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Abstract. This paper puts forward a multi-round quantum key search
model for symmetric ciphers. We turn an unstructured key search for
symmetric ciphers into a nested structured quantum search. By the
preimage of punctured ciphertexts (or keystream), we get a convergent
sequence of subspaces of the full key space. In each round, our search is
performed only in a subspace containing the real key, while the rest part
is removed from search space.
We find out several parameters, the length s of the punctured ciphertext
(or keystream), the iteration number r, and the error δ in the search
algorithm, which can influence the resulting complexity. The query com-
plexity of our search model is Õ(2αn·n), where αn is much smaller than
1
2
. Specifically, the query complexity is Õ(r2

n
2(r−1) ) (ignore constant δ)

better than Grover’s Õ(2
n
2 ), while parameter r increases as n increases.

Our search model can be applied to symmetric ciphers. And it has been
shown that doubling the key length is not an effective way anymore to
resist the quantum search attacks. Even if the key length is increased by
r − 1 times, symmetric ciphers still struggle to obtain desired security
for a re-selected value of r.

Keywords: Symmetric cipher · post-quantum security · quantum search
algorithm.

1 Introduction

Shor’s algorithm [20] poses a serious threat to public key cryptographic algo-
rithms based on large number decomposition and discrete logarithm problems. It
has forced cryptographers to investigate and design post-quantum secure public-
key cryptography algorithms. In the designs of post-quantum secure symmetric
ciphers such as stream ciphers and block ciphers, it’s generally believed that in-
creasing the key length properly can protect ciphers from quantum attacks, like
doubling the key length. Because the unstructured quantum search algorithm,
represented by Grover’s algorithm [2], is able to achieve a quadratic acceleration
of key search for symmetric ciphers. In this way, if search M targets in a set
with size of N , then the search complexity is Õ(

√
N/M). And this quadratic

acceleration has been proved to be optimal [16].
As for structured search, it outperforms unstructured search in the aspect

of search complexity. The reason is that, in structured search, an adversary can
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identify a part of the search space in advance where the target is located, while
abandoning the search in the rest part of the space, which indeed effectively
improves the search complexity. And typical structured quantum search mod-
els are nested search model[19], highly structured search model[23,24] and so
on. Therefore, there is an important issue related to symmetric ciphers’ post-
quantum security that, whether an unstructured search for symmetric ciphers
can be transformed into a structured quantum search model.

A well-designed stream cipher or block cipher can be expressed as a pseudo-
random function F : {0, 1}lk × {0, 1}lin → {0, 1}lout [1], where the inputs are
lk-bit key and lin-bit plaintext (or initialization vector (IV)), and the output
is lout-bit ciphertext (or keystream). Thus, breaking stream ciphers or block
cipher is equivalent to inverting a pseudo-random function. Or to say, given a
ciphertext (or keystream) of sufficient length and the corresponding plaintext (or
initial state), the correct key can be found by cryptanalytic techniques. Long-
term cryptanalysis has demonstrated that it is difficult to obtain the key for a
well-designed pseudo-random function using classical technical methods. In [14],
the authors apply Grover oracle in the AES’s key search. For detail, given a
few plaintext pairs, the key of AES is searching by Grover’s algorithm. And the
AES attacking quantum circuit is designed with minimum qubits required and
other quantum resources optimized, which has been adopted by the National
Institute of Standards and Technology (NIST). In [11], the authors optimize
the AES attacking quantum circuit based on [14], by searching two pairs of
plaintext and ciphertext simultaneously in parallel in a quantum circuit, and
prove that AES’s quantum security is weaker than NIST declares. Besides, they
determine the relation between the key length and the pairs, and design the
LowMC attacking quantum circuit in the same way. In [21], the authors design an
attacking quantum circuit on stream cipher ChaCha, by outputting a keystream
with the same length of key seed, which recovers 256-bit key seed in the quantum
circuit with 1.233 · 2251 quantum gates. In [13], the off-line Simon algorithm is
applied to the 2XOR-Cascade construction, and the attacking complexity is
beyond the quadratic speedup of quantum search algorithm.

However, the most important problem we consider is that, whether it is pos-
sible to implement structured quantum search in symmetric cipher’s key search
model, i.e., find out the key k ∈ {0, 1}lk of a pseudo-random function given the
corresponding plaintext-ciphertext pairs (or IV-keystream pairs). The structured
search we mention here is that, the adversary is able to determine the subset
in advance where the key is located, searches in that subset and ignores the
remaining part. In essence, that’s the reason why structured search can outper-
form unstructured search in computation complexity. Take the nested quantum
search algorithm as an example, unstructured search complexity is Õ(

√
2lk) for

a keyspace with size of 2lk , while nested quantum search complexity is Õ(
√
2αlk)

where α < 1. Of course, the nested quantum search algorithm is designed for con-
straint satisfaction problems, and is not applicable to solve the inverse problem
of pseudo-random function. Therefore, the key point is that, whether solving the
inverse problem of pseudo-random function can be transformed into a structured
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search, which effectively reduced search complexity for symmetric cipher. In the
following, we will illustrate the structured key search for symmetric cipher, and
substitute breaking symmetric cipher for solving the inverse of a pseudo-random
function.

Let’s imagine a scenario now. For a given plaintext (or IV) v1, assume that
we can get every ciphertext (or keystream) c with every key k in the full key
space K0 = {0, 1}lk , i.e., c = Ev1(k). Define an s-bit punctured ciphertext (or
keystream) z, which is composed of some particular bits of c. Or to say, z =
(c(b1), · · · , c(bs)), where c(bj) is the bj-th bit of c. For convenience, set punctured
function z = ps(c). Set Z(1) = {z = ps ◦ Ev1(k)|k ∈ K0} as the punctured
ciphertext (or keystream) multi-set. Given a classical chosen-plaintext (or IV)
access, an adversary can get the ciphertext (or keystream) ci with given v1. In
this way, z1 = ps(c) can be obtained. For a punctured ciphertext (or keystream)
z1 ∈ Z(1), there is a preimage set K1 = {(ps ◦ Ev1)

−1(z1)}, which contains lots
of elements for a small value of s. Obviously, K1 ⊂ K0. Hence, if one can get
the preimage set K1 by punctured ciphertext (or keystream) z1, the adversary
can narrow the search space to K1 where real key locates in the second round of
search (ignore K0 −K1). In this way, structured key search is realized. It seems
that a larger value of s results in a smaller size of |K1|, which can find the real
key k∗ in a faster way. However, this viewpoint contradicts our analysis.

In fact, for classical algorithm, the ciphertext (or keystream) set cannot be
obtained efficiently when lk is relatively large, such as lk = 128. What’s more,
apart from exhaustive classical algorithm, there is no way to acquire K1 with
knowing z1. However, it’s pretty easy to achieve in the quantum computing envi-
ronment. The set Z1 can be obtained by designing a quantum punctured encryp-
tion oracle, which calculates every punctured ciphertext (or keystream) z with
a given plaintext (or IV) v1 by a uniform superposition of keys k in the full key
space K0. Besides, quantum algorithm can get the preimage K1 if the measure-
ment of corresponding qubits is z1. Take Simon’s algorithm [25] as an example.
Firstly, apply an oracle, which achieves 1√

N

∑
x |x〉|0〉 →

1√
N

∑
x |x〉|f(x)〉. And

then, measure the second register while the quantum state collapses. If the mea-
surement is |a〉, then the state on the first register collapses to 1√

|A|

∑
x∈A |x〉,

where A = {x|f(x) = a}.
Inspired by Simon’s algorithm, we propose a multi-round (r-round) nested

search model. An adversary can construct a quantum punctured encryption ora-
cle Ogvi,s

with input of key k and output a flag whether the s-bit punctured
ciphertext (or keystream) z is equal to the given zi, where z = gvi,s(k) =
ps ◦ Evi(k), and (vi, zi) is a given plaintext-ciphertext pair (or IV-keystream
pair). And then, construct a search oracle with search algorithm by quantum
singular value transformation (QSVT) to amplify the amplitude of the state
components with ’good’ flag (z = zi). At last, with the measurement of flag,
quantum state collapses from a non-uniform superposition of current key space
Ki−1 (after amplitude amplification) to a uniform superposition of the preim-
age set of zi, i.e., a subspace Ki = {k|gvi,s(k) = zi, k ∈ Ki−1}. By iteratively
applying above operations r times (i = 1, 2, · · · , r), there’s of great chance to
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obtain the unique and correct key. In this way, during each round, only elements
in space Ki−1 are needed to search, rather than the full key space K0 = {0, 1}n.

As for complexity, the query complexity for Ogvi,s
of amplitude amplification

in i-th round relies on the target’s amplitude
√

|Ki|√
|Ki−1|

, i.e., the square root of

decreasing scale from space Ki−1 to subspace Ki. We get
√

|Ki|√
|Ki−1|

≈ 1

2
s
2

, in the
first r − 1 rounds, because of the pseudo-random property owned by function
gvi,s and the pairwise independent property among function gv1,s, · · · , gvr,s. And
s is the length of punctured ciphertext (or keystream). So the r-round query
complexity is Õ(r · 2 s

2 ). The specific analysis is illustrated in Section 3.
Our search model is specifically designed for the inverse problem of pseudo-

random function, and can be viewed as a variant kind of the nested quantum
search[19]. The original nested quantum search model in [19] is designed for
the constraint satisfaction problem, which cannot be directly used in the prob-
lem of finding the key of symmetric ciphers. Take a single-level nested search
as example. The unknowns x0, · · · , xn−1 can be expressed as a quantum state
|x0 · · ·xn−1〉. At first, design a search oracle for the first s unknowns x0, · · · , xs−1

to find out every possible solution satisfying the constraints, which is called
could-be partial solution. And as for the value of rest n− s parameters, consider
the descendants of could-be partial solutions. Because, at the first search stage,
solutions contradicting the constraints are filtered out, and only the descendants
of could-be partial solutions have chance to be the true solution of the constraint
satisfaction problem. The above process can be applied as a unitary and nested
into a high-level search model, that’s why it is called nested search. Due to the
lack of the corresponding constraints in the inverse problem of pseudo-random
functions, we cannot determine the first s bits of the key before finding the rest
part by the original nested quantum search model. What’s more, the authors in
[19] have shown that the query complexity decreases as the iteration number r
increases. However, they only can determine the query complexity of low-level
nested quantum search. For example, about the single-level search, the complex-
ity is Õ(

√
b0.618n), which is much better than Õ(

√
bn), the optimal complexity

of unstructured search. As for high-level nested quantum search model, it’s hard
to determine the precise complexity. The reason is that the value of α is not
easy to get as a root of a higher degree equation, where the query complexity is
Õ(
√
bαn) (in this case b = 2). Besides, the equation gets more difficult to solve

as the number of nested level grows. Comparatively, our search model can give
a concrete expression of complexity. Besides, the optimal query complexity can
be obtained by obeying the parameter selection rules in Section 3, which is vital
to evaluate the attack performance.

