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Abstract. Joint computation on encrypted data is becoming increasingly crucial with the rise of
cloud computing. In theory, multi-party computation (MPC) allows for secure computation, but it
is often impractical due to intensive interactions between users. In recent years, the development
of multi-client functional encryption (MCFE) has made it possible to perform joint computation
on private inputs, without any interaction. Well-settled solutions for linear functions have become
efficient and secure, but there is still a shortcoming: if one user inputs incorrect data, the output
of the function might become meaningless for all other users (while still useful for the malicious
user). To address this issue, the concept of verifiable functional encryption was introduced by
Badrinarayanan et al. at Asiacrypt ’16 (BGJS). However, their solution was impractical because
of strong statistical requirements. More recently, Bell et al. introduced a related concept for secure
aggregation, with their ACORN solution, but it requires multiple rounds of interactions between
users. In this paper,
– we first propose a computational definition of verifiability for MCFE. Our notion covers the

computational version of BGJS and extends it to handle any valid inputs defined by predicates.
The BGJS notion corresponds to the particular case of a fixed predicate, in our setting.

– we then design a concrete construction of verifiable MCFE for inner-product computations
where the inputs are within a range. Verifiability cannot be easily obtained from classical proof
systems only because the encryption key is usually secret in MCFE and the encryptor can
maliciously perform the encryption without being detected. So we need to effectively combine
different techniques such as commitments and range proofs to achieve the verifiability. Our
approach can also be applied to input validation for secure aggregation as a special case.
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1 Introduction

1.1 Context

Multi-Client Functional Encryption. Functional Encryption (FE) [BSW11] is a paradigm
designed to overcome the all-or-nothing limitation of traditional encryption, allowing the sender
to control access to their encrypted data in a more fine-grained manner through functional
decryption keys. This paradigm enables the preservation of user’s privacy in cloud computing
services, where clouds can learn nothing beyond the delegated function evaluated on user’s pri-
vate data. FE with a single user appears to be quite restrictive in practice, as the number of
useful functions may be small. In this case, the Public Key Encryption (PKE) can be trans-
formed into FE by encrypting the evaluations of various functions using specific keys. However,
this approach is not feasible for multi-user settings, even if a fixed function only is considered.
To address this, Multi-Input Functional Encryption (MIFE) and Multi-Client Functional En-
cryption (MCFE) were thus introduced [GGG+14,GKL+13], allowing multiple clients to encrypt
their individual data independently and contribute encrypted inputs to a joint function, with
the help of possibly a trusted authority who runs the setup procedure and generates functional
decryption keys. Among the classes of functions for MIFE/MCFE, the inner product is an ex-
pressive class that allows computing weighted averages and sums over encrypted data, making
it especially useful for statistical analysis.

In [CDG+18], Chotard et al. provided a decentralized MCFE for the inner product where
all clients only need to run an MPC protocol once during the setup and remove the trusted



authority. With this setup, each client can have complete control over their individual data and
the generation of the functional decryption key over their individual encrypted data. As a follow-
up to their work, the MPC protocol was removed by a decentralized sum protocol in [CDSG+20],
making the decentralized MCFE for inner products completely non-interactive and eliminating
the need for pairings in the groups.

The main differences between MCFE and MIFE are that MCFE limits the possible com-
binations to build a global ciphertext with a common label in each individual ciphertext, but
on the other hand, MCFE allows the ciphertexts to be generated by independent clients, and
some of them can be corrupted. The latter point makes MCFE more general, while the former is
usually more restrictive as one usually limits to one ciphertext per client and per label. Allowing
repetitions would make MCFE more general than MIFE. But in this paper, we follow definitions
from [CDG+18].

Importance of Verifiability in MCFE. Historically, the security of an encryption scheme
has focused on the confidentiality of the message being encrypted. The (multi-client) functional
encryption is not an exception, with its indistinguishability security ensuring that given two
encrypted values and decryption keys for functions that evaluate the same at these two values,
then it is computationally hard to distinguish between the ciphertexts of these two values.
However, Badrinarayanan et al. [BGJS16] showed that the security of computation for an honest-
but-curious receiver is necessary: a malicious sender could provide a false ciphertext and false
functional decryption keys, so that the value encrypted within the ciphertext can vary when
computed with these different functions through an honest decryption process. An analogous
notion for the receiver in the multi-input setting is also provided.

In this work, we address a practical concern when using (decentralized) multi-client FE for
inner product in real-world applications. The MCFE for inner-product protocol can be run by
thousands of senders, but they may not be all honest. If we assume that a small percentage of
them are malicious, trying to bias the function evaluations by sending random data, or even fake
data, and contributing dishonest functional key shares. To minimize the impact of these malicious
clients, we propose a verification scheme for ciphertexts and one for functional decryption keys,
so that once all are valid, the decryption result is guaranteed to not be significantly biased.
Beyond the inner product, we define a verifiable MCFE, which provides security for the receiver
in the multi-client case setting of Badrinarayanan et al [BGL+22]. Compared to their scheme,
our verifiable MCFE scheme works on a larger class of functions than the sum, and does not
require interaction between senders and receiver during the verification process.

Verifiable MCFE for Inner Product. Verifiability for MCFE in the general case is very
difficult, because a small modification of the input can cause a significant difference in the output
(e.g. inverse functions). We can formalize the validity condition as a predicate, depending on
each application. However, for linear functions with small coefficients and small inputs (which
are the most useful in practice, like average functions for example), a change in the input does
not result in a major change in the output, unless there is a significant modification to an input.
When the number of users is large enough, the inputs are bounded (which are often considered
in Inner-Product Functional Encryption) then if an input is changed but still remains within a
reasonable range, the output function will be quite close to the exact value. Additionally, most
of the IP-MCFE schemes need a final discrete logarithm computation to get the result, which
requires it to be small enough, and so the inputs should also be in a reasonable range. For these
reasons, we target MCFE for inner product, and verifiability checks that the inputs stay within
a specific range. Such a range verification will be our predicate in the general framework (for
both the ciphertexts and the keys).
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A Real-Life Example. We consider Aggregating Household Energy Consumption as a practical
motivation. For optimization purpose, an energy supplier may want to aggregate the units of
energy (kilowatt-hours or kWh) consumed by its customers during some specific periods of the
day. This is technically feasible as households are now equipped with smart metering devices
which have the ability to record the energy consumption of a particular measuring point in
intervals of fifteen minutes or even less (real-time). However, the energy consumption of each
customer is a private information, as it may include, for example, the time they get up in the
morning, leave their house, return home and which electronic devices they use. Still, they may
be willing to help the supplier with their data to improve its service. To protect user’s privacy,
the customers are recommended to use a multi-client functional encryption to send their data in
an encrypted form. However, nothing guarantees that the electricity supplier receive a correct
aggregate of the metered energy consumption or at least an approximation of this value. In
fact, some customers may encrypt arbitrary value, spoiling the joint-input function by making
it undefined or be far away from the correct value. Moreover, the authority, who are not on the
same side with the supplier, may also produce malicious parameters and malicious functional
decryption keys which do not correspond to the asked functions. Therefore, if we can enforce
each client to encrypt a value in some valid range and enforce the authority to produce setup and
functional decryption keys honestly, then the noise made by malicious clients can be mitigated
when the aggregate value is among a large number of clients.

The fact that this scenario has not been captured in prior work of MCFE is historically rea-
sonable: in single-input FE, there is only one encryptor. When this encryptor wants to spoil the
result computed by the functional decryptor, he can encrypt an invalid input, such as values out
of the use domain or singular points of the function. Since this FE is single-input, the decryptor
can trivially detect the invalidity of the input via the invalidity of the function. Therefore, the
standard security notion of single-input FE only considers the confidentiality of the individual
input, which is later inherited by multi-client FE. On the other hand, a decryptor in MCFE,
can only learn the joint function evaluated on the joint input, then it seems not trivial to detect
invalid individual inputs of the malicious clients out of the valid ones. We stress that using
functional encryption schemes for modular inner product over Zp [ALS16] where p can be any
prime would not solve this problem. An adversary can always inject an arbitrary value to make
the computation over Zp become uniformly random over the space. Therefore, it seems that
verifying (or even reducing) the value of each encrypted input is a must to tackle this issue.

The challenge is that as each individual input must be kept private from any adversary,
so it is encrypted such that the encryptions between it and any other (possibly invalid) value,
must be indistinguishable. Moreover, the plaintext domain is usually defined by the security
parameter, then it is not simple to restrict the plaintext domain to a specific set of inputs
without compromising the security.

1.2 Contributions

Our contributions for verifiable MCFE can be listed as:

– Definition: We introduce the definition of verifiable MCFE, which guarantees that the
decryption process, given a vector of ciphertexts and functional decryption keys, always
returns the agreed functions evaluated on a vector of inputs lying in a specific range. The
verifiability is formalized as a security game against any probabilistic polynomial time (PPT)
adversary that can corrupt all senders and the functional decryption key authority.

