
A Simple Single Slot Finality Protocol For Ethereum

Francesco D’Amato
Ethereum Foundation

francesco.damato@ethereum.org

Luca Zanolini
Ethereum Foundation

luca.zanolini@ethereum.org

Abstract

The implemented consensus protocol of Ethereum, Gasper, has an hybrid design: it combines a protocol
that allows dynamic participation among validators, called LMD-GHOST, and a finality gadget, called
Casper. This design has been motivated and formalized by Neu, Tas, and Tse (S&P 2021) through
the introduction of the ebb-and-flow class of protocols, which are protocols with two confirmation rules
that output two ledgers, one that provides liveness under dynamic participation (and synchrony), LMD-
GHOST, and one that provides safety even under network partitions, Casper.

Currently, Gasper takes between 64 and 95 slots to finalize blocks. Because of that, a significant
portion of the chain is susceptible to reorgs. The possibility to capture MEV (Maximum Extractable
Value) through such reorgs can then disincentivize honestly following the protocol, breaking the desired
correspondence of honest and rational behavior. Moreover, the relatively long time to finality forces users
to choose between economic security and faster transaction confirmation. This motivates the study of
the so-called single slot finality protocols: consensus protocols that finalize a block in each slot and, more
importantly, that finalize the block proposed at a given slot within such slot.

In this work we propose a simple, non-blackbox protocol that combines a synchronous dynamically
available protocol with a finality gadget, resulting in a secure ebb-and-flow protocol that can finalize
one block per slot, paving the way to single slot finality within Ethereum. Importantly, the protocol we
present can finalize the block proposed in a slot, within such slot.

1 Introduction

Traditional Byzantine consensus protocols, such as PBFT [5] or HotStuff [17], are devised in a partial syn-
chronous network model [9], in the sense that they always guarantee safety, but they guarantee liveness only
after GST. In this setting, however, participants in the protocol are fixed, known in advance, and without
possibility to go offline, unless being counted as adversarial.

Recently, dynamic participation became a key requirement to devise Byzantine consensus protocols, as
it adds a more robustness to systems that allow participants to go offline (or to become sleepy [14]), while
preserving safety and liveness of such dynamically available protocols. Generally speaking, a protocol is
dynamically available if, in a context of dynamic participation, safety and liveness can be ensured. One
problem of such protocols is that they do not tolerate network partitions; no consensus protocols can both
satisfy liveness (under dynamic participation) and safety (under temporary network partitions). For this
reason, dynamically available protocols studied so far are focused on a synchronous model [10, 11]. Neu
et al. [13] formally prove this result by presenting the availability-finality dilemma, which states that there
cannot be a consensus protocol for state-machine replication, one that outputs a single ledger, that is both
dynamically available and that can finalize, i.e., that can always provide safety, even during asynchronous
periods or network partitions, and liveness during synchrony. Neu et al. [13] propose then a protocol with
two confirmation rules that outputs two ledgers, one that provides liveness under dynamic participation (and
synchrony), and one that provides safety even under network partitions. This protocol is called ebb-and-flow
protocol, and it works in the partially synchronous model in the sleepy model [14]. In particular, in such a
timing model (i) before a global stabilization time (GST) message delays are adversarially chosen, and after
GST the network becomes synchronous, with delay upper-bound ∆, and (ii) before a global awake time (GAT)
the adversary can set any sleeping schedule for the participants, and after that all honest participants become
awake. Precisely, an ebb-and-flow protocol outputs both a dynamically available ledger and a finalized ledger
that is guaranteed to be safe at all times, and live after max{GST,GAT}.

1

francesco.damato@ethereum.org
luca.zanolini@ethereum.org

Interestingly, such a protocol also captures the nature of the Ethereum consensus protocol, Gasper [4],
in which the available ledger is output by LMD-GHOST [18], and the finalized ledger by the finality gadget
Casper FFG [3]. However, the (original version of) LMD-GHOST is actually not secure [13] even in a context
of full-participation [13, 15].

Motivated by finding a (more secure) alternative to Gasper, and following the ebb-and-flow approach,
D’Amato et al. [7] devise a synchronous dynamically available protocol, Goldfish, in the partially synchronous
sleepy model [13] that, composed with a generic finality gadget, implements an ebb-and-flow protocol. How-
ever, also Goldfish is not completely secure, as it is brittle to temporary asynchrony, in the sense that even a
single violation of the bound of network delay can lead to a catastrophic failure, jeopardizing the safety of
any previously confirmed block, resulting in a protocol that is not practically viable to replace LMD-GHOST
in Ethereum.

To cope with this problem, D’Amato and Zanolini [8] propose RLMD-GHOST, a synchronous dynamically
available protocol that does not lose safety during bounded periods of asynchrony, offering a trade-off between
dynamic availability and asynchrony resilience. Their protocol results appealing for practical systems, where
strict synchrony assumptions might not always hold, contrary to what is generally assumed with standard
synchronous protocols.

In this work, we build upon the work of D’Amato and Zanolini [8], and we devise a protocol that combines
RLMD-GHOST with a finality gadget. We implement such protocol in the generalized sleepy model [8], an
extension of the original sleepy model originally presented by Pass and Shi [14], with more generalized and
stronger constraints in the corruption and sleepiness power of the adversary.

Our protocol results in a secure ebb-and-flow protocol that can finalize (at most) one block each slot,
paving the way to single slot finality [2] protocols for practical use within Ethereum. Importantly, the protocol
we present can finalize the block proposed in the current slot, within such slot.

The remainder of this work is structured as it follows. In Section 2 we discuss related works. We present
our system model in Section 3. Prerequisites for this work are presented in Section 4; we recall RLMD-GHOST
as originally presented by D’Amato and Zanolini [8], state its properties, and show a class of protocols, called
propose-vote-merge protocols, that groups together LMD-GHOST, Goldfish, and RLMD-GHOST under an
unique framework.

Protocol specification are described in Section 5. In particular, we show how to slightly modify RLMD-
GHOST to interact with a finality gadget, and then present the full protocol. In Section 6 we formally
prove the properties that our protocol satisfy. Finally, in Section 7 we enable our protocol to finalize the
block proposed in the current slot through acknowledgments, messages sent by participants in the consensus
protocol, but only relevant to external observers.

2 Related works

Pass and Shi [14] introduced the sleepy model of consensus, which models a distributed system where the
participants can be either online or offline, meaning their participation is dynamic. This differs from the
standard models in the literature that assume honest participants are always online and execute the assigned
protocol. Dynamic participation became a key requirement to devise consensus protocols, as it adds a
more robustness to systems that allow participants to go offline, while preserving safety and liveness of such
dynamically available protocols.

Neu et al [13] introduce the partially synchronous sleepy model and define the objectives of the Ethereum
consensus protocol, Gasper [4], through the concept of an ebb-and-flow protocol. A secure ebb-and-flow
protocol produces both a dynamically available ledger and a finalized ledger, that is always safe and live after
max{GST,GAT}. In the context of Gasper, the dynamically available ledger is defined by LMD-GHOST [18]
and the finalized ledger by Casper [3].

