
BIP32-Compatible Threshold Wallets
Poulami Das 2 Andreas Erwig 1 Sebastian Faust 1 Julian Loss 2

Siavash Riahi 1

1 TU Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

2 CISPA Helmholtz Center of Information Security, Germany
lossjulian@gmail.com
poulami.das@cispa.de

Abstract
Cryptographic wallets have become an essential tool to secure users’ secret keys and consequently

their funds in Blockchain networks. The most prominent wallet standard that is widely adopted
in practice is the BIP32 specification. This standard specifies so-called hierarchical deterministic
wallets, which are organized in a tree-like structure such that each node in the tree represents a
wallet instance and such that a parent node can derive a new child node in a deterministic fashion.
BIP32 considers two types of child nodes, namely non-hardened and hardened nodes, which differ in
the security guarantees they provide. While the corruption of a hardened wallet does not affect the
security of any other wallet instance in the tree, the corruption of a non-hardened node leads to a
breach of the entire scheme.

In this work, we address this significant drawback of non-hardened nodes by laying out the design
for the first hierarchical deterministic wallet scheme with thresholdized non-hardened nodes. We
first provide a game-based notion of threshold signatures with rerandomizable keys and show an
instantiation via the Gennaro and Goldfeder threshold ECDSA scheme (CCS’18). We further observe
that the derivation of hardened child wallets according to the BIP32 specification does not translate
easily to the threshold setting. Therefore, we devise a new and efficient derivation mechanism for
hardened wallets in the threshold setting that satisfies the same properties as the original BIP32
derivation mechanism and therefore allows for efficient constructions of BIP32-compatible threshold
wallets.

1 Introduction
Blockchain technologies gained huge popularity in the past few years as they provide a new decentralized
mechanism to process payments without relying on a centralized authority. The main cryptographic
building block in virtually all Blockchains is a digital signature scheme, which allows parties in Blockchain
networks to authenticate transactions. As an example, if Alice wishes to make a payment to Bob via the
Blockchain, she can sign a transaction specifying her address which is derived from her signing public key
pkA, Bob’s address which is derived from his public key pkB and the amount being spent. Alice can then
sign the transaction using her secret key skA, so that the final transaction has the form “(pkA pays c
coins to pkB), σ” where σ is Alice’s signature on the transaction under her secret key skA. Essentially,
Alice’s secret key allows to spend all of her funds, which makes it crucial for users in a Blockchain network
to protect their secret keys from attackers. In order to do so, a cryptocurrency wallet guarantees the
secure storage and maintenance of a user’s signing keys. While there were several different proposals
for such wallet schemes [MPs19, AGKK19, KMOS21], the most widely used in practice is the BIP32
specification [Wik18], which outlines the design of hierarchical deterministic wallets.

Hierarchical Deterministic Wallets A hierarchical deterministic wallet scheme is organized in a tree-
like structure, where one root wallet deterministically derives child wallets which in turn deterministically
derive further child wallets. Each wallet in the tree is identified by an ID and consists of a signing secret
and public key pair (skID, pkID) as well as a so-called chaincode chID. BIP32 considers two types of child

wallets, non-hardened and hardened child wallets, which differ only in how they are derived from the
parent. More concretely, a parent wallet identified by ID derives a non-hardened wallet with identifier ID′
by first computing (ρ, chID′)← H(pkID, chID, ID′) and then skID′ ← skID + ρ and pkID′ ← pkID · gρ where H
is a cryptographic hash function. The values (skID′ , pkID′) and chID′ then form the key pair and chaincode
of the non-hardened child wallet. In contrast, the derivation of a hardened wallet differs from the above in
the sense that the computation of ρ and chID′ is carried out as (ρ, chID′)← H(skID, chID, ID′), i.e., it uses
the parent’s secret key skID as input to the hash function evaluation instead of its public key pkID. BIP32
considers these two different types of child wallets as a trade-off between usability and security. On the
one hand, the derivation of a hardened wallet’s public key requires knowledge of the parent secret key
skID, but provides strong security guarantees since its corruption does not affect the security of the parent
node and the remaining wallets in the tree. On the other hand, the derivation of a non-hardened wallet’s
public key can be done by any party knowing pkID and chID, i.e., without knowledge of the parent secret
key. This is particularly useful in the hot/cold setting (see below), where the secret key is stored in an
offline device and therefore not accessible at any time. However, the corruption of a single non-hardened
wallet breaks the security of the entire wallet scheme, which poses a significant security risk and severely
restricts the usage of non-hardened wallets in practice.

Hot/Cold Setting Hierarchical deterministic wallets were first formally modeled and analyzed by Das
et al. [DEF+21]. In their work, the authors propose to implement non-hardened wallets in the hot/cold
wallet setting in order to mitigate the risk of non-hardened wallets being corrupted. In this setting, a
non-hardened wallet consists of two devices, a hot wallet and a cold wallet. The hot wallet is permanently
connected to the Internet and stores the public key and the chaincode whereas the cold wallet stores
the secret key and the chaincode and remains offline most of the time. The assumption is then that an
adversary cannot corrupt the cold wallet (and therefore does not learn the secret key) since it is mostly
offline. However, this assumption might not hold where, e.g., an adversary obtains physical access to the
cold wallet.

1.1 Our Contribution
In this work, we show how to guarantee the security of a BIP32 wallet scheme without having to implement
non-hardened nodes in the hot/cold setting. To this end, we consider thresholdizing non-hardened nodes,
s.t. each node consists of several devices where each of them stores a share of the signing secret key. This
design choice allows to guarantee security even if a subset of the devices are corrupted. At a high level,
our idea is to instantiate non-hardened wallets with a (t, n)-threshold signature scheme such that each
non-hardened wallet is “split” into n different devices, each of which stores only a share of the signing
secret key. As we are using a (t, n)-threshold signature scheme, at least t + 1 devices are required to sign
a message. Simultaneously, the secret key of the non-hardened wallet remains secure as long as at most t
devices are corrupted. All n devices store the public key and chaincode, s.t. only a single device can
derive a non-hardened child public key without having to interact with the remaining n− 1 devices. In
the following, we summarize our contribution.

Threshold Signature Schemes with Rerandomizable Keys Das et al. [DEF+21] showed that one
can generically construct hierarchical deterministic wallets from signature schemes with rerandomizable
keys. Such signature schemes allow to deterministically rerandomize the secret/public key pair of a
signature scheme such that the rerandomized key pair constitutes again a valid signing key pair. In our
threshold setting, we therefore require a threshold signature scheme with rerandomizable keys. To this end,
we first provide a game-based definition of such a primitive and then show an instantiation based on the
threshold ECDSA scheme of Gennaro and Goldfeder [GG18]. We intentionally choose this scheme for the
following two reasons: (1) it is a relatively simple scheme, i.e., it does not include advanced features such as
offline signing or proactive/adaptive security which significantly increase the complexity of other threshold
ECDSA schemes; (2) several threshold ECDSA schemes ([CGG+20],[DMZ+21],[CCL+20],[CCL+21])
directly build upon the protocol of Gennaro and Goldfeder, improving either its efficiency, functionality,
or security. Since the general idea of these schemes is similar to the original scheme of Gennaro and
Goldfeder, we believe that our results can be extended to these schemes as well. We leave exploring such
extensions as an interesting direction for future work.

2

(Non-)Hardened Node Derivation As our main contribution, we observe that the (non-)hardened
derivation mechanism as specified by BIP32 is not suitable for the threshold setting. In particular the
hardened node derivation cannot easily be translated to the threshold setting due to the following issue: As
mentioned above, the hardened node derivation in BIP32 requires to compute a hash function evaluation
on input the secret key of the parent node (and some additional inputs). In the threshold setting, however,
the secret key is shared among n devices and hence, adhering to the hardened node derivation of BIP32
would require all n devices to run an interactive multi-party computation (MPC) protocol which securely
computes this hash function evaluation. This is however highly inefficient and hence not a practical
solution. Our main technical contribution is to provide an alternative and highly efficient hardened node
derivation mechanism that still satisfies all properties of the hardened node derivation as specified by
BIP32.

Our mechanism uses a (non-interactive) threshold verifiable random function (TVRF) [Dod03], which
allows the n non-hardened node devices to deterministically and efficiently compute a pseudorandom
value. This value can be used by the hardened node as input to the key generation algorithm of a
(non-threshold) signature scheme to deterministically generate its keys. However, this approach has two
important drawbacks: (1) all non-hardened wallets need to store an additional secret/public key pair for
the TVRF, even if a wallet never generates a hardened child. In particular, in the threshold setting, each
of the n devices of a non-hardened wallet must store a share of the TVRF secret/public key. This wastes
substantial amount of storage in the wallets which are typically memory restricted; and (2) the TVRF
keys must be derived deterministically from the root throughout the entire wallet tree similarly to the
signing keys, which results in significant communication overhead.

We overcome these drawbacks by re-using the signing key pair of non-hardened nodes for the TVRF.
While it is usually not recommended to re-use the same secret key over multiple cryptographic primitives,
we prove that in our concrete case re-using the same secret key does not compromise security. This
constitutes the main technical contribution of our work. To this end, we first formally define security
properties for the joint threshold signature/TVRF scheme, and we then prove that the combined scheme
satisfies our properties. The main challenge in our proof is that we must reduce the security of the joint
scheme to the security of the underlying TVRF scheme. The difficulty here is that an adversary against
the joint scheme is allowed to receive signatures under the schemes’ secret key, while the reduction to the
TVRF security does not obtain access to a signing oracle. The reduction therefore must simulate the
signing protocol to the adversary in the joint scheme without having access to a signing oracle itself.

1.2 Related Work
Cryptographic Wallets There has been a plethora of works on cryptographic wallets such as [MPs19,
AGKK19, CEV14, KMOS21]. We focus on hierarchical deterministic wallets, which have been extensively
researched in the past. Gutoski and Stebila [GS15] introduced a hierarchical deterministic wallet scheme
that, however, deviates from the BIP32 standard. Later, Das et al. [DFL19] gave the first formal analysis
of deterministic wallets in the hot/cold setting and provided a construction based on multiplicatively
rerandomizable ECDSA. The model of deterministic wallets by Das et al. [DFL19] has been extended
to the post-quantum setting by Alkadri et al. [ADE+20]. Alkadri et al.’s work was later followed-up by
Hu [?]. Luzio et al. [LFA20] presented a hierarchical deterministic wallet scheme, which is however not
compatible with Bitcoin. The most relevant work for our results is the paper by Das et al. [DEF+21]
which analyzes the security of hierarchical deterministic wallets that comply with the BIP32 standard.
As mentioned previously, Das et al. show that such wallets can be constructed generically from signature
schemes with rerandomizable keys. Recently, Yin et al. [YLY+22] proposed a model for hierarchical
deterministic wallets supporting stealth addresses. However, their construction is incompatible with
Bitcoin as it relies on bilinear maps. Finally, Erwig and Riahi [ER22] proposed deterministic wallets with
support for adaptor signatures.

Threshold ECDSA In recent years, there has been huge interest on threshold ECDSA (e.g., [Lin17,
LN18, CGG+20, DMZ+21, CCL+20, CCL+21, BMP22]). For a more in-depth comparison of different
threshold ECDSA schemes, we refer to the survey of Aumasson et al. [AHS20]. As mentioned above, our
work is based on the threshold ECDSA scheme of Gennaro and Goldfeder [GG18]. A recent work by Groth
and Shoup [GS22] introduced a threshold ECDSA scheme with additive key rerandomization according
to the BIP32 specification. However, the authors do not consider the derivation of hardened nodes in the

3

threshold setting, which is the main focus of our paper. Groth and Shoup analyze their scheme in the
ideal/real world setting w.r.t. an ECDSA-specifc functionality, whereas we give a general game-based
definition for threshold signature schemes with rerandomizable keys and show that the construction of
Gennaro and Goldfeder [GG18] can be extended to satisfy our definition. Finally, their scheme is rather
complex, whereas we are aiming for a simple threshold ECDSA scheme.

2 Preliminaries
Notation. We use s $← H to denote the uniform random sampling of a value s from a set H. By [l] for
an integer l, we denote the set of integers {1, · · · , l} and for an algorithm A, we denote by y ← A(x) the
execution of A on input x that outputs y. We use the notation y ∈ A(x) to denote that y is an element
in the set of possible outputs of an execution of A on input x. Throughout our paper, we often avoid
explicitly specifying public parameters par. Given two strings a and b, we write a = (b, ·) if b is a prefix of
a. For a set of n parties {P1, · · · , Pn} and an interactive algorithm Π, we denote by ⟨Π(x1), · · · , Π(xn)⟩
the joint execution of Π by all parties Pi for i ∈ [n] with respective inputs xi.

2.1 Interactive Threshold Signature Scheme
In the following, we recall the definition of interactive threshold signature schemes.

Definition 2.1 (Interactive Threshold Signature Scheme). An interactive (t, n)-threshold signature
scheme TSig is executed among a set of n parties {P1, · · · , Pn} and consists of a tuple of procedures
TSig = (Gen, TSign, Verify) which are defined as follows:

• Gen(1κ, t, n): The probabilistic key generation algorithm takes as input a security parameter κ and two
integers t, n ∈ N such that t < n. It outputs a public key pk and a set of secret key shares {sk1, · · · skn}
such that each party Pi obtains pk and ski.

