
A Transformation for Lifting Discrete Logarithm Based
Cryptography to Post-Quantum Cryptography

Danilo Gligoroski∗

March 3, 2023

Abstract
We construct algebraic structures where rising to the non-associative power indices is no longer tied

with the Discrete Logarithm Problem but with a problem that has been analysed in the last two decades
and does not have a quantum polynomial algorithm that solves it. The problem is called Exponential
Congruences Problem. By this, we disprove the claims presented in the ePrint report 2021/583 titled
"Entropoids: Groups in Disguise" by Lorenz Panny that "all instantiations of the entropoid framework
should be breakable in polynomial time on a quantum computer."

Additionally, we construct an Arithmetic for power indices and propose generic recipe guidelines that
we call "Entropic-Lift" for transforming some of the existing classical cryptographic schemes that depend
on the hardness of Discrete Logarithm Problem to post-quantum cryptographic schemes that will base
their security on the hardness of the Exponential Congruences Problem.

As concrete examples, we show how to transform the classical Diffie-Hellman key exchange, DSA and
Schnorr signature schemes.

We also post one open problem: From the perspective of provable security, specifically from the
standpoint of security of post-quantum cryptographic schemes, to precisely formalize and analyze the
potentials and limits of the Entropic-Lift transformation.

1 Mathematical preliminaries
We give here some basic definitions and prove some properties about the algebraic structures that we will
use. For more definitions reader can consult any standard textbook on abstract algebra topics.

In further text, using multiplicative notation, we will assume that (G, ·) is a finite commutative group
with operation · and a unit element 1G. Further, we will assume G has |G| = q2 elements. We will also
assume that q can be represented as a product of ν distinct prime factors q = q1 . . . qν , (sorted in ascending
order), where the smallest prime factor q1 > 2. In general case the number of prime factors ν can be arbitrary,
but for cryptographic purposes we will assume that it is as small as possible, and the biggest factor qν is as
big as possible (for example qν > q1/2). Thus, we will work with a group G of order |G| = q2

1 . . . q
2
ν . We will

use a short notation [ν] to annotate the set {1, . . . ν}.
Next assumption about the group G is that it is not cyclic, but is generated with two independent

elements g1, g2 ∈ G, i.e. ∀x ∈ G, ∃i, j ∈ Zq, s.t. x = gi1 · g
j
2 .

With other words we take that G is a direct product of two maximal cyclic subgroups G1 = ⟨g1⟩ and
G2 = ⟨g2⟩ i.e.

G ∼= G1 ×G2,

where the order of G1 and G2 is q i.e.
| ⟨g1⟩ | = | ⟨g2⟩ | = q.

From the properties of abelian groups, we have the following

Proposition 1. For every x ∈ G, there are unique i, j ∈ Zq, s.t. x = gi1 · g
j
2 .

Definition 1. An automorphism α on the group (G, ·) is a bijective homomorphism of G to itself i.e.

• α : G 7→ G is a bijection;
∗Department of Information Security and Communication Technologies, Norwegian University of Science and Technology -

NTNU

1

• α is homomorphism with the respect of the operation · i.e.

∀x, y ∈ G,α(x · y) = α(x) · α(y).

Definition 2. An involutive automorphism T on the group (G, ·) is an automorphism that is also an
involution i.e.

T : G 7→ G is bijection,

∀x, y ∈ G, T (x · y) = T (x) · T (y), and

∀x ∈ G, T (T (x)) = T (2)(x) = x.

From T being automorphism, the following property holds:

Corollary 1. For all x ∈ G,
(T (x))j = T (xj).

Proposition 2. If h ∈ G is an element such that h and T (h) are independent elements of order q, then for
every x ∈ G there is a unique pair (i, j) ∈ Zq ×Zq such that

x = hi · T (hj). (1)

Proof. Let us denote by H1 = ⟨h⟩ the subgroup generated by h and H2 = ⟨T (h)⟩ the subgroup generated
by T (h). Having h and T (h) being independent means that H1 ∩H2 = {1G}, |H1| = |H2| = q and that
G ∼= H1 ×H2. Then the uniqueness of the pair of indices (i, j) follows from the Proposition 1.

Definition 3. For every x, y ∈ G, let us define a non-commutative binary operation

x⊞ y ≡ x · T (y).

We call the algebraic structure Eq2 = (G,⊞, ·) a finite Entropoid with q2 elements.

We collect several properties of the operation ⊞ in the following Proposition.

