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Abstract. Impossible differential (ID) cryptanalysis is one of the most
important cryptanalytic approaches for block ciphers. How to evaluate
the security of Substitution-Permutation Network (SPN) block ciphers
against ID is a valuable problem. In this paper, a series of methods for
bounding the length of IDs of SPN block ciphers are proposed. From
the perspective of overall structure, we propose a general framework
and three implementation strategies. The three implementation strate-
gies are compared and analyzed in terms of efficiency and accuracy. From
the perspective of implementation technologies, we give the methods for
determining representative set, partition table and ladder and integrat-
ing them into searching models. Moreover, the rotation-equivalence ID
sets of ciphers are explored to reduce the number of models need to be
considered. Thus, the ID bounds of SPN block ciphers can be effectively
evaluated. As applications, we show that 9-round PRESENT, 8-round
GIFT-64, 12-round GIFT-128, 5-round AES, 6-round Rijndael-160, 7-
round Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256 and 10-
round Midori64 do not have any ID under the sole assumption that the
round keys are uniformly random. The results of PRESENT, GIFT-128,
Rijndael-160, Rijndael-192, Rijndael-224, Rijndael-256 and Midori64 are
obtained for the first time. Moreover, the ID bounds of AES, Rijndael-
160, Rijndael-192, Rijndael-224 and Rijndael-256 are infimum.

Keywords: Impossible differential - PRESENT - GIFT - Midori64 -
Rijndael - AES

1 Introduction

Impossible differential (ID) cryptanalysis [Knu98IBBS99] is one of the most effec-
tive cryptanalytic approaches for block ciphers. The main idea of it is to utilize
IDs (differentials with probability 0) to discard wrong keys. So far, ID crypt-
analysis has been used to attack lots of block ciphers, such as AES [MDRM10)].

For attackers, finding ID plays an important role in ID attack. In [KHS™T03],
Kim et al. proposed the first automatic method for finding IDs, called ¢-method.
After that, many improved automatic tools are presented, such as UID-method
[ILLWGI14], WW-method [WW12], U/*-method [SGWW20|, etc. However, all
these tools treat S-boxes as ideal ones that any nonzero input difference could
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produce every nonzero output difference. Thus, the IDs obtained by these meth-
ods may not be the longest for real ciphers. In order to tackle this problem,
Cui et al. |[CJET16] and Sasaki and Todo [STI7b| independently proposed au-
tomatic tools based on Mixed Integer Linear Programming (MILP) to search
IDs for block ciphers with the differential details of S-box considered. With the
tools based on MILP, they can identify whether a specific differential is ID. In
theory, the tools based on MILP can find all IDs under the assumption that
round keys are uniformly random. However, for a block cipher with n-bit block
size, the number of differentials in the whole search space is about 22 which is
not affordable to determine all these differentials one by one.

For designers, it is important to evaluate the security of block ciphers. To
prove the security of a block cipher against ID attacks, a common way is to give
an upper bound on the rounds of ID. In |CJZ™17|, Cui et al. suggested that the
differential pattern matrix of the P-layer could be used to deduce all IDs for SPN
block ciphers. At EUROCRYPT 2016, Sun et al. [SLG™16] associated a primitive
index with the characteristic matrix of the linear layer. They proved that the
length of ID for some special SPN block ciphers was bounded by the primitive
index of the linear layer. In order to obtain the bounds of ID in practical time,
they proved that under special conditions whether there existed ID depended
only on the existence of low-weight ID. To overcome the limitations of the above
methods, Wang and Jin [WJ21] used linear algebra to propose a practical method
that could give the upper bound on the length of ID for any SPN block cipher
when treating S-boxes as ideal ones. Since the above methods do not consider
the differential details of S-box, their bounds may become invalid.

When the details of S-box are considered, the security bounds of ciphers
against ID will be more convincing. The difficulty of this problem is that it
needs to prove that all differentials are possible when the round number of a
block cipher is not less than a certain integer. If there is no special explanation,
all the contents of ID considering the details of the S-box in this paper are
obtained under the assumption that round keys are uniformly random. The
research progress in this field can be divided into the following three categories.

- Rigorous mathematical derivation. By revealing some important proper-
ties of the S-box and linear layer used in AES, Wang and Jin [WJ19| prove
that even though the details of the S-box are considered, there do not ex-
ist ID covering more than 4 rounds for AES. However, this method is only
applicable to AES at present.

- Bounds on partial search space. The automatic search methods based on
solvers |CJFT16ISTI7bI/BC20] can determine whether a concrete differen-
tial is ID. Thus, the bound on partial search space of differentials can be
obtained.

- Bounds on whole search space for special SPN ciphers. At SAC 2022,
Hu et al. [HPW22| partitioned the whole search space of difference pairs into
lots of small disjoint sets. When the number of sets is reduced to a reasonable
size, they can detect whether there exist ID with MILP models. Due to the
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78 limitation of huge time complexity, their method currently works only for
79 special SPN cipher whose block size is 64 bits.
so 1.1 Owur Contributions

s1 In this paper, we propose a series of methods for bounding the length of IDs of
s2 SPN block ciphers. The contributions can be classified into three parts.

ss - A general framework and three implementation strategies. Based on

8a our new definition about the set of difference pairs, called ladder (a set
85 whose every input difference can propagate to every output difference), we
86 propose a general framework for bounding the length of IDs of SPN block
87 ciphers. The framework divides the whole cipher into small components and
88 constructs a ladder for a middle component. Thus, the input and output
80 differences can be considered separately. Then, three implementation strate-
90 gies of the framework are introduced. We compare and analyze the three
01 implementation strategies in terms of efficiency and accuracy. Thus, we can
02 choose appropriate strategy according to specific block ciphers.

s - More efficient and accurate implementation technologies. In order to
04 reduce the implementation complexity, we put forward the definitions of
o5 optimal representative set and optimal partition table. For small-size S-box
%6 (e.g. 4-bit or 8-bit) and middle-size S-box (e.g. 16-bit), we give corresponding
o7 algorithms to determine the optimal representative set and partition table.
o8 For large-size superbox (e.g. 32-bit), a heuristic algorithm is proposed to
%0 determine a relatively good representative set and partition table. Thus,
100 compared with the work in [HPW22], our methods can use fewer or even the
101 least models to obtain the security evaluation against ID.

102 In addition, we propose the definition of maximal ladder to guide the selec-
103 tion of a better ladder. Then, the methods for determining a maximal ladder
104 of S-box layer and integrating it into searching model are given. Moreover,
105 the rotation-equivalent ID sets of ciphers are explored to reduce the number
106 of models need to be considered. Thus, we can bound the length of IDs of
107 SPN block ciphers effectively.

1s - Applications to SPN block ciphers. Under the sole assumption that
100 round keys are uniformly random, we show that 9-round PRESENT, 8-
110 round GIFT-64, 12-round GIFT-128, 5-round AES, 6-round Rijndael-160,
11 7-round Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256 and 10-
112 round Midori64 do not have any ID. The results of PRESENT, GIFT-128,
113 Rijndael-160, Rijndael-192, Rijndael-224, Rijndael-256 and Midori64 are ob-
114 tained for the first time. Moreover, the ID bounds of AES, Rijndael-160,
115 Rijndael-192, Rijndael-224 and Rijndael-256 are infimum.