• TSign(ski, m): The probabilistic signing procedure takes as input a message m and a secret key share
ski for i ∈ [n]. It outputs either a signature σ or ⊥.

• Verify(pk, m, σ): The deterministic verification algorithm takes as input a public key pk, a message m
and a signature σ and outputs a bit 0/1.

Correctness. An interactive (t, n)-threshold signature scheme TSig is correct if for all κ ∈ N, all t, n ∈ N
with t < n, all ({sk1, · · · , skn}, pk)← Gen(1κ, t, n), and all m ∈ {0, 1}∗, it holds that Pr[Verify(pk, m, σ) =
1], where σ ← ⟨TSign(sk1, m), · · · , TSign(skn, m)⟩ = 1.

Definition 2.2 (Unforgeability of interactive threshold signature schemes). An interactive (t, n)-threshold
signature scheme TSig is unforgeable if no PPT adversary A wins game th-ufcma as described below with
more than negligible advantage. We define A’s advantage in game th-ufcmaTSig as AdvAth-ufcmaTSig

:=
Pr[th-ufcmaATSig = 1].

Game th-ufcmaTSig:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes a list SigList← {ϵ} and executes ({sk1, · · · , skn}, pk)← TSig.Gen(1κ, t, n). Then
A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following Sign oracle: On input message m, the oracle and the
adversary jointly execute the procedure TSig.TSign, where the oracle runs all honest parties Pi on
input (ski, m). The message m is then stored in SigList.

• Eventually, the adversary outputs a forgery σ∗ and a message m∗. The adversary wins the game, if the
following conditions hold: (1) TSig.Verify(pk∗, m∗, σ∗) = 1 and (2) m∗ /∈ SigList.

4

2.2 Signature Scheme with Honestly Rerandomizable Keys
The notion of signature schemes with rerandomizable keys has first been introduced by Fleischhacker et
al. [FKM+16].

Definition 2.3 (Signature Scheme with Perfectly Rerandomizable Keys). Let the public parameters
par define a randomness space R := R(par). A signature scheme with perfectly rerandomizable keys is
then a tuple of algorithms RSig = (Gen, Sign, Verify, RandSK, RandPK) where (Gen, Sign, Verify) are the
standard algorithms of a signature scheme. The algorithms RandSK and RandPK are defined as follows:

• RandSK(sk, ρ): The deterministic secret key rerandomization algorithm RandSK takes as input a secret
key sk and randomness ρ ∈ R and outputs a rerandomized secret key sk′.

• RandPK(pk, ρ): The deterministic public key rerandomization algorithm RandPK takes as input a
public key pk and randomness ρ ∈ R and outputs a rerandomized public key pk′.

We recall the correctness definition and the security notion of one-per message existential unforge-
ability under honestly rerandomizable keys (uf -cma-hrk1) for signature schemes with rerandomizable
keys [DEF+21] in Appendix A.1. Further, we recall the construction of an additively rerandomizable and
uf -cma-hrk1-secure ECDSA signature scheme as presented by Das et al. [DEF+21] in Appendix A.3.

2.3 Non-Interactive Threshold Verifiable Random Function
We recall the definition of a non-interactive threshold verifiable random function from Galindo et
al. [GLOW21].1

Definition 2.4 A non-interactive (t, n)-threshold verifiable random function (TVRF) is defined w.r.t.
to a randomness space Rand and is executed among n parties {P1, · · · , Pn}. It consists of a tuple of
algorithms TVRF = (Gen, PEval, Combine, Verify) which are defined as follows:

• Gen(1κ, t, n): The probabilistic key generation algorithm Gen takes as input a security parameter κ
and two integers t, n ∈ N such that t < n. It outputs a public key pk and a set of secret key shares
{sk1, · · · skn} such that each party Pi obtains pk and ski.

• PEval(m, ski, pk): The partial evaluation algorithm PEval takes as input a message m, a secret key
share ski, and a public key pk, and it outputs an evaluation share ϕi and a proof πi.

• Combine(pk, m,S, {ϕi, πi}i∈S): The combination algorithm Combine takes as input a public key pk, a
message m, a set of indices S with |S| > t, and a set of partial evaluation shares {ϕi, πi}i∈S . It outputs
either a function evaluation ϕ ∈ Rand and a proof π, or ⊥.

• Verify(pk, m, ϕ, π): The verification algorithm Verify takes as input a public key pk, a message m, a
function evaluation ϕ ∈ Rand, and a proof π, and outputs either 0 or 1.

A TVRF must satisfy the properties uniqueness, pseudorandomness, and robustness.

Definition 2.5 (Uniqueness of TVRF). A non-interactive (t, n)-threshold verifiable random function
scheme TVRF is unique if no PPT adversary A wins game th-unique as described below with more
than negligible advantage. We define A’s advantage in game th-uniqueTVRF as AdvAth-uniqueTVRF

:=
Pr[th-uniqueATVRF = 1].

Game th-uniqueTVRF:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game executes (pk, {sk1, · · · , skn})← TVRF.Gen(1κ, t, n). A receives as input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:
1We note that Galindo et al. refer to the primitive in their work as non-interactive fully distributed verifiable random

function.

5

– Eval: On input message m and index i ∈ [n]\C, the oracle executes (ϕi, πi)← TVRF.PEval(m, ski, pk)
and returns (ϕi, πi).

– KeyLeak: On input an index i ∈ [n], the oracle outputs ski.

• Eventually, the adversary outputs a message m∗ and two function evaluations {(ϕi∗
, πi∗)}i∈{0,1}. The

game outputs 1 if ϕ0∗ ̸= ϕ1∗ and TVRF.Verify(pk, m∗, ϕ0∗
, π0∗) = TVRF.Verify(pk, m∗, ϕ1∗

, π1∗) = 1.
Otherwise it outputs 0.

Definition 2.6 (Pseudorandomness of TVRF). A non-interactive (t, n)-threshold verifiable random
function scheme TVRF is pseudorandom if no PPT adversary A wins game th-prand as described
below with more than negligible advantage. We define A’s advantage in game th-prandTVRF as
AdvAth-prandTVRF

:= Pr[th-prandATVRF = 1]− 1
2 .

Game th-prandTVRF:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes EvalList← {ϵ} and executes (pk, {sk1, · · · , skn})← TVRF.Gen(1κ, t, n). A receives
as input pk and {ski}i∈C.

• The adversary obtains access to the following oracle:

– Eval: On input message m and an index i ∈ [n]\C, the oracle executes (ϕi, πi)← TVRF.PEval(m, ski, pk)
and if (i, m) /∈ EvalList, stores the tuple (i, m) in EvalList. The oracle returns (ϕi, πi).

• Eventually, the adversary outputs a message m∗, a set of indices S with S > t, evaluation shares
{ϕi, πi}i∈S∩C. The game checks if there are less than t − |S ∩ C| tuples of the form (·, m∗) in
EvalList and if so, the game computes for j ∈ S \ C the tuple (ϕj , πj) ← TVRF.PEval(m∗, skj , pk)
and (ϕ, π)← TVRF.Combine(pk,S, {(ϕi, πi)}i∈S). If ϕ = ⊥, the game returns ϕ. Otherwise the game
chooses a bit b $← {0, 1} and does the following:

– If b = 0: Return ϕ.
– If b = 1: Sample ϕ′ $← Rand and output ϕ′.

The adversary then outputs a bit b′ and wins if b = b′.

Definition 2.7 (Robustness of TVRF). A non-interactive (t, n)-threshold verifiable random function
scheme TVRF is robust if no PPT adversary A wins game th-robust as described below with more
than negligible advantage. We define A’s advantage in game th-robustTVRF as AdvAth-robustTVRF

:=
Pr[th-robustATVRF = 1].

Game th-robustTVRF:

• The game differs from game th-prandTVRF only by the winning condition, which we will describe
below.

• The adversary outputs a message m∗, a set S with |S| > t and a set of evaluation shares {ϕi, πi}i∈S∩C.
The game computes (ϕi, πi) ← TVRF.PEval(m∗, ski, pk) for all i ∈ S \ C. The game finally sets
(ϕ∗, π∗) ← TVRF.Combine(pk,S, {ϕi, πi}i∈S). If ϕ∗ ̸= ⊥ and TVRF.Verify(pk, m∗, ϕ∗, π∗) = 0, the
game outputs 1 and 0 otherwise.

3 Rerandomizable Interactive Threshold Signing
3.1 Model
In the following, we introduce the notion of interactive threshold signature schemes with rerandomizable
keys. More concretely, we extend the standard notion of a threshold signature scheme by two algorithms
RandSK and RandPK, which allow to individually derive rerandomized secret key shares and a rerandomized
public key respectively, such that the derived secret key shares form a valid (t, n)-sharing of the secret
key that corresponds to the derived public key.

6

Definition 3.1 (Interactive Threshold Signature Scheme With Rerandomizable Keys). An interac-
tive (t, n)-threshold signature scheme with rerandomizable keys is a tuple of procedures RTSig =
(Gen, RandSK, RandPK, TSign, Verify) where (Gen, TSign, Verify) are defined as for interactive (t, n)-threshold
signatures. We assume that the public parameters par define a randomness space R := R(par). The
algorithms RandSK and RandPK are defined as:

• RandSK(i, ski, ρ): The deterministic secret key share rerandomization algorithm takes as input an index
i ∈ [n], a secret key share ski and a randomness ρ ∈ R and it outputs a rerandomized secret key share
sk′i.

• RandPK(pk, ρ): The deterministic public key rerandomization algorithm takes as input a public key pk
and a randomness ρ ∈ R and it outputs a rerandomized public key pk′.

We require the following properties of a threshold signature scheme with rerandomizable keys:

• Rerandomizability of public keys: For all κ ∈ N, all t, n ∈ N with t < n, all (·, pk) ← Gen(1κ, t, n)
and all ρ $← R, the distributions of pk′ and pk′′ are computationally indistinguishable, where pk′ ←
RandPK(pk, ρ) and (·, pk′′)← Gen(1κ).

• Correctness under rerandomized keys: For all κ ∈ N, all t, n ∈ N with t < n, all ({sk1, · · · , skn}, pk)←
Gen(1κ, t, n), all ρ $← R and all m ∈ {0, 1}∗, the rerandomized keys {sk′i}i∈[n] ← {RandSK(i, ski, ρ)}i∈[n]
and pk′ ← RandPK(pk, ρ) satisfy:

Pr[Verify(pk′, m, σ)|σ ←
〈
TSign(sk′1, m), · · · , TSign(sk′n, m)

〉
] = 1

We note that the property of rerandomizability of public keys is a slightly weaker notion than the
perfect rerandomizability of keys of rerandomizable signature schemes (cf. Appendix A) which requires
rerandomized public and secret keys to be identically distributed to a freshly generated key pair. However,
as previously pointed out by Alkadri et al. [ADE+20], this weaker rerandomizability property is sufficient
for the wallet setting. At a high level, that is because this notion is required to ensure the wallet
unlinkability property, which guarantees unlinkability of wallet public keys, i.e., it guarantees that a
derived public key is computationally indistinguishable from freshly generated public keys.

We define the security notion of one-per message existential unforgeability under honestly rerandom-
izable keys for interactive threshold signature schemes with rerandomizable keys. That is, we define
a security game th-ufcma-hrk1 which differs from the unforgeability game th-ufcma (cf. Def. 2.2)
of interactive threshold signatures in the following ways: (1) the adversary receives access to a Rand
oracle, which outputs uniformly random elements from R; (2) the signing oracle RSign cannot only
generate signatures under the initial set of keys ({sk1, · · · , skn}, pk), but also under key sets that have
been rerandomized with an element output by the Rand oracle; (3) the signing oracle returns at most one
signature for each key set/message pair; and (4) the adversary can win the game with a valid forgery under
any key set rerandomized with an output of the Rand oracle. We note that the notion of one-per message
unforgeability is weaker than standard unforgeability, however, as remarked by Das et al. [DEF+21] this
weaker notion is sufficient for the wallet setting.

Definition 3.2 (One-per message unforgeability of interactive threshold signature schemes with hon-
estly rerandomizable keys). An interactive (t, n)-threshold signature scheme with rerandomizable keys
RTSig = (Gen, RandSK, RandPK, TSign, Verify) is th-ufcma-hrk1-secure if no PPT adversary A wins
game th-ufcma-hrk1 as described below with more than negligible probability in the security parameter
κ.