– Construction: We provide a concrete construction of verifiable MCFE for inner product. We
deal with subtle security problems in the proof for verifiability to provide a construction that
is simple and efficient: the verifiability requires no structured common reference string but
random oracle, and is based only on extensively employed zero-knowledge proof of member-
ship such as Schnorr-based proofs and any Pedersen-commitment-based range proofs. When
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instantiated with Bulletproofs [BBB+18] and assuming n senders and the range to verify is
[0, 2m], the ciphertext size has an overhead of O(log2 dme), the overhead in encryption time
is O(m), and the verification time is O(m + n log2 dme). Our verifiable MCFE scheme can
be automatically adapted to become verifiable decentralized MCFE scheme.

– Privacy Improvement: We improve the IND-security model of our verifiable MCFE scheme
by adding a layer of All or Nothing Encapsulation on the ciphertext, we then provide a
two-step verification process for ciphertexts to guarantee the ability of detecting malicious
senders.

1.3 Technical Overview

We briefly show the path to our concrete construction of range-verifiable MCFE for inner prod-
uct. Our construction focuses on the practical efficiency in terms of time complexity for any
party and of the ciphertext size. Therefore, our building blocks are restricted to practical primi-
tives only: the MCFE scheme for inner product in [CDG+18], the Schnorr-based protocols, and
the range proofs on Pedersen commitment.

The initial observation is that the encryption in the MCFE scheme [CDG+18] is computed in
the form of a Pedersen commitment with message xi and a two-dimensional opening si, namely
[ci] = [u>` ] · si + [xi] where [u`] ∈ G2 is the output of a random oracle taking label ` as input,
and si is a private encryption key that is chosen uniformly from Z2

p, and xi ∈ Zp is the value to
encrypt.

First Attempt (naive approach). To focus on the ciphertext verification, we first assume
that the authority acts honestly in generating functional decryption keys. Each sender is required
to send a range proof π, which is a proof of knowledge for the message and the opening of a
Pedersen commitment, on a ciphertext [ci] for the relation:

Rrange+([ci],m; si, xi) = 1←→ [ci] = [u>` ] · si + [xi] ∧ xi ∈ [0, 2m − 1].

A range proof is, however, not enough to guarantee the verifiability in this case. In an MCFE
scheme, the encryption key is private to each sender, and it is strictly correlated to the secret
key used to generate a functional decryption key. A malicious sender can then encrypt any valid
x′i ∈ [0, 2m− 1], but under a false encryption key s′i 6= si and use the witness (s′i, x

′
i) to generate

a valid range proof. One may have [ci] = [u>` ] · s′i + [x′i] = [u>` ] · si + [xi] where xi /∈ [0, 2m − 1],
and then the invalid value xi will be injected into the function during the decryption.

Second Attempt. Our solution is to publish an encryption-key commitment for each sender
during the key generation before giving it to the sender. The trick is encrypting a message 0
under an initilization label `0, i.e. vki = [u>`0 ] · si. By using this commitment, we can reduce
the IND-security of the verifiable MCFE scheme to the MCFE scheme in [CDG+18]. The range
proof has to be transformed into an argument of knowledge for the relation

R([ci], vki,m; si, xi) = 1←→ [ci] = [u>` ] · si + [xi] ∧ vki = [u>`0 ] · si ∧ xi ∈ [0, 2m − 1].

To obtain a zero-knowledge argument of knowledge for R, our strategy is to efficiently combine
a Schnorr-based proof and a range proof. On the other hand, the functional decryption key
for an inner-product function y is dky = 〈y,x〉. Therefore, the decryption key verification is
designed based on the additively homomorphic property of vki: one will use (y, (vki)i) to check
the equality

∑
i yi · vki = [u>`0 ] · dky.

To prove the verifiability in this case, a simulator may have to extract all messages and
encryption keys (xi, si) in parallel, since ([ci], vki) is perfectly hiding for (si, xi). However, the
extraction from a proof for R may require rewinding oracle. Therefore, extracting multiple
instances may cause an exponential loss in the security reduction, which is shown in [PS96]
and [SG98].
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Our Solution: We prove by using the soundness only. The encryption key commitment is first
transformed into vki = ([u>`0 ] · si, [u

>
`′0
] · si), which is a perfectly binding commitment for si as

long as u`0 and u`′0 are linearly independent. The purpose of this two-line commitment is to
make the relation

Rrange−key([ci], vki,m; si, xi) = 1

←→ [ci] = [u>` ] · si + [xi] ∧ vki = ([u>`0 ] · si, [u
>
`′0
] · si) ∧ xi ∈ [0, 2m − 1]

define a non-trivial language Lrange−key for ([ci], vki) ∈ G3. Any argument of knowledge for
Rrange−key is also an argument of membership for Lrange−key. The verification for functional
decryption keys consequently verifies for two equalities:

∑
i yi · vki = ([u>`0 ] · dky, [u

>
`′0
] · dky) and

obtains a perfect soundness.

Two-Step Verification for Detecting Malicious Senders. For the IND-security game, we
can remove the condition that under the same label, if an encryption query has been asked
for an honest client, then all encryption queries under the same label for other honest clients
must have been asked. The technique for dealing with incomplete ciphertexts is to add one more
layer of AoNE encryption on the verifiable MCFE ciphertext, as proposed in [CDSG+20]. The
problem is that to guarantee the ability to detect malicious senders, which is naturally offered
by the verifiable inner-product MCFE scheme, one may have to implement an expensive zero-
knowledge argument to prove that each encapsulation of [ci] is generated honestly and [ci] is
a valid ciphertext. To overcome this difficulty, we propose a two-step verification based on the
pairing-based AoNE from [CDSG+20]:

– First Step: For each encapsulation, only the share that is used to open other senders en-
capsulation is verified. This step can be done efficiently by asking each sender to provide a
Schnorr-based proof of Diffie-Hellman pairs. This step is to protect the underlying VMCFE
ciphertexts [ci] of honest senders, and any malicious sender who tries to distort these [ci] will
be identified.

– Second Step: The receiver proceeds the ciphertext verification as in the construction of
verifiable inner-product MCFE. Under the assumption that the VMCFE ciphertexts of all
senders are successfully revealed, any sender who sends invalid [ci] will be identified. This
step maintains the verifiability for the scheme.

1.4 Related Work and Comparisons

Formalization. Our definition of verifiability for MCFE could be seen as a generalized compu-
tational version of the verifiability for MIFE in [BGJS16] with some differences. By introducing
predicates for messages to be encrypted and a predicate for the function, our definition captures
a larger class of verification and additionally validates the content of messages within ciphertexts
and the content of functions within functional decryption keys. A detailed comparison will be
given in Section 7 when we introduce the formalization for our notion.

Comparing with [BGL+22], if we restrict the functionality to be a sum of encrypted inputs,
then we can obtain an analog input validation for secure aggregation. In their ACORN-detect
protocol, each encrypted input is guaranteed to be in a small range. On the other hand, our
VMCFE does not cover the case of dropout senders (who cannot send their ciphertexts) as
in [BGL+22]. The reason is that we want to maintain a basic property of an encryption scheme:
no interaction between senders and a receiver during the decryption process should be required.
If the receiver can decrypt with incomplete ciphertexts without any agreement (which requires
interaction) from all senders, then this may simultaneously violate the security of an MCFE
scheme: only when ciphertexts under the same label of all senders are sent, then the receiver is
able to decrypt.

5



Malicious sender detection is an interesting feature but is not obvious to obtain from the
verifiability. An example is the ACORN-detect in [BGL+22]: this protocol allows validating
the aggregated key, which is combined from all key shares of senders, by using an interactive
Schnorr-based protocol between the server and each sender. However, it is expensive to prove
and verify that each key share is honestly generated, so it is difficult to identify the malicious
sender in the case the aggregated key is invalid. The authors in [BGL+22] propose another
protocol, called ACORN-robust, that can detect malicious senders and remove their inputs,
but requires a bounded number of malicious senders and more interactions. In our verifiable
inner-product MCFE, there is usually an authority who generates functional decryption keys.
If a key is invalid, then he must be the malicious one. Our VMCFE scheme when extended
to decentralized VMCFE scheme also allows each sender to control the generation of his own
functional decryption key share as in the ACORN-detect protocol, but an important difference
is that our scheme is totally non-interactive, even in the verification process for the functional
decryption key. An efficient approach to verify each key share is yet still an open problem.

In short, the main advantages that our verifiable (decentralized) MCFE scheme has over the
ACORN-detect protocol in [BGL+22] are the non-interactivity and the possibility of decryption
for inner products, which is a more general class of functions than the sum.

Efficiency. As [BGJS16] does not yield a construction for the inner product, we compare some
significant costs that are needed for the verifiability of our schemes with those for the input
validation of ACORN-detect protocol in [BGL+22].

For the comparison, we assume a security parameter λ and a range [0, 2m − 1] to verify the
inputs. We do not count scalar operations and scalar elements, since the cost and the size are
small compared to the cost of group exponentiation and the size of group element respectively.
For the ciphertexts, we will focus only on the costs for proofs of smallness on encrypted inputs,
which has the costs that dominate the costs of other tasks for verifiability. The ACORN-detect
allows aggregating vectors of size `, then the costs are optimized for `.