However, under a deeper analysis, Neu et al [13] show that LMD-GHOST is not dynamically available, by
presenting an attack to its liveness. Neu et al. [7] introduce Goldfish, a simplified variant of LMD-GHOST,
aiming at solving some problems related to LMD-GHOST [13, 12], that results in a synchronous dynamically
available protocol in the partially synchronous sleepy model that, composed with a generic finality gadget,
implements an ebb-and-flow protocol. Goldfish however is brittle to temporary asynchrony, in the sense that
even a single violation of the bound of network delay can lead to a catastrophic failure, jeopardizing the
safety of any previously confirmed block.

2

D’Amato and Zanolini [8] introduce the generalized sleepy model. This model takes up from the original
sleepy model presented by Pass and Shi [14] and extends it with more generalized and stronger constraints
in the corruption and sleepiness power of the adversary. This allow to explore a broad space of dynamic
participation regimes which fall between complete dynamic participation and no dynamic participation.
Moreover, they introduce RLMD-GHOST, a generalization of Goldfish and LMD-GHOST, that offers a trade-
off between resilience to temporary asynchrony and dynamic availability. RLMD-GHOST represents a middle
ground between LMD-GHOST, an asynchrony resilient but not dynamically available protocol, and Goldfish, a
dynamically available but not asynchrony resilient protocol. RLMD-GHOST is resilient to bounded asynchrony
up to a vote expiry period, and satisfies an appropriate notion of dynamic availability.

3 Model and Preliminary Notions

3.1 System model

We consider a set of validators v1, . . . , vn that communicate with each other through exchanging messages.
Every validator is identified by a unique cryptographic identity and the public keys are common knowledge.
Validators are assigned a protocol to follow, consisting of a collection of programs with instructions for all
validators. A validator that follows its protocol during an execution is called honest. On the other hand,
a faulty process may crash or even deviate arbitrarily from its specification, e.g., when corrupted by an
adversary. We consider Byzantine faults here and assume the existence of a probabilistic poly-time adversary
A that can choose up to f validators to corrupt over an entire protocol execution. Corrupted validators stay
corrupted for the remaining duration of the protocol execution, and are thereafter called adversarial. The
adversary A knows the the internal state of adversarial validators. The adversary is adaptive: it chooses the
corruption schedule dynamically, during the protocol execution.

We assume that a best-effort gossip primitive that will reach all validators is available. In a protocol,
this primitive is accessed through the events “sending a message through gossip” and “receiving a gossiped
message.” Moreover, we assume that messages from honest validator to honest validator are eventually
received and cannot be forged. This includes messages sent by Byzantine validators, once they have been
received by some honest validator vi and gossiped around by vi.

Time is divided into discrete rounds. We consider a partially synchronous model in which validators have
synchronized clocks but there is no a priori bound on message delays. However, there is a time (not known by
the validators), called global stabilization time (GST), after which message delays are bounded by ∆ rounds.
Moreover, we define the notion of slot as a collection of 4∆ rounds. The adversary A can decide for each
round which honest validator is awake or asleep at that round [14]. Asleep validators do not execute the
protocol and messages for that round are queued and delivered in the first round in which the validator is
awake again. Honest validators that become awake at round r, before starting to participate in the protocol,
must first execute (and terminate) a joining protocol (Section 4.1), after which they become active. All
adversarial validators are always awake, and are not prescribed to follow any protocol. Therefore, we always
use active, awake, and asleep to refer to honest validators. As for corruptions, the adversary is adaptive also
for sleepiness, i.e., the sleepiness schedule is also chosen dynamically by the adversary. Moreover, there is
a time (not known by the validators), called global awake time (GAT), after which all validators are always
awake.

Finally, we require that, for some fixed parameter 1 ≤ τ ≤ ∞, the following condition, referred as
τ -sleepiness at slot t [8], holds for any slot t after GST:

|Ht−1| > |At ∪ (Ht−τ,t−2 \Ht−1)| (1)

with Ht, At, and Hs,t are the set of active validators at round 4∆t+∆, the set of adversarial validators

at round 4∆t+∆, and the set of validators that are active at some point in slots [s, t], i.e., Hs,t =
⋃t

i=s Hi

(if i < 0 then Hi := ∅), respectively. An execution in the partially synchronous network model is τ -compliant
if it satisfies τ -sleepiness. In other terms, we require the number of active validators at round 4∆(t− 1) +∆
to be greater than the number of adversarial validators at round 4∆t + ∆, together with the number of
validators that were active at some point between rounds 4∆(t− τ)+∆ and 4∆(t− 2)+∆, but not at round
4∆(t− 1) + ∆.

3

Observe that, τ = 1 corresponds to the sleepy model from Goldfish [7], which constraints the adversary
in the minimum way that can allow for a secure protocol under dynamic participation. For τ = ∞, τ -
sleepiness requires that |Ht−1| > |At ∪ (H0,t−2 \ Ht−1)|, i.e., all honest validators which are not active at
round 4∆(t−1)+∆, and which have voted at least once in the past, are counted together with the adversarial
ones. If all validators have voted at least once in slots [0, s− 1], this requires that |Ht| > n

2 for all slots t > s,
i.e., dynamic participation is allowed only in an extremely narrow sense.

3.2 Validator internals

View Due to adversarial validators and message delays, validators may have different set of received mes-
sages. A view (at a given round r), denoted by V, is a subset of all the messages that a process has received
until r. Observe that the notion of view is local for the validators. For this reason, when we want to focus
the attention on a specific view of a validator vi, we denote with Vi the view of vi (at a round r).

Blocks and chains For two chains ch1 and ch2, we say ch1 ≺ ch2 if ch1 is a prefix of ch2. If block B is
the tip of chain ch, we say that it is the head of ch, and we identify the whole chain with B. Accordingly, if
ch′ ≺ ch and A is the head of ch′, we also say ch′ ≺ B and A ≺ B.

Fork-choice functions A fork-choice function is a deterministic function FC, which takes as input a view
V and a slot t and outputs a block B, satisfying the following consistency property : if B is a block extending
FC(V, t), then FC(V ∪{B}, t) = B. We refer to the output of FC as the head of the canonical chain in V, and
to the chain whose head is B as the canonical chain in V. Each validator keeps track of its canonical chain,
which it updates using FC, based on its local view. We refer to the canonical chain of validator vi at round
r as chri .

3.3 Security

Security Parameters We consider λ and κ be the security parameter associated with the cryptographic
components used by the protocol and the security parameter of the protocol itself, respectively. We consider
a finite time horizon Thor, which is polynomial in κ. An event happens with overwhelming probability if it
happens except with probability which is negl(κ)+negl(λ). Properties of cryptographic primitives hold except
with probability negl(λ), i.e., with overwhelming probability, but we leave this implicit in the remainder of
this work.

