Webb Protocol: A cross-chain private application and
governance protocol.

Drew Stone

drew@uebb.tools

Abstract

In this paper, we present the Webb Protocol, a system for building and governing cross-chain
applications that can support shared anonymity set functionality across a set of identical bridged
systems on compatible blockchains. The Webb Protocol is composed of two major protocols that
deal with storing, updating, and validating of data and state changes that occur on a bridge and
that are relevant to replicate on each connected chain. State is efficiently verifiable through the
use of merkle trees and privacy is provided using zero-knowledge proofs of membership. Together,
one can create applications leveraging distributed state with private property testing capabilities.
Both financial and non-financial applications are described as motivating examples within the

paper.

Contents
1 Introduction
2 Background

3 Anchor System

3.1 Purpose e e
3.2 GOVEINANCE . .« . o v v v v vt et e e e e
3.3 State and APT L e
3.4 Privacy
3.5 Anchor System Gadget

3.5.1 Constraints/proofs for the Anchor System.
3.6 Anchor System Gadget Relations

3.6.1 Example: Variable Asset Anchor System

3.7

4 The
4.1

4.2

4.3
4.4

5 The
5.1

5.2

5.3

5.4

5.5

3.6.2 Constraints/proofs for the variable anchor asset protocol. 8

3.6.3 Example: Semaphore Anchor System 9
3.6.4 Example: Identity-based Variable Asset Anchor System 10
The Validation Protocol 11
3.7.1 Stateand APL 11
3.7.2 A single-signer ECDSA validation protocol. 11
3.7.3 A multi-signer ECDSA validation protocol. 12
3.7.4 A light-client validation protocol, 12
DKG Protocol 12
Distributed key generation oL oL 13
4.1.1 A (¢,n)-threshold-signing ECDSA validation protocol. 14
Key Rotation Protocol 14
Misbehaviour & Reputation Protocol 17
Validator and Authority Selection L 17
‘Webb Protocol 18
Protocol Sketch oL 18
5.1.1 Sketch L 18
Message Types e 19
5.2.1 Anchor Update Message 20
Hybrid threshold / light-client validation protocol 20
5.3.1 Light-client message validation 21
Proposal Pipeline e 21
5.4.1 Proposal Creation 21
5.4.2 Proposal Signing and Submission oL Lo oL 22
Open-source Software Implementations 000 22

1 Introduction

Private applications today are not as scalable as they can be. The main reason they are not scalable
is because they create privacy independent of one another. A bridged privacy system, which gains
privacy linearly or superlinearly to the number of connected systems, would create far more privacy
than any solo-chain application could. Towards the goal of creating a bridged privacy system, we
describe one that utilises and maintains a private dataset through a set of connected on-chain merkle
trees. Each on-chain merkle tree utilizes a graph-like edge list for storing linked metadata to facilitate
an interoperable and potentially private cross-chain application. We refer to the independent instances

as anchors. Each anchor lives on a separate blockchain and we require that each blockchain on a bridge
possess the cryptographic primitives necessary for enabling such a protocol.

We design two protocols that we call the Anchor System and the DKG Validation Protocol and
provide symbolic specifications and practical implementations of these protocols. The Anchor System
is responsible for storing state and updating a bridged set of anchors. The DKG Validation Protocol is
responsible for validating the state changes using a distributed key generation protocol that generates
threshold-signatures. We discuss trustless improvements to the validation protocol at the end.

2 Background

A graph G = (V, E) is composed of a set of vertices V and edges E =V x V. We let neighbors : V' —
V* denote the neighbors of each v € V.

We let r & F, denote a random sampling of an element from a prime field with prime p. We let
H € H be a family of collision-resistant hash functions H.

We let (pk,sk) denote a public and private key pair. We let this be arbitrary for generality. One
can imagine this to be an ECDSA keypair or a El Gamal encryption keypair.

We will utilise arithmetic circuits to design the zero-knowledge membership circuit. We refer to the
circuit as C. A zero-knowledge circuit expresses a program that we aim to generate zero-knowledge
proofs for. Creating the proof involves an interactive protocol between a prover P and a verifier V,
wherein P aims to convince V of knowledge of a pair (z,w) € R. x is the statement, w is a private
witness, and R is the relation of satisfiable statement and witness pairs. As we will discuss more
in-depth later, each anchor will maintain a copy of a verifier V for the circuit expressing the specific
relevant relation.

Definition 1 A 2kSNARK protocol for an arithmetic circuit C' is composed of a trio of algorithms:
(SETUP, PROVE, VERIFY).

e (pp) +— SETUP(1*,C) generates a set of public parameters pp €]F’; where k is a parameter
derived from the circuit C.

e 7 +— PROVE(pp, z,w) generates a proof ™ using a statement x and witness w.

e b «— VERIFY(pp, z,) outputs a boolean value b € {0,1} depending on if the proof 7 is satisfying
for the statement x.

3 Anchor System

The Anchor System is a bridging system for merkle trees and metadata. Each anchor contains an
on-chain merkle tree that users insert data into, ideally as collision-resistant commitments to data.
Each anchor contains an edge list possessing the latest header of neighboring anchors. The anchor
implements an API for modifying each of the listed items — from the merkle tree to the edge list.