Proposition 3.
• For x, y ∈ G, in general, x⊞ y ̸= y⊞ x;

• The multiplicative unit 1G acts as a a right zero in (G,⊞) i.e. for all x ∈ G, x⊞ 1G = x;

• From the left, 1G acts as the involution T on x i.e. for all x ∈ G, 1G ⊞ x = T (x);

• To define a consistent operation ⊟ that will act as "the opposite" operation to ⊞ in (G,⊞) we need
to define it as: For all x, y ∈ G, x⊟ y

def
= x · T (y−1) = x⊞ (y−1). In that case, if x⊟ y = z, then

x = z⊞ y.

Definition 4. We call an element g ∈ G a generator of the Entropoid Eq2 if g and T (g) are independent
elements of order q.

We adapt Algorithm 4.80 from [9] that finds a generator of a cyclic group for finding a generator of an
Entropoid.

Lemma 1. If g is an output of Algorithm defined in Table 1, then it is a generator for the Entropoid Eq2 .

Proof. Since G ∼= G1 ×G2 where the order of G1 and G2 is q the computation of the set B in Step 2, and
the check in Step 3 if 1G belongs to B ensure that g is a generator of a maximal cyclic subgroup of order q
i.e. | ⟨g⟩ | = q. Similar reasoning applies for the set BT , that ensures T (g) is a generator of a maximal cyclic
subgroup of order q i.e. | ⟨T (g)⟩ | = q.

The final check in Step 4 checks if g and T (g) are independent elements which from Definition 4 is the
necessary condition for g to be a generator for the Entropoid Eq2 .

2

Algorithm: Finding a generator of an Entropoid
Input: An Entropoid Eq2 , and the prime factorization q2 = q2

1 . . . q
2
ν

Output: Generator g.

1. Choose a random element g ∈ G

2. Compute the sets
B = {b | b = g(q

2/qi), for i ∈ [ν]} and
BT = {b | b = T (g)(q

2/qi), for i ∈ [ν]}.

3. If 1G ∈ B or 1G ∈ BT then go to Step 1.

4. If B ∩BT ̸= ∅ then go to Step 1.

5. Return g.

Table 1: Finding a generator of and Entropoid

Definition 5. Let the two-dimensional exponents X = (x1,x2) be called power indices. For every g ∈ G
we define exponentiation with the power index X = (x1,x2) as:

gX = g(x1,x2) = gx1 · T (gx2).

Lemma 2 (Arithmetic of power indices). Let X = (x1,x2) and Y = (y1, y2) be two power indices, and let
us define the following operations (where mod q acts component-wise):

addition: X + Y ≡ (x1,x2) + (y1, y2) = ((x1 + y1), (x2 + y2)) mod q

subtraction: X − Y ≡ (x1,x2)− (y1, y2) = ((x1 − y1), (x2 − y2)) mod q

multiplication: XY ≡ (x1,x2)× (y1, y2) = ((x1y1 + x2y2), (x1y2 + x2y1)) mod q

division: X
Y ≡

(x1,x2)
(y1,y2)

=
(
x1y1−x2y2
y2

1−y2
2

, x2y1−x1y2
y2

1−y2
2

)
mod q, assuming the following condition GCD(y2

1 −
y2

2 , q) = 1

Then, for every h ∈ G the following relations hold:

hX · hY = h(X+Y),

hX · (hY)−1 = h(X−Y),

(hX)Y = h(XY).

For the division operation the following computational problem is solved: Given, h, X and Y find a power
index Z such that

hZ = h1 and hX = hY1 .

Proof. While it may seem that the arithmetic expressions are complicated, their consistency can be checked
with simple manipulations with algebraic expressions and taking in consideration Definition 2 and Corollary
1.

Lemma 3. Let the power index S = (s1, s2) is such that GCD(s2
1− s2

2, q) = 1. Then the mapping σ : G 7→ G
defined as σ(x) = xS is an automorphism of G.

Proof. The mapping σ is homomorphism since for all x, y ∈ G we have σ(x · y) = (x · y)S = (x · y)s1 · T ((x ·
y)s2) = xs1 · ys1 · T (xs2 · ys2) = xs1 · ys1 · T (xs2) · T (ys2) = xs1 · T (xs2) · ys1 · T (ys2) = σ(x) · σ(y).