116 Compared with the methods in [HPW22], our methods have two advantages.

11z On one hand, our methods are more general which are no longer limited to special
118 SPN ciphers with 64-bit block size. For instance, under the sole assumption that
1o round keys are uniformly random, the ID bound of GIFT128 is obtained for the
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first time. On the other hand, our methods are more efficient. For example, when
determining whether there is ID for 8-round GIFT-64, the methods in [HPW22]
need to solve 226 fundamental models, while our methods only need to solve
22468 fyndamental models. All the application results are shown in Table

Table 1. The ID results of some SPN block ciphers

Cipher Block size  Longest known ID  Number of models Bound Reference
- 7° [HLJT20
+
PRESENT 64 6 [HLJ 20] 224.68 9 Sect, lﬁl
- e [BPP 17|
GIFT-64 64 6 |HLJ'20] 226 8 [HPW22
92468 8 Sect. [5.2
21217 §*  [HPW22
GIFT-128 128 7 [HPW22) 52583 1o Set B3
. AES 128 4 [MDRMI10] e o WILO]
(Rijndael-128) 75 + O (2°%) 5 Sect. 6.1
Rijndael-160 160 5 [ZWP 08 217 6 Sect.[6.1
.. - d [HPW22]
Rijndael-192 192 6 [JPOT) 819 . Sect. 6.1
Rijndael-224 224 6 [JPOT| 2413 7 Sect. 6.1
Rijndael-256 256 6 [ZWPT 08| 8925 7 Sect. 6.1
L - 6*  [BBI'15]
+
Midori64 64 5 |[BBI"15] 924 10 Sect.

* The security bound of the search space where there is only one active S-box for both
the input and output differences.

* The security bound of the search space where there is only one active superbox for
both the input and output differences.

 The security bound of truncated ID omitting the details of S-box.

¢ We need to verify some representatives of 32-bit superboxes in AES.

1.2 Outline

This paper is organized as follows: Sect. [2] introduces the notations, definitions
and related works. In Sect. [3] we propose a general framework and three imple-
mentation strategies for bounding the length of IDs. In Sect. [d] the implemen-
tation technologies are detailed. In Sect. [5] and [6] we apply our methods to two
types of SPN block ciphers. In Sect. [7} we conclude the paper.

2 Preliminaries

2.1 Notations and Definitions

Some notations used in this paper are defined in Table [2}
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Table 2. Some notations used in this paper

Fy |The finite field {0, 1}
x € F5|An n-bit vector or difference
r @ y |Bitwise XOR of x and y
x <« t|Left rotation of x by i-bit position
x >> i|Right rotation of x by i-bit position

z|ly |The concatenation of x and y
nll

The concatenation z||z|| - - - ||z whose number of z is n
0 |Empty set
A [Set is denoted as uppercase letter such as A
|A] |The number of elements in the set A
AN B |The intersection of two sets A and B
AU B |The union of two sets A and B
A+ B|If AN B =, we denote the union of A and B as A+ B
A — B|The set {ala € A and a ¢ B}
A ® B|The set {(a,b)|a € A,b€ B}
A" |Theset AR A®---® A whose number of A is n

Definition 1. (Expected Differential Probability [CR15]). Let f} : Fy x
F5 — F5* be a keyed vectorial boolean function with k-bit key size. Then, the
expected probability of differential (a,b) € F§ x FL* over fi, is defined as:

EDP(a+ ) =277 3" DP(a ),
keFs

where DP(a ELN b) = 27" x |[{x € F3|fr () ® fi (x ® a) = b}| is the differential
probability of (a,b) over f.

If EDP(a ELN b) = 0, the differential (a,b) is an ID over fi, denoted as
a2 b. Otherwise, if EDP(a ELN b) > 0, the differential (a,b) is a possible
differential pattern, denoted as a & b. For two sets of differences A and B, if
a 2% b holds for all (a,b) € A® B, we denote it as A % B. Otherwise we denote
it as A %5 B. Moreover, a % B and A % b are equivalent to {a} % B and

Ay {b}, respectively.
In this paper, we are only interested in the bit-wise XOR difference. On this
condition, we introduce the following definition and theorem.

Definition 2. (Markov Cipher [LMMO91]|). An iterated cipher with round
function fi (z) = f(x @ k) is a Markov cipher, if for all choices of a and b
(a #0,b #0), the probability

P(fu(z)® fr(2') =blz @2’ =a,2=c)

is independent of ¢ when the round key is uniformly random.
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Theorem 1. (EDP of Markov Cipher [LMM91]). Let E, = fx, , 0 fr, ,©
-+ 0 fr, be an r-round Markov cipher, where k; is the round key and fy, (xz) =
fx®k;) holds for all 0 < i < r — 1. Then, under the assumption that round
keys are uniformly random, the EDP of (ag,a,) over Ey can be calculated as

. : Fhp_
EDP(GO&GT):ZZ...ZEDP(%&M“&... F gy, (1)

ay a2 Ar—1

T — Fr; )
where EDP(ag nﬂ ay & e ay) = HZ:(} EDP(a; »L ait+1) s the EDP

of the r-round differential trail ag — a1 — - -+ — a, over Ej.

According to Eq. 7 for an r-round Markov cipher Fj, if we want to

prove ag = ar, we need to find an r-round possible differential trail satisfy-

: : Sy
ing EDP(ag ,ﬂ) a1 & Y a,) > 0. If we want to prove that there does

not exist any ID for cipher Ej, we have to prove that ag By a, holds for every
concrete differential (ag, a,). As far as we know, almost all SPN block ciphers
(such as AES [DR02]) are Markov ciphers. For those SPN ciphers that are not
Markov ciphers (such as SKINNY |[BJK™16|), we should not misuse the result
of Theorem [Il

2.2 Current Automatic Methods for Finding IDs

In [MWGPI1ISHW 14|, MILP based methods for searching differential distin-
guishers were proposed. By adding additional constraints on the input and out-
put differences, Cui et al. [CJFT16| and Sasaki and Todo [ST17b| independently
proposed MILP models to search IDs for block ciphers with the details of S-box
considered. Using MILP tools, they are able to identify whether a differential is
ID or not. However, when we want to find all the IDs or to know whether there
exist longer ID for a block cipher, we have to solve about 22 models for a cipher
with n-bit block size to check all input and output difference pairs. The search
space far exceeds the existing computing power.

In order to tackle this problem, Hu et al. [HPW22|) partitioned the whole
search space into many small disjoint sets and then excluded the sets containing
no ID. Thus, when their methods have determined that all differentials are not
IDs, the provable security of ciphers against ID can be obtained. We will intro-
duce their methods from the perspective of bounding the length of IDs which is
also the main topic of this paper.

Definition 3. (Representative Set [HPW22]). For a function f, let A and
B be the sets of input and output differences, respectively. If the following con-
dition is satisfied,

Va € A,3b € B satisfying a ENY3

we call B the representative set of A over f, denoted as A 4, 3B.
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Definition 4. (Partition Table [HPW22]). If A % 3B, then

Ufaealad by =a.

beB
For any a € A, we remove the overlapping elements and make it exist in only one
set of {a € Ala ER b},b € B. Thus, we get a partition of A which can be stored in
a hash table H with b € B as key and the value H[b] is the set {a € Ala EN b} after
removing. Thus, A =%, 5 H[b] is a partition table, denoted as PT[A, B, H, f].

However, it is very difficult to determine the representative sets and partition

tables of a cipher directly. By dividing a large-dimension function into small
parts, Hu et al. [HPW22| proposed a solution as follow.
Theorem 2. ([JHPW22|). For a function S comprising of m parallel S-bozes,
denoted as S = Sp—1||---||s1]|s0, let A = A1 @ -+ ® A ® Ay be the input
difference set of S, where A; is the input difference set of s;,i € {0,1,...,m—1}.
If we obtain the partition tables PT (A;, By, Hyy 85) .1 € {0,1,...,m — 1}, then

A— Z Z Z Hyy1[bm—1] ® - -+ @ Hy[b1] @ Holbo]

bm—1€Bm -1 b1 €B1 bpE€ By
Thus, we obtain the partition table of A over S.

