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Abstract. BBS signatures were implicitly proposed by Boneh, Boyen, and Shacham (CRYPTO ’04)
as part of their group signature scheme, and explicitly cast as stand-alone signatures by Camenisch and
Lysyanskaya (CRYPTO ’04). A provably secure version, called BBS+, was then devised by Au, Susilo,
and Mu (SCN ’06), and is currently the object of a standardization effort which has led to a recent
RFC draft. BBS+ signatures are suitable for use within anonymous credential and DAA systems, as
their algebraic structure enables efficient proofs of knowledge of message-signature pairs that support
partial disclosure.
BBS+ signatures consist of one group element and two scalars. As our first contribution, we prove
that a variant of BBS+ producing shorter signatures, consisting only of one group element and one
scalar, is also secure. The resulting scheme is essentially the original BBS proposal, which was lacking
a proof of security. Here we show it satisfies, under the q-SDH assumption, the same provable security
guarantees as BBS+. We also provide a complementary tight analysis in the algebraic group model,
which heuristically justifies instantiations with potentially shorter signatures.
Furthermore, we devise simplified and shorter zero-knowledge proofs of knowledge of a BBS message-
signature pair that support partial disclosure of the message. Over the BLS12-381 curve, our proofs are
896 bits shorter than the prior proposal by Camenisch, Drijvers, and Lehmann (TRUST ’16), which is
also adopted by the RFC draft.
Finally, we show that BBS satisfies one-more unforgeability in the algebraic group model in a scenario,
arising in the context of credentials, where the signer can be asked to sign arbitrary group elements,
meant to be commitments, without seeing their openings.

1 Introduction

The seminal works of Camenisch and Lysyanskaya [CL03, CL04] highlighted how certain digital
signature schemes with suitable algebraic structures are amenable to applications such as anony-
mous credentials, direct anonymous attestation (DAA), and group signatures. These schemes easily
enable the signing of a commitment, typically by being algebraically compatible with a Pedersen
commitment [Ped92], and support very efficient zero-knowledge proofs of knowledge of a valid
message-signature pair.

This paper revisits and improves BBS signatures [BBS04, ASM06, CDL16], one of the most
efficient pairing-based schemes with these properties, which has recently been in the midst of
renewed interest in the context of decentralized identity. This has led to reference implementa-
tions [BBSa, BBSb], to a standardization effort by the W3C Verifiable Credentials Working group,
and to an RFC draft [LKWL22]. BBS is also a building block for DAA [Che09, BL10, CDL16],
and is used by Intel SGX’s EPID protocol [BL11]. Furthermore, BBS signatures are theoretically
interesting, due to their simplicity and efficiency. Most applications, and the RFC draft, consider
the provably-secure version of BBS referred to as BBS+ [CDL16, ASM06], whose signatures consist
of one group element in G1 and two scalars in Zp, where p is the group order.
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Our contributions, in a nutshell. As our first main contribution, we prove the strong un-
forgeability of a variant of BBS+ which produces shorter signatures only consisting of one group
element and one scalar. The resulting scheme is in fact the original BBS signature scheme by Boneh,
Boyen, and Shacham [BBS04] as stated by Camenisch and Lysyanskaya [CL04], for which however
no proof of security was known. Our new proof gives us a more efficient version of the scheme that
can replace BBS+ in applications and standards with no loss, and re-affirms the security of prior
works (e.g., [Che09, BL10]) which already used this optimized version but relied on an incorrect
proof.

Furthermore, we provide a tighter security proof in the Algebraic Group Model [FKL18], which
also supports potentially shorter signatures. We also optimize the associated proofs of knowledge of
BBS signatures, achieving substantial savings over the current state-of-the-art [LKWL22]. Finally,
we study the security of BBS in contexts where group elements are signed, and show that the
scheme satisfies, in the AGM, a security property which is a natural weakening of what is achieved
by structure-preserving signatures [AFG`10].

BBS+.The BBS+ scheme was proposed by Au, Susilo, and Mu [ASM06], based on ideas by [BBS04,
CL04], and proved secure under the q-SDH assumption. The proof was then adapted to type-3
pairings by Camenisch, Drijvers, and Lehmann [CDL16]. It signs vectors m P Zℓ

p. To do so, the
public parameters consist of ℓ` 2 generators g1, h0, h1, . . . , hℓ P G1, and a signature has the format
pA, e, sq, where s, e P Zp are randomly chosen, and

A “

˜

g1h
s
0

ℓ
ź

i“1

h
mris
i

¸

1
x`e

.

Here, x P Zp is the secret key, and given the public key X2 “ gx2 P G2, and a pairing, it is easy to
verify a valid BBS+ signature.

Security for BBS signatures. The only difference between BBS and BBS+ is the additional
term hs0 in the latter, which mandates the inclusion of s in the signature. A natural question is
whether this term is necessary, or instead an artifact of the proofs [ASM06, CDL16]. Indeed, no
attack seems to affect plain BBS, without the term hs0, but prior proof attempts (e.g., [BL10])
contained fundamental errors.

We prove that (plain) BBS signatures are indeed secure under the q-SDH assumption. The con-
crete security guarantees are essentially identical to those established for BBS+, and this suggests
a more efficient drop-in replacement for BBS+ in existing applications. Our techniques close in
particular gaps left by incorrect proofs, and can be used to prove exculpability of the original BBS
group signature scheme [BBS04].

Tight AGM bounds.Our new proof, not unlike the prior proofs for BBS+, is not tight, i.e., it
incurs a multiplicative loss equal to the number of signing queries q. As a strong hint that this loss
may be artificial, we give a tight proof for BBS signatures in the Algebraic Group Model [FKL18].

Our AGM analysis also addresses a different artificial aspect of the standard-model analysis,
namely the random choice of e values from Zp. Instead, our AGM analysis merely asks that these
values are unlikely to collide, and their collision probability becomes a term (meant to be negligible)
in the security bound. This allows for more flexibility, in that the e values could be generated from
a counter or (assuming random oracles) as a hash of the message. It also suggests a BBS variant,
which we call truncated BBS, where e is chosen from Z22λ , where λ is the desired security level
(typically, λ “ 128). On BLS12-381, this does not have any benefit. However, as in all schemes
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based on q-SDH, one may want to assess the potential impact of attacks such as those by Brown
and Gallant [BG04] and Cheon [Che06] and choose an even bigger curve—in that case, truncation
of the scalar may become effective.

Signing commitments. An important question is to which extent BBS can be thought as a
signature scheme signing a user-supplied group element, i.e., an element C P G1 is signed as

pC
1

x`e , eq. Indeed, in the context of blind issuance of credentials, one can think of C “ g1h
m1
1 ¨ ¨ ¨hmℓ

ℓ

as a commitment sent from the user to the signer, and the signer’s response pC1{px`eq, eq is a valid
BBS signature on m “ pm1, . . . ,mℓq. It is not hard to see that this form of BBS does not yield a
secure signature scheme over group elements as e.g., a signature on C can easily be transformed, by
squaring it, into a signature on C2. However, we show that, in the AGM, BBS satisfies a form of one-
more unforgeability, where obtaining signatures of q group elements does not enable the attacker to
produce valid BBS signatures (e.g., by “opening” these group elements as commitments) on more
than q messages. This is sufficient in the context of blind issuance.

Zero-knowledge PoKs.We also revisit the problem of proving knowledge of a BBS message-
signature pair with new zero-knowledge proofs of knowledge which are shorter than state-of-the
art solutions adopted in the RFC draft [LKWL22] and initially proposed in [CDL16]. To prove
knowledge of a BBS message-signature pair pm, σq, without revealing k out of the ℓ components
of m, our proof (when compiled as a NIZK via the Fiat-Shamir transform) consists of 2 elements
in G1, as well as k ` 3 scalars in Zp. The proof adopted in the RFC draft, in contrast, consists of
3 elements in G1, and k ` 5 scalars. While a reduction by one scalar is possible due to our removal
of the random value s from a signature, the remaining optimizations are the result of a different
approach.

Related schemes. We note that when signing individual elements of Zp, the simpler Boneh-
Boyen signatures [BB08] would typically outperform BBS. The closest scheme to BBS is the one by
Pointcheval-Sanders (PS) [PS16]. PS signatures consist of two group elements, and are comparably
efficient to the short version of BBS from this paper. However, both the public and the secret keys
grow linearly with ℓ, the length of the message vector to be signed, whereas in BBS they consist of
a single element. (The group generators in BBS can be generated as the output of a hash function,
and they should not be part of the key materials.) PS signatures feature properties which BBS
does not possess, including re-randomizability and aggregability. The latter property is essential
for their use in the recent Coconut system [SAB`19], for which BBS does not appear suitable.

Outline.Our new proof for BBS is given in Section 3, followed by our AGM analysis in Section 4.
Our new zero-knowledge proofs are given in Section 5, and our analysis of BBS as a signature
scheme on group elements is in Section 6. We give a technical overview next.

1.1 Technical Overview

New BBS proof. It is instructive to first review existing proofs [ASM06, CDL16] for BBS+. To
this end, we consider the special case where we sign a single scalar m P Zp, i.e., a signature under
secret key x P Zp takes form, for random s, e P Zp,

σ “ pA, s, eq , where A “ pg1h
s
0h

m
1 q

1
x`e .

If an attacker obtains q adaptively chosen signatures pAi, si, eiq for message mi P Zp and finally
produces a valid forgery pA˚, e˚, s˚q for a message m˚ P Zp, we can identify three cases, which are
to be addressed differently:
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(1) There exists an i P rqs such that Ai “ A˚ and ei “ e˚

(2) There exists an i P rqs such that Ai ‰ A˚ and ei “ e˚

(3) e˚ R te1, . . . , equ.

The most challenging case is (2). Indeed, (1) implies that g1h
si
0 h

mi
1 “ g1h

s˚

0 hm
˚

1 , while psi,miq ‰

ps˚,m˚q, which in turn implies a break of the discrete logarithm assumption in G1. For (3), instead,
one resorts to a by-now classical technique by Boneh and Boyen [BB08]. The key point here is that to

break q-SDH, given g1, g
x
1 , . . . , g

xq

1 P G1, along with g2, g
x
2 in G2, it is enough to compute g

ppxq{px`eq

1 ,

for a polynomial ppXq which is not divisible by X ` e. This indeed allows us to recover g
1{px`eq

1 ,
which gives us a valid q-SDH solution.

To do so, the reduction picks e1, . . . , eq ahead of time. It uses gx2 as the public key, but uses

new generators g1 “ g
θppxq

1 , h0 “ g
αppxq

1 and h1 “ g
βppxq

1 for G1, where ppXq “
śq

i“1pX ` eiq and

α, β, θ Ð$ Zp. Note that g1, h0, h1 can easily be computed from gx
i

1 for i P rqs, since ppXq has degree

q, and that for any m, s, and i P rqs, the reduction can always simulate a signature pg1h
s
0h

m
1 q

1
x`ei ,

since ppXq is divisible by X ` ei. Moreover, a forgery for e˚ R te1, . . . , equ, allows us to compute

pe˚, g
1

x`e˚

1 q, and break q-SDH.

Handling Case (2).The value s was crucial in [ASM06, CDL16] to deal with (2). To see how it
was used, let us assume that we can actually guess the index i for which (2) occurs. Then, with
p1pXq “

ś

j‰ipX ` ejq, the reduction can set

g1 “ g
θp1pxq

1 , h0 “ g
px`eiqδ´1

α
1 , h1 “ hβ0 .