We prove that σ is injection as follows. Let σ(x1) = σ(x2) i.e. x
(s1,s2)
1 = x

(s1,s2)
2 . Let us set h =

x1
x2

= x1 · x−1
2 and X = (1, 0). From the condition that GCD(s2

1 − s2
2, q) = 1 it follows that there is a

3

power index Z = X
S =

(
s1

s2
1−s2

2
, −s2
s2

1−s2
2

)
, such that h1 = hZ and hX = hS1 . Computing fist h1 we have:

h1 =
(
x1
x2

)Z
=
(
x1
x2

) s1
s2

1−s2
2 · T

((
x1
x2

) −s2
s2

1−s2
2

)
. Then replacing h and h1 in hX = hS1 we have:

(
x1
x2

)(1,0)
=

(x1
x2

) s1
s2

1−s2
2 · T

(x1
x2

) −s2
s2

1−s2
2

(s1,s2)

which is equivalent to (
x1
x2

)(1,0)
=

((
x1
x2

)
· T
((

x1
x2

)))(1,0)

which further reduces to
x1
x2

=
x1
x2
· T
(
x1
x2

)
and further to

1G = T

(
x1
x2

)
.

Since T is involutive automorphism, T (1G) = 1G, and by applying T on both sides of the last equality we
have

1G =
x1
x2

,

i.e. x1 = x2.

In its most general form, Exponential Congruences Problem (ECP) is seeking for a solution of the
equation

agx1
1 + bgx2

2 = c (2)

in an algebraic structure defined over two operations (G,+, ∗), with q elements i.e., |G| = q, where
a, b, g1, g2, c ∈ G, g1 and g2 have respectively orders s and t i.e., | ⟨g1⟩ | = s and | ⟨g2⟩ | = t, and where
s, t < q but st ≥ q [19, 21].

Definition 6. Let g be the generator of the Entropoid Eq2 , and let the DLP be a computationally hard
problem over the cyclic subgroup (G1, ·) generated by g i.e. G1 = ⟨g⟩. With other words for a given y ∈ G1,
where y = gx we assume that there is no (classical) polynomial time algorithm that finds x ∈ Zq. Entropic-
Lift of the DLP is the transformation that replaces the exponents x ∈ Zq with two-dimensional power indices
X = (x1,x2) where x1,x2 ∈ Zq. More concretely, for a given y ∈ G, where y = gX find the power index
X = (x1,x2).

Lemma 4. The elevated DLP is a simplified Exponential Congruence Problem in the Entropoid Eq2 , where
a = b = 1 and g1 = g2 = g i.e. has the following form:

y = gx1 ⊞ gx2 (3)

Proof. The elevated DLP is the following problem: for a given y ∈ G it seeks to find x1,x2 ∈ Zq s.t. y =

g(x1,x2). Directly from the definition of exponentiation with power indices in Eq2 we have that y = gx1 ⊞ gx2 .
The most important part is the fact that g and T (g) are independent, which prevents neither g nor T (g)
to be represented as powers of each other. That prevents a collapse of the two-dimensionality of the power
indices to a one-dimensional case, which would be the Discrete Logarithm Problem. The obtained variant
of the Exponential Congruence expression is indeed a simplified variant of the general ECP where a = b = 1
and g1 = g2 = g.

Recipe for Entropic-Lift of a cryptographic scheme Let g be the generator of the Entropoid Eq2 ,
and let S(g,A) is a cryptographic scheme with a set of algorithms A = {A1,A2, . . . ,Aν} that bases its
security on DLP. Let DLP be a computationally hard problem over the cyclic subgroup (G1, ·) generated by
g. Let the set of algorithms A use in total µ exponent variables denoted with x(i) ∈ Zq, where i ∈ {1, . . . µ}.
Entropic-Lift of the scheme S is the transformation that replaces all used exponent variables x(i) ∈ Zq

in algorithms A, with two-dimensional power indices X(i) = (x
(i)
1 ,x(i)2), i ∈ {1, . . . µ}. The replacements

4

include all expressions: exponential expressions and arithmetic expressions with ordinary indices from Zq.
A special attention should be devoted to the following situation: If the lifted scheme needs to perform an
operation between a power index and a group element variable, then that operation is not defined with the
arithmetic of power indices. In that case try to map the group element variable by a cryptographic hash
function to a power index variable in order to make the operation possible. Re-evaluate the security of the
lifted scheme.

2 The rationale for using involutive automorphisms T : G 7→ G

The first attempt to use entropic non-commutative and non-associative quasigroups [4] was cryptanalyzed
by Panny in [13].

The design idea was to define a general class of groupoids (G, ∗) (sets G with a binary operation ∗ that
is both non-commutative and non-associative) that are "Entropic" i.e. for every four elements x, y, z and w,
a pseudo-associativity law is satisfied:

(x ∗ y) ∗ (z ∗w) = (x ∗ z) ∗ (y ∗w).