The nested search model in paper [19] uses the postponed measurement,
which means there is no measurement in the intermediate but at last. However,
the search in our model isn’t in this way. At the end of each round, we only
measure the auxiliary qubit flag instead of other qubits for two purposes. One
is that make quantum state collapse from a non-uniform superposition of current
key space Ki−1 to a uniform superposition of the subspace Ki = {k|gvi,s(k) =
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zi, k ∈ Ki−1}. It helps calculate clearly the specific state in each round and
estimate with a more accurate probability. The other is that prevent a spurious
key re-entry the search which results in an unpredictable error, for example
k ∈ {k|gv1,s(k) 6= z1, gv2,s(k) = z2, · · · , gvr,s(k) = zr}.

The approach to amplitude amplification in this paper is search algorithm
by quantum singular value transformation (QSVT) [3,4,5,6,10]. Compared with
Grover’s algorithm, it can search the target when only known the lower bound
of target’s amplitude. Besides, it owns the property of convergence, which in-
deed avoids the problem of ’overcooked’. Although it has larger complexity than
Grover’s, search algorithm by QSVT still follows the quadratic speed-up. The
reason why we adopt search algorithm by QSVT rather than Grover’s algorithm
is that, in the last search round, there is a volatile scenario where the value of
|Kr−1| is uncertain but the lower bound of it can be sure. And thanks to the
convergence property, amplitude amplification can be achieved when take the
lower bound of amplitude as the parameter of search algorithm by QSVT.

The search algorithm by QSVT combines quantum signal processing. And it
works as rotations with different phases and different rotary axis. By transform-
ing between the left and right singular spaces and rotating within the spaces, in
the Bloch sphere representation, the quantum state keeps spirally approaching
and finally converges to the target quantum state. In this way, Grover’s algo-
rithm can be seen a special case, where Grover’s algorithm works as rotations
with a fixed phase in a two-dimensional plane spanned by the target vector and
its orthogonal vector. The details will be elaborated in Section 2.

Our search model is designed for the inverse problem of pseudo-random func-
tion, which can be used as key search model for symmetric ciphers. We set sev-
eral parameters, such as, the length of punctured ciphertext (keystream) s, the
number of iterations r and the error in the search process δ. There are several
constrains among s, r and the key length n of the symmetric ciphers, in order
to make our model function well. In this way, we find out the optimal values for
s and r when n is settled. For instance, when the key length n = 128, we can
set s = 19 and r = 7, which results in the best complexity.

This paper considers two types of complexity, the query complexity and the
search complexity. The query complexity is the number of querying quantum
punctured encryption oracle in our multi-round search model. And the search
complexity is the quantum gate count of our model, which is equal to the product
of the query complexity and the gate count of quantum punctured encryption
oracle. Therefore, in our model, the query complexity is same toward different
symmetric ciphers with the same key length, while the search complexity is
different.

To demonstrate the performance of the model, we analyze the complexity of
several symmetric ciphers under our attack model. The conclusion shows that,
the search complexity are Õ(236.5) for AES-128, is Õ(240.3) for AES-192, is
Õ(241.6) for AES-256, Õ(228.3) for Grain-128, Õ(233.8) for ZUC-128, and Õ(237.8)
for ZUC-256. We analyze the query complexity for different key length of sym-
metric ciphers, and show that it increases slower than Grover’s algorithm. Notice
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that query complexity remains unchanged for different symmetric ciphers with
the same key length n. Specifically, for the symmetric cipher with the key length
n, the query complexity is Õ(r ·2 s

2 · log(1/δ)) = Õ(r ·2
n

2(r−1) · log(1/δ)), because r
and s satisfy r = bns c+1, where δ is an error used to estimate the approximation
performance in the search algorithm by QSVT, and when δ = 0.01 the approxi-
mation is good enough (explained in Section 2). Although r · 2

n
2(r−1) ≥ r · 2 s

2 , we
neglect it thanks to the Õ notation. But in the main body, we will take them
into consider for accuracy.

It seems increasing key length by r − 1 times can protect symmetric ciphers
from our search model. However, the truth is that r is a parameter depending on
key length n rather than a constant. Or to say, set the original key length is n,
and new key length is n(r− 1). By our search model, there is a relation between
n and r, i.e., set r = R(n). Then, for key length n(r − 1), let r′ = R(n(r − 1)),
and the query complexity is Õ(r′2

n(r−1)

2(r′−1) log(1/δ)), which must be smaller than
expected complexity Õ(r · 2

n(r−1)
2(r−1) log(1/δ)) = Õ(r · 2n

2 log(1/δ)). For example,
r = 7 if n = 128, and the query complexity is Õ(216.2), while r = 21 if n = 1024,
and the query complexity is Õ(232.7). More comparisons on complexity can be
found in Table 2. Hence, increasing the key length is not an effective way for the
post-quantum secure symmetric ciphers.

The rest of this paper is organized as follows. In Section 2, we introduce
some symbols and quantum algorithms. Section 3 gives the specific construction
of the nested quantum search model for symmetric ciphers. And, we apply the
new nested model to analyze the security of stream ciphers Grain, ZUC and block
cipher AES family, and list the corresponding query and search complexity in
Section 4. Section 5 concludes this paper.

2 Preliminaries

The symbols and their representative meanings are shown in the Table 1.

Table 1: Symbol Description
Symbol Representative Meaning

k key seed
n key seed length
vi plaintext or initialization vector
z punctured ciphertext or keystream
s length of punctured ciphertext or keystream
r iteration number
Ki key space
Ev encryption function of symmetric ciphers with vector v
ps puncture function
gv,s composite function
Cgv,s complexity of oracle Ogv,s
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2.1 Deutsch-Jozsa Algorithm

Deutsch-Jozsa Algorithm [18] can testify whether a boolean function f(x) is
balanced or constant.

Algorithm 1: Deutsch-Jozsa Algorithm
Input: Boolean function f(x).
Output: f(x) is balanced or not.
1: Prepare two quantum registers. The first is a n-qubit register initialized

to |0〉, and the second is a one-qubit register initialized to |1〉.
▷ |0〉⊗n|1〉

2: Apply a Hadamard gate to each qubit. ▷ 1√
2n+1

∑2n−1
x=0 |x〉 (|0〉 − |1〉)

3: Apply the quantum oracle |x〉|y〉 to |x〉|y ⊕ f(x)〉.
▷ 1√

2n+1

∑2n−1
x=0 (−1)f(x)|x〉 (|0〉 − |1〉)

4: At this point the second qubit register may be ignored. Apply a
Hadamard gate to each qubit in the first register.

▷ 1
2n

∑2n−1
x=0

[∑2n−1
y=0 (−1)f(x)(−1)x·y

]
|y〉

5: Measure the first register. Notice that the probability of measuring
|0〉⊗n =

∣∣∣ 1
2n

∑2n−1
x=0 (−1)f(x)

∣∣∣2, which evaluates to 1 if f(x) is constant
and 0 if f(x) is balanced.

By running constant times of Algorithm 1, the probability of measuring |0〉⊗n

can demonstrate the value
∑2n−1

x=0 (−1)f(x) = ||{x|f(x) = 1}| − |{x|f(x) = 0}||.
In this way, it can tell that whether boolean function f(x) is balanced or not.

2.2 Grover’s Algorithm

Grover’s algorithm [2] solves the problem of searching some specific elements in
the set S = {1, . . . , N}. As for the function f : {1, . . . , N} → {0, 1}, Grover’s
algorithm can find an element {α}, for which f(α) = 1. And for other elements
x ∈ {1, . . . , N}\{α}, f(x) = 0.

Set an operator Uf : |x〉|y〉 → |x〉|y + f(x)〉. If x = α, Uf |x〉|y + f(x)〉 =
|α〉|y + 1〉. Else, Uf |x〉|y + f(x)〉 = |x〉|y〉. Specifically, if |y〉 = (|0〉+ |1〉) /

√
2,

Uf |x〉|y〉 = (−1)f(x)|x〉|y〉. Else if |y〉 = |ϕ〉 is quantum state with arbitrary
length,

Uf |α〉|ϕ〉 = sin(θ)|α〉|U(ϕ)〉+ cos(θ)|ψ⊥〉,

where (|α〉〈α| ⊗ I) |ψ⊥〉 = 0.
Define Grover operator G = (2|α〉〈α| − I)Uf , We can get the relation

Gt|α〉|ϕ〉 = sin [(2t+ 1) θ] |α〉|U(ϕ)〉+ cos [(2t+ 1) θ] |ψ⊥〉.

We apply above operators to the quantum state |s〉, which means |s′〉 = G|s〉.
As is shown in Figure 1(a), the above process can be seen as a rotation of 2θ
degree on the two-dimension plane, which is spanned by the superposition state
corresponding to the special vector and its orthonormal state.
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When the goal is searching M elements out of N , then

sin2(θ) =M/N, 0 < θ ≤ π/2.

If M � N , θ ≈ sin(θ) =
√
M/N . We can successfully measure the special

vectors {α} with probability of 1 − M
N , after applying

⌈
π
4

√
N
M

⌉
operator G.