3.1 Purpose

The Anchor System serves a few primary purposes:

1. Maintain an up-to-date list of neighboring anchor metadata and expose an API to modify this
state.

2. Maintain an on-chain verifier that verifies zero-knowledge proofs for an application-specific circuit
relation.

3.2 Governance

The Anchor System has governance too. State changes touching neighboring anchor state are con-
sidered governance actions. If we want to modify data in the list of neighbors, then we must get the
governance system to approve this state change.

We consider three main regimes of governance systems: proof based, signature based, or token
weighted based governance system. They all represent ways of validating a governance action.

1. Proof based governance actions are able to execute with certain proofs, such as a zero-knowledge
proof or a fraud proof or a light-client proof.

2. Signature based governance actions are able to execute with valid signatures, such as ECDSA
signatures or threshold signatures.

3. Token weight governance actions are able to execute depending on a function of tokens voting
in favor of the action.

3.3 State and API

We describe the required storage and API functionality for a minimal Anchor System implementation.
The pseudocode in 2 will follow the syntax of Rust. The pseudocode illustrates the implementation of
a single anchor that would live on one blockchain.

An anchor implementation must fulfill a few simple storage requirements. Namely, it must maintain
the storage required for a merkle tree. It must then store at least the required data needed to rebuild
and update the merkle root after new insertions. Beyond this, it is a developer’s decision to augment
the storage required for end application purposes.

An anchor implementation must also store a graph-like interface that allows the anchor to maintain
a view of the bridge’s state. An anchor only knows about the latest state of its neighbors that it has
been told about. Updates to an anchor’s local edge list is validated through a governance action such as
one defined above. The data in an edge contains relevant data about the neighboring anchor such as the
neighboring anchor’s merkle root, the latest leaf insertion index, and other metadata that we remark
on below. We encapsulate this data into an object we often refer to as an Edge or a EdgeMetadata.

Definition 2 An Edge or EdgeMetadata is an abstract object composed of:

1. A chain_id representing a unique chain identifier for the blockchain where the neighboring anchor
erists.

2. A merkle_root representing the neighboring anchor’s merkle tree root, expressed as a byte array.

3. A target_resource representing a unique resource identifier for the neighboring anchor on its re-
spective blockchain, expressed as a byte array.

4. A nonce representing the index of the last leaf insertion that mutated the tree into merkle_root.
Definition 3 An Edgelist is a bounded list of edges of type Edge.

Definition 4 An anchor must support at the minimum an API that enables merkle tree insertions,
edge list updates, and queries as follows:

e insert(leaf: Bytes) - Allows inserting a leaf of type Bytes (a fized-byte array) into the underlying
merkle tree.

e update_edge(edge: Edge) - Allows updating an edge in the underlying Edgelist for the entry
indezed at edge.chain_id.

e get_own() — Edge - Retrieves and formats the anchor’s edge data for the purposes of relaying
to neighboring anchors update_edge function.

e get neighbors()— Edgelist - Retrieves the list of neighboring edges stored on the anchor. The
edge list returned contains only the neighboring edges.

3.4 Privacy

The Anchor System enables collaborative and shared privacy through the use of zero-knowledge proofs
of membership of data in one-of-many merkle trees. The many merkle trees are taken to be the anchors’
dedicated merkle tree root as well as its neighbors’ roots, according to its view of the bridge’s state.
Using various structures of data for leaves in these merkle trees, a user can prove — from anywhere and
privately — properties of their data in a privacy-preserving manner.

Privacy is achieved collaboratively because the zero-knowledge proof creates an interoperable
anonymity set between the set of connected anchors. More explicitly, since users can prove prop-
erties of data without disclosing also where the data was inserted, it is possible that the data could
have been inserted into any anchor. The maximum degree of privacy of a bridged set of anchors
grows linearly with each new anchor on the bridge. All that is left is to incentivize privacy-preserving
behaviour.

3.5 Anchor System Gadget

The zero-knowledge bridge gadget for each Webb Anchor System instance expresses the following func-
tionality. While we remark on the generality of such a mechanism, we will use a specific instantiation
of values to provide an explicit example to motivate the mechanism’s utility:

type Chainld = u64;

type Resourceld = [u8; 32];

enum TargetSystem {
ContractAddress: [u8; 20],
Storageldentifier: u32,

}

struct MerkleTree {
depth: u8,
root: [u8; 32],
leaves: Vec<[u8; 32]>,
layers: Vec<Vec<[u8; 32]>>,

}s

struct EdgeMetadata = {
src_chain_id: Chainld,
merkle_root: [u8; 32],
nonce: ud2,
target_resource: Resourceld,

iz

struct Anchor {
resource: Resourceld
edges: HashMap<Chainld , EdgeMetadata>,
merkle_tree: MerkleTree,

Iz

trait AnchorInterface {
fn insert(&mut self, leaf: [u8; 32]);
fn update_edge(&mut self, data: EdgeMetadata);
fn get_own(&self) —> EdgeMetadata;
fn get_neighbors(&self) —> Vec<EdgeMetadata>;

}

impl AnchorInterface for Anchor { ... }

Figure 1: Pseudocode interfaces for an Anchor implementation

3.5.1 Constraints/proofs for the Anchor System.
1. A proof of knowledge of the preimage of a commitment cm. For example,

preimage., = {i,v,pk,r}
cm = H(i,v,pk,r) = H(preimage.,)

i € Z is an integer identifier for the commitment’s destination chain, v € Z is the value of the

. $
commitment, and r < IF),.