In order to compute the powers xa where a ∈ Z+, of elements x ∈ G, due to the non-associativity, the
exact bracketing shape as is also required to be known, and Etherington called those general exponentiation
indices power indices. They can be denoted as pairs A = (a, as). Further, for those entropic groupoids
Etherington showed that they satisfy the "Palintropic" property i.e., xAB = (xA)B = (xB)A = xBA.
Those relations are exactly the Diffie-Hellman key exchange protocol relations used with groups. The work
[4] proposed a succinct notation of the exponentially large non-associative power indices. However, the
instances proposed there and later in [5] were successfully cryptanalyzed by Panny in [13].

Panny intelligently used a theorem proved by Murdoch [11], Toyoda [20] and Bruck [2]:

Theorem 1 (Theorem 1 in [13]). For every entropic quasigroup (G, ∗), there exist an abelian group (G, ·),
commutative automorphisms σ, τ of (G, ·), and an element c ∈ G, such that

x ∗ y = xσ · yτ · c .

Two correct conclusions in the Panny’s cryptanalysis were given:

1. "the composition law in any entropic quasigroup comes from a multiplication in an abelian
group that is twisted by automorphisms and translated by a constant."

2. "any non-associative power of an element x ∈ G can in fact be written as a product combi-
nation in (G, ·) of elements of the form xψ and cγ where ψ, γ ∈ ⟨σ, τ⟩."

The second conclusion was supported by the following Lemma:

Lemma 5. For a binary operation x ∗ y = xσ · yτ · c as in Theorem 1 and any non-associative exponent A,
there exists γ ∈ Z[σ, τ] such that for all x ∈ G

xA = x1+(σ+τ−1)γ · cγ . (4)

Moreover, if (4) holds for some x = g ∈ G, then (4) holds for all x ∈ ⟨g⟩∗ .

Luckily (for the concept of Entropoid cryptography), Panny made one implicit assumption that the
commutative automorphisms σ, τ of (G, ·) are defined exclusively with the group operation of (G, ·). That
assumption led to the following two incomplete conclusions

1. "The classification of finite abelian groups implies that there exists a small subset of such
elements that suffices to span the entire subquasigroup ⟨g⟩∗ generated by g ∈ G, and again,
recovery of the exponents corresponding to Alice’s private-key operation consists of a mul-
tidimensional discrete-logarithm computation (which is polynomial-time quantumly)."

2. "Therefore, all instantiations of the entropoid framework where a representation of ∗ using ·
and σ, τ , c can be found efficiently (cf. Section 2.2) should be breakable in polynomial time
on a quantum computer."

5

With other words, assuming that automorphisms σ, τ of (G, ·) are exclusively defined with the group
operation · (basically taking that σ and τ are some fixed integer exponents), indeed the statements in
Lemma 1 suggest that the secret power index A of Alice can be represented in a form that depends on
another unknown fixed integer γ, and thus the nature of the problem remains the same: solving the Discrete
Logarithm Problem.

However, Theorem 1 does not specify the nature of the automorphisms σ, τ of (G, ·). For that matter,
the group of all automorphisms Aut(G) can be very reach, and we can definitely find automorphisms that
bijectively and homomorphically (regarding the group operation ·) are mapping the elements of G to G, but
they can not be represented as fixed number of applications exclusively of the internal operation · of G. We
used one such involutive automorphism in Definition 2.

In that case, the relation (4) still holds, but the recovery of the exponents corresponding to Alice’s private-
key operation becomes a search for a power index γ = (γ1, γ2). That problem as we showed in previous
section reduces to the problem of computing exponential congruences for which there is no polynomial-time
quantum algorithm.

Moreover, now we do not need to hide the abelian group (G, ·), nor the automorphisms σ and τ . Con-
cretely, as in Lemma 3 we select two power indices S = (s1, s2) and U = (u1,u2) where GCD(s2

1− s2
2, q) = 1

and GCD(u2
1 − u2

2, q) = 1 to define two commuting automorphisms σ, τ : G 7→ G. Then we can take some
c ∈ G, and we can again define a non-commutative and non-associative operation

x ∗ y = xσ · yτ · c .

Then we can apply the techniques from [4] to compute non-associative powers.
As a conclusion of this section, we want to give the following

Remark: Power indices defined in Definition 5 and the defined Arithmetic for power indices from Lemma
2 gives us convenience to work directly with power indices, avoiding much more expensive operations with
entropic non-commutative and non-associative quasigroups. Additionally we can try to apply the Entropic-
Lift recipe for many existing classical cryptographic schemes.

3 Attacks on the Exponential Congruences Problem (ECP)
In this section we adapt the known algorithms for solving ECP given in [19, 21].

