Panacea: Non-interactive and Stateless Oblivious RAM

Kelong Cong [, Debajyoti Das &, Georgio Nicolas (@, and Jeongeun Park

imec-COSIC, KU Leuven, Leuven, Belgium.
{kelong.cong,debajyoti.das,georgio.nicolas, jeongeun.park}Qesat.kuleuven.be

Abstract. Oblivious RAM (ORAM) allows a client to outsource storage to a remote server while
hiding the data access pattern from the server. Many ORAM designs have been proposed to reduce
the computational overhead and bandwidth blowup for the client. A recent work, Onion Ring ORAM
(CCS’19), is able to achieve O(1) bandwidth blowup in the online phase using fully homomorphic
encryption (FHE) techniques. However, it requires a computationally expensive client-side offline phase
to do so. Furthermore, it is a stateful construction, which means that the client has to maintain a state
of the database locally. We present Panacea: a novel design of ORAM based on FHE techniques, that
is non-interactive and stateless, achieves O(1) bandwidth blowup, and does not require an expensive
offline phase for the client to perform; in that sense, our design is the first of its kind among other
ORAM designs. To provide the client with such performance benefits, our design pushes all of expensive
computations to the resourceful server. We additionally show how to boost the server performance
significantly using probabilistic batch codes at the cost of only 1.5x in additional bandwidth blowup and
3x expansion in server storage. Our experimental results show that our design, with the employment of
this batching technique, is practical in terms of server computation overhead as well. Specifically, for a
database size of 219, it takes only 1.16 seconds of amortized computation time for a server to respond to a
query. As a result of our client’s statelessness, low computational overhead and practical computational
overhead with the server, our design is ideal to be deployed as a cloud-based privacy-preserving storage
outsourcing solution.

1 Introduction

Oblivious RAM (ORAM) is a cryptographic primitive which allows a client to store its private
data on an untrusted server without leaking any information to the server or any observer about
the data or the data access patterns (sequence of read/write operations and the addresses of those
operations).

For efficient storage outsourcing, where a client with low availability of local memory can utilize
a cloud server to store its private data, an ideal ORAM design should incur low computational
overhead and bandwidth blowuplﬂ for the client. However, the ORAM designs from the classical
model [I7/T9I28[29], where the server acts as a plain storage device and supports only read or
write operations, must incur {2(logn) bandwidth blowup for a database size of n elements. To
overcome such high overhead on the client, many designs have been proposed in the server com-
putation model, utilizing the computational power of the server to reduce the communication over-
head [23126/252J9|T4)27]. The server computation model is also more realistic since a cloud server
can have much more computational and memory resources than the client. Most of these designs
still require O(logn) bandwidth blowup.

Only until recently were designs based on fully homomorphic encryption (FHE) techniques
such as Onion ORAM [I0] and Onion Ring ORAM [3] able to achieve a bandwidth blowup of
O(1). Despite their low asymptotic guarantees, both of these designs still incur significant overhead

Y Bandwidth blowup is defined as the ratio between the communication cost of ORAM and the non-private case
where the access pattern is not hidden.

https://orcid.org/0000-0002-2636-4406
https://orcid.org/0000-0002-6777-0566
https://orcid.org/0000-0002-3240-9009
https://orcid.org/0000-0002-0557-3540

on the client (in terms of both computational cost and bandwidth blowup). The construction of
Onion ORAM is of purely theoretical interest and really expensive to implement in practice [1§].
On the other hand, Onion Ring ORAM requires an expensive client-side offline phase to achieve
its performance guarantees.

Can we achieve an ORAM with O(1) bandwidth blowup and low computation overhead for
clients without introducing an expensive offline phase? Is it possible to achieve so with a non-
interactive and stateless design? We answer affirmatively to those questions by proposing a novel
ORAM design: Panacea. Based on fully homomorphic encryption (FHE) techniques, Panacea
achieves O(1) bandwidth blowup and low client-side computational overhead by pushing almost all
the computation to the server: The client only needs to encrypt the queries it sends to the server
and decrypt responses upon reception; and thus does not need to take part in any expensive offline
phase.

Both Onion ORAM and Onion Ring ORAM are inspired from the binary tree-based ORAM
framework proposed by Shi et al. [23], and they use FHE techniques to reduce bandwidth blowup.
Our design idea emanates from the following observation: such tree-like structures mainly help in
minimizing the number of client-server interactions and are not required when FHE techniques
are used. Instead, our design employs a technique called homomorphic de-multiplexing (adapted
from [§]) which allows the server operate on all elements in a database while accessing the client-
indexed element and keeping the server oblivious to which specific element was accessed. In that
sense, Panacea introduces a completely new technique for ORAM protocol design.

We present two variations of Panacea: the first version takes the above idea directly, optimizing
the number of bits required to represent an address and the total amount of computation required by
the server. Since, it does not rely on any specific database structure, it does not require the client
to maintain the state of the database locally (unlike Onion Ring ORAM or Path ORAM [24]).
Therefore, this design allows the client to be completely s.tatelessE-]7 and does not incur any memory
overhead. With such a stateless design, the client can query the server, go offline, and then retrieve
the results whenever it comes back online. Another notable advantage is that the client can use
its key to access the database from multiple devices without the need for state synchronization,
similar to the advantages of stateless digital signatures when compared to stateful digital signatures.
Our evaluations based on a prototype implementation show that the computation overhead for the
server remains reasonably practical while achieving a stateless, non-interactive client which is not
required to perform any expensive offline phase after decrypting a response.

Our second version leverages existing batching techniques from the literature to amortize the
server’s computational cost for a batch of k queries at the expense of adding some bandwidth
blowup. More specifically, we use probabilistic batch codes (PBC) which incur 1.5x of additional
bandwidth and increase the database size by 3x in our settings. PBCs also introduce a very small
failure probability of one-in-a-trillion. In this context, a failure translates to only some (but not all)
of k read/write queries being executed. Nonetheless, such a failure does not leak any information
to the server. PBCs are traditionally used for load-balancing applications and PIR schemes, and
cannot be directly applied to an encrypted non-static database because mutation to individual
elements causes consistency issues in the PBC encoding. We solve this problem using our consistency
correction technique. To the best of our knowledge, this is the first time that PBCs are applied to
an encrypted non-static database. While the asymptotic complexity of Panacea is higher compared

2 The client needs only to maintain static states such as private keys, but it does not need to maintain a private
dynamic state that depends on the state of the database

to that of the stateful design, we give concrete performance results on databases with up to 2

data elements and show that our construction remains highly practical to deploy with around 1.16

seconds of amortized computation time for the server to respond to a query, and 8x of bandwidth

blowup when communicating with the client.
To summarize our contributions:

1. we present a novel ORAM design, where a client can be stateless, based on the homomorphic
de-multiplexer technique (Sections [4] and ;

2. we use batching techniques from literature in combination with our consistency correction al-
gorithm to make the server-side computational cost practical (Section @;

3. we implement and evaluate the performance of our ORAM design along with the batching
technique and describe a cloud-based deployment strategy (Section .

2 Background and Related Work

2.1 ORAM Syntax

We consider a single-server-single-client ORAM setup where a client wants to outsource the storage
of its private data to an untrusted server. For a single query, the ORAM algorithm provides an
Access function to the client which takes as input a 3-tuple (a,op,data), where a represents the
logical address of the block requested by the client, op € {Read, Write}, and data is the data being
written to the block if op = Write (if op = Read the block is not updated and data is ignored).
The goal of the ORAM algorithm is to completely hide the data access pattern (which blocks were
read/written) from the server.

We consider that the client fetches/stores data on the server in blocks, where each block is
of B bits. A typical size of a block for cloud storage could be a few to several hundred KB. We
consider that the database has n distinct data blocks stored on the server. All relevant notations
are summarized in Table 2l

One main metric to measure the ORAM algorithm’s overhead is the bandwidth blowup which
is defined as the ratio between the communication cost of ORAM and the non-private case where
the access pattern is not hidden.

Threat Model. In our implementation, we consider an honest-but-curious server, i.e., the server
follows the prescribed protocol correctly. However, the server can store all the ciphertexts and other
data sent by the client and, afterwards, act as a probabilistic polynomial time adversary to perform
additional computations in order to infer the private data or the access pattern of the client. We
adopt a standard security definition similar to [26/21].

Definition 1 (Security Definition) Let,

y = {(alvoplu datal)? ceey (asa Ops, datas>}

denote a sequence of data accesses by the client, where a; denotes the address of the block being
read from or written to on the i-th access, op; denotes the whether the operation on a; is a read
or write, data; denotes the data if the i-the operation is a write operation. Let A(y) denote the
sequence of communication between the client and the server under an ORAM protocol for the data
access sequence y. We say that the ORAM protocol is secure, if

1. for any chosen pair of data access sequences'y andy' of same length, the server cannot (com-
putationally) distinguish between A(y) and A(y'),

2. for a sequence of input'y the ORAM protocol returns output to the client consistent with y with
probability > 1 — p, where pu is a very small quantity.

Similar to other works, we do not consider leakage through side channels such as when or
how frequently the client queries the ORAM. We discuss achieving integrity against a potentially
malicious server in Section |8 however, we do not focus on integrity in our main presentation.

2.2 Existing ORAM Designs

Oblivious RAM or ORAM was first introduced by Goldreich and Ostrovsky [I5]16] in their seminal
work [16]. They prove that ORAM designs in classical model, where the server acts as a plain storage
device to support only read and write operations, have a fundamental requirement of 2(logn)
bandwidth blowup. Path ORAM [24] is a prominent example in this line of work which achieves
a bandwidth blowup of O(logn) by utilizing a binary tree-based database structure. However, due
to the inherent regular mutations to the structure of binary trees, the client in Path ORAM is
required to locally maintain the state of the database’s structure to be able to keep track of the
location of data elements; which implies a stateful client with memory overhead.

Table 1: Comparison between our design and previous ORAM approaches in terms of storage
requirement (in bits) and computational cost of both server and client for a batch of k£ queries. We
denote L as the number of levels of ORAM tree of Onion Ring ORAM [3] and Path ORAM [24],
Z as the number of slots in each node, n the number of data elements, and N and ¢ as ciphertext
parameters of underlying FHE scheme. w is the number of hash functions used for our batching
technique. In our work we set w = 3.