2. A proof of knowledge of the preimage of a serial number preimage,, or nullifier preimage, ifiers
which we may use interchangeably. This is used to identify when a commitment has be used.

preimage,, = {cm, j, o}
sn = H(cm, j,0)

j indicates the index of cm in a merkle tree and o = H(sk, 7, cm) represents a hash-based signa-
ture.

3. A proof correct computation of a merkle root:
MR := reconstruct(cm, path(cm), H)

path(cm) specifies a merkle proof path for cm. Here reconstruct is a standard merkle tree recon-
struction algorithm.

4. A proof of membership of MR, € {MR;, MRy, ..., MRt} = MR for a fixed public set of merkle
roots.

Together in zero-knowledge, these proofs/constraints allow us to verify that commitments are in one-
of-many merkle trees without disclosing which merkle tree the commitment exists within. This has
implications for a variety of new applications that can be built both privately and interoperably. Next,
we define a basic gadget relation that describes these constraints together.

3.6 Anchor System Gadget Relations

Example 1 A Basic Anchor System Gadget expresses a zkSNARK protocol for the relation R
such that for public inputs and private witness w = {v,r, sk, j, path(cm)}:

cm := H(preimage,,,)

o := H(preimage,)

MRem := reconstruct(cm, path(cm), H)
x := MR € MR A sn = H (preimage,,,)

R =1 (z,w)

This basic gadget example leaves application-specific constraints as a separate matter. The purpose
of this relation is to highlight the constraints that describe how we achieve interoperability and zero-
knowledge.

As described, the only public inputs are the set of merkle roots, a unique chain identifier, a and
serial number intended to be exposed. The set of merkle roots represents anchor instances on individual
blockchains. Generating a proof indicates knowledge of an element in one of the blockchains within
a set and opens up the possibility to effectively transfer messages across chain with zero-knowledge
proofs. These proofs can describe various constraints allowing us to property test our private data.

3.6.1 Example: Variable Asset Anchor System

As a motivating and concrete example of an application, we will describe the variable asset Anchor
System, an interoperable shielded pool protocol. We have made a variety of values of the commitment
and serial numbers relevant for a variable and private asset transfer system. By variable, we mean that
users can transfer arbitrary amounts of assets. By private asset transfer system, we mean a system
that allows users to transfer funds privately between blockchains. This is akin to a shielded pool but
interoperable, where users can transfer a variable amount of a single asset between many blockchains
using zero-knowledge proofs.

For this application we will use the example values provided above and replicated below. There
will also be a integer public amount variable, indicating an additional liquidity deposit or withdrawal
into or from the shielded pool. Recall,

cm = H(i,v,pk,7)
sn = H(cm, j,0)
o = H(sk, j,cm)
The system mimics that of a shielded UTXO system albeit with cross-chain capabilities. We describe
below using the notion of multiple inputs and outputs, denoted by the integers INS € Z and OUTS €

Z. When we index variables by these values, we mean variables from input and output collections
respectively. We now describe additional constraints for this example application below.

3.6.2 Constraints/proofs for the variable anchor asset protocol.

1. A proof of knowledge of the preimage and correct computation of each output commitment
cm,, o < OUTS. For example,

{Cmo = H(ioa Vo, Pkoa TO)}OSOUTS

2. A proof of knowledge that the sum of a public amount and input UTXO amounts equals the
sum of output UTXO amounts:

public_amount + Z Vg = Z Vo

E<INS 0<OUTS

3. A proof of knowledge of no duplicate serial numbers, i.e. that no input is duplicated more than
once.

We can contextualise the general Anchor System constraints with these new constraints in a relation
for this specific application. Note, when we iterate over INS and OUTS the values within are specifically
related to inputs and outputs respectively.

Example 2 A Variable Asset Anchor System Gadget expresses a zkSNARK protocol for the
relation R such that for:

o Public inputs:
{publiccamount, MR, i, {sny } k<Ins, {cMo fo<ouTs }
e Private inputs/witness:
w = {Vk, Ik, SKi, ji, path(cm,) br<ins U{vmrmim SKo, Jo }o<OUTS °

o Relation

{pky := H(skg)}r<ins

{emy == H (i, vi, kg, 7x) tr<ins

R = q (z,w) | {0k = H(skg,jk,cmp)]}k<ins
{MRcm, := reconstruct(cmy, path(cm,)), H)}ir<ins

{zk = MRem, € MR}i<ins

We let x be defined as:

=
&

8
I
—
>
=
x>
N—

Z =
@i
iR

A

>

sng = H(cmy, jk, Uk))

>
o =
c |
—
(%]

\|>

(
(= H(ios Vo, ko 7o)
A (publlc amount + Z v = Z vo)

E<INS 0<OUTS

A ({Snk}kgws are distinct)

3.6.3 Example: Semaphore Anchor System

Semaphore [2] is a popular zero-knowledge protocol originally developed and maintained by the
Ethereum Foundation, a non-profit body active in the Ethereum [3] project. It allows members of

an on-chain community to create arbitrary anonymous signals using zero-knowledge proofs of mem-
bership in the community’s identity set, represented as a merkle tree. Signals are general and allow
the mechanism to extend to privacy-preserving polling, voting, and whistle-blowing applications.

Here, we consider the interoperable extension to this application. Instead of maintaining a single
community identity set, we define our community across a set of identity sets, located on potentially
many other blockchains. Each identity set has a potentially different mechanism for approving modi-
fications to its internal state, yet as a whole the community agrees on these differences. For example,
we may want to construct a cross-chain identity set allowing any member of a set of NFT communities
to register. We may also want to maintain a cross-chain ERC20 token gated communities.