Round Complexity: The ACORN-detect protocol requires a 5-round interactive variant of
Schnorr’s protocol between the server and each client during the verification of the aggregated
key. In our decentralized verifiable inner-product MCFE, the functional decryption key can
be verified without any interaction.

Computational Cost: Although aiming at different primitives (summation is a special case of
inner product function), the computational costs are essentially the same in both protocols.
Both require each of its senders to produce a proof of smallness on his encrypted input and
can be instantiated with Bulletproof [BBB+18]. The cost of generating a proof of smallness
in ACORN-detect is 6k+8(log2 dke+1) group exponentiations and a multi-exponentiation of
size k for k = 8`+λ. Meanwhile, a sender in our VMCFE scheme, which supports computing
inner products with encrypted scalar inputs, needs about 12m + 10 group exponentiations
for the proof of smallness.
For the batch verification of proofs of smallness, the cost for ACORN-detect is a multi-
exponentiation of size 2k+2+n log2 d2k + 4e and two multi-exponentiations of size 8`, while
the cost for VMCFE scheme is a multi-exponentiation of size 2m+ 3 + n(2 log2 dme+ 5).
The verification for the aggregated key in ACORN-detect is n ·(5+`) group exponentiations,
while the verification for the functional decryption key in VMCFE scheme is 2n + 4 group
exponentiations.

Communication Cost: Both protocols enjoy the efficiency from the Bulletproof: for ACORN-
detect, the size of proof of smallness is 2 log2 dke + 4 group elements for k = 8` + λ. For
inner-product VMCFE scheme, the proof size is 2 log2 dme+ 7 group elements in total.
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2 Preliminaries

We defer the classical definitions and notations for pairings, non-interactive zero-knowledge
arguments of knowledge, and range proof to Appendix A.

2.1 Computational Assumptions

Prime Order Group. Let GGen be a prime-order group generator, a probabilistic polynomial
time (PPT) algorithm that on input the security parameter 1λ returns a description G = (G, p, P )
of an additive cyclic group G of order p for a 2λ-bit prime p, whose generator is P . For a ∈ Zp,
define [a] = aP ∈ G as the implicit representation of a in G.

From a random element [a] ∈ G, it is computationally hard to compute the value a (the
discrete logarithm problem). Given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute
[ax] ∈ G and [a+ b] = [a] + [b] ∈ G.

Definition 1 (Decisional Diffie-Hellman Assumption). The Decisional Diffie-Hellman
Assumption states that, in a prime-order group G $←− GGen(1λ), no PPT adversary can distinguish
between the two following distributions with non-negligible advantage:

{([a], [r], [ar])|a, r $←− Zp} and {([a], [r], [s])|a, r, s
$←− Zp}.

Equivalently, this assumption states it is hard to distinguish, knowing [a], a random element from
the span of [a] for a =

(
1
a

)
, from a random element in G2: [a] · r = [ar] =

( [r]
[ar]

)
≈
([r]
[s]

)
.

2.2 Commitments

Definition 2 (Commitment). A non-interactive commitment scheme com over a message
space Mcom, a commitment space Ccom and a opening space Ocom is defined by a tuple of three
algorithms (SetUp,Commit,Verify):

– SetUp(λ): Takes as input a security parameter λ , outputs public parameters pp (which are
implicit to other algorithms);

– Commit(m): Takes as input a message m ∈Mcom, generates a uniformly random r ∈ Ocom.
Outputs a commitment c ∈ Ccom and the opening value r.

– Verify(c, r,m): Takes as input a commitment c, an opening r and a message m. Verifies if c
is a commitment to m with the opening r. Outputs b ∈ {0, 1}.

Definition 3 (Hiding Commitment). A commitment scheme com is said to be hiding if for
any PPT adversary A, there is a negligible function µ(λ) such that∣∣∣∣∣Pr

[
pp←− SetUp(λ), (m0,m1, st)←− A(pp),

b
$←− {0, 1} c←− Commit(mb), b′

$←− A(st, c)
: b = b′

]
− 1

2

∣∣∣∣∣ 6 µ(λ)

where the probability is over random coins in SetUp, A, Commit and in choosing b. The com-
mitment scheme is said to be perfectly hiding if µ(λ) = 0.

Definition 4 (Binding Commitment). A commitment scheme com is said to be binding if
for any PPT adversary A, there is a negligible function µ(λ) such that

Pr

[
pp←− SetUp(λ),

(c,m,m′, r, r′)←− A(pp)
:
Verify(c, r,m) = Verify(c, r′,m′) = 1

∧ (m 6= m′)

]
6 µ(λ)

where the probability is over random coins in SetUp, A, and Commit. The commitment scheme
is said to be perfectly binding if µ(λ) = 0.
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Definition 5 (Pedersen Commitment). . LetMcom = Ocom = Zp and Ccom = G of order p.

– SetUp: Outputs [h], [g]
$←− G.

– Commit(m): Outputs r $←− Zp and c = [g] ·m+ [h] · r.
– Verify(c, r,m): Outputs 1 if c = [g] ·m+ [h] · r, and 0 otherwise.

The Pedersen commitment is perfectly hiding and computationally binding under the discrete
logarithm assumption.

2.3 Non-interactive Zero-knowledge Proofs

Zero-knowledge Proofs. Let R be a polynomial-time decidable relation. We call w a witness
for a statement u if R(u;w) = 1. A language L associated with R is defined as

L = {u|∃w : R(u;w) = 1}.

A zero-knowledge proof for L consists of a pair of algorithms (P,V) where P convinces V that
a common input u ∈ L without revealing information about a witness w. If u /∈ L, P has a
negligible chance of convincing V to accept that u ∈ L. In a zero-knowledge proof of knowledge,
P additionally proves that it owns a witness w as input such that R(u;w) = 1. In this work,
we focus on the non-interactive proofs where P sends only one message π to V. On the input
π, some public parameters and its own inputs, V decides to accept or not. A formal definition,
from [AGM18] [BFM88] [FLS90], is given below.

Definition 6 (Non-interactive Zero-knowledge Argument). A NIZK argument for a lan-
guage L defined by an NP relation R consists of a triple of PPT algorithms (SetUp,Prove,Verify):

– SetUp(λ): Takes as input a security parameter λ, and outputs a common reference string
(CRS) σ. The CRS is implicit input to other algorithms;

– Prove(u,w): Takes as input a statement u and a witness w, and outputs an argument π.
– Verify(u, π): Takes as input a statement u and an argument π, outputs either 1 accepting the

argument or 0 rejecting it.

Sometimes in this paper we will call π a proof. The algorithms satisfy the following properties.

1. Completeness. For all u,w such that R(u;w) = 1,

Pr

[
σ ←− SetUp(λ),

π ←− Prove(u,w)
: Verify(u, π) = 1

]
= 1.

2. Computational Soundness. For all PPT adversaries A, there is a negligible function µ(λ)
such that

Pr

[
σ ←− SetUp(λ),

(u, π)←− A(σ)
: Verify(u, π) = 1 ∧ u /∈ L

]
≤ µ(λ).

3. Zero-Knowledge. There exists a PPT simulator (S1,S2) such that for all PPT adversaries
(A1,A2), there is a negligible function µ(λ) such that∣∣∣∣∣Pr

σ ←− SetUp(λ),

(u,w, st)←− A1(σ)

π ←− Prove(u,w)

:
A2(σ, π, st) = 1

∧R(u;w) = 1


−Pr

(σ, τ)←− S1(λ),(u,w, st)←− A1(σ)

π ←− S2(σ, u, τ)
:
A2(σ, π, st) = 1

∧R(u;w) = 1

 ∣∣∣∣∣ ≤ µ(λ).
where τ is a trapdoor for σ and st is an internal state.
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3 Definition and Security Models

3.1 Definition

We denote by F a class of n-ary functions from Mn to X . We also denote by Pm ⊂ {0, 1}∗ a
class of polynomially-time-decidable predicates for message to encrypt and by Pf ⊂ {0, 1}∗ a
class of polynomially-time-decidable predicates for function in a functional decryption key.

Definition 7 (Verifiable Multi-Client Functional Encryption). A verifiable multi-client
functional encryption onM over (F ,Pm,Pf), and a set of n senders consists of seven algorithms
:

– SetUp(λ): Takes as input the security parameter λ. Outputs the public parameters pp. Those
parameters are implicit arguments to all the other algorithms;

– KeyGen(): Outputs the n encryption keys eki, the secret key sk, the public key pk and the n
public verification keys vki;

– Encrypt(eki, vki, xi, `,P
m
i ): Takes as input an encryption key eki, a verification key vki, a value

xi to encrypt, a label ` and a predicate Pm
i ∈ Pm. Outputs the ciphertext C`,i;

– DKeyGen(sk, pk, f,Pf): Takes as input the secret key sk, the public key pk, a function f ∈ F ,
and a predicate Pf ∈ Pf. Outputs a functional decryption key dkf ;

– VerifyDK(pk, dkf ,P
f): Takes as input the public key pk, a functional decryption key dkf , and

a predicate Pf ∈ Pf. Outputs 1 or 0;
– VerifyCT(vki, C`,i,P

m
i ): Takes as input a verification key vki, a ciphertext C`,i, and a predicate

Pm
i ∈ Pm. Outputs 1 or 0;

– Decrypt(dkf ,C`): Takes as input a functional decryption key dkf , an n-vector ciphertext
C` := (C`,i)

n
i=1. Outputs f(x) or ⊥.