Queries for j ‰ i can be answered as above for any ps,mq, since p1pXq is divisible by X ` ei. In
contrast, for the i-th query, on message mi, the reduction can only answer for the specific choice
of si “ α ´ β ¨ mi, since

Ai “ pg1h
si
0 h

mi
1 q

1
x`ei “

´

g
px`eiqδ
1

¯
1

x`ei “ gδ1 .

Despite the fact that si depends on mi, one can show that its distribution is uniform. If the attacker
now produces a forgery with e˚ “ ei, it means that we have

A˚ “

´

g1h
s˚

0 hm
˚

1

¯
1

x`ei “ g
1

x`ei

´

1`
px`eiqδ´1

α
ps˚`βm˚q

¯

1

and the reduction can solve q-SDH because 1 `
pX`eiqδ´1

α ps˚ ` βm˚q is not divisible by X ` ei.

Our improvement. The reduction for BBS+ programs s in a message-dependent way to handle
(2). Our main idea here is to let e play this role instead, thus dispensing with the use of s, and
in fact obtaining a slightly simpler reduction. Concretely, for BBS, we drop h0, as it is not needed
any more, and we set up

g1 “ g
αp1pxqpx`εiq
1 , h1 “ g

βp1pxq

1 .

Here, p1pXq is as above, and α, β, εi are random, and, most importantly, εi will not necessarily equal
ei. Now, every query j ‰ i can be answered as before. To answer the i-th query, however, we first
observe that

Ci “ g1h
mi
1 “ g

αp1pxqpx`εiq
1 ¨ g

βp1pxqmi

1 “ g
αp1pxqpx`εi`

β
α
miq

1 .
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We are going to show that if we set ei “ εi `
β
αmi, not only we can compute Ai “ C

1
x`ei
i , but

also, this ei has the right distribution. This last argument is somewhat involved. For example, it
turns out that if message mi is such that x ` εi `

β
αmi “ 0, the distribution of ei is not correct.

Luckily, however, this is the only case, and moreover, if this indeed happened, this would mean
x “ ´εi´

β
αmi, and we could break q-SDH directly. If we then obtain a forgery pA˚, e˚q with e˚ “ ei

for a message m˚, we note that the discrete logarithm of A˚ is

DLg1pA˚q “
αp1pxqpx ` εi `

β
αm

˚q

x ` εi `
β
αmi

.

However, one can show that X ` εi `
β
αmi does not divide αp1pXqpX ` εi `

β
αm

˚q if mi ‰ m˚.

AGM Security. In the AGM, we restrict our focus to algebraic adversaries, and in the case of BBS,
this means that the adversary outputs a forgery A˚ and its representation in terms of g1, h1, . . . , hℓ,
as well as the G1-part the prior signatures A1, . . . , Aq. We note that the discrete logarithm of each
Ai equals φ

y
mi,eipxq, where x is the secret key, y is the vectors of discrete logarithms of h1 relative

to g1, and

φy
mi,eipXq “

1 ` xy,miy

X ` ei
.

Analogously, the discrete logarithm of A˚ for a forgery A˚, e˚ for a message m˚ equals φy
m˚,e˚pxq.

Further, the algebraic adversary gives us a representation of φy
m˚,e˚pxq as an affine combination

of the φy
mi,eipxq’s. Our key observation is that unless some very specific properties are satisfied

by y, the function φy
m˚,e˚pXq, as opposed to its evaluation at x, cannot be expressed as an affine

combination of the functions φy
mi,eipXq. Therefore, x must be a zero to a (known) polynomial of

degree at most q, and it can be recovered by factoring this polynomial. It also turns out that
whenever the choice of y does not allow this argument to go through, we are going to be able to
recover a non-trivial discrete-logarithm relation, and break the discrete logarithm problem directly.

BBS Signatures of Committed Values. Our AGM proof will enable us to also study the

scenario where the adversary can query an oracle on an arbitrary C P G1 and obtain C
1

x`e for a
random e. We show that in the AGM it is impossible, except with negligible probability, to come
up with q ` 1 valid BBS signatures upon querying this oracle q times. The main difficulty is that
an AGM adversary here can query this oracle with group elements which are combinations of the
outputs of previous queries. However, we are going to show how an algebraic adversary making q
oracle queries can be simulated by one making queries to the actual BBS signing oracle. To do this,
we rely on a property of our AGM proof above, namely that the statement holds even if the values
e1, e2, . . . are known to the adversary beforehand, and we use this to give an inductive argument
which shows how to build these signing queries in order to emulate the oracle signing a group
element instead.

New Proofs of Knowledge. We give new Σ-protocols to prove knowledge of a message-
signature pair for BBS, given, possibly, partial knowledge of the message. Our basic observa-
tion is that valid signature pA, eq for m satisfies epA,X2q “ epB, g2q, where B “ CpmqA´e, and

Cpmq “ g1
śℓ

i“1 h
mris
i . For the case where m is fully known to the verifier, for example, our prover

commits to a randomized version of A,B, namely A “ Ar and B “ Br “ CpmqrA
´e

. Then, the
prover engages in a homomorphism proof [Mau09] to show knowledge of a representation pr, eq of
B to the base Cpmq and A.
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Game SUFA
SSpλq:

S Ð H, par Ð$ SS.Setupp1λq

pvk, skq Ð$ SS.KGpparq
pM˚, σ˚

q Ð$ ASign
ppar, vkq

If pM˚, σ˚
q R S ^ SS.Verppar, vk,M˚, σ˚

q then
Return true

Return false

Oracle SignpMq:
σ Ð$ SS.Signppar, sk,Mq

If σ ‰ K then S
Y
Ð tpM,σqu

Return σ

Fig. 1. Strong unforgeability.

2 Preliminaries

Notation.We will use the shorthand rns “ t1, . . . , nu. We will denote formal variables in poly-
nomials with sans-serif letters X,Y, . . ., and for any modulus p, we let ZprXs be the ring of formal

polynomials apXq “
řd

i“0 aiX
i with coefficients in Zp. As usual, d is the degree of apXq.

Throughout the paper, we adopt as far as possible the concrete security and efficiency approach,
and avoid qualitative statements. We refer to “efficient” informally to stress that an algorithm is
meant to be as efficient as possible, but make theorems precise by giving explicit reductions in their
proofs.

Groups and pairings.We work with prime-order groups. For such a group G, we denote by 1G
the identity element, and let G˚ “ Gzt1Gu be the set of p ´ 1 generators. We use multiplicative
notation, and generally denote group elements with upper case letters, scalars with lower case ones,
with the exception of generators. For a generator g P G˚ and a group element X P G, we also let
DLgpXq be the discrete logarithm x P Zp of X to the base g, i.e., gx “ X.

For prime-order groups G1,G2,GT , a bilinear map is an efficiently computable function e :
G1 ˆ G2 Ñ GT which satisfies both (1) bi-linearity, i.e., e pAx, Byq “ e pA,Bq

xy for all A P G1,
B P G2, and x, y P Zp, and (2) non-triviality, i.e., e pg1, g2q P G˚

T for all generators g1 P G˚
1 and

g2 P G˚
2 . We normally consider a group parameters generation algorithm GGen such that GGenp1λq

outputs a description pp,G1,G2,GT , eq such that G1,G2,GT are groups of order p, e : G1ˆG2 Ñ GT

is a bilinear map, and p is a λ-bit prime.

Our treatment is compatible with type-3 pairings (cf. e.g. [GPS06]) like BLS curves [BLS03]
which allow for some of the most efficient implementations, e.g., using BLS12-381 [Bow17]. The
most relevant property is that G1 ‰ G2 and no efficiently computable homomorphism G2 Ñ G1

exists.

Signature schemes. A signature scheme SS consists of a setup algorithm SS.Setup, a key gen-
eration algorithm SS.KG, a (possibly randomized) signing algorithm SS.Sign, and a deterministic
verification algorithm SS.Ver, satisfying the usual syntax and correctness requirement. In particu-
lar, SS.Setup outputs parameters par, upon which all algorithms depend. We also let the message
space SS.M “ SS.Mpparq depend on par. (We implicitly assume that the signing algorithm returns
an error symbol K, which is not a valid signature, if the message is not in the message space.) We
target strong unforgeability, which is defined by Game SUFASSpλq in Figure 1. The corresponding
advantage metric is

AdvsufSS pA, λq “ Pr
“

SUFASSpλq
‰

.

The security assumptions. We will use the following variant of the q-Strong Diffie-Hellman
(q-SDH) assumption, as defined by Boneh and Boyen [BB08] in a format meant to support type-3

6



Game q-SDHA
GGenpλq:

par “ pp,G1,G2,GT , eq Ð GGenp1λq

g1 Ð$ G˚
1 , g2 Ð$ G˚

2

x Ð$ Zp

pc, Zq Ð$ Appar, g1, pgx
i

1 qiPrqs, g2, g
x
2 q

Return Z “ g
1{px`cq

1

Game q-DLA
GGenpλq:

par “ pp,G1,G2,GT , eq Ð GGenp1λq

g1 Ð$ G˚
1 , g2 Ð$ G˚

2

x Ð$ Zp

x1
Ð$ Appar, g1, pgx

i

1 qiPrqs, g2, g
x
2 q

Return x1
“ x

Fig. 2. Assumptions. The assumptions could also be defined with respect to fixed generators, but this would
invalidate some of our security proofs.

pairings. It is formalized by Game q-SDHA
GGenpλq on the left of Figure 2. We also consider the

related q-Discrete Logarithm (q-DL) assumption, as formulated on the right of Figure 2 by Game
q-DLAGGenpλq, which only differs in the winning condition. We associate with these games the corre-
sponding advantage metrics

Advq-sdhGGenpA, λq “ Pr
“

q-SDHA
GGenpλq

‰

, Advq-dlGGenpA, λq “ Pr
“

q-DLAGGenpλq
‰

. (1)

We note that the q-SDH assumption implies the q-DL assumption for any q, as finding x implies

finding g
1{px`cq

1 for any c. The converse is not known to be true in general, but it is true for algebraic
adversaries [BFL20]. Notation-wise, we drop q whenever it equals one, and refer to the resulting
assumption as the Discrete Logarithm (DL) assumption.

Remark 1. Our security proofs will repeatedly rely on the observation (due to Boneh and Boyen [BB08])

that, given g1, g
x
1 , g

x2

1 , . . . , gx
q

1 , computing A “ g
ppxq{px´eq

1 , for any known non-zero polynomial
ppXq P ZprXs with degree at most q such that ppeq ‰ 0, leads to a break q-SDH. This is because,
by the polynomial remainder theorem, we can write ppXq “ dpXqpX ´ eq ` r, where the remainder
r “ ppeq P Zp is a non-zero integer mod p, whereas dpXq has degree at most q ´ 1. Therefore,

A “ g
dpxq`r{px´eq

1 , and also,

pAg
´dpxq

1 q1{r “ g
1

x´e

1

can be efficiently computed, and p´e, g
1{px´eq

1 q is a q-SDH solution.