Game th-ufcma-hrk1RTSig:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes two lists RList ← {ϵ} and SigList ← {ϵ} and executes ({sk1, · · · , skn}, pk) ←
RTSig.Gen(1κ, t, n). Then, A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following two oracles:

7

– Rand: This oracle, upon a query, samples ρ $← R, stores ρ in RList and outputs ρ to A.
– RSign: On input message m and a randomness ρ, the oracle checks whether ρ /∈ RList and if so

outputs ⊥. Otherwise, it derives a public key and secret key shares for honest parties with the
randomness ρ, i.e., it computes pk′ ← RTSig.RandPK(pk, ρ) and sk′i ← RTSig.RandSK(i, ski, ρ) for
all i ∈ {1, · · · , n} \ C. If (pk′, m) ∈ SigList then the oracle returns ⊥. Otherwise, the oracle and the
adversary jointly execute the procedure RTSig.TSign, where the oracle runs all honest parties Pi on
input (sk′i, m). The oracle then stores the tuple (pk′, m) in SigList.

• Eventually, the adversary outputs a forgery σ∗, a message m∗ and a public key pk∗ ← RTSig.RandPK(pk, ρ∗).
The adversary wins the game, if the following conditions hold: (1) ρ∗ ∈ RList, (2) (pk∗, m∗) /∈ SigList,
and (3) RTSig.Verify(pk∗, m∗, σ∗) = 1.

3.2 Construction
We show how to extend the interactive threshold ECDSA scheme as proposed by Gennaro and Goldfeder [GG18]
(which we denote by GG[H0]) to an interactive threshold ECDSA scheme with rerandomizable keys (which
we denote by rGG[H0]). We recall the scheme of Gennaro and Goldfeder (with a slight adjustment) in
detail in Appendix B. In Figure 1, we describe our rGG[H0] scheme w.r.t. the GG[H0] scheme. Recall
that the ECDSA signature scheme is defined w.r.t. a cyclic group G = ⟨g⟩ of prime order q and that
an ECDSA key pair (pk, sk) is simply computed as sk $← Zq and pk ← gsk. In the GG[H0] scheme, the
secret key is shared such that each party Pi holds a secret key share ski and a public key share gski . In
our rGG[H0] scheme, we extend the GG[H0] scheme by providing algorithms RandSK and RandPK which
deterministically rerandomize the secret key shares and the public key respectively w.r.t. a randomness
ρ. At a high level, in order to rerandomize the secret key share ski of party Pi with randomness ρ,
the RandSK algorithm deterministically generates a degree-t polynomial F with coefficients in Zq and
evaluates the polynomial at point i. This essentially yields a randomness share ρi, which is then added to
the existing secret key share to compute the rerandomized secret key share sk′i ← ski + ρi mod q. That
is, sk′i is essentially a share of the secret key sk + ρ mod q. The RandPK algorithm works correspondingly
for the public key and public key shares.

The security of our rGG[H0] scheme can be proven via a reduction to the (one-per message) unforge-
ability of the ECDSA scheme with rerandomizable keys by Das et al. [DEF+21], which we recall in
Appendix A.3. Note that the scheme of Das et al. is public key prefixed, i.e., whenever a message m is
signed using secret key sk, the message is first prefixed with the corresponding public key pk, s.t. the
signature is generated for (pk, m). Since we reduce the security of our rGG[H0] scheme to the (one-per
message) unforgeability of the scheme of Das et al., we require public key prefixing in our scheme as well.

Algorithm Gen(1κ, t, n)
00 Return GG.Gen(1κ, t, n)
Algorithm RandSK(i, ski, ρ)
00 For k ∈ [t] : ak ← H0(ρ, k)
01 Let F (x) := atx

t + · · ·+ a1x + ρ
02 ρi ← F (i) mod q
03 sk′i ← ski + ρi mod q
04 Return sk′i
Protocol TSign(ski, m)
00 m′ ← (pk, m)
01 Return GG.TSign(ski, m′)

Algorithm RandPK(pk, ρ)
00 Parse pk := (X, (X1, · · · , Xn))
01 For k ∈ [t] : ak ← H0(ρ, k)
02 Let F (x) := atx

t + · · ·+ a1x + ρ
03 ρi ← F (i) mod q
04 For i ∈ [n] : X ′i ← Xi · gρi

05 Return pk′ := (X · gρ, (X ′1, · · · , X ′n))

Algorithm Verify(pk, m, σ)
00 m′ ← (pk, m)
01 Return GG.Verify(pk, m′, σ)

Figure 1: Public key prefixed interactive threshold ECDSA scheme rGG[H0] with honestly rerandomizable
keys based on the GG[H0] scheme for a hash function H0 : {0, 1}∗ → Zq. For brevity, we denote scheme
GG[H0] by GG.

It is easy to see that the rGG[H0] scheme satisfies the properties of rerandomizability of public keys
and correctness under rerandomized keys.

8

Theorem 3.3 Let PKE be a semantically secure linearly homomorphic encryption scheme, ZK be a
non-interactive zero-knowledge proof system and CT a non-malleable and equivocable commitment scheme.
Further, let the DDH assumption hold in G and let rECDSA[H0] be the uf -cma-hrk1-secure ECDSA
scheme with rerandomizable keys as described in Appendix A.3. Then the interactive (t, n)-threshold
ECDSA scheme with rerandomizable keys rGG[H0] as described above is th-ufcma-hrk1-secure.

Sketch. Gennaro and Goldfeder prove the GG[H0] scheme unforgeable via reduction to the unforge-
ability of the single party ECDSA signature scheme. That is, they provide a reduction that simulates
game th-ufcmaGG[H0] (cf. Definition 2.2) while having access to a signing oracle that outputs ECDSA
signatures for adaptively chosen messages. Gennaro and Goldfeder prove that this simulation is com-
putationally indistinguishable from the real game to a PPT adversary. We recall the simulation in
Appendix B2. We can prove the above theorem in the same way, with the difference that we reduce
the th-ufcma-hrk1rGG[H0] security to the uf -cma-hrk1rECDSA[H0] security. That is, we have to provide
a reduction that simulates game th-ufcma-hrk1rGG[H0] to a PPT adversary while having access to the
RSign and Rand oracles of game uf -cma-hrk1rECDSA[H0]. In fact, we can use the same simulation as the
one from Gennaro and Goldfeder with the following differences: (1) Upon the adversary querying the
Rand oracle in game th-ufcma-hrk1rGG[H0], the reduction relays the query to its own Rand oracle in game
uf -cma-hrk1rECDSA[H0]; (2) Upon the adversary querying oracle RSign in game th-ufcma-hrk1rGG[H0]
on input a message m and randomness ρ, the reduction first rerandomizes the secret key shares ski of cor-
rupted parties Pi ∈ C by computing sk′i ← RandSK(i, ski, ρ) as well as the public key pk′ ← RandPK(pk, ρ).
The reduction then queries its own signing oracle on input m and ρ and uses the resulting signature
and the rerandomized keys for the simulation of the RSign oracle of game th-ufcma-hrk1rGG[H0]. These
changes do not have any impact on the indistinguishability arguments and reduction from Gennaro and
Goldfeder. Note that, since we essentially repeat the proof of Gennaro and Goldfeder, we must also
repeat the assumptions their proof relies on in our theorem statement.

4 BIP32-Compatible Threshold Wallets
In order to construct threshold BIP32 wallets, we require two ingredients, namely (1) a threshold signature
scheme with rerandomizable keys, and (2) mechanisms for the derivation of non-hardened and hardened
wallets in the threshold setting. With requirement (1) in place, we will discuss in this section how
the respective wallet derivations of a BIP32 wallet can be implemented in the threshold setting. In
particular, we consider the following setting for our threshold BIP32 wallet: All non-hardened wallets
are thresholdized, i.e., each non-hardened wallet consists of n devices which execute a (t, n)-threshold
signature scheme with rerandomizable keys. Hardened wallets, on the other hand, are single devices
(i.e. not thresholdized), since the corruption of a hardened wallet does not affect the security of the
remaining wallets in the tree. Similar to the modeling of BIP32 wallets by Das et al. [DEF+21], we do not
allow hardened wallets to derive child wallets, i.e., hardened wallets always represent leaves in the wallet
tree. Therefore, we assume that in both cases, i.e., the non-hardened and hardened wallet derivation,
the parent wallet is non-hardened and thresholdized. Recall that BIP32 specifies the (non-threshold)
derivation mechanisms as follows: A non-hardened node with identifier ID′ is derived from a parent node
with identifier ID, key pair (skID, pkID) and chaincode chID by computing (ρ, chID′) ← H(pkID, chID, ID′),
skID′ ← skID + ρ and pkID′ ← pkID · gρ. The derivation of a hardened node works in the same way only
that the tuple (ρ, chID′) is computed as H(skID, chID, ID′). We now analyze these derivation mechanisms
for the threshold setting w.r.t. to our threshold signature scheme with rerandomizable keys rGG[H0] in
more detail.

4.1 Non-Hardened Node Derivation
The derivation of non-hardened nodes in the threshold setting is fairly straightforward and follows the
ideas of the BIP32 standard. Essentially, a non-hardened parent node identified by ID and consisting
of n devices s.t. each device stores a secret key share ski,ID and the chaincode chID can derive a
thresholdized non-hardened child wallet as follows: First, each device of the parent node computes locally

2To be exact, since our GG[H0] scheme differs slightly from the original scheme of Gennaro and Goldfeder, we recall a
slightly adjusted simulation. See Appendix B for details.

9

(ρ, chID′) ← H(pkID, chID, ID′) and ski,ID′ ← rGG[H0].RandSK(i, ski,ID, ρ). Then the devices of the parent
node must forward the rerandomized secret key shares ski,ID′ to the n devices of the child node. This
forwarding requires a protocol involving 2n devices (n child and n parent wallet devices) of which a
total of 2t devices can be corrupted. Note that a simple forwarding of secret key share ski,ID′ to the i-th
device of the child wallet is insecure as it allows an adversary to learn a total of 2t secret key shares.
Instead, the 2n devices must engage in the execution of a dynamic proactive secret sharing (DPSS) scheme
(e.g., [BDLO15, MZW+19, SLL10]), which allows to securely handover the rerandomized key shares to
the devices of the child node even in the presence of 2t corrupted devices. Note that DPSS schemes
typically incur a significant communication overhead since all 2n parties must interact with each other.

4.2 Hardened Node Derivation
The main challenge when considering BIP32 wallets in the threshold setting is designing a derivation
mechanism for hardened nodes. Recall that the derivation of a hardened node according to BIP32 requires
the computation of (ρ, chID′) ← H(skID, chID, ID′), i.e., the evaluation of a hash function on input the
parent secret key. In the threshold setting, however, the secret key skID is shared among n devices such
that no single device knows the full key. It is therefore not at all clear how H(skID, chID, ID′) can be
computed efficiently without naively reconstructing skID (which would trivially break the security of
the wallet). Furthermore, in the hardened derivation, each parent device can only learn a randomness
share ρi instead of the entire randomness ρ. To see why that is, consider the setting where an adversary
corrupts the hardened node, thereby learning its secret key skID + ρ, as well as a parent node device,
thereby learning ρ. The adversary could then trivially learn the parent node’s secret key.

One obvious (and to the best of our knowledge the only) way to resolve the above issues is using
generic multi-party computation (MPC) techniques [GMW87, Gol04, CCD88], which allow to securely
compute any function in a distributed setting without revealing the function inputs. However, generic
MPC is inherently inefficient, in particular since the BIP32 standard uses the well-known hash function
SHA-512, which is known to be only inefficiently computable via MPC [BST21].

An Improved Derivation Mechanism Due to the above limitation, we consider a more efficient
hardened node derivation mechanism, which achieves the same properties as the one originally specified
in BIP32. We circumvent the inefficient distributed SHA-512 execution by letting the devices of the
non-hardened parent wallet jointly and deterministically generate a random seed in such a way that
only the hardened node but no parent device learns the seed. The hardened node can then use this seed
as input to the key generation algorithm of a (non-threshold) signature scheme (ECDSA in our case)
to deterministically generate its key pair. Said differently, instead of having the parent wallet devices
rerandomize their secret key shares and forward them to the hardened wallet, we simply let the parent
devices generate a random value from which the hardened node can deterministically derive its own keys.
For the computation of the random seed, we employ the threshold verifiable random function (TVRF)
from [GLOW21]. A (t, n)-TVRF is a cryptographic primitive that is executed by n parties, where each
party Pi knows a secret key share ski, which it can use to deterministically compute an evaluation share ϕi

and proof πi on a message m. Given at least t + 1 evaluation shares for m, any party can deterministically
compute a pseudorandom value ϕ and a proof π and given the public key pk, ϕ and π, any party can
verify that ϕ was computed correctly. We recall the formal definition of a TVRF in Section 2.3.

We use the TVRF for the hardened wallet derivation in the following way: Each device of the non-
hardened parent node maintains a secret key share for the TVRF and, upon the derivation of a hardened
node with identifier ID, it uses this share to compute an evaluation share ϕi and the corresponding proof
πi on ID. It then sends (ϕi, πi) to the hardened node, which combines t + 1 shares to a pseudorandom
seed ϕ. The hardened node then verifies the correctness of ϕ using the public key of the TVRF. Note
that any set of t + 1 correct evaluation shares will yield the same seed, but including only a single invalid
evaluation share will lead to a different (incorrect) seed. Therefore, the verifiability of the seed is crucial
to our solution. We use the TVRF from [GLOW21] which is not only deterministic and one-way but also
non-interactively computable, therefore exhibiting the same properties as the original BIP32 derivation
mechanism. We present our improved hardened node derivation mechanism pictorially in Figure 2.