Definition 1 (Secure protocol [7]). We say that a protocol outputting a chain Ch is secure after time Tsec,
and has confirmation time Tconf

1, if Ch satisfies:

• Safety: For any two rounds r, r′ ≥ Tsec, and any two honest validators vi and vj (possibly i = j) at

rounds r and r′ respectively, either Chri ≺ Chr
′

j or Chr
′

j ≺ Chri .

• Liveness: For any rounds r ≥ Tsec and r′ ≥ r + Tconf , and any honest validator vi active at round r′,

Chr
′

i contains a block proposed by an honest validator at a round > r.

A protocol satisfies τ -safety and τ -liveness if it satisfies safety and liveness, respectively, in the τ -sleepy
model, i.e., in τ -compliant executions. A protocol satisfies τ -security if it satisfies τ -safety and τ -liveness.

We recall the definition of dynamic availability and reorg resilience as in [8]

Definition 2 (Dynamic availability). We say that a protocol is τ -dynamically-available if and only if it
satisfies τ -security after time Tsec = GST+O(κ), with confirmation time Tconf = O(κ). Moreover, we say that
a protocol is dynamically available if it is 1-dynamically-available, as this corresponds to the usual notion of
dynamic availability.

1If the protocol satisfies liveness, then at least one honest proposal is added to the confirmed chain of all active validators
every Tconf slots. Since honest validators include all transactions they see, this ensures that transactions are confirmed within
time Tconf +∆ (assuming infinite block sizes or manageable transaction volume)

4

Definition 3 (Reorg resilience). An execution in the partially synchronous network model satisfies reorg
resilience if any honest proposal B from a slot t after GST+∆ is always in the canonical chain of all active
validators at rounds ≥ 4∆t + ∆. A protocol is τ -reorg-resilient if all τ -compliant executions satisfy reorg
resilience.

Definition 4 (Accountable safety). We say that a protocol has accountable safety with resilience f > 0
if, upon a safety violation, it is possible to identify at least f responsible participants. In particular, it is
possible to collect evidence from sufficiently many honest participants and generate a cryptographic proof
that identifies f adversarial participants as protocol violators. Such proof cannot falsely accuse any honest
participant that followed the protocol correctly. Finally, we also say that a chain is accountable if the protocol
outputting it has accountable safety. If a protocol Π outputs multiple chains Ch1, . . . ,Chk, we say that Chi
is accountable if Πi, the protocol which runs Π and outputs only Chi, is accountable.

Ebb-and-flow protocols Neu et al. [13] proved an availability-finality dilemma, which states that there
cannot be a consensus protocol for state-machine replication, one that outputs a single chain, that provides
both dynamic availability and finality (as described below). They propose a protocol with two confirmation
rules that outputs two ledgers, one that provides liveness under dynamic participation (and synchrony), and
one that provides accountable safety even under network partitions. This protocol is called ebb-and-flow
protocol. We present a generalization of it, in the τ -sleepy model.

Definition 5 (τ -secure ebb-and-flow protocol). A τ -secure ebb-and-flow protocol outputs an available chain
chAva that is τ -dynamically-available if GST = 0, and a finalized (and accountable) chain chFin that, if
f < n

3 , is always safe and is live after max{GST,GAT}. Moreover, for each honest validator vi and for every
round r, chFinri is a prefix of chAvari .

4 Prerequisites

4.1 Propose-vote-merge protocols

The aim of this work is to present an ebb-and-flow [13] protocol that can finalize (at most) one block per
slot and, in particular, that can finalize within slot t the block proposed in t. This is achieved by revisiting
the propose-vote-merge protocol, first introduced by D’Amato and Zanolini [8], as the basis for our protocol
implementation. Propose-vote-merge protocols proceed in slots consisting of k rounds, each having a proposer
vp, chosen through a proposer selection mechanism among the set of validators. In particular, at the beginning
of each slot t, the proposer vp proposes a block B. Then, all active validators (also referred as voters) vote
after ∆ rounds. The last ∆ rounds of the slot are needed for the view-merge synchronization technique [6],
a technique used to synchronize the views of all the honest validators, before they broadcast a vote in a slot,
with the view Vp of the proposer of that slot. Every validator vi has a buffer Bi, a collection of messages
received from other validators, and a view Vi, used to make consensus decisions, which admits messages from
the buffer only at specific points in time. Propose-vote-merge protocols are defined through a deterministic
fork-choice function FC, which is used by honest proposers and voters to decide how to propose and vote,
respectively, based on their view at the round in which they are performing those actions. It is moreover
used as the basis of a confirmation rule (Section 5.2), which defines the output of the protocol, and thus with
respect to which the security of the protocol is defined. A propose-vote-merge protocol proceeds in three
phases:

propose: In this phase, which starts at the beginning of a slot, the proposer vp merges its view Vp with
its buffer Bp, i.e., Vp ← Vp ∪ Bp, and sets Bp ← ∅. Then, vp runs the fork-choice function FC with inputs
its view Vp and slot t, obtaining the head of the chain B′ = FC(Vp, t). Proposer vp extends B′ with a new
block B, and updates its canonical chain accordingly, setting chp ← B. Finally, it broadcasts the proposal
message [propose, B, Vp ∪ {B}, t, vp].

vote: Here, every validator vi that receives a proposal message [propose, B, V, t, vp] from vp merges
its view with the proposed view V, by setting Vi ← Vi ∪ V. Then, it broadcasts votes for some blocks based
on its view. We omit, for the moment, for which blocks a validator vi votes: it will become clear once we
present the full protocol.

5

merge: In this phase, every validator vi merges its view with its buffer, i.e., Vi ← Vi ∪ Bi, and sets
Bi ← ∅.

D’Amato and Zanolini [8] implement a generic propose-vote-merge protocol following the above phases,
with k = 3∆. However, we will consider k = 4∆, following the approach taken by Neu et al. [7] when
presenting Goldfish with fast confirmation, where the propose phase begins at round 4∆t, the vote phase
happens between round 4∆t+∆ and 4∆t+ 2∆, and the merge phase begins at round 4∆t+ 3∆.

Neu et al. [7] introduce the notion of active validators2: awake validators that have terminated a joining
protocol at a round r, described as it follows. When an honest validator vi wakes up at some round r ∈
(4∆(t−1)+3∆, 4∆t+3∆], it immediately receives all the messages that were sent while it was asleep, and it
adds them into its buffer Bi, without actively participating in the protocol yet. All new messages which are
received are added to the buffer Bi, as usual. Validator vi then waits for the next view-merge opportunity,
at round 4∆t + 3∆, in order to merge its buffer Bi into its view Vi. At this point, vi starts executing the
protocol. From this point on, validator vi becomes active, until either corrupted or put to sleep by the
adversary. We consider such a joining protocol when describing our propose-vote-merge protocol.