3 New Proof for (Short) BBS Signatures

3.1 Description and implementation details

Figure 3 describes a version of BBS with shorter signatures than BBS+ [ASM06]. We refer formally
to this scheme as BBS “ BBSrGGen,De, ℓs, where GGen is a group parameter generator, De is a
distribution over Zp, and ℓ ě 1 a parameter. We omit De whenever it is understood to be the
uniform distribution over Zp, and ℓ whenever it is clear from the context. Here, the message space
is BBS.M “ Zℓ

p, and it depends on the parameters in that the modulus p is determined by GGen
via BBS.Setup. There is an unlikely event that the inversion to compute 1{px` eq during signature
issuance fails because x` e “ 0—for ease of syntax, we use the convention that 1{0 “ 0. The BBS`

scheme is a special case where each signed message m is such that its first component, mr1s, is
randomly chosen. (And, therefore, needs to be made part of the signature.)
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Algorithm BBS.Setupp1λq :

pp,G1,G2,GT , eq Ð GGenp1λq

g1 Ð$ G˚
1 , h1 Ð$ Gℓ

1, g2 Ð$ G˚
2

par Ð pp, g1,h1, g2,G1,G2,GT , eq

Return par

Algorithm BBS.KGpparq :
pp, g1,h1, g2,G1,G2,GT , eq Ð par
x Ð$ Zp; X2 Ð gx2
sk Ð x; vk Ð X2

Return psk, vkq

Algorithm BBS.Signpsk “ x,mq :

C Ð g1
ś

i h1rismris

e Ð$ De

A Ð C
1

x`e

Return σ “ pA, eq

Algorithm BBS.Verpvk,m, σ “ pA, eqq :

C Ð g1
ś

i h1rismris

Return epA, ge2vkq “ epC, g2q

Fig. 3. BBS signature. The scheme is parameterized by GGen, De, and the message length ℓ “ ℓpλq ě 1. Here,
group operations are in the groups G1 and G2 determined by the parameters.

Modeling choices.Our modeling is similar to that of [BBS04, ASM06, CDL16], in that in par-
ticular we fix the message length via ℓ. One can easily accommodate unbounded-length messages,
as in practice, the generators in h1 do not need to be fixed beforehand, and h1ris can be the output
of a hash function (modeled as a random oracle) on some input that depends on i. This allows us to
also sign messages in Z`

p , given a suitable encoding. (The RFC draft [LKWL22] suggests hashing a
length-dependent set of parameters into the first message block, although more efficient encodings
certainly exist.)

We also model BBS as randomized, as this feature may be useful in some contexts, but we can
de-randomize the scheme by applying a PRF to m, or (more efficiently) to C, to derive e.

3.2 Security Analysis

We show security of BBS in the standard model, under the q-SDH assumption, for the setting where
De is the uniform distribution over Zp. Here, q is the number of signing queries issued by the signer.
Note that this theorem also implies security of BBS+, as it corresponds to a special case of BBS
where the first block of each signed message is randomly chosen, and included in the signature.

Theorem 1 (Security of BBS). Let GGen be a group parameter generator, producing groups of
order p “ ppλq. For every SUF adversary A issuing at most q “ qpλq signing queries, there exist
adversaries B1, B2, and B3 such that

AdvsufBBSrGGenspA, λq ď q ¨ Advq-sdhGGenpB1, λq ` AdvdlGGenpB2, λq ` Advq-sdhGGenpB3, λq `
q2

2p
`

q ` 2

p
.

The adversaries B1, B2 and B3 are given explicitly in the proof, and run in time roughly comparable
to that of A.

The proof of the theorem is given in Section 3.3 below. The concrete bound is essentially the
same as prior analyses of BBS+ [ASM06, CDL16], and we incur a factor q loss in the reduction.
Below, in Theorem 2, we give a tight reduction to q-DL in the algebraic group model, which suggests
this loss may be artificial.
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Discussion of concrete parameters. Even assuming the tight bound as the correct one, the
reliance on q-SDH raises the question of the extent to which parameters should accommodate
for Cheon’s attack [Che06] on q-SDH/q-DL, which achieves complexity (roughly) Op

a

p{qq for
certain choices of q. The RFC [LKWL22] suggests the use of BLS12-381 [Bow17], which gives
(roughly) a 256-bit group order. We could accommodate for roughly q “ 236, for example, while
still having 110-bit security. (This type of reasoning was for example adopted to justify BLS12-381
in zkSNARKs [zca].) But even then, we observe that the only way we know to actually break BBS
via Cheon’s attack is the reduction by Jao and Yoshida [JY09], which requires all signatures to be
on the same message, with different e-values.1 Not only this situation is unlikely to arise, but it
does not occur if we de-randomize BBS, which is the choice the RFC also adopted for BBS+. It is
an excellent question to see whether a similar attack exists even for de-randomized BBS.

3.3 Proof of Theorem 1

Let us consider an interaction of the adversary A in the SUF game, where the adversary finally
outputs a forgery pm˚, σ˚q, where σ˚ “ pA˚, e˚q. We define three events, depending on the specific
format of the forgery:

- Forge1: This is the event where σ˚ is a valid forgery, and a prior Sign query has output a
signature σi “ pAi, eiq for Ai ‰ A˚, ei “ e˚

i , and some message mi ‰ m˚.
- Forge2: This is the event where σ˚ is a valid forgery, and a prior Sign query output the same
signature σi “ σ˚ for a message mi ‰ m˚, or the forgery A˚ equals 1G1 .

- Forge3: This is the event where σ˚ is a valid forgery and completely fresh, i.e., neither of Forge1
or Forge2 occurs.

As the union of these three events equal the event that pm˚, σ˚q is a valid forgery, the union bound
yields

AdvsufBBSpA, λq ď Pr rForge1s ` Pr rForge2s ` Pr rForge3s .

We will proceed in upper bounding these three probabilities via separate reductions. The hardest
case is the analysis of Forge1, and this is where out proof differs from prior work. The analyses
of Forge2 and Forge3 are essentially the same as in the original analysis of BBS+. The theorem
statement then follows by combining Lemmas 1, 2, and 3, which we state next. The proofs are
given below.

Lemma 1 (Analysis of Forge1). There exists a q-sdh adversary B1 such that

Pr rForge1s ď q ¨ Advq-sdhGGenpB1, λq `
q2

2p
`

1

p
.

Lemma 2 (Analysis of Forge2). There exists a dl adversary B2 such that

Pr rForge2s ď AdvdlGGenpB2, λq `
1

p
.

Lemma 3 (Analysis of Forge3). There exists a q-sdh adversary B3 such that

Pr rForge3s ď Advq-sdhGGenpB3, λq `
q

p
.

1 Roughly, their attack considers the setting where g
1

x`ei is obtained for multiple ei’s.
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Adversary B1ppar, g1, pX1,iqiPrqs, g2, X2,1q :

pp,G1,G2,GT , eq Ð par
i˚

Ð$ rqs; cnt Ð 0; Sigs Ð H; x˚
Ð K

ε1, . . . , εq Ð$ Zp

α Ð$ Z˚
p ; β1, β2, . . . , βℓ Ð$ Zp

g1 Ð g
α¨ppxq¨px`ε

i˚ q

1

For i “ 1 to ℓ do h1ris Ð g
βi¨ppxq

1

X2 Ð X2,1; par Ð pp, g1,h1, g2,G1,G2,GT , eq

pm˚, A˚, e˚
q Ð$ ASign

ppar, X2q

C˚
Ð g1

śq
i“1 h1rism

˚ris

If ei˚ “ e˚
^ epA˚, X2g

e˚

2 q “ e
`

C˚, g2
˘

^

pA˚, e˚
q R Sigs then

If x˚
‰ K then

Return p0, g
1{x˚

1 q // direct break
If ei˚ R teiuiPrqszti˚u then

γ Ð
řℓ

i“1 βipm
˚

ris ´ mi˚ risq

Return pei˚ ,
“

A˚
¨ pA´1

i˚ q
‰

1
γ q

Oracle Signpmq :
cnt Ð cnt ` 1, mcnt Ð m
Ccnt Ð g1

śq
i“1 h1rismris

If cnt ‰ i˚ then
ecnt Ð εcnt

Else
ecnt Ð εi˚ `

řℓ
i“1

βi
α
mris

If Ccnt “ 1G1 then
x˚

Ð tx1
P t´ecntu Y

tεiui‰i˚ | gx
1

1 “ X1,1u

ecnt Ð εcnt

Acnt Ð C
1

x`ecnt
cnt

σcnt Ð pAcnt, ecntq
Sigs

Y
Ð tσcntu

Return σcnt

Fig. 4. Adversary B1 in the proof of Lemma 1. Recall that once ε1, . . . , εq are fixed and understood from the
context, we use the shorthand ppXq “

ś

iPrqszti˚u
pX ` εiq for convenience. In the pseudo-code, we omit the explicit

computations of g, h1, and Acnt from Ccnt, which are detailed in the text.

3.4 Proof of Lemma 1

We give an overview of the adversary B1 that underlies the reduction to q-SDH for Forge1. The
formal pseudocode description is in Figure 4, although we omit there some lengthier and tedious
descriptions of how to compute certain elements, and give them here in the text instead. Recall
that q is a bound on the number of generated signatures, i.e., the number of queries to Sign issued
by the adversary A. We assume here that exactly q queries are made, without loss of generality.

Given the q-SDH setup g1, X1,1 “ gx1 , . . . , X1,q “ gx
q

1 , g2, X2 “ gx2 , the adversary B1 first gen-
erates a suitable setup to run A. In particular, it picks random values ε1, . . . , εq Ð$ Zp, as well as
randomizers α Ð$ Z˚

q and β1, . . . , βq Ð$ Zq. Then, the generators g1 P G˚
1 and h1 P Gℓ

1 are set to

g1 “ g
α¨ppxq¨px`εi˚ q

1 , h1ris Ð g
βi¨ppxq

1 for all i P rℓs,

where i˚ Ð$ rqs and

ppXq “
ź

iPrqszti˚u

pX ` εiq .

It is not hard to see that g1 and h1 can be computed efficiently from part of the q-SDH setup
g1, X1,1, . . . , X1,q. Moreover, at least informally, it should be clear that as long as x R t´ε1, . . . ,´εqu,
the distributions of g1 and h1 are correct, i.e., they are uniform in G˚

1 and Gℓ
1, respectively, since

g1 P G˚
1 . (The formal argument about the correctness of distributions is given below, and this

is only meant to serve as some intuition.) We stress that our simulation will not be correct if
x P t´ε1, . . . ,´εqu, so it is easiest to assume that this is not the case to understand the rest of the
reduction.
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Handling signing queries.The oracle Sign then simulates the correct signing oracle, keeping a
query counter cnt. Whenever cnt ‰ i˚, it is not hard to see that Sign can easily answer the query
using ecnt “ εcnt. Indeed, if x ` εcnt ‰ 0, on input m, the simulate Sign can compute

Acnt “

˜

g1

ℓ
ź

i“1

h1rismris

¸

1
x`εcnt

“ g
pipxqrαpx`εi˚ q`

řℓ
i“1 βimriss

1 ,

where pipxq “
ś

iRtcnt,i˚upx ` εiq. It is easy to detect x ` εcnt “ 0, and in that case, Acnt “ 1G1 by
definition.

Crucially, when cnt “ i˚ the adversary B1 answers the signing query differently. We observe
first that, with Ccnt Ð g1

śq
i“1 h1rismris,

DLg1pCcntq “ α ¨ ppxq ¨ px ` εi˚q `

ℓ
ÿ

i“1

βimrisppxq

“ α ¨ ppxq

˜

x ` εi˚ `

ℓ
ÿ

i“1

βi
α
mris

¸

.

(2)

Here, there are two cases. Either Ccnt “ 1G1 , and then we return Acnt “ 1G1 , along with a ecnt “ εcnt.
Alternatively, and more interestingly, if Ccnt ‰ 1G1 , we set ei˚ “ εi˚ `

řℓ
i“1

βi

α mris, and

Ai˚ “ C
1

x`e
i˚

i˚ “ g
α¨ppxq

1 ,

which can be efficiently computed. The bulk of our analysis below will show that if Ci˚ ‰ 1G1 , then
we indeed generate a random ei˚ in this way.