Then, Hu et al. [HPW22| proposed a framework for bounding the length of
IDs as showed in the following theorem (also illustrated in Fig.
Theorem 3. (Bounding the Length of IDs [HPW22]). For a cipher E =
FEy 0 Ey o Ey and partition tables PT[Ag, A1, Hy, Eo] and PT[As, As, Hy, E5'],
the set Ay ® Az is the union of smaller sets as follows,

Ay ® Az = Z Hyla1] ® Halasg).

a1 €A1,a2€A;

For each element (a1, a2) € A1®Ag, the model is built to detect whether aq g as.
If Ay 5 Ay, the cipher E has no ID over Ay ® Asz. Thus, the ID bound of E

can be obtained. Otherwise, if there exists aq B as, the set of difference pairs
Hyla1] ® Halas] may contain some IDs.

The above framework considers the input difference set and output differ-
ence set together. In order to get the ID bound of F, at least |A;| x |A3| models
need to be solved. The number of models may not affordable. A natural ques-
tion is whether we can consider input difference set and output difference set
separately. Following this initial idea, we propose a general framework and its
implementation strategies in Sect.

3 Overall Structure of Bounding the Length of IDs

In this part, we propose a general framework for bounding the length of IDs.
Based on the framework, three implementation strategies are showed.
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| 44

[ e
-+~ - -

Fig. 1. The framework for bounding the length of IDs in [HPW22]

3.1 A General Framework

Definition 5. (Ladder) For a function f, let A and B be sets of input and

output differences, respectively. If the condition A 5 Bis satisfied, we call AQ B
the ladder of f.

Theorem 4. For a bijective function f, if A® B is a ladder of f, then B® A
is also a ladder of f=', where f~' is the inverse function of f.

Proof. Because A EN B, for any (a,b) € A® B, there exists x satisfying f (z) &

f(x®a) = b. For the element y = f(z), we have f~1(y) ® f~1 (y®b) =
-1

@ (z & a) = a. Thus, for any (b,a) € B® A, we have b 5. O

Based on the definitions of representative set, partition table and ladder, we

propose a general framework for bounding the length of IDs as showed in the
following theorem (also illustrated in Fig. .

Theorem 5. Let E = E o0 E30 FEso0EqoFEy be a cipher, where E;,0 <1 < 4 are

all bijective functions. if there exist the sets of differences Ag, Ay, Aa, Az, Ay, As
and partition tables PT[Ao, Ay, Ho, Eq], PT[As, Ay, Hy, EJ'] satisfying

we have Ag L As. That is, the cipher E has no ID over Ag ® As.

Proof. Because PT[Ag, A1, Hy, Ep), we have Ag = > Hylaq]. For any dif-

ference ag € Ay, there exists a; € A satisfying ag By a1. According to Definition

a1 €A

if Ay By JAs, for any a; € Ay, there exists as € Ay satisfying a; By as. There-

fore, for any difference ag € Ag, there exists ay € As satisfying

Qg ELE>O as. (3)
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E;'oE !
Similarly, for any as € As, there exists az € As satisfying a5 °——* ag3. Because

Es Lo E4_1 is a bijective function, according to Theorem |4} for any difference
as € As, there exists az € Az satisfying

as Eﬂs as. (4)
Because A, B Az, we have
a9 % as. (5)

Combining the Eq. , and together, for any ag € Ap and a5 € As, there
exist as € As and a3 € Az satisfying

Ei0F E E4oF.
aop 1250 as =3 as Al as.

Thus, we have Ag = As. O

According to Eq. , the partition tables of input difference set Ay and
output difference set As can be considered separately. This will improve the
efficiency of security evaluation against ID. Moreover, if the functions F; and
E5 are identical permutation, the framework degenerates into the method as
shown in Theorem [3] Thus, our framework is more general.

>| 44— 4, <

ANl &
- - - -

Fig. 2. A general framework for bounding the length of IDs

3.2 Three Implementation Strategies

In this part, three implementation strategies are proposed to bound the length
of IDs. To facilitate the description of the strategies, we introduce an indicator
variable flag to denote the results of ID as following:

0, if there is no ID,
flag =< 1, if there is at least one ID,
2 if cannot determine whether there is ID.

9

When we cannot get the value of flag due to the limited storage and computing
capacity, we set flag = 2.
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3.2.1 Partition First Implementation Strategy This strategy will first
obtain the partition tables of the input and output difference sets. Then, if every
representative difference of input differences can propagate to every representa-
tive difference of output differences, we can obtain the ID bound. This strategy is
similar to the method shown in Theorem [3] However, we introduce this strategy
from the perspective of ladder. Moreover, when there are some uncertain IDs,
we adopt a different enhance stage.

For a cipher E = Fy0FE;0E, we construct partition tables PT[Ag, A1, Ho, Eo]
and PT[As, A, Ho, E;l], where Ay and A3z are the input and output difference
sets of F, respectively. In the fundamental stage, if A; ® A5 is a ladder of Fjy,
according to Theorem [5| there is no ID for F over Ag ® Asz. If A1 ® As is

not a ladder of Fy, we obtain a set I = {(a1,a2) € A; ® As|ay By as}. And
we need to further determine whether Hola1] ® Hzlas], (a1,a2) € I are lad-
ders of E. In the enhance stage, we construct a set Iy = {a1 € Ai|(a1,a2) ¢

I holds for every as € As}. Because for any a; € I;, we have a; By As. Thus,

> a,cr, Holai] X As. Therefore, for any a1 € A;, we can reduce the hash table
Hola1] to Hglai] = Hola1] — ) ,c;, Hola]. Similarly, for any az € Az, we can
obtain the reduced hash table H}[as]. Then, for any (ay,as) € I, we further

explore whether Hj[a] XS H/Jas]). The whole procedure for obtaining the ID
result of E over Ag ® Az is demonstrated in Algorithm

From Line 3 in Algorithm [1} we know that |A;| X |A2] models need to be
build to obtain ID result of E. The partition tables PT[Ag, A1, Hy, Fy] and
PT[As, A2, Ho, E5 1] will have an important influence on the time complexity
of Algorithm [1] In [HPW22], Hu et al. proposed an intuitive algorithm which
could generate representative sets and partition tables. Just as they write in the
paper, their algorithm is not very efficient. On one hand, their method cannot
be applied into large-size S-box (e.g. 32-bit). On the other hand, their method
cannot guarantee the obtained representative sets and partition tables are opti-
mal representative sets and partition tables. Thus, we propose the definitions of
optimal representative set and partition table in Sect. Compared with the
methods proposed in [HPW22], our methods can use fewer or even least models
to obtain the ID bound.

3.2.2 Ladder First Implementation Strategy Different from partition
first implementation strategy, ladder first implementation strategy directly con-
struct a ladder to separate the input difference set and output difference set.
Thus, we can obtain the ID result by independently researching the input differ-
ence set and output difference set. This divide and conquer method will greatly
reduce the number of models need to be solved.

For a cipher £ = E40 E30 Ey o0 Ey o Ey, we construct a ladder A, B Az and
two partition tables PT[Ag, A1, Ho, Eg] and PT[As, Ay, Hy, E;l], where Ay and
As are the input and output difference sets of F, respectively. In the fundamental

Efl
stage, if Ay B JA; and A4 > JAs, according to Theorem there is no ID
for E over Ay ® As. Otherwise, we obtain two sets I = {a1 € Ai|as 2 JAs}
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Algorithm 1 Partition first implementation strategy

Input: The cipher E = E5 o E7 o Ey, input and output difference sets Ap and As
Output: flag > Return the ID result of E over Ag ® As
Fundamental Stage
PT[Ao, A1, Ho, Eo] and PT[A3, A2, Ha, E5 ) > Obtain two partition tables
Allocate I < 0
for (a1,az) c A1 ® Az do

if a1 B as then > Build a model to determine whether a1 g as

I+ TU {(a17a2)}

end if
end for
if I =0 then

return flag =0 > E has no ID over Ay ® A3
: end if

—

Enhance Stage
11: I = {a1 € A1|(a1,a2) ¢ I holds for every as € Az}
12: I ={as € A2| (a1,a2) ¢ I holds for every a1 € A1}
13: Hgla1] = Hola1] — 3=, ;, Hola] for any a1 € Ay