Correctness. Given any set of message predicates (Pm
i )
n
i=1 ∈ (Pm)n and any function predicate

Pf ∈ Pf: for all functions f ∈ F such that Pf(f) = 1, and all sets of values (x1, ..., xn) ∈ Mn

such that Pm
i (xi) = 1 for all i ∈ [n], and

pp←− SetUp(λ)

((eki)
n
i=1, sk, pk, (vki)

n
i=1)←− KeyGen()

C`,i ←− Encrypt(eki, vki, xi, `,P
m
i ) ∀i ∈ [n]

dkf ←− DKeyGen(sk, pk, f,Pf)

then 
VerifyDK(pk, dkf ,P

f) = 1

VerifyCT(vki, C`,i,P
m
i ) = 1 ∀i ∈ [n]

Decrypt(dkf ,C`) = f(x1, ..., xn)

with probability 1.

Verifiability. For all PPT adversaries A, the advantage in the following game is negligible in λ:

1. Challenger initializes by running pp←− SetUp(λ).
2. On input pp, A outputs the following:

– Message predicates (Pm
i )
n
i=1, and a function predicate Pf.

– A public key pk and n public verification keys vki.
– A label ` and n ciphertexts under the same label C` := (C`,i)

n
i=1.

– A polynomially number of functional decryption keys dkfj = (dkj , fj).
3. Challenger verifies the following conditions:

– Pm
i ∈ Pm and Pf ∈ Pf.
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– VerifyCT(vki, C`,i,P
m
i ) = 1 for all i ∈ [n].

– VerifyDK(pk, dkfj ,P
f) = 1 for all j.

If any condition is not satisfied, then A fails the game.
4. A wins the game if one of the following conditions is satisfied:

– There exists j such that Pf(fj) 6= 1.
– There does not exist a tuple of messages (xi)

n
i=1 such that

Pm
i (xi) = 1

for all i ∈ [n] and
Decrypt(dkfj ,C`) = fj(x1, ..., xn)

for all j.

In the above definition of verifiability, each functional decryption key dkfj is assumed to
contain the description of its corresponding function fj , and then a receiver can easily detect if
Pf(fj) 6= 1. For the first winning condition, the verifiability guarantees that an adversary has a
negligible chance to produce an accepting dkfj for an invalid fj . The second winning condition is
determined statistically: the verifiability guarantees that an adversary has a negligible chance to
produce a maliciously generated n-vector ciphertext and maliciously generated functional keys
dkfj , such that there exists no tuple of inputs (x1, .., xn) that satisfy all message predicates and
are consistent in the decryption to fj(x1, ..., xn) for all fj .

Our definition of verifiability for MCFE, in particular the second winning condition, is par-
tially inspired by the definition of verifiability for MIFE in [BGJS16]. The intuition of verifiability
in [BGJS16] guarantees that no matter how the setup is done, for (possibly maliciously gener-
ated) every n-vector ciphertext C that is valid to a publicly known verification, there must
exist an n-vector plaintext x such that for (possibly maliciously generated) every functional
decryption key dkf = (dk, f) that is valid to another publicly known verification, the decryp-
tion algorithm on input (C, dkf ) must output f(x). By introducing predicates for messages
to encrypt and a predicate for function to generate a functional decryption key, our definition
additionally validates the content of messages within ciphertexts and the content of functions
within functional decryption key.

Formally, using our syntax for the verifiability game, the definition of Verifiable MIFE in
[BGJS16] differs in the following points

– Functional encryption. Multi-input setting is considered instead of multi-client setting.
– Message and function predicates. It is fixed from the initialization that Pm

i (x) = 1 iff
x ∈ M for all i ∈ [n] and Pf(f) = 1 iff f ∈ F . Adversary must output dkfj for fj ∈ F , i.e.
Pf(fj) 6= 1. The first winning condition in Step 4 is then never allowed, so it is omitted.

– Adversary assumption. The verifiability game is defined for any adversary that has un-
limited computing power, is allowed to choose pp, and the advantage of such adversary in
the game is 0 (verifiability with no trusted party and perfect soundness).

In our definition, the adversary can choose any message predicates and function predicate by
itself, rather than fixing the condition that the encrypted message must be in the message space
and function in functional decryption key must be in the function space. Our verifiability requires
computational soundness and the adversary is not allowed to create all the setup parameters
(pp must be chosen by the challenger). This relaxation might help us to obtain verifiable MCFE
schemes with practical efficiency and it might be reasonable in practice to have minimal pp that
only consists of computational assumptions or random oracle.

If we restrict the functionality to be a summation of encrypted inputs, then we can obtain an
analog input validation for secure aggregation as in [BGL+22]. In their ACORN-detect protocol,
each encrypted input is guaranteed to be in a small range. On the other hand, our VMCFE does
not cover the case of dropout senders (who cannot send their ciphertexts) as in [BGL+22]. The
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reason is that we want to maintain a basic property of an encryption scheme: no interaction
between senders and a receiver during the decryption process should be required. If the receiver
can decrypt with incomplete ciphertexts without any agreement (which requires interaction)
from all senders, then this may simultaneously violate the security of an MCFE scheme: only
when ciphertexts under the same label of all senders are sent, then the receiver is able to decrypt.

3.2 Indistinguishability Security

The security of verifiable MCFE is derived from the indistinguishability security notion of MCFE
[CDG+18] as follows.

Definition 8 (IND-Security Game for VerifiableMCFE). Let us consider a Verifiable MCFE
scheme over a set of n senders, a function predicate Pf ∈ Pf, and a set of message predicates
(Pm

i )
n
i=1 ∈ (Pm)n. No adversary A should be able to win the following security game with a

non-negligible probability against a challenger C:

– Initialization: the challenger C runs the setup algorithm pp←− SetUp(λ) and the key genera-
tion ((eki)i, sk, pk, (vki)i) and chooses a random bit b $←− {0, 1}. It sends (pp, pk, (vki)i) to the
adversary A;

– Encryption queries QEncrypt(i, x0, x1, `): A has unlimited and adaptive access to a Left-or-
Right encryption oracle. If Pm

i (x
0
i ) = Pm

i (x
1
i ) = 1, then A receives the ciphertext C`,i generated

by Encrypt(eki, vki, x
b
i , `,P

m
i ). Otherwise, the query is ignored. We note that any further query

for the same pair (`, i) will later be ignored;
– Functional decryption key queries QDKeyGen(f): A has unlimited and adaptive access to the

DKeyGen(sk, pk, f,Pf) algorithm for any input function f of its choice. If Pf(f) = 1, it is
given back the functional decryption key dkf . Otherwise, the query is ignored;

– Corruption queries QCorrupt(i): A can make an unlimited number of adaptive corruption
queries on input index i, to get the encryption key eki of any sender i of its choice;

– Finalize: A provides its guess b′ on the bit b, and this procedure outputs the result β of the
security game, according to the analysis given below.

The output β of the game depends on some conditions, where CS is the set of corrupted
senders (the set of indexes i input to QCorrupt during the whole game), and HS is the set of
honest (non-corrupted) senders. We set the output to β ←− b′, unless one of the three cases below
is true, in which case we set β $←− {0, 1}:

1. some QEncrypt(i, x0i , x
1
i , `)-query has been asked for an index i ∈ CS with x0i 6= x1i ;

2. for some label `, an encryption-query QEncrypt(i, x0i , x
1
i , `) has been asked for some i ∈ HS,

but encryption-queries QEncrypt(j, x0j , x
1
j , `) have not all been asked for all j ∈ HS;

3. for some label ` and for some function f asked to QDKeyGen, there exists a pair of vectors
(x0 = (x0i )i,x

1 = (x1i )i) such that f(x0) 6= f(x1), when
– x0i = x1i , for all i ∈ CS;
– QEncrypt(i, x0i , x

1
i , `)-queries have been asked for all i ∈ HS.

We say this Verifiable MCFE is IND-secure with respect to Pf and (Pm
i )
n
i=1 if for any adversary

A,
AdvindVMCFE(A) = |P [β = 1|b = 1]− P [β = 1|b = 0]|

is negligible.
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4 Verification Schemes for Inner-Product MCFE

4.1 Consistency Between Encryption Keys and Secret Key

Our first effort to mitigate the effect of malicious inputs on the inner-product evaluation is to
specify a data range, which is relatively small compared to the message space, for each individual
input. To verify, each sender is supposed to commit its private input and the encryption key it
uses in the encryption. Each sender is then required to provide a range proof for its encrypted
input, and to send the proof along with its MCFE ciphertext and the commitment. The problem
is that a sender does not need to encrypt an arbitrarily large value to bias the inner product:
instead, it can encrypt a value in the data range, but under a false encryption key.