Note that by equation (2) if Ci˚ “ 1G1 , then x “ ´εi˚ ´
řℓ

i“1
βi

α mris or x P tεiui‰i˚ , and hence
we can directly break of q-SDH. (The variable x˚ here stores the recovered discrete logarithm.)
To simplify the analysis below, in this case, it is convenient for the reduction B1 to defer breaking
q-SDH to end, and return the signature p1G1 , εi˚q instead.

Extracting a solution.Assume now thatA outputs a valid forgerym˚, σ˚, where σ˚ “ pA˚, e˚q,
e˚ “ ei˚ , and A˚ ‰ Ai˚ . Further, assume that Ci˚ ‰ 1G1 , which implies that x ` ei˚ ‰ 0 and
ppxq ‰ 0. (If this was not true, as highlighted above, we would have extracted x already.) Then,

DLg1pA˚q “ αppxq
x ` εi˚ `

řℓ
i“1

βi

α m˚ris

x ` εi˚ `
řℓ

i“1
βi

α mris

“ α ¨ ppxq ` ppxq

řℓ
i“1 βipm

˚ris ´ mrisq

x ` ei˚

.

Further, because Ai˚ ‰ A˚ but e˚ “ ei˚ , we also have γ “
řℓ

i“1 βipm
˚ris ´ mrisq ‰ 0, and then

“

A˚ ¨ pA´1
i˚ q

‰

1
γ “ g

ppxq

x`ei˚

1 .

If ei˚ R teiuiPrqszti˚u, X ` ei˚ does not divide ppXq. We can then compute g
1

x`ei˚

1 using Remark 1
and break q-SDH.
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Formal analysis.We now proceed with a formal analysis to show that the probability guarantees
for B1 as stated in the lemma indeed hold. To this end, we use Pr0r¨s to denote probabilities in the
experiment SUFABBSpλq, where A plays the SUF game against BBS. Similarly, we use Pr1r¨s to denote
probabilities in the simulated experiment where A is run within B1 in Game q-SDHB1

GGenpλq.
In both experiments, we can define the event Forge1, as it only depends on the output of the

adversary and the property of this output relative to its earlier signing query. Moreover, let Forge
piq
1

for i P rqs be the event that Forge1 happens and the i-th query is the first signing query that satisfies
the condition for Forge1 to happen. Let GoodE be the event that all ei’s are distinct. Note that B1

is guaranteed to output a q-SDH solution if Forge
piq
1 happens and i “ i˚ and, moreover, GoodE also

occurs. Also, note that the probability that GoodE and Forge
piq
1 occurs is independent of whether

i “ i˚ or not, and therefore

Advq-sdhGGenpB1, λq ě

q
ÿ

i“1

Pr1

”

GoodE ^ Forge
piq
1

ı

¨ Pr1 ri˚ “ is

“
1

q
¨

q
ÿ

i“1

Pr1

”

GoodE ^ Forge
piq
1

ı

“
1

q
¨ Pr1 rGoodE ^ Forge1s .

We rely on the following central lemma, which in particular shows that the simulation of A’s
execution within B is nearly correct. While the intuition has been given above, the formal proof is
rather subtle and we rely on the H-coefficient method [Pat08, CS14] to prove the following.

Lemma 4. Pr0 rGoodE ^ Forge1s ´ Pr1 rGoodE ^ Forge1s ď
q
p .

Before turning to a proof of the lemma in Section 3.5 below, we observe that plugging the
inequality of the lemma into the above yields

Advq-sdhGGenpB1, λq ě
1

q
¨ Pr0 rGoodE ^ Forge1s ´

1

p

ě
1

q

`

Pr0 rForge1s ´ Pr0
“

GoodE
‰˘

´
1

p
.

On the other hand, Pr0
“

GoodE
‰

ď
`

q
2

˘

1
p ď

q2

2p , and thus we obtain the bound in Lemma 1 by
re-arranging terms.

3.5 Proof of Lemma 4

We assume A to be deterministic without loss of generality. We describe the transcripts of the
interaction of A in the SUF and within B1 as part of the q-SDH experiment, respectively, via the
following two random variables

T0 “ pg1, g2,h1, x, i
˚, pm1, e1q, . . . , pmq, eqqq ,

T1 “ pg1, g2,h1, x, i
˚, pm1, e1q, . . . , pmq, eqqq

where in T0, i
˚ is sampled uniformly from rqs, independently of everything else. We do not include

X2, as X2 “ gx2 in both experiments. Moreover, in both experiments, the first component A1, A2, . . .
of the the answer to each signature query is removed, as it is also a deterministic function of the rest
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of the transcript. Similarly, the final forgery pA˚, e˚q is also a function of T0/T1. For this reason, we
note that that the event GoodE ^ Forge1 is deterministically determined from T0 and T1, in their
respective experiments, i.e., there exists a Boolean function ϕ such that ϕpTbq “ 1 if and only if
the event happens in the corresponding experiment. Therefore,

Pr0 rGoodE ^ Forge1s ´ Pr1 rGoodE ^ Forge1s ď SDpT0, T1q ,

where SDpT0, T1q “ 1
2

ř

τ |Pr rT0 “ τ s ´ Pr rT1 “ τ s| is the total variation distance, which we upper
bound by a special case of Patarin’s H-coefficient method [Pat08], which we introduce on the way.
(We use the formalism from [HT16] here.)

Interpolation probabilities.Concretely, for any potential value τ of Tb for b P t0, 1u, which we
denote as

τ “ pg
1
, g

2
,h1, x, i

˚, pm1, e1q, . . . , pmq, eqqq ,

we let p0pτq and p1pτq be its interpolation probabilities, i.e., the probabilities that we pick random-
ness in the respective experiment that would lead to transcript τ if queries m1, . . . ,mq are fixed
ahead of time. (These probabilities are independent of A, and only depend on τ and the randomness
of the experiment.) We want to isolate the following type of good transcript.

Definition 1 (Good transcript). We call τ good if x R t´e1, . . . ,´equ. Otherwise, τ is bad.

We are then going to prove that for all good transcripts τ , p0pτq “ p1pτq. This is enough to conclude
the proof, as it implies that

SDpT0, T1q ď Pr rT0 is bads “ Pr0 rx P t´e1, . . . ,´equs ď
q

p
.

To compute p1pτq for a good transcript τ , we assume that the generator g1 given to B1 is fixed.
(Of course, it is actually sampled randomly from G˚

1 as part of the q-SDH instance, but the in-
terpolation probability is the same conditioned on any particular choice, and thus we fix it.) The
randomness then consists of i˚ Ð$ rqs, x Ð$ Zp, α Ð$ Z˚

p , ε1, . . . , εq Ð$ Zp, and g2 Ð$ G˚
2 . To gen-

erate the transcript τ , we need in particular

i˚ “ i˚, g2 “ g
2
, x “ x, pεiqiPrqszti˚u “ peiqiPrqszti˚u

and as these values are chosen independently, this is true with probability

1

q
¨

1

p ´ 1
¨
1

p
¨

1

pq´1
“

1

qpp ´ 1qpq

over the choice of i˚, g2, x, tεiuıPrqszti˚u. Let us assume this initial part of the transcript is consistent.
We also need β1, . . . , βℓ to ensure h1 “ h1, which, conditioned on x “ x, is equivalent to the fact
that

ppxq ¨ βi “ DLg1ph1risq for all i P rℓs.

Because τ is good, ppxq ‰ 0, and therefore the ℓ equalities hold with probability 1{pℓ over the
choice of β1, . . . , βℓ.

Finally, conditioned on i˚, g2, x, tεiuıPrqszti˚u, tβuiPrℓs satisfying all above constraints, we need εi˚

and α to ensure that
g1 “ g

αppxqpx`εi˚ q

1 “ g
1
, ei˚ “ ei˚ .
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There are two cases here, depending on m “ mi˚ and the associated value

C “ g
1

ℓ
ź

i“1

h1rismris .

Case 1: C “ 1G1. Then, in this case, B1 ensures ei˚ “ εi˚ , and this value, which is uniform, equals
ei˚ with probability 1{p. Conditioned on this,

ppxqpx ` εi˚q “ ppxqpx ` ei˚q ‰ 0

because τ is good. Thus g
1

“ g
αppxqpx`εi˚ q

1 holds with probability 1{pp ´ 1q over the choice of α
from Z˚

p .
Case 2: C ‰ 1G1. For convenience, we write e “ ei˚ , ε “ εi˚ , a “ DLg1pg

1
q, and y “

ř

i βimris.
Here, α Ð$ Z˚

p and ε Ð$ Zp need to satisfy

αppxqpx ` εq “ a

ε `
1

α
y “ e

The second equation directly implies that

ε “ e ´
1

α
¨ y . (3)

Substituting this into the first equation yields

α ¨ ppxq

ˆ

x ` e ´
1

α
¨ y

˙

“ ppxqpαpx ` eq ´ yq “ a .

Re-arranging terms we get

α “
a{ppxq ` y

x ` e
. (4)

This is indeed a value in Z˚
p for two reasons. First off, x`e ‰ 0 as τ is good. Second, a{ppxq`y ‰

0. Indeed, if instead a{ppxq ` y “ 0 were true, we would have

C “ g
1

ℓ
ź

i“1

h1rismris “ g
a
1

ℓ
ź

i“1

g
ppxq¨βi¨mris
1 “ g

a`ppxqy

1 “ g01 “ 1G1 ,

a contradiction with the fact that we are in Case 2. Therefore, the probability over the choice
of α, ε that (3) and (4) are both satisfied is 1

ppp´1q
.

Therefore, in summary, we have

p1pτq “
1

qpp ´ 1qpq
¨
1

pℓ
¨

1

ppp ´ 1q
“

1

qpp ´ 1q2pq`ℓ`1
.

It is not hard to observe that we also have

p0pτq “
1

pq`ℓ`1pp ´ 1q2q
,

because g1, g2 are uniform over G˚
1 , h1 is uniform over Gℓ

1, and x, e1, . . . , eq are uniform in in Zp,
and i˚ is uniform in rqs.
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Adversary B2ppar, g1, X1,1, g2q :
pp,G1,G2,GT , eq Ð par
If X1,1 “ 1G1 then return 1
cnt Ð 0
x Ð$ Zq // simulated secret key
α Ð$ Z˚

p ; α1, β1, . . . , αℓ, βℓ Ð$ Zp

For all i P rℓs do h1ris Ð$ g´βi
1 Xαi

1,1

g1 “ X1,1

X2 Ð gx2
par Ð pp, g1,h1, g1,G1,G2,GT q

pm˚, pA˚, e˚
qq Ð$ ASign

ppar, X2q

C˚
Ð g1

śq
i“1 h1rism

˚ris

If Di P rqs: C˚
“ Ci ^ m˚

‰ mi then
u Ð 0, v Ð m˚

´ mi

Else if A˚
“ 1G1 then

u Ð 1, v Ð m˚

Else abort
If u `

řℓ
i“1 αivris ‰ 0 then

Return
řℓ

i“1 βivris

u`
řℓ

i“1 αivris

Else abort

Adv. B3ppar, g1, pX1,iqiPrqs, g2, X2,1q :

pp,G1,G2,GT , eq Ð par
α Ð$ Z˚

p ; β1, . . . , βq Ð$ Zp

e1, . . . , eq Ð$ Zq g1 Ð g
αppxq

1

For all i P rℓs do h1ris Ð$ g
βi¨ppxq

1

X2 Ð X2,1

par Ð pp, g1,h1, g1,G1,G2,GT , eq

pm˚, pA˚, e˚
qq Ð$ ASign

ppar, X2q

C˚
Ð g1

śq
i“1 h1rism

˚ris

If e
´

A˚, X2g
e˚

2

¯

“ e
`

C˚, g2
˘

then

If e˚
R te1, . . . , equ then

Return pe˚, g
1

x`e˚

1 q

Oracle Signpmq :
cnt Ð cnt ` 1; mcnt Ð m
Ccnt Ð g1

śq
i“1 h1rismris

Acnt Ð C
1

x`ecnt
cnt // B2

Acnt Ð C
1

x`ecnt
cnt // B3

Return σcnt

Fig. 5. Adversaries B2 and B3 in the proof of Lemmas 2 and 3. In B3, ppXq “
ś

iPrqs
pX` eiq. The description

of Sign is shared by both adversaries, but note that the exact computation differs. In B2, the value of x needed to
compute Acnt is known to the reduction. In B3, the value x is used instead, which is not known to the reduction. But
DLg1pCcntq is divisible by px ` ecntq, and thus Acnt can be computed.