14: Hjlaz] = Hzlaz] — 37, ¢, He[a] for any az € Az

15: for (ai,a2) € I do

16: for (ao,a3) € Hy[a1] ® Hslaz] do

17: if ao A az then > Build a model to determine whether ag L2 as
18: return flag =1 > E has at least one ID
19: end if

20: end for

21: end for

22: return flag =0 > E has no ID over Ay ® A3

Bl
and J = {ay € A4las - FAs}. In the enhance stage, similarly to partition
first implementation strategy in Sect. B.2.I] we can obtain the reduced hash
tables H{[a1] and H}[a4] for any a1 € A; and a4 € Ay, respectively. Then,

for any a; € I and ay € J, we further explore whether H)[a;] "°5° 34, and

1 g1
H)[a4] Pa 2% JA3. The whole procedure for obtaining the ID result of E over
Ay ® As is demonstrated in Algorithm [2}

From Line 3 and Line 8 in Algorithm 2] we know that |A;|+|A4| differential
patterns need to be determined. For example, in Line 4 of Algorithm 2] we need

to determine whether a; ﬂ JAs. It should be noted that there is no automatic
method for directly modeling this new kind of differential pattern before. For
each az € Ag, previous automatic methods |[CJET16ISTI7b] will build a model
determine whether a; ﬂ Jag. Thus, |As| models need to be solved. This will
greatly increase the complexity of Algorithm [2] In order to tackle this problem,
in Sect. we propose the definition of mazimal ladder to guide the selection of
a better ladder. Then, the methods for determining a maximal ladder of S-box
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layer and integrating it into searching model are given. Therefore, we can build

only one model to determine whether aq By JA, effectively.

Algorithm 2 Ladder first implementation strategy

Input: The cipher E = E40--- o0 Ep, input and output difference sets Ap and As
Output: flag > Return the ID result of E over Ag ® As
Fundamental Stage

1: A, i As, PT[Ao, A1, Ho, Eo), PT[As, As, Ha, E;'] > ladder and partition tables
2: Allocate I < @ and J « 0

3: for a; € A, do

4: if a1 5 A, then > Build a model to determine whether a; ﬂ JA>
5: I+ 1 U al

6: end if

7: end for

8: for aqs € A4 do

—1 —1

9: if a4 Ej» JA3 then > Build a model to determine whether a4 Ei) JA3
10: J JUa4

11: end if

12: end for

13: if I =0 and J = () then

14: return flag =0 > E has no ID over Ay ® As
15: end if

Enhance Stage

16: Hgla1] = Hola1] — 32, c 4, _; Hola] for any a1 € Ay

17: Hjlas] = Halaa] =37, c o, _ 5 Hala] for any as € Ay

18: for a1 € I, a9 € Hyla1] do

19:  if ap "% JA, then
20: return flag =2 > Cannot determine whether E has ID
21: end if
22: end for
23: for a4 € J, a5 € Hjfas] do

E7lop]?!

24: if as 8 ad 4 E|A3 then
25: return flag =2 > Cannot determine whether E has ID
26: end if
27: end for
28: return flag =0 > E has no ID over Ag ® As

3.2.3 Dynamic-Ladder-Partition Implementation Strategy Different
from the above two strategies, this strategy will determine the ladders and par-
tition tables dynamically. For a cipher E = E5 o Ey o Ey, let Ay and A3 be the
input and output difference sets, respectively. We will dynamically add elements

-1
into the ladder A; ® Ay of Eq until Ag g JA; and Aj Ei) JAs are satisfied
or we obtain an ID. Then, we get the ID result of F over Ag ® A3. The whole
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procedure for obtaining the ID result of the cipher E is demonstrated in Algo-
rithm [3] According to Line 4 and Line 13 of Algorithm 3] the elements ag € Ag
and ag € Az are randomly selected. When flag = 2, if we want to get a more
accurate result, we can call Algorithm [3] again.

Algorithm 3 Dynamic-ladder-partition implementation strategy

Input: The cipher E = Es o E4 o Ey, input and output difference sets Ap and As
Output: flag > Return the ID result of E over Ag ® As
1: Allocate A; + 0,42 <+ ()

2: while Ag #0 or Az # 0 do

3: if Ag # 0 then

4: Randomly select an element ag € Ao

5: if there exists a1 satisfying ao E# a1 and A1 Uaq ﬂ A> then

6: Ao + Ao — {ao € Aplao = a1} > Remove elements represented by aq
7 A= A Ua > Add element into the set A1
8: else

9: return flag =2 > Cannot determine whether E has ID
10: end if

11: end if

12: if A3 # () then

13: Randomly select an element a3 € As

—1
14: if there exists a2 satisfying as Ei) as and A, ﬂ As U as then
—1

15: Az + Az — {as € Aslas E3> a2} > Remove elements represented by as
16: Az = AsJas > Add element into the set As
17: else

18: return flag =2 > Cannot determine whether E has ID
19: end if
20: end if
21: if Ao =0 and A3 = 0 then
22: return flag =0 > F has no ID over Ag ® As
23: end if

24: end while

3.2.4 Comparative Analysis of the Three Strategies We will compare
and analyze the above strategies from efficiency and accuracy. Efficiency is about
the number of models we need to solve. Accuracy is about whether we can get
the ID bound of a cipher. Because the enhance stages of Algorithm [I] and [2]
are greatly affected by the properties of specific ciphers and fundamental stages
play a more important role in most cases. Thus, only the fundamental stages of
Algorithm [I] and [2] participate in the comparison. The comparison data of the
three implementation strategies are showed in Table [3]



349

14 S.P. Wang et al.

Table 3. The comparison data of the three implementation strategies

Algorithm Algorithm Algorithm
Cipher E=F,oF10Ey E=FEjo---0F{oE)] E=FE)oE{oE]
Partition PT[Ao, A1, Ho, Eo) PT[Ap, AL, Hy, Ey] PT[Ag, AY, Hy , E]
PT[As, Ay, Hy, E;']  PT[A5, A}, Hy, Ey”']  PT[A}, A3, Hy  EY "]
Ladder A B g, AL %2 4L A B
/ E/ !
Representative - AlEflaAQ -
A} 3 344
Models |A1] x |Az2] |AL| 4 ALl -

Under normal conditions, all input and output difference sets of the three
strategies are partitioned over the same functions which means Ey = E| = Ej
and Fy = Ej = FY. Thus, |4;| = |A]| and |A5| = |A}].

Efficiency Comparison. From Table [3| the number of models need to be
solved in Algorithm [1]is |A1| x |Az|, while the number of models need to be
solved in Algorithm is |A}| 4 |A}|. Thus, ladder first implementation strategy
is more efficient than partition first implementation strategy.

Accuracy Comparison. If we obtain the result flag = 0 in the fundamental

’ =1

it means that A} l JA, and A, Fa, JAY%. Because A, ® Al
is a ladder of Ej, we have A} Faobaotn A!, which means that Algorithm [1| will
also return flag = 0. Thus, if Algorithm [2] can obtain the ID bound of cipher FE,
Algorithm [I|must also obtain the ID bound. But the opposition is not necessarily
the case. Therefore, partition first implementation strategy is more accurate than
ladder first implementation strategy. If the time complexity is affordable, we first
choose partition first implementation strategy.

It should be noted that the ladders and partition tables of Algorithm [3] are

determined dynamically, it is difficult for us to theoretically evaluate its efficiency
and accuracy.

stage of Algorithm

4 The Implementation Technologies for the Framework

4.1 Methods for Determining Representative Set and Partition
Table

Because the choices of representative set and partition table will have an im-
portant influence on the number of models need to be solved. Previous methods
in [HPW22| cannot be applied into large-size S-box (e.g. 32-bit) and cannot
guarantee the obtained representative sets and partition tables are optimal rep-
resentative sets and partition tables defined as following.