The Final Derivation Mechanism While the above solution is compatible with BIP32, it has the
significant drawback that each non-hardened device must maintain two secret key shares, one for the

10

(ϕ1, π1)← TVRF.PEval(ID, sk1, pk)

NH1(sk1, pk)

(ϕ2, π2)← TVRF.PEval(ID, sk2, pk)

NH2(sk2, pk)

(ϕ3, π3)← TVRF.PEval(ID, sk3, pk)

NH3(sk3, pk)

(ϕ, π)← TVRF.Combine(pk, ID,S, {ϕi, πi}i∈S)
If TVRF.Verify(pk, ID, ϕ, π) = 1

Then compute (pkID, skID)← ECDSA.Gen(1κ; ϕ)

HN ID(pk)

(ϕ1, π1) (ϕ2, π2) (ϕ3, π3)

Figure 2: Pictorial representation of our improved hardened node derivation mechanism in the threshold
setting. Each of the three devices NH1, NH2, NH3 of the non-hardened parent node stores a TVRF
public key pk and secret key share ski for i ∈ [3]. In order to derive a hardened node HN with identity
ID, each non-hardened device locally evaluates the TVRF on input ID and sends the resulting evaluation
share to HN. The hardened node can then choose a subset S of [3], combine the corresponding evaluation
shares to a full random value ϕ, verify that the non-hardened devices in S behaved honestly, and then
use ϕ as input to the key generation algorithm of the ECDSA signature scheme. Note that this key
generation is deterministic, since we explicitly give the randomness ϕ as input.

signature scheme and one for the TVRF. As a consequence, each device requires double the storage
space which is an issue for space restricted devices. There is however another, more severe issue with
the above solution. Similar to the signing keys, the TVRF keys must be deterministically derived
throughout the wallet tree via executions of a communication heavy DPSS scheme. This incurs a
significant communication overhead, especially since all non-hardened nodes must derive TVRF keys
irrespectively of whether they want to derive a hardened node or not.

We observe that both, the DDH-based TVRF scheme of [GLOW21] (which we denote by TVRF and
recall in Appendix A.2) and the ECDSA signature scheme, operate over a cyclic group G = ⟨g⟩ of prime
order q and use secret/public key pairs sk $← Zq and pk ← gsk. The security of TVRF relies on the
assumption that DDH is hard in G. Bitcoin, Ethereum and several other cryptocurrencies use the group
G identified by the elliptic curve secp256k1, for which dlog and DDH are assumed to be hard. Therefore,
our idea to mitigate the above issues is to use only a single key pair for both schemes. This allows
non-hardened wallets to re-use their signing secret key shares for the TVRF during the hardened node
derivation, thereby avoiding the overhead of maintaining a second key pair per wallet.

In the remainder of this section, we define a cryptographic scheme that consists of the joint procedures
of the rGG scheme from Section 3 and of the DDH-based TVRF scheme, but that uses the same key pair
for all procedures. We then define security properties and prove the scheme secure w.r.t. these properties.

4.3 Joint Threshold Signature/TVRF Scheme
We define the scheme TVRF-rGG[H0, H1], which consists of all procedures of rGG[H0] and TVRF[H1],
except that it uses only one of rGG[H0].Gen and TVRF[H1].Gen. Concretely, TVRF-rGG[H0, H1] consists of
the procedures

TVRF-rGG[H0, H1] =(rGG[H0].Gen, rGG[H0].RandSK, rGG[H0].RandPK, rGG[H0].TSign,

rGG[H0].Verify, TVRF[H1].PEval, TVRF[H1].Combine, TVRF[H1].Verify).

For simplicity, we sometimes abbreviate the schemes TVRF-rGG[H0, H1], rGG[H0] and TVRF[H1] by
TVRF-rGG, rGG and TVRF respectively. The scheme TVRF-rGG is defined w.r.t parameters t, n ∈ N,
s.t. the corruption threshold t is the minimum of the corruption thresholds of schemes rGG and TVRF.
That is, for schemes (t′, n)-rGG and (t′′, n)-TVRF it must hold that t = min{t′, t′′}. The TVRF-rGG
scheme must satisfy the security properties pseudorandomness, uniqueness, and robustness. These security
notions essentially combine the respective security properties of the TVRF scheme with the one-more
unforgeability notion of our rGG scheme. That is, for each of the above security notions, we define
a game, where an adversary (1) can corrupt t parties, (2) receives oracle access to all oracles of the
one-more unforgeability game (i.e., th-ufcma-hrk1) and all oracles of the respective TVRF property

11

(e.g., pseudorandomness), and (3) can win the game by either breaking the one-more unforgeability of
rGG (Case 1) or the TVRF property (Case 2).

4.3.1 Pseudorandomness of TVRF-rGG

In the following we define the pseudorandomness property of TVRF-rGG via a game unf -prand and prove
that TVRF-rGG satisfies this property. Later in Section 4.3.2, we provide the uniqueness and robustness
definitions and argue that the TVRF-rGG scheme satisfies them.

Definition 4.1 (Pseudorandomness of TVRF-rGG). The TVRF-rGG scheme is unf -prand-secure if no
PPT adversary A wins game unf -prand as described below with more than negligible advantage. We
define A’s advantage in game unf -prand as

AdvA := Pr[unf -prandATVRF-rGG = 1|Case 1] · Pr[Case 1]

+
(

Pr[unf -prandATVRF-rGG = 1|Case 2]− 1
2

)
· Pr[Case 2],

where Pr[Case 1] and Pr[Case 2] denote the probabilities that A tries to win game unf -prand via
Case 1 or Case 2 respectively.

Game unf -prandTVRF-rGG:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes SigList← {ϵ}, RList← {ϵ} and EvalList← {ϵ} and executes (pk, {sk1, · · · , skn})←
TVRF-rGG.Gen(1κ, t, n). A receives as input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Rand: Same as in game th-ufcma-hrk1rGG.
– RSign: Same as in game th-ufcma-hrk1rGG.
– REval: On input message m, index i ∈ [n] \ C and randomness ρ, check if ρ ∈ RList and abort

otherwise. The oracle executes

(pk′, sk′i)←(TVRF-rGG.RandPK(pk, ρ), TVRF-rGG.RandSK(i, ski, ρ)),
(ϕi, πi)←TVRF-rGG.PEval(m, sk′i, pk′)

and if (i, m, ρ) /∈ EvalList, stores the tuple (i, m, ρ) in EvalList. The oracle returns (ϕi, πi).

• The adversary wins the game if it wins either of the following cases:

– Case 1: Same as in game th-ufcma-hrk1rGG.
– Case 2: The adversary outputs a message m∗, a randomness ρ∗, a set of indices S with |S| > t and

evaluation shares {ϕk, πk}k∈S∩C. The game checks if there are less than t − |S ∩ C| tuples of the
form (·, m∗, ρ∗) in EvalList and if ρ∗ ∈ RList. If so, for i ∈ S \ C the game computes

(pk′, sk′i)←(TVRF-rGG.RandPK(pk, ρ∗), TVRF-rGG.RandSK(i, ski, ρ∗)),
(ϕi, πi)←TVRF-rGG.PEval(m∗, sk′i, pk′)

(ϕ, π)←TVRF-rGG.Combine(pk′,S, {(ϕj , πj)}j∈S).

If ϕ = ⊥, the game returns ϕ. Otherwise the game chooses a bit b $← {0, 1} and does the following:
∗ If b = 0: Return ϕ.
∗ If b = 1: Sample ϕ′ $← G and output ϕ′.
The adversary then outputs a bit b′ and wins if b = b′.

12

Theorem 4.2 Let H0 : {0, 1}∗ → Zq, H1 : {0, 1}∗ → G be hash functions modeled as a random oracle. Let
rGG[H0] be the interactive (t′, n)-threshold ECDSA scheme with rerandomizable keys from Section 3.2 and
let TVRF[H1] be the (t′′, n)-threshold verifiable random function as described in Appendix A.2. Further,
let PKE be a semantically secure linearly homomorphic encryption scheme, ZK be a non-interactive
zero-knowledge proof system, CT a non-malleable and equivocable commitment scheme and the DDH
assumption hold in G. Then the (t, n)-TVRF-rGG[H0, H1] scheme as described above is unf -prand-secure,
where t = min{t′, t′′}.

Proof. In order to prove this theorem we provide a reduction either to the one-more unforgeability of
the rGG scheme, i.e., to the th-ufcma-hrk1 security of rGG or to the pseudorandomness property of the
TVRF scheme, i.e., to the th-prand security of TVRF. In other words, we show that if a PPT adversary
A is able to win the unf -prandTVRF-rGG game with more than negligible advantage, then we can construct
a PPT adversary B which can either win the th-ufcma-hrk1rGG or the th-prandTVRF game with more
than negligible advantage. To this end, B first guesses if A is going to win game unf -prandTVRF-rGG
through Case 1 or Case 2. Depending on the guess, B decides to either play in game th-ufcma-hrk1rGG
or th-prandTVRF, while simulating A’s oracle queries. Note that B receives only access to the oracles of
either game th-ufcma-hrk1rGG or th-prandTVRF which significantly complicates the simulation of A’s
oracle queries. In particular, when playing in game th-prandTVRF, B does not get access to a signing
oracle, yet has to simulate oracle RSign of game unf -prandTVRF-rGG to A.

Let B := (B0,B1) be composed of two subprocedures. At the beginning of game unf -prandTVRF-rGG, B
chooses a bit b $← {0, 1}. If b = 0, B executes subprocedure B0 that plays in game th-ufcma-hrk1rGG and
otherwise B executes B1 that plays in game th-prandTVRF. In the following, we show for both cases (i.e.,
b = 0 and b = 1) that the respective subprocedure Bb can simulate game unf -prandTVRF-rGG to A and
use A’s output to win their respective security games (i.e., either th-ufcma-hrk1rGG or th-prandTVRF).
Finally, after analyzing both cases separately, we determine the advantage of B := (B0,B1) to win either
game th-ufcma-hrk1rGG or game th-prandTVRF. We additionally provide an intuitive proof sketch for
both cases in Appendix B.3.

Case b = 0 In this case we show via a series of computationally indistinguishable games that there
exists an adversary B0 which can use adversary A in Case 1 to win its own game th-ufcma-hrk1B0

rGG.
Game GGG0: This game is the original unf -prandTVRF-rGG game, in which adversary A can corrupt t
parties and receives access to oracles H0, H1, RSign, Rand and REval. We have Pr[unf -prandATVRF-rGG =
1|Case 1] = Pr[GGGA0 = 1].

Game GGG1: This game is similar to the previous game with two differences. First, in the beginning
the game initializes a set HList := ϵ. Second, upon A sending a query to H1 on input m, if H1(m) = ⊥
the game samples uniformly at random r $← Zq, sets HList[m] := r and H1(m) := gr. The game outputs
H1(m).

It is easy to see that the random oracle H1 returns uniformly random group elements since r is chosen
uniformly at random from Zq. Therefore, we have that Pr[GGGA1 = 1] = Pr[GGGA0 = 1].

Game GGG2: This game is similar to the previous game with a difference in the REval oracle. On input
a message m, an index i and a randomness ρ, the game executes

pk′ ← TVRF-rGG.RandPK(pk, ρ),
sk′i ← TVRF-rGG.RandSK(i, ski, ρ),

(ϕi, πi)← TVRF-rGG.PEval(m, sk′i, pk′).

However, instead of outputting (ϕi, πi), the game simulates a zero-knowledge proof π′i that proves
correctness of ϕi and outputs (ϕi, π′i).

Due to the zero-knowledge property of the proof system DLEq (cf. Appendix A.2), this game
is indistinguishable from the previous one except with negligible probability. That is, we have that
Pr[GGGA1 = 1] ≤ Pr[GGGA2 = 1] + negl(κ) where negl is a negligible function in the security parameter κ

13

Game GGG3: This game is similar to the previous game with a difference in the REval oracle. On
input a message m, an index i, and a randomness ρ, the game checks if HList[m] = ⊥. If so, it queries
H1(m). It then executes pk′ ← TVRF-rGG.RandPK(pk, ρ), parses pk′ := (X ′, {X ′1, · · · , X ′n}) and computes
ϕi ← (X ′i)

r for r ← HList[m].
This game is equivalent to the previous game since (X ′i)

r = gsk′
i·r = H1(m)sk′

i . Therefore, we have
that Pr[GGGA2 = 1] = Pr[GGGA3 = 1].

Reduction to th-ufcma-hrk1rGG: Having shown that the transition from game GGG0 to game GGG3 is
indistinguishable, it remains to show that an adversary A winning in game GGG3 can be used to construct
an adversary B0 that wins game th-ufcma-hrk1rGG. To do so, we must show that B0 playing in
th-ufcma-hrk1rGG can simulate game GGG3 to A. The simulation differs from game GGG3 in the following
ways:

1. B0 does not generate the secret key shares and public key, but instead corrupts the same set of
parties C in th-ufcma-hrk1rGG as A does in GGG3. B0 then forwards the public key pk and the secret
key shares {ski}i∈C from game th-ufcma-hrk1rGG to A.