Ours (Method 1)| Ours(Method 2) Onion Ring ORAM [3] |Path ORAM [24]
Memory (Server) O(n- N -logq) |O(w-n-N -logq)|O(Z - (2F —1) - N -logq) Z-n
Memory (Client) 0(1) O(w-n-logn) [O(n-logn+ Z- N -logq)|O(logn) - w(1)
Stateful X X v v
Computation (Client-Query) O(k -logn) O(k -logn) O(k - logn) O(k -logn)
Computation (Client-Eviction) X X O(Z -log Z -logn) O(k - logn)

To circumvent the lower bound set by Goldreich and Ostrovsky, many ORAM designs have been
proposed in the server computation model [23l26/25/209/T427]. In the server computation model,
the server does not just act as a plain storage device. Instead, it helps in offsetting the bandwidth
blowup by performing additional expensive computations. However, most of these designs cannot
achieve a bandwidth blowup that is better than O(logn). Only until recently were the designs of
Onion ORAM and Onion Ring ORAM actually able to circumvent the O(log n) bandwidth blowup.
Using FHE techniques, both designs provide a non-interactive online phase with a bandwidth
blowup of O(1). However, given they both employ binary tree-based database structures, similar to
Path ORAM, the client in their case needs to maintain a state of the database’s structure locally.
Additionally, Onion ORAM and Onion Ring ORAM introduce expensive eviction (offline) phases

to achieve their guaranteesﬂ While Onion Ring ORAM significantly improves over Onion ORAM,
it still nevertheless incurs computation and memory overheads on the stateful client: the client is
required to perform expensive operations and interact with the server during the eviction phase.

We observe that such binary tree-based structures are not necessary when using FHE techniques:
the server can operate on all elements while reading from/writing to only element, or a batch of
them. This motivated us to take a step away from this design paradigm, and propose a novel design
strategy which achieves a non-interactive and stateless client ORAM scheme while guaranteeing a
bandwidth blowup of O(1) and eliminating the need for offline eviction phases.

In our design (both with and without PBCs), the client prepares a query, sends it to the server,
and then can go offline. After querying, it does not need to be involved in any computation, and
can retrieve the result whenever it comes back online. In our core design, the client does not have
any memory overhead. However, with our optimization with PBCs, the client needs to generate an
IndexMap (c.f. Section @ But, once the IndexMap is generated, it does not need to be updated once
more: hence preserving the stateless property of the client. Furthermore, IndexMap can be assumed
as public, unlike the requirement of secure client-side storage of non-key material by Path ORAM
and Onion Ring ORAM. We compare our design with that of Onion Ring ORAM in Table [1] based
on the trade-offs offered by each.

3 Preliminaries

3.1 Preliminaries of Underlying FHE Scheme

Notations. We define vectors and matrices in lowercase bold and uppercase bold, respectively.
A dot product of two vectors v, w is denoted by (v, w). For a vector x, both x; and x[i] denote
either the i-th component scalar or the i-th element of an ordered finite set. log(-) is the logarithm
function with base 2. Let R and R, denote Z[X /(X" +1) and Z[X]/(X" +1) mod g, respectively,
for positive integers ¢ and N. We summarize the notations in Table

Ciphertexts. We define the ciphertext modulus as ¢ and the plaintext modulus as ¢, where t < ¢,
and denote A = |q/t].

— An RLWE ciphertext is defined as ¢ := (a,b) € RZ, where b= a - s+ A-m+ e for a message
polynomial m € R; and a secret key s € R. ¢ is denoted by RLWE4(m).

— Given a base B, and £ = O(log q), we define a gadget vector g = (1,9,...,¢° })". An RGSW
ciphertext is a form of C := (a,b) € Rgfw, where b = H + m - G, where each row of H is an
RLWE;(0) and G is a gadget matrix which is defined by G = Is ® g. The ciphertext is denoted
as RGSW;(m). s can be omitted if it is not specified.

Homomorphic Operations and Basic Algorithms. We introduce some homomorphic opera-
tions and basic algorithms used in this paper.

Homomorphic Addition. Let ¢1 := (a1,b1) and c2 := (ag, b2) be two RLWE ciphertexts. The addition
between two ciphertexts is defined as ¢4 := ¢; + co = (a1 + a2, b1 + ba).

3 Even for Path ORAM, all the write operations can be done as part of an eviction phase, however, the cost is similar
to that of a read operation. On the other hand, the eviction phases in Onion ORAM and Onion Ring ORAM are
much more expensive compared to Path ORAM.

Table 2: Protocol and system parameters for ORAM
DB The database

Number of data blocks (elements) in the database

Number of hash functions for PBC

Number of queries in a single batch query

Number of buckets in DB to support PBC

Failure probability of PBC

The access type, op € {Read, Write}

Dot product of two vectors v, w

The i-th component of vector x

Logarithm function with base 2

The maximum degree of a polynomial

Plaintext modulus

Ciphertext modulus

Decomposition parameter

Z[X]/(XN +1) for a positive integer N

Z|X]/(XN +1) mod g for positive integers g, N

St o= x8 3

<
g

Xi, X[i

,_
(]
09
—~
— L~

fe

Ezxternal Product. We denote a homomorphic multiplication between an RLWE ciphertext and an
RGSW ciphertext as [J, which is called external product in [5], and define it as follows: a L1 B =
(G~1(a),B), where B is an RGSW(mp) where B € {0,1} and a is an RLWE(m,) where m, € R;
and G71(-) is the gadget decomposition function which satisfies (G™1(a), G) = a for a € R,,.

CMUX gate. With the given external product, we can build a small circuit called CMUX [6] which
takes three inputs a,b, (RLWE ciphertexts) encrypting mg,, m; respectively, and C (an RGSW
ciphertext encrypting a bit), and outputs either of a or b depending on the value which C encrypts.
The CMUX gate with the three inputs are defined as follows: CMUX(a,b,C) = (b—a)EDC+a =: ¢,
where ¢ encrypts my, if C is an encryption of 1, otherwise m,.

Conversion. We refer to an efficient conversion algorithm (Algorithm 4 of [3]) to switch a format of
ciphertext from RLWE form to RGSW, while preserving the message m. In our case, the algorithm
accepts £ RLWE ciphertexts {RLWE(m - ¢7)} ¢ as input and outputs RGSW,(m). To run this
algorithm, an additional public evaluation key denoted by ksk us needed. This key is precomputed
and sent by the client beforehand. We call the algorithm RLWEtoRGSW throughout the paper.

3.2 Homomorphic De-Multiplexer

The goal of the homomorphic de-multiplexer in our ORAM is to output a unit vector which contains
1 on a desired position, obliviously. A similar functionality called homomorphic traversal is discussed
in [§]. Its purpose is, given a binary tree of depth L, to move a value from the root to a desired leaf.
In ORAM, the client needs to indicate the desired item to be accessed without revealing its index to
server. So we leverage this technique to distinguish the desired item from other database elements.
Assuming that a server stores n data elements, we prepare a complete binary tree with level
L =logn. If the client wants to touch the i-th element from the database, it can homomorphically
index the i-th leaf with an encryption of 1, and the rest with encryptions of 0 via homomorphic
traversal. Given these n leaves, the server can run the desired operation exclusively at the desired
item because an operation on the i-th position can be activated with encryption of 1 only. We
remind that the server cannot distinguish between encryptions of 0 or 1.

Unlike the approach of [§], the client only prepares [logn| bits which represent a bit-decompostion
of the index i, encrypts them all in RGSW format and transmits the ciphertexts to server. The
server runs the algorithm with the encrypted logn bits as controller bits, each in their correspond-
ing level. In our case, all nodes on the same level of a tree use the same controller bit, whereas [§]
requires different input for each decision node. At the end of the algorithm, we obtain an encryption
of 1 on the i-th leaf from the left.

We call the algorithm HomDemux and present it in Algorithm|[I} In our case, HomDemux takes as
input an RLWE ciphertext (the root value of the tree) and log n RGSW ciphertexts (the encrypted
controller bits) and outputs n RLWE ciphertexts (the leaf nodes).

Algorithm 1 Homomorphic de-multiplexer HomDemux

Input: logn controller elements {co,...,cr—1}.
Output: n values of leaves: zo,...,2n—1
bo < Enc(1)
for i< 0,...,L—1do
for j < 0,...,2" =1 do
bait11oj_1 = byi_11; —boi_14j ¢ > - denotes homomorphic multiplication
b2i+1+2j = b2i_1+j e
end for
end for
:fori«0,...,n—1do
Zi = b2L+1_1+,L-
: end for
: return 2p,...,2n—1

— = =
W~ o ©

4 Core Design of Panacea

In this section, we present the design for single query ORAM with O(1) bandwidth blowup and no
client-side memory overhead. In Sections 5] and [6] we extend our design to improve server perfor-
mance by allowing multiple queries to be sent in batches.

4.1 Design Description

We begin with a high-level description of how our algorithm works in the plaintext setting, and
then show how it is converted to the FHE setting.

1. The client sends (a, op,data), where a is the logical address of a requested blockﬁ op represents
either a read or write operation, and data is the new data.

2. The server de-multiplexes a into a unit vector (lo,...,l,—1) where I = 1, and the remaining
values are 0, then returns the result of the dot-product {((lo,...,ln—1),(do,...,dn—1)) to the
client.

3. To update, the server runs a simple circuit on every element d; of the database:
— Let temp,; < if (op = Read) d; else data.
— Update the database entry d; < temp,.

Now we describe the same construction in the FHE setting:

4 A data block refers a database element in our paper. We use these terms interchangeably.

Client: Query Generation. A query consists of a 3-tuple: (a,op,data), where a is the logical
address of requested data element, op is an operation which is chosen by client (either read or
write), and data is the value which would be written.

The client chooses an index i € [0,...,n — 1], and computes its binary bit-decomposition to
obtain logn bits, denoted by €q, ..., €ogn—1. The client then encrypts these logn bits to generate
a. Based on the desired operation op (either Read or Write), the client and generates an encryption
of 0 and 1 and places them in an ordered tuple as follows: Read = (Enc(0), Enc(1)) and Write =
(Enc(1), Enc(0)). The final element in the query is data is which is an encryption of zero in the case
of a Read query or the actual data to be written in the case of a Write query.

Server: Main computation. Once the server receives a query from the client, it executes the
following two phases:

1. Response phase: The server runs the homomorphic de-multiplexer (HomDemux(a)) on the
input to generate an encrypted unit vector of dimension n indicating the desired position that the
client wants to access. Next, the server computes a dot product between the unit vector and the
data array to obtain the value at the requested position. Finally, the server sends the result to the
client. Regardless of the operation, the client retrieves the original value at the desired location.
If the op is Read, the client can access what it intended to retrieve (the i-th item). In case of a
write operation, the client will ignore the received value. The actual database update (write) phase
occurs after the response.