Definition 6. (Optimal Representative Set and Partition Table). For an
S-box S, let A be the set of input differences. For a partition table PT[A, B, H, S],
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if the number of elements in the set B is the minimum, we call B the optimal
representative set and PT[A, B, H, S| the optimal partition table of A over S.

To help readers better understand the significance of the above definition,
we take Algorithm [I] for example. The number of models need to be solved
in fundamental stage of Algorithm [1]is |A1| x |As|. If PT[Ao, A1, Ho, Ey] and
PT[As, Ay, Hy, Ey '] are optimal partition tables, the number of models to be
solved in fundamental stage will be minimum. For S-boxes of different sizes,
we propose corresponding methods for determining their representative sets and
partition tables as following.

4.1.1 The Method for Small-Size S-box When the size of an S-box is
small (e.g. 4-bit or 8-bit), inspired by the method in [ST17al, we propose an
automatic method based on MILP to obtain its optimal representative set and
partition table. For an S-box S, let A and B be the input and output difference
sets, respectively. The overview of our algorithm is as follow. Firstly, for each
input difference a € A, we compute the set of output differences that can be the
representative of a, denoted as R[a] = {b € Bla N b}. Secondly, for each a € A,
we construct a constraint such that there must be at least 1 element of R]a]
belong to the representative set. Finally, we minimize the number of elements in
the representative set under these constraints.

Constraints. For each b € B we introduce a binary variables vy, where v, = 1
means that the output difference b is included in the representative set and v, = 0
means that b is not included in the representative set. The only constraint we
need is ensuring that each a € A has at least one representative, which can be
represented by the following |A| constraints.

Z v > 1,a € A.
beR[a]

Objective Function. Our goal is to find an optimal representative set. Thus,
the objective function can be expressed as

minimize Z Vp.
beB
By solving the above MILP model, we obtain the solutions of vy, b € B. Thus,
the optimal representative set is B’ = {b € B|v, = 1}. The whole procedure for
obtaining the optimal representative set of S is demonstrated in Algorithm [
According to Definition [4] and Definition [6] by removing the overlapping

elements among sets {a € Ala S5y 1, € B’, we can get the optimal partition
table PT[A, B', H, S].

4.1.2 The Method for Middle-Size S-box When we use the method in
to determine the optimal representative set and partition table of middle-



16 S.P. Wang et al.

Algorithm 4 The optimal representative set of small-size S-box

Input: The S-box S, input and output difference sets A and B
Output: The optimal representative set B’ of A over S

1: Let M be an empty MILP model

2: M.Objective = minimize .5 b > Set the objective function
3: fora € Ado

4: M.addConstr (ZbER[a] vp > 1) > Set the constraints
5: end for

6: M.optimize() > Solve the MILP model
7: return B’ = {b € Blv, = 1} > Obtain the optimal representative set

size S-box (e.g. 16-bit), the MILP model are too large to be solved. Thus, we
propose a method to solve this problem.

Theorem 6. For an S-bozx S, let A and B be the input and output difference
sets, respectively. Selecting a subset A’ C A, let B’ be the optimal representative

set of A'. If B’ is a representative set of A, then B’ is an optimal representative
set of A.

Proof. Let B” be an optimal representative set of A. Since A’ C A, B” is also
the representative set of A’. Because B’ is the optimal representative set of A,
we have |B’'| < |B”|. When B’ is a representative set of A, according to the
definition of optimal representative set, B’ must be the optimal representative
set of A. O

For the small subset A’ C A, we can use Algorithm [4] to obtain the optimal
representative set B’ of A’. If B’ is the representative of A, then we obtain an
optimal representative set of A. If B’ is not the representative of A, we will add
the elements which cannot be represented by B’ into A’. That is, A’ = A’ 4+ {a €

Ala EA B’}. Using this method, we will keep adding elements into A’ until the
corresponding B’ is the optimal representative set of A. The whole procedure for
obtaining an optimal representative set of A over S is demonstrated in Algorithm
Using the same method in Sect. we can get the optimal partition table
PT[A,B',H,S] of A over S.

4.1.3 The Method for Large-Size Superbox When the size of an S-box
is large (e.g. 32-bit), it is hard to obtain its optimal representative set. Because
most S-boxes of large size are superboxes illustrated in Fig (3] where s;,0 < i <
m — 1 are bijective small-size S-boxes and P is a bijective linear function. In
order to construct a representative set with relatively few elements, we propose
the following theorem.

Theorem 7. Foran S-box S = (Sm—1||Sm—2|| - - ||s0)oPo(Sm—1||Sm—2|| - - - ||50),
let A=A, 104, 2® @Ay and B=B,,_1®Bp,_2®---® By be the input
and output difference sets, respectively. For each 0 < i < m — 1, let B, be the
optimal representative set of A; over s; and Bl C B; be the representative of all
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Algorithm 5 The optimal representative set of middle-size S-box

Input: The S-box S : Fy — F3, input and output difference sets A and B
Output: The optimal representative set B’

1: Select a subset A’ C A and let B’ =0

2: while B’ is not the representative set of A do

3: Using Algorithm |4] to obtain the optimal representative set B’ of A’
4: if B’ is the representative of A then

5: return B’

6: else

7: A=A+ {ac Ala B’}

8: end if

9: end while

o

| |
1 1]

Fig. 3. Large-size superbox

possible differences {ala € F3} over s;, where n is the dimension of s;. Then, we
can use Algorithm to obtain a representative set C C B, _ @Bl _,®-- Q@ B
of B,_1®Bl,_5®---® B} over (sm—1||Sm—2|| - |[s0) o P. Thus, C is a repre-
sentative set of A.

Proof. Because B)),_| ® Bl _, ® --- ® B{ is the representative set of {ala €

F3*™} over (Sm—1l|Sm—2||---|s0) and B, _; ® B, _4 ® -+ ® B, Eis Hala €
F3*™}, we have B!, _, @ Bll_, ® --- ® B{ is a representative set of B}, _; ®
B, _5®---® B{ over (s$m—1]||Sm—2|| - ||s0) o P. Thus, we must be able to select
a representative set C C B/ @B/ _,®---®Bj of B!, _{®Bl,_,®---® B, over
(Sm—1||Sm—2]| - ||s0) o P. Because By, | ® Bl,_5®---® B{ is the representative
set of A1 ® A2 ® -+~ ® Ag over (Sm—1]|Sm—2]|| -+ ||s0), C is a representative
set of A over S. g

The representative set C' obtained by Theorem [7] may contain redundant
representative elements, we need to reduce C further. The whole procedure of
obtaining a representative set of large-size superbox S is demonstrated in Al-
gorithm [} Moreover, using the same method in Sect. we can get the
corresponding partition table PT[A, C', H, S].
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Algorithm 6 The representative set of superbox

Input: The S-box S = (Sm—1]||$m—2]||-*-||s0) © P o (Sm—1||Sm—2||*--||s0), input and
output difference sets A = A1 @Am—2®---®Agand B = By, 1®@Bm—2Q---QBo
Output: The representative set of A over S
1: for0<i<m-—1do > Using Algorithm [
2 Obtain the optimal representative set B. of A; over s;
3: Obtain the optimal representative set B; of {a|a € F3} over s;
4: end for
5: Using Algorithm [4]to obtain the representative set C C B),_1 ® B_, ®--- ® B{
of By,_1 ® Byy_2 @+ Q B} over (sSm—1]|sm—2||--||s0) o P
6: Allocate C' =0
7: while A # 0 do
8 Select an element a € A and ¢ € C satisfying a Se

9: A+ A—{a€Aa 5 ¢} > Remove the elements which have been represented
10: C'+ C' +{c} and C + C — {c}

11: end while

12: return C’

4.2 Methods for Determining Ladder and Integrating it into Model

4.2.1 Method for Determining Ladder When we use Algorithm 2] to eval-
uate the ID bound, we have to construct a ladder. To guide the selection of
ladders, we propose the following theorem.