Formally, given a data range [0, 2m−1] and a private encryption key eki from an honest setup,
the adversary chooses a valid value x′i ∈ [0, 2m − 1] and use a false encryption key ek′i 6= eki to
encrypt x′i as Encrypt(ek′i, x

′
i, `) in an MCFE scheme. The adversary can easily provide a valid

range proof for this ciphertext with a witness containing (ek′i, x
′
i). Since the false encryption key

ek′i may not be consistent with the secret key sk, then when Encrypt(ek′i, x
′
i, `) is input in the de-

cryption algorithm with other ciphertexts of honest senders and an honest functional decryption
key dkf , the receiver may receive an unexpected value y′ rather than f(·, x′i, ·) where · represents
other honest senders’ inputs.

Input malleability from key inconsistency. For a variety of inner-product MCFE constructions as
in [CDG+18,LT19,ABM+20], the secret key sk usually consists of all encryption keys eki = si,
and a functional decryption key for an inner product represented by y is an inner product
between y and s = (si)i. On the other hand, a ciphertext that encrypts a valid value but
under a false encryption key as the above Encrypt(ek′i, x

′
i, `) may be equal to ciphertext that

encrypts an invalid value but under the correct encryption key, for example Encrypt(eki, xi, `)
where x′i /∈ [0, 2n − 1]. The smaller the valid input range is, the bigger the probability that this
case happens. Therefore, it is necessary to publish a commitment of each encryption key and a
commitment of the secret key during the setup process to verify for the consistency later.

4.2 Construction for VerifyCT

To construct a verifiable inner-product MCFE scheme later, we focus on the the MCFE scheme
in [CDG+18]. To recall, the form of ciphertext is [ci] = [u>` ] · si + [xi] where [u`] ∈ G2 is the
output of a random oracle taking label ` as input, and si = eki is a private encryption key that
is chosen uniformly from Z2

p, and xi ∈ Zp is the value to encrypt.
A key observation is that as long as the value of u` remains unknown, the ciphertext is in the

form of a Pedersen commitment, where xi is the committed value and si is a two-dimensional
opening. A range proof for an interval [l, r] on this form of ciphertext is formalized by the relation
Rrange+:

Rrange+([c], l, r; s, x) = 1←→ [c] = [u>] · s+ [x] ∧ x ∈ [l, r]

On the other hand, there is a number of efficient range proof schemes for the committed
value in the Pedersen commitment with one scalar opening:

Rrange([c], l, r; s, x) = 1←→ [c] = [u] · s+ [x] ∧ x ∈ [l, r].

Namely, for logarithmic proof size, one has Bulletproof for range in [BBB+18] and range
proofs for discrete logarithm setting in [CKLR21] and in [CGKR22]. For sublinear proof size
and sublinear verification time, one has Flashproof for range in [WC22]. All these range proof
schemes are zero-knowledge arguments of knowledge and require no-trusted setup. These range
proof schemes can be transformed into non-interactive ones with Fiat-Shamir transformation.
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Therefore, our work does not focus on constructing a more efficient range proof scheme, but
to obtain any zero-knowledge argument of knowledge for the relation Rrange+ from one for the
relation Rrange, all the operations on the Pedersen opening is remained and applied to each entry
of the 2-dimensional vector opening. The proofs of completeness, extraction and zero-knowledge
property are adapted in the same way.

To avoid encryption under a false encryption key, our verifiable inner-product MCFE scheme
will require publishing the commitment of each private encryption key during the setup process
as comeki = ([v>] · eki, [v′>] · eki) ∈ G2, where the values v,v′ are generated by a random oracle
and are unknown to all parties. This commitment is perfectly binding under the assumption that
v and v′ are linearly independent. In that case, any tuple ([c], comek) ∈ G3 is a commitment to
a pair of message and encryption key (x, ek) ∈ Z3

p.
Each sender is required to provide a proof for the relation Rrange−key:

Rrange−key([c], comek, l, r; s, x) = 1←→


[c] = [u>] · s+ [x]
∧ x ∈ [l, r]
∧ comek = ([v>] · s, [v′>] · s)

Since any ([c], comek) ∈ G3 commits to a unique (x, ek), the above relation defines a non-
trivial language Lrange−key ( G3 for ([c], comek). Then any argument forRrange−key is an argument
of membership for Lrange−key.

A Schnorr-based protocol (see Appendix B), denoted by NIZKkey, can be used to prove the
relation Rkey:

Rkey([c], comek; s, x) = 1←→
{

[c] = [u>] · s+ [x]
∧ comek = ([v>] · s, [v′>] · s)

Our idea of constructing a zero-knowledge argument scheme for Rrange−key is composing
NIZKkey and NIZKrange+.

Theorem 9. On public parameters ([u], [v], [v′]), for any input ([c], comek, l, r), the composition
of NIZKrange+ on the statement ([c], l, r) and NIZKkey on the statement ([c], comek), which is
denoted by NIZKrange−key, is a zero-knowledge argument for the language Lrange−key, defined by
the relation Rrange−key, on the statement ([c], comek, l, r).

Proof. We note that a transcript of NIZKrange−key is accepting if and only if it consists of an
accepting transcript for NIZKrange+ and an accepting transcript for NIZKkey.

– Completeness: The completeness comes from the completeness of NIZKkey and NIZKrange+.
– Soundness: A knowledge extractor KPrange−key for P is constructed as follows:

1. It takes as input ([c], comek, l, r).
2. As both NIZKrange+ and NIZKkey have knowledge extractors, it invokes the extractor
KPrange+ on input ([c], l, r) and the extractor KPSchnorr on input ([c], comek).

3. When KPrange+([c], l, r) = (s, x) and KPSchnorr([c], l, r) = (s′, x′), it outputs (s, x).
Note that s = s′ since comek is perfectly binding. Then we have x = x′.
Therefore, (s, x) = (s′, x′) is a valid witness for the relation Rrange−key. This implies that
([c], comek, l, r) ∈ Lrange−key. On the other hand, since KPrange+ and KPSchnorr are PPT algo-
rithms, then KPrange−key runs in polynomial time. The existence of a knowledge extractor
KPrange−key implies the soundness of the protocol.

– Zero-Knowledge: Since NIZKrange+ and NIZKkey are both zero-knowledge, then the simulator
Srange−key can output the concatenation (Srange+([c], l, r),SSchnorr([c], comek)) as transcript.
The simulated transcript is then indistinguishable from the transcript of an honest execution.
The simulator Srange−key also runs in polynomial time.
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By using this approach, our ciphertext verification enjoys the communication and computational
efficiency offered by the range proof schemes, since they dominate those that are constant of the
Schnorr-based NIZKkey.

An efficient batch verification for ciphertexts is important in the context of verifiable MCFE,
where a receiver has to spend time verifying ciphertexts from all senders. As far as we are aware
of, Bulletproof for range [BBB+18] provides the most efficient batch verification that can cost
only a group multi-exponentiation of size 2m+ 2 + n · (2 logm+ 5) along with O(n ·m) scalar
operations for n independent proofs. 3

4.3 Construction for VerifyDK

In the inner-product MCFE scheme of Chotard et al. [CDG+18], the secret key consists of all
private encryption keys. For the verifiable inner-product MCFE, we set the commitment of the
secret key as the set of all encryption key commitments, i.e. comsk = (comeki)i where comeki =
([v>] · eki, [v′>] · eki). On the other hand, the functional decryption key for an inner product
presented by a vector y of the underlying MCFE scheme is dky = (dk =

∑n
i=1 yi · eki ∈ Z2

p,y).
Since y is described in the key dky, a receiver can verify if y satisfies the predicate for function
in clear. The important point is to verify if dk is generated honestly with respect to y.

The relation Rdk that VerifyDK verifies is formalized as:

Rdk((comeki)i, dky; (si)i) = 1←→
{

comeki = ([v>] · si, [v′>] · si) ∀i
∧ dk =

∑m
i=1 yi · si

As pointed out in the previous section, any comeki commits to a unique si. Then the relation
Rdk defines a non-trivial language Ldk for ((comeki)i, dky). To verify dky, which is parsed as
(dk,y), a receiver verifies the following equality in VerifyDK:

n∑
i=1

yi · comeki = ([v>] · dky, [v′>] · dky)

If the equality does not hold, then dky is considered maliciously generated. Note the left hand
side of the equality is

(
[v>] · (

∑m
i=1 yi · si), [v′>] · (

∑m
i=1 yi · si)

)
. The equality implies dky =∑m

i=1 yi ·si. This verification has perfect soundness under the assumption that comeki is perfectly
binding.