2. Update Phase: Server creates a temporary array of n elements which contains either original

data elements or the updated value data, depending on op by running the function called RW that
achieves the following: if op is Read, the temporary array copies the original data elements; and if
op is Write, the client input data is copied to every n elements.
Then the server runs the CMUX gate with the n leaves (as a controller bit) which are the output of
HomDemux and the corresponding temporary element and the original data denoted as d; for each
j € [0,n — 1]. In more detail, the n leaves contain only one encryption of 1 at the desired position
(the i-th leaf) and the rest are encryptions of 0. Therefore, the i-th element will be updated with
data if op = Write, otherwise, it is updated to the original value d;, which means it remains same
eventually.

We remind that every computation is done over encrypted elements, so that the server is obliv-
ious to what operation is given and what block is updated or returned to the client.

4.2 Instantiation based on Homomorphic Encryption

We describe our protocol using FHE ciphertexts as defined in Section |3| Let ¢ be binarized as
i = (€0,€1,...,€s—1)2, where 2° = n. We show how data elements and the query elements are
encoded in the following:

— dj is a RLWE sample under client’s key K, Vj € [0,...,n — 1]

— a: = (RGSWK(G()), ey RGSWK(ES_1)>

— op := (RGSWgk (bg), RGSWk (b1)), if by = 0 and by = 1, it encodes Read. If by = 1, and b; = 0,
it encodes Write.

— data := RLWEg (), where « is an update value if op = Write, otherwise, « is any random value.

As soon as the server receives a query from a client, it runs RW(op, data, d;) for each data element
d;. The algorithm is defined as follows:

— RW((Cy, Cy),a,b) — c:
e Given an input of two RGSW ciphertexts Cy, C; and two RLWE ciphertexts a, b encrypting
mg, my respectively, it outputs a RLWE ciphertext which encrypts either mg or m;.
e Computes c:=al1Cy+ b Cq

Hence, if Cy = RGSWg(0) and C; = RGSWg (1) (which is op = Read), the output ¢ is an RLWE
ciphertext encrypting m; (the original data). After each component of the output of HomDemux is
converted to an RGSW ciphertext via RLWEtoRGSW | the RGSW ciphertexts are used as controller
bits of a CMUX gate to select either temp; or d;. The final dot product step consists of performing
n component-wise external products between n RGSW ciphertexts {Lj}je[o,...,n—l] and n RLWE
ciphertexts {d;}je(o,...n—1]- With the above definitions of encoding and functions, we describe the
instantiation of our ORAM protocol in Algorithm

Algorithm 2 ORAM protocol on server’s side

1: Input: (a,op,data), where a is the logical address of the requested block, op is either Read or Write, and data
is the value written to the block at address a if op = Write. We note that everything in the query is encrypted
under an FHE scheme.

2: Notation:

— n := the number of data element.
— d; := the i-th data element stored in a server.
— L:={lo,...,ln—1}; the set of value of leaves.
— temp := temporary data element.
: Server sets y : =0
for i< 0,...,/—1do
Server runs HomDemux(a, g°) — £;

end for

for j < 0,...,n—1do
Server runs RLWEtoRGSW ({l; ; }icio,...c—1], ksk) — L

9: Server computes y :=y +d; O L;

10: end for

11: Server sends y to the client

12: for j < 0,...,n—1do

13: Server runs RW(op, data, d;) — temp

14: Server computes d; := CMUX(L;, temp, d;)

15: end for

4.3 Computation and Communication Complexity

The communication complexity of the query is O(logn) since the client sends only logn encrypted
bits. The total number of bits also involves the ciphertext expansion factor, however, that only
depends on the underlying FHE scheme, and not on the size of the database n. For every query,
the server sends exactly one encrypted block to the client as response. Therefore, we also have an
overall O(1) bandwidth blow-up as existing FHE-based ORAM designs [10/3]. Due to our stateless
strategy, the server has to touch all database elements to guarantee security, hence the compu-
tation complexity is O(n). In more detail, we run ¢ -n/2,2n,¢-n,n and n external products for

® The conversion algorithm is adapted from Algorithm 4 of [3].

HomDemux, RW, RLWEtoRGSW, computing ¥, and updating data, respectively. Since ¢ is a param-
eter of the underlying FHE scheme, it is independent of n.

Since we separate the protocol into two phases: Response and Update, the server’s response
latency from the client’s perspective would be equivalent to the running time of the response
phase, which consumes (£/2 4+ ¢ + 1) - n external products. After responding, the server performs
3n external products in the update phase. The server’s total time for each query would be the sum
of the duration of both phases.

4.4 Security

The security of our ORAM scheme stems directly from the semantic security (IND-CPA) of the
underlying homomorphic encryption scheme. Our queries consist of FHE ciphertexts, encoding the
queried database index, desired operation, and potential update value. Semantic security ensures
that the server cannot learn any information about the underlying plaintexts of the query elements.
The security of our design can be expressed through the following security theorem.

Theorem 1 (Security of Panaceacore). Assuming IND-CPA security and correctness of the
underlying FHE scheme, Panaceacore provides security as defined in Definition [1) with p negligible
mn.

We refer to Appendix [A]for the proof of the above theorem. The theorem relies on the correctness
and security of the underlying FHE scheme. However, when instantiating, we require an additional
assumption of circular security which is always assumed in any FHE based protocol due to the use of
key material (the key switching key in our case for RLWEtoRGSW) when encrypting key-dependent
information. Since there is no known attack on circular security, we believe that it would be safe to
rely on such an assumption without harm on our concrete security, as is the case in other similar
works.

5 Multi-query ORAM with Amortized Computation Cost: Method 1

The design of ORAM presented in Section [4 handles one query at a time and incurs a server-side
computational overhead of O(n) for each query. In this section, we present a method to reduce
the (amortized) server-side computation cost for a batch of k queries on distinct elements over 7
processor threads. For simplicity, we assume the number of threads to be equal to the number of
queries (7 = k), however, all the available processor threads can be fully utilized as long as £-k > 7.
Our protocol is described in Algorithm [3] and Algorithm

Algorithm [3] parallelizes Algorithm [2] except for Lines [0][I4] Note that, only one entry with a
distinct position is not an encryption of zero in each temp;. Therefore, in Algorithm [4] adding all
temp; values does not destroy the value of the entry due to k — 1 zeros. As a result, temp has k
encryptions which encrypt non-zero values at the desired positions, with the rest being encryptions
of zero. Moreover, the elements of L indicate the positions of the non-zero elements.

In essence, the first step (Algorithm [3|) results in O(n) multiplications parallelized over each
available thread, and the second step (Algorithm [4)) merges the results by applying 2n multipli-
cations and k additions. Thus, the latency to process and respond to k queries is same as that
of a single query, as O(n) operations are performed before responding to the client. Similarly, the
response is sent to the client before performing the database update.

10

Algorithm 3 Multi-query ORAM: Multi-Threaded Step

1: Input: {(a;,op,,data;)}, € [k], where k is the number of queries and the rest are the same as Algorithm
2: Notation: we use the same notation as Algorithm
3: for every thread i € [7] do
HomDemux(a;) followed by RLWEtoRGSW to obtain L; ;.
yi := Enc(0)
for j € [0,n — 1] do
yi =y +dj L ;
end for
9: The server sends {y:};cx) to the client.
10: for j € [0,n — 1] do
11: temp; ; = RW(Opi, dj, datai) L,
12: end for
13: (Li,j, temp, ;) is kept for use in Algorithm
14: end for

Algorithm 4 Multi-query ORAM: Merge and Update Step
1: let temp, := {temp; ,...,temp, ,, 1}, Li := {Lio,..., Lin-1}

2: temp =37 temp, L:=Y7 L B
3: CMUX(L;, temp,, Enc(d;)),Vj € [0,...,n — 1] > Effectively, if L; = Enc(1) it outputs temp,, Enc(d;) otherwise.

We make two observations where this method achieves performance gains when compared to
running (a multithreaded version of) Algorithm [2| sequentially for k queries. First, during the de-
multiplexing step of Algorithm [2] if the number of threads available is greater than the number of
decomposition levels ¢, then the additional threads would remain unused. In the method described
in this section, all threads available would be utilized as long as £ - k > 7. Second, instead of
performing k - n applications of the CMUX gate at the end, we sum the ciphertexts and only
perform n applications instead.

6 Multi-query ORAM with Amortized Computation Cost: Method 2

In this method, we use an existing batching technique from the literature to achieve a sublinear
server-side amortized computational cost when considering a batch of k£ queries. However, the pro-
posed batching techniques come with their own trade-offs: the networking overhead when batching
is much higher than the baseline. Additionally, batch codes require a redundancy of elements in
the database, which significantly increases the server’s storage overhead. We provide an overview
of batch codes and introduce our construction below.

Batch Codes. A batch code, parameterized by the 4-tuple (n, m, k,b), takes as input a database with
n elements, and outputs a set of m (possibly distinct) elements distributed among b buckets, such
that any k elements from the original database can be retrieved by fetching at most one element
from each of the b buckets. We want m < kn to have any performance improvement for the server.

Probabilistic Batch Codes (PBC). A probabilistic batch code, parameterized the 5-tuple (n, m, k, b, p),
is a relaxed version of batch codes which allows a failure probability of p to retrieve all k elements
when the batch elements are chosen uniformly at random (without replacement). This introduces
a probability p of encountering a batch of k elements such that there is no way to retrieve all
the elements in that batch by fetching at most one element from each bucket. Ideally, we target

11

minimizing the probability of failure as much as possible, in order to maximize that of successfully
executing our ORAM protocol.

6.1 Improving Performance Using PBC

We use a PBC based on reverse cuckoo hashing. Our technique draws inspiration from the batching
technique used in the PIR protocol: SealPIR [I]. One key difference between ORAM and PIR is
that PIR protocols only provide read operations on the database, whereas ORAM schemes provide
both read and write operations. Additionally, all data elements would be encrypted in the context
of ORAM.

Using PBC, the database would be divided into b buckets using w pre-specified (non-cryptographic)
hash functions. First, the server allocates a total of m = w - n elements into b buckets, such that
there would exist w instances of each element spread across W buckets. Then, for each batch of
k < b queries, the client accesses exactly one element from each bucket. We describe the details of
this design and its underlying components below.