Theorem 8. For cipher E = E;0 E3o0 Ey 0 Ej 0 Ey, let Ay ® As and AL @ A
be two ladders of Ey satisfying As @ Az C AL @ Ay. When applying Algorithm
[3 to E, if we obtain the ID result flag = 0 when using ladder Ay ® As, we can
definitely get the ID result flag = 0 when using ladder A}, ® Aj.

Proof. According to Algorithm only when ag Frofo JA5 and as Fs ;EZ JA;
hold for all ay € Ag, a5 € As, the ID result flag = 0 can be obtained. Because

° E;'oE[?!
Ay @ Az C Al @ Aj, the conditions ag Eroko JA, and a5 °—" JAj are met.

Thus, we can get the ID result flag = 0 when using ladder A} ® A5. O

The goal of the paper is to obtain the ID bounds of block ciphers. Compared
with ladder A ® As, there is no doubt that A, ® Af is a better choice. Thus,
we propose the following definition.

Definition 7. (Maximal Ladder). Let A ® B be a ladder of function f. If
there is no other ladder A’ ® B’ of f satisfying A B C A’ ® B/, we call A® B
a maximal ladder of f.

According to Theorem [§] if a ladder A ® B is not a maximal ladder, there
always exists a better ladder. Thus, when applying Algorithm [2] to ciphers, only
maximal ladders are used. Generally, we often use the maximal ladder of an
S-box layer.
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Theorem 9. (Maximal Ladder of S-box). Let S be a bijective S-box. For
any input difference a € Fy, we can obtain its output difference set, denoted as

DDTgla] = {b € F3|a 5 b}. Thus, A® B is a mazimal ladder of S if and only
if the following conditions are satisfied.

{ B ={N4ea DDTs]d],
A=y DDTs-1[b),

where S~1 is the inverse function of S.

Proof. Sufficiency. Because B = [, 4 DDT5s[a], we have A 5 B and there is
no element o' ¢ B satisfying A 5 BJV'. Similarly, there is no element o’ ¢ A
satisfying B S;l AlJd'. According to Theorem B “gl AlJd is equivalent
to AU d 5 B Thus, there does not exist any V' ¢ B or a’ ¢ A satisfying

AlJd S5Bor A3 B Jb'. Therefore, A® B is a maximal ladder of S.
Necessity. Because A ® B is a ladder of S, we have B C (.4 DDT5sla).

Since 4 Naca DDTs|a] is also a ladder, the maximal ladder A® B must satisfy
B = (Nyea DDTsla]. According to Theorem 4, B ® A is a maximal ladder of
S~ Similarly, we have A = Moz PDTs-11[b]. O

Based on the above theorem, we propose a heuristic method to obtain a
maximal ladder of S. The whole procedure is demonstrated in Algorithm [7]

Algorithm 7 Heuristic method for determining a maximal ladder of S-box
Input: The bijective S-box S, initial input difference set A #

Output: A maximal ladder of S

1: Allocate B + 0

2: while 1 do

3: C =yea DDTs[a] — B > The set of elements which can be added into B

4: Select a subset C' C C

5: B+ B+’ > Expand the size of B
6: D = (Nyep DDTs-1[] = A v The set of elements which can be added into A
7: Select a subset D' C D

8: A+ A+ D > Expand the size of A
9:  if B =(),., DDTs[a] and A =), DDTs1[8] then

10: return A® B > If A® B is already a maximal ladder of S

11: end if
12: end while

Then, we can use the maximal ladders of small-size S-boxes to construct a
maximal ladder of an S-box layer. The method is shown in Theorem

Theorem 10. (Maximal Ladder of an S-box Layer). Let S be a function
comprising of m parallel S-bozxes, denoted as S = $pm—_1||Sm—2]|| - ||s0. For each
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(®;161 Bz) is a mazimal ladder of S.

0<i<m-—1,if A; ® B; is a maximal ladder of s;, then (®;161Ai) ®

Proof. Because A;®B; is a ladder of s;, for any a; € A; and b; € B;, we have a;

b;. Thus, for any (am—1,am—2, - ,a0) € ®?;61 A; and (by—1,bm—2,--+ ,bg) €
®Zr;61 Bi, we have (am_l,am_2,~ B ,ao) E) (bm_hbm_g, v 7bo). Therefore,

(®15 A1) @ (@' Bi) is a ladder of S,

If (®;1_01 Ai) ® (®:’:01 B,») is not a maximal ladder of S, there exists an
element (al,_i,al,_o,...,a)) ¢ QI A; or (V13U gs o, b)) ¢ Q"' B
satisfying ((a}, 1,00+ ah) URS' 4) @ (@' Bi) or (@15 4i) @
(( s U as - 00 U Q! Bi) is also a ladder of S. Take one of the lad-

m—1»Ym—2>

ders ((a’m_l, A_gy--ah) U Q! Ai) ® (®:r:01 Bi) as an example, for each

0 < i < m—1, we have a} 24 B,. Because any A; x B;,0 < i < m —
1 is a maximal ladder of s;, we obtain that a € A;. It is contradictory to

(A1, Qg v ) ¢ ®Zl_01 A;. Similarly, we can also obtain the contradic-

tory of (b1, o, .-, b) ¢ ®™5" Bi. Therefore, (®f§01 Ai) ® (®;7;51 BZ-)
is a maximal ladder of S. U

4.2.2 Methods for Integrating a Ladder into Searching Model After
obtaining a ladder, we should integrate it into searching model (MILP or SAT).
For example, in Line 4 and Line 9 of Algorithm[2] we need to determine whether

—1
aq By JA5 and ay4 Ei) JA3 or not, where As ® Az is a ladder of Es. It should be
noted that there is no automatic method for directly modeling this new kind of
differential pattern before. Here, we put forward a solution. Similar to current
automatic searching models based on MILP or SAT, we introduce a sequence
of variables and constraints satisfying the differential propagation rules. Take

ai E—§ JA5 as an example, we can construct a model M whose solutions are all
possible differential characteristics of Fy. Let « and y = ym—1]||ym—2|| - - - ||yo be
the variables representing the input and output differences of Fj.

When FEs is a function comprising of m parallel bijective S-boxes, denoted
as F2 = Sm—1]||Sm—2|| - ||so. For any 0 < ¢ < m — 1, we can construct the
maximal ladder of s;, denoted as Ay ; X As;. In order to model a; 534, =
Az -1 ® Ao 2 @ -+ ® A o, we add the following constraints into M:

C_ Tr = aq,
" \yi #d, whered e {d € Fyl|d ¢ As;},0<i<m-—1,

where n; is the dimension of s;.
Then, if the whole model M + C is feasible, we have a; By JAs. Otherwise,
aq 5-1> E|A2
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4.2.3 Exploring Rotation-Equivalence ID Set In [EME22|, Erlacher et
al. exploited the rotational symmetry of ASCON and reduced the number of
differential patterns need to be considered. Inspired by their work, we propose
the rotation-equivalence ID set defined as following.

Definition 8. (Rotation-Equivalence ID Set). For a cipher E, let A™ C
{ala € FF*"} and B™ C {b|b € F3**"} be the input and output difference sets,
respectively, where n is the dimension of the elements in A and B. A™ @ B™
1s called the rotation-equivalence ID set, if it satisfies the following conditions.
For any a € A™, if there exists an output difference b € B™ satisfying a % b,
then for each 1 <1 < m —1, there exists an output difference by € B™ satisfying
(a << I xn) % b.

