the beginning of Game IND to fix the selective HIBE challenge. This challenge is embedded in UPIBE
epoch ⌈βid/ε⌉ − 1 of UPIBE challenge ι for instance ρ. Note that for every call to DecIE with id and
C, if C is the output of a call to ChallIE we return ⊥. Otherwise, we run the required decapsulations
to obtain K (for the replaced component of K we can use the challenge key) and return H⋆(K, C). The
only way adversary A can distinguish the hybrids is by querying the random oracle H⋆ on this challenged
key, which solves the HIBE challenge. We omit repeating the arguments from the proofs of Theorem 3
for why HIBE challenges remain valid based on the validity of UPIBE challenges.

Proof Result. After combining all game hops of our hybrid arguments, an adversary in final step ρ =
qGen, ι = qChall can only guess the challenge bit randomly. Thus, combining the loss factors from all game
hops, we obtain

Advind
IE (A) ≤ qGen · qChall · ((llong)2 · (qH)ε) ·

(
Advind

IE′ (B) + qChall · qH⋆

|K|

)
.

⊓⊔

D Full Details on KU-KEM from UPIBE

We first formally define KU-KEM in line with prior definitions by [PR18b, BRV20] and then provide a
proof of Theorem 6 from Section 6.

Syntax. A KU-KEM scheme is a quadruple K = (K.gen, K.enc, K.dec, K.up) of algorithms whose syntax
is defined as follows16:

– K.gen : ∅ →$ EK ×DK
– K.enc : EK →$ EK × C × K
– K.dec : DK × C → DK ×K
– K.up : EK × {0, 1}λ → EK resp. K.up : DK × {0, 1}λ →$ DK

16 In contrast to prior work [PR18b, BRV20], we define the KU-KEM decapsulation algorithm as well as the
KU-KEM update algorithm for decapsulation keys probabilistic. The reason for this is that, in our KU-
KEM construction, these two algorithms use the probabilistic UPIBE delegation algorithm. Using a PRF
to de-randomize the UPIBE delegation algorithm (and thereby the two probabilistic UPIBE algorithms) is
immediate as already noted in [PR18b, BRV20].
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Correctness. For correctness of KU-KEM, we require for all (ek0, dk0)←$ K.gen, all ad = (ad1, . . . , ad l)
with adi ∈ {0, 1}λ ∪ {⊥}, 0 < i ≤ l, all eki ← K.up(eki−1, adi) and all dki ←$ K.up(dki−1, adi) if
adi ̸= ⊥, all (eki, ci, ki)←$ K.enc(eki−1) and all (dki, k′

i)←$ K.dec(dki−1, ci) otherwise, that ki = k′
i for

all 0 < i ≤ l.

Security. As it suffices both for the equivalence result in [BRV20] and to instantiate the ratcheted key
exchange definitions in [PR18b], we use the one-way notion KUOWK from [BRV20] to define security of
a KU-KEM scheme K. This notion is formalized in Figure 9.

Definition 4. The advantage of A in winning KUOWK is
Advkuow

K (A) := Pr[KUOWK(A) = 1].

Game KUOWK(A)
00 n← 0
01 Invoke A
02 Stop with 0

Oracle Gen
03 n← n + 1
04 (ekn, dkn)←$ K.gen
05 CKn[·]← ⊥; XPn ← ∅
06 trsn ← ϵ; trrn ← ϵ
07 DKn[·]← ⊥
08 DKn[trrn]← dkn

09 Return ekn

Oracle UpE(i, ad)
10 Require 1 ≤ i ≤ n ∧ ad ∈ AD
11 eki ← K.up(dki, ad)
12 trsi

q← ad
13 Return eki

Oracle Enc(i, r)
14 Require 1 ≤ i ≤ n
15 Require r ∈ R ∪ {ϵ}
16 If r = ϵ: mr ← fal; r ←$ R
17 Else: mr ← tru
18 (eki, c, k)← K.enc(eki; r)
19 trsi

q← c
20 If mr = fal: CK i[trsi]← k
21 Return (eki, c)