4.2 RLMD-GHOST protocol

RLMD-GHOST is a propose-vote-merge protocol first introduced by D’Amato and Zanolini [8]. It is charac-
terized by the GHOST-based [16] fork-choice FC = RLMD-GHOST (Algorithm 1), which combines vote
expiry [7] with the latest message driven (LMD) fork-choice [4]. Its filter function FILrlmd(V, t) removes all
but the latest messages within the expiry period [t − η, t) for slot t, from non-equivocating validators, i.e.,
FILrlmd = FILlmd ◦ FILη-exp ◦ FILeq.

Algorithm 1 RLMD-GHOST Fork-Choice function

1: function RLMD-GHOST(V, t)
2: return GHOST(FILrlmd(V, t), t)

3: function GHOST(V, t)
4: B ← Bgenesis

5: M ← all votes in V
6: while B has descendant blocks in V do
7: B ← arg max

B′∈V, child of B

w(B′,M)

8: // ties are broken according to a deterministic rule
9: return B

10: function FILrlmd(V, t)
11: return FILlmd(FILη-exp(FILeq(V, t)))

12: function FILlmd(V, t)
13: V ′ ← V without all but the most recent (latest) votes of each validator
14: return (V ′, t)

15: function FILη-exp(V, t)
16: V ′ ← V without all votes from slots < t− η
17: return (V ′, t)

18: function FILeq(V, t)
19: V ′ ← V without all votes by equivocators in V
20: return (V ′, t)

In particular, FILlmd(V, t) removes all but the latest votes of every validator (possibly more than one)
from V and outputs the resulting view, i.e., it implements the latest message (LMD) rule, FILη-exp(V, t)
removes all votes from slots < t− η from V and outputs the resulting view, and FILeq(V, t) removes all votes

2Observe that Neu et al. [7] actually refer to awake validators to indicate what we call active, and to dreamy validators to
indicate what we call awake (but not active)

6

by equivocating validators in V [1], i.e., validators for which V contains multiple, equivocating, votes for
some slot t. In other terms, the fork-choice function RLMD-GHOST considers the last (non equivocating)
messages sent by validators that are not older than t− η slots, in order to make protocol’s decisions.

D’Amato and Zanolini [8] proved that a propose-vote-merge protocol implementing RLMD-GHOST
fork-choice function, called RLMD-GHOST protocol, is η-reorg-resilient and η-dynamically-available. Finally,
RLMD-GHOST can support fast confirmations of honest proposals optimistically (Appendix B [8]), i.e., when
honest participation is high.

5 Protocol specification

5.1 Data structures

We consider five data types: propose, block, checkpoint, head-vote, and ffg-vote. We make no
distinctions between the network-level representation of objects and their representation in a validator’s
view, e.g., a block is both the object that is contained in a validator’s view and the one which is gossiped.
We describe the objects as tuples (data-type, . . .) with their data type as a tag, but in practice mostly
refer to them without the tag. We use dot notation to refer to the fields. For the tag, we do so simply with
.tag, for the other fields we use the generic names specified in the object descriptions below, to access the
different fields, e.g., B.t is the slot of block B. In the following, t is a slot and v a validator.

Blocks and checkpoints A block is a tuple B = (block, b, t, v), where b is a block body, i.e., the protocol-
specific content of the block 3. A checkpoint is a tuple C = (checkpoint, B, t), where B is a block and
C.t ≥ B.t.

Votes A head vote is a tuple [head-vote, B, t, v], where B is a block. An FFG vote is a tuple [ffg-vote,
C1, C2, v], where C1, C2 are checkpoints, C1.t < C2.t, and C1.B ≺ C2.B. We refer to the two checkpoints as
source and target, respectively, and to FFG votes as links between source and target. When v is clear from
context, we also write C1 → C2 for the whole vote, e.g., we say that v casts a C1 → C2 vote.

Proposals A proposal is a tuple [propose, B, V, t, v] where B is a block and V a view. We refer to V as
a proposed view.

Gossip behavior Votes and blocks are gossiped at any time, regardless of whether they are received
directly or as part of another message. For example, a validator receiving a vote also gossips the block that
it contains, and a validator receiving a proposal also gossips the blocks and votes contained in the proposed
view. Finally, a proposal from slot t is gossiped only during the first ∆ rounds of slot t.

5.2 Confirmation

A confirmation rule allows validators to identify a confirmed prefix of the canonical chain, for which safety
properties hold, and which is therefore used to define the output of the protocol. Since our protocol outputs
two chain, the available chain chAva and the finalized chain chFin, we have two confirmation rules. One is
finality, which we introduce in Section 5.3, and defines chFin. The other confirmation rule, defining chAva,
is the one adopted by RLMD-GHOST, in its variant supporting fast confirmation4. It is itself essentially
split in two rules, a slow κ-deep confirmation rule, which is live also under dynamic participation, and a fast
optimistic rule, requiring 2

3n honest validators to be awake. Both rules are employed at round 4∆t+2∆, and
chAva is updated to the highest block confirmed by either one, so that liveness of chAva only necessitates
liveness of one of the two rules.

3For simplicity, we omit a reference to the parent block. As mentioned in Section 3, we leave questions of validity implicit
4With some minor changes, as RLMD-GHOST still has 3∆ rounds per slots, by requiring an optimistic assumption on network

latency in order for fast confirmations to be live

7

5.3 FFG component

As mentioned above, a propose-vote-merge protocol is characterized by a fork-choice function, that identifies
for every slot the current head of the canonical chain for a given validator. Moreover, we described two kind
of votes that a validator vi executes in the vote phase: a head-vote, used to vote for the head of the
canonical chain, i.e., the output of the fork-choice function evaluated at the current slot, and an ffg-vote.

The FFG component of our protocol takes inspiration from Casper [3], the finality gadget adopted by the
Ethereum’s consensus protocol Gasper [4], and aims at finalizing one block per slot by counting ffg-votes
cast at a given slot.

Justification We say that a set of 2
3n distinct FFG votes C1 → C2 is a supermajority link between C1

and C2. We say that a checkpoint C is justified if there is a chain of k ≥ 0 supermajority links (Bgenesis,
0)→ C1 · · · → Ck−1 → C. In particular, (Bgenesis, 0) is justified. Finally, we say that a block B is justified if
there exists a justified checkpoint C with C.B = B.

Slashing The slashing rules are the same as in Casper FFG. Validator vi is slashable for two distinct FFG
votes (C1, C2, vi), (C3, C4, vi) if either:

1. E1 (Equivocation) C2.t = C4.t

2. E2 (Surround voting) C3.t < C1.t < C2.t < C4.t

Latest justified checkpoint and block A checkpoint is justified in a view V if V contains the chain of
supermajority links justifying it. We refer to the justified checkpoint C of highest slot C.t in V as the latest
justified checkpoint in V, or LJ (V), and to LJ (V).B as the latest justified block in V, or LJ(V). Ties are
broken arbitrarily, and the occurrence of a tie implies that n

3 validators are slashable for equivocation. For
brevity, we also use LJ i to refer to LJ (Vi), the latest justified checkpoint in the view Vi of validator vi.

Finality A checkpoint C is finalized if it is justified and there exists a supermajority link C → C′ with
C′.t = C.t+ 1. A block B is finalized if there exists a finalized checkpoint C with B = C.B.