Above all, Grover algorithm can achieve quadratic acceleration compared to
classical unstructured database search algorithms.

2.3 Quantum Signal Processing

Set a quantum state |ψ〉 = cos θ
2 |0〉 + eiϕ sin θ

2 |1〉, where θ ∈ [0, π], ϕ ∈ [0, 2π].
The parameters θ and ϕ can locate a point in Bloch sphere [9], as shown in
Figure 1(b).

(a) Grover’s algorithm (b) Bloch sphere

Fig. 1: Geometric representation

Quantum signal processing (QSP) is built on the idea of interleaving two
kinds of single-qubit rotations: a signal rotation operator W , and a signal pro-
cessing rotation operator S. These rotation operations are about different axes

through the Bloch sphere. For instances, W (a) =

[
a i

√
1− a2

i
√
1− a2 a

]
is an

x-rotation of θ = −2 cos−1(a) degree, and S(ϕ) = eiϕZ is a z-rotation of −2ϕ
degree.

Definition 1. [10] For a tuple of phases
−→
ϕ = (ϕ0, ϕ1, · · · , ϕd) ∈ Rd+1, the QSP

operation sequence U−→
ϕ

is defined as

U−→
ϕ
= eiϕ0Z

d∏
k=1

W (a)eiϕkZ .
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Based on the Definition 1, we have the following theorem:

Theorem 1. [10] The QSP sequence U−→
ϕ

produces a matrix which may be ex-
pressed as a polynomial function of a:

eiϕ0Z
d∏

k=1

(W (a)eiϕkZ) =

[
P (a) iQ(a)

√
1− a2

iQ∗(a)
√
1− a2 P ∗(a)

]
,

for a ∈ [−1, 1], and a
−→
ϕ exists for any polynomial P,Q in a such that:

1. deg(P ) ≤ d, deg(Q) ≤ d− 1.
2. P has parity d mod 2, Q has parity (d− 1) mod 2.
3. |P (a)|2 + (1− a2)|Q(a)|2 = 1.

The authors in [4] indicate that, Remez-type exchange algorithm can com-
pute a

−→
ϕ that produces a good approximation to any feasible polynomials P

and Q.

2.4 Search Algorithm by QSVT

Apply an operator U to an initial state |B0〉. Our goal is to search target state
|A0〉 among state components U |B0〉.

Let a = 〈A0|U |B0〉, and a 6= 0 (If a = 0, searching set U |B0〉 doesn’t contain
target state |A0〉). If a is known, Grover’s algorithm can be used for amplitude
amplification. Else, if a is unknown but the lower bound of a, the search algorithm
by quantum singular value transformation(QSVT) can solve the problem. The
search algorithm by QSVT is elaborated as following:

Let |A⊥〉 = 1
N (I − |A0〉〈A0|)U |B0〉, where N is the normalization factor

needed to make |A⊥〉 a unit vector. And U |B0〉 = a|A0〉+
√
1− a2|A⊥〉, U |B⊥〉 =

−a|A⊥〉+
√
1− a2|A0〉. Besides, the singular value decomposition is

U = a (|A0〉〈B0| − |A⊥〉〈B⊥|) +
√
1− a2 (|A⊥〉〈B0|+ |A0〉〈B⊥|) ,

where |A0〉, |A⊥〉 are left singular vectors, and |B0〉, |B⊥〉 are right singular
vectors.

Thus, the block encoding of the operator U is

U =

[
a

√
1− a2√

1− a2 −a

]
.

The search algorithm by QSVT can measure the target state |A0〉 with the
probability approximate to 1(poly(a)→ 1), combined quantum signal processing
in a way of applying a sequence of rotation operators and operator U . Based on
Theorem 1, Theorem 2 can be deduced:
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Theorem 2. [10] Given a unitary U , its inverse U†, and operator Aϕ = eiϕ|A0⟩⟨A0|,
Bϕ = eiϕ|B0⟩⟨B0|,

〈A0|

d/2∏
k=1

UBϕ2k−1
U †Aϕ2k

U |B0〉 = poly(a),

where poly(a) is a polynomial in a = 〈A0|U |B0〉 of degree at most d, satisfying
the conditions on P from Theorem 1.

As shown in Figure 2(a), the geometry representation of Theorem 2 is as
below:

Let HA = span(|A0〉, |A⊥〉) and HB = span(|B0〉, |B⊥〉) denote two invariant
subspaces separately spanned by left/right singular vectors.

1. The operator U maps vectors in space HB to vectors in space HA with a
rotation.

2. The operator Aϕ works as a rotation around vector |A0〉 with certain
degree, and the operator Bϕ works around vector |B0〉.

3. The operator U † maps vectors in space HA to vectors in space HB with a
rotation.

Theorem 2 indicates that, search algorithm by QSVT, combined with quan-
tum signal proceeding, makes the vector gradually converge on target vector
|A0〉 in the way of transforming between two singular vector spaces and rotating
around singular vectors.

In Theorem 2, the optimal function for poly(a) in search problem is sign
function

Θ(a) =


−1 a < 0

0 a = 0

1 a > 0

.

And sign function Θ(a) can be estimated with arbitrary precision by finding a
polynomial approximation to Gauss error function erf (t [a]), for large enough
t. Particularly, a degree d = O

(
1
∆ log

(
1
ε

))
odd polynomial PΘ

ε,∆(a) can be com-
puted, where ε ∈

(
0,
√

2/eπ
)

, and such that
1. |PΘ

ε,∆(a)| ≤ 1, for a ∈ [−1, 1].
2. |Θ(a)− PΘ

ε,∆(a)| ≤ ε, for a ∈ [−1, 1]\(−∆
2 ,

∆
2 ).

All in all, PΘ
ε,∆(a) can ε-approximate sign function Θ(a), as shown in Figure

2(b).
Let N denote the searching set’s size, and |a| = |〈A0|U |B0〉| ≥ 1√

N
. In Figure

2(b), for an arbitrary value |a| ≥ 1√
N

, PΘ
ε,∆(a) ≈ 1, when ∆/2 ≤ 1√

N
. Thus, we

get the Theorem 3.
Theorem 3. [10] Given unitary operators U , U †, and rotation operators Aϕ =
eiϕ|A0⟩⟨A0|, Bϕ = eiϕ|B0⟩⟨B0|,

〈A0|

d/2∏
k=1

UBϕ2k−1
U †Aϕ2k

U |B0〉 = PΘ
ε,∆(a),



Nested Quantum Search Model on Symmetric Ciphers and Its Applications 11

(a) The geometry representation
of Theorem 2

(b) Simulation of sign function in Theo-
rem 3

Fig. 2: Geometry representation and optimal simulation function

where PΘ
ε,∆(a)is polynomial with degree at most d, satisfying the conditions on

polynomial P in Theorem 1,∆ ≤ 2√
N

, and d = O
(

1
∆ log

(
1
ε

))
= O

(√
N log(1/ε)

)
.

And the odd polynomial PΘ
ε,∆(a), as an approximation of Θ(a), satisfies the

conditions of P (a) in Theorem 1. At this point, the operator sequence U−→
ϕ

=(
PΘ
ε,∆

)(SV )
(W ) ≈ Θ(SV )(W ).

In summary, search algorithm by QSVT is as below:

Algorithm 2: Unstructured Search Algorithm by QSVT[10]
Input: Access to a controlled version of the oracle U which bit-flips an

auxiliary qubit when given an unknown target state |m〉, an
error tolerance δ = 2ε, and a ∆/2 ≤ 1/

√
N .

Output: The flagged state |m〉.

1: Use QSVT to construct the operator
(
PΘ
δ/2,∆

)(SV )

(W ), where W is the
block encoding of U .

2: Apply
(
PΘ
δ/2,∆

)(SV )

(W ) to the uniform superposition. If the auxiliary
is measured as |+〉, then |m〉 remains in the register. Else, repeat the
above process.

Algorithm 2 successes in the probability of at least 1-δ, and costs 1 extra
auxiliary qubit with complexity of

Õ (1/∆ log (1/ε)) = Õ
(√

N log (1/δ)
)
, (1)

which obeys well-established quantum lower bounds on the hardness of unstruc-
tured search in [16].
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3 Nested Quantum Key Search Model for Symmetric
Ciphers

A general key search model for symmetric ciphers takes use of the one-to-one
mapping of key seed onto ciphertext (or keystream), marks the state component
mapping to the given ciphertext (or keystream) with the ’good’ label, applies
Grover’s algorithm with O(

√
N/M) Grover’s operators, and returns the key

seed. Usually, M = 1, and N = 2n, where n is the key length.
It has been proved that Grover’s search algorithm is optimal for unstruc-

tured set [16], while nested search can break this threshold and speed up a lot
for structured set [19]. So our search model begins with nested search for sym-
metric ciphers. However, there are two major questions about nested search for
symmetric ciphers:

Q1. How to transform an unstructured key search of symmetric ciphers into
a structured search?

Q2. How to estimate the number of candidate solutions in every round (level)?
For question 1, we design a nested quantum search model, shown in Figure

3. It is the quantum punctured encryption oracle that helps narrow search space
from a key space Ki−1 (current round) to a subspace Ki (next round), and deter-
mine the decreasing scale. By the amplitude amplification, the state components
corresponding to the subspace Ki can be filtered from a uniform superposition of
Ki−1. And thanks to the measurement of flag register, quantum state collapses
to an expected state, the uniform superposition of subspace Ki.

Specifically, the adversary can query the quantum oracle Ogvi,s
with key k

as variable and v as parameter. As for the composite function gv,s : {0, 1}n →
{0, 1}s, k 7→ z,

gv,s(k) = ps ◦ Ev(k) = ps(c) = z,

mapping a key k to punctured ciphertext z (or keystream), where z is composed
of some particular bits in c. (The exact design of gv,s and the definition of
punctured ciphertext or keystream will be explained later.) By oracle Ogvi,s

, the
adversary can get the superposition of punctured ciphertext (or keystream).