Oracle Solve(i, tr , k)
22 Require 1 ≤ i ≤ n
23 Require tr /∈ XPi

24 Require CK i[tr ] ̸= ⊥
25 Reward k = CK i[tr ]
26 Return

Oracle UpD(i, ad)
27 Require 1 ≤ i ≤ n ∧ ad ∈ AD
28 dki ←$ K.up(dki, ad)
29 trr i

q← ad
30 DK i[trr i]← dki

31 Return

Oracle Dec(i, c)
32 Require 1 ≤ i ≤ n ∧ c ∈ C
33 (dki, k)←$ K.dec(dki, c)
34 trr i

q← c
35 DK i[trr i]← dki

36 If CK i[trr i] ̸= ⊥:
37 Return
38 Return k

Oracle Exp(i, tr)
39 Require 1 ≤ i ≤ n
40 Require DK i[tr ] ∈ DK
41 XPi

∪← {tr∗ ∈ (AD ∪ C)∗ :
tr ≺ tr∗}

42 Return DK i[tr ]

Fig. 9: Security experiment KUOW from [BRV20], modeling one-way security of key-updatable KEM in a multi-
instance/multi-challenge setting under randomness manipulation. Line 41 is a shortcut notion that can be im-
plemented efficiently. CK : challenge keys, XP: exposed decapsulation keys, trs, trr : transcripts.

Construction. The KU-KEM construction by [BRV20] in Figure 5 is a variant of the one presented
in [PR18b]. It realizes encapsulation key updates by concatenating the input associated data strings.
Corresponding decapsulation key updates are based on UPIBE (or HIBE in [PR18b, BRV20]) delega-
tions. Both KU-KEM encapsulation and decapsulation use the underlying UPIBE encapsulation and
decapsulation algorithm, respectively, and then perform an update of the respective key pair component
with respect to the en-/decapsulated ciphertext.

Proof. The reduction proof for Theorem 6 is as straight forward as the construction: Each KU-KEM
instance i is simulated by, and reduced to, a UPIBE instance i. For this, all UPIBE algorithms in
KU-KEM K are simulated via oracles from game IND. (K.gen in GenK with GenIE, K.up in UpE

directly, K.up in UpD with DelIE, K.dec in DecK with DecIE; ExpK with ExpIE, EncK and SolveK are
explained blow.) UPIBE challenges are embedded in all queries to oracle Enc for which r = ϵ holds.
The respective UPIBE challenge keys are stored just as normal UPIBE keys in array CK i. In queries
to oracle Enc for which we have r ̸= ϵ, algorithm K.enc is honestly executed by the reduction. If a
query to oracle Solve is issued with a key that matches the corresponding UPIBE challenge key stored in
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array CH i, reduction B immediately terminates and returns 0; if this never happens, reduction B waits
until adversary A terminates and then terminates itself with return value 1. We observe that a successful
adversary A must provide a correct key during the execution of game KUOW. If no key provided to
oracle Solve is correct, then the UPIBE challenge was a random key. In contrast, if a key provided to
oracle Solve is correct, then the UPIBE challenge was a real key. We conclude our reduction by observing
that the conditions under which challenges in games KUOW and IND remain valid are the same. ⊓⊔

D.1 Generic Performance Summary

Table 10 depicts the asymptotic key and ciphertext sizes depending on the number of (en- resp. decap-
sulation) key updates l and the depth per epoch ε. See that the KU-KEMs in [PR18b, BRV20] rely on
unbounded-depth HIBEs while our KU-KEM can be built from a bounded-depth HIBE.

Schemes ek size dk size c size # IE.enc Depth of HIBE
Trivial [PR18b, JS18, BRV20] 1 1 1 1 O(l)

Ours O(l/ε) O(l/ε) O(l/ε) O(l/ε) α + ε
= ⌈log(2κ/ε)⌉+ ε

Fig. 10: Comparison between KU-KEM constructions: Maximal size factor of KU-KEM en- resp. decapsulation
keys and ciphertexts in relation to their HIBE equivalents; maximal number of HIBE encapsulations per KU-
KEM encapsulation; and maximal depth of used HIBE, if l is the number of en- resp. decapsulation key updates,
and ε is the depth per epoch in our KU-KEM construction from Figure 5.