3.6 Proof of Lemma 2

The argument here is rather standard, and relies on the fact that if Forge2 occurs, then A has found
messages m ‰ m˚ such that

śℓ
i“1 h1rispm˚ris´mrisq “ 1G1 , and this in turn allows us to find the

discrete logarithm. The case where A˚ “ 1G is equivalent to the case where g1
śℓ

i“1 h1rism
˚ris “ 1G1

The formal description of B2 is in Figure 5, on the left. There, q is a bound on the number of
queries by B. Given a DL-instance pg1, X1,1 “ gx1 , g2q, the adversary B2 immediately checks whether
X1,1 “ 1G1 , in which case it returns 0. Otherwise, the adversary simulates g1 “ X1,1 and h1ris “

gαix´βi
1 for αi, βi Ð$ Zp, and produces a secret key value x Ð$ Zp. Therefore, in both situations, the

adversary B can produce values u P Zp, v P Zℓ
p, not all zero, such that gu1

śℓ
i“1 h1risvris “ 1G1 , or

equivalently

ux `

ℓ
ÿ

i“1

vrispαix ´ βiq ,

or, equivalently, if u `
řℓ

i“1 αivris ‰ 0,

x “

řℓ
i“1 βivris

u `
řℓ

i“1 αivris
,

Note that when x ‰ 0, the simulation of Game SUFABBSpA, λq is perfect, and if Forge2 occurs, then
pu,vq are set to some value, and B2 does not abort. The only way it could possibly abort is if
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later u `
řℓ

i“1 αivris “ 0, and event we denote as Bad, but it is easy to see that Pr rBads ď 1
p ,

independently of the choice of u,v. Thus,

AdvdlGGenpB2q ě Pr rx “ 0s ¨ 1 ` Pr rx ‰ 0s ¨ Pr
“

Forge2 ^ Bad
‰

“
1

p
`

ˆ

1 ´
1

p

˙

¨ Pr rForge2s ´ Pr rBads ě Pr rForge2s ´
1

p
,

which concludes the proof.

3.7 Proof of Lemma 3

The description of B3 is in Figure 5, on the right. Here, we use the fact that given ppXq “
ś

iPrqspX`

eiq, we can efficiently compute, for a random α Ð$ Z˚
p , a new generator g1 “ g

α¨ppxq

1 given g1, X1,1 “

gx1 , X1,2 “ gx
2

2 , . . . , X1,q “ gx
q

1 , since ppXq has degree q. If ppxq ‰ 0, then the simulation of g1 has

the right distribution. Similarly, we simulate h1 so that h1ris “ g
βippxq

1 . This allows us to easily
respond to signature queries, since the discrete logarithm of Ccnt is divisible by x ` ecnt, and thus
Acnt can be computed efficiently. It can also happen that x “ ´ei when answering the i-th query, in
which case it is easy to answer the query as well, and q-SDH is broken right away. (We do not make
this case explicit in the pseudocode.) If A then indeed outputs a valid forgery for e˚ R te1, . . . , equ

and A˚ ‰ 1G1 (the case A˚ “ 1G1 is handled by Forge2 above), we have

DLg1pA˚q “

ppxq ¨

”

α `
řℓ

i“1 βim
˚ris

ı

x ` e˚
‰ 0 ,

because ppxq ‰ 0, α `
řℓ

i“1 βim
˚ris ‰ 0, and x ` e˚ ‰ 0. We can therefore go ahead and use

Remark 1 to find g
1

x`e˚

1 , and break q-SDH.

Because the simulation is perfect when x R t´e1, . . . ,´equ, let GoodE be the event that this is
the case, i.e., ppxq ‰ 0. We then have

Advq-sdhGGenpB3q ě Pr rForge3 ^ GoodEs

ě Pr rForge3s ´ Pr
“

GoodE
‰

ě Pr rForge3s ´
q

p
,

which concludes the proof.

4 Tighter Proofs for BBS in the AGM

This section complements the above standard-model analysis with a tight analysis of BBS in the
algebraic group model (AGM) [FKL18]. In addition, we prove here that security holds even if the
attacker is given the values e1, e2, . . . ahead of time, and we allow these values to be sampled from
a more general distribution. The former fact will be helpful later in Section 6. The latter fact will
allow for instantiations of BBS with shorter signatures in some contexts, as we explain further
below.
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Game SUF`
A
GGen,eG,eSpλq:

Sigs Ð H; cnt Ð 0
pp,G1,G2,GT , eq Ð$ GGenp1λq

g1 Ð$ G˚
1 , h1 Ð$ G1, g2 Ð$ G˚

2

par Ð pp, g1,h1, g2,G1,G2,GT , eq

ste Ð eGpp,G1,G2,GT , eq

x Ð$ Zp; X2 Ð gx2 ; sk Ð x; vk Ð X2

pm˚, pA˚, e˚
qq Ð$ ASign

ppar, ste, vkq

If pm˚, pA˚, e˚
qq R Sigs then

C˚
Ð$ g1

śℓ
i“1 h1rism

˚ris

If e
´

A˚, X2g
e˚

2

¯

“ e
`

C˚, g2
˘

then return true

Return false

Oracle Signpmq:
cnt Ð cnt ` 1
ecnt Ð eSpste, cntq
Ccnt Ð g1

śℓ
i“1 h1rismris

Acnt Ð C
1{px`ecntq

cnt

Sigs
Y
Ð tpm, pAcnt, ecntqqu

Return Acnt

Fig. 6. Stronger security for BBS. Stronger ad-hoc unforgeability achieved by BBS in the AGM, where the ei’s
are sampled deterministically from an algorithm that uses an initially generated state ste, known to the adversary.

Stronger security.We formalize our security goal in terms of Game SUF` in Figure 6. This is
not a generic security game, as it is specific to BBS, but clearly, it does imply its strong unforgeability
in a number of settings when the scheme instantiation corresponds to a particular pick to eG and
eS. The ad-hoc feature is that we allow part of the signature (namely, the e value in a pair pA, eq) to
be generated initially. To model this, in addition to the group parameter generator GGen, the game
is parameterized by a pair of algorithms, eG and eS, where eG, on input the group parameters,
outputs a state ste, and then eSpste, iq (deterministically) outputs the value ei used for the i-th
signature. The initial state ste is given to the adversary, who can run eS to pre-compute the ei’s.
It will be convenient to define the collision probability

δeG,eSpq, λq “ Pr

„

par Ð$ GGenp1λq

ste Ð$ eGpparq
: D1 ď i ă j ď q : eSpste, iq “ eSpste, jq

ȷ

.

We also define the advantage metric

Advsuf`GGen,eG,eSpA, λq “ Pr
“

SUF`A
GGen,eG,eSpλq

‰

.

Algebraic security. We are now ready to state our main theorem, which is proved below in
Section 4.1. We dispense with a full formalization of the AGM [FKL18], as its use is relatively
straightforward here. Namely, we consider algebraic adversaries that provide an explanation of the
element A˚ P G1 contained in the forgery in terms of all previously seen group elements in G1,
which include the generators g1,h1, as well as the issued signatures. (Because we consider type-3
pairings, we do not include G2 elements in these representations.) We also give our reduction here
to q-DL, as opposed to q-SDH as in the case of Theorem 1, but note that the assumptions are
equivalent in the AGM.

Theorem 2 (AGM Security of BBS). Let GGen be a group parameter generator, producing
groups of order ppλq, and let eG, eS as above. For every algebraic SUF+ adversary A issuing at
most q signing queries, there exist adversaries B1 and B2 such that

Advsuf`GGen,eG,eSpA, λq ď Advq-dlGGenpB1, λq ` AdvdlGGenpB2, λq ` δeG,eSpq, λq `
1

ppλq
.

The adversaries B1 and B2 are given explicitly in the proof, and have running times comparable to
that of A. The adversary B1 need to additionally factor a polynomial of degree (at most) q.
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The only property required from eG and eS is that δeG,eSpq, λq is small. We note that the lack of
collisions is a necessary condition. Indeed, if we generate two signatures pA, eq, pA1, eq for messages

m and m1, respectively, it is easy to verify that ppA ¨ A1q
1
2 , eq is a signature for 1

2pm ` m1q, where
1
2 is the inverse of 2 mod p.

The above theorem supports the security (in the AGM) of some interesting and natural instan-
tiations of BBS with shorter signatures, which we discuss next.

Counter BBS.One natural instantiation, which we refer to as Counter BBS, generates the ei’s
from a counter, i.e., eSpste, iq “ i. This can be advantageous if the signer can reliably maintain such
a counter. Signatures then would consist of a group element in G1 and then log q additional bits,
where q is an upper bound on the number of issued signatures. In particular, one could safely set
q “ 250 in many applications, leading to very short signatures.

Truncated BBS.A different application scenario considers a conservative instantiation that uses
a 384-bit group G1 to prevents Cheon’s attack [Che06]. Then, the above bound allows us to choose
the ei’s from Z2256 , as opposed to Zp for a 384-bit prime p, hence saving 128-bit of signature length.
We refer to the resulting scheme as Truncated BBS. While we need to rely on the AGM to trust
this optimization, we do note that the uniformity of the ei’s needed by Theorem 1 appears to be
an artifact of the proof, and does not appear to prevent actual attacks.

4.1 Proof of Theorem 2

Before we turn to the construction of the adversaries B1 and B2, and their formal analysis, we
introduce the algebraic framework that will guide their construction.

Algebraic framework.To start with, in an execution of SUF`A
GGen,eG,eSpλq, it is convenient to

associate the discrete logarithms of group elements in G1 with formal rational functions (which are
then evaluated in the actual execution to obtain the discrete logarithm). In particular, let us denote
the discrete logarithms of h1 to the base g1 by the vector y P Zℓ

p. Then, the i-th Sign query for

m P Zℓ
p, where ei “ e, returns a value with discrete logarithm φy

m,epxq, where

φy
m,epXq “

1 ` xy,my

X ` ei
.

Here, xx,yy denotes inner product in Zp. It turns out that these functions are essentially linearly
independent, except for some unfortunate configurations for y. This is captured by the following
central lemma.

Lemma 5. Let e1, . . . , eq P Zp be distinct, let y P Zℓ
p, and let m1, . . . ,mq P Zℓ

p. Further, let
pm˚, e˚q R tpmi, eiquiPrqs. Then, assume that there exist λ1, . . . , λq, γ P Zp such that

φy
m˚,e˚pXq “

q
ÿ

i“1

λi ¨ φy
mi,eipXq ` γ . (5)

Then, one of the following two conditions must be true:

(i) There exists i P rqs such that e˚ “ ei and 1 ´ λi ` xy,m˚ ´ λi ¨ miy “ 0.