We maintain each identity set in a merkle tree and similarly maintain a set of neighboring anchors
identity sets’ merkle tree roots. We identify the set of merkle roots of all the communities as MRg.
Then, using the same rough gadget as defined above, a user can prove their membership of an identity
on one-of-many anchors without disclosing what the identity is nor where it lives, just that it exists in
the cross-chain identity set. A more thorough specification can be found in the appendix.

We define some terminology and their constructions below. We indicate identity parameters using
the subscript of id. To generate an identity, we follow the convention chosen by Semaphore. A user
must first sample a random identity trapdoor and identity nullifier. A user generates their identity
secret as the hash of those two values. A user finally generates their identity commitment as the hash
of the identity secret.

trapdoor;q ﬁ F,

nullifier;y < F,
secret;q = H (trapdoor;, nullifier;4)

cm;q = H(secret;q)

Example 3 A Semaphore Anchor System Gadget expresses a zkSNARK protocol for the relation
R such that for:

e Public inputs:
{external_nullifier, signal_hash, MR }
e Private inputs/witness:
w = {trapdoor;q, nullifier;4, path(cm;4)} :

e Relation

cm;q := H(H (trapdoor;q, nullifier;q))

R =< (z,w) | MR¢m,, := reconstruct(cm;q, path(cm,), H)
z = MRem,, € MR
3.6.4 Example: Identity-based Variable Asset Anchor System

Composing zero-knowledge applications enables us to build for even more use cases. Using the two
example applications above — the Semaphore Identity protocol and the Variable Asset protocol — we

10

can design a cross-chain shielded pool application over a restricted identity set. This yields a private
transaction system where only users with proofs of membership in a cross-chain identity system can
transact.

3.7 The Validation Protocol

The Validation Protocol is the backbone of security for the Anchor System. The main goal here is
to validate messages passed between Anchor System instances to achieve a given set of security goals.
The method of validation can be arbitrary, in that we only require there to be a definitive boolean
outcome of the validity of a message. Within a Webb Protocol instance this can be customized and
updated throughout the lifecycle of the protocol’s operation.

Messages that pass this filter are processed directly and trigger state changes. Therefore, it is
paramount to understand a given implementation’s target security and to utilise the validation mech-
anism to achieve that goal.

3.7.1 State and API

The Validation Protocol must provide a simple API for validating a message’s validity, depending on
the underlying validation mechanism. The state involved in each unique mechainsm may differ from
one to another, so we leave discussion of the state involved to the examples. Consequently, in the most
general case, there is no unique state relevant for this protocol.

Definition 5 The Validation Protocol must expose an API that allows a message to be verified
with a proof. The types of these input parameters are general and must be defined by the underlying
mechanism chosen.

e validate(message: Message, proof: Proof)— {0,1} - Processes and validates a message and a
proof and outputs a bit value indicating success or failure.

3.7.2 A single-signer ECDSA validation protocol.

In the single-signer ECDSA validation protocol, a single ECDSA public key dictates the mechanism.
That is, any message signed by this key will output 1 and 0 otherwise. This account must be replicated
everywhere messages are relayed and processed.

e validate(message: Message, proof: EcdsaSignature) — {0,1}

1. The message is hashed using the keccak_256 hash function, yielding keccak_256(message).

2. Using an ECDSA elliptic-curve public key recovery algorithm, denoted ecrecover, we re-
cover the uncompressed ECDSA public key.

public_key = ecrecover(proof, keccak_256(message))
3. Lastly, we verify the equality against the single-signer public key.

if public_key = single-signer {return 1} else {return 0}

11

3.7.3 A multi-signer ECDSA validation protocol.

In the multi-signer ECDSA validation protocol, multiple ECDSA public keys dictate the mechanism.
That is, any message signed by at least a threshold ¢ of keys will output 1 and 0 otherwise. These
accounts must be replicated everywhere messages are relayed and processed. Similarly, the threshold
must also be stored everywhere messages are processed.

e validate(message: Message, proof: Vec<EcdsaSignature>) — {0,1}

1. The message is hashed using the keccak_256 hash function, yielding keccak_256(message).

2. Using an ECDSA elliptic-curve public key recovery algorithm, denoted ecrecover, we re-
cover the unique uncompressed ECDSA public keys from all signatures.

PK = unique({ecrecover(proof[i], keccak 256(message))}<|proof|)

3. We sum the number of unique valid keys against the equality relation using the indicator
random variables and check against the threshold .

if (Z 1[pk € muIti—signer—set]) >t {return 1} else {return 0}
pkePK

3.7.4 A light-client validation protocol

The most trustless version of the validation protocol is undeniably based on light-clients. A light-client
is a system that provably tracks the consensus of a certain blockchain and exposes an API to query
the state of that blockchain with a cryptographic proof. In the context of a bridge, light-clients are
useful for proving state updates of the bridged blockchain on either side of the bridge. If we assume
the existence of light-clients for each blockchain on our bridge then we can prove that the storage of
an Anchor System instance has updated.

e validate(message: Message, proof: Vec<u8>) — {0,1}

1. Using a light-client £, we simply verify the proof:

if L.verify_state_proof(message, proof) {return 1} else {return 0}

4 The DKG Protocol

The Webb Protocol is built around a more robust validation mechanism than what is described in the
examples above, called the DKG Protocol. The main problem with the example validation mechanisms
lie in their lack of flexibility. For a single signer, the control over message validation is centralised and
prone to exploits. Key management is a hard problem and so using a single key to centralise validation
is not sufficient in the grand scheme of building decentralised networks. The benefit is that storage

12

is minimal and the runtime complexity is minimized to a single elliptic-curve public key recovery for
message validation.