For the rotation-equivalence ID set A™ ® B™ of E, we can divide the input
difference set A™ into many disjoint subsets as following

=Y 0. (6)

reER

where R C A™ and 2, = {r << I xn|0 <! <m—1}. According to Deﬁnition
all elements in {2, have the same result of determining whether E has ID. Thus,
for each 2., we only need to consider one element. This will reduce the number
of differentials need to be considered. In combinatorics terminology, the subset
2, in Eq. @ is called | A]-ary necklaces of length m. According to Refield-Polya
theorem [Red27/P6137|, the number of k-ary necklaces of length m is

SH

Ni(m) = 3" p(d) - k¥, (7

d|lm

where ¢ is the Euler totient function and d is the divisor of m. For example, the
number of 3-ary necklaces of length 4 is
1 4 4 4 L o4 2

Ns(4) = 5 (¢(1)-31 +o(2) - 3% + p(4) -34) = (3" +8+2x3) =24

For A™ @ B™ of E, there are |A|™ x |B|™ differential. If A™ @ B™ is
rotation-equivalence ID set of E, the number of disjoint subsets {2, in Eq. @ is
|R| = Nj4| (m). Thus, when we evaluate the ID bound of E, only N4 (m) x|B|™
differentials need to be considered. Moreover, there is algorithm which can gen-
erating necklaces in constant amortized time, see [CRST00].

5 Applications to SPN Ciphers with Bit-Permutation
Linear Layer

In order to improve the hardware efficiency, lightweight block ciphers often
use bit-permutation linear layer. The representative algorithms are PRESENT
IBKL07] and GIFT |[BPP*17].
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5.1 Application to PRESENT

PRESENT [BKL*07| is an important lightweight cipher. It adopts SPN struc-
ture with 64-bit block size through 31 rounds. Each round has three operations:
AddRoundKey (XORed with a 64-bit round key), SubBox (16 parallel applica-
tions of the same 4-bit S-box, denoted by S = s'%!), BitPermutation (a bit-wise
permutation of 64 bits, denoted as P). PRESENT is a Markov cipher. Under the
assumption that the round keys are uniformly random, the AddRoundKey opera-
tion can be omitted. Therefore, the round function of PRESENT can be denoted
as R = PoS. An illustration for S o P o S is shown in Fig. By introducing
a bit oriented permutation P, = [0,4,8,12,1,5,9,13,2,6,10,14,3,7,11, 15] and
a nibble oriented permutation P, = [0,4,8,12,1,5,9,13,2,6,10,14,3,7,11, 15],
we can get an equivalent representation of So P o S as shown in Fig. Then,

SOPOS:PQOSO(P1HP1||P1||P1)OS.

For (r + 4)-round PRESENT R"**, because P o P, is a linear permutation, we
omit P o P, in the last round. This will not affect the result of ID bound. Thus,

R = So(P1||Pi||P1[|P1) o SoR" o PoPyoSo(Pi||P|Pi][P1)oS.

E2 El E()

(a) So P oS of PRESENT

SaMRRALtasLLAL tas msss s

[s s s s [EsTEstisrs |

S R
—

(b) Pz o S [e] (P1HP1||P1HP1) [e] S Of PRESENT

Fig. 4. The functions of PRESENT

Next, we use Algorithm [5] to determine the optimal representative sets of
stlo Ppostll and s7l o Pt o s where sl = s7!|s!||s7!|[s~!. From
Table [4] we know that the number of elements in the optimal representative
sets of sl o P; o sl and s~ o P! o 574 are 8 and 9, respectively. When
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applying Algorithm [I] to PRESENT, the number of models needs to be built
in fundamental stage is (8 —1) x (9* — 1) = 26863200 ~ 22408 After the
fundamental stage of Algorithm [T} for 7-round and 8-round PRESENT, there
are too many differentials which need to be further determined in enhance stage.
Due to the limited storage and computing capacity, we cannot determine whether
there exist IDs for 7-round and 8-round PRESENT. Then, we prove that 9-round
PRESENT does not exist any ID under the sole condition that round keys are
uniformly random.

Table 4. The optimal representative sets for PRESENT

S-box The optimal representative sets (hexadecimal)
st o Py o gl {0, 766, d33, 5060, 7000, 9779, ccee, 0300}
s74o prto sl {0, 700, 97a, bb0, 9000, ae55, b0d0, dddd, e7a7}

5.2 Applications to GIFT

As an improved version of PRESENT, GIFT [BPP™17] is composed of two ver-
sion: GIFT-64 with 64-bit block size and GIFT-128 with 128-bit block size. The
only difference between the two versions is the bit permutation to accommodate
twice more bits for GIFT-128. Both two versions are Markov ciphers. Similar to
PRESENT, we omit the linear function P o P in the last round. The (r + 4)-
round GIFT-64 can be written as

R™ = S o (Py||Py||PL||P1) 0o SoR" 0o Po PyoSo (P||P||Pi||P)oS. (8)

Es5 Ey Ey

where P; = [0,5,10,15,12,1,6,11,8,13,2,7,4,9,14, 3] is a bit oriented permu-
tation and P, = [0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15] is a nibble oriented
permutation. Then, we use Algorithm [5|to determine the optimal representative
sets of sl o Py o s*ll and s~ o Pl_1 o s~4I shown in Table [5| When applying
Algorithm [I| to GIFT-64. the number of models needs to be built in fundamental
stage is (94 — 1) X (84 - 1) = 26863200 ~ 22498, After the fundamental stage of
Algorithm [T} for 7-round GIFT64, there are too many differentials which need to
be further determined in enhance stage. Due to the limited storage and comput-
ing capacity, we cannot determine whether there exist IDs for 7-round GIFT64.
Then, we prove that 8-round GIFT-64 does not exist any ID under the sole
assumption that round keys are uniformly random.

For GIFT-128, if we apply Algorithm [I] to it, the number of models need to
be built in the fundamental stage is about (9% —1) x (8% —1) ~ 249-36 which is not
affordable. Thus, we will use Algorithm [2] to evaluate its ID bound. For GIFT-
128, when we omit the linear function PoPs in the last round, (r1 + r2 + 5)-round
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Table 5. The optimal representative sets for GIFT-64 and GIFT-128

S-box The optimal representative set (hexadecimal)
stlo Py o gl {0, 505, 55f, £35, 350f, 50£7, 509, 9d9d, b750}
s~ o prto s {0, 4, £9, d00, 7dda, 9b00, cf9c, fccd}

GIFT-128 can be written as

R’”1+T2+5:SOP18HOSORT2OPO S OeroPOPQOSOPfHOS. 9)
—_— T T

E, E3 E> E1 Eo

where P, = [0,5,10,15,12,1,6,11,8,13,2,7,4,9, 14, 3] is a bit oriented permuta-
tion (same with that in GIFT-64) and P, = [0, 8,16,24,1,9,17,25,2, 10, 18, 26, 3,
11,19,27,4,12,20,28,5,13, 21,29, 6, 14, 22,30, 7,15,23,31] is a nibble oriented
permutation. Then, we use Algorithm [7| to find a maximal lader {1,3,7} ®
{5,8,11,12} of the 4-bit S-box used in GIFT-128. According to Theorem 10} the
maximal ladder of S is {1,3,7}16 ® {5,8,11,12}'6. When we apply Algorithm
to (r1 + ro + 5)-round GIFT-128, the number of models need to be built in
fundamental stage is (9% — 1) + (8% — 1) = 59823935 ~ 2%5-83_ By setting r| = 4
and 79 = 3, we prove that 12-round GIFT-128 does not exist any ID under the
sole assumption that round keys are uniformly random.