Besides, the adversary can query a classical encryption oracle Enck∗(·) which
encrypts every inputting plaintext (or IV) vi with a secret and unknown key
k∗. Given a plaintext (or IV) vi, the adversary can get the corresponding ci-
phertext (or keystream) by querying the classical oracle Enck∗(·). Then, punc-
ture the ciphertext (or keystream) by the function ps, and get the punctured
cipehrtext (or keystream), zi = ps ◦ Enck∗(vi). Here, the adversary can get r
pairs (v1, z1), · · · , (vr, zr).

Here is our main idea of the nested search model. (Step 4 and 5 can be
achieved in oracle Ogvi,s

.)
Step 1. Set the full key space K0 = {0, 1}n and j = 1.
Step 2. Define function gvj ,s with the given pair (vj , zj).
Step 3. Generate the multiset Z(j) = {gvj ,s(k)|k ∈ Kj−1} under the super-

position state 1
|Kj−1|

∑
k∈Kj−1

|k〉.
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Step 4. Label zj with ’good’ flag, search in Kj−1 by amplifying the amplitude
of the state components corresponding to zj , and measure the flag qubit, which
results in a collapse of state that state components {k|gvj ,s(k) 6= zj} disappear
while {k|gvj ,s(k) = zj} remain.

Step 5. Set the key space Kj = {gvj ,s(k) = zj |k ∈ Kj−1}. Obviously,
Kj ⊂ Kj−1. After Step 4, the state stored on key register becomes a uniform
superposition of keys in subspace Kj .

Step 6. Let j ← j + 1. If j = r + 1, then quit and return the key (on key
register). Else, go to Step 2.

The Step 4 is inspired by Simon’s algorithm that, if the flag qubit is measured
as ’good’, the state components stored on key register only and only are ’good’
candidate solutions. Besides, the candidate solutions in each (j-th) round is the
key space Kj = {gvj ,s(k) = zj |k ∈ Kj−1}.

The complete process of nested search model is shown in Figure 3.

Fig. 3: The Nested Search Model

As for the estimating number of candidate solutions and the approach to
amplify the amplitude, the analysis is based on the secure property of symmetric
ciphers. More random the ciphertext (or keystream) seems, and more secure the
symmetric cipher becomes. Hence, our model is established on the following two
recognized assumptions [1].

Assumption 1 For a strong pseudo-random function fm : {0, 1}n → {0, 1}s,
with parameter m, a fixed vector (correct key) k∗ and an arbitrary vector (key)
k, there exists

Pr
k ̸=k∗

(fm(k) = fm(k∗)) = 2−s.
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Assumption 2 For a well-designed encryption function fm with parameter m,
if given any r independent parameters m1, · · · ,mr, then the corresponding func-
tions fm1 , · · · , fmr are pairwise independent.

As discussed above, a pseudo-random function gv,s(k) is designed. And let

p = Pr
k ̸=k∗

(gv,s(k) = gv,s(k
∗)) .

Then, in the next two subsections, we analyze the correctness of our nested search
model separately in two different situations, the ideal one and the practical one.
Particularly, the ideal situation is that

p =
1

2s
,

while the practical is that(
1

2
− ε
)s

≤ p ≤
(
1

2
+ ε

)s

,

where 0 ≤ ε ≤ ε0 < 1
2 , and ε0 can be determined by s.

3.1 An Ideal Nested Key Search Model

Our search model takes advantage of pseudo-randomness (Assumption 1), a
property of symmetric ciphers. So, in this section, our nested search model is
based on an ideal situation

p = Pr
k ̸=k∗

(gv,s(k) = gv,s(k
∗)) =

1

2s
, (2)

where gv,s(k) is a pseudo-random function defined as follows.

Pseudo-random Function Construction The construction of the pseudo-
random function gv,s(k) contains three steps.

Firstly, we set the encryption function of symmetric cipher,

Ev(·) : {0, 1}n → {0, 1}h, k 7→ c,

where n represents the key length, k represents the key, and parameter v ∈
{0, 1}m. Specifically, for block ciphers, vector v represents a plaintext, vector c
represents the ciphertext, h and m represents the block length (h = m). As for
stream ciphers, vector v represents an initialization vector (IV) with length of
m, and vector c represents the h-bit keystream.

Secondly, we design a punctured function ps(·) : {0, 1}h → {0, 1}s,

ps(c) = ps((c
(1), · · · , c(h))) = (c(b1), · · · , c(bs)) = z, (3)
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where c(bj) is the bj-th bit of c, {bj |j = 1, · · · , s} ⊂ {1, · · · , h}, and for 1 ≤ u <
w ≤ s, bu < bw. In this way, define the punctured ciphertext (or keystream) z,
which is punctured by function ps(·), i.e. z = ps(c).

At last, we define the composite function gv,s : {0, 1}n → {0, 1}s,

gv,s(k) = ps ◦ Ev(k).

By a delicate selection of b1, · · · , bs (proper design of function ps), gv,s can be
guaranteed as a pseudo-random function. Obviously, the function gv,s can be
implemented in the quantum computation environment with the key k open.

The Multi-round Nested Key Search Model As Figure 3 shows, we begin
with traversal of the full key space K0 = {0, 1}n. And set i = 1. In each round,
the state components k ∈ Ki = {k|gvi,s(k) = zi, k ∈ Ki−1} is called candidate
solutions, and is marked with ’good’ flag. Then, we amplify the amplitude of
’good’ state components, and measure the auxiliary qubit flag to make the
quantum state eventually collapse to the key space Ki. Make i = i + 1, and
iteratively follow the above step, until only the correct key k∗ is filtered out.

Hence, we establish the multi-round (r-round) nested key search model (Al-
gorithm 3) with r pairs (vi, zi), as a chosen plaintext (or IV) attack. And the
quantum circuit is shown in Figure 4. Besides, operator Ui (Algorithm 4) is de-
signed and iteratively applied to achieve the search in each round with input of
a pair (vi, zi).

Algorithm 3: Multi-round Nested Key Search Algorithm
Input: The r pairs of m-bit vector vi and s-bit vector zi, i = 1, · · · , r.
Output: The n-bit key.
1: Prepare an initial state stored on register K, and apply n Hadamard gates.

▷ 1√
2n

∑
k∈{0,1}n |k⟩

2: Let i = 1, and full key space K0 = {0, 1}n.
▷ 1√

|K0|

∑
k∈K0

|k⟩
3: Prepare an initial state stored on register garbagev and garbagez.

▷ 1√
|K0|

∑
k∈K0

|k⟩ ⊗ |0⟩⊗(m+h)

4: Apply operator Ui (Algorithm 4) with inputs of vector vi and zi (ignore register
flagi).

▷ 1√
|Ki|

∑
k∈Ki

|k⟩ ⊗ |0⟩⊗(m+h), Ki = {k|gvi,s(k) = zi, k ∈ Ki−1}
5: Let i ← i + 1. If i ≤ r, go to step 4. Else, measure and return the state in

register K.

Here are some details about Algorithm 4.
1. For the value of h, the qubits of register garbagez, h = m for block ciphers,

and h = bs for stream ciphers (the value of bs is discussed in Section 3.4).
2. As for the design of oracle Ogvi,s

, it’s shown in Figure 5. Firstly, load vi

on register garbagev, whose complexity is Õ(log 2n) = Õ(n) by [22]. Secondly,
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Algorithm 4: Construction of operator Ui

Input: The m-bit vector vi and s-bit vector zi.
1: Add one auxiliary qubit on register flagi, and initialize the state to |−⟩.

▷ 1√
|Ki−1|

∑
k∈Ki−1

|k⟩|vi⟩|0⟩⊗s|−⟩
2: Apply the oracle Ogvi,s

.
▷

1√
|Ki−1|

∑
k∈Ki

|k⟩|0⟩⊗(m+h)|+⟩+ 1√
|Ki−1|

∑
k∈Ki−1−Ki

|k⟩|0⟩⊗(m+h)|−⟩

3: Construct an operator Qi =
∏d/2

j=1Ogvi,s
(I ⊗ Bϕ2j−1)O

†
gvi,s

(I ⊗ Aϕ2j ), where
Aϕ = eiϕ|+⟩⟨+|, Bϕ = eiϕ|−⟩⟨−|, and phases ϕj are given to realize function
PΘ
ε,∆(a) = PΘ

δ/2,2
− s

2
(a) by Remez-type exchange algorithm.

4: Apply operator Qi to amplify the amplitude of |+⟩ on register flagi (ignore
register garbagev and garbagez).

▷ a1

∑
k∈Ki

|k⟩|+⟩+ a2

∑
k∈Ki−1−Ki

|k⟩|−⟩, a1 → 1√
|Ki|

, a2 → 0

5: Measure the register flagi. Meanwhile, the quantum state collapses.
▷ 1√

|Ki|

∑
k∈Ki

|k⟩ ⊗ |0⟩⊗(m+h) ⊗ |+⟩

apply encryption oracle of symmetric cipher Evi(k), which stores c = gvi,s(k) on
register garbagez. And then, bit-flip operator I − 2|zi〉〈zi| only apply to some
particular qubits, i.e., the b1-th to the bs-th bits of c (by formula (3)). It costs
O(log 2s) = O(s) gates according to [9]. At last, uncompute the first two steps,
aiming for rolling back the state on garbage registers to recover the all-zero state
for storing a new vector v and c in next round of search (Algorithm 3). By the
way, we don’t take the state of qubits in garbage registers into consider anymore
later.

3. The operator Qi in step 4 is designed by Theorem 3 including the value
of d and ϕj , where the reason why parameter ∆ = 2−

s
2 is analyzed later.