Naturally, we may think a multi-signer system is better because it allows us to decentralise the
set over an arbitrarily large threshold ¢t. While this is better for decentralizing control over message
validation, as ¢t grows, our storage and runtime complexity grows, since we must maintain all of these
keys everywhere we process messages and verify signatures for them. In a network of many anchors, this
doesn’t scale as well as we would like; each anchor must store all the keys, the threshold ¢, and validate
t signatures on each message received. Moreover, changing the set of signers requires changing them
everywhere, which incurs additional overhead over properly decentralizing the validation mechanism
and building a permissionless, dynamic set of validators.

We want the benefit of both worlds. We want the low storage and runtime complexity of a single-
signer solution with the decentralization benefits of a multi-party system. For this, we will use a
distributed key generation and threshold signing system.

4.1 Distributed key generation

A distributed key generation protocol is a multi-party protocol in which n parties communicate amongst
each other to generate a shared public and private keypair. For our purposes, we are interested in
distributed key generation protocols that can be used for generating signatures, often referred to as
t-threshold signatures. ¢-Threshold signatures are a type of digital signature that can only be created
if a threshold ¢ + 1 of parties participate in the signing protocol honestly. To that, we formalise this
protocol, adapted from the definitions in [1].

Definition 6 Signature schemes. A signature scheme S is an efficient three-part protocol consis-
tenting of a key-generation, signing, and verify functions:

1. (pk,sk)<—KeyGen(\) - The key generation protocol takes as input a security parameter A and
outputs a public verification key and private signing key pair.

2. o «+—Sign(m, sk) - The sign protocol takes as input a message m and a private signing key sk
and outputs a signature o. The algorithm can be randomized so there may exist many valid
stgnatures.

3. {0,1} «—Verify(pk, m, o) - The verify function outputs a boolean bit indicating if the signature
o of message m is a valid signature under the public key pk.

Definition 7 (t,n)-threshold signature schemes. A (t,n)-threshold signature scheme TS is a sig-
nature scheme S distributing signing among n parties where any t+1 of the parties can collaboratively
create a digital signature. A threshold signature o from TS is also a valid signature in S. The scheme
consists of the following protocols.

o (pk,{sk;}i<n)<—DistKeyGen(\) - The distributed key generation protocol takes as input a security
parameter A\ and outputs a group public key pk as well as a secret share sk; for each party i <n.
Each party © only receives their share sk; and none other. Fveryone receives pk.

e g; «—TresholdSign(m, sk;) - The threshold signing protocol takes as input a message m, a secret
share sk; for party i, and outputs a signature o;.

13

o 0 «—Aggregate({0;, }j<i+1) - The aggregate protocol takes any t + 1 signature shares o;,, i; <n
over a common message m and aggregates them into a single digital signature o such that the
recovered public key for o is pk.

Consider an instantiation of a distributed key generation protocol within the greater context of
a validation protocol. We start with n parties and a threshold ¢ < n. We assume successful key
generation for the lifecycle of future signing operations. Therefore, we have a single public key pk that
we will store and replicate everywhere messages are processed.

4.1.1 A (t,n)-threshold-signing ECDSA validation protocol.

In the (¢, n)-threshold signing ECDSA validation protocol, a (¢, n)-threshold ECDSA public key dic-
tates the mechanism. That is, any message signed and aggregated by t + 1 parties’ key shares will
output 1 and 0 otherwise. The group public key pk must be replicated everywhere messages are relayed
and processed.

e validate(message: Message, proof: EcdsaSignature) — {0,1}

1. The message is hashed using the keccak_256 hash function, yielding keccak_256(message).

2. Using an ECDSA elliptic-curve public key recovery algorithm, denoted ecrecover, we re-
cover the uncompressed ECDSA public key.

public_key = ecrecover(proof, keccak_256(message))

3. Lastly, we verify the equality against the group public key.

if public_key = pk {return 1} else {return 0}

The example above looks and feels more similar to the single-signer case, yet it decentralises control
over multiple parties. In essence, we’ve abstracted the complexity of a multi-party scheme to an
auxiliary distributed protocol.

4.2 Key Rotation Protocol

A truly decentralized validation mechanism must also allow the set of authorities participating in the
protocol to change over time. Old members may want to leave and new members may want to join. In
order to support such functionality, we introduce the Key Rotation Protocol. We assume the that the
Key Rotation Protocol has access to an authority set selection system that updates authority sets at
pre-defined time intervals. This system updates the current and next set of authorities on each session
rotation. We use a; to denote the authority set of session i. Let ska, = {skq}aca; be the secret key
shares of authorities in set a;.

The Key Rotation Protocol runs in sessions of length L and executes a multi-party protocol with
initial threshold t < |a;|, i € {0,1}:

14

1. On session ¢ = 0, the current authority set ay executes a t-threshold-signature schemes

pka, <— DistKeyGen(A, ,[ap|)

2. On session i > 0, after a time length L has elapsed from the beginning of i:

(a) The authority set selection system outputs a candidate next authority set a;11

(b) The authorities a;; execute

pk, . +— DistKeyGen(\,t,|a;1+1])

Ai+1

3. On session 7 > 0, if pkai+1 succeeds to generate, pick a subset S C a;, |S| =t + 1 of signing
parties and execute
m <— concat(i + 1, pka,,,)
o «— Aggregate({ ThresholdSign(m, sk)} ok sk)es)

where concat computes the concatenation of the hex byte representations of the arguments.