Let us first highlight the differences with the ECP addressed in the open literature and the ECP in this
work:

1. In [19, 21], the equation (2) is defined over finite field Fq, where q = pk, p a prime number and the
number of elements in the multiplicative group F∗

q is q− 1 = pk − 1. In our case the equation is over a
ringoid structure called Entropoid, Eq2 = (G,⊞, ·) where (G, ·) is a group with q2 = q2

1 . . . q
2
ν elements,

q1, . . . , qν prime numbers, and the operation ⊞ is defined with an automorphism T : G 7→ G that can
not be expressed as an exponentiation in G.

2. In [19, 21], g1 and g2 are in general different (but the authors also discuss the situations where g1 = g2)
and have respectively orders s and t i.e., | ⟨g1⟩ | = s and | ⟨g2⟩ | = t, and where s, t < q but st ≥ q,
while in our case g1 = g2 = g and | ⟨g⟩ | = q.

3. Depending on chosen g1 and g2, in [19, 21] the equation can have zero, one or many solutions (x1,x2),
while in our case for g generator of the Entropoid, there exists one unique solution (x1,x2).

Lemma 6 (adaptation of Theorem 1 in [21]). Let g be a generator of Eq2 . Further, let y ∈ G be given such
that it is a solution of the equation y = gx1 ⊞ gx2 , for some (x1,x2) ∈ Zq ×Zq. One can find the solution
(x1,x2) in deterministic time O(q3/2(log q)).

Proof. For every x2 ∈ {0, 1, . . . , q− 1} we evaluate y⊟ gx2 and then we try to compute its discrete logarithm
to base g, that is an integer x1 with gx1 = y⊟ gx2 . A deterministic algorithm for this problem is the Shanks’
Baby Step-Giant Step method [16] which runs in time O(q1/2(log q)) and space O(q1/2). In our case the
Baby Step-Giant Step method will give us either a solution, or will return that there is no solution for that
particular x2. Combining the run time to go trough all cases for x2 and the time to solve each instance of the
discrete logarithm problem gives us the total worst case complexity of finding the solution of the equation
(3) which is O(q q1/2(log q)) = O(q3/2(log q)).

Corollary 2. There is a randomized algorithm for finding a solution of the equation y = gx1 ⊞ gx2 that
takes O(q5/2

ν) group operations, where q = q1 . . . qν and the largest prime factor is qν > q1/2.

6

Proof. We replace the complexity O(q1/2(log q)) of the Baby Step-Giant Step method in Lemma 6, with a
randomized algorithm for computing the discrete logarithm that takes Ω(

√
qν) group operations proposed

in Shoup’s work [18]. That makes the total running time for solving (2) to be O(q q1/2
ν) < O(q2

ν q
1/2
ν) =

O(q5/2
ν).

Lemma 7 (adaptation of Theorem 3 in [21]). Let g be a generator of Eq2 , and let y ∈ G be given such
that it is a solution of the equation y = gx1 ⊞ gx2 , for some (x1,x2) ∈ Zq ×Zq. One can find the solution
(x1,x2) on a quantum computer in time O(q1/2(log log q)).

Proof. For every x2 ∈ {0, 1, . . . , q− 1} we evaluate y⊟ gx2 and then we use Shor’s algorithm [17] to compute
its discrete logarithm to base g, that is an integer x1 with gx1 = y⊟ gx2 or to report that no such x1 exists.
The expected number of attempts before Shor’s algorithm gives us the answer is O(log log q). Let denote
by S(x2) the subroutine that implements Shor’s quantum circuit.

We now use Grover’s search algorithm [6] over the subroutine S(x2) and the search space x2 ∈
{0, 1, . . . , q− 1}. The whole running time is then O(q1/2(log log q)).

4 A suitable instance for a concrete Entropoid structure
For our concrete instantiation of the group (G, ·) with |G| = q2 elements we will use the multiplicative group
(G, ·) ≡ C(n, 2) of all non-singular n×n circulant matrices over F2. Circulant n×n matrices over any field
form a ring with the operations matrix addition and matrix multiplication. That ring is isomorphic with the
quotient ring of polynomials R = F2[x]/(xn− 1). For further reading about circulant matrices I suggest for
example [7, 8] and the references there.

The following result is known about the number of elements of the group C(n, 2).

Proposition 4 (see Corollary 13.2.34, p.505 of [10]). Assume 2 and n are co-prime. Then

|C(n, 2)| =
r∏
j=1

(2mj − 1), (5)

where m1, . . . ,mr are the degrees of the irreducible factors of xn − 1 over F2.

We are interested for cases where n is a prime number, where |C(n, 2)| = q2, q = 2
n−1

2 − 1, and when q
represented as a product of ν prime factors q = q1 . . . qν , (sorted in ascending order), the number of prime
factors ν is as small as possible, but the biggest factor qν is a big prime number qν > q1/2.