More concretely, our unbounded-depth UPIBE is parameterized by the identity string length per
delegation λ, security parameter κ, and epoch depth ε. It can be built from a bounded-depth HIBE with
depth bound L = α + ε = ⌈log(2κ/ε)⌉+ ε and identity string length λ + 1. The UPIBE encapsulation key
consists of one HIBE main encapsulation key, the UPIBE decapsulation key delegated l times consists of
α+⌈l/ε⌉ delegated HIBE decapsulation keys, where the first α decapsulation keys are delegated to levels
between 1 and α (more precisely, one decapsulation key per level), the next ⌈l/ε⌉+ 1 decapsulation keys
are delegated to level α + ε, and the last decapsulation key is delegated to a level between α and α + ε.
A UPIBE ciphertext for an identity string of length λ · l consist of ⌈l/ε⌉ HIBE ciphertexts, where each
of the first ⌈l/ε⌉ − 1 ciphertexts targets an identity string of length λ · (α + ε), and the last ciphertext
targets an identity string of length between λ · α and λ · (α + ε).

E Bounded-Depth UPIBE From DDH

To demonstrate the practicality of our bounded-depth UPIBE construction from Figure 3, we instantiate
it with an adjusted variant of the bounded-collusion IBE by Dodis et al. [DKXY02] in Figure 11. For
comprehensibility, we only consider the simpler chosen-plaintext secure variant from [DKXY02]. Our
adjustments equally apply to their slightly more complicated chosen-ciphertext secure variant.

Without any adjustments, the direct instantiation of our UPIBE with this IBE results in the following
variable sizes: a UPIBE encapsulation key consists of 3 · L group elements; a UPIBE decapsulation key
consists of 2 + l · 2 exponents and one symmetric key, where l is the number of applied delegations; a
UPIBE ciphertext consists of l · 2 group elements, where l is the number of applied derivations, resp.,
the number of sub-string components of the input identity string.

We take advantage of the group structure to aggregate encapsulation keys and decapsulation keys,
and we eliminate unnecessary redundancy in the ciphertext. More concretely, we multiply the identity-
specific ordinary IBE encapsulation keys of all prior levels to one aggregated group element in Figure 11,
line 30. Correspondingly, we add the identity-specific ordinary IBE decapsulation keys of all prior levels
to one aggregated exponent in line 43. The ciphertext of the original IBE consists of a random twin-DH
share. Instead of generating an independent share for each used IBE instance, our adjusted ciphertext
contains only one such share (see line 14).

Since our security proof uses a hybrid argument that considers only one IBE instance at each step,
the remaining instances can be seen as independent group elements, resp., exponents during this step
that re-randomize the keys and ciphertext of the considered single instance. Hence, our adjustments do
not affect the security proof. The same holds for the elegant proof by Dodis et al. [DKXY02].
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Proc IE.gen
00 ek′

1 ← 1; EK [·]← ⊥
01 dk′

1 ← (0, 0); D ← (0, 0)
02 fk0 ←$ {0, 1}κ

03 For l = 0 to L− 1:
04 (fkl+1, S)← G(fkl)
05 For t : 0 ≤ t ≤ 2:
06 (x∗

t , y∗
t )← St

07 z∗
t ← gx∗

t hy∗
t

08 EK [l]← (z∗
t )0≤t≤2

09 ek ← (E, ek′
0, ek′

1, EK)
10 dk ← (0, D,⊥, dk′

1, fk0)
11 Return (ek, dk)