Database Allocation by Server. Let hy,--- , hy be w distinct hash functions. Since the client
and the server need to agree on some hash functions, the hash functions are publicly specified as
part of the protocol. Given a database of n elements, each element is hashed based on its index in the
original database. The actual element is encrypted and remains encrypted throughout the process.
Suppose an element at index ¢ produces the following hash values: iy = hy(t), -+ iy = hw(t).
The server adds the elements from the buckets iq,--- ,4,. The process is then repeated for all
distinct elements in the database. Upon completion, each element will have w instances spread over
b buckets (possibly non-distinct). Depending on the hash functions, it is possible that there are
multiple instances of the same element in a bucket, but only with small probability. However, the
presence of two elements in one bucket does not impact the security of ORAM and only influences
the failure probability of PBC. We further discuss more this failure probability and its implication
in Section

Batch-query by Client. For every batch of k (read/write) queries, the client is expected to
perform b accesses, one from each of the b buckets. For each access per bucket, the client can run
the core protocol described in Section [4l The client selects the elements for those b accesses in a
way that satisfies all the k desired read/write operations. To that end, the client uses the reverse
cuckoo hashing technique with the w hash functions as described below.

The problem can be looked at as a balls-and-bins problem. The client has to place k balls (the
intended read/write operations) into b bins (the buckets in the database), where each bin can have
at most one ball. For a ball (the index of an element) ¢ the client computes w candidate buckets
by applying the hash functions. Then places the ball in one of the empty candidate bins. If none of
the candidate bins are empty, the client picks one uniformly at random, removes the existing ball
Ltolg from the chosen bin, and places the new ball ¢ there. For the removed ball ¢4, the client runs
the insertion procedure again, and if that causes another ball to be removed, this procedure goes
on recursively for a maximum number of iterations.

If the client can successfully place all the k balls into b bins, that becomes the assignment for
elements in each bucket the client should access from the server. There is also a small chance of
failure to place all the k balls into b bins, we evaluate the failure probability in Section Since

12

the client and the server are using the same hash functions, if assignment puts an element ¢ in bin
i for the client, that element will be available in bucket ¢ on the server database. Now, the client
can run one instance of the core ORAM protocol described in Section [4] for each bucket. Note that,
for (b — k) buckets, which were empty after placing k balls into b bins, the client generates dummy
read requests. Since the client accesses one element from each bucket, and no bucket is touched
more than once in one batch, the server does not know which buckets correspond to which of the k
accesses requested by the client. However, to access a specific element in a bucket, the client needs
to know the index j of the element in that bucket for the index ¢ in the original database. Moreover,
since the elements in the database are encrypted and each element has exactly w redundant copies,
the other (w — 1) copies need to be updated as well for each write access. Otherwise, the database
would lose consistency, and any future queries might not return correct (up-to-date) results. We
describe below how we solve the above two problems.

Algorithm 5 ORAM protocol using PBC

1: {Di}icpp) := the database divided into b buckets, initially all buckets are empty.

d, := the element at index ¢ in the original database DB.

{ht}tew) := the hash functions used for PBC.

I := IndexMap: the mapping between an original database index ¢ and the pairs (4, j) denoting bucket index and
the location inside the bucket.

5: function SERVER:SETUP(Database DB)

6: for i« 0,...,b—1do

T counter; := 0

8: end for

9: for each index ¢ in DB do

10: fort < 0,...,w do

11: i := h¢(¢); Append to D; the element d,
12: Add the 3-tuple (¢, 7, counter;) to I; counter; := counter; + 1
13: end for

14: end for

15: end function

16: function CLIENT:SENDBATCHQUERY ({(a¢,0p,, datas)}ic(x))

17: { (3¢, je, op}) e < BatchEncode(I, {(at, 0p,) }teik])
18: fort <+ 0,...,b—1do

19: Send request on D;, for each input (i, op}, data})

20: end for

21: end function

22: function SERVER:BATCHRESPONSE({(ji, op;, data:) }ics)) > (ji,op;,data;) are encrypted for Server.
23: for i< 0,...,b—1do

24: Run Algorithm [2lon D; on input {(ji, op;, data;) } > The response y; is sent back during the process.
25: end for

26: ConsistencyCorrection() > See Algorithm [6]

27: end function

28: function CLIENT:BATCHEXTRACT({(at,0p,)}eefk), {¥1s---s¥s})
29: Z1,..., T := Decrypt {y1,...,ys}

30: return BatchDecode(1, {(a¢,0p,) }tefk)s {T1,-- -, Tb})

31: end function

13

6.2 Mapping Indices

In order to access an element from a bucket the client needs to know the index j of the element in
the bucket for its original index ¢ in the database. We solve that problem using an IndexMap which
stores this mapping. The client can store the IndexMap throughout the time it uses the database
which that adds a small memory overhead, in order to save query generation time. For a database
with one million entries, the total size of IndexMap is less than 9 MB for our chosen parameters.

It is to be noted that the indices of the elements are used as inputs to the hash functions during
the process of allocating them to the buckets. Therefore, once the buckets are allocated by the server,
IndexMap is never modified. Other ORAM designs that rely on client storage require the client to
maintain some metadata representing the state of the database, and that needs to be updated after
every read/write access and requires secure storage to protect privacy. On the contrary, IndexMap
in our case can be public and does not require any updates. Moreover, if the server uses a pre-
defined source of randomness (which does not break the security of the ORAM protocol), IndexMap
becomes deterministic and can be provided to the client as part of the setup. In that sense, our
client remains stateless: even if the client goes offline, it can easily retrieve/reconstruct the IndexMap
from setup information.

We denote the method of producing b pairs of bucket indices and the corresponding indices in the
buckets from k indices from the original database as BatchEncode(). This operation accepts as input
the k tuples {(t1,0p;),- -, (tk,0ps)} and outputs the 3-tuples {(i1, j1,0p;),- -, (ip, b, 0p1) }. When
the client receives the server’s response, it just needs to discard the (b— k) responses corresponding
to the dummy requests mentioned above. We denote this method as BatchDecode(). We describe
the ORAM algorithm using PBC in Algorithm

6.3 Consistency Correction

Since our batching technique requires redundancy, all w copies of data elements need to be updated
for each write access. With the above method aloneﬂ only one of w copies would be updated, leaving
the remaining copies as encryptions of the old data. Therefore, we introduce a new technique which
also updates the remaining redundant w — 1 blocks to avoid data inconsistency.

We explain our technique to correctly update all the copies with w = 3 for simplicity (we also
choose w = 3 in our setting which we explain in Section . This method can be easily extended
to any value of w.

We note that this correction is run after the merge and update phase (Algorithm is executed
on each bucket. Suppose that the three hash functions (w = 3) are applied to index ¢ and the
resulting indices are given by (i1, j1), (2, j2) and (i3, j3), where i, and j, represent the bucket index
and the position of an element inside the bucket respectively. After processing a batch, the server
obtains the following for each pair (i,7) as a result of applying the homomorphic de-multiplexer
(Section on each bucket:

L; j: an RGSW ciphertext that encrypts 1 if the j-th element in the i-th bucket is accessed, or 0
otherwise.

B;: an RGSW ciphertext that encrypts 1 if the operation in the i-th bucket is a write operation,
or 0 otherwise. This is the same as the first element of the op tuple from the client’s query

(Section [4.2]).

5 PBC without consistency correction

14

Note that only one L; j corresponding to the same element will contain 1, since no element can be
accessed twice in the same batch. Similarly, only one L; ; will contain 1 for a given bucket i. The
server derives B; from the op parameter in the client’s query, then applies the following consistency
correction formula to update the database:

Vbnew = Vihjl [(1 - Li17j1 o Bil - Liz,jz o Biz - Lis,js o Bis) (1)
+ (Vil,j1 o Li1,j1 o Bil + ‘/;2,]'2 o Liz,jQ [Bi2 + Vis,js [Li37j3 [Bis)v

where V; ; denotes the ciphertext at (i, 7). V,"** is the updated value which is copied to locations
(21,71), (i2,72) and (i3, j3), replacing V;, j,, Vi, j, and Vj, j, respectively.

If we consider one of the L; ; to be an encryption of 1, then intuitively, the top line of Equation
evaluates to an encryption of 0 if it is a write operation, otherwise it is an encryption of V;, ;,. The
bottom line of Equation evaluates to an encryption of 0 if it is a read operation, otherwise it is
the new value that is written to the database. If none of L; ; is an encryption of 1, then Equation
evaluates to V;, ;. As a result, if the client performs a write operation to one of the indices i1, j1,
i2, jo and i3, j3, then subsequently the new value is returned, otherwise the old value is returned.
We assume that the client is honest and does not attempt to submit queries which can make its
own database inconsistent, i.e., more or equal to two of L;, j,, Li, j, and L;, j, is an encryption of
1. We present the method in Algorithm [6]

Algorithm 6 ConsistencyCorrection by server after every batch

1: Notation:
— Vi,; := the j-th data element stored in the i-th bucket.
— {ht}ieqi,2,3) = the hash functions used for PBC. // We write the algorithm considering 3 hash functions.
— I := IndexMap: stores the mapping between an original database index ¢ and the pairs (¢, j) denoting bucket
index and the location in the bucket.
— {L;,;}; the set of leaf values after running HomDemux on bucket i.
2: for 1< 0,...,n—1do
3 (i1,j1),(i2,j2),(’i3,j3) = query]for L.
4: for t < 1,2,3 do
5: Bit < op;, [O}
6.
7

end for
: vi= Vi B (1 = Liy 3, OBy — Ligjp 0 Biy — Lig js 0 Big) + (Vi 5y 8 Liy 3, O By + Vig 3, 0 Liy 3, O Biy +
%3»13 o LiS»jB o Bis)
8: Di[j1] := Diy[j2] := Di,[ja] :==v
9: end for

6.4 Failure Probability and Parameter Choices

There is a very small probability that the assignment of k balls in b bins will fail. However, that
will only result in a failure to retrieve some of the k elements for a batch. And, the client will know
that the batch will fail, before even sending the batch query to the server.

Analyzing the exact probability of failure, and determining the constant factors of cuckoo hash-
ing still remains an open problem. However, there are empirical studies [12/4J20] to estimate this
probability for different parameter choices. Chen et al. [4] estimates that the failure probability is
~ 2740 when w = 3 and b = 1.5k, for & > 200. Following their analysis, we choose k = 256, w = 3,

15

and b = 384. With that, the database has an additional 3x storage overhead, and the client has
an additional 1.5x bandwidth overhead. However, since the access in each bucket is independent
of other buckets for a single batch, then the server can run multiple accesses targeting different
buckets in parallel.