(ii) We have e˚ R te1, . . . , equ, but 1 ` xy,m˚y “ 0.
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Proof. To verify (i), assume indeed that e˚ P te1, . . . , equ, and wlog, let e˚ “ e1. We multiply both

sides of (5) by ppXq “
śℓ

i“1pX ` eiq, and after re-arranging terms, we get

p1 ´ λ1 ` xy,m˚ ´ λ1 ¨ m1yq ¨ p1pXq “ γ ¨ ppXq `

q
ÿ

i“2

λi ¨ φy
mi,eipXq ¨ pipXq , (6)

where we have used the shorthand pipXq “
ś

jPrqsztiupX`ejq “ ppXq{pX`eiq. We claim that the LHS
and RHS of (6) cannot be identical functions, unless 1´λ1`xy,m˚ ´λ1 ¨m1y “ 0. Indeed, the RHS
is always divisible by X`e1, because either λ2, . . . , λq are all 0, in which case this is vacuously true,
or ppXq and pipXq for i ě 2 are divisible by pX` e1q. In contrast, if 1 ´ λ1 ` xy,m˚ ´ λ1 ¨m1y ‰ 0,
then the RHS is not divisible by X ` e1 because p1pe1q ‰ 0.

Let us consider instead the case e˚ R te1, . . . , equ. For notational convenience, we let eq`1 “ e˚,
p1pXq “

ś

iPrq`1spX ` eiq, and p1
kpXq “

ś

iPrq`1sztkupX ` eiq. Then, multiplying both sides of (5) by

p1pXq yields

p1 ` xy,m˚yq ¨ p1
q`1pXq “ γ ¨ p1pXq `

q
ÿ

i“2

λi ¨ φy
mi,eipXq ¨ p1

ipXq .

We notice that if 1`xy,m˚y ‰ 0 the LHS is non-zero, and not divisible by X`eq`1, as p
1
q`1peq`1q ‰

0. In contrast, the RHS is always divisible by X ` eq`1. A contradiction. [\

Overview of the reduction. Let A be an algebraic adversary in Game SUF`A
GGen,eG,eSpλq. It

initially receives group elements g1 P G1, h1 P Gℓ
1, along with G2 elements g2, X2 “ gx2 . For each

signing query, she also gets Ai P G1. Finally, when producing a forgery pm˚, pA˚, e˚qq, by virtue of

being algebraic, the adversary A also provides a representation pγ0, γ1, . . . , γℓ, λ1, . . . , λqq P Zq`ℓ`1
p

of A˚ such that

A˚ “ gγ01

ℓ
ź

i“1

h1risγi
q

ź

i“1

Aλi
i “ pC˚q

1
x`e˚ “ g

φy

m˚,e˚ pxq

1 ,

where yris “ DLg1ph1risq for all i P rℓs. Further, we have Ai “ g
φy
mi,ei

pxq

1 . Therefore, setting
γ “ γ0 `

ř

iPrℓs γi ¨ yris, this implies in particular that

γ `

q
ÿ

i“1

λi ¨ φy
mi,eipxq ´ φy

m˚,e˚pxq “ 0 .

Let us now assume that the two conditions in Lemma 5 do not hold, and that e1, . . . , eq are distinct.
Then, Lemma 5 implies that

ρpXq “ γ `

q
ÿ

i“1

λi ¨ φy
mi,eipXq ´ φy

m˚,e˚pXq ‰ 0 ,

and therefore x is one of its zeros. Assuming that x R t´e1, . . . ,´eq,´e˚u, such zeros can be
obtained by factoring the non-zero polynomial

qpXq “ ρpXq ¨
ź

ePte1,...,eq ,e˚u

pX ` eq ,

which has degree at most q ` 1. One of the zeros has to equal x.
We still need to handle the case where either 1` xy,m˚y “ 0 or 1´λi ` xy,m˚ ´λi ¨miy “ 0.

It is however not hard to see that this gives us non-trivial discrete logarithm relation, and we can
use this to compute the discrete logarithm directly.
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Formal reduction.To formalize the above analysis, we consider three events during the execution
of Game SUF`A

GGen,eG,eSpλq:

- Forge: This is the event that A outputs a successful forgery and wins the game.
- Rel: This is the event that the forgery is for a message m˚ such that either Condition (i) or (ii)
of Lemma 5 holds.

- Col: Is the event that there exist distinct i, j P rqs with ei “ ej .

Then, by the law of total probability,

Advsuf`GGen,eG,eSpA, λq “ Pr
“

Forge ^ Rel
‰

` Pr rForge ^ Rels

ď Pr
“

Forge ^ Rel ^ Col
‰

` Pr
“

Forge ^ Rel ^ Col
‰

` Pr rRels

ď Pr rCols ` Pr
“

Forge ^ Rel ^ Col
‰

` Pr rRels .

By definition, we know that Pr rCols “ δeG,eSpq, λq. We now give adversaries B1 and B2 such that

Pr
“

Forge ^ Rel ^ Col
‰

ď Advq-dlGGenpB1q , Pr rRels ď AdvdlGGenpB2q `
1

p
.

The adversary B1.The formal description of q-DL adversary B1 is in Figure 7. If x R t´e1, . . . ,´equ

(which can be checked right away, and gives x), the reduction simulates the original generator g1

as g1 “ g
αppxq

1 , where ppxq “
ś

iPrqspx ` eiq. (This can be computed given the inputs X1,i “ gx
i

for i P rqs.) Since α P Z˚
p and ppxq ‰ 0, the simulation is perfect. Also, we can easily compute the

answers to Sign queries due to our choice of g1. The adversary then checks that qpXq is non-zero
(which is implied by Rel), and if so, proceeds to compute its zeros. It is easy to verify that the
adversary succeeds with probability at least Pr

“

Forge ^ Rel ^ Col
‰

.

The adversary B2.The construction is somewhat standard and given in Figure 8. Let us assume
one of the two conditions leading to Rel occurs in Game SUF`A

GGen,eG,eSpλq. First, if (i) occurs for
some i P rqs, then

g1´λi
1

ℓ
ź

j“1

h
m˚rjs´λimirjs

1 “ 1G1 . (7)

In contrast, if (ii) occurs, then

g1

ℓ
ź

j“1

h
mirjs

1 “ 1G1 . (8)

Therefore, in both cases, we obtain a non-zero vector pa, bq P Zℓ`1
p such that ga1

ś

iPrℓs h1risbris “ 1G1 .
Given the DL instance X1,1 “ gx1 P G1, the adversary B2 simulates the generator by picking
αi, βi Ð$ Zp for i P rℓs, and lets

g1 “ X1,1 “ gx1 , h1ris “ Xαi
1,1g

´βi
1 “ gαix´βi

1 for i P rℓs .

This simulates the right distribution if X1,1 ‰ 1G1 , which is ensured beforehand. Then, as outlined
above, the adversary simulates a correct execution with A, and checks if we obtain a non-trivial
relation as above. If so, we are given a non-zero pa, bq P Zℓ`1

p such that

ax `

ℓ
ÿ

i“1

bris ¨ pαix ´ βiq “ 0 ,
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Adversary B1ppar, g1, X1,1, X1,2, . . . , X1,q, g2, X2,1q :
pp,G1,G2,GT , eq Ð par
ste Ð eGpp,G1,G2,GT , eq

For all i P rqs do ei Ð eSpste, iq
If Di P rqs: g´ei

1 “ X1,1 then return ´ei
If Di, j P rqs: i ‰ j ^ ei “ ej then abort
Sigs Ð H

α Ð$ Z˚
p ; y Ð$ Zℓ

p; g1 Ð g
α¨ppxq

1

For i “ 1 to ℓ do h1ris Ð g
yris

1

X2 Ð X2,2; par Ð pp, g1,h1, g2,G1,G2,GT .eq

pm˚, pA˚, e˚
q, tλiuiPrqs, tγiuiPrℓs, γ0q Ð$ ASign

ppar, ste, X2q

C˚
Ð g1

śq
i“1 h1rism

˚ris

If epA˚, X2g
e˚

2 q “ e
`

C˚, g2
˘

and pA˚, e˚
q R Sigs then

γ Ð γ0 `
řℓ

i“1 γiyris
ρpXq “ ´φy

m˚,e˚ pXq ` γ `
řq

i“1 λiφ
y
mi,eipXq

qpXq Ð ρpXq ¨
ś

ePte1,...,eq,e˚u
pX ` eq

If qpXq “ 0 then abort
Z Ð tx P Zp : qypxq “ 0u

Return x P Z s.t. gx1 “ X1,1

Oracle Signpmq :
cnt Ð cnt ` 1, mcnt Ð m
Ccnt Ð g1

śq
i“1 h1rismris

Acnt Ð C
1

x`ecnt
cnt

σcnt Ð pAcnt, ecntq
Sigs

Y
Ð tσcntu

Return Acnt

Fig. 7. Adversary B1 in the proof of Theorem 2. Recall that once e1, . . . , eq are fixed and understood from the
context, we use the shorthand ppXq “

ś

iPrqs
pX ` eiq for convenience.

Adversary B2ppar, g1, X1,1, g2q :
pp,G1,G2,GT , eq Ð par
If X1,1 “ 1G1 then return 1
ste Ð eGpp,G1,G2,GT , eq

cnt Ð 0
x Ð$ Zq // simulated secret key
α1, β1, . . . , αℓ, βℓ Ð$ Zp

For all i P rℓs do h1ris Ð$ Xαi
1,1g

´βi
1

g1 “ X1,1; X2 Ð gx2
par Ð pp, g1,h1, g1,G1,G2,GT , eq

pm˚, pA˚, e˚
q, tλiuiPrqs, tγiuiPrℓs, γ0q Ð$ ASign

ppar, ste, X2q C˚
“

g1
śℓ

i“1 h1rism
˚ris

If Di : e˚
“ ei ^ C˚

¨ C´λi
i “ 1G1 then

a Ð 1 ´ λi; b Ð m˚
´ λimi

else if C˚
“ 1G then

a Ð 1; b Ð m˚

If a `
řℓ

i“1 αibris “ 0 then abort

Return
řℓ

i“1 βibris

a`
řℓ

i“1 αibris

Oracle Signpmq :
cnt Ð cnt ` 1, mcnt Ð m
ecnt Ð eSpste, cntq
Ccnt Ð g1

śℓ
i“1 h1rismris

Acnt Ð C
1

x`ecnt
cnt

σcnt Ð pAcnt, ecntq
Return Acnt

Fig. 8. Adversary B2 in the proof of Theorem 2.

and, in turn, we get

x “

řℓ
i“1 βibris

a `
řℓ

i“1 αibris
.
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Note that this is well defined, unless a`
řℓ

i“1 αibris “ 0. However, because pa, bq ‰ 0, and the fact
that the αi’s are uniform and independent given the adversary’s view, this happens with probability
at most 1{p. This concludes the proof. [\

5 Efficient Proofs of Knowledge for BBS Signatures

We discuss zero-knowledge proofs of knowledge (zkPoK) of a BBS message-signature pair pm, σq

that are shorter than those from [CDL16] adopted by the RFC draft [LKWL22]. If we do not want
to reveal k of the components of m, our proof (when compiled as a NIZK via the Fiat-Shamir
transform) consists of 2 elements in G1, as well as k ` 3 scalars in Zp. The prior proof, in contrast,
consists of 3 elements in G1, and k`5 scalars. The benefit of our new proofs is also computational:
We save 4 group exponentiations in G1 and 3 scalar multiplications for the prover, and save 3 group
exponentiations in G1 for the verifier. We note that the CDL proofs are tailored at BBS+, but even
for the latter scheme, we can achieve savings, as we can think of a BBS+ signature for m as a BBS
signature for ps,mq, for a secret s, and merely increase k by one.