4. On session ¢ > 0, if m, o succeed to generate, execute
b «— Verify(pk, m, o)

(a) Ifb=1:

i. Execute the key rotation, setting the new global public key to pk,,, , and current
authorities to a; 1

ii. End the current session and start session 7 + 1
iii. Return to (2)
(b) If b = 0 repeat (3).

5. On session i > 0, if pk fails to generate after a timeout KEYGEN_TIMEOUT:

a1
(a) Start or increment a retry counter ¢ and repeat from (2b)
(b) If ¢ == RETRY_LIMIT

(c) Execute the Misbehaviour Protocol for key generation defined in the next section and
repeat from (2a)

6. On session ¢ > 0, if o fails to generate and/or verify successfully after a timeout SIGN_TIMEOUT:

(a) Execute the Misbehaviour Protocol for signing defined in the next section
(b) Repeat from (3)

15

trait IProto<P, S, N> {
fn get_session(&self) —> N
fn get_session_start_block(&self) —> N
fn get_public_key(&self) — P;

fn set_session(&self, index: N);
fn set_public_key(&self, pk: P);

fn verify <P, S>(pk: P, msg: Vec<u8>, sig: S) —> bool;

async fn execute_keygen(&self) — Result<(), Error>;

async fn threshold_sign(&self) —> Result<S, Error>;

async fn wait_for_sigs(&self, s: S) —> Result<Vec<S>, Error>;
async fn aggregate(&self, sigs: Vec<S>) —> Result<S, Error>;

async fn sign_next_key(&self, key: P) —> Result<S, Error> {
let next_session = self.get_session () + 1;
let mut msg = Vec::new ();
msg. extend _from_slice (next_session.to_bytes ());
msg. extend_from_slice (key.to_bytes ());
let sig_share = self.threshold_sign (msg).await?;
let all_shares = self.wait_for_sigs(sig_share).await?;
self.aggregate(all_shares).await?

}

async fn rotate_session(&self) — Result<(), Error> {
let start = self.get_session_start_block ();
if curr_session.start_block + L <= now {
let next_key = self.execute_keygen ().await?;
let msg = self.sign_next_key (next_key).await?;
if verify(self.get_public_key (), msg, sig) {
self.set_session (curr_session + 1);
self.set_public_key (next_key);

Figure 2: Pseudocode for a Key Rotation Protocol implementation

16

4.3 Misbehaviour & Reputation Protocol

Multi-party protocols are not guaranteed to succeed; machines may fail, act maliciously, and simply
stop sending messages to peers. Therefore a misbehaviour reporting protocol is necessary for identifying
and sharing information on peer misbehaviours. The Misbehaviour Protocol we describe tracks a
reputation for each peer and selects participants for the Key Rotation Protocol and potentially other
protocols down the line using their latest reputation. These reputations dictate who participates and
executes, successfully, any of the algorithms in 7S as part of the multi-party computation.

The misbehavior protocol runs as a threshold voting protocol for all non-verifiable misbehaviours.
A non-verifiable misbehaviour is a misbehaviour that cannot be verified on-chain using a fraud proof.
An example of a non-verifiable misbehaviour is a timeout of a node, which can’t trustlessly be proven
since nodes can be DDOS’ed or fail erratically.

We consider two classes of non-verifiable misbehaviours due to timeouts: key generation and sign
timeouts. We use the signature threshold ¢ to define the minimum required votes necessary to suc-
cessfully report a misbehaving peer for sign timeouts and ¢ + 1 to report a misbehaving peer for key
generation timeouts. Once these amounts are submitted, the system decrements the misbehaving
peer’s reputation and jails them from participating in that stage of the protocol for a jail time.

The reputation function reputation, is a bounded function that yields the reputation of a participant
i. The update function is defined by a decay factor a € [0,1). A participant’s reputation follows the
following update rule:

1. On a successful action:
reputation(i),, ; = reputation(i), x o + 1

2. On a misbehaviour report:
reputation(i)

++1 = reputation(i), * «

From this, the reputation is bounded by ﬁ

4.4 Validator and Authority Selection

The protocol is geared towards a Proof of Stake or Proof of Authority based setting. For the purposes
of the paper we will restrict our attention to Proof of Stake. Thus, validators of the network are
selected using a Proof of Stake mechanism, i.e. token-weighted validator selection. Let there be k
validators or nodes participating in this protocol. We consider a (¢, n)-threshold signature DKG with
t<n<k.

We refer to the authorities that run the DKG as the best authorities. The best authorities are
simply those chosen by highest reputation. If n < k, we use the reputation system to select the best
n authorities out of the aggregate validator set.

The selection mechanism proceeds as follows:

1. Each session, a new validator set of size k is selected.
2. Out of the k validators, we select the n best authorities to run the DKG.

3. (t,n, k) are governable parameters and updates take effect after each session rotation.

17

5 The Webb Protocol

The combined Anchor and Validation protocol lays the foundation for the Webb Protocol. For speci-
ficity we will describe the overall system using the DKG Protocol.