In Table 2 we give 8 instances for different values of n. Note that the green highlighted values 479, 647
and 863 are proposed to be instances that offer at least the security of NIST’s Level 1, 3 and 5. The instance
with n = 103 defines q as a very smooth number, and it would be an easy challenge, while for challenges with
n = 167, 263 and 359, I hope that the cryptology community will give a significant feedback and analysis.

n q1 ν log2(qν) Note
103 103 7 16.9999 Small n with smooth q

167 167 2 75.6163 An n for a challenge
263 263 2 122.9611 An n for a challenge
359 359 3 160.0273 An n for a challenge
479 479 6 162.2824 An n for NIST Level 1
647 647 6 199.6601 An n for NIST Level 3
863 863 8 230.0670 An n for NIST Level 5
887 887 3 385.6449 Beyond NIST Level 5

Table 2: We omit the exact numerical values for all factors of q in order to present a compact table. For ex-
ample for n = 167 we have that q = q1 ∗ q2 where q1 = 167 and q2 = 57912614113275649087721 ≈
275.6163. The table shows some concrete instances for prime numbers n. The column q1 con-
tains the smallest prime factor of q = 2

n−1
2 − 1 when the order of C(n, 2) is computed by the

expression (5). The column ν contains the number of prime factors of q i.e. q = q1 . . . qν , and
the column log2(qν) contains the size of the largest factor qν in bits.

7

For the involutive automorphism T : C 7→ C it turns out that the operation of matrix transposition of
elements in C is a suitable operation. It is automorphism, and it is involution. When elements a ∈ C are
being presented as polynomials

a = a0 + a1x+ a2x
2 + . . . an−2x

n−2 + an−1x
n−1,

the transposition of a is denoted as aT and

aT = a0 + an−1x+ an−2x + . . .+ a2x
n−2 + a1x

n−1.

5 Examples of Entropic-Lift
Example 1. Entropic-Lift for classical Diffie-Hellman key exchange protocol is just a straightforward vari-
ables replacement. For the classical case, Alice and Bob agree on a finite cyclic group (G, ·) of order n and
a generating element g ∈ G. For the Entropic Diffie-Hellman, Alice and Bob agree on a finite Entropoid
Eq2 = (G,⊞, ·) with q2 elements and a generating element g ∈ G.

(a) Classical Diffie–Hellman key exchange

1. Alice picks a random natural number a where
1 < a < n, and sends the element ga of G to Bob.

2. Bob picks a random natural number b where
1 < b < n, and sends the element gb of G to Alice.

3. Alice computes the element
SharedKey =

(
gb
)a

= gba of G.

4. Bob computes the element
SharedKey = (ga)b = gab of G.

(b) Entropic Diffie–Hellman key exchange

1. Alice picks a random power index a = (a1, a2)
where 1 < a1, a2 < q, and sends the element ga
of G to Bob.

2. Bob picks a random power index b = (b1, b2)
where 1 < b1, b2 < q, and sends the element gb of
G to Alice.

3. Alice computes the element
SharedKey =

(
gb
)a

= gba of G.

4. Bob computes the element
SharedKey = (ga)b = gab of G.

Table 3: Classical and Entropic Diffie-Hellman key exchange protocol. The Entropic variant is just a
straightforward variables replacement

Example 2. Entropic-Lift for Schnorr signature scheme [15] is also a straightforward variables replacement.
In the classical case all users agree on a finite cyclic group (G, ·) of prime order q and a generating element g ∈
G, in which the Discrete Logarithm Problem is assumed to be hard. Also, all users agree on a cryptographic
hash function H : {0, 1}∗ 7→ Zq.

In the Entropic Schnorr case, all users agree on a finite Entropoid Eq2 = (G,⊞, ·) with q2 elements and
a generating element g ∈ G, in which the Exponential Congruences Problem is assumed to be hard. All
users also agree on a cryptographic hash function H : {0, 1}∗ 7→ Zq ×Zq.

In Table 5 we present a variant of Entropic Schnorr signature scheme called SEQUOA that was imple-
mented in C++ and submitted for inclusion in Supercop [1] for testing and measurement. Six different
instances are submitted to Supercop with prime number n = 167, 263, 359, 479, 647, 863. The design goal
for this variant was to offer some of the desirable features for signature schemes named as "BUFF - Beyond
UnForgeability Features" [3].

Additional motivation was to offer a randomized signature scheme which in a case of complete deterio-
ration of the entropy pool for its randomness, the scheme will become a deterministic scheme. That part is
the step "Set k = (k1, k2) ← H(rand||PrivateKey||M), where rand $←− {0, 1}n is a sequence of at least n
randomly generated bits" in the signing part.