5.4 Voting

Fork-choice Similarly to Gasper [4], we adopt a hybrid justification-respecting fork-choice, HFC, in this
case with RLMD-GHOST [8] as the underlying fork-choice, rather than LMD-GHOST. HFC(V, t) simply
starts from LJ(V), the latest justified block in V, instead of Bgenesis, and then proceeds as RLMD-GHOST,
i.e., runs GHOST using the view filtered by FILrlmd. Formally, we can define it simply by using another
view filter, FILFFG, i.e., HFC = RLMD-GHOST ◦FILFFG. FILFFG(V, t) outputs (V ′, t), where V ′ filters out
blocks in V that conflict with LJ(V). In other words, it filters out branches which do not contain LJ(V), so
LJ(V) is guaranteed to be canonical.

Algorithm 2 HFC, the justification-respecting RLMD-GHOST fork-choice

1: function HFC(V, t)
2: return RLMD-GHOST(FILFFG(V, t))

3: function FILFFG(V, t)
4: V ′ ← V \ {B ∈ V, B.tag = block : LJ(V) ̸≺ B ∧B ̸≺ LJ(V)}
5: return (V ′, t)

8

Voting rules Consider a validator vi voting at slot t. Head votes work exactly as in RLMD-GHOST, or any
propose-vote-merge protocol, i.e., validators vote for the output of their fork-choice: when it is time to vote,
validator vi casts vote [head-vote, HFC(Vi, t), t, vi]. FFG votes always use the latest justified checkpoint as
source. The target block is the highest confirmed descendant of the latest justified block, or the latest justified
block itself if there is none 5. The target checkpoint is then Ctarget = (argmaxB∈{LJi,chAva} |B|, t), and the
FFG vote of vi is [ffg-vote, LJ i, Ctarget, vi], voting for the link LJ i → Ctarget.

5.5 Protocol execution

We now present our single slot finality protocol. Note that the Propose and Head-vote phases are exactly
as in a generic propose-vote-merge protocol [8]. Moreover, a slot t in our protocol begins at round 4∆t. At
any time, the finalized chain chFini of validator vi just consists of the finalized blocks according to its view
Vi, so we omit explicit updates to chFin in the following.

Propose: At round 4∆t, proposer vp merges its view Vp with its buffer Bp, i.e., Vp ← Vp ∪ Bp, and sets
Bp ← ∅. Then, vp runs the fork-choice function HFC with inputs its view Vp and slot t, obtaining the head
of the chain B′ = HFC(Vp, t). Proposer vp extends B′ with a new block B, and updates its canonical chain
accordingly, by setting chp ← B. Finally, it broadcasts the proposal [propose, B, Vp ∪ {B}, t, vp].

Head-vote: In rounds [4∆t, 4∆t+∆], a validator vi, upon receiving a proposal message (propose, B,
V, t, vp) from vp, merges its view with the proposed view V by setting Vi ← Vi ∪ V. After that, or at round
4∆t+∆ if no proposal is received, it updates its canonical chain by setting chi ← HFC(Vi, t), and casts the
head vote (head-vote, HFC(Vi, t), t, vi).

Confirm: At round 4∆t + 2∆, a validator vi selects for fast confirmation the highest canonical block
Bfast ≺ chi such that Bi contains ≥ 2

3n votes from slot t for descendants of Bfast, from distinct validators. It

then updates its confirmed chain chAvai to the highest of Bfast and ch
⌈κ
i , the κ-deep prefix of its canonical

chain, as long as this does not result in updating chAvai to some prefix of it (we do not needlessly revert
confirmations).

ffg-vote: At round 4∆t + 2∆, after updating chAvai, a validator vi casts the FFG vote (ffg-vote,
LJ i, Ctarget, vi), where Ctarget = (arg max

B∈{LJi,chAvai}
|B|, t)

Merge: At round 4∆t + 3∆, every validator vi merges its view with its buffer, i.e., Vi ← Vi ∪ Bi, and
sets Bi ← ∅.

6 Analysis

6.1 Synchrony

Throughout this part of the analysis, we assume that < n
3 validators are ever slashable for equivocation, by

which here we mean signing multiple head votes for a single slot, rather than violating E1. Observe that,
in RLMD-GHOST with fast confirmations, this assumption is strictly needed for safety (and only for clients
which use fast confirmations), but for example not for reorg resilience or liveness, because fast confirmations
do not affect the canonical chain. On the other hand, the protocol we present here utilizes confirmations as a
prerequisite for justification, and justification does affect the canonical chain, since HFC filters out branches
conflicting with the latest justified block. Therefore, we require this assumption for all of the properties
which we are going to prove. To avoid stating it repeatedly, we further restrict η-compliant executions to
those executions in which the assumption holds.

Now, we state without proof a property that follows from the usage of the view-merge technique, since
it enables proposers to synchronize the view of honest voters with theirs. It corresponds to Lemma 2 as

5Were we to change the confirmation rule so that the latest justified block is always confirmed, the target block for FFG
votes would then always simply be the tip of chAva. Given that we take confirmation as a prerequisite for justification, to ensure
that the finality gadget does not interfere with the security of the available chain, this is a very natural choice, because it is
the highest block which we can attempt to justify. Changing the confirmation rule in this manner is entirely possible, precisely
because a justified block must have been confirmed by at least one honest validator, so it is safe to confirm it. We only decide
to not do so in order to minimize the difference between this protocol and RLMD-GHOST, which simplifies proving that they
are equivalent under synchrony, as we do in Theorem 3

9

Algorithm 3 Propose-vote-merge protocol for validator vi

1: State
2: Vi ← {Bgenesis}: view of validator vi
3: Bi ← ∅: buffer of validator vi
4: chi ← Bgenesis: canonical chain of validator vi
5: t← 0: the current slot
6: r ← 0: the current round

propose
7: at r = 4∆t do
8: if vi = vtp then
9: Vi ← Vi ∪ Bi

10: Bi ← ∅
11: B′ ← FC(Vi, t)
12: B ← NewBlock(B′)
13: chi ← B
14: send message [propose, B, Vi ∪ {B}, t, vi] through gossip

Head-vote
15: at r = 4∆t+∆ do
16: chi ← FC(Vi, t)
17: send message [head-vote, FC(Vi, t), t, vi] through gossip

Confirm and ffg-vote
18: at r = 4∆t+ 2∆ do
19: Bfast ← Bgenesis

20: Sfast ← {B ≺ chi : |{vi : ∃B′ ≻ B [head-vote, B′, t, vi] ∈ Bi}| ≥ 2
3
n}

21: if Sfast ̸= ∅ then:
22: Bfast ← arg max

Sfast

|B|

23: if ¬(Bfast ≺ chAvai ∧ ch
⌈κ
i ≺ chAvai) then:

24: chAvai ← arg max
ch∈{ch⌈κi ,Bfast}

|ch|

25: Ctarget ← (arg max
B∈{LJi,chAvai}

|B|, t)

26: send message [ffg-vote, LJ i, Ctarget, vi] through gossip
merge

27: at r = 4∆t+ 3∆ do
28: Vi ← Vi ∪ Bi

29: Bi ← ∅
30: upon receiving a gossiped message [propose, B, V, t, vtp] do
31: Bi ← Bi ∪ {B}
32: if r ∈ [4∆t, 4∆t+∆] then
33: Vi ← Vi ∪ V
34: upon receiving a gossiped message V = [head-vote, B, t′, vi] from vi do
35: Bi ← Bi ∪ {V }
36: upon receiving a gossiped block B = (block, b, t′, vi) from vi do
37: Bi ← Bi ∪ {B}

presented by D’Amato and Zanolini [8], with an addition regarding synchronization of the latest justified
checkpoint.