2. Upon A querying oracle RSign on input a message m and a randomness ρ, B0 queries its own
oracle RSign on input m and ρ and relays the messages between A and the RSign oracle in game
th-ufcma-hrk1rGG.

3. Upon A querying oracle H0 on input a message m, B0 forwards the query to its own random oracle
and relays the output.

It is easy to see that B0’s simulation is indistinguishable from game GGG3 to A. It remains to show
that B0 can use A’s forgery in game unf -prandTVRF-rGG to win its own game th-ufcma-hrk1rGG. Since
B0 forwards all queries to RSign in game unf -prandTVRF-rGG to the corresponding oracle in game
th-ufcma-hrk1rGG, B0 and A query their respective oracles on the same messages. Therefore, if A
outputs a valid forgery in unf -prandTVRF-rGG, then the forgery is also valid in th-ufcma-hrk1rGG. We
finally have

Pr[unf -prandATVRF-rGG = 1|Case 1] = Pr[GGGA0 = 1] ≤ Pr[GGGA3 = 1] + negl(κ)
= Pr[th-ufcma-hrk1B0

rGG[H0] = 1] + negl(κ)

= AdvB0
th-ufcma-hrk1rGG[H0]

+ negl(κ).

Case b = 1 We now show via a series of computationally indistinguishable games that there exists an
adversary B1 which can use adversary A in Case 2 to win its own game th-prandB1

TVRF.
Game GGG0: This game is the original unf -prandTVRF-rGG game, in which adversary A can corrupt t

parties and receives access to oracles H0, H1, RSign, Rand and REval. We have Pr[unf -prandATVRF-rGG =
1|Case 2] = Pr[GGGA0 = 1].

Game GGG1: This game is similar to the previous game with a difference in the random oracle H0.
Upon A querying H0 on a message m, the game checks whether m is public key prefixed, i.e., whether m
can be parsed as m := (pk′, m′) where pk′ ← TVRF-rGG.RandPK(pk, ρ) for some ρ ∈ RList. If so and if
H0(m) ̸= ⊥, then the game returns ⊥.

This game can only be distinguished from the previous game in case game GGG1 returns ⊥ during a query
to H0, i.e., ifA queries H0 on a message m := (pk′, m′) before having received the corresponding randomness
ρ from the Rand oracle. Note that this event only happens with negligible probability since the Rand oracle
outputs uniformly random values in Zq. Therefore, we have that Pr[GGGA0 = 1] ≤ Pr[GGGA1 = 1] + negl1(κ)
where negl1 is a negligible function in the security parameter κ.

Game GGG2: This game is similar to the previous game with two differences. First, in the beginning the
game initializes a set HSigs := ϵ. Second, upon a query to H0 on input a public key prefixed message
m := (pk′, m′), the game checks if H0(m) = ⊥ and if so, it executes SECDSA as described in Figure 3 on
input (X ′, m) where pk′ := (X ′, {X ′1, · · · , X ′n}). Finally, the game sets HSigs[m] := (r, s).

14

SECDSA(X, m) :
a, b $← Zq, R = Xa · gb, r = f(R), s = r

a , H0(m) := r·b
a

Figure 3: Simulation of ECDSA signatures via programming of the random oracle H0 as first presented
by Fersch et al. [FKP17]. The function f : G→ Zq is defined as the projection of a group element to its
x-coordinate.

It is easy to see that SECDSA programs the random oracle H0 in such a way that H0 returns uniformly
random values. Therefore, this game is equivalent to the previous game, i.e., Pr[GGGA1 = 1] = Pr[GGGA2 = 1].

Game GGG3: This game is similar to the previous game with a difference in the RSign oracle. On input
a message m and a randomness ρ, the game first computes the rerandomized (full) secret key sk′ and
then generates a full ECDSA signature σ′ under sk′ for message m. The game then executes the signing
procedure in the same way as presented in the proof sketch of Theorem 3.3 using signature σ′.

The indistinguishability of this game to the previous one follows in the same way as in Theorem 3.3.
Note that this simulator code does not program H0 and therefore does not conflict with the execution of
SECDSA. We have that Pr[GGGA2 = 1] ≤ Pr[GGGA3 = 1] + negl2(κ) where negl2 is a negligible function in the
security parameter κ.

Game GGG4: This game is similar to the previous game again with a modification in the RSign oracle.
On input a message m and a randomness ρ, the game does not generate a full ECDSA signature using sk′,
but it fetches (r, s) ← HSigs[m′] for m′ ← (pk′, m) where pk′ ← TVRF-rGG.RandPK(pk, ρ).3 The game
then uses the tuple (r, s) as the full ECDSA signature under sk′.

As shown in [FKP17], the tuple (r, s) as generated by the SECDSA algorithm (see Figure 3) is computa-
tionally indistinguishable from an honestly generated ECDSA signature for message m′ under public key
X ′ (where pk′ := (X ′, {X ′1, · · · , X ′n})) to a PPT adversary A with access to random oracle H0. Since the
simulator code from Theorem 3.3 forces the execution of the RSign oracle to output (r, s), adversary A
can distinguish this game from the previous one only with negligible probability. Therefore, we have that
Pr[GGGA3 = 1] ≤ Pr[GGGA4 = 1] + negl3(κ) where negl3 is a negligible function in the security parameter κ.

Game GGG5: This game is similar to the previous game with a modification in the REval oracle. On
input a message m, an index i and a randomness ρ, the game computes sk′i ← TVRF-rGG.RandSK(i, ski, ρ)
and pk′ ← TVRF-rGG.RandPK(pk, ρ) and executes (ϕi, πi) ← TVRF-rGG.PEval(m, sk′i, pk′). Instead of
outputting (ϕi, πi), however, the game simulates a zero-knowledge proof π′i that proves correctness of ϕi.
The game then outputs (ϕi, π′i).

Due to the zero-knowledge property of the proof system DLEq (cf. Appendix A.2), this game is
indistinguishable from the previous one except with negligible probability. Therefore, we have that
Pr[GGGA4 = 1] ≤ Pr[GGGA5 = 1] + negl4(κ) where negl4 is a negligible function in the security parameter κ.

Game GGG6: This game is similar to the previous game with a modification in the REval oracle. On
input a message m, an index i, and a randomness ρ, instead of rerandomizing the secret key share ski to
sk′i and executing TVRF-rGG.PEval(m, sk′i, pk′), the game computes

TVRF-rGG.PEval(m, ski, pk) · H1(m)ρi ,

where ρi denotes the randomness share of ρ for party Pi according to the TVRF-rGG.RandSK (cf. Figure 1)
algorithm.

This game is equivalent to the previous game since for sk′i ← TVRF-rGG.RandSK(i, ski, ρ) and pk′ ←
TVRF-rGG.RandPK(pk, ρ) it holds that:

TVRF-rGG.PEval(m, sk′i, pk′) = TVRF-rGG.PEval(m, ski, pk) · H1(m)ρi = H1(m)ski+ρi .

Therefore, we have that Pr[GGGA5 = 1] = Pr[GGGA6 = 1].

3We assume that H0 has been queried on m′ before the signing query.

15

Game GGG7: This game is similar to the previous game with a modification in the challenge phase. Upon
A outputting a message m∗, randomness ρ∗, a set of indices S, and evaluation shares {(ϕ∗k, π∗k)}k∈S∩C,
the game verifies the proofs π∗k and returns ⊥ if any proof does not verify. Otherwise the game checks if
ϕ∗k = H1(m∗)skk+ρ∗

k and aborts if any of these checks does not hold.
Note that the only way that the game aborts is if the adversary manages to submit a verifying

zero-knowledge proof π∗k for a false statement. Due to the soundness property of the DLEq proof system,
this event happens only with negligible probability. Therefore, we have that Pr[GGGA6 = 1] ≤ Pr[GGGA7 =
1] + negl5(κ) where negl5 is a negligible function in the security parameter κ.

Game GGG8: This game is similar to the previous game with a modification in the challenge phase.
Namely, upon A outputting a message m∗, randomness ρ∗, a set of indices S, and evaluation shares
{(ϕ∗k, π∗k)}k∈S∩C the game computes ϕk = ϕ∗k ·H1(m∗)−ρ∗

k = H1(m∗)skk and generates a new zero-knowledge
proof πk using skk and ϕk. The game then computes (ϕi, πi)← TVRF-rGG.PEval(m∗, ski, pk) for i ∈ S \C
and (ϕ, π)← TVRF-rGG.Combine(pk,S, {(ϕj , πj)}j∈S). The game chooses uniformly at random b $← {0, 1}
and if b = 0 sets ϕ′ := ϕ and otherwise sets ϕ′ $← G. Finally, the game computes ϕ∗ = ϕ′ · H1(m∗)ρ∗ and
returns it to A.

Note that if ϕ′ was chosen randomly from G by the game then ϕ∗ is also a uniformly random ele-
ment, and if ϕ′ is a valid TVRF output, then so is ϕ∗ under the key randomized with ρ∗. This is since
ϕ∗ = ϕ′ · H1(m∗)ρ∗ = H1(m∗)sk · H1(m∗)ρ∗ = H1(m∗)sk+ρ∗ . We have that Pr[GGGA7 = 1] = Pr[GGGA8 = 1].

Reduction to th-prandTVRF: Having shown that the transition from game GGG0 to game GGG8 is indis-
tinguishable, it remains to show that an adversary A winning in game GGG8 can be used to construct an
adversary B1 that wins game th-prandTVRF. To do so, we must show that B1 playing in th-prandTVRF
can simulate game GGG8 to A. The simulation differs from game GGG8 in the following points:

1. B1 does not generate the secret key shares and public key, but instead corrupts the same set of
parties C in th-prandTVRF as A does in GGG8. B1 then forwards the public key pk and the secret key
shares {ski}i∈C from game th-prandTVRF to A.

2. Upon A querying oracle REval on input a message m, an index i and a randomness ρ, B1 queries
its own oracle Eval on input m and i and uses the oracle output to compute the output of REval
as in GGG8.

3. Upon A querying oracle H1 on input a message m, B1 forwards the query to its own random oracle
and relays the output.

4. During the challenge phase, B1 sends the shares ϕk = ϕ∗k · H1(m∗)−ρ∗
k together with the zero-

knowledge proofs πk to its own game and receives an element ϕ∗. B1 forwards to A the element
ϕ∗ · H1(m∗)ρ∗ .

It is easy to see that B1’s simulation is indistinguishable from game GGG8 to A and that if A wins game
GGG8 with more than negligible probability, then B1 wins game th-prandTVRF with the same probability.
The latter is because B1 makes the same queries to oracle Eval as A does to oracle REval. We finally
have that

Pr[unf -prandATVRF-rGG = 1|Case 2] = Pr[GGGA0 = 1] ≤ Pr[GGGA8 = 1] + negl′(κ)
= Pr[th-prandB1

TVRF[H1] = 1] + negl′(κ),

where negl′(κ) :=
∑5

i=1 negli(κ).

Finally, we determine the advantage of adversary B := (B0,B1) to win either in game th-ufcma-hrk1rGG
or th-prandTVRF. Note that B’s advantage is:

AdvB := 1
2AdvB0

uf -cma-hrk1rECDSA[H0]
· Pr[Case 1] + 1

2AdvB1
th-prandTVRF[H1]

· Pr[Case 2].

16

Therefore we can conclude that:

AdvA := Pr[unf -prandATVRF-rGG = 1|Case 1] · Pr[Case 1]

+ (Pr[unf -prandATVRF-rGG = 1|Case 2]− 1
2) · Pr[Case 2]

≤ (Pr[th-ufcma-hrk1B0
rGG[H0] = 1] + negl(κ)) · Pr[Case 1]

+ (Pr[th-prandB1
TVRF[H1] = 1] + negl′(κ)− 1

2) · Pr[Case 2]

≤ (AdvB0
uf -cma-hrk1rECDSA[H0]

+ negl(κ)) · Pr[Case 1]

+ (AdvB1
th-prandTVRF[H1]

+ negl′(κ)) · Pr[Case 2]

= 2 · AdvB + negl′′(κ)

where negl′′(κ) := negl(κ) · Pr[Case 1] + negl′(κ) · Pr[Case 2] is a negligible function in κ.

4.3.2 Uniqueness and Robustness of TVRF-rGG

Besides pseudorandomness, the TVRF-rGG scheme must additionally satisfy the properties of uniqueness
and robustness, which are defined in a similar manner as the pseudorandomness property in the sense
that they combine the respective property of the TVRF scheme with the one-more unforgeability of our
rGG scheme. In the following we provide the formal definitions of these two properties.

Definition 4.3 (Uniqueness of TVRF-rGG). The scheme TVRF-rGG is unique if no PPT adversary A
wins game unf -unique as described below with more than negligible advantage. We define A’s advantage
in game unf -uniqueTVRF-rGG as AdvAunf -unique := Pr[unf -uniqueATVRF-rGG = 1].