One may wonder why we need a two-line commitment for eki = si, i.e. comeki = ([v>] ·
si, [v

′>] · si) , instead of one-line one. The reason is that we want to avoid a subtle security
problem when proving the verifiability of our scheme: the one-line commitment is perfectly hid-
ing, then ([c], comeki) is perfectly hiding for (xi, si). Then we may need a simulation-based proof
where the simulator needs to extract (xi, si) from each sender’s accepting proof for Rrange−key.
However, any knowledge extractor in NIZKrange−key may need rewinding oracle. Therefore, ex-
tracting all n senders’ witnesses (xi, si) could induce an exponential number of time in n for
rewinding as in [PS96] and [SG98]. With the two-line commitment, we will later provide a
mathematical argument that an adversary wins the verifiability game only if the soundness of
NIZKrange−key on at least one statement is broken.

No additional proofs need to be generated and sent along with the MCFE functional decryp-
tion key. The verification time of functional decryption key is 2n+ 4 group exponentiations.

5 Range-Verifiable MCFE for Inner Product

5.1 Description

Based on the MCFE scheme in [CDG+18], we construct a verifiable inner-product MCFE scheme
over the condition of input range. In this scheme, the receiver is guaranteed that each encrypted
3 There is no batch verification shown in [CKLR21] and [CGKR22].
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input lies within a polynomially bounded data range, and the functional decryption key is
generated honestly with respect to a publicly known inner-product function presented by a
vector, where each entry is also polynomially bounded.

Let n be the number of senders. The message predicate Pm(x) = 1 ←→ x ∈ [0, 2m − 1] and
the function predicate Pf(y) = 1 ←→ yi ∈ [0, 2m − 1] for all i ∈ [n] are parameterized by a
polynomially bounded m. The scheme is constructed with the non-interactive zero-knowledge
argument NIZKrange−key = (NIZK.SetUp,NIZK.Prove,NIZK.Verify) for the language Lrange−key, as
specified in Section 4.2.

– SetUp(λ): Takes as input the security parameter λ. It generates prime-order group G :=

(G, p, P ) $←− GGen(1λ), and H a full-domain hash function onto G2, initialization labels
(`0, `

′
0), and ppNIZK ←− NIZK.SetUp(λ). The public parameters pp consist of (G,H, `0, `′0, ppNIZK)

and are implicit arguments to all other algorithms.
– KeyGen():

1. Generates [v] = H(`0) and [v′] = H(`′0).
2. Generates si

$←− Z2
p and commits each of them as ([ki], [k′i]) = ([v>] · si, [v′>] · si) for all

i ∈ [n].
3. The encryption keys are eki = si for all i ∈ [n], and the secret key is sk = (si)i, the

public key is pk = ([ki], [k
′
i])i, and the verification keys are vki = ([ki], [k

′
i]) for all i ∈ [n].

– Encrypt(vki, eki, xi, `,m): Takes as input the verification key vki = ([ki], [k
′
i]), the encryption

key eki = si, the value xi to encrypt, the label `, and a binary upper bound m.
1. It computes [u`] = H(`), and computes [c`,i] = [u>` si + xi].
2. It computes a proof πirange−key ←− NIZK.Prove(([c`,i], vki,m), (xi, si)).
3. The ciphertext is C`,i := (`, [c`,i], π

i
range−key).

– DKeyGen(sk,y): Takes as input sk = (si)i and an inner-product function defined by y as
fy(x) = 〈x,y〉, and outputs the functional decryption key dky = (dk =

∑n
i=1 si · yi,y) .

– VerifyDK(pk, dky,m): Takes as input the public key pk = ([ki], [k
′
i])i and a functional decryp-

tion key dky = (dk,y).
1. It verifies that for all i ∈ [n], each entry yi ∈ [0, 2m − 1].
2. It generates [v] = H(`0), [v′] = H(`′0).
3. It verifies dk satisfies both

n∑
i=1

yi · [ki] = [v>] · dk
n∑
i=1

yi · [k′i] = [v′>] · dk.

4. If y and dk are valid, then it outputs 1. Otherwise, it outputs 0.
– VerifyCT(vki, C`,i,m): Takes as input the verification key vki = ([ki], [k

′
i]), a ciphertext C`,i =

(`, [c`,i], π
i
range−key), and a binary upper bound m.

1. It computes [u`] = H(`) and [v] = H(`0), [v′] = H(`′0).
2. It computes b←− (NIZK.Verify(([c`,i], vki,m), πirange−key) = 1).
3. If b = 1, then it outputs 1. Otherwise, it outputs 0.

– Decrypt(C`, dky): Takes as input an n-vector ciphertext C` := (C`,i)i∈[n], a functional de-
cryption key dky. It computes [α] =

∑
i[ci] ·yi− [u>` ] ·dky, and eventually solves the discrete

logarithm to extract and return α.

Theorem 10 (Range-Verifiable Inner-Product MCFE). The inner-product MCFE scheme
in the construction above has correctness and verifiability for range predicates in the random
oracle. More precisely,

AdvverifVMCFE(t) ≤ n · AdvsndNIZKrange−key
(t),

where
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– AdvverifVMCFE(t) is the best advantage of any PPT adversary running in time t against the
verifiability game in Definition 7;

– n is a polynomially bounded number of senders;
– AdvsndNIZKrange−key

(t) is the best advantage of any PPT adversary running in time t against the
soundness of NIZKrange−key.

Proof. Let us prove the verifiability. We first show the correctness.

Correctness. When every input xi and every entry yi of the inner-product function are in
the small range [0, 2m − 1] with a polynomially bounded m, then solving 〈x,y〉 from [〈x,y〉]
can be done efficiently. The correctness of Decrypt is then implied by that of the underlying
MCFE [CDG+18]. The correctness of VerifyCT is implied by that of NIZKrange−key in Section 4.2.
The correctness of VerifyDK is as shown in Section 4.3.

Verifiability. To prove that the advantage of any PPT adversary A in the verifiability game is
negligible, we assume that A wins the games, and then show that the soundness of NIZKrange−key
must be broken for at least one instance. Note that the hash function H is modeled as a random
oracle RO onto G2 in the verifiability game.

– For any vki ∈ G2 produced by A, there exists a unique vector si such that vki = ([v>] ·
si, [v

′>] · si). Consequently, any ciphertext [c`,i] determines a unique value xi such that
[c`,i] = [u>` si + xi].

– For any functional decryption key dkyj = (dkj ,yj), we have the winning condition VerifyDK(pk, dkyj ,m) =
1. Note that pk = (vki)i uniquely determines the tuple (si)i, then the validity of dkyj with
respect to pk implies that dkj =

∑m
i=1 yj,i · si where yj,i ∈ [0, 2m − 1] for all i and j. (Sec-

tion 4.3).
– For any C`,i = (`, [c`,i], π

i
range−key), we have VerifyCT(vki, C`,i,m) = 1 (the winning condi-

tion). Then πirange−key is a NIZKrange−key accepting proof for all i ∈ [n]. Suppose that for every
[c`,i], there exists a unique value xi such that xi ∈ [0, 2m − 1] and [c`,i] = [u>` si + xi]. In
this case, by the correctness, the decryption process with input ([c`,i])i and dkyj will output
〈x,yj〉 for all j. This contradicts that A wins the game.

– From the contradiction, there must exist at least one [c`,i] such that [c`,i] 6= [u>` si + xi]
for all xi ∈ [0, 2m − 1]. In other words, the statement ([c`,i], vki,m) is not in the language
Lrange−key, which is defined in Section 4.1. As NIZKrange−key is a zero-knowledge argument
for this language, the soundness is broken for this instance.

An adversary B against the soundness of NIZKrange−key can be constructed as follows: B first
guesses an index i ∈ [n], then invokesA, and outputs the i instance ([c`,i], vki, πirange−key) fromA’s
output. In the caseA wins the game, the probability that B breaks the soundness of NIZKrange−key
is at least 1

n .
Concretely,

1

n
· AdvverifVMCFE(A) ≤ AdvsndNIZKrange−key

(B).

By choosing the adversary A running in t that has the best advantage in the verifiability game,
we have

AdvverifVMCFE(t) ≤ n · AdvsndNIZKrange−key
(t).

As long as the number of senders n is polynomially bounded, AdvverifVMCFE(t) is negligible. The
proof is complete.
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5.2 Security Analysis

Theorem 11 (Range-Verifiable Inner-Product MCFE). The above inner-product MCFE
scheme (see Section 5.1) is IND-secure under the DDH assumption, in the random oracle model.
More precisely, we have

AdvindVMCFE(t, qE) ≤ AdvzkNIZKrange−key
(t, qE) + AdvindMCFE(t̂, qE + 2n),

where

– AdvindVMCFE(t, qE) is the best advantage of any PPT adversary running in time t with qE
encryption queries against the IND-security game in Section 3.2;

– AdvzkNIZKrange−key
(t, qE) is the best advantage of any PPT adversary running in time t with qE

encryption queries against the zero-knowledge property of NIZKrange−key (Section 4.3);
– AdvindMCFE(t̂, qE +2n) is the best advantage of any PPT adversary running in time t̂ (which is
t plus a negligible time of running a zero-knowledge simulator of NIZKrange−key) with qE +2n
encryption queries against the IND-security of the MCFE scheme in [CDG+18].