Lemma 1. Suppose that t is an honest slot with an active proposer and that network synchrony holds in
rounds [4∆t−∆, 4∆t+∆]. Say the proposed block is B, and the latest justified checkpoint in the view of the
proposer is LJ p. Then, at round 4∆t+∆, all active validators broadcast a head vote for the honest proposal
B of slot t. Moreover, LJ i = LJ p for any such active validator vi.

Our single slot finality protocol 3 implements the HFC fork-choice function (Algorithm 2), dealing with
checkpoints and justifications. However, one could implement it also with different fork-choice functions. In
particular, if we substitute HFC with RLMD-GHOST (with expiry period of length η), i.e., if we ignore
justifications and consider the vanilla fork-choice function introduced by D’Amato and Zanolini [8], then

10

the resulting protocol is equivalent to the RLMD-GHOST protocol with fast confirmation (Appendix B [8]),
because FFG votes have no effect at all, and as such it is η-reorg-resilient, and η-dynamically-available.
Moreover, the following two results about fast confirmations also apply.

Theorem 1 (Reorg resilience of fast confirmations). Consider an η-compliant execution. A block fast con-
firmed by an honest validator at a slot t after GST is always in the canonical chain of all active validators at
rounds ≥ 4∆(t+ 1) + ∆.

Theorem 2 (Liveness of fast confirmations). An honest proposal B from a slot t after GST + ∆ in which
|Ht| ≥ 2

3n is fast confirmed by all active validators at round 4∆t+∆.

We show that, under synchrony, i.e., with GST = 0, these properties are preserved by our justification-
respecting protocol, which uses HFC instead. To do so, we show that η-compliant executions with FC =
RLMD-GHOST (with expiry period of length η) and with FC = HFC are equivalent, meaning the transcript
is the same regardless of which fork-choice function is used. All properties of the protocol with FC =
RLMD-GHOST in such η-compliant executions then also apply to the protocol with FC = HFC. In
particular, it is also η-reorg-resilient and η-dynamically-available, and it also satisfies reorg resilience and
liveness of fast confirmations, i.e., Theorems 1 and Theorem 2. From now on, when presenting FC =
RLMD-GHOST, we assume an expiry period of length η. This implies that also FC = HFC has the same
expiry period.

Theorem 3 (Execution equivalence). Consider an η-compliant execution with GST = 0 and FC = HFC,
and the same execution with FC = RLMD-GHOST. The two transcripts correspond exactly.

Proof. Since the only difference between the two protocols is the fork-choice function FC, the two transcripts
correspond as long as the outputs of HFC and RLMD-GHOST obtained by active validators are always
the same in the two executions. FC is used only twice in Algorithm 3, in Line 11 for proposing, and in
Lines 16-17, with the same input, for broadcasting a head vote. We are going to prove by induction that the
canonical chain of an active validator at any voting round is the same in both executions. Since Line 16 sets
chi ← FC(Vi, t), and this value is the same as in Line 17, we only need to show that the fork-choice output in
Line 11 coincides in the two executions as well. In Line 17, an honest validator uses the fork-choice output to
construct their head vote, so head votes correspond in both executions. Moreover, the view-merge property
applies in both executions, so honestly proposed blocks correspond to the honest head votes from their slot.
Therefore, head votes coinciding in the two executions implies that honestly proposed blocks coincide as well.
Since honestly proposed blocks extend the output of the fork-choice at Line 11, this output is then also the
same in both executions, completing the proof. We now carry out the induction.

Induction hypothesis: At any slot t′ ≤ t and for r = 4∆t′ + ∆, chri coincides in both executions, for
any active validator i.

Base case: In rounds [0,∆], the two executions are exactly the same, because the only justified checkpoint
is Bgenesis, so HFC = RLMD-GHOST. Therefore, the statement holds for t = 0.

Inductive step: Suppose now that the statement holds for t, and consider round r = 4∆(t + 1) + ∆.
Consider an active validator vi with view Vi at round r, and latest justified block B = LJ(Vi). Let t′ be
minimal such that there exists a justified checkpoint C = (B, t′), i.e., slot t′ is the first slot in which block B
was justified. The supermajority link with target C contains at least one FFG vote from an honest validator
vk. By minimality of t′, B could not have been already justified in the view of vk when broadcasting an
FFG vote at slot t′. Therefore, by Lines 25-26 of Algorithm 3, it must be the case that B ≺ chAvak at
round 4∆t′ + 2∆, i.e., that it had been confirmed by vk. If it was fast confirmed at a slot ≤ t′, then, in the

execution with FC = RLMD-GHOST, Theorem 1 implies that B ≺ chr
′

j for all active validators vj at any

round r′ ≥ 4∆(t′ + 1) + ∆, and so in particular that B ≺ chri , since t > t′. If instead B ≺ ch
⌈κ
k at round

4∆t′ + 2∆, i.e., B is confirmed by vk due to being κ-deep in its canonical chain, then with overwhelming
probability there exists a pivot slot t′′ ∈ [t′ − κ, t′) (Lemma 3 [8]), with proposed block B′. In the execution

with FC = RLMD-GHOST, η-reorg-resilience then implies that B′ ≺ chr
′

j for all active validators vj at

any round r′ ≥ 4∆t′′ + ∆. In particular, B′ ≺ chr
′

k at round r′ = 4∆t′ + 2∆, and B′ ≺ chri . The former
implies B ≺ B′, since B.t ≤ t′ − κ ≤ B′.t, and we then have B ≺ B′ ≺ chri . Regardless of how B has
been confirmed by vk, we have B ≺ chri . Therefore, LJ(Vi) = B ≺ RLMD-GHOST(Vi, t + 1), which in

11

turn implies RLMD-GHOST(Vi, t+1) = RLMD-GHOST ◦FILFFG(Vi, t+1) = HFC(Vi, t+1). Therefore,
after vi updates its canonical chain chi at round r by setting chi ← FC(V, t+ 1), with FC dependent on the
execution, chi is the same in both executions.

6.2 Partial synchrony

Throughout this section, we assume that f < n
3 . First, we prove that the finalized chain is accountably

safe, exactly as done in Casper [3]. Then, we show that honest proposals made after max(GST,GAT) + ∆
are justified within their proposal slot, which implies liveness of the finalized chain. This, together with
Theorem 3, show that our protocol is an η-secure ebb-and-flow protocol.