Game unf -uniqueTVRF-rGG:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes SigList← {ϵ} and RList← {ϵ} and executes (pk, {sk1, · · · , skn})← TVRF-rGG.Gen(1κ, t, n).
Then A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Rand: Same as in game unf -prandTVRF-rGG.
– RSign: Same as in game unf -prandTVRF-rGG.
– REval: Same as in game unf -prandTVRF-rGG.
– KeyLeak: On input i ∈ [n], the oracle outputs ski.

• The adversary wins the game if it wins either of the following cases:

– Case 1: Output 0 if there has been any query to oracle KeyLeak. Otherwise this case is the same as
Case 1 in game unf -prandTVRF-rGG.

– Case 2: The adversary outputs a message m∗, a randomness ρ∗ and evaluations {(ϕi∗
, πi∗)}i∈{0,1}.

If ρ∗ ∈ RList, the game computes pk′ ← TVRF-rGG.RandPK(pk, ρ∗). The game outputs 1 if ϕ0∗ ̸= ϕ1∗

and

TVRF-rGG.Verify(pk′, m∗, ϕ0∗
, π0∗

) = TVRF-rGG.Verify(pk′, m∗, ϕ1∗
, π1∗

) = 1.

Otherwise it outputs 0.

Definition 4.4 (Robustness of TVRF-rGG). The scheme TVRF-rGG is robust if no PPT adversary A
wins game unf -robust as described below with more than negligible advantage. We define A’s advantage
in game unf -robustTVRF-rGG as AdvAunf -robust := Pr[unf -robustATVRF-rGG = 1].

17

Game unf -robustTVRF-rGG:

• The game is exactly the same as game unf -prandTVRF-rGG, except for the winning conditions, which
we will describe below.

• The adversary wins the game if it wins either of the following cases:

– Case 1: Same as Case 1 in game unf -prandTVRF-rGG.
– Case 2: The adversary outputs a message m∗, a set S with |S| > t, a list of evaluation shares
{ϕi, πi}i∈S∩C and a randomness ρ∗. The game checks if ρ∗ ∈ RList and if so computes for all i ∈ S \C:

(pk′, sk′i)←(TVRF-rGG.RandPK(pk, ρ∗), TVRF-rGG.RandSK(i, ski, ρ∗)),
(ϕi, πi)←TVRF-rGG.PEval(m∗, sk′i, pk′)

The game finally sets

(ϕ∗, π∗)← TVRF-rGG.Combine(pk′,S, {ϕi, πi}i∈S).

If ϕ∗ ̸= ⊥ and TVRF-rGG.Verify(pk′, m∗, ϕ∗, π∗) = 0, the game outputs 1 and 0 otherwise.

The proof of the uniqueness and robustness property of the TVRF-rGG scheme is similar to the proof
of the pseudorandomness property in the sense that the reduction guesses whether the adversary is going
to win in Case 1 or Case 2. In Case 1, we reduce to the one-more unforgeability of rGG. The simulation
of the respective security game works in the same way as in the proof of Theorem 4.2. In Case 2, we can
show a contradiction to the soundness property of the NIZK proof system DLEq (cf. Appendix A.2) in
the same way as was previously shown by Galindo et al. [GLOW21]). The simulation of the RSign oracle
is then straightforward since the reduction can choose the initial key set itself.

Acknowledgments
This work is supported by the German Research Foundation (DFG) Emmy Noether Program FA 1320/1-1,
by the German Research Foundation DFG - SFB 1119 - 236615297 (CROSSING Projects P1 and S7),
by the German Federal Ministry of Education and Research (BMBF) iBlockchain Project (grant nr.
16KIS0902), by the German Federal Ministry of Education and Research and the Hessen State Ministry
for Higher Education, Research and the Arts within their joint support of the National Research Center
for Applied Cybersecurity ATHENE.

References
[ADE+20] Nabil Alkeilani Alkadri, Poulami Das, Andreas Erwig, Sebastian Faust, Juliane Krämer,

Siavash Riahi, and Patrick Struck. Deterministic wallets in a quantum world. pages 1017–1031,
2020. (Cited on page 3, 7.)

[AGKK19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos Kiayias. A formal
treatment of hardware wallets. pages 426–445, 2019. (Cited on page 1, 3.)

[AHS20] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A survey of ecdsa threshold
signing. Cryptology ePrint Archive, Paper 2020/1390, 2020. https://eprint.iacr.org/
2020/1390. (Cited on page 3.)

[BDLO15] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. Communication-
optimal proactive secret sharing for dynamic groups. In Tal Malkin, Vladimir Kolesnikov,
Allison Bishop Lewko, and Michalis Polychronakis, editors, Applied Cryptography and Network
Security, page 23–41, Cham, 2015. Springer International Publishing. (Cited on page 10.)

[BMP22] Constantin Blokh, Nikolaos Makriyannis, and Udi Peled. Efficient asymmetric threshold
ecdsa for mpc-based cold storage. Cryptology ePrint Archive, Paper 2022/1296, 2022.
https://eprint.iacr.org/2022/1296. (Cited on page 3.)

18

https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2020/1390
https://eprint.iacr.org/2022/1296

[BST21] Charlotte Bonte, Nigel Smart, and Titouan Tanguy. Thresholdizing hasheddsa: Mpc to the
rescue. International Journal of Information Security, 20, 12 2021. (Cited on page 10.)

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). pages 11–19, 1988. (Cited on page 10.)

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA. pages 266–296, 2020. (Cited on page 2, 3.)

[CCL+21] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold ec-dsa revisited: Online/offline extensions, identifiable aborts,
proactivity and adaptive security. Cryptology ePrint Archive, Paper 2021/291, 2021. https:
//eprint.iacr.org/2021/291. (Cited on page 2, 3.)

[CEV14] Nicolas T. Courtois, Pinar Emirdag, and Filippo Valsorda. Private key recovery combination
attacks: On extreme fragility of popular bitcoin key management, wallet and cold storage
solutions in presence of poor RNG events. Cryptology ePrint Archive, Report 2014/848, 2014.
https://eprint.iacr.org/2014/848. (Cited on page 3.)

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. pages 1769–1787, 2020.
(Cited on page 2, 3.)

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. pages 89–105, 1993.
(Cited on page 21.)

[DEF+21] Poulami Das, Andreas Erwig, Sebastian Faust, Julian Loss, and Siavash Riahi. The exact
security of bip32 wallets. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, New York, NY, USA, 2021. Association for Computing
Machinery. (Cited on page 2, 3, 5, 7, 8, 9, 21.)

[DFL19] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deterministic wallets.
pages 651–668, 2019. (Cited on page 3.)

[DMZ+21] Yi Deng, Shunli Ma, Xinxuan Zhang, Hailong Wang, Xuyang Song, and Xiang Xie. Promise
σ-protocol: How to construct efficient threshold ecdsa from encryptions based on class groups.
Springer-Verlag, 2021. (Cited on page 2, 3.)

[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. pages
1–17, 2003. (Cited on page 3.)

[ER22] Andreas Erwig and Siavash Riahi. Deterministic wallets for adaptor signatures. In Vijayalak-
shmi Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi Meng, editors, Computer
Security – ESORICS 2022, pages 487–506, Cham, 2022. Springer Nature Switzerland. (Cited
on page 3.)

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder,
and Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. pages 301–330, 2016. (Cited on page 5.)

[FKP17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the one-per-message unforgeability
of (EC)DSA and its variants. pages 519–534, 2017. (Cited on page 15, 28.)

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast trustless
setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’18, New York, NY, USA, 2018. Association for Computing Machinery.
(Cited on page 2, 3, 4, 8, 22, 25, 26.)

[GLOW21] David Galindo, Jia Liu, Mihair Ordean, and Jin-Mann Wong. Fully distributed verifiable
random functions and their application to decentralised random beacons. In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 88–102, 2021. (Cited on
page 5, 10, 11, 18, 21, 22.)

19

https://eprint.iacr.org/2021/291
https://eprint.iacr.org/2021/291
https://eprint.iacr.org/2014/848

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. pages 218–229, 1987. (Cited on
page 10.)

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004. (Cited on page 10.)

[GS15] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets that tolerate key
leakage. pages 497–504, 2015. (Cited on page 3.)

[GS22] Jens Groth and Victor Shoup. Design and analysis of a distributed ecdsa signing service.
Cryptology ePrint Archive, Paper 2022/506, 2022. https://eprint.iacr.org/2022/506.
(Cited on page 3.)

[KMOS21] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Refresh when
you wake up: Proactive threshold wallets with offline devices. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 608–625, 2021. (Cited on page 1, 3.)

[LFA20] Adriano Di Luzio, Danilo Francati, and Giuseppe Ateniese. Arcula: A secure hierarchical
deterministic wallet for multi-asset blockchains. pages 323–343, 2020. (Cited on page 3.)

[Lin17] Yehuda Lindell. Fast secure two-party ECDSA signing. pages 613–644, 2017. (Cited on
page 3.)

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practical distributed key
generation and applications to cryptocurrency custody. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18, page 1837–1854,
New York, NY, USA, 2018. Association for Computing Machinery. (Cited on page 3.)

[MPs19] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing trust in hardware wallets with
two factor signatures. pages 407–425, 2019. (Cited on page 1, 3.)

[MZW+19] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari Juels,
and Dawn Song. Churp: Dynamic-committee proactive secret sharing. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19, page
2369–2386, New York, NY, USA, 2019. Association for Computing Machinery. (Cited on
page 10.)

[SLL10] David Schultz, Barbara Liskov, and Moses Liskov. Mpss: Mobile proactive secret sharing.
ACM Trans. Inf. Syst. Secur., 13(4), dec 2010. (Cited on page 10.)

[Wik18] Bitcoin Wiki. BIP32 proposal. https://en.bitcoin.it/wiki/BIP_0032, 2018. (Cited on
page 1.)

[YLY+22] Xin Yin, Zhen Liu, Guomin Yang, Guoxing Chen, and Haojin Zhu. Secure hierarchical
deterministic wallet supporting stealth address. Cryptology ePrint Archive, Paper 2022/627,
2022. https://eprint.iacr.org/2022/627. (Cited on page 3.)

A Additional Preliminaries
A.1 Correctness and one-per message unforgeability under honestly reran-

domizable keys of signature schemes with rerandomizable keys
For the empty string ϵ, we have RandPK(pk, ϵ) = pk and RandSK(sk, ϵ) = sk.

We further require:
1. (Perfect) rerandomizability of keys: For all κ ∈ N , all (sk, pk) ∈ Gen (1κ) and ρ $← R, the distributions

of (sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RandSK(sk, ρ), RandPK(pk, ρ))
and

(sk′′, pk′′) $← Gen (1κ) .

20

https://eprint.iacr.org/2022/506
https://en.bitcoin.it/wiki/BIP_0032
https://eprint.iacr.org/2022/627

2. Correctness under rerandomized keys: For all κ ∈ N, all (sk, pk) ∈ Gen (1κ), all ρ ∈ R, and all
m ∈ {0, 1}∗, the rerandomized keys sk′ ← RandSK(sk, ρ) and pk′ ← RandPK(pk, ρ) satisfy:

Pr[Verify
(
pk′, σ, m

)
= 1 | σ ← Sign(sk′, m)] = 1.

The security notion of one-per message existential unforgeability under honestly rerandomizable keys
(uf -cma-hrk1) differs from the unforgeability notion of standard signature scheme in the following
ways: (1) the signing oracle cannot only return signatures under sk, but it can also return signatures
that were produced with keys that represent honest rerandomizations of sk; (2) the randomness for the
rerandomization is chosen uniformly at random from R by the game; (3) the signing oracle returns at most
one signature for each randomness/message pair (ρ, m). The notion of uf -cma-hrk1 for a rerandomizable
signature scheme RSig is formally modeled in the form of a game uf -cma-hrk1RSig which we recall in
the following definition.

Definition A.1 (One-per message unforgeability under honestly rerandomizable keys of signature schemes
with rerandomizable keys). A signature scheme with honestly rerandomizable keys RSig is th-ufcma-hrk1-
secure if no PPT adversary A wins game uf -cma-hrk1 as described below with more than advantage. We
define A’s advantage in game th-ufcma-hrk1RSig as AdvAth-ufcma-hrk1RSig

:= Pr[th-ufcma-hrk1ARSig = 1].

Game uf -cma-hrk1RSig:

• The challenger initializes two lists as SigList ← {ϵ} and RList ← {ϵ} and samples a pair of keys
(pk, sk) $← RSig.Gen(1κ). Then A is run on input pk.

• A is given access to the following oracles:

– Rand: Upon a query, this oracle samples a fresh random value from R as ρ $← R, stores ρ in RList,
and returns ρ.

– RSign: On input a message m and a randomness ρ, if ρ was not obtained via a prior Rand query
(i.e., ρ /∈ RList), then this oracle returns ⊥. Otherwise, it derives a pair of keys rerandomized with
the randomness ρ, as sk′ ← RSig.RandSK(sk, ρ) and pk′ ← RSig.RandPK(pk, ρ). If (pk′, m) ∈ SigList
then the oracle returns ⊥. Otherwise, it derives a signature on message m under the secret key sk′
as σ ← RSig.Sign(sk′, m). The oracle stores the tuple (pk′, m) in SigList and returns σ.