6.5 Tradeoffs And Comparison With Method 1

With our batching technique, we reduce the server-side computational cost of by several factors (as
demonstrated in our experiments in Section . However, this improvement comes at a bandwidth
cost of 1.5x when compared to our Method 1 or the core protocol and a storage cost as the database
takes 3x more space. Additionally, there is a slight increase in client-side memory overhead compared
to Method 1 due to the storage of the hash table (see Table . Since each component of IndexMap
consists of a few bits (bit length of an index), the actual overhead does not have a big impact on
the client’s performance. On the other hand, if running cuckoo hashing is fast enough, then the
client does not need to store IndexMap, instead, he generates the hash every time he queries. Then
the memory complexity on the client side becomes O(1), but the query generation complexity will
increase to O(n) (running hash functions over n elements), which is a fair trade-off.

In Method 1, we mainly optimize the number of read/write operations to the database: the
overall computation cost for the server is still O(n). If disk-10 per block is expensive (e.g., very large
block size) or the cost of computation is not a concern (availability of a powerful cluster), Method
1 could be beneficial to optimize the bandwidth. However, given that server-side computational
overhead is much higher than disk access, Method 2 would be more useful to optimize the server
computation time. Especially, with the high speed (200 — 500 MB/s) read/write capabilities of
solid-state-devices and typical block size (several KB), we consider that disk-IO is not a bottleneck,
and the cost of 1.5x additional bandwidth blowup and 3x expansion in the size of database are
reasonable trade-offs. Therefore, we mainly focus on evaluating Method 2 in Section

7 Implementation and Evaluation

Our protocol leverages the TFHE scheme [6] which supports every homomorphic operation we
use. We provide an implementation in the Rust Programming Language[] using the Concrete Core
hbraryﬁ [7] for homomorphic operations. The source code is available on GitHubﬂ We include the
dependency manifest (Cargo.lock) and the parameter sets used in our experiments (params. json)
to ensure reproducible results.

7.1 Experimental Setup

To simulate a Server implementing our scheme, we benchmarked our implementation on a dedicated
cloud instance running Red Hat Linux. The instance was equipped with an Intel® Xeon" Platinum
8360Y CPU (36-core@2.4ghz) and 2TB of RAM.

To simulate a client, we compiled our code, targeting a Linux PC equipped with an Intel®
Core"" i5-6600 CPU (4-core@3.3ghz) and 8GB of RAM, as well as a 2020 Apple MacBook Pro with

7 Toolchain: Rust version 1.68.0 nightly-x86_64-unknown-linux-gnu
8 ” concrete-core” version: 1.0.2
9 https://github.com/KULeuven-COSIC/Panacea

16

https://github.com/KULeuven-COSIC/Panacea

an M1 chip and 8GB of RAM. In contrast with our server setup, benchmarks evaluated on both
client setups were limited to a single-thread for ease of comparison.

We assume that the client and the server agree on the database and FHE parameters prior to
execution. Additionally, during setup, the client generates their keys and sends the evaluation keys
to the server. The server sets up a dummy database (or a database consisting of trivial RLWE
encryptions of zeros). We benchmark successive simulations of our protocol for a variable database
size progressing from n = 22 to n = 2'Y using the same hardware. Our instantiations use parameters
in Table [3] yielding 128 bits of security.

Table 3: TFHE Parameters

Parameter Value
standard deviation 275
polynomial degree N 2048
decomposition parameters for key switching (g, £)](2°, 11)
decomposition parameters for query (g, £) (2°,9)
plaintext modulus ¢ 28
ciphertext modulus ¢ 264

7.2 Bandwidth

Table 4: Bandwidth blowup and the actual cost for 384KB data element size when n = 2. We
used method 2 (PBC) for our amortized scenraio.

ORAM type Bandwidth blowup|amortized blowup
Stateful Path ORAM 28.5 MB 76 57 MB 152
ateiu Onion Ring ORAM 2 MB 533 | 48MB 129
Panacea 14.8 MB 39.46 | 20.71 MB 55.22
Stateless - -
Panacea (with query packing) 3 MB 8 3 MB 8

We compare the bandwidth of our design with that of existing stateful designs (specifically,
PathORAM and Onion Ring ORAM) under similar conditions. Unlike previous stateful designs,
our query cannot contain any plaintext to guarantee the security.

Therefore, the actual communication cost for queries would be worse than that of many stateful
designs due to size of FHE ciphertexts. With the concrete parameters used in our implementation,
one RGSW ciphertext costs 576KB and one RLWE ciphertext (encrypting 2KB of message) as
one response costs 16KB (we use the same technique of OnionRing ORAM [3] to reduce the size
of response by reducing modulus from 64 bits to 32 bits). We require logn RGSW ciphertexts to
encode the chosen index a and two for the operation op.

When n = 29, the query size is 21 - 576KB = 11.8MB. Then the server’s answer consists of 192
RLWE ciphertexts each of size 384KB, resulting in 3MB in total. Due to the choice of parameters
in Onion Ring ORAM [3] ¢ = 2'2, it was possible that more data could be loaded (up to 3KB) in
one ciphertext, resulting in a reduced server response size of 2MB. It is possible for us to set the

17

same ¢ in theory, but for large n = 22, we had to reduce the parameter to guarantee the correctness
in our actual implementation.

For the amortized scenario (with Method 2), the query size is 1.5x larger than that of the single
query case. In any case, the query size is the dominant factor in the total bandwidth overhead.
Indeed, Onion Ring ORAM incurs less bandwidth overhead than us. However, we can achieve
similar low bandwidth overhead by using their query packing method to pack all the query bits
in £ RLWE ciphertexts, instead of sending logn+2 RGSW ciphertexts as we currently do. Even
without this optimization, we still have much less bandwidth overhead than PathORAM due to
our constant bandwidth blowup.

Query Packing. If we use the query packing method of Onion Ring ORAM to reduce the query size,
the server would have to unpack queries upon reception and convert them into the right format to be
processed. We call this conversion operation query unpacking. Then, there would be an additional
server-side computational overhead that has logn complexity. Query unpacking can be trivially
parallelized, therefore it does not cause a significant impact to the total computation time. When
we pack everything in the client’s query (i.e. indices of the item, operation encoding) into £ RLWE
ciphertexts, the bandwidth consumption would be dominated by the server’s response: 3MB in this
case. The result is given in the last row of Table

We have also implemented our design with query packing by using a tweaked version of Al-
gorithm 4 of [3] for n = 2! without modifying our parameters. We note that their unpacking
method (Algorithm 4 of [3]) causes the presence of a lot of additional noise, given the same set
of parameters. Therefore, we use a tweaked version of their algorithm (discussed in Appendix
to guarantee correctness. In our implementation, the unpacking algorithm consumed 69 ms per
RLWE ciphertext, hence the additional cost is around 13 seconds to unpack 21 RGSW ciphertexts
for n = 219,

We note that our bandwidth blowup is only affected by the ciphertext expansion factor (ratio
between ciphertext and plaintext) of the underlying FHE scheme: Panacea maintains a constant
bandwidth blowup independent of the block size. On the other hand, Onion Ring ORAM [3] has
another factor Z (the number of real blocks in each node/bucket of their tree structure) which
depends on n. In order to keep the bandwidth blowup constant in practice, Onion Ring ORAM
requires large block size in combination with query packing.

7.3 Computation Overhead

To demonstrate the practicality of our design we compare the computational overhead of our design
with that of Onion Ring ORAM, since it is the only other practical design based on homomorphic
encryption techniques, and achieves constant bandwidth blowup. However, we want to highlight that
their amortization technique is fundamentally different from ours, and we achieve new properties
like statelessness, non-interactiveness.

Single query and Method 1. For our single query performance, with n = 2'2, the response
time is 1.79s and the update duration is 1.39s. We used k = 36 threads when implementing the
single query protocol to benchmark the performance. Afterwards, we used Method 1 to handle k
queries in one go using the same setup. As expected, our Method 1 for k queries is faster than
running our single query (Algorithm [2|) protocol k times on the same number of cores. This is due
to the inability to parallelize all parts of the computation in the single query case as we observed

18

in Section |5} Specifically, to process k queries, Section |5| consumes 25% less time on average when
compared to Algorithm [2| For larger database sizes we refer to the batched version of our protocol
with PBC shown next.

Batching with PBC. When the protocol uses PBC, the client batches 256 queries and submits
the whole batch to the server which processes it at once. In our experiment we use a total of 36
threads (one thread per core) to parallelize server-side computations. Numbers in Table [5{show the
averages taken over 5 independent runs of the experiment using the same parameters. The sum of
the response duration and update duration represents the total time spent by the server to treat a
query. The response duration specifies the elapsed duration between the server receiving the client’s
query and transmitting the response. The update duration is equivalent to the time spent by the
server to update the database after responding to the client. Figure [1| displays the linear growth of
the amortized duration of server computation as the number of database elements increases.

We find a clear performance advantage when comparing with the single query mode. Using a
database size of 212, the server is over 180 times faster in terms of access duration.

Table 5: Computation time required by the server for database size n, with n from 2! to 219, for
the size of the batch k = 256 with PBC. Numbers in brackets are amortized cost. All times are in
seconds.

n |Response Duration|Update Duration|Total Time
212 2.47 (0.0096) 1.01 (0.0004) 3.48 (0.014)
217 9.53 (0.037) 2.89 (0.011) 12.42 (0.049)
210 38.08 (0.15) 11.04 (0.043) 49.13 (0.19)
218 147.92 (0.58) 48.02 (0.19) 195.94 (0.77)
219 296.43 (1.16) 94.83 (0.37) 391.26 (1.53)

We came across some difficulties when comparing our numbers directly with those of Onion
Ring ORAM, [3] since their implementation is not publicly available. Moreover, we conjecture that
the numbers presented in [3] are theoretical projections which do not account for bottlenecks from
data transfer speeds between CPU and RAM which we noticed during our experiments when using
large database sizes. Memory bandwidth is a well-known bottleneck for FHE computation [22]13].
Therefore, we provide an analytical comparison below.