Proc IE.enc(ek, id)
12 Require id ∈ {0, 1}l·λ ∪ {ϵ}, 0 < l ≤ L
13 r ←$ Zp

14 c← (gr, hr)
15 If id ̸= ϵ:
16 id0∥ . . . ∥idl−1 ← id with idj ∈ {0, 1}λ

17 For j : 0 ≤ j < l:
18 ek ←$ IE.der(ek, idj)
19 (E, ek′

0, ek′
1, EK)← ek

20 k ← (E · ek′
0)r

21 Return (c, k)

Proc IE.dec(dk, c)
22 (l, D, dk′

0, dk′
1, fk)← dk

23 (u, v)← c
24 (X, Y )← D
25 (x0, y0)← dk′

0
26 k ← uX+x0 vY +y0

27 Return k

Proc IE.der(ek, id)
28 Require id ∈ {0, 1}λ

29 (E, ek′
0, ek′

1, EK)← ek
30 E ← E · ek′

1
31 l← min(l : EK [l] ̸= ⊥)
32 (z∗

t )0≤t≤2 ← EK [l]
33 ek′

0 ←
∏2

t=0(z∗
t )(id∥0)t

34 ek′
1 ←

∏2
t=0(z∗

t )(id∥1)t

35 EK [l]←$ ⊥
36 ek ← (E, ek′

0, ek′
1, EK)

37 Return ek

Proc IE.del(dk, id)
38 Require id ∈ {0, 1}λ

39 (l, D, dk′
0, dk′

1, fk)← dk
40 Require l < L
41 (X, Y )← D
42 (x1, y1)← dk′

1
43 D ← (X + x1, Y + y1)
44 (fk′, S)← G(fk)
45 For t : 0 ≤ t ≤ 2:
46 (x∗

t , y∗
t )← St

47 x0 ←
∑2

t=0(id∥0)tx∗
t

48 y0 ←
∑2

t=0(id∥0)ty∗
t

49 x1 ←
∑2

t=0(id∥1)tx∗
t

50 y1 ←
∑2

t=0(id∥1)ty∗
t

51 dk′
0 ← (x0, y0)

52 dk′
1 ← (x1, y1)

53 dk ← (l + 1, D, dk′
0, dk′

1, fk′)
54 Return dk

Fig. 11: Adjusted instantiation of our bounded-depth UPIBE from Figure 3 with DDH-based bounded-collusion
IBE by Dodis et al. [DKXY02]. Making use of the group structure, we aggregate encapsulation keys, ciphertexts,
and decapsulation keys.

Due to our adjustments, the enhanced instantiation of our UPIBE from Figure 11 has the following
variable sizes: a UPIBE encapsulation key consists of 2+3 · (L− l) group elements, where l is the number
of applied derivations; a UPIBE decapsulation key consists of 2 + 2 + 2 exponents and one symmetric
key; a UPIBE ciphertext consists of 2 group elements.

Corollary 1. Bounded-depth UPIBE protocol IE from Figure 11 offers adaptive key indistinguishabil-
ity in the standard model. More precisely, for every adaptive chosen-plaintext adversary A attacking
protocol IE in games INDb

IE according to Definition 1 with parameters (L, λ, D = 1) and non-negligible
advantage, there exists an adversary BG breaking the PRG G according to Definition 3 and an adver-
sary BDDH breaking the DDH problem.

37


	Unique-Path Identity Based Encryption With Applications to Strongly Secure Messaging
	Introduction
	Technical Overview

	UPIBE Definition
	Bounded-Depth UPIBE from Bounded-Collusion IBE
	Unbounded-Depth UPIBE from Bounded-Depth HIBE
	Relaxing Assumptions: Adaptive UPIBE from Selective HIBE

	CCA Secure UPIBE
	Bounded-depth UPIBE
	Unbounded-depth UPIBE

	Key-Updatable KEM from UPIBE
	Evaluation
	Basic Definitions
	Full Proofs for UPIBE Constructions
	Bounded-Depth UPIBE
	Unbounded-Depth UPIBE
	Unbounded-Depth UPIBE from Selective Bounded-Depth HIBE

	CCA Security Proofs for UPIBE
	Bounded-Depth UPIBE
	Unbounded-Depth UPIBE

	Full Details on KU-KEM from UPIBE
	Generic Performance Summary

	Bounded-Depth UPIBE From DDH