• A wins if it returns a forgery σ∗ together with a message m∗ and a public key pk∗ ← RSig.RandPK(pk, ρ∗),
s.t. the following holds: (1) the randomness ρ∗ has been derived via a Rand query, i.e., ρ∗ ∈ RList, (2)
(pk∗, m∗) /∈ SigList, and (3) σ∗ is a valid forgery, i.e., RSig.Verify(pk∗, σ∗, m∗) = 1.

A.2 TVRF Construction from Galindo et al. [GLOW21]
We briefly recall the TVRF construction from Galindo et al. that is based on the DDH assumption.
The construction relies on a non-interactive zero-knowledge proof system (NIZK) for the relation R :=
{(g, h, X, Y), x | X = gx, Y = hx} where g and h are two generators of a cyclic group G of prime order
q and x ∈ Zq. At a high level, the NIZK proves that two group elements X and Y have the same
discrete logarithm w.r.t. generators g and h. This proof system was first introduced by Chaum and
Pedersen [CP93] and we denote it by DLEq. We recall the proof system in Figure 4 and the TVRF
construction, which we denote by TVRF, in Figure 5. The threshold for the (t, n)-TVRF scheme is set to
t ≤ n−1

2 .

A.3 ECDSA with Rerandomizable Keys
We briefly recall the standard ECDSA signature scheme in Figure 6 and then describe how it can be
extended to achieve the ECDSA-based signature scheme with additively rerandomizable keys as shown
in [DEF+21].

The ECDSA signature scheme is defined for a cyclic group G = ⟨g⟩ of prime order q where the discrete
logarithm problem in G is hard. We briefly recall the scheme here, which we denote by ECDSA[H], where
H : {0, 1}∗ → Zq is a cryptographic hash function.

In Figure 7, we recall the ECDSA-based signature scheme with rerandomizable keys rECDSA[H] as
introduced in [DEF+21].

21

DLEq.Prove(gx, hx, x)
00 Sample r $← Zq.
01 Compute c← H(gx, hx, gr, hr)
02 Compute s = r + c · x.
03 Return π := (c, s).

DLEq.Verify(gx, hx, π)
00 Parse π := (c, s).
01 R← gs/(gx)c.
02 R′ ← hs/(hx)c.
03 If c ̸= H1(gx, hx, R, R′): Return 0.
04 Return 1

Figure 4: NIZK proof of equality of discrete logarithms with H : {0, 1}∗ → Zq.

TVRF.Gen(1κ, t, n)
00 Sample ai

$← Zq for i ∈ [t] ∪ {0}
01 Let F (x) := atx

t + · · ·+ a1x + a0
02 sk := x← a0 mod q, X ← gx

03 ski := xi ← F (i) mod q, Xi ← gxi

04 pk := (X, {X1, · · · , Xn})
05 Return (pk, {sk1, · · · , skn})

TVRF.Combine(pk,S, {(ϕi, πi)}i∈S)
00 If |S| ≤ t: Return ⊥.
01 Let S ′ := ∅.
02 Parse pk := (X, {X1, · · · , Xn}).
03 For i ∈ S, if DLEq.Verify(ϕi, Xi, πi) = 1:
04 Then S ′ ← S ′ ∪ i.
05 If |S ′| ≤ t: Return ⊥.
06 ϕ←

∏
i∈S′ ϕλi

i and π := {ϕi, (πi}i∈S′ .
07 Return (ϕ, π).

TVRF.PEval(m, ski, pk)
00 Parse pk := (X, {X1, · · · , Xn})
01 ϕi ← H1(m)ski .
02 πi ← DLEq.Prove(ϕi, Xi, ski).
03 Return (ϕi, πi).

TVRF.Verify(pk, m, ϕ, π)
00 Parse pk := (X, {X1, · · · , Xn}).
01 Parse π := {ϕi, (πi}i∈S′ .
02 Let S ′ := ∅.
03 For i ∈ S ′:
04 if DLEq.Verify(ϕi, Xi, πi) ̸= 1
05 return ⊥.
06 If ϕ =

∏
i∈S′ ϕλi

i : Return 1.
07 Else return 0.

Figure 5: Threshold verifiable random function from [GLOW21] for a cyclic group G = ⟨g⟩ of prime order
q and for a cryptographic hash function H1 : {0, 1}∗ → G.

Gen(1κ)
00 x $← Zq

01 X ← gx

02 (sk, pk) := (x, X)
03 Return (sk, pk)

Sign(sk, m)
00 Parse sk := x
01 k $← Zq, R← gk

02 If R = 1: Return ⊥
03 r ← f(R)
04 If r = 0: Return ⊥
05 h← H(m)
06 s = k−1(h + r · x)
07 If s = 0: Return ⊥
08 Return σ := (r, s)

Verify(pk, m, σ)
00 Parse pk := X and σ :=
(r, s)
01 If s = 0 ∨ t = 0: Return ⊥
02 h← H0(m)
03 u1 ← h · s−1

04 u2 ← r · s−1

05 R← gu1 + Xu2

06 If f(R) = r: Return 1
07 Return 0

Figure 6: ECDSA signature scheme ECDSA[H] instantiated with a cryptographic hash function H :
{0, 1}∗ → Zq.

B The GG scheme by Gennaro and Goldfeder [GG18]
B.1 Underlying Assumptions and Building Blocks
Decisional Diffie-Hellman Problem (DDH) Let G be a cyclic group of prime order q and let g be
a generator of G. Let a, b, c be elements chosen uniformly at random from Zq. Then the distributions

22

Sign (sk, m)
00 m′ ← (pk, m)
01 σ ← ECDSA[H].Sign (sk, m′)
02 Return σ

Verify (pk, σ, m)
03 m′ ← (pk, m)
04 Return
ECDSA[H].Verify (pk, m′, σ)

RandSK (sk, ρ)
00 sk′ ← (sk + ρ) mod q
01 Return sk′

RandPK (pk, ρ)
02 pk′ ← (pk + gρ)
03 Return pk′

Figure 7: Public key prefixed version of the ECDSA signature scheme with perfectly rerandomizable
keys rECDSA[H] based on the ECDSA signature scheme ECDSA[H]. Above H : {0, 1}∗ → Zq denotes a
cryptographic hash function.

(g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguishable.

Non-interactive zero knowledge proof (NIZK) A NIZK proof of knowledge with respect to a
polynomial-time recognizable binary relation R is given by the following tuple of PPT algorithms ZK :=
(Setup, Prove, Verify), where (i) Setup(1κ) outputs a common reference string crs; (ii) Prove(crs, (Y, y))
outputs a proof π for (Y, y) ∈ R; (iii) Verify(crs, Y, π) outputs a bit b ∈ {0, 1}. Further, the NIZK proof of
knowledge w.r.t. R should satisfy the following properties:

1. Completeness: For all (Y, y) ∈ R, all κ ∈ N and crs← Setup(1κ), it holds that Verify(crs, Y, Prove(crs, (Y, y))) =
1 except with negligible probability;

2. Soundness: For any (Y, y) ̸∈ R, all κ ∈ N and crs← Setup(1κ), it holds that Verify(crs, Y, Prove(crs, (Y, y))) =
0 except with negligible probability;

3. Zero knowledge: For any PPT adversary A, there exist a PPT algorithm πS ← S(crs, Y) such that
for all κ ∈ N, all crs← Setup(1κ) and all (Y, y) ∈ R, the distributions {(π, Y) : π ← Prove(crs, Y, y)}
and {(πS , Y) : πS ← S(crs, Y)} are indistinguishable to A except with negligible probability.

Non-Malleable and Equivocable Commitments A non-malleable and equivocable commitment
scheme with message space {0, 1}∗, commitment space C and opening space O consists of a tuple of three
PPT algorithms CT := (Gen, Com, Open, Equivocate) where Gen gets as input the security parameter
κ ∈ N and outputs public parameters par and a trapdoor τ ; Com takes as input par and a message
m ∈ {0, 1}∗ and outputs a tuple (c, d); Open takes as input par and a tuple (c, d) ∈ (C × O) and either
outputs a message m or ⊥; Equivocate takes as input a trapdoor τ , a commitment c ∈ C and a message
m ∈ {0, 1}∗ and outputs an opening d. A non-malleable and equivocable commitment scheme must satisfy
the following properties:

1. Computationally Hiding: For all κ ∈ N, all (par, τ)← Gen(1κ), any two messages m, m′ ∈ {0, 1}∗
and (c, d)← Com(par, m) and (c′, d′)← Com(par, m′), there exists no PPT adversary A which can
distinguish the tuples (m, m′, c) and (m, m′, c′) except with negligible probability.

2. Computationally Binding: For all κ ∈ N and all (par, τ)← Gen(1κ), there exists no PPT adversary
A which can output (c, d, d′) such that Open(par, c, d) ̸= Open(par, c, d′) and Open(par, c, d) ̸= ⊥
and Open(par, c, d′) ̸= ⊥ except with negligible probability.

3. Equivocable: For all κ ∈ N, all (par, τ)← Gen(1κ) and any message m ∈ {0, 1}∗ the distributions
{(c, d) : (c, d)← Com(par, m)} and {(c′, d′) : c′ $← C, d′ ← Equivocate(τ, c′, m)} are computationally
indistinguishable.

Finally, a commitment scheme is non-malleable if for all κ ∈ N, all (par, τ) ← Gen(1κ), any message
m ∈ {0, 1}∗ and (c, d)← Com(par, m), there exists no PPT adversary A which on input c can output a
commitment c′ such that after receiving the opening d the adversary A can output an opening d′ such
that for m′ ← Open(par, c′, d′) the messages m and m′ are related.

23

Public Key Encryption A public key encryption scheme consists of three algorithms PKE :=
(Gen, Enc, Dec), where (i) Gen(1κ) outputs a public key pk and a secret key sk; (ii) Enc(pk, m) outputs a
ciphertext ct; and (iii) Dec(sk, ct) outputs either ⊥ or a message m.

A public key encryption scheme pk := (Gen, Enc, Dec) is linearly homomorphic if (1) there exists an
efficiently computable operation ⊕ s.t. for two ciphertexts ct1 ← Enc(pk, m1) and ct2 ← Enc(pk, m2) it
holds that ct1 ⊕ ct2 = Enc(pk, m1 + m2); and (2) there exists an efficiently computable operation ⊙ s.t.
for a ciphertext ct1 ← Enc(pk, m1) and a constant k it holds that ct1 ⊕ k = Enc(pk, m1 · k).

A public key encryption scheme is semantically secure if for every PPT adversaries A := (A1,A2)
there exists a negligible function ν in the security parameter κ ∈ N s.t.:

Pr

 b′ = b

∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1κ),
(m1, m2, s)← A1(pk),
b $← {0, 1}, ct← Enc(pk, mb),
b′ ← A2(s, ct)

 ≤1/2 + ν(κ).

B.2 Construction
The GG[H0] scheme relies on a multiplicative to additive share conversion protocol, which allows two
parties Pi and Pj with shares ai ∈ Zq and bj ∈ Zq respectively s.t. x = ai · bj mod q to transform ai and
bj into additive shares of x, i.e., into shares αi and βj s.t. x = αi + βj . We briefly recall this protocol here.
We denote by PKE a linearly homomorphic encryption scheme (with operations ⊙ for multiplication with
a constant and ⊕ for homomorphic addition) over an integer N and we denote by (pki,PKE, ski,PKE) the
public/secret key pair of scheme PKE of Pi.

Pi(pkj,PKE, ski,PKE, ai) Pj(pki,PKE, bj)

ci ← PKE.Enc(pki,PKE, ai)
ci,πi−−−−→

Compute a ZK proof πi that a < q3

If πi is not valid, abort.
y $← Zq5 , cj ← (ci ⊙ bj)⊕ PKE.Enc(pki,PKE, y)
Compute a ZK proof πj that Pj knows
bj < q3, y < q7 s.t. cj ← (ci ⊙ bi)⊕ PKE.Enc(pki,PKE, y)

cj ,πj←−−−−
If πj is not valid, abort.
α← PKE.Dec(ski,PKE, cj) mod q β ← −y mod q

Figure 8: Multiplicative to additive share conversion protocol MtA.

Gennaro and Goldfeder also consider a slight adjustment of the above protocol which they call MtAwc,
which differs only from the above protocol in the following way: If Bj = gbj is a public value (where g is
the generator of a cyclic group of prime order q), then party Pj additionally proves in zero-knowledge
that bj is the discrete log of Bj . We now recall the key generation and signing procedures of the GG[H0]
scheme. For simplicity, we slightly deviate from the original GG[H0] scheme in two ways. We emphasize
that these two changes have no impact on the scheme’s security: Gennaro and Goldfeder consider a
distributed key generation, whereas we assume that the key generation is initially executed by a trusted
party. In addition, we do not generate the keys for the linearly homomorphic encryption scheme during
the initial key generation but we let parties generate fresh keys in the beginning of an execution of the
signing procedure.