Specifically, set the full key space K0 = {0, 1}n, and key spaces Ki =
{k|gv1,s(k) = z1, · · · , gvi,s(k) = zi, k ∈ K0}, i = 1, · · · , r. In this way, the trans-
formation among key spaces in each round of Algorithm 3 is

K0

gv1,s(·)=z1−−−−−−−→ K1 = {k|gv1,s(k) = z1}
gv2,s(·)=z2−−−−−−−→ K2 = {k|gv2,s(k) = z2,

gv1,s(k) = z1}
gv3,s(·)=z3−−−−−−−→ · · · gvr,s(·)=zr−−−−−−−→ Kr = {k|gvi,s(k) = zi, i = 1, . . . , r}

just as Figure 3 shows.Hence, Ki = {k|gvi,s = zi, k ∈ Ki−1}, 1 ≤ i ≤ r. Or to
say, K0,K1, · · · ,Kr is a convergent sequence of subspace. More importantly, we
will prove that Kr contains and only contains correct key in next section.

In particular, set Ki−1
search−−−−→Ki as the transformation between key spaces

during each round. Besides, there are two parts to complete this transformation:
amplitude amplification of the state components k ∈ Ki (step 4 in Algorithm
4), and elimination of the state components k ∈ Ki−1−Ki (step 5 in Algorithm
4).

1. The amplitude amplification of k ∈ Ki.
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Fig. 4: The Multi-round Nested Key Search Model

Fig. 5: The Design of Oracle Ogvi,s

Focus on the quantum state before amplitude amplification (step 4 in Algo-
rithm 4) (ignore the garbage registers),

|φ〉 = 1√
|Ki−1|

∑
k∈Ki

|k〉|+〉+
∑

k∈Ki−1−Ki

|k〉|−〉

 .

And by the definition of Ki, for any k ∈ Ki−1 −Ki, 〈zi|gvi,s(k)〉 = 0.
Set |αi〉 = 1√

|Ki|

∑
k∈Ki

|k〉 as a uniform superposition state of keys k in key
space Ki (candidate solutions), and then

|φ〉 =
√
|Ki|√
|Ki−1|

|αi〉|+〉+
1√
|Ki−1|

∑
k∈Ki−1−Ki

|k〉|−〉.

By the pseudo-randomness of gvi,s and formula (2),

p = Pr
k ̸=k∗

(gvi,s(k) = zi) =
1

2s
. (4)
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Set a random variable X represents the number of elements in Ki. By formula
(4) and Assumption 2,

X ∼ B (|Ki−1|, p) = B

(
|Ki−1|,

1

2s

)
,

where E(X) = |Ki−1| · p = |Ki−1|
2s , D(X) = |Ki−1| · p(1 − p) = |Ki−1|

2s

(
1− 1

2s

)
.

For the large |Ki−1| and small p = 1
2s , X approximately follows the normal

distribution N(E(X), D(X)). Hence, a random variable Y follows

Y =
X

|Ki−1|
∼ N(p,

p (1− p)
|Ki−1|

) = N(
1

2s
,

1
2s

(
1− 1

2s

)
|Ki−1|

). (5)

And the 99.74% confidence interval of Y is

−3 ≤ Y − E(Y )√
D(Y )

≤ 3,

i.e.,
1

2s

(
1− 3

√
2s − 1

|Ki−1|

)
≤ Y =

|Ki|
|Ki−1|

≤ 1

2s

(
1 + 3

√
2s − 1

|Ki−1|

)
.

Without loss of generality, let |Ki−1| = 2s+h. The analysis are based on two
different cases, h ≥ 0 and h < 0.

i. If h ≥ 0, then

1

2s

(
1− 3

√
2s − 1

|Ki−1|

)
>

1

2s

(
1− 3

√
2s

|Ki−1|

)
=

1

2s

(
1− 3

2
h
2

)
≥ 1

2s+2

holds up with condition that
h ≥ 4. (6)

Thus, if the number of elements in key space |Ki−1| satisfies

|Ki−1| ≥ 2s+4, (7)

then the search algorithm by QSVT can function well while 2−
s+2
2 is a lower

bound of
√
Y .

ii. If h < 0, then
1

2s+2
<

1

2s
≤ Y =

|Ki|
|Ki−1|

.

In the last searching round, the size of key space Kr−1 must be smaller
than 2s, and then the percentage Y = |Ki|

|Ki−1| ≥
1
2s . However, thanks to the

convergence of search algorithm by QSVT, it still works well while 2−
s+2
2 is a

lower bound of (amplitude)
√
Y .
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All in all, if h ≥ 4 or h < 0, then there is at least

Pr(Y ∈

[
1

2s

(
1− 3

√
2s − 1

|Ki−1|

)
, 1

]
) = 1− 1

2
(1− 0.9974) = 0.9987

probability that,
1

2
s+2
2

<

√
|Ki|
|Ki−1|

. (8)

We take this common lower bound into search algorithm by QSVT, i.e., let

∆/2 ≤ 2−
s+2
2

into formula (1), and get the query complexity of oracle Ogv,s

Õ (1/∆ · log (1/δ)) = Õ
(
2

s
2 · log (1/δ)

)
and one round search complexity

Õ
(
2

s
2 · log (1/δ)Cgv,s

)
, (9)

where Cgv,s
is the complexity of oracle Ogv,s

.
The above approach to amplitude amplification is search algorithm by QSVT.

What if we use Grover’s algorithm? We give a detailed analysis in Appendix A.
In brief, difficulty arouses by the uncertainty of |Kr−1| (in the last round) with
the usage of Grover’s algorithm. Besides, for the lack of convergence property,
Grover’s algorithm brings a more complicated analysis than search algorithm by
QSVT, especially in the last round. So we adopt the search algorithm by QSVT,
rather than Grover’s algorithm.

2. The elimination of k ∈ Ki−1 −Ki.
After the amplitude amplification (step 4 in Algorithm 4), we get the quan-

tum state

|φ′〉 = a1
∑
k∈Ki

|k〉|+〉+ a2
∑

k∈Ki−1−Ki

|k〉|−〉

=
(
a1
√
|Ki|

)( 1√
|Ki|

∑
k∈Ki

|k〉

)
|+〉+ a2

∑
k∈Ki−1−Ki

|k〉|−〉,

where a1 → 1√
|Ki|

and a2 → 0.
So it’s of nearly 1 probability to measure |+〉 on register flagi thanks to

amplitude amplification. As Simon’s algorithm shows, the measurement of reg-
ister flagi triggers the collapse of quantum state on register K,V and Z, which
means only the state components corresponding to |+〉 remains. In this way, the
state on registers after measurement is

|φ′′〉 = 1√
|Ki|

∑
k∈Ki

|k〉|+〉.
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The major purpose of measurement on register flagi is to avoid that the
wrong keys re-entry the following search rounds, for example, k0 ∈ {k|gv1,s(k) 6=
z1, gv2,s(k) = z2, · · · , gvr,s(k) = zr}. Without measurement, in the last r − 1
rounds, the amplitude of k0 should be amplified, which may generate an un-
predictable error. Hence, it is needed to prepare a new auxiliary qubit in each
round.

Parameter Selection In this section, we elaborate the selection rules of pa-
rameter s and r to accomplish two goals. The first one is that search algorithm
by QSVT can work well with parameter ∆ = 2−

s
2 . And the second one is that

the returning key k ∈ Kr is unique and correct.
1. Make sure search algorithm by QSVT work well during each round.
In previous, we take 2−

s+2
2 as the common lower bound of target’s amplitude

with the condition of formula (7).
Let’s analyze the last but one round, Kr−2

search−−−−→Kr−1, where |Kr−2| > 2s >
|Kr−1|. Obeying the formula (7), we have to make sure

|Kr−2| ≥ 2s+4.

Noticed that in the r − 2-th round, Kr−3
search−−−−→Kr−2. Because of formula

(8),

|Kr−2| = |K0|
|K1|
|K0|

· · · |Kr−2|
|Kr−3|

> |K0|
(

1

2s+2

)r−2

= 2n−(s+2)(r−2).

In this way, n− (s+ 2)(r − 2) ≥ s+ 4, i.e.,

n− sr + s− 2r ≥ 0, (10)

which means if parameter s and r satisfy the formula (10), the search algorithm
by QSVT can work well with parameter ∆ = 2−

s
2 in each round.

2. Guarantee the returned key is unique and correct (Kr = {k∗}).
According to paper [11], we give the following analysis to make sure that the

final measurement is the correct key.
Let k∗ denote the correct key, and (v, z) denotes a pair of vectors, where (v, z)

is (initialization vector, punctured keystream) for stream ciphers, and (plaintext,
punctured ciphertext) for block ciphers.

Definition 2. For r pairs (v1, z1) · · · , (vr, zr), if the key k′ satisfies gvi,s(k
′) =

gvi,s(k
∗) = zi, i = 1, · · · , r and k′ 6= k∗, then k′ is called spurious key.

It’s of great possibility for the existence of spurious keys because of the short
length s of vector z.

By the pseudo-randomness of function gv,s(·),

Pr
k′ ̸=k∗

(gv,s(k
′) = gv,s(k

∗)) =
1

2s
.
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Given r pairs of (v1, z1), · · · , (vr, zr),

p′ = Pr
k′ ̸=k∗

(gvi,s(k
∗) = gvi,s(k

′), i = 1, · · · , r) =
r−1∏
j=0

1

2s − j
.

For the condition
r2 � 2s, (11)

we have

p′ =

r−1∏
j=0

1

2s − j
≈ 2−rs. (12)

Set the spurious key set as SK = {k′|k′ 6= k∗, gvi,s(k
∗) = gvi,s(k

′), i =
1, · · · , r}. By formula (12), |SK| ≈ (2n − 1)2−rs.

Let random variable W be the number of spurious keys |SK|, where W
follows the binomial distribution, and

Pr(W = α) = Cα
2n−1(p

′)α(1− p′)2
n−1−α.

By formula (12),

Pr(W = 0) = C0
2n−1(p

′)0(1− p′)2
n−1 = (1− p′)2

n−1 ≈ e−2n−rs

.

Hence, it is e−2n−rs probability to return a unique and correct key.
In order to guarantee the success probability and use fewer pairs (v, z), we

let the parameter r satisfy
r = bn

s
c+ 1. (13)

And then,
n

r
< s ≤ n

r − 1
. (14)

Thus, if the parameters r and s satisfy the formulas (11) and (14), we can
guarantee that the probability of returning a unique key is e−2n−rs .