Explanation and Analytical Comparison with Onion Ring ORAM. The server’s main
computation is performed over all n data elements to guarantee the security, either sequentially
or in parallel depending on the server’s resources and deployment scenario. Therefore, O(n) is
an inevitable complexity. In more detail, the response phase which mainly influences the latency
consists of (¢/24¢+1)-n external product in practice, where ¢ is a parameter of the underlying FHE
scheme. In our experiments, we set £ = 9. Hence, at least 14.5 - n external products are performed.
If we use Method 2, this number is multiplied by w = 3 to handle k > 200 queries at a time.
When comparing with Onion Ring ORAM, we note that their construction has a default com-
plexity of O(log n) for both online and offline phases. During the online phase, the only computation
performed is an addition of logn ciphertexts, which is extremely cheap when compared to other
homomorphic operations. However, for every A accesses, they require an interactive offline phase

19

1.6

T T
response duration —+—
1.4+ update duration —*— i
total duration

1.2 -]
1_

0.8

Duration (s)

0.6

0.4

0.2

NP 0 i

0212 216 218 219

Database Size n

Fig. 1: Amortized duration of server computation with database size n from 2'? to 2'° and batch
size k = 256. The x-axis denotes the database size n, and the y-axis denotes the duration (in
seconds).

called eviction, during which the server runs an expensive algorithm logn times interactively with
the client. This algorithm is instantiated with FHE and some concrete parameters in [3]. However,
we note that there exists a hidden factor of Zlog Z in their complexity analysis of eviction. This
factor is a result of reshuffling Z blocks in each node (bucket) on a selected path during eviction. In
detail, the dominant complexity during the eviction comes from performing Z - log Z - logn ~ 217
external products, where Z ~ 2° according to their choice of parameters, when n = 222. Therefore,
the dominant factor is not limited by logn anymore, and the number of slots (Z) in every bucket
is the key factor which impacts real performance. As a result, Z should also be chosen carefully
according to n.

If we set k = A, we can compare two different designs in the amortized scenario with k queries.
Therefore, our experimental numbers show that our stateless design can achieve comparable per-
formance to that of stateful Onion Ring ORAM. The actual latency of their eviction phase also
depends on how fast the client is at answering since it requires multiple client-server interactions.
Additionally, our protocol parallelizes much better given additional server resources, whereas their
eviction should be run sequentially and interactively, which also contributes positively to our prac-
tical performance. These factors should also be taken into account when applying such protocols
in the real world.

Client Performance: Method 2. One of the benefits of our stateless design is that the client
has much less of a computational burden compared to stateful constructions. The client-side com-
putation only consists of generating queries (encrypting indices) and decrypting responses from the
server. In Table [] we demonstrate query generation time on two different consumer-grade laptops.
The computation cost is small enough for the client to run efficiently even when using a normal
computer.

20

On the other hand, Onion Ring ORAM necessarily requests the client to join the offline (evic-
tion) phase after every A accesses. In the eviction phase, a client has to generate a permutation to
reshuffle blocks in log n buckets on a chosen path, resulting in having to perform O(logn - Z -log Z)
encryptions. Moreover, the client also has to download Z data elements (which are encrypted)
multiple times during the eviction phase.

Table 6: Duration of performing one RGSW Encryption on client setups
Intel i5-6600| Apple M1
0.17s 0.065s

7.4 Memory Usage

For the server’s memory overhead, our approach does not rely on the structure of the database; it
always has a constant overhead, apart from Method 2 which relies on the number of hash functions
that we use. On the other hand, Onion Ring ORAM and other stateful designs rely heavily on
the tree depth (L) and the number of slots (Z) in each node to guarantee the security. For Onion
Ring ORAM, both of these parameters are highly dependent on n. However, with the concrete
parameters used for their implementation, they chose Z and L carefully for Z - 2% to be bounded
by 4n for optimal performance results. Therefore, with our choice of w = 3 in Method 2, we store
3n elements with the server, and our storage overhead is similar to Onion Ring ORAM in practice.

Regarding real-time memory consumption on the server’s side, recall from Section [0] that we
need to store w - n RGSW ciphertexts L;; in memory temporarily to perform the consistency
correction algorithm, which introduces considerable memory usage since one RGSW ciphertext
consists of 2¢ RLWE ciphertexts. But it is possible to reduce the memory usage by a half if the
consistency correction is performed as soon as possible, i.e., by performing consistency correction
on the three entries in the encoded database that are mapped from the same original index right
after they are available, instead of waiting for Panaceacore to be completed on every bucket. We
leave this optimization for future work.

7.5 Monetary Cost

Using the same parameter set from Table [3| and k& = 256, we present the concrete cost of operating
our server using Method 2 without query packing. Appendix [C| provides a reference price list
retrieved from the websitd '] of Google Cloud Platform (GCP).

Data Transfer and Storage. Given that internal storage traffic (i.e. transfers between a cloud
instance and a standard storage bucket) is free of charge on GCP, we can neglect the monetary
cost of transferring the database from client to server. The same applies for Ingress traffic from the
client to the cloud, which means that the client can transmit their queries with no server-side cost.

Our fixed parameters grant us a fixed server response size of 12.5MB, regardless of the database
size. This translates to $0.0028 of billable egress traffic per response. Referring to Table [9] we
present the of the database to be stored size in GB with n from 2'2 to 2! and the estimated cost
in US Dollars per month.

10 https://cloud.google. com/compute/all-pricing

21

https://cloud.google.com/compute/all-pricing

Table 7: Growth of database in GB with n from 2'2 to 2!? and estimated cost of storage per month
in US Dollars

n |Database Size (GB)|Cost per Month
212 0.403 $0.010478
212 1.611 $0.041886
216 6.445 $0.16757
218 25.782 $0.670332
219 51.564 $1.340664

Table 8: Server time to load the database from storage, perform the ORAM computation, store
the updated database in storage, and their sum (total server time) in seconds with the estimated

monetary cost in US Dollars.
n |Load |[ORAM|Update| Total Cost
22 0.1 3.48 0.1 3.68 |$0.02576
2M10.402 | 12.42 | 0.402 | 13.2 [$0.092568
2161 1.611 | 49.13 | 1.611 | 52.35 [$0.366464
21816.445 | 195.94 | 6.445 |208.83 | $1.46181
219112.891| 391.26 | 12.891 [417.042($2.919294

Server-Side Protocol Execution. We assume that our server runs on demand. More details on
our proposed server setup can be found in Section For simplicity, we assume that regardless of
the value of n, a server instance would be equipped with 36 cores and 2TB of RAM to replicate our
experimental setup. Thus referring to Table [0] we can assume that running our server would cost
$25.2/h or $0.007/s. Table |8 provides an estimated cost in US Dollars per batch of 256 queries
with n from 2'2 to 217.

7.6 On-Demand Server

During the initial protocol setup, no server interaction is required with the client. The parameters
and encrypted database are transferred from the client to the storage solution, which in our case is
a GCP Standard Storage Bucket. Whenever a query is submitted by a client, the query is ingested
by a cloud scheduler, operating at negligible cost, which boots up an instance of our server from
a snapshot. This instance would exist only for the duration of performing one computation and
database update as per Table |5, to minimize billing costs. The server instance, provided with the
client’s query by the scheduler, would then fetch the database and parameters from the storage
bucket and store them directly to on a ramdisk partition. We assume that the speed at which the
ramdisk partition on the server can communicate bi-directionally with the storage solution at a
rate of 4GB/ s{ﬂ

Having received all data it requires, the server then computes the response, transmits it back
to the client, updates the database and stores it on the storage solution then gets shut down auto-
matically. The total billable time during which our server operates can be calculated by summing
the time to load the encrypted database, the total computation running time and the time to store
the updated database.

1 https://cloud.google.com/compute/docs/disks/performance

22

8 Discussion

8.1 Noise Growth

Due to the nature of FHE schemes, after performing a certain number of operations, ciphertexts
accumulate noise over time. When the noise becomes too high, it would no longer be possible to
decrypt ciphertexts successfully. This applies to our ORAM protocol: after a certain number of
(sequential) accesses, the result returned by the server may respond with ciphertexts that cannot
be decrypted by the client anymore.

We show that our protocol can support over 100,000 (amortized) queries (Method 2) before
bootstrapping is needed to refresh the noise budget. It is because the noise contained in the data is
additively accumulated per access due to the homomorphic operation that we use called external
product in [6].

The multiplicative depth of the protocol grows linearly in the number of sequential accesses.
In every access, the new noise term to be added is generated via a series of external products
(HomDemux and RLWEtoRGSW) among ciphertexts which have low noise. Let’s denote this term
by vg which does not depend on the noise contained in data, hence it has always same variance
bound for a fixed set of parameters. The noise contained in a data element ey, is updated as
€data ‘= C1 - €data + C2 - Vg after one access, where cy, co are small constants less than 5. Therefore,
the noise (in term of number of bits) grows with O(log @) complexity, where @ is the number of
accesses. That is why we can keep small noise growth. Specifically, for n = 2!9 ¢t = 2% running
Method 2 (Section @ with batch size k& = 256, and fixing our other parameters as described, we
were able to process 425 successive batched queries, averaged after 10 samples, before we reached
a decryption failure.

8.2 Defense Against Malicious Servers

The design presented in this paper mainly focuses on an honest but curious server (adversary).
Our design can be extended with minor modifications to support the assumptions required when
considering a malicious server. We use a technique similar to [I1], where the client stores message
authentication codes along with the elements. More specifically, for every element d; the client stores
Enc(d;, MACk (i,d;)) at slot ¢ in the database. This allows the client to immediately detect if the
server does not follow the protocol and returns a bad ciphertext or a ciphertext from any location
other than the queried index for a Read access. However, the server might still be able to replay
old elements from the same location. One way to mitigate against replay attacks, and guarantee
the freshness of the blocks, would be to maintain a separate counter for each element, and use that
counter as part of the input of MAC. After every Write access the corresponding counter needs to
be increased. However, this requires that client maintains a state of all the counters locally, which
adds state to our stateless design.

So we suggest a probabilistic defense mechanism: For every ¢ Write accesses, the client chooses
one of them at random for verification purposes. The index corresponding to that verification access
would be Read immediately after a Write operation at the same location. If the server’s response
does not match the previously updated value on the position, then the client can immediately detect
the server’s malicious behavior. Note that our privacy guarantees imply that the server cannot learn
anything about the type of intended access, and therefore, the server has no way to infer access
patterns to identify the for verification accesses. For every malicious action, the client will detect
the server with a probability of at least %

23

When the client detects such a malicious action by the server, if the client aborts immediately,
that provides a unique side-channel to the server. The server knows that after (maliciously) modi-
fying a certain block the client has aborted the protocol. We leave it for future work to handle such
side-channel attacks. However, the server will try to avoid detection for financial purposes, e.g., if
it is a cloud server running storage as a service. If the clients can detect such malicious behavior
from the server, they will eventually take their businesses elsewhere.