This theorem supports both adaptive encryption queries and adaptive corruptions.

Proof. We proceeds by using hybrid games: G0 corresponds to the game as given in the security
definition and G1 corresponds to the game where the adversary A has an advantage bounded
by the best advantage that any PPT adversary can get in the IND-security game of MCFE. We
denote by Advindex := |Pr[Gindex(A)|b = 1]−Pr[Gindex(A)|b = 0]|, where the probability is taken
over the random coins of Gindex and A.

Game G0: This is the IND-security game as given in the definition (Section 3.2).

Game G1: From the zero-knowledge property of NIZKrange−key, a simulator S is invoked to
provide proofs πirange−key on input ([c`,i], vki,m) for all i ∈ [n]. Then |Adv1−Adv0| ≤ Advzk(t).
We now construct an adversary B against the IND-security of the underlying MCFE with
oracle access to (QEncrypt,QDKeyGen,QCorrupt):
– Initialization:
• upon receiving MCFE.pp = (G,H), adversary B chooses randomly a pair of labels
(`0, `

′
0) and sends pp = (G,H, `0, `′0) to A;

• B sends MCFE encryption queries for (i, 0, 0, `0) and (i, 0, 0, `′0) for all i ∈ [n]. An
important point is that an encryption of 0 under the private encryption key eki = si
and the label `0 (or `′0) in the MCFE scheme [CDG+18] is equal to ([v>] · si) (or
[v′>] · si)) in our construction.
• Upon receiving all [ki] = QEncrypt(i, 0, 0, `0) and [k′i] = QEncrypt(i, 0, 0, `′0), B sets

pk = ([ki], [k
′
i])i, and vki = ([ki], [k

′
i]) for all i ∈ [n]. B sends (pk, (vki)i) to A.

– Encryption queries (i, x0, x1, `) fromA such that xk ∈ [0, 2m−1] for all k ∈ {0, 1}: B sends
(i, x0, x1, `) to theMCFE encryption oracle and receives back QEncrypt(i, x0, x1, `) = [c`,i].
The simulator S is invoked to produce πirange−key. B sends (`, [c`,i], πirange−key) to A as the
query answer.

– Functional decryption key queries for y from A: B sends y and receives QDKeyGen(f) =
dky from the MCFE functional decryption key oracle. B sends dky to A as the query
answer.

– Corruption queries for an index i from A: B sends and receives QCorrupt(i) = eki from
the MCFE corruption oracle. B sends QCorrupt(i) to A as the query answer.

– B outputs what A outputs for the guess on the bit b.
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From this construction, we have Adv1 ≤ AdvindMCFE(t̂, qE + 2n), where t̂ includes the time for
B to call S. Therefore,

AdvindVMCFE(t, qE) = Adv0 ≤ AdvzkNIZKrange−key
(t, qE) + AdvindMCFE(t̂, qE + 2n).

Since theMCFE scheme in [CDG+18] is IND-secure under the DDH assumption in the random
oracle, the proof is complete.

Additional cost for verifiability. We assume that NIZKrange−key is instantiated with the Schnorr-
based NIZKkey (Appendix B) and the Bulletproof for range [BBB+18] (the adapted version for
Rrange+ in Section 4.2). Since the scalar operation in Zp is cheap compared to the exponentiation
in G, so we do not detail them here.

– Verification time: for all n cipherexts under the same label, NIZKkey costs about 3 multi-
exponentiations of size 3 + 2n, Bulletproof costs a multi-exponentiation of size 2m + 3 +
n(2 log2 dme+ 5). The number of scalar operations is O(n ·m). For the functional key veri-
fication, the cost is 2n+ 4 group exponentiations.

– Encryption time: NIZKkey costs 7 exponentiations, Bulletproof costs about 12m + 10 expo-
nentiations. The number of scalar operations is O(m).

– Ciphertext size: each πirange−key has the size of 2 log2 dme+ 7 elements in G and 10 elements
in Zp.

5.3 Verifiable Decentralized MCFE for Inner Product

A decentralized multi-client functional encryption (DMCFE) [CDG+18] is an MCFE in which the
process of functional key generation is not controlled by any authority, but completely under
the control of each of the clients.

Based on the underlying MCFE scheme in [CDG+18], all the senders can generate their
own secret si ∈ Z2

p, and set eki = ski = si. They have to additionally execute a multi-party
protocol during the setup to obtain for each one a secret correlated randomness. With his own
randomness, a sender can encode under a functional label `y his partial functional key, which
is the term yi · si in dky =

∑
i yi · si, as dki. When the receiver collects the encodings of all

senders under the same label, he can reveal dky in the form of a discrete logarithm. For the
functional key in this form, the decryption can then be done by using a bilinear map. In a later
work, the multi-party protocol can be replaced by a decentralized sum [CDSG+20] to remove
the interactivity between all senders and to allow directly revealing dky.

From the above framework that is instantiated with the decentralized sum, our verifiable
inner-product MCFE scheme (in Section 5.1) can be automatically extended to a decentralized
one. Namely, each eki is still committed as comeki = ([v>] · si, [v′>] · si). The verification key
vki = comeki and pk = (comeki)i. The algorithms (Encrypt,VerifyCT,Decrypt) remain the same.
The only difference is in the verification of functional keys: the receiver has to wait for all
(possibly maliciously generated) encodings dki, and then use them to reveal a functional key
dky. Knowing (y, dky, (comeki)i), the receiver can verify dky as in the VerifyDK algorithm. The
key verification outputs 1 if VerifyDK(pk, dky,m) = 1, and otherwise. As a consequence, the
verifiability of this decentralized scheme, where A can corrupt all senders, is implied by that of
the verifiable inner-product MCFE scheme.

Extending to a verifiable DMCFE scheme as above is more efficient than verifying each
functional key share dki. Note that the generation of dki takes as input a secret correlated
randomness output from a multi-party protocol or from a decentralized sum, which requires
running a pseudo-random function on the exchanged keys. Therefore, verifying each dki may be
highly inefficient. A drawback of this shortcut is that a receiver cannot detect which sender sent
a malicious key share in the case the combined dky is not valid.
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6 Verifiable MCFE with Incomplete Ciphertexts

Our Verifiable MCFE has a feature of detecting malicious users: VerifyCT takes as input each
individual ciphertext of each client, and VerifyDK takes as input each functional decryption key
of each key authority. Therefore, the sender of a rejected ciphertext (or key) must be malicious.
We demonstrate in this section that it is possible to detect malicious users even in the case of
incomplete ciphertexts.

In the IND-security game for verifiable MCFE in Section 3.2, the condition 2 defining the
adversary’s output β states that if one ciphertext of an honest sender is queried for a label `,
then all the ciphertexts under the same label of other honest senders must be queried. Intuitively,
the leakage from incomplete ciphertexts is at first not considered in the security game.

In [CDSG+20], the authors introduced a primitive called All or Nothing Encapsulation
(AoNE) to lift this condition for MCFE. The AoNE is an encryption which guarantees that a
receiver can reveal either all encrypted messages under the same label of senders by collecting
all their ciphertexts, or nothing. Given an IND-secure AoNE scheme, the idea is that by adding
a layer of this AoNE encryption on the underlying MCFE ciphertexts, the answers for incom-
plete encryptions queries can be simulated to be encapsulations of a fixed value, rather than the
encapsulations of the underlying incomplete MCFE ciphertexts.

This technique can be adapted to our verifiable MCFE scheme in Section 5.1 for the same
purpose. The verifiability will remain, as the ciphertexts of the underlying MCFE scheme [c`,i]
have to be revealed from encapsulations and verified by VerifyCT with a proof πirange−key. However,
when the receiver wants to detect a malicious sender in this case, a trivial solution is that each
sender has to provide a proof that his encapsulation honestly encrypts (under a committed AoNE
secret key) a ciphertext [c`,i] and that [c`,i] honestly encrypts an input xi ∈ [0, 2m − 1] under
a committed encryption key eki. A NIZK proof for the last statement may be prohibitively
expensive. Before proposing an efficient approach to circumvent this issue, we briefly recall the
pairing-based AoNE construction in [CDSG+20], which serves as a building block.

– AoNE.SetUp(λ): Generates a pairing group PG = (G1,G2,GT , p, P1, P2, e)
$←− PGGen(1λ), a

full domain hash function H from {0, 1}∗ onto G1, a symmetric encryption scheme SKE =
(SEnc,SDec), and outputs pp = (PG,H, SKE). We denote by [hx] the hash value of H on
any message x, and pp is implicit input to other algorithms.

– AoNE.KeyGen(): Samples ti
$←− Zp and outputs (pki, ski) = ([ti]2, ti).