Consequently, combined with formulas (10), (11) and (13), we get the selec-
tion rules 

n− sr + s− 2r ≥ 0

r2 � 2s

r = bn
s
c+ 1

. (15)

All in all, the multi-round nested key search model costs

n+m+ h+ r + q

qubits, and by formula (9) and formula (13), the total complexity is

Õ
(
r · 2 s

2 · log (1/δ)Cgv,s

)
= Õ

(
r · 2

n
2(r−1) · log (1/δ)Cgv,s

)
, (16)
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where n represents key length, m represents the length of vector v, h represents
the length of ciphertext (or keystream) s represents the length of vector z, r
represents the number of auxiliary qubits or iteration, q represents the number of
extra qubits in the quantum realization of symmetric cipher, and Cgv,s represents
the complexity of oracle Ogv,s

.

Table 2: Query Complexity with Different Key Length

n s r Õ
(
r · 2

s
2 log (1/δ)

)
Õ

(
r · 2

n
2(r−1) log (1/δ)

)
Grover’s

128 19 7 Õ
(
215.0

)
Õ

(
216.2

)
Õ

(
264

)
192 25 8 Õ

(
218.2

)
Õ

(
219.4

)
Õ

(
296

)
256 26 10 Õ

(
219.1

)
Õ

(
220.3

)
Õ

(
2128

)
512 37 14 Õ

(
225.0

)
Õ

(
226.2

)
Õ

(
2256

)
1024 49 21 Õ

(
231.6

)
Õ

(
232.7

)
Õ

(
2512

)
2048 71 29 Õ

(
243.1

)
Õ

(
244.2

)
Õ

(
21024

) 

 

 

 

 

 

 

 

 

 
 

 

 

 

   

   

   

   

    

                    

 
 
 
  
  
 
 
 
  
 
  
 
  
 
 
 

          

                            

            

                              

          

 

   

   

   

   

   

   

   

    

 
 
 
  
  
 
 
 
  
 
  
  
 
 
 

    

        

Fig. 6: Query Complexity of Our Search Model and Grover’s Algorithm

Take six values of n, the length of key, and we get the optimal value of
parameters and corresponding query complexity of Ogv,s

(formula (16)) in Table
2, where δ = 0.01.

To demonstrate the rationality of formula (16), for six different n and the
corresponding r and s, we give the query complexity of Õ

(
r · 2 s

2 log (1/δ)
)

and
Õ
(
r · 2

n
2(r−1) log (1/δ)

)
respectively. In Table 2, the value of complexity in the

4-th column is less than the corresponding value in the 5-th column. Hence, it
is rational to use r · 2

n
2(r−1) log (1/δ) instead of r · 2 s

2 log (1/δ) in formula (16).
What’s more, the error δ = 0.01 is effective in the search algorithm by QSVT,

making the polynomial function have a good approximation to the sign function.



Nested Quantum Search Model on Symmetric Ciphers and Its Applications 23

By the way, the value of log(1/δ) has little impact on the query complexity when
δ = 0.01, i.e., there is a difference of 2.73 in the exponential of r · 2

n
2(r−1) and

r · 2
n

2(r−1) log(1/δ). Hence, we can use r · 2
n

2(r−1) to denote the query complexity,
ignoring a constant of error δ. The query complexity of Grover’s algorithm in-
creases exponentially with the key length n, while the query complexity in our
model increases slower, which can be found in Figure 6. Implied from Table 2
and Figure 6, increasing the key length of symmetric ciphers can hardly resist
our quantum search algorithm. In other words, increasing the key length doesn’t
enhance the security against our search model as desired to be.

3.2 A Practical Nested Key Search Model

In this section, we analyze the situation where bias exists,

p = Pr
k ̸=k∗

(gv,s(k) = gv,s(k
∗)) ∈

[(
1

2
− ε
)s

,

(
1

2
+ ε

)s]
,

where 0 ≤ ε ≤ ε0 <
1
2 . Still, we keep the selection rules (formula (15)), and

figure out an expression of ε0 about the parameter s, making our nested key
search model function well.

When design an encryption function, bias can’t be eliminated but diminished.
In this way, we want to figure out the applicable confines of our model by finding
the maximum of ε0. Given Theorem 4, we can settle this problem, i.e., value of
ε0. The proof is in Appendix B.

Theorem 4. Given r pairs (vi, zi), i = 1, · · · , r, the probability pi follows

pi = Pr
k ̸=k∗

(gvi,s(k) = gvi,s(k
∗)) ∈

[(
1

2
− ε
)s

,

(
1

2
+ ε

)s]
,

where 0 ≤ ε ≤ ε0. Meeting the parameter selection rules (formula (15)), the
r-round nested key search model can function well with parameter ∆ = 2−

s
2 and

return the key seed with probability of at least an expected value u if

ε0 = min

 rs

√
− lnu

2n − 1
− 1

2
,
1

2
− s

√
17 + 3

√
25− 4 · 2−s

2s+5 + 18

 . (17)

Consequently, according to Table 2, take ε = 1
2 −

s

√
17+3

√
25−4·2−s

2s+5+18 into for-
mula (32), and get probability of returning the correct key, as shown in Table
3.

3.3 Quantum Key Search Model for Ideal Ciphers

Set the encryption function of ideal cipher

Ev : {0, 1}n → {0, 1}h, k 7→ c,
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Table 3: Nested Search Effect If Bias Exists
Key length n Punctured length s Iteration number r ε Probability

128 19 7 2−25 0.96
192 25 8 2−32 0.99
256 26 10 2−33 0.94

where k denotes the n-bit key, v denotes the m-bit plaintext (or IV), and c de-
notes corresponding h-bit ciphertext (or keystream). For an ideal cipher, function
Ev(·) is a pseudo-random function.

Set the puncture function

ps(c) = ps

(
(c(1), · · · , c(h))

)
= (c(1), · · · , c(s)),

where s ≤ h. In this way, we define the first s bits of ciphertext (or keystream)
as punctured ciphertext (or keystream).

Define a composite function gv,s : {0, 1}n → {0, 1}s,

gv,s(k) = ps ◦ Ev(k) = ps(c) = z.

It is easy to conclude that function gv,s(·) is a strong pseudo-random function
as well. By the definition and property of gv,s(·), we can map each key k to the
punctured ciphertext (or keystream) z uniformly, which means

∀z ∈ {0, 1}s, Pr
k∈{0,1}n

(gv,s(k) = z) =
1

2s
.

It’s easy to conclude that the operations for realizing puncture function ps
only take negligible constant gates. And the bit-flip operator I − 2|zi〉〈zi| is of
Õ(log 2s) = Õ(s) complexity according to [9], which is negligible. Hence, the
complexity Cgv,s

of oracle Ogv,s
is almost equal to the complexity Ccipher of

encryption in ideal ciphers, i.e., Cgv,s
= Ccipher.

3.4 Quantum Key Search Model for Practical Ciphers

Different from ideal ciphers, there maybe no strong proof that the encryption
function of practical cipher is a pseudo-random function. So the construction
of puncture function ps is our main problem, which extracts out some special
bits of ciphertext (or keystream) to make gv,s a pseudo-random function. Take
stream ciphers as an example.

Set h boolean functions

Outj(k, v) : {0, 1}n × {0, 1}m → {0, 1}, (k, v) 7→ c(j),

mapping of the key k and initialization vector v onto the j-th bit of keystream
c, for a large enough h, and j = 1, · · · , h.
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Consider a practical situation where bias exist, i.e., set

Pr(Outj(k, vi) = 1) =
1

2
+ εi,j ,Pr(Outj(k, vi) = 0) =

1

2
− εi,j , (18)

where 0 ≤ εi,j ≤ 1
2 . And in this way,(

1

2
−max

bj
(εi,bj )

)s

≤ Pr(gvi,s(k) = zi) ≤
(
1

2
+ max

bj
(εi,bj )

)s

, (19)

where zi = (c
(b1)
i , · · · , c(bs)i ), j = 1, 2, · · · , s.

As proved above, before utilizing our search model, it’s needed to verify that
whether this encryption function of stream cipher can meet our requirement

0 ≤ max
i∈{1,··· ,r},j∈{1,··· ,s}

(εi,bj ) ≤ ε0. (20)

That’s why we set a preprocessing procedure.

Preprocessing Procedure We design a quantum keystream bit-wise distribu-
tion algorithm to solve the problem, as Algorithm 5 shows. And, by Theorem 4,
the main purpose of Algorithm 5 is to find out the boolean function Outj(·, vi)
which meets

0 ≤ εi,j ≤ ε0. (21)
The preprocessing procedure, quantum keystream bit-wise distribution algo-
rithm, is based on Deutsch-Jozsa Algorithm (Algorithm 1) [18]. By running
constant times of Algorithm 1, the probability of measuring |0〉⊗n can demon-
strate the value

∑2n−1
x=0 (−1)f(x) = ||{x|f(x) = 1}| − |{x|f(x) = 0}||.

However, in the situation (formula (18)), the probability to measure |0〉⊗n is

pj =

∣∣∣∣∣ 12n
2n−1∑
k=0

(−1)Outj(k,vi)

∣∣∣∣∣
2

=

∣∣∣∣∣ |Out
−1
i,j (1)| − |Out

−1
i,j (0)|

2n

∣∣∣∣∣
2

= (2εi,j)
2,

where Out−1
i,j (1) = {k|Outj(k, vi) = 1}, Out−1

i,j (0) = {k|Outj(k, vi) = 0}. For the
convenience, set function Outi,j(k) = Outj(k, vi).