5.1 Proofs of Knowledge for Signatures

We consider zkPoKs associated with a signature scheme SS with message space SS.Mpparq “

Mpparqℓ for some set M that can depend on the public parameters par, and some understood
vector length ℓ “ ℓpλq. We give proofs of knowledge of a signature consistent with a partial message
vector m P pM Y t‹uq

ℓ. For any two such partial messages m,m1, we denote m Ď m1 if for all
i P rℓs, mris ‰ ‹ implies mris “ m1ris.

We only consider three-move public-coin protocols between a prover and a verifier, described
by a tuple PoK “ pPoK.P1,PoK.P2,PoK.C,PoK.Vq. Informally, we think of running the protocol in
settings where the parameters for SS are available, i.e., par Ð$ SS.Setupp1λq, psk, vkq Ð$ SS.KGpparq,
and the protocol is run as follows, on private input pm, σq, where m P Mℓ, and public input
m1 P pM Y t‹uq

ℓ:

(1) The prover initially takes inputs par, vk, and a candidate signature-message pair pm, σq,
and outputs pa, stPq Ð$ PoK.P1ppar, vk,m1, pm, σqq. The message a is sent to the verifier.

(2) The verifier outputs c Ð$ PoK.Cppar, vkq, and the challenge c is sent to the prover.
(3) The prover outputs s Ð$ PoK.P2pstP, cq, and sends s to the verifier.
(4) Finally, the verifier outputs a Boolean value PoK.Vppar, vk,m1, a, c, sq P ttrue, falseu.

We say that PoK is correct if, whenever SS.Verppar, vk, pm, σqq “ true and m1 Ď m, then the
verifier also outputs true.

Special Soundness.We target special soundness. To this end, we say that ppar, vk,m1, a, c, sq is
an accepting transcript if par is a valid output of SS.Setup, vk is a valid output of SS.KGpparq, c is
a valid output of PoK.Cppar, vkq, and PoK.Vppar, vk,m1, a, c, sq is true.

Definition 2. We say that PoK as above is special-sound if there exists an efficient algorithm
Extract which, given any two valid transcripts ppar, vk,m1, a, c, sq, ppar, vk,m1, a, c1, s1q such that
c ‰ c1, then pm, σq Ð Extractppar, vk, a, pc, sq, pc1, s1qq is such that SS.Verppar, vk, pm, σqq “ true

and m1 Ď m.

We do not specify more general soundness goals further, as the use of special soundness will
largely depend on the concrete security game modeling the security of the system using the PoK.
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Distribution RealAPoK,SSpλq:

par Ð$ SS.Setupp1λq

psk, vkq Ð$ SS.KGpparq
pm1,m, σq Ð$ Appar, sk, vkq

If m1
Ď m ^ SS.Verppar, vk, pm, σqq then

pa, stPq Ð$ PoK.P1ppar, vk,m1, pm, σqq

c Ð$ PoK.Cppar, vkq

s Ð$ PoK.P2pstP, cq

Return psk, vk,m1, pa, c, sqq

Return K

Distribution IdealA,S,L
PoK,SSpλq:

par Ð$ SS.Setupp1λq

psk, vkq Ð$ SS.KGpparq
pm1,m, σq Ð$ Appar, sk, vkq

If m1
Ď m ^ SS.Verppar, vk, pm, σqq then

z Ð$ Lppar, skq

pa, c, sq Ð$ Sppar, vk,m1, zq

Return psk, vk,m1, pa, c, sqq

Return K

Fig. 9. Distributions for the definition of HVZK

Honest-Verifier Zero-Knowledge.The protocols we give will be shown to be honest-verifier
zero-knowledge, which suffices for their use as NIZKs via the Fiat-Shamir transform. We will in
fact weaken the notion to allow for some leakage of the parameters given to the simulator. In
particular, we model such leakage as a (possibly randomized) function Lppar, skq taking as input
the parameters and the signing key.

Definition 3 (HVZK). The protocol PoK for SS as above is perfectly L-honest-verifier zero-
knowledge (L-HVZK) if there exists an efficient simulator S such that for all A and λ P N, the
distributions RealAPoK,SSpλq and IdealA,S,L

PoK,SSpλq given in Figure 9 are identical.

5.2 Protocols

Full disclosure.We start with the protocol for the case m “ m1, i.e., the full-disclosure case.
Recall that a BBS signature for a message m P Zℓ

p takes form σ “ pA “ Cpmq1{px`eq, eq, where

Cpmq “ g1
śℓ

i“1 h1rismris. We assume from now on that A ‰ 1G1 , and this assumption is almost
without loss of generality, as a valid signature with A “ 1G1 implies finding a non-trivial DLOG
relation, as Cpmq “ 1G1 would be true as well. Recall that the signature is valid if

epA, ge2X2q “ epCpmq, g2q ,

where X2 “ gx2 is the verification key. However, by bilinearity,

epA, ge2X2q “ epA, ge2q ¨ epA,X2q “ epAe, g2q ¨ epA,X2q .

And therefore, one can equivalently check that

epA,X2q “ epCpmq ¨ A´e, g2q . (9)

The main idea is to provide suitably randomized versions of A and B “ Cpmq ¨ A´e, which can
be computed from a signature pA, eq, and extend this with a proof of correctness attesting to the
format of these values. In particular, we use A “ Ar and B “ pCpmq ¨ A´eqr, for which we still
have epA,X2q “ epB, g2q.
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Protocol description.Concretely, we consider the following Σ-protocol:

- Given a signature pA, eq for the message m with A ‰ 1G1 , the prover picks r Ð Z˚
p , and

computes
A Ð Ar , B Ð pCpmqA´eqr “ CpmqrA

´e
.

It also picks α, β Ð$ Zp, and computes U Ð CpmqαA
β
. It sends pA,B,Uq to the verifier.

- The verifier picks a random challenge c Ð$ Zp, and sends it to the prover
- The prover responds with ps, tq, where

s Ð α ` r ¨ c , t Ð β ´ e ¨ c .

- The verifier accepts if and only if

epA,X2q “ epB, g2q , U ¨ B
c

“ CpmqsA
t
.

Special-soundness. It is not hard to see that the protocol is special sound. Indeed, given A,B,U ,
as well as c1 ‰ c2, and ps1, s1, t1, t2q such that

epA,X2q “ epB, g2q , U ¨ B
ci

“ CpmqtiA
si for i “ 1, 2 ,

we can first extract r and e such that B “ CpmqrA
´e

, because

B
c1´c2

“ Cpmqt1´t2A
s1´s2 ,

and thus we can set r “ pt1 ´ t2q{pc1 ´ c2q and e “ ps2 ´ s1q{pc1 ´ c2q. If r ‰ 0, then pA “ A
r´1

, eq

is a valid signature on m, because epA,X2q “ epB, g2q implies that epA
r´1

, X2q “ epB
r´1

, g2q, and

B
r´1

“ CpmqA´e. If r “ 0, then epA,X2q “ epA
´e

, g2q, which means x “ ´e, and this gives us a
signature on m.

Zero-knowledge. The protocol is L-HVZK, for L which, on input g1, x, outputs pgr1, g
rx
1 q for

r Ð$ Z˚
p , i.e., a random pair of form pU,Uxq. The simulator then computes A Ð$ G˚

1 , and set C “

A
x

P G1 – this can be done by re-randomizing the leakage pU,Uxq. Then, the simulator picks a

random challenge c Ð$ Zp, as well as random s, t Ð$ Zp, and sets U “ CpmqsA
t
B

´c
.

The fact that the simulator needs a sample pU,Uxq, and cannot simulate solely given the pa-
rameters and the verification key X2 “ gx2 is a technical oddity inherited from the use of type-3
pairings, and was also present in prior protocols [CDL16]. Indeed, it is hard to compute gx1 from
the verification key gx2 . However, this additional leakage is not really harmful. For example, any
signature pA, eq on a message m already satisfies Ax “ Cpmq ¨A´e, and thus the protocol leaks no
more than any valid message-signature pair. In particular, BBS remains secure given such leakage.

Partial disclosure. For the case m1 Ĺ m, the components mris for which m1ris “ ‹ become
parts of the witness. We let I :“ ti P rℓs : mris “ ‹u and J “ rnszI. We also let CJpmq “

g1
ś

iPJ h1rismris, and note that CJpmq can be computed from the public input m1 by the verifier.

- Given a signature pA, eq for the message m with A ‰ 1G1 , the prover picks r Ð Z˚
p , and

computes

A Ð Ar , B Ð pCpmqA´eqr “ CJpmqr ¨

˜

ź

iPI

h1rismris

¸r

¨ A
´e

.
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It also picks α, β Ð$ Zp, and also δi Ð$ Zp for every i P I and computes

U Ð CJpmqα ¨ A
β

¨
ź

iPI

h1risδi

It sends pA,B,Uq to the verifier.

- The verifier picks a random challenge c Ð$ Zp, and sends it to the prover

- The prover responds with ps, t, puiqiPIq, where

s Ð α ` r ¨ c , t Ð β ´ e ¨ c , ui Ð δi ` r ¨ mris ¨ c @i P I .

- The verifier accepts if and only if

epA,X2q “ epB, g2q , U ¨ B
c

“ CJpmqsA
t ź

iPI

h1risui .

One can easily adapt the arguments for the above protocols for full disclosure to show special
soundness and L-HVZK.

NIZKs. Our protocols can be transformed into NIZKs in the random oracle model via the Fiat-
Shamir transform [FS87] or Fischlin’s transform [Fis05]. For the Fiat-Shamir version, the prover
computes A,B,U as above, then lets c Ð Hpm1, A,B, Uq, and finally computes s, t, puiqiPI as above.
The final proof is

π “ pA,B, c, s, t, puiqiPIq .

Verification checks that epA,X2q “ epB, g2q and that c “ Hpm1, A,B, Uq with

U Ð B
´c
CJpmqsA

t ź

iPI

h1risui .

Note that we could include U instead of c, but this leads to longer proofs for curves like BLS12-381,
where elements in G1 have longer descriptions than scalars.

6 Signatures for Group Elements and Blind Issuance

One central property of BBS is its support of blind issuance, the setting where a user sends a com-

mitment C P G1 to the signer to obtain a pair σ “ pA, eq with A “ C
1

x`e—if C “ g1
śℓ

i“1 h1rismris

for a message m, then σ is a valid signature on m, but crucially, the signer never learns m. In
fact, the user could make mr1s uniform, turning C into a perfectly-hiding (generalized) Pedersen
commitment [Ped92]. This approach is particularly important when σ acts as a credential, and we
want to hide the actual attributes from the issuer. Blind issuance of BBS signatures is also part of
an unofficial draft [Bli], which also requires the addition of a proof of knowledge for a representation
of C, which consists of Opℓq scalars and can be expensive when ℓ is large. Here, we show that in the
AGM the scheme is already sufficiently secure without such a proof. A suitable proof of knowledge
is however still necessary if the user needs to reveal part of the attributes to the issuer, to prove
these are consistent with the commitment. However, we note that this aspect would be orthogonal
to our analysis below.
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Game OMUF`
A
GGen,eG,eSpλq:

cnt Ð 0
pp,G1,G2,GT , eq Ð$ GGenp1λq

g1 Ð$ G˚
1 , h Ð$ G1, g2 Ð$ G˚

2

par Ð pp, g1,h1, g2,G1,G2,GT , eq

ste Ð eGpp,G1,G2,GT , eq

x Ð$ Zp; X2 Ð gx2 ; sk Ð x; vk Ð X2

tpm˚
i , pA˚

i , e
˚
i qquiPrq1s Ð$ ASdh

ppar, ste, vkq

For all i P rq1
s do C˚

i Ð g1
ś

jPrℓs
h1rjs

m˚
i rjs

If @i P rq1
s: e

ˆ

A˚
i , X2g

e˚
i

2

˙

“ e
`

C˚
i , g2

˘

then

Return pq1
ą cntq

Return false

Oracle SdhpCq:
cnt Ð cnt ` 1
ecnt Ð eSpste, cntq

Acnt Ð$ C
1

x`ecnt

Return Acnt

Fig. 10. One-more unforgeability of BBS. This game captures the one-more unforgeability of BBS when given
an Sdh oracle which returns C1{px`eiq for its i-th query, where ei is generated via eS. We assume here that A returns
a set of q1 distinct forgery attempts (i.e, no double entry are present in the list returned by A.)