In Figure 10 we recall the signing procedure of the GG[H0] scheme. The procedure makes use of
a non-malleable and equivocable commitment scheme CT := (Com, Open) as well as a hash function
H0 : {0, 1}∗ → Zq, a linearly homomorphic encryption scheme PKE := (Gen, Enc, Dec) and a non-
interactive zero-knowledge proof system ZK. We slightly adjust the signing procedure as follows: Instead
of letting parties generate their key pair for PKE during the initial key generation, we let parties generate
a fresh key pair for the PKE scheme before Phase 1 of the signing procedure. The parties then broadcast
the public key together with a zero-knowledge proof that the key was generated honestly. In more

24

Algorithm Gen(1κ, t, n)
00 For k ∈ [t] ∪ {0}, sample ak

$← Zq.
01 Let F (x) := atx

t + · · ·+ a1x + a0.
02 sk := x← a0 mod q.
03 Set X ← gx and ski := xi ← F (i) mod q.
04 Set Xi ← gxi .
05 Set pk := (X, {Xi}i∈[n]).
06 Return (pk, {ski}i∈[n]).

Figure 9: Key generation algorithm. Note that Gennaro and Goldfeder consider a distributed key
generation, whereas we assume that the key generation is initially executed by a trusted party.

detail, before Phase 1 of the signing procedure, each party computes (pki,PKE, ski,PKE)← PKE.Gen(1κ)
and πi,PKE = ZKPKEi

{(pki,PKE, ski,PKE) : (pki,PKE, ·) ∈ PKE.Gen(1κ)}. Finally, each party broadcasts
(pki,PKE, πi,PKE). The parties then engage in the signing procedure as specified in Figure 10.

Finally, in Figure 11 we recall the simulation of the signing procedure as provided in [GG18] (with some
minor modifications). The forger F provides a computationally indistinguishable view of the signing
procedure of the GG scheme to a PPT adversary on input the secret key shares of corrupted parties and
with access to a signing oracle.

B.3 Proof Sketch of Theorem 4.2
B.3.1 Case b = 0

In this case, B executes B0 which plays in game th-ufcma-hrk1rGG. That is, upon A sending the list C
of parties to corrupt in game unf -prandTVRF-rGG, B0 corrupts the same parties in th-ufcma-hrk1rGG
and forwards the resulting secret key shares and the public key to A.

The simulation of the oracles Rand, RSign and the random oracle H0 happens in a straightforward
way, i.e., B0 simply forwards queries from A in game unf -prandTVRF-rGG to the corresponding oracle in
game th-ufcma-hrk1rGG.

The simulation of the random oracle H1 and the REval oracle is a bit more challenging as B0
does not have access to any such oracle in game th-ufcma-hrk1rGG. Upon a query from A to the
random oracle H1 on input a message m, B0 first checks if H1(m) has been set already. If so, it simply
returns H1(m). Otherwise it samples a uniformly random value r $← Zq and sets H1(m) := gr and
returns gr. The simulation of the REval oracle then works as follows: On input a message m, an
index i ∈ [n] and a randomness ρ ∈ RList, B0 first executes pk′ ← TVRF-rGG.RandPK(pk, ρ) and parses
pk′ := (X ′, {X ′1, · · · , X ′n}). B0 then retrieves r ← H1(m), sets ϕi := (X ′i)r = H1(m)sk′

i , simulates the
corresponding zero-knowledge proof πi and returns (ϕi, πi).

Eventually, the adversary outputs a forgery which B0 also forwards to the th-ufcma-hrk1rGG game.
It is easy to see that B0 wins the th-ufcma-hrk1rGG game if A is able to win the unf -prandTVRF-rGG
game by satisfying the winning condition in Case 1.

B.3.2 Case b = 1

In this case, B executes B1 which plays in game th-prandTVRF. That is, upon A sending the list C
of parties to corrupt in game unf -prandTVRF-rGG, B1 corrupts the same parties in th-prandTVRF and
forwards the resulting secret key shares and the public key to A. The simulation of oracles Rand, RSign,
H0, H1 and REval then works as follows:

• Oracle Rand: On a query to Rand from A, B1 samples uniformly at random ρ $← Zq, stores ρ in RList
and returns ρ.

25

Pi(wi, m) Phase 1 Pj(wj , m){j ̸= i}

ki
$←− Zq , γi

$←− Zq

(Ci, Di)← CT.Com(gγi)
Ci−−−−−−−−−→

Define the following:
k =

∑
i∈S

ki, γ =
∑

i∈S
γi

kγ =
∑

i,j∈S
kiγj mod q

kx =
∑

i,j∈S
kiwj mod q

Phase 2

ki−−→
MtA

γj←−−
αi,j←−−−

βi,j−−−→
ki−−→

MtAwc

wj←−−
µi,j←−−−

νi,j−−−→
(s.t. ki · γj = αi,j + βj,i)
(s.t. ki · wj = µi,j + νj,i)

δi = kiγi +
∑

j ̸=i
(αi,j + βj,i)

σi = kiwi +
∑

j ̸=i
(µi,j + νj,i)

Phase 3

δi−−−−−−−−−→ δ =
∑

i∈S
δi = kγ

Phase 4

πγi
= ZKΓi

{(γi) : Γi = gγi}
Di,πγi−−−−−−−−−−−−→ Γi = CT.Open(Ci, Di)

Abort if πγi
does not verify

R =
(∏

i∈S
Γi

)δ−1
= gk−1

,

where R = (rx, ry).
Set r = rx mod q

Phase 5
m′ = H0(m), si = m′ki + rσi

li
$← Zq , ρi

$← Zq

Vi = Rsi · gli , Ai = gρi

(Ĉi, D̂i) = CT.Com(Vi, Ai)
Ĉi−−−−−−−−−→

π̂i = ZK(Vi,Ai){(si, li, ρi) :
D̂i,π̂i−−−−−−−−−−−→

(Vi = Rsi · gli) ∧ (Ai = gρi)} Abort if a proof fails
V = g−m′

·Q−r ·
∏

i∈S
Vi = gl

A =
∏

i∈S
Ai

Ui = V ρi , Ti = Ali

(C̃i, D̃i) = CT.Com(Ui, Ti)
C̃i−−−−−−−−−→
D̃i−−−−−−−−−→ Abort if

∑
i∈S

Ti ̸=
∑

i∈S
Ui

si−−−−−−−−−→ s =
∑

i∈S
si

Figure 10: Interactive (t, n)-threshold ECDSA scheme by Gennaro and Goldfeder [GG18], where |S| ⊆
[n], |S| = t + 1. For all parties {Pi}{i∈[n]}, xi denotes secret share of the secret x. For all parties Pi{i∈S},
wi represents the secret share of x due to (t, t + 1)-secret sharing of x, such that x =

∑
i∈S wi.

26

Simulation of the Signing Procedure: Before Phase 1 of the signing procedure, F samples uniformly
at random a public key pk1,PKE s.t. (pk1,PKE, ·) ∈ PKE.Gen(1κ) and simulates the zero-knowledge proof
π1,PKE.

Phase 1: F executes Phase 1 honestly for party P1, i.e., it samples k1, γ1
$←− Zq and commits to gγ1 .

It then broadcasts the commitment C1.

Phase 2: F executes the first MtA protocol correctly for P1 using the values k1 and γ1 and extracts
the following values from the zero-knowledge proofs that are exchanged during the MtA protocol:
ki, γi, y1 for i > 1. It then computes α1,j = k1γi + y1 mod q and k̃ =

∑
i∈S ki mod q.

For the execution of the MtAwc protocol, F does not know w1 when P1 is the reacting party.
Therefore, it simply chooses a random γj,1 and simulates the corresponding zero-knowledge proofs.
When P1 is the initiating party, F can execute the protocol honestly with input k1 and extract the
share ν1,j from the zero-knowledge proofs.

Phase 3: F executes this phase correctly for P1.

Phase 4: All players decommit to Γi. F extracts γj for all j1 from the zero-knowledge proofs πγj

and computes k = δ ·
(∑

i>0 γi

)−1 mod q.

If k̃ = k, then F proceeds as follows:

(a) F queries its own signing oracle on message m to receive a signature (r, s) and computes
R = gH(m)s−1 ·Xrs−1 .

(b) F rewinds the adversary to the beginning of Phase 4 and equivocates the decommitment of P1
to Γ̂1 = Rδ

∏
i>1 Γ−1

i .
(c) F computes s1 = s−

∑
i>1 si.

Phase 5: F executes this phase correctly for P1 using s1.

Else if k̃ ̸= k, then F proceeds as follows:

Phase 4: F runs this phase correctly for P1.

Phase 5: F chooses s̃1
$← Zq and runs this phase using this value.

Figure 11: Simulation of the signing procedure of the GG scheme. The forger F receives as input the
secret key shares of all corrupted parties and obtains access to a signing oracle.

27

• Oracle H0: Upon A querying H0 on input a message m, B1 first checks whether m is public key
prefixed, i.e., whether m can be parsed as m := (pk′, m′) where pk′ ← TVRF-rGG.RandPK(pk, ρ) for
some ρ ∈ RList. If so and if H0(m) has already been set, then B1 aborts. Else, B1 executes SECDSA as
described in Figure 3 on input (X ′, m) with pk′ := (X ′, {X ′1, · · · , X ′n}).
If m is not public key prefixed, B1 simply samples a uniformly random value r $← Zq, sets H0(m) := r
and returns H0(m). Note that in order for B1 to abort in this simulation, A would have to guess a
randomness ρ ∈ Zq before it has been output by the Rand oracle. This happens only with negligible
probability. Further, note that SECDSA programs the random oracle H0 in such a way that (1) H0(m) is
set to uniform random value in Zq, and (2) the values (r, s) look like a valid ECDSA signature for m
and X ′ to A except with negligible probability (this has been shown in [FKP17]).

• Oracle RSign: Upon A querying this oracle on input a message m and randomness ρ ∈ RList, B1
simulates the signing procedure in the same way as described in Theorem 3.3. Note that this simulation
relies on the availability of a signing oracle, which returns full valid ECDSA signatures on arbitrary
messages and rerandomized public keys. Since B1 does not have access to such an oracle, it uses the
simulated signatures (r, s) that are generated during the programming of H0. Note that the simulator
code from Theorem 3.3 does not program H0 such that there is no conflict between the execution of
the simulator code from Theorem 3.3 and SECDSA.

• Oracle H1: Upon A querying H1 on some message m, B1 simply queries its own random oracle on m
and relays the output.

• Oracle REval: Upon a query from A on input (m, i, ρ), B1 queries its own oracle on input m and receives
an evaluation share (ϕi, πi) where ϕi = H1(m)ski . B1 then computes ϕ′i = ϕi ·H1(m)ρi = H1(m)ski+ρi

(where ρi is the randomness share of ρ for party Pi according to the TVRF-rGG.RandSK algorithm),
simulates a NIZK proof π′i of the DLEq proof system (cf. Appendix A.2) and sends (ϕ′i, π′i) to A.

Reduction to th-prandTVRF: During the challenge phase of th-prandTVRF-rGG (in Case 2), A outputs
a message m∗, randomness ρ∗, a set of indices S and evaluation shares {(ϕ∗i , π∗i)}i∈S∩C. Upon receiving
these values, the adversary B1 computes ϕi = ϕ∗i · H1(m∗)−ρ∗

i = H1(m∗)ski and generates a new zero-
knowledge proof πi using ski and ϕi. B1 then returns the set of indices S, the message m∗ and evaluation
shares {(ϕi, πi}i∈S∩C to game th-prandTVRF. Upon receiving the challenge value ϕ from the underlying
game, B1 computes ϕ∗ = ϕ · H1(m∗)ρ∗ and returns it to A. Note that if ϕ was chosen randomly by the
th-prandTVRF game then ϕ∗ is also random, and if ϕ is a valid TVRF output, then so is ϕ∗ under the
key randomized with ρ∗. B1 then simply relays the output of A to its own game.

It is easy to see that if A can distinguish between a random value and the output of the rerandomized
TVRF, B1 can distinguish between a random value and the output of the TVRF.

28

	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Interactive Threshold Signature Scheme
	Signature Scheme with Honestly Rerandomizable Keys
	Non-Interactive Threshold Verifiable Random Function

	Rerandomizable Interactive Threshold Signing
	Model
	Construction

	BIP32-Compatible Threshold Wallets
	Non-Hardened Node Derivation
	Hardened Node Derivation
	Joint Threshold Signature/TVRF Scheme
	Pseudorandomness of TVRF-rGG
	Uniqueness and Robustness of TVRF-rGG

	Additional Preliminaries
	Correctness and one-per message unforgeability under honestly rerandomizable keys of signature schemes with rerandomizable keys
	TVRF Construction from Galindo et al. 9581233
	ECDSA with Rerandomizable Keys

	The GG scheme by Gennaro and Goldfeder 3243859
	Underlying Assumptions and Building Blocks
	Construction
	Proof Sketch of Theorem 4.2
	Case b = 0
	Case b = 1