Without search algorithm, it’s difficult to measure |0〉⊗n for a small εi,j ,
let alone to verify whether εi,j ≤ ε0. In this way, we still use search algorithm
by QSVT to amplify the amplification of |0〉⊗n. Select the value of parameter
∆/2 = 2ε0. Set a as the amplitude of |0〉⊗n and a′ as the amplitude after
amplification, i.e., a = 2εi,j . Then, by the convergence of search algorithm by
QSVT as Figure 2(b) shows,

|a′|2 ≈

{
1 a ≥ 2ε0

0 a < 2ε0.

Consequently, after amplification, if we measure |0〉⊗n, the function Outi,j(·)
contradicts the formula (21). Else, the function Outi,j(·) meets the formula
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(21), and with given IV vi, the j-th bit of keystream has the chance to be a
part of punctured keystream. In particular, given r IVs, v1, · · · , vr, if functions
Out1,j(·), · · · , Outr,j(·) all meet the formula (21), then the j-th bit of keystream
has chance to be a bit of punctured keystream.

Algorithm 5: Quantum Keystream Bit-wise Distribution Algorithm
Input: Boolean function Outj(k, vi) with given vi, and bias threshold

ε0.
Output: Whether εi,j ≤ ε0.
1: Prepare two quantum registers. The first is an n-qubit register K ini-

tialized to |0〉⊗n, and the second is a one-qubit register Z initialized to
|1〉.

▷ |0〉⊗n|1〉
2: Apply a Hadamard gate to each qubit in register K and register Z.

▷ 1√
2n+1

∑2n−1
k=0 |k〉 (|0〉 − |1〉)

3: Apply the quantum oracle |k〉|z〉 to |k〉|z ⊕Outj(k, vi)〉.
▷ 1√

2n+1

∑2n−1
k=0 (−1)Outj(k,vi)|k〉 (|0〉 − |1〉)

4: At this point, register Z can be ignored. Apply a Hadamard gate to each
qubit in the first register K.

▷ 1
2n

∑2n−1
k=0

[∑2n−1
y=0 (−1)Outj(k,vi)(−1)k·y

]
|y〉

5: Add an auxiliary qubit in register flag, and initialize to |−〉. Apply a
bit-flip operator Of = I⊗n − 2|0〉〈0| to the n bits on register K.

▷ 1
2n

∑2n−1
x=0 (−1)Outj(k,vi)|0〉⊗n|+〉+ 2n−1

2n |ψ〉|−〉, 〈ψ
∣∣ (|0〉⊗n) = 0

6: Apply the search algorithm by QSVT to amplify the amplitude of flag
|+〉 with parameter ∆/2 = 2ε0.

7: Measure register K. If the measurement is |0〉⊗n, then εi,j > ε0 and
Outj(k, vi) can’t meet our requirement. Else, εi,j < ε0 and Outj(k, vi)
can meet our requirement.

Algorithm 5 can only verify the j-th bit of keystream under a given IV vi. And
our nested search model requires r pairs of IV and s-bit punctured keystream
z = (c(b1), c(b2), · · · , c(bs)), where the bits {b1, · · · , bs} are selected by Algorithm
5. Hence, the specific preprocessing procedure is as following:

Pre. Set a large enough constant h.
Step 1. Let i← 1, count← 0, and set A← ∅.
Step 2. Run Algorithm 5 to testify r functions Outi(k, v1), · · · , Outi(k, vr).

If r functions all meet the formula (21), then count← count+ 1, i← i+ 1, and
A← A ∪ {i}. Else, let i← i+ 1.

Step 3. Repeat Step 2 until count = s or i = h+ 1.
Step 4. If count = s, return the set A. Else if i = h+1, this stream cipher is

out of our nested search model’s applicable confines.
In summary, we get the values of b1, · · · , bs ∈ A, which determine the con-

struction of puncture function

z = ps(c) = ps((c
(1), · · · , c(h))) = (c(b1), · · · , c(bs)).
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Hence, take Algorithm 5 as the preprocessing procedure. And the special
puncture function ps(·) is constructed via different structure of stream cipher.
And it’s guaranteed that

pi = Pr
k ̸=k∗

(gvi,s(k) = zi) ∈
[(

1

2
− ε0

)s

,

(
1

2
+ ε0

)s]
,

where the value of ε0 is in formula (17), i = 1, · · · , r.

Key Search Model for Stream Ciphers After running preprocessing pro-
cedure, construct function ps and function gv,s which meets the condition in
Theorem 4.

As for the complexity of oracle Ogv,s
, same as block cipher’s, it is mostly

equal to the complexity of encryption in stream ciphers. Let Init(n) denote
the complexity of full-round initialization in stream ciphers, and Output(n, is)
denote the complexity of outputting is bits keystream (excluding initialization
process). Therefore, the complexity of the oracle Cgv,s ≈ Init(n)+Output(n, is).

The search model is based that there are a few bits distributed almost uni-
formly on 0-1 space (ε < ε0). What if there is no or not enough bits to construct
ps(·), no matter how large h is?

There are two points to answer this question:
On the one hand, as for the design of stream ciphers, the initialization process

of stream cipher is aimed to fully mix the key seed (and optional initialization
vector) into a seemingly random initial state, as an input of outputting process.
In particular, more random the initial states are, more bits of keystreams under
the full key space are uniformly distributed, and smaller value of b1, · · · , bs can
be found out to construct ps, resulting in a lower search complexity.

On the other hand, as for some stream ciphers whose keystreams appear not
so random, i.e., ε > ε0, distinguishing attack must be a huge security threat.

4 Implementation of Multi-round Key Search Model

To evaluate the specific searching complexity on symmetric ciphers, we imple-
ment our search model on block cipher AES family, two kinds of stream ciphers
Grain-128 and ZUC-128/256. As for stream ciphers Grain-128 and ZUC-128/256,
we need to calculate the number of quantum gates in two stream ciphers’ circuits
with the initialization and keystream output process. As for block cipher AES,
we have to figure out the complexity of quantum AES’s encryption oracle.

4.1 Stream Cipher Grain-128

Stream Cipher Grain-128 Oracle The Grain-128 algorithm [7] is proposed
in 2006, with input of 128-bit key and 96-bit initialization vector, and output
of keystream with arbitrary length. The Grain-128 algorithm consists of two
processes, 256-round initialization process and keystream output process. The
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specific components include linear feedback shift registers, nonlinear feedback
shift registers, and filter function generators, etc.

The construction of the oracle for Grain-128 is as follows.
1. Initialization process
The state update formulas on each component during initialization are as

follows.
i. Linear feedback shift register(LFSR):

si+128 = si + h(x) + si+7 + si+38 + si+70 + si+81 + si+96.

ii. Non-linear feedback shift register(NFSR):

bi+128 = si + bi + h(x) + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13+

bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84.

iii. Filter function:

h(x) = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95.

We implement the Grain-128 algorithm into a quantum circuit by state up-
date formulas on each register, which is simpler and easier than constructed by
feedback polynomials. It is known that the number of quantum gates required
in one round is 36. And the number of quantum gates within 256 rounds of
initialization is

Init(128) = 9216. (22)
2. Keystream output process
Similarly, the state update formulas are as follows:
i. Linear feedback shift register(LFSR):

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

ii. Non-linear feedback shift register(NFSR):

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13+

bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84.

iii. Filter function:

h(x) = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95.

iv. Keystream output:

ki = h(x) + si+93 + bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89.

By the keystream output formula, if the parameter bs calculated by Algo-
rithm 5 is smaller than 32, it is no need to update states on registers. At this
time, the number of gates to output 1 bit is 18. Else, if bs > 32, there are bs−32
bits needed to update, and the number of gates to output 1 bit is 42. Hence, the
complexity of outputting s-bit keystream is

Output(128, bs) =

{
18bs , bs ≤ 32

42bs − 768 , bs > 32
. (23)
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Multi-round Key Search Model Effect on Grain-128 For stream cipher
Grain-128, the key length n = 128. By Table 2, in this case, the optimal value
of parameters are s = 19 and r = 7.

So the values of b1, · · · , b19 are settled by preprocessing procedure (Algorithm
5), which means our pseudo-random function gv,19(k) = p19◦Ev(k) is determined
if formula (19) and (20) are met. Hence,

Cgv,19
= Init(n) +Output(n, b19) =

{
9216 + 18b19 , b19 ≤ 32

8448 + 42b19 , b19 > 32
.

Denote δ = 0.01 as the error tolerance of search algorithm, put it into formula
(16), and the complexity is

Õ
(
7 · log(1/0.01) · 29.5 · Cgv,19

)
= Õ

(
215.04 · Cgv,19

)
.

Hence, according to the quantitative relation between bs and s, the searching
complexity against Grain-128 is shown in Table 4. Besides, for the stream cipher
property that encryption has to be easy to implement, outputting more bits
seems to increase little difficulty on search model.

Table 4: Searching Complexity of the Stream Cipher Grain-128
b19 s/b19 Searching Complexity Qubits

19 1 Õ(228.27) 282
21 0.9 Õ(228.27) 284
24 0.8 Õ(228.28) 287
28 0.7 Õ(228.29) 291
32 0.6 Õ(228.30) 295
38 0.5 Õ(228.34) 301

4.2 Stream Cipher ZUC-Like

Stream Cipher ZUC-128 Oracle The ZUC-128 algorithm [8] is a synchronous
stream cipher algorithm with input of an 128-bit key seed and an 128-bit ini-
tialization vector, and output of a 32-bit keystream at a time.

The ZUC-128 algorithm consists of two processes.
1. Initialization process
Divide the key k and the initialization vector IV by 8 bits, where k =

k0‖k1‖ · · · ‖k15, and IV = IV0‖IV1‖ · · · ‖IV15. Load them into linear feedback
shift registers, where si = ki‖di‖IVi, 0 ≤ i ≤ 15, and di is a 15-bit constant. Set
memory unit variables R1 = R2 = 0, run Initialization process 32 rounds.(The
output W of the nonlinear function F needs to round off the last 1 bit to par-
ticipate in the state update process of the LFSR.)
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2. Keystream output process
After loading the key, the iterative process of bit-reorganization, nonlinear

function, and LFSR state update is first executed in sequence, but no keystream
is output. After that, the word keystream output process begins. Every iteration,
a 32-bit (one word) keystream z =W ⊕X3 is output.