One-more unforgeability.BBS can be thought as a signature scheme signing a group element

C P G1 as σ “ pA “ C
1

x`e , eq. However, it does not achieve unforgeability when signing group
elements (as in the case of structure-preserving signatures (SPS) [AFG`10]). Indeed, the attacker,
given σ “ pA, eq, directly obtains other valid signatures, such as σ1 “ pA2, eq, which is a valid
signature for C2 ‰ C. Nonetheless, if C “ g1

śℓ
i“1 h1rismris, it is very unlikely that the attacker

can exhibit a message m1 such that C2 “ g1
śℓ

i“1 h1rism
1ris, i.e., such that pA2, eq is valid for m1.

We formalize this by showing BBS satisfies one-more unforgeability (OMUF), where given access
q times to an oracle Sdh that signs group elements as above—i.e., on input C P G1 it returns σ “

pA, eq with A “ C
1

x`e—it is impossible for the attacker to come up with q`1 valid BBS signatures.
This property is defined via Game OMUF`A

GGen,eG,eSpλq in Figure 10. Similar to Section 4, the game
is parameterized by the group generator GGen and by a pair of algorithms eG, eS used to generate
the ei’s ahead of time. We also define

Advomuf`
GGen,eG,eSpA, λq “ Pr

“

OMUF`A
GGen,eG,eSpλq

‰

.

We stress that we could define a general notion of signatures on commitment values, and require
that upon obtaining q signatures on arbitrary elements from the commitment space, the attacker
cannot come up with q ` 1 valid signatures on commitments, along with their openings. However,
we prefer the rather straightforward BBS-specific game as a better illustration of this property.

Main result.We prove now that BBS satisfies one-more unforgeability in the AGM, and we do
so via a reduction to its SUF` security as defined in Section 4.

Theorem 3 (One-more unforgeability). Let GGen be a group parameter generator, producing
groups of order ppλq, and let eG, eS as above. For every algebraic OMUF+ adversary A issuing at
most q “ qpλq Sdh queries, there exists an algebraic SUF+ adversary B such that

Advomuf`
GGen,eG,eSpA, λq ď Advsuf`GGen,eG,eSpB, λq ` δeG,eSpq, λq .

The adversary B issues q Sign queries, and runs in time equal that of running A, plus the time
needed to perform Opq3q operations in Zp.
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The proof is given below. The main challenge in the proof is to show how the signing oracle can
be used to simulate signing a group element, given its representation. This is easy to do if the
representation is only in terms of g1 and h1, but the challenge is that the representation can also
depend on prior signatures.

Theorem 3 yields the following corollary when combined with Theorem 2.

Corollary 1 (One-more unforgeability). Let GGen be a group parameter generator, producing
groups of order ppλq, and let eG, eS as above. For every algebraic OMUF+ adversary A issuing at
most q Sdh queries, there exists a q-DL adversary C1 and a DL adversary C2 such that

Advomuf`
GGen,eG,eSpA, λq ď Advq-dlGGenpC1, λq ` AdvdlGGenpC2, λq ` 2δeG,eSpq, λq `

1

ppλq
.

The adversaries C1 and C2 are obtained by using B from Theorem 3 within the adversaries of
Theorem 2.

Proof (of Theorem 3). Recall that the adversary B has access, beforehand, to all values e1, . . . , eq
such that the i-th query to Sign uses the i-th value ei. This is because it receives ste, and ei “

eSpste, iq. We will use this fact in a crucial way below. The adversary B simulates an execution of
OMUF`A

GGen,eG,eSpλq with help of the Sign oracle. Initially, A is fed the same parameters par “

pp, g1,h1, g2,G1,G2,GT , eq, ste, and verification key X2 “ gx2 given to B. Consequently, B has use
ei to simulate the answer the i-the Sdh query by A

In particular, the adversary A queries the Sdh oracle repeatedly on inputs C1, C2, . . . , Cq P G1.
(Here, we assume without loss of generality that A makes exactly q queries.) For each of these

Sdh query, we show next how B can answer Ai “ C
1

x`ei
i using the Sign oracle and the algebraic

representation output by the algebraic adversary A.

The simulation strategy. An important observation is that B can easily use its i-th query to

Sign oracle to compute Ai “ C
1

x`ei
i for any Ci P G1 for which the representation only depends on

g1 and h1. Indeed, if

Ci “ gγi1

ℓ
ź

j“1

h1rjsαirjs ,

we can query the message mi “ γ´1
i αi, and raise the result to the γi to obtain Ai. The main

challenge is that, in general A’s query Ci will come with a representation not only in terms of
g1, h1, but also, in terms all prior queries A1, . . . , Ai´1. This will make computing Ai far more
challenging.

What we show next is that given A’s Sdh queries C1, C2, . . . , Cq, and their representations,
we can compute, efficiently, and in an online fashion, a sequence pC1, A1,λ1q, . . . , pCq, Aq,λqq such
that the following properties are satisfied:

1. Ai “ C
1

x`ei
i

2. We can compute efficiently a representation of Ci only in terms of g1 and h1, and thus, Ai can
be computed via a query to Sign from the representation of Ci.

3. λi P Zi
p, and Ai “ C

1
x`ei
i satisfies Ai “

śi
j“1A

λirjs

i .

Clearly, B will exactly compute, after receiving each query Ci, the corresponding Ci, to then obtain
Ai, and thus also Ai. (We discuss how to produce a forgery later on.) We show by induction, now,
how to produce the sequence.
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Building the sequence. It is easy to obtain A1, C1. Indeed, A provides a representation of C1

only in terms of g1 and h1, as there are no prior queries. Then, we can just set C1 “ C1, and
A1 “ A1 can be obtained by B via a query to the Sign oracle. Consequently, λ1r1s “ 1.

Now, let us assume we have obtained such a sequence up to the i-th query, i.e., we have
pC1, A1,λ1q, . . . , pCi, Ai,λiq as above. By property (3) above, the representation of the pi ` 1q-
st Sdh query Ci`1, which is originally in terms of g1,h1, A1, . . . , Ai, can be rewritten as

Ci`1 “ g
γi`1

1

ℓ
ź

j“1

h1rjsαi`1rjs

i
ź

j“1

A
βirjs

i “ g
γi`1

1

ℓ
ź

j“1

h1rjsαi`1rjs

i
ź

j“1

A
ρirjs

j

for some ρ P Zi
p. We now need to compute C

1
x`ei`1

i`1 , and to this end, for all j P ris, the main

challenge is to compute A

ρirjs

x`ei`1

j . To this end, assume that ei`1 ‰ ej , and first observe that

A

ρirjs

x`ei`1

j “ C

ρirjs

px`ejqpx`ei`1q

j

“ C

ρirjs

ei`1´ej

ˆ

1
x`ej

´ 1
x`ei`1

˙

j

“ A

ρirjs

ei`1´ej

j ¨

˜

C

ρirjs

ej´ei`1

j

¸
1

x`ei`1

.

Therefore, if ei`1 R te1, . . . , eiu,

Ai`1 “ C
1

x`ei`1

i`1

“

˜

g
γi`1

1

ℓ
ź

j“1

h1rjsαi`1rjs

¸

1
x`ei`1 i

ź

j“1

A

ρirjs

ei`1´ej

j ¨

˜

C

ρirjs

ej´ei`1

j

¸
1

x`ei`1

“ C
1

x`ei`1

i`1 ¨

i
ź

j“1

A

ρirjs

ei`1´ej

j ,

where

Ci`1 “ g
γi`1

1 ¨

ℓ
ź

j“1

h1rjsαi`1rjs ¨

i
ź

j“1

C

ρirjs

ej´ei`1

j ,

for which we can obtain a representation that only depends on g1 and h1 by the fact that such a

representation is computed for C1, . . . , Ci. Then, we set Ai`1 “ C
1

x`ei`1

i`1 . In conclusion,

Ai`1 “ Ai`1 ¨

i
ź

j“1

A

ρirjs

ei`1´ej

j ,

and this allows us to set λi`1rjs “
ρirjs

ei`1´ej
for all j P ris, and λi`1ri ` 1s “ 1.

28



Outputting the final forgery. Finally, the adversary A outputs a sequence of signatures

pm˚
1 , pA˚

1 , e
˚
1qq, . . . , pm˚

q1 , pA˚
q1 , e˚

q1qq ,

along with representation of all A˚
i in terms of g1,h1, and A1, . . . , Aq, where q1 ą q. Assume the

adversary indeed wins, i.e., these signatures are all valid. Then, by the pigeonhole principle, there
exists k P rq1s such that pA˚

k, e
˚
kq ‰ p rAi, eiq for all i P rqs, where rAi is the (normalized) value returned

by the Sign query used to compute Ai, and therefore B outputs pm˚
k, pA˚

k, e
˚
kqq as its valid forgery.

Note that we require B to be also algebraic, and for this, it suffices to give a representation of A˚
k

in terms of rA1, . . . , rAq, g1 and h1. This can be done easily using the available representation—while
it is in terms of A1, . . . , Aq, we can use property (3) above to turn it into a suitable representation.

Probability analysis.The above simulation strategy is perfect as long as e1, . . . , eq are distinct,
and therefore, given the event Forge that A outputs q1 valid signatures for q1 ą q, and let Coll be
the event that two of the ei’s collide. Then,

Advsuf`GGen,eG,eSpB, λq ě Pr
“

Forge ^ Coll
‰

ě Pr rForges ´ Pr rColls

“ Advomuf`
GGen,eG,eSpA, λq ´ δeG,eSpq, λq .

Efficiency consideration. The main cost of B stems from maintaining representations of the
Ai’s in terms of the Ai. These representation are i-dimensional vectors, with i as large as q.
Therefore, computing Ci`1 can cost up to Opq2q operations in Zp per oracle query. [\

Applications. As mentioned above, a typical application of BBS signatures is in the context of
credentials. The above result validates the security of the canonical solution where the user obtains
a credential for a vector of attributes m by sending C “ g1

śℓ
i“1 h1rismris to the authority, which

in turn responds with the actual credential pC
1

x`e , eq for a random e. The OMUF security from
Theorem 3 and Corollary 1 implies that a malicious user (or any set of multiple such users) can only
obtain q credentials by interacting with the authority q times. The user can then show the credential
multiple times in an unlinkable way by using the zk-PoKs from Section 5, typically compiled via
the Fiat-Shamir transform. These showings are then consistent with at most q attribute vectors.
When issuing a credential, the user does not need to send any proof of knowledge along with C,
unless the credential issuing needs to enforce some format on the values contained by C, in which
case extra proofs need to be sent along.

We note that analyzing the security of the entire credential system is non-trivial, especially if we
want to resort to PoKs compiled via the Fiat-Shamir transform, which are not online extractable.
We believe that a security analysis of variants of this system is however possible, albeit very tedious,
in the AGM, where one can resort to the online-extractability of the proposed PoKs from Section 5
in the AGM, along the lines of [GT21]. This goes however beyond the scope of this paper.
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