5.1 Protocol Sketch

Consider a Proof of Stake (PoS) blockchain protocol where L blocks constitutes a session period. At
the beginning of each session from the genesis session, the current and next validator sets a;, a;41, i > 0
are selected using the underlying Proof of Stake election mechanism.

We will use the validator set to bootstrap a DKG Protocol from the start. That is, we will
execute the Key Rotation Protocol each session and Misbehaviour Protocol throughout the blockchain’s
execution. On this blockchain, we will also govern a set of parameters that control various aspects
of the protocol. This can be implemented as a smart contract or a core primitive of the system.
Specifically, we will govern:

1. The validators who can participate in both consensus and the DKG, using PoS and reputations.

2. The thresholds ¢,n for the t-out-of-n threshold signature protocol for the current, next, and
following session.

Note: If the validator selection mechanism selects validator sets that conflict with the values of t,n
then those values are updated to be compatible with the validator set automatically. For example, if the
size of the set is smaller than n, the protocol will change n to be the validator set size.

5.1.1 Sketch

After a period of L blocks has elapsed in each session, the nne next best authorities are selected by
reputation to participate in the (¢pext, 7next)-distributed key generation for the next session. From here,
we leverage the authorities, non-exclusively, of the blockchain to act as relayers over Anchor System
instances using a combination of the threshold and light-client based validation protocol. We say non-
exclusive to indicate that anyone can fulfill the role of a relayer. A protocol sketch for a connected set
of anchors is as follows:

1. Relayers listen for merkle tree insertions into those anchors

2. Relayers relay messages to the Webb blockchain for light-client verification and subsequently
threshold-signing.

3. Authorities generate threshold-signatures if the light-client message validation succeeds.

4. After successfully generating threshold signatures of these merkle tree updates, relayers relay
and submit transactions of this signed event back to each neighboring anchor.

5. Anchors modify their internal state for the neighboring anchor being updated.

6. Users can now generate valid cross-chain zero-knowledge proofs of membership for newly inserted
data and apply them on their target destination.

18

32 bytes 4 bytes
I - Z;N |

1

Fune
Sig

Resource ID Nonce

Figure 3: A message/proposal header

5.2 Message Types

The protocol utilizes formatted messages to transfer information between the protocol instances and
the DKG protocol. These messages are constructed and adhere to a standard structure.

Definition 8 A resource identifier (resource ID) is a unique 32-byte identifier that contains
information about a resource (such as a smart contract) and a blockchain identifier of where the resource
exists (such as a unique EVM chain ID).

We use resource identifiers to identify smart contracts or indices of core runtime functionality. The
motivation is to have a unique identifier that also differentiates between the blockchain where these
resources are deployed to. Resource identifiers prevent replay attacks in this manner, since we can add
validation on the resources themselves to ensure the the message being executed is targeting such a
resource on the correct blockchain.

Each message contains a message or proposal header that describes the target execution environ-
ment such as Ethereum. If a message is meant to be processed on a smart contract on Ethereum, the
message header would contain identifying information about this contract and its underlying environ-
ment.

Definition 9 A message header (proposal header) is a 40-byte prefiz attached to all messages
used in the Webb Protocol. It is the concatenation of:

o 32-bytes for an executing resource identifier.
o j-bytes for an executing function identifier.

e J-bytes for a message nonce.

A diagram of the message header is provided in 3

19

40 By‘te_s 32 l:t/te_s 32 bytes

Source

Msg Header Merkle root Resource ID

Figure 4: An anchor update proposal message

5.2.1 Anchor Update Message

The anchor update message is the primary message used to update the edges of connected anchors.
The message contextualizes source and target identifying information about where an event occurred
and where it is meant to be executed. For a given anchor update, a unique message is proposed to
each connected neighbor using a different target resource identifier.

Definition 10 The anchor update message is a 104-byte message that links a source anchor with
a target anchor using their resource identifiers. It is the concatenation of:

e 40-bytes for the proposal header containing the execution anchor resource ID.
o 32-bytes for a new merkle root of the source chain anchor.

o 32-bytes for the source anchor resource ID.

A diagram of the anchor update proposal message is provided in 4

We relay these messages to the DKG for signatures and then we relay the signature and message
pairs to the target anchor that is connected to the source anchor where the update has occurred.

5.3 Hybrid threshold / light-client validation protocol

The Webb Protocol will initially utilize a hybrid threshold and light-client validation protocol before
realizing the fully trustless light-client based version. This is due to the reality that building bi-
directional light clients is a monumental effort both in research and engineering. We describe our
current research in the Appendix.

By hybrid threshold and light-client validation, we mean explicitly that:

1. Messages that are signed with a threshold signature are considered valid.

2. Messages should only be signed (enforced in protocol) if they are proven to be true against a
light-client L.

20

5.3.1 Light-client message validation

Our main goal in utilizing light-client here is to provide trustlessness on the messages being signed.
Additionally, it prepares the protocol for a future migration towards fully light-client based bridging.
For now, we are minimizing the trust surface for bridges built using this architecture by some order of
magnitude since we can trustlessly reason about cross-chain state on the Webb blockchain and enforce
crypto-economically that this state gets signed. We are only relying on the DKG authorities to sign
messages generated from verifiable state across our Anchor System instances. The feedback loop is
closed and allows for slashing DKG authorities in the event they sign invalid data. This is done simply
by providing a signature and proving there was no submitted verifiable state used to construct it.