A more detailed description about the concrete implementation of SEQUOA will be given elsewhere.

8

(a) Classical Schnorr signature scheme

KeyGen
PrivateKey ≡ x $←− Z∗

q , PublicKey ≡ y = gx

Sign a message M
Choose random k

$←− Z∗
q

r = gk

e = H(r||M)
s = k− xe
Signature = (s, e)

Verify
rv = gsye;
ev = H(rv||M)
Return True if ev = e else Return False

(b) Entropic Schnorr signature scheme

KeyGen
PrivateKey ≡ x = (x1,x2)

$←− Zq ×Zq,
PublicKey ≡ y = gx

Sign a message M
Choose random k

$←− Zq ×Zq

r = gk

e = H(r||M)
s = k− xe
Signature = (s, e)

Verify
rv = gsye;
ev = H(rv||M)
Return True if ev = e else Return False

Table 4: Classical and Entropic Schnorr signature scheme. The Entropic variant is just a straightforward
variables replacement.

KeyGen
PrivateKey ≡ x = (x1,x2)

$←− Zq ×Zq,
PublicKey ≡ y = gx

Sign a message M
Set k = (k1, k2) ← H(rand||PrivateKey||M),
where rand $←− {0, 1}n is a sequence of at least n
randomly generated bits.
r = gk

e = H(r||PublicKey||M)
s = k− xe
Signature = (s, e)

Verify
rv = gsye;
ev = H(rv||PublicKey||M)
Return True if ev = e else Return False

Table 5: SEQUOA variant of Entropic Schnorr signature scheme. This variant is BUFF friendly.

Example 3. Entropic-Lift for DSA scheme is not so straightforward. The definition of the scheme involves
variables that in one part play a role in one group, and later they are interpreted as members of another
group. That would cause incompatible arithmetic operations between power indices and group elements in
the Entropoid structure.

If we face a situation of incompatible operation in the Entropoid case, as suggested in the Entropic-Lift
recipe, we can try to replace the involved group element variable with a cryptographic hash of that variable
that maps it to a power index, thus enabling a proper arithmetic operation between power indices. We
should also re-evaluate the lifted scheme to check if that altered expression still makes sense and is secure.

We describe here the classical DSA, without much details of the bit sizes of some of the variables since
they are not crucially important for the purpose of this example of Entropic-Lift transformation. For more
details we redirect the user to see the detailed definition of DSA [14].

In the classical DSA case all users agree on an N -bit prime q and L-bit prime p such that p− 1 is multiple
of q. A generator g is chosen to be in a form of g = h(p−1)/q mod p. Also, all users agree on a cryptographic
hash function H : {0, 1}∗ 7→ Zq.

In the Entropic DSA case, all users agree on a finite Entropoid Eq2 = (G,⊞, ·) with q2 elements and a

9

generating element g ∈ G, in which the Exponential Congruences Problem is assumed to be hard. All users
also agree on a cryptographic hash function H : {0, 1}∗ 7→ Zq ×Zq.

Notice that in the Entropic variant the arithmetic expression for s does not have the term x · r, but
x ·H(r). That is because in this case x ∈ Zq ×Zq, while r ∈ G, so the multiplication x · r is not well
defined. On the other hand, H(r) ∈ Zq ×Zq, so the expression x ·H(r) is a valid arithmetic operation.

(a) Classical DSA scheme

KeyGen
PrivateKey ≡ x $←− Z∗

q ,
PublicKey ≡ y = gx mod p

Sign a message M
Choose random k

$←− Z∗
q

r =
(
gk mod p

)
mod q

s =
(
k−1 (H(M) + x · r)

)
mod q

Signature = (r, s)

Verify
w = s−1 mod q;
u1 = H(M) ·w mod q; u2 = r ·w mod q
v = (gu1yu2 mod p) mod q;
Return True if v = r else Return False

(b) Entropic DSA scheme

KeyGen
PrivateKey ≡ x = (x1,x2)

$←− Zq ×Zq,
PublicKey ≡ y = gx

Sign a message M
Choose random k

$←− Zq ×Zq

r = gk

s = k−1 (H(M) + x ·H(r))
Signature = (r, s)

Verify
v1 = rs

v2 = gH(M) · yH(r)

Return True if v1 = v2 else Return False

Table 6: Classical and Entropic DSA scheme.

Open Problem 1. From the perspective of provable security, and specifically from the perspective of security
of post-quantum cryptographic schemes, precisely formalize and analyze the potentials and limits of the
Entropic-Lift transformation.

6 Conclusions
We offered a construction of algebraic structures, where rising to the non-associative power indices is no
longer tied with the Discrete Logarithm Problem, but with a problem that in the last two decades has
been analyzed and does not have a quantum polynomial algorithm that solves it. The problem is called
Exponential Congruences Problem.