Theorem 4 (Accountable safety). The finalized chain is accountably safe, i.e., two conflicting finalized blocks
imply that at least n

3 adversarial validators can be detected to have violated either E1 or E2.

Proof. We assume throughout that there are no double justifications, i.e., there are no checkpoints C ≠ C′
with C.t = C′.t, and we refer to this as the non-equivocation assumption. If that’s not the case, clearly
≥ n

3 validators are slashable for violating E1. Consider two conflicting finalized blocks B and B′. By
definition, there are also finalized checkpoints C and C′ with B = C.B, B′ = C′.B. Say C is finalized by
the chain of supermajority links (Bgenesis, 0) → C1 · · · → Ck = C → Ck+1, with Ck+1.t = C.t + 1, and
C′ by the chain (Bgenesis, 0) → C′1 · · · → C′k′ = C′ → C′k′+1, with C′k′+1.t = C′.t + 1. Let ti = Ci.t, and
t′i = C′i.t. By the non-equivocation assumption, tk ̸= t′k, and without loss of generality we take tk < t′k. Let
j = min{i ≤ k′ : tk < t′i}, so tk < t′j ≤ t′k′ , and t′j−1 ≤ tk by minimality of t′j . By the non-equivocation
assumption, t′j = tk+1 implies that Ck+1 = C′j . We then have B = C.B ≺ Ck+1.B = C′j .B ≺ C′.B = B′,
contradicting that B and B′ are conflicting. Therefore, t′j > tk + 1 = tk+1 as well. Similarly, t′j−1 < tk.
Therefore, we have t′j−1 < tk < tk+1 < t′k, i.e., C′j−1.t < Ck.t < Ck+1.t < C′j .t. The intersection of the two
sets of voters of the supermajority links Ck → Ck+1 and C′j−1 → C′j contains at least n

3 validators, which are
then slashable for violating E2.

Lemma 2. If an honest proposer vp proposes a block B at a slot t after max(GST,GAT) +∆, and the latest
justified checkpoint in the view of the proposer is LJ p, then the checkpoint (B, t) is justified in all honest
views at round 4∆t+ 3∆, by supermajority link LJ p → (B, t).

Proof. Since t is after GAT + ∆, all > 2
3n honest validators are awake since at least round 4∆t − ∆, so at

slot t they have completed the joining protocol and are active. Moreover, the view-merge property applies
to all of them. Consider now an honest validator vi. By the view-merge property, vi broadcasts a head vote
for B at round 4∆t+∆. Also by the view-merge property, LJ i = LJ p at round 4∆t+∆, but LJ i does not
change until round 4∆t+ 3∆, since Vi does not. Therefore, LJ i = LJ p at round 4∆+ 2∆. By that round,
all ≥ 2

3 honest head votes for B are received by all honest validators, including vi. Since also B ≺ chi, vi fast
confirms B, and thus broadcasts an FFG vote LJ i → (B, t) = LJ p → (B, t). All honest validators receive
such votes by round 4∆t+3∆, and merge them into their view then. Therefore, checkpoint (B, t) is justified
in all honest views at that round.

Theorem 5 (Liveness). Consider two consecutive honest slots t and t+ 1 after max(GST,GAT) + 4∆. The
block B proposed at slot t is finalized at the end of slot t+ 1.

Proof. By Lemma 2, (B, t) is justified in all honest views at round 4∆t+ 3∆. Since at the beginning of slot
t+1 there cannot be any justified checkpoint with slot > t, and there cannot be any other justified checkpoint
with slot t, (B, t) is therefore the latest justified block in the view of the proposer of slot t + 1. B is then
canonical in its view, and it proposes a block B′ which extends B. Again by Lemma 2, (B′, t+1) is justified
in all honest views at round 4∆(t + 1) + ∆, by the supermajority link (B, t) → (B′, t + 1). Therefore, B is
finalized in all honest views.

7 Single slot finality

The protocol from Algorithm 3 is a an η-secure ebb-and-flow protocol (satisfying η-dynamic-availability
instead of dynamic availability) which (at best) finalizes a block in every slot, but it does not achieve single

12

slot finality, i.e., it cannot finalize a proposal within its proposal slot. At best, it lags behind by one slot,
finalizing a proposal from slot t at the end of slot t + 1. A straightforward extension of our protocol which
achieves single slot finality is one with 5∆ rounds per slot, allowing for an additional FFG voting phase.
This would be very costly in Ethereum, for two reasons. First, it would in practice significantly increase the
slot time, because each voting round requires aggregating hundreds of thousands (if not millions) of BLS
signatures, likely requiring a lengthier multi-step aggregation process. Moreover, it would be expensive in
terms of bandwidth consumption and computation, because such votes would have to all be gossiped and
verified by each validator, costly even if already aggregated.

We decide to describe here an alternative way to enhance to protocol for the purpose of achieving single
slot finality, without suffering from these drawbacks. We introduce a new type of message, acknowledgments,
and a new slashing condition alongside them. Acknowledgments do not influence the protocol in any way,
except in case of slashing, and are mainly intended to be consumed by external observers which want to
have the earliest possible finality guarantees. Therefore, they do not need to be gossiped to and verified by
all validators. They can then simply be gossiped in smaller sub-networks (similar to the attestation subnets
which Ethereum employs today), requiring limited bandwidth and verification resources. If an observer wants
to have faster finality guarantees than they could have by simply following the chain or listening to the global
gossip, they can opt to participate in all such sub-networks, and collect all acknowledgments. As doing so is
permissionless, it can also be expected that aggregate acknowledgments, or equivalent proofs, might become
available through some other channels. In essence, an acknowledgment is just a self-imposed constraint,
preventing a validator which knows of a justification from later ignoring it.

Acknowledgment An acknowledgment is a tuple [Ack, C, t, v], where C is a checkpoint with C.t = t. We
also refer to this as an acknowledgment of C. A supermajority acknowledgment of C is a set of ≥ 2

3n distinct
acknowledgments of C.

Acknowledgment broadcasting protocol At round 4∆t + 3∆, after merging the buffer, validator vi
broadcasts the acknowledgment [Ack,LJ i, t, vi] if LJ i.t = t, i.e., if LJ i has been justified in the current
slot.

Finality with acknowledgments An observer which receives a supermajority acknowledgment of a jus-
tified checkpoint C may consider C to be finalized.

Slashing rule for finality voting When validator vi broadcasts an acknowledgment (C, t), it acknowledges
that, at the end of slot t, it knows about C being justified. Since the FFG voting rules prescribe that the
source of an FFG vote should be the latest known justified checkpoint, subsequent FFG votes with a source
whose slot is < t constitute a provable violation, which is analogous to surround voting. Accordingly, we
formulate a third slashing rule, which ensures that finality via a supermajority acknowledgment is accountably
safe. Validator vi is slashable for an FFG vote (C1, C2) and an acknowledgment (C, t), if they satisfy E3, i.e.,
C1.t < C.t < C2.t. In other words, the link C1 → C2 surrounds the acknowledged checkpoint.