9 Conclusion

This work introduces a novel ORAM paradigm which supports a stateless client and has a compar-
atively low bandwidth blowup; a major departure from the tree-based ORAM constructions in the
existing literature. We propose our core protocol supporting single-access queries along with two
variations for multi-access: The first variation uses parallelism to reduce the server’s computation
time by 25% when compared to the core protocol; the second variation (Section@ uses probabilistic
batch codes to significantly improve the performance in the amortized setting (by over 180 times
when compared to the core protocol for n = 2'2), achieving only 1.53 seconds of access time for
n = 2'9. While the asymptotic computation overhead for the server in our protocol looks high
compared to existing designs, our implementation’s concrete performance is more than acceptable,
especially for small to moderately sized databases.

Acknowledgement

The cloud resources and services used in this work were partly provided by the VSC (Flemish
Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish
Government. This work is partially supported by the Research Council KU Leuven under the grant
C24/18/049, CyberSecurity Research Flanders with reference number VR20192203, and Defense
Advanced Research Projects Agency (DARPA) under contract number FA8750-19-C-0502. Any
opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of any of the funders.

References

1. Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries and amortized
query processing. In 2018 IEEE Symposium on Security and Privacy, pages 962-979. IEEE Computer Society
Press, May 2018.

2. Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable oblivious storage. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 131-148. Springer, Heidelberg, March 2014.

3. Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: Efficient constant bandwidth oblivious RAM from
(leveled) TFHE. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM
CCS 2019, pages 345-360. ACM Press, November 2019.

4. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic encryption. In Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 1243-1255.
ACM Press, October / November 2017.

5. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabacheéne. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASTACRYPT 2016,
Part I, volume 10031 of LNCS, pages 3-33. Springer, Heidelberg, December 2016.

6. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne. TFHE: Fast fully homomorphic en-
cryption over the torus. Journal of Cryptology, 33(1):34-91, January 2020.

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Concrete: Concrete operates
on ciphertexts rapidly by extending tthe. In WAHC 2020-8th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, volume 15, 2020.

Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V.L. Pereira. Sortinghat: Efficient private decision tree
evaluation via homomorphic encryption and transciphering. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS '22, page 563-577, New York, NY, USA, 2022. Association for
Computing Machinery.

Jonathan L. Dautrich Jr., Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing ORAM response times for
bursty access patterns. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 201/, pages 749-764. USENIX
Association, August 2014.

Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, and Daniel Wichs. Onion
ORAM: A constant bandwidth blowup oblivious RAM. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A,
Part II, volume 9563 of LNCS, pages 145-174. Springer, Heidelberg, January 2016.

Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas. Freecursive oram:
[nearly] free recursion and integrity verification for position-based oblivious ram. SIGPLAN Not., 50(4):103-116,
mar 2015.

Alan M. Frieze and Tony Johansson. On the insertion time of random walk cuckoo hashing. In Philip N. Klein,
editor, 28th SODA, pages 1497-1502. ACM-SIAM, January 2017.

Robin Geelen, Michiel Van Beirendonck, Hilder V. L. Pereira, Brian Huffman, Tynan McAuley, Ben Selfridge,
Daniel Wagner, Georgios Dimou, Ingrid Verbauwhede, Frederik Vercauteren, and David W. Archer. BASALISC:
Flexible asynchronous hardware accelerator for fully homomorphic encryption. Cryptology ePrint Archive, Report
2022/657, 2022. https://eprint.iacr.org/2022/657.

Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova, and Daniel Wichs. Op-
timizing ORAM and using it efficiently for secure computation. In Emiliano De Cristofaro and Matthew K.
Wright, editors, PETS 2013, volume 7981 of LNCS, pages 1-18. Springer, Heidelberg, July 2013.

Oded Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In Alfred Aho,
editor, 19th ACM STOC, pages 182-194. ACM Press, May 1987.

Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams. J. ACM,
43(3):431-473, may 1996.

Michael T. Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia. Privacy-preserving group
data access via stateless oblivious RAM simulation. In Yuval Rabani, editor, 23rd SODA, pages 157-167. ACM-
SIAM, January 2012.

Thang Hoang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam Nguyen. S30ORAM: A
computation-efficient and constant client bandwidth blowup ORAM with shamir secret sharing. Cryptology
ePrint Archive, Report 2017/819, 2017. https://eprint.iacr.org/2017/819|

Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in)security of hash-based oblivious RAM and a new
balancing scheme. In Yuval Rabani, editor, 23rd SODA, pages 143-156. ACM-SIAM, January 2012.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on OT extension.
Cryptology ePrint Archive, Report 2016/930, 2016. https://eprint.iacr.org/2016/930.

Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and Srinivas
Devadas. Constants count: Practical improvements to oblivious RAM. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 415-430. USENIX Association, August 2015.

Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald Dreslinski, Christopher Peikert,
and Daniel Sanchez. F1: A fast and programmable accelerator for fully homomorphic encryption. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 21, page 238-252, New York,
NY, USA, 2021. Association for Computing Machinery.

Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with O((log N)?) worst-case
cost. In Dong Hoon Lee and Xiaoyun Wang, editors, ASTACRYPT 2011, volume 7073 of LNCS, pages 197-214.
Springer, Heidelberg, December 2011.

Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher Fletcher, Ling Ren, Xiangyao Yu,
and Srinivas Devadas. Path oram: An extremely simple oblivious ram protocol. J. ACM, 65(4), apr 2018.

Emil Stefanov and Elaine Shi. ObliviStore: High performance oblivious cloud storage. In 2013 IEEE Symposium
on Security and Privacy, pages 253-267. IEEE Computer Society Press, May 2013.

Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. Towards practical oblivious RAM. In NDSS 2012. The
Internet Society, February 2012.

25

https://eprint.iacr.org/2022/657
https://eprint.iacr.org/2017/819
https://eprint.iacr.org/2016/930

27. Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas
Devadas. Path ORAM: an extremely simple oblivious RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 299-310. ACM Press, November 2013.

28. Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram: On tightness of the goldreich-ostrovsky lower bound. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, page
850-861, New York, NY, USA, 2015. Association for Computing Machinery.

29. Xiao Shaun Wang, Yan Huang, T.-H. Hubert Chan, abhi shelat, and Elaine Shi. SCORAM: Oblivious RAM for
secure computation. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 2014, pages 191-202.
ACM Press, November 2014.

A Security

Here we revisit our security definition and theorems and provide the proofs.

A.1 Security Definition

Recall that we adopt a standard security definition similar to [26/21].

Definition 1 (Security Definition) Let,

y := {(a1,0p;,data;),..., (as,op,,datag)}

denote a sequence of data accesses by the client, where a; denotes the address of the block being

read or written on the i-th access, op; denotes the whether the operation on a; is a read or write,

data; denotes the data if the i-the operation is a write operation. Let A(y) denote the sequence

of communication between the client and the server under an ORAM protocol for the data access

sequence y. We say that the ORAM protocol is secure, if

1. for any chosen pair of data access sequences'’y andy’ of same length, the server cannot (com-
putationally) distinguish between A(y) and A(y'),

2. for a sequence of input'y the ORAM protocol returns output to the client consistent with y with
probability > 1 — p, where p s a very small quantity.

Note that the parameter p in our definition is not a negligible function in the asymptotic sense.
Instead, we show concrete security for u ~ 2740, for the version with probabilistic batch codes
(PBC). However, the version without PBC always returns the correct output. Recall that we have
an honest-but-curious server which can store all ciphertexts and other data sent by the client and,
afterwards, act as a probabilistic polynomial time adversary to perform additional computations
in order to infer the client’s private data or access patterns.

A.2 Security Proof for Panaceacore

Theorem 1 (Security of Panaceacore) Assuming IND-CPA security and correctness of the un-
derlying FHE scheme, Panaceacore provides security as defined in Definition [1) with p negligible in
n.

Proof (Proof-sketch). We perform the proof in two parts:
1. first, we show that it is difficult for the server to distinguish between two communication se-
quences corresponding to data access sequences y and y’, where |y| = |y’[;

26

2. second, we show that the ORAM protocol always returns correct output and updates the ac-
cessed elements correctly.

Claim. Given two sequences of data accesses y = {(a1,op;,data;),..., (as,op,, datas)} and y’ =
{(a},0p},data}),..., (a},op),datal)} of same length s € poly(\), the server cannot (computa-
tionally) distinguish between the communication sequences A(y) and A(y’) under the protocol
Panaceacore.

Proof: Suppose, for the sake of contradiction, that the server can run a distinguisher D to
distinguish between A(y) and A(y’) with non-negligible probability p.

We want to show that using this distinguisher D, we can construct an adversary Adv for the
IND-CPA game of the underlying FHE scheme. For our proof we consider the IND-CPA game
where the adversary is allowed to send multiple challenge queriesF_Z]

The adversary Adv acts as the challenger in the ORAM security game against the server.
The server can choose two sequences of data access y = {(a1,op;,datay),. .., (as, op,, datas)} and
y' = {(a},op},data}),..., (al,op}, data})} of same length s. The challenger (Adv in this case) picks
one of y and y’ based on the challenge bit b of the IND-CPA game and runs the ORAM protocol
as described below:

1. Adv allows the client to directly query the oracle of the IND-CPA game to receive encryptions
for all database elements. The client provides the ciphertexts to Adv, and Adv provides them
to the server to set up the database for the ORAM protocol.

2. After Adv receives y and y’ from the server, for each i € [1, s]:

— if a; # a}, Adv uses a;,a) as a pair of challenge plaintexts for the IND-CPA game and the
response to construct the corresponding ORAM access request to the server;

— if op; # op}, Adv uses op; and op} as a pair of challenge plaintexts for the IND-CPA game
and the response to construct the corresponding request to the server;

— if data; # data, Adv uses data;,data; as a pair of challenge plaintexts for the IND-CPA
game and the response to construct the corresponding request to the server;

— Adv receives the ciphertexts corresponding to all remaining elements of y (or y’, since those
elements are same) by querying the oracle of the IND-CPA game before sending the challenge
pairs. Using them, Adv can construct all s access requests. Adv instructs the client to send
the requests to the server.

3. Using the ciphertexts received from the IND-CPA game (as responses to the challenge pairs
and oracle queries), the client runs the ORAM protocol with the server for s rounds.

4. If the distinguisher D for the ORAM protocol returns 1, Adv outputs 1 to the IND-CPA game.

Note that, whenever some parts of y[i] and y'[i] are different, Adv (on behalf of the client for
the ORAM protocol) chooses the corresponding ciphertext based on the response of the IND-CPA
game. Therefore, Adv effectively picks y or y’ based on the challenge bit b of the IND-CPA game
without actually knowing b. Adv does not observe any of the database elements (during setup
or the protocol run), or the actual queries in plaintext. Therefore, the server does not have any
information other than the distinguisher D, and the observed ciphertexts.