As for the construction of the oracle for ZUC-128, a quantum circuit for the
stream cipher ZUC-128 is designed in [12], where a round of initialization process
requires 3000 Toffoli gates, 9488 CNOT gates and 736 Pauli X gates, the first
round of operations in working mode executed after initialization requires 2754
Toffoli gates, 8849 CNOT gates, 672 Pauli X gates, and a round of operation
in working mode (outputs a 32-bit keystream) requires 2754 Toffoli gates, 8913
CNOT gates, and 672 Pauli X gates.

To sum up, the complexity Init(128) is 435443 of 32 rounds initialization
processes and first round of operations in working mode, and the complexity of
outputting 32-bit keystream is Output(128, 32) = 12339.

As for the qubits, 496 qubits hold each state on the linear feedback shift
register, 64 qubits hold the two memory unit variables R1 and R2, s qubits hold
the values of the punctured keystream, and 64 auxiliary qubits count.

Stream Cipher ZUC-256 Oracle The ZUC-256 algorithm [17] is a syn-
chronous stream cipher algorithm with input of a 256-bit key seed and an 128-bit
initialization vector, and output of a 32-bit keystream at a time.

Compared with ZUC-128, stream cipher ZUC-256 involves three parts, linear
feedback shift register, bit-reorganization, and finite state machine, with the
same operation rules as ZUC-128.

However, the only difference lies in the key/IV loading scheme of ZUC-256
stream cipher. Every 32-bit state on linear feedback shift register is organized
by four parts from a byte component of key or initialization vector or some 7-bit
constants. Because the key/IV loading process only takes a constant number of
quantum gates, which can be negligible in calculating the total complexity of
the oracle. Thus, the complexity of ZUC-256 oracle is Õ

(
218.77

)
, same as the

ZUC-128 oracle.

Multi-round Key Search Model Effect on ZUC-128 and ZUC-256 This
section we apply our search model to ZUC-128 and ZUC-256.

1. Stream cipher ZUC-128
For stream cipher ZUC-128, the key length n = 128, the optimal values are

s = 19 and r = 7. And the values of b1, · · · , b19 are settled by preprocessing
procedure (Algorithm 5), which means our pseudo-random function gv,19(k) =
p19 ◦ Ev(k) is determined if formula (19) and (20) are met.

Hence,

Cgv,19 = Init(n) +Output(n, b19) = 435443 + 12339 · db19
32
e.
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Denote δ = 0.01 as the error tolerance of search algorithm, put it into formula
(16), and the searching complexity is

Õ
(
7 · log(1/0.01) · 29.5 · Cgv,19

)
= Õ

(
215.04 · Cgv,19

)
.

2. Stream cipher ZUC-256
In the same way, for stream cipher ZUC-256, the key length n = 256, and

the optimal values are s = 26 and r = 10. And our pseudo-random function
gv,26(k) = p26 ◦ Ev(k) is determined by preprocessing procedure (Algorithm 5),
so do the values of b1, · · · , b26, if formula (19) and (20) are met.

Hence,

Cgv,26 ≈ Init(n) +Output(n, b26) = 435443 + 12339 · db26
32
e.

Denote δ = 0.01 as the error tolerance of search algorithm, put it into formula
(16), and the searching complexity is

Õ
(
10 · log(1/0.01) · 213 · Cgv,26

)
= Õ

(
219.05 · Cgv,26

)
.

We compare the search model effect on ZUC-128 and ZUC-256 in Table 5
with the value of s, r, s/(word length) and searching complexity.

Case 1 is that stream cipher ZUC outputs 1 word keystream, which means
there are at least s bits distributed uniformly in the first word keystream. And,
Case 2 is that stream cipher ZUC outputs 2 words keystream, which means there
are at least s bits distributed uniformly in the first two word keystream. As
discussed above, we believe, more random the keystream appears, more security
stream cipher owns. In other words, the value s/(word length) shouldn’t be too
small, and that why we only take consider of 1 or 2 words length keystream.

Table 5: Searching Complexity of the Stream Cipher ZUC-128/256

Stream Cipher s r
Case 1 Case 2

s/32 Complexity s/64 Complexity

ZUC-128 19 7 59.4% Õ(233.81) 29.7% Õ(233.85)
ZUC-256 26 10 81.3% Õ(237.83) 40.6% Õ(237.86)

By Table 5, little complexity is increased by doubling key length and mak-
ing bs larger in our search model. Firstly, because of the stream cipher’s design
intention that the encryption process has to be easy to implement, outputting
one more words increases little complexity on search model. Secondly, it’s unfor-
tunate that ZUC-256 has double key length than ZUC-128, while the security
against our search model is barely enhanced. In other words, increasing the key
length of stream ciphers doesn’t enhance the security against our key search
model.
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4.3 Block Cipher AES Family

Block Cipher AES Oracle Block cipher AES consists of a rounding func-
tion and key schedule, based on the substitution-permutation network structure.
Firstly, there are three subroutines of a round function, SubBytes, ShiftRows,
MixColumns, and AddRoundKey. Secondly, for key schedule, it consists of three
subroutines, SubWord, RotWord, and Rcon. In SubBytes and SubWord subrou-
tines, S-box substitution is applied to build up the whole encryption system’s
nonlinearity. And in ShiftRows and RotWord subroutines, some particular per-
mutations are implemented by appropriate rewiring. As for MixColumns sub-
routine, a specific matrix is used to operate the entire column. In AddRoundKey
subroutine, the bitwise XOR is operated of the 128-bit roundkey to the internal
AES state. At last, Rcon is a round constant.

In [15], the authors design four kinds of quantum circuits for each AES-
128/192/256 separately, which can be used as an oracle implemented in Grover’s
key search model and our search model as well. And we select one designed
quantum circuit for each block ciphers in Table 6. Besides, the item D ∗ W
demonstrates the upper bound of quantum circuit complexity of AES family,
which we use in the calculation of search complexity.

Table 6: Quantum Circuit of the Block Cipher AES-128/192/256
Block Cipher Qubits(D) Toffoli Depth(W ) D ∗W

AES-128 270 11008 2972160
AES-192 334 13144 4390096
AES-256 398 15756 6270888

Multi-round Key Search Model Effect on AES Towards the AES-128,
AES-192 and AES-128, the optimal value of parameters are in Table 2. And by
formula (16), the corresponding complexity is

Õ
(
r · 2 s

2 · log (1/δ) · CAES−n

)
= Õ

(
r · 2 s

2 · log (1/δ) ·D ∗W
)
,

where the complexity CAES−n of AES − n is shown in Table 6.
Combined with Table 2 and Table 6, we calculate the searching complexity

separately for AES-128, AES-192 and AES-256 in Table 7.
It can be concluded from Table 7, AES-256 has the double key length in AES-

128, but the searching complexity just rise slightly. In other words, increasing
key length of block ciphers doesn’t enhance the security against our key search
model.
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Table 7: Searching Complexity of AES-128/192/256
Block Cipher s r Searching Complexity

AES-128 19 7 Õ(236.5)
AES-192 25 8 Õ(240.3)
AES-256 26 10 Õ(241.6)

5 Conclusion

Begin with a classical chosen-plaintext (chosen-IV) attack, our model turns an
unstructured key search into a nested structured search. Specifically, in the i-th
round with a given pair (vi, zi), the candidate solutions k ∈ Ki = {k|gvi,s(k) =
zi, k ∈ Ki−1} are our targets whose amplitudes are amplified using search algo-
rithm by QSVT, where k ∈ Ki−1 are candidate solutions in the i− 1-th round.
At the same time, the measurement of flag qubit triggers collapse of quantum
state, resulting in the elimination of those state components k ∈ Ki−1 −Ki.

There are two different cases about the construction of a punctured encryp-
tion function gvi,s : {0, 1}n → {0, 1}s, k 7→ z. For a well-designed ideal cipher,
it is thought to own the property of strong pseudo-randomness, which guaran-
tees each bit of the ciphertext (or keystream) is uniformly distributed. Hence,
the output of function gvi,s(k) can take the first s bits of the corresponding ci-
phertext (or keystream). For a practical cipher without a strong pseudo-random
proof, we propose a preprocessing algorithm to decide which bits of the cipher-
text should be chosen as the punctured ciphertext (or keystream). Hence, for
both ideal ciphers and practical ciphers, we can construct the corresponding
punctured encryption function gvi,s(·). After that, by measurement, we can get
the uniform superposition of candidate solutions Ki, which is the preimage of zi
by function gvi,s(k) when k ∈ Ki−1. Furthermore, we can estimate the number
of Ki and the whole search complexity.

As for computing cost, the gate count is Õ
(
r · 2

n
2(r−1) · log (1/δ) · Cgv,s

)
,

where n denotes key length, s denotes the length of punctured ciphertext (or
keystream), r denotes the iteration number, constant δ denotes the error in
search algorithm, and Cgv,s

denotes the complexity of oracle Ogv,s
. Besides, the

required qubits are n +m + h + r + q for symmetric ciphers, where m denotes
block length (or initialization vector length), h denotes the block length (or
the keystream length ), r denotes the number of auxiliary qubits (or iteration),
and q denotes the number of extra qubits in the quantum encryption oracle for
symmetric ciphers.

According to the parameter selection rules, the query complexity of our
search model Õ

(
r · 2

n
2(r−1)

)
outperforms Grover’s algorithm Õ

(
2

n
2

)
. A tra-

ditional viewpoint is that doubling the key length can resist the attack from
quantum search algorithm. Obviously, our search model contradicts it. Due to
the universality of quantum search algorithms, the security of all current sym-
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metric ciphers will be questioned. Thus, it’s high time for us to propose some
new design ideas of symmetric ciphers in pursuit of post-quantum security.
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A The success probability under Grover’s algorithm in
search model

In order to figure out the success probability of search with usage of Grover’s
algorithm, we give an analysis as follows. As we all know if the amplitude of target
state is a ≈ sin(a