Theorem 6 (Accountable safety with acknowledgments). The finalized chain is accountably safe even when
it is updated via acknowledgments as well, i.e., two conflicting finalized checkpoints imply that more than n

3
adversarial validators can be detected to have violated E1, E2 or E3.

Proof. The proof largely follows that of Theorem 4. We again consider two conflicting finalized blocks B and
B′, and corresponding finalized checkpoints C and C′. Regardless of whether finalization is through a super-
majority link or a supermajority acknowledgment, C and C′ have to be justified, by chains of supermajority
links (Bgenesis, 0) → C1 · · · → Ck = C and (Bgenesis, 0) → C′1 · · · → C′k′ = C′. Let ti = Ci.t, and t′i = C′i.t.
By the non-equivocation assumption, we again have tk ̸= t′k, and without loss of generality we take tk < t′k.
As before, we let j = min{i ≤ k′ : tk < t′i}, so tk < t′j ≤ t′k′ , and t′j−1 ≤ tk by minimality of t′j . Moreover,
also by the non-equivocation assumption, t′j−1 < tk. If C is finalized through a supermajority link, the proof
of Theorem 4 already shows that at least n

3 validators must have violated E2, and it is still applicable here
because it does not use the last supermajority link in the chain finalizing C′ (which may or may not exist
here). If instead C is finalized through a supermajority acknowledgment, i.e., there are 2

3n acknowledgments
of C, then at least n

3 validators have violated E3, because C′j−1.t < C.t < C′j .t.

13

Theorem 7 (Single Slot Finality). An honest proposal from a slot t after max(GST,GAT) + 4∆ is finalized
in round 4∆(t+ 1) by a supermajority acknowledgment.

Proof. Say the honestly proposed block is B. By Lemma 2, C = (B, t) is justified in all honest views at round
4∆t + 3∆. Therefore, all honest validators broadcast an acknowledgment of C. Any observer which listens
for acknowledgments would receive all such messages by rounds 4∆(t+1), and thus possess a supermajority
acknowledgment of C. They may then consider C, and thus also B, to be finalized.

References

[1] Aditya Asgaonkar. Remove equivocating validators from fork choice consideration. URL: https://
github.com/ethereum/consensus-specs/pull/2845.

[2] Vitalik Buterin. Paths toward single-slot finality, 2023. URL: https://notes.ethereum.org/

@vbuterin/single_slot_finality.

[3] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, abs/1710.09437, 2017.
URL: http://arxiv.org/abs/1710.09437, arXiv:1710.09437.

[4] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok
Sin, Ying Wang, and Yan X Zhang. Combining GHOST and Casper. arXiv:2003.03052 [cs.CR], 2020.
URL: https://arxiv.org/abs/2003.03052.

[5] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Margo I. Seltzer and Paul J.
Leach, editors, Proceedings of the Third USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, pages 173–186. USENIX
Association, 1999. URL: https://dl.acm.org/citation.cfm?id=296824.

[6] Francesco D’Amato. View-merge as a replacement for proposer boost. URL: https://ethresear.ch/
t/view-merge-as-a-replacement-for-proposer-boost/13739.

[7] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No more attacks on proof-of-stake
ethereum? CoRR, abs/2209.03255, 2022. arXiv:2209.03255, doi:10.48550/arXiv.2209.03255.

[8] Francesco D’Amato and Luca Zanolini. Recent latest message driven ghost: Balancing dynamic avail-
ability with asynchrony resilience, 2023. URL: https://arxiv.org/abs/2302.11326, doi:10.48550/
ARXIV.2302.11326.

[9] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 35(2):288–323, 1988.

[10] Dahlia Malkhi, Atsuki Momose, and Ling Ren. Byzantine consensus under fully fluctuating participation.
IACR Cryptol. ePrint Arch., page 1448, 2022. URL: https://eprint.iacr.org/2022/1448.

[11] Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022, pages 2295–2308.
ACM, 2022. doi:10.1145/3548606.3559347.

[12] Joachim Neu, Ertem Nusret Tas, and David Tse. A balancing attack on Gasper,
the current candidate for Eth2’s beacon chain. URL: https://ethresear.ch/t/

a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079.

[13] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution of the availability-
finality dilemma. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA,
24-27 May 2021, pages 446–465. IEEE, 2021.

[14] Rafael Pass and Elaine Shi. The sleepy model of consensus. In ASIACRYPT (2), volume 10625 of
Lecture Notes in Computer Science, pages 380–409. Springer, 2017.

14

https://github.com/ethereum/consensus-specs/pull/2845
https://github.com/ethereum/consensus-specs/pull/2845
https://notes.ethereum.org/@vbuterin/single_slot_finality
https://notes.ethereum.org/@vbuterin/single_slot_finality
http://arxiv.org/abs/1710.09437
http://arxiv.org/abs/1710.09437
https://arxiv.org/abs/2003.03052
https://dl.acm.org/citation.cfm?id=296824
https://ethresear.ch/t/view-merge-as-a-replacement-for-proposer-boost/13739
https://ethresear.ch/t/view-merge-as-a-replacement-for-proposer-boost/13739
http://arxiv.org/abs/2209.03255
https://doi.org/10.48550/arXiv.2209.03255
https://arxiv.org/abs/2302.11326
https://doi.org/10.48550/ARXIV.2302.11326
https://doi.org/10.48550/ARXIV.2302.11326
https://eprint.iacr.org/2022/1448
https://doi.org/10.1145/3548606.3559347
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079
https://ethresear.ch/t/a-balancing-attack-on-gasper-the-current-candidate-for-eth2s-beacon-chain/8079

[15] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar, Ertem Nusret Tas, and
David Tse. Three attacks on proof-of-stake ethereum. In International Conference on Financial Cryp-
tography and Data Security, FC ’22, 2022. Forthcoming. URL: https://arxiv.org/abs/2110.10086.

[16] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in Bitcoin. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 507–527. Springer, 2015.

[17] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. Hotstuff: BFT
consensus with linearity and responsiveness. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019, pages 347–356. ACM, 2019.

[18] Vlad Zamfir. Casper the friendly ghost. a correct-by-construction blockchain consensus protocol. URL:
https://github.com/vladzamfir/research/blob/master/papers/CasperTFG/CasperTFG.pdf.

15

https://arxiv.org/abs/2110.10086
https://github.com/vladzamfir/research/blob/master/papers/CasperTFG/CasperTFG.pdf

	Introduction
	Related works
	Model and Preliminary Notions
	System model
	Validator internals
	Security

	Prerequisites
	Propose-vote-merge protocols
	RLMD-GHOST protocol

	Protocol specification
	Data structures
	Confirmation
	FFG component
	Voting
	Protocol execution

	Analysis
	Synchrony
	Partial synchrony

	Single slot finality