The light-client message validation mechansim trustlessly verifies the validity of messages proposed
to the Webb blockchain about Anchor System instances on other blockchains. For simplicity, we
restrict our attention to blockchains that have finality for the Anchor System instances.

For each blockchain being bridged consider its light client £ on the Webb blockchain, we maintain:
1. The latest finalized header.
2. The logic for verifying and updating the light client’s latest finalized header.

3. The logic for verifying state and events against the finalized header.
Using £ and the functionality above, we can now:

1. Prove the state of an Anchor System instance has updated.
2. Generate the corresponding state proof.
3. Submit and verify it on the Webb blockchain.

4. If successful, generate an AnchorUpdateMessage and submit it for threshold signature gen-
eration.

5.4 Proposal Pipeline

The Webb Blockchain can be viewed as a generic signing service for certain proposal payloads that
pass validation criteria. We can generalize this to support arbitrary proposals over verifiable data on
any of the chains as well and leave this for the Appendix.

In this light, the Webb Blockchain also acts as a cross-chain governance system for controlling
cross-chain applications. Since it can generate signatures, the Webb blockchain can trigger application
updates based on valid signature verifications. The lifecycle of proposals is then defined by these
processes for proposal creation, signing, and submission.

5.4.1 Proposal Creation

Proposals are created through 2 main flows:

21

1. Light-client proofs of data.

2. Token-voted proposals.

The former flow we have already described above; certain proposals such as AnchorUpdateMes-
sage proposals are created on-chain if there exists a submitted proof of the underlying storage state
of the Anchor System instance. In the future, arbitrary payloads will be supported if valid proofs of
existence are presented.

The latter flow defines the method in which the token holders of this Webb blockchain can create
proposals for the underlying threshold signature system to sign. This can follow any underlying token
weighted voting system such as quadratic voting, conviction voting, majority voting, and more. Pro-

posals created by token holders allow us to jump-start the bridging and governance for the applications
deployed on a Webb blockchain.

Example 4 Consider two Anchor System instances on different blockchains A and B. Before these
instances are bridged together, relayers will have no idea where to relay the signed updates to their
underlying merkle trees. The system’s bridging is left as a task for the token holders of the Webb
blockchain, to create the necessary AnchorUpdateMessage proposal that initially connects the An-
chor System instances on A with B and vice versa.

5.4.2 Proposal Signing and Submission

Once proposals are created in a Webb blockchain, they are added to an unsigned proposal queue. The
current DKG authorities listen for changes to the unsigned proposal queue and begin to execute the
threshold signature MPC protocol. Since unsigned proposals are on-chain at this point, failure to sign
these proposals can penalized through any developer-specified slashing conditions.

The protocol proceeds through this process ad infinitum:

1. Listen for insertions into the unsigned proposal queue.

2. Initiate a threhsold signing protocol over new unsigned proposals.

3. Upon successful threshold signature generation, submit this signature back on-chain.
4

. Clear the unsigned proposal from the unsigned proposal queue upon successful on-chain submis-
sion.

Signed proposals are persisted on-chain for an indefinite period of time. Any user or relaying
service can watch for updates to the signed proposals storage system on the Webb blockchain under
question. With these signatures, these same entities can submit state changing transactions to the
Anchor System instances that rely on the (Z,n)-threshold signature validation mechanism with this
blockchain’s threshold distributed key as the governing key.

5.5 Open-source Software Implementations

The implementations of the blockchain and Anchor Systems are open source and built in a variety of
blockchain ecosystems.

22

e The DKG Protocol is implemented as a Substrate based blockchain
e The EVM based Anchor System is implemented in Solidity

e The Substrate based Anchor System is implemented in Substrate

References

[1] Rosario Gennaro and Steven Goldfeder. “One round threshold ECDSA with identifiable abort”.
In: Cryptology ePrint Archive (2020).

[2] Kobi Gurkan, Koh Wei Jie, and Barry Whitehat. “Community proposal: Semaphore: Zero-knowledge
signaling on ethereum”. In: Accessed: Jul 1 (2020), p. 2021.

[3] Gavin Wood et al. “Ethereum: A secure decentralised generalised transaction ledger”. In: Ethereum
project yellow paper 151.2014 (2014), pp. 1-32.

23

https://github.com/webb-tools/dkg-substrate
https://github.com/webb-tools/protocol-solidity
https://github.com/webb-tools/protocol-substrate

	Introduction
	Background
	Anchor System
	Purpose
	Governance
	State and API
	Privacy
	Anchor System Gadget
	Constraints/proofs for the Anchor System.

	Anchor System Gadget Relations
	Example: Variable Asset Anchor System
	Constraints/proofs for the variable anchor asset protocol.
	Example: Semaphore Anchor System
	Example: Identity-based Variable Asset Anchor System

	The Validation Protocol
	State and API
	A single-signer ECDSA validation protocol.
	A multi-signer ECDSA validation protocol.
	A light-client validation protocol

	The DKG Protocol
	Distributed key generation
	A (t,n)-threshold-signing ECDSA validation protocol.

	Key Rotation Protocol
	Misbehaviour & Reputation Protocol
	Validator and Authority Selection

	The Webb Protocol
	Protocol Sketch
	Sketch

	Message Types
	Anchor Update Message

	Hybrid threshold / light-client validation protocol
	Light-client message validation

	Proposal Pipeline
	Proposal Creation
	Proposal Signing and Submission

	Open-source Software Implementations