– AoNE.Encrypt(ski,m): Parses ski = ti and m = (xi, `). Samples ri
$←− Zp and computes the

symmetric key Ki,` as

e

H(`), ri ·
∑
i∈[n]

pki

 =

h` · ri ·∑
i∈[n]

ti


T

,

and uses it to encrypt xi as ci = SEnc(Ki,`, xi). Computes its share Si,` = ti ·H(`) = [ti ·h`]1,
and outputs the ciphertext cti = (ci, [ri]2, Si,`, `).

– AoNE.Decrypt((cti)i∈[n]): Parses the ciphertexts as cti = (ci, [ri]2, Si,`, `) for all i ∈ [n]. For
each i ∈ [n], computes

Ki,` = e

∑
i∈[n]

Si,`, [ri]2

 =

h` · ri ·∑
i∈[n]

ti


T

and recovers xi as xi = SDec(Ki,`, ci).
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Detecting malicious users. Our ciphertext verification will consist of two steps when the above
AoNE scheme is instantiated:

– AoNE share validation: each sender sends additionally with his encapsulation a Schnorr-based
proof πi,AoNE, which proves a DDH relation

RAoNE(Si,`, pki; t) = 1←→ Si,` = t · H(`) ∧ pki = [t]2.

When all πi,AoNE for i ∈ [n] are valid, the receiver decrypts encapsulations by running
Decrypt((cti)i∈[n]) and continues. Otherwise, returns 0.

– MCFE ciphertext verification: each xi decrypted from AoNE is parsed as an MCFE ciphertext
under the label `, namely xi = [c`,i]. The receiver combines C`,i = (`, [c`,i], π

i
range−key) and

computes VerifyCT(vki, C`,i,m) as in Section 5.1. If all C`,i are valid, returns 1, else returns
0.

The idea of this two-step ciphertext verification is from the fact that in the AoNE scheme,
each share Si,` is used as global input to reveal the symmetric key Kj,` for all j ∈ [n], while
[ri]2 is used for Ki,` only. Therefore, the first step is designed to detect malicious senders who
want to distort the symmetric key of other honest senders. The second step is designed to detect
malicious senders who give maliciously generated ciphertexts on purpose or by acting maliciously
during the AoNE encryption.

In terms of the IND-security, the Schnorr-based proof for RAoNE can be simulated by a
zero-knowledge simulator. Therefore, the IND-security of the verifiable MCFE scheme with the
two-step verification (as described above) can be reduced to that of the MCFE scheme with a
layer of AoNE encapsulation on the ciphertexts.

7 Conclusion

The interest in functional encryption has significantly increased in recent years, particularly in
multi-user settings where data inputs are provided by different users, sometimes in competition.
It is important to verify the accuracy of the inputs and detect malicious users in such scenarios.
This new direction of research has garnered interest from both academic and industrial sectors
[BGJS16, BGL+22], and we aim at promoting to its development. There are numerous open
problems that need to be addressed, ranging from practical solutions for simple functionalities
to more general frameworks. In this paper, we leave the detection of malicious users in Verifiable
DMCFE, when generating their key shares, as an open problem. A more general problem is
to design practical solutions for verifiability for larger classes of functions, such as quadratic
functions.
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A More Definitions

A.1 Pairing Groups

Let PGGen be a pairing group generator, a PPT algorithm that on input the security parameter
1λ returns a description PG = (G1,G2,GT , p, P1, P2, e) of asymmetric pairing groups where G1,
G2, GT are additive cyclic groups of order p for a 2λ-bit prime p, P1 and P2 are generators of
G1 and G2, respectively, and e : G1 × G2 −→ GT is an efficiently computable (non-degenerate)
bilinear group elements. For s ∈ {1, 2, T} and a ∈ Zp, define [a]s = aPs ∈ Gs as the implicit
representation of a in Gs. Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e.

A.2 Non-interactive Zero-Knowledge Proofs

Definition 12 (NIZK Argument of Knowledge [AGM18]). A NIZK argument of knowl-
edge for an NP relation R is a NIZK argument for R with the following additional extractability
property:
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Computational Extraction. For any PPT adversary A, random string r $←− {0, 1}∗, there exists
a PPT algorithm K such that there is a negligible function µ(λ):

Pr

σ ←− SetUp(λ),

(u, π)←− A(σ; r)
w ←− K(σ, u, π; r)

:
Verify(u, π) = 1

∧R(u;w) = 0

 ≤ µ(λ).
K is called a knowledge extractor of A.

Definition 13 (Non-interactive Range Proof). Given a non-interactive commitment scheme
com = (SetUp,Commit,Verify), a non-interactive range proof over com is a NIZK argument of
knowledge for the following relation Rrange:

Rrange((com, l, r); (m, r)) = 1←→ com = Commit(m; r) ∧ l ≤ m ≤ r

Fiat-Shamir Transformation. Fiat-Shamir heuristic [FS87] is used to transforming an in-
teractive zero-knowledge argument of knowledge scheme to a non-interactive one. The original
scheme must have the property of being public-coin, i.e. verifier’s random coins are indepen-
dent of the prover’s messages. All random challenges are replaced by hashes of the transcript
up to that point, including the statement itself. The transformed NIZK argument is sound (or
knowledge sound) and zero-knowledge in the random oracle model.

B Verification for Inner-Product MCFE: Schnorr-based protocol

In this part, we describe the Schnorr-based protocol NIZKrange−key for Rkey in Section 4.2. For
the sake of clarity, we describe the scheme and prove the properties in its interactive mode.
Given public parameters ([u], [v], [v′]) ∈ (G2)3. Let P and V be respectively the prover and the
verifier in an argument for the relation Rkey:

Rkey(comPed, comek; s, x) = 1←→ comPed = [u>] · s+ [x] ∧ comek = ([v>] · s, [v′>] · s)

P(comPed, comek; s, x) V(comPed, comek)

Commits the randomness:

rx, r, r
′ $←− Zp

r := (r, r′)
R = [v>] · r
R′ = [v′>] · r
Rx = [u>] · r + [rx]

R,R′,Rx−−−−−→
α←−−−− α

$←− Zp
Computes the responses:
t = s · α+ r

tx = x · α+ rx
t,tx−−−−−−→

Verifies the following equali-
ties:
α·comPed+Rx=[u>]·t+[tx]
α · comek,1 +R=[v>] · t
α · comek,2 +R′=[v′>] · t

If all equalities hold,
returns 1 for accepting.

Otherwise,
returns 0 for rejecting.
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Completeness. In an honest execution, one has

α · comPed +Rx = α · ([u>] · s+ [x]) + ([u>] · r + [rx])

= [u>] · (s · α+ r) + [x · α+ rx]

= [u>] · t+ [tx],

α · comek,1 +R = α · ([v>] · s) + [v>] · r
= [v>] · (s · α+ r)

= [v>] · t,
α · comek,2 +R′ = α · ([v′>] · s) + [v′>] · r

= [v′>] · (s · α+ r)

= [v′>] · t

Then V(comPed, comek) = 1 with probability 1.

Soundness. Assume that (R,R′, Rx, α1, t1, tx,1) and (R,R′, Rx, α2, t2, tx,2) are two accepting
transcripts such that α1 6= α2. Then one has{

α1 · comek,1 +R = [v>] · t1
α2 · comek,1 +R = [v>] · t2,{
α1 · comek,2 +R′ = [v′>] · t1
α2 · comek,2 +R′ = [v′>] · t2,{
α1 · comPed +Rx = [u>] · t1 + [tx,1]

α2 · comPed +Rx = [u>] · t2 + [tx,2]

which respectively implies that

comek,1 = [v>] · ((α1 − α2)
−1 · (t1 − t2)),

comek,2 = [v′>] · ((α1 − α2)
−1 · (t1 − t2)),

comPed = [u>] · ((α1 − α2)
−1 · (t1 − t2)) + (α1 − α2)

−1 · [tx,1 − tx,2].

Then, s = (α1 − α2)
−1 · (t1 − t2) and x = (α1 − α2)

−1 · [tx,1 − tx,2] is a valid witness. There-
fore, there exists a PPT extractor E that takes two valid transcripts (R,R′, Rx, α1, t1, tx,1) and
(R,R′, Rx, α2, t2, tx,2) and produces a valid witness (s, x) in polynomial time.

Zero-Knowledge. On input a challenge α and a statement (comPed, comek), a simulator S runs
as follows:

– Choose t0
$←− Z2

p and t0x
$←− Zp.

– Computes R0
x ←− [u>] · t0 + [t0x]− α · comPed.

– Computes R0 ←− [v>] · t0 − α · comek,1.
– Computes R′0 ←− [v′>] · t0 − α · comek,2.
– Outputs the transcript (R0

x, R
0, R′0, α, t0, t0x).

On the other hand, an accepting transcript from an honest execution (R,R′, Rx, α, t, tx) has t
uniformly chosen from Z2

p and tx uniformly chosen from Zp. In both transcripts, (R,R′, Rx) and
(R0, R′0, R0

x) are determined by (t, tx) and (t0, t0x) respectively. Then the distributions of two
transcripts are the same.

To transform the above scheme into non-interactive mode, one can apply the Fiat-Shamir
heuristic.
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