We also developed Arithmetic for the power indices. As a result, we proposed a generic recipe guidelines
that we named "Entropic-Lift" for transforming some of the existing classical cryptographic schemes that
depend on the hardness of Discrete Logarithm Problem to post-quantum cryptographic schemes that will
base their security on the hardness of the Exponential Congruences Problem.

We demonstrated the Entropic-Lift on three concrete examples: transforming the classical Diffie-Hellman
key exchange, Schnorr and DSA signature schemes.

We also posted one open problem in relation to Entropic-Lift transformation recipe: to precisely formalize
and analyze the potentials and limits of the transformation.

Acknowledgements
I would like to thank my former PhD student Mattia Veroni for long discussions that we spent during the
Summer of 2022 analyzing the Panny’s attack on the Entropoid schemes. I would also like to thank Daniel
Nager for sharing his preprint [12] in the beginning of November 2022 and for his input that improved this
text.

References
[1] Daniel J. Bernstein and Tanja Lange. (editors), eBACS: ECRYPT Benchmarking of Cryptographic

Systems. accessed 3 March 2023. https://bench.cr.yp.to.

10

https://bench.cr.yp.to

[2] Richard H Bruck. Some results in the theory of quasigroups. Transactions of the American Mathematical
Society, 55:19–52, 1944.

[3] Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian Janson. Buffing signature
schemes beyond unforgeability and the case of post-quantum signatures. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1696–1714. IEEE, 2021.

[4] Danilo Gligoroski. Entropoid Based Cryptography. 2021. https://eprint.iacr.org/2021/469.

[5] Danilo Gligoroski. Rebuttal to claims in section 2.1 of the eprint report 2021/583" entropoid-based
cryptography is group exponentiation in disguise". Cryptology ePrint Archive, 2021.

[6] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

[7] Irwin Kra and Santiago R Simanca. On circulant matrices. Notices of the AMS, 59(3):368–377, 2012.

[8] Ayan Mahalanobis. The discrete logarithm problem in the group of non-singular circulant matrices.
2010.

[9] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of applied cryptography.
CRC press, 2018.

[10] Gary L Mullen and Daniel Panario. Handbook of finite fields, volume 17. CRC press Boca Raton, 2013.

[11] DC Murdoch. Quasi-groups which satisfy certain generalized associative laws. American Journal of
Mathematics, 61(2):509–522, 1939.

[12] Daniel Nager. On linearization attack of entropic quasigroups cryptography. Cryptology ePrint Archive,
Paper 2022/1575, 2022. https://eprint.iacr.org/2022/1575.

[13] Lorenz Panny. Entropoids: Groups in disguise. 2021. https://eprint.iacr.org/2021/583.

[14] Shirley M Radack. Updated digital signature standard approved as federal information processing
standard (fips) 186-3. 2009.

[15] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Advances in Cryptol-
ogy—CRYPTO’89 Proceedings 9, pages 239–252. Springer, 1990.

[16] Daniel Shanks. Class number, a theory of factorization, and genera. in 1969 number theory institute
(proc. sympos. pure math., vol. xx, state univ. new york, stony brook, ny, 1969), 415–440. Amer. Math.
Soc., Providence, Rhode Island, USA, 1971.

[17] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM review, 41(2):303–332, 1999.

[18] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in Cryp-
tology—EUROCRYPT’97: International Conference on the Theory and Application of Cryptographic
Techniques Konstanz, Germany, May 11–15, 1997 Proceedings 16, pages 256–266. Springer, 1997.

[19] Igor E Shparlinski. On finding solutions to exponential congruences. Bulletin of the Australian Mathe-
matical Society, 99(3):388–391, 2019.

[20] Kôshichi Toyoda. On Axioms of Linear Functions. Proceedings of the Imperial Academy, 17(7):221–227,
1941.

[21] Wim Van Dam and Igor E Shparlinski. Classical and quantum algorithms for exponential congruences.
In Theory of Quantum Computation, Communication, and Cryptography: Third Workshop, TQC 2008
Tokyo, Japan, January 30-February 1, 2008. Revised Selected Papers 3, pages 1–10. Springer, 2008.

11

https://eprint.iacr.org/2021/469
https://eprint.iacr.org/2022/1575
https://eprint.iacr.org/2021/583

	Mathematical preliminaries
	The rationale for using involutive automorphisms T: G G
	Attacks on the Exponential Congruences Problem (ECP)
	A suitable instance for a concrete Entropoid structure
	Examples of Entropic-Lift
	Conclusions