According to the ORAM protocol, the client sends all query elements (a;, op;, data;) as encrypted
values. All database elements are also encrypted and all encrypted ciphertexts are re-randomized

12 Security in a (polynomially bounded) multi-challenge IND-CPA game implies security in a single challenge IND-
CPA game.

27

(as a result of operations under the FHE scheme) after every query. The response received by the
client for each access is also encrypted.

For every access in ORAM, the server touches database elements: so that the access pattern is
identical for every query.

This means that the distinguisher D only has the ciphertexts that the client sends to the server
or the results of homomorphic computations at its disposal. Therefore, Adv wins the multi-query
IND-CPA game with probability p. Which contradicts the IND-CPA security of the FHE scheme
unless p is negligible. o

Claim. Given an input 3-tuple (a, op, data) to the ORAM access protocol, the client always receives
the correct response and the accessed element is correctly updated in case of a write operation.

Proof: The correctness of the ORAM protocol is implied from: (1) correctness of the underlying
FHE scheme, (2) the homomorphic traversal algorithm accessing the correct location, (3) the final
step returning the correct value if the above conditions are satisfied, (4) and, if op = Write, the
location is updated correctly.

By assumption, the FHE scheme is correct: all valid homomorphic operations will generate
correct ciphertexts which can be correctly decrypted.

We can prove the correctness of homomorphic traversal by the method of induction on the
number of database elements n. For simplicity, we assume n = 2¢ for some integer .

We first show, as the base case, that homomorphic traversal is correct for £ = 1, i.e., n = 2.
In that case, the traversal tree consists of only the root and two leaves directly connected to the
root. Before the traversal, the root contains the value b = Enc(1), and each of the leaves contain
Enc(0). The client sends only one bit of a (encrypted), which that acts as the controller bit for the
root. Let us denote that encrypted controller bit with c¢. We update the right leaf node with b - c,
which is 1 if ¢ = 1, and 0 otherwise (assuming the correctness of the FHE scheme). Similarly, the
left node is updated with (1 — ¢) - b, which is 1 if ¢ = 0, and 0 otherwise.

Now, as an inductive hypothesis, let us assume that homomorphic traversal is correct up to a
certain tree depth ¢. This means that for an ¢-bit a, the traversal produces n = 2¢ ciphertexts: Of
which n — 1 are Enc(0), and one is Enc(1) at index a. Now we want to show that homomorphic
traversal is correct for depth ¢ + 1.

There are 2¢ nodes at the ¢-th level, and n = 2¢+1 leaf nodes at level £+ 1. Now, a has £+ 1 bits.
After, ¢ iterations of the homomorphic traversal, all nodes at level ell contain Enc(0), except for
one at location denoted by x = {ali]};c[0,,—1) Which contains Enc(1) (by inductive hypothesis). Let
us denote those nodes with b;,i € [0,2° —1]; for all i, b; = Enc(0) except b, = Enc(1). Consequently,
during the (¢ + 1)-th iteration (which is also the last iteration), all leaf nodes will get the value
Enc(0) except for the child nodes of b,. We know from the structure of binary tree, that the child
nodes of b, are at indices z||0 and x||1 among the leaf nodes. Similar to the argument of base case,
if a[¢ + 1] = 0, then the left child is Enc(1) and the right child is Enc(0), and vice-versa. Therefore,
homomorphic traversal sets the correct element at depth £ + 1.

Now the only thing remaining is to prove is that the final output is correct. Additionally, iff op =
Write, then the database element is updated correctly with data. The first condition is implied by the
correctness of the dot product between the output of the homomorphic traversal and the database
element, which is in turn implied by the correctness of the FHE scheme. The second condition
(correct update) is implied by the correctness of the RW and CMUX operations. RW ensures that
the data element is updated iff op = Write, AND CMUX ensures that any update happens only at the

28

location corresponding to the leaf with value Enc(1) after homomorphic traversal. The correctness

of both of these operations are implied by the correctness of the FHE scheme. o
From the above two claims we can claim that Panaceaqore does not leak information about the
client’s access pattern y, and always returns the correct result for all possible sequence y. O

A.3 Security Proof for Panaceayp.

Theorem 2 (Security of Panaceap,.) Assuming IND-CPA security and correctness of the un-
derlying FHE scheme, given a sequence of data accesses' y = {(a1,op;,datay),..., (as,op,, datas)}
of length s, with each batch of size k, and a failure probability p of the probabilistic batch code,
Panaceapy. provides security as defined in Definition 1| with p <p- 7.

Proof (proof-sketch). Similar to the proof of Theorem [} we also provide this proof in two parts:

1. we show that it is difficult for the server to distinguish between two communication sequences

corresponding to data access sequences y and y’, where |y| = |y’|;

2. we show that the ORAM protocol returns correct output with a probability very close to 1.
We will first prove our second claim, then prove the first one. For simplicity, since the client always
sends queries in batches of size k, we assume that s = ak where « is an integer. A similar argument
can be extended easily for other values of @ assuming that the client will add dummy access requests
to complete the size k of the last batch.

Claim. Given a sequence of inputs y = {(aj,op;,data;),..., (as,op,,datas)} to the ORAM ac-
cess protocol, the access operations (read or write) are correctly executed for all the input tuples
(ai, op;, data;) with probability 1 — u where p <p- 7.

Proof: In the proof of Appendix we have argued that the homomorphic traversal yields the
correct output. However, Panacea,,. additionally applies batching, and individually runs Panaceacore
over each of the b buckets. Therefore, we can argue that each individual run over all buckets pre-
serves correctness with 0 failure probability, when an access request is made by the client.

However, the batching technique comes with a failure probability p: for a (randomly chosen)
batch of size k, the client will fail to create a batch which can retrieve all k£ elements with probability
p. In such a case, we consider that our ORAM protocol has failed to generate the correct output.

For a sequence of length s, there is a total of # = a batches. The probability that none of them
fails is quantified by:

P=(1-p*>1—ap

Therefore, the probability that at least one of them fails is quantified by:
pu=1—P<ap

If all batches are successful, then the client retrieves correct output for all access requests in
the sequence y (implied from the success condition of the batching and correctness of the FHE
scheme). The client fails to retrieve all the s elements if one of the batches fails; which happens
with probability p <ap=p- 7. o

Now we move to proving the first claim which states that two communication sequences A(y)
and A(y’) corresponding to y and y’ are indistinguishable by the server. However, to ensure that
no leakage emerges from the number of batches actually requested by the client, in case there is a
failure with PBC, we assume that the client completes the batch with dummy requests and sends

29

the batch even if this action would not help the client retrieve/update the k elements. With that
additional assumption, we can claim the following:

Claim. Given two sequences of data accesses y = {(a1,op;,data;),..., (as,op,, datag)} and y’ =
{(a},op},data}), ..., (a},opl,data’)} of same length s, the server cannot (computationally) distin-
guish between the communication sequences A(y) and A(y’) under the protocol Panaceappc.

Proof: The proof of this claim is very similar to that of Appendix[A.2] The only difference is that
the queries are now sent in batches of k; but nevertheless, the server still touches all the elements
in the database for each batch. Same as in the proof of Appendix the server can break the
IND-CPA game for the underlying FHE scheme if the security of the ORAM scheme is broken.

The server can choose two sequences with one different element (which is at position s):
(ai,op;,data;) = (a},op},data;)Vl < i < (s — 1), but a; # al, and datas # datal; however, the
server picks op, = op}. The server picks either op, = Read or Write uniformly at random. Then the
server tries to distinguish which one of y and y’ is chosen by the client.

The server plays two IND-CPA games G; and Gy as an adversary. In Gy, the server chooses the
pair (as,al) as challenge plaintexts for the IND-CPA game, and in Gy the pair datas and data’, as
challenge plaintexts. If the distinguisher D for the ORAM protocol returns 1, the server outputs 1
to both games. We skip the detailed proof here. o

From the above two claims we can claim that Panacea,. provides security as defined in Defi-
nition [I| with pu <p- ¢

In our batching technique with PBC, we choose parameters such that p ~ 274, That makes
po~ 2740 % 7. Even after a million batch queries (with each batch containing k& queries), the
probability that any of the batches would fail is almost one-in-a-million.

B Query Unpacking

In this section, we discuss how to pack a query for slower noise growth, while keeping a practical
computation time. Algorithm 3 of [3] has the least computation complexity among the conversion
methods from RIWE(M (X)) to RLWE(M;), where ¢ € [N] with O(logN) complexity. However, this
approach results in a lot of noise at the end as discussed in their paper. Therefore, we slightly
modify the algorithm by adopting a key switching method (Algorithm 7 of [3]).

Before discussing the algorithm, we define below a ciphertext form which we will employ:

— RLWE|(m) := Z+(0,g-m € R,*?, where Z is a matrix where each row is an RLWE,(0), and g :=
(b0,b1, ..., b 1) for a positive integer b. The secret key s is defined as so+51X +---sy_1 XN 7L.

Our query consists of C':= RLWE(M (X)) packing all bits in coefficients of M (X). Then we rear-
range the coefficient of C' to place the desired coefficient at the constant term. Next, we run the
following key switching algorithm to output C; := RLWE(M;).

Then, we switch the call of Algorithm 3 by the above algorithm in Algorithm 4 of Onion Ring
ORAM to generate the same output.

The algorithm consists of N scalar products between an integer and polynomial, which costs
less than N external products, with additive noise growth. Consequently, the output noise only has
N factor in the variance, whereas Algorithm 3 incurs a factor of N?2.

30

Algorithm 7 Key Switching from an RLWE to an RLWE

Input: ¢ := RIWE;(M (X)) = (a,b), where b = —a - s + AM(X) + e, and ksk := {ksk; := RLWE}(s:) }icpo,...,n]

Output: c:= RLWE,(Mo) € R

1: Parse a:=ao +a1 X +---+ any_1 XN

2: for i <~ 1 to N do

3: Compute ¢; := ({g7 (a;), ksk;[1]), (g7 (as), kski[2]))

4: end for

5: Compute c:= (31, ci[1], b+ >0 cif2])

6: return c

C Google Cloud Platform Reference Price List

The price list from Google Cloud Platform is added in Table [9] for reference.

Table 9: Cloud services required and reference unitary price list from Google Cloud Platform (GCP)

in US Dollars for Europe region

Service Unit |Price per Unit
Standard Storage |GB/month $0.026
Storage Traffic GB Free
Compute CPU Core/hour $0.0831
Compute Memory GB/hour $0.00563
Premium Ingress Traffic GB Free
Premium Egress Traffic GB $0.23

31

	Panacea: Non-interactive and Stateless Oblivious RAM