6 Applications to SPN Ciphers with Non-Bit-Permutation
Linear Layer

6.1 Applications to Rijndael

Rijndael [DRO2] was designed by Daemen and Rijmen in 1998. According to
block size, Rijndael can be divided into Rijndael-128, Rijndael-160, Rijndael-192,
Rijndael-224 and Rijndael-256. The 128-bit block size version Rijndael-128 was
selected as the AES. For Rijndael-32n, n € {4,5,6,7,8}, the state is viewed as
4 x n rectangle array of 8-bit words. The round function of Rijndael-32n consists
of the following four operations: SubBox (4 x n parallel applications of the same
8-bit Shox, denoted as S = s**"I), ShiftRow (a byte transposition that cyclically
shifts the rows of the state over different offsets, denoted as SR), MixColumn
(a linear matrix M is multiplied to each column of the state, denoted as MC),
AddRoundKey (XORed with a 32n-bit round key). All versions of Rijndael are
Markov ciphers. When the round keys are uniformly random, we do not need to
consider the AddRoundKey operation. Therefore, the round function of Rijndael-
32n can be denoted as R = MC o SR o S. Because SR and MC are linear
operations, we omit SR operation of the first round and the M C o SR operation
of the last round. This will not affect the result of ID bound. For (r 4 4)-round
Rijndael-32n, we have

R =SoMCoSoSRoR o MCoSRoSoMCoS. (10)
Eo> E; Eo
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The functions Ey and E; 1 of Rijndael-32n can be seen as n parallel 32-bit
superboxes sl o M o s¥l" and s™l o M1 o 574, respectively. Next, we use
Algorithm |§| to determine the representative sets of s*l o M o s*ll and s/l o
M~' o s~ 4l From Table @ we know that both the numbers of elements in the
representative sets of sl o MC o s¥ll and s~ o M~ o s74l are 2. Then, we
explore the rotation-equivalence ID sets of Rijndael-32n shown in Theorem

Theorem 11. For Rijndael-32n, let a1 and as be the input and output differ-
ences of By, respectively. If ay B ag, then SR; (a1) B SR; (a2) holds for all i €
{1,2,...,n—1}, where SR; means cyclically shifting every row of the state over
1 bytes.

Proof. According to the definitions of SR, MC' and S, we have the following
equations

SRoSR; = SR; o SR

MCoSR;=SR;oMC

So SRZ = SRZ oS

Thus, a1 % as is equivalent to SR; (a1) % SR, (ag),i€{1,2,...,n—1}. O

Table 6. The representative sets of Rijndael-32n

S-box The representative set (hexadecimal)
st o M o sl {0, £8£9£9£9}
s 4o M=o sl {0, £8faf8f8}

We applying Algorithm ] to Rijndael-32n. According to Sect. the num-
ber of models need to be built in fundamental stage is (N (n) — 1) x (2" —1).
Then, we prove that 6-round AES (Rijndael-128), 6-round Rijndael-160, 7-round
Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256 do not have any ID
under the sole assumption that round keys are uniformly random.

Because the longest known ID of AES (Rijndael-128) is 4 round, the security
bound obtained by us has room for improvement. Therefore, we apply Algorithm
to AES. The specific process is as follow. Similarly to the above analysis, 5-
round AES can be written as,

R*=SoMCoSoSRoMCoSRoSoMCoSRoSoMCoS. (11)

Es E Eo
Let Ay = Ao’g X AO’Q X AO,I ® AO,O and A3 = A3’3 X Ag’g X A3’1 ® A370 be the
sets of all nonzero input and output differences of AES, respectively. Thus, the

whole search space Ag ® Az can be divided into the following 15 x 15 = 225
disjoint subsets.

AO ® A3 = . . . .
D (ioyin sinsia) € (o vjarga)eFte [A03]"° © - @ [Ao,0]" @ [A3,3 @ -+ @ [Ag 0]
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where F3* = {a € Fjla # 0} is the set of all nonzero 4-bit vectors. For any
i € {0,3} and m € {0,1,2,3}, [A;n]° = {0 € F3?} be the set of only 32-bit
zero difference and [A;,,]' = {a € F3?|a # 0} is the set of all nonzero 32-
bit differences. Moreover, according to Theorem we only need to consider
(N2 (4) — 1) x (2* — 1) = 75 disjoint subsets.

For any of the above subsets, we select ag = (ag 3, a0.2, 0.1, a0,0) € [Ao3]® ®
e ® [Ao,o]io and a3z = (a3,3,a372, as,1, a370) € [A373}j3 X QR [Ag,o]jo and build
a model to obtain a1 = (a1,3,a1,2,01,1,01,0) and as = (a23,a2.2,02,1,020) sat-

—1

isfying aq =4 a, a, By 4y and as o as. If [Ap3]® ® -+ @ [Ag o)™ £ 4, and
[A33]72 ® -+ @ [A3 o]0 Ei) az, all the differentials in subset [4g3]? @ -+ ®
[Ao,0]% @ [A33]72 @ - ® [A3 0]/ over E are possible.

The method for verifying [4 3] ® -+ ® [Ag,0]™ Ey ay and [A33)* @ - ®

Byt ) )
[A3.0)70 2 as is as following. Take [Ag 3] @ -+ @ [Ag0]™ 2 41 as an example,

g4l nfostl]
we just need to verify whether [Ag ,,]"™ M a1,m holds for allm = 0,1, 2, 3.

For any 4,,, if i,, = 0, we only need to verify 1 difference and if i,,, = 1, we have
to verify 232 — 1 input differences in [Ag,,]". In order to improve the success
rate, if 4, = 1, we add a constrain to a; ,, that every byte of a; ,, is nonzero.
After verifying all the disjoint subsets, we prove that 5-round AES do not have

any ID under the sole assumption that round keys are uniformly random.

6.2 Application to Midori64

Midori64 is a lightweight SPN block cipher with 64-bit block size proposed at
ASTACRYPT 2015 |[BBI™15|. Each round function consists of the following four
operations: SubBox (16 parallel applications of the same 4-bit Sbox, denoted
as § = 316”), PermuteNibbles (permutation is applied on the nibble positions
of the state, denoted as PN), MixColumn (an involutory binary matrix M is
multiplied to each column of the state, denoted as M C'), AddRoundKey (XORed
with a 64-bit round key). Midori64 is a Markov cipher. When the round keys
are uniformly random, we do not need to consider the AddRoundKey operation.
Therefore, the round function of Midori64 can be denoted as R = MCoPNo S.
Because PN and MC' are linear operations, we omit PN operation of the first
round and the MC o PN operation of the last round. This will not affect the
result of ID bound. For (r + 4)-round Midori64, we have

Rt =S0MCoSoPNoR oMCoPNoSoMCoS. (12)
Es> E; Eo

The functions Ey and E; 1 of Midori64 can be seen as 4 parallel 16-bit S-boxes
s*lo Mo sl and sl o M1 o 574l respectively. Next, we use Algorithm@ to
determine the optimal representative sets of s*l o Mo sl and s™#lo M1 o sl
shown in Table [7{} When we apply Algorithm (1| to (r + 4)-round Midori64, the
number of fundamental models we need to solve is (84 —1)x (8 —1) = 16769025 ~
224, Then, we prove that 10-round Midori64 does not have any ID under the sole
assumption that round keys are uniformly random.
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Table 7. The optimal representative sets of Midori64

S-box The optimal representative set (hexadecimal)

sl o M o sl {0, 66e, 4e9b, 660e, 6e66, bO3b, €660, eb19}
574 o M~ o 57411 {0, 999, 4404, eOee, €660, ecle, ecbl, ecbe}

7 Conclusion

In this paper, a series of methods for bounding the length of IDs of SPN block
ciphers are proposed. Our methods are widely applicable. We prove that 9-
round PRESENT, 8-round GIFT-64, 12-round GIFT-128, 5-round AES, 6-round
Rijndael-160, 7-round Rijndael-192, 7-round Rijndael-224, 7-round Rijndael-256
and 10-round Midori64 do not have any ID under the sole assumption that
round keys are uniformly random. This is of great significance for evaluating
the security of SPN block ciphers against ID attack. However, for some ciphers,
there still exist a gap between the ID bounds and the longest known IDs. For
example, the longest known ID of PRESENT is 6 rounds, while the ID bound
obtained by our method is 9 rounds. How to reduce the gap between the longest
known ID and ID bound is our future work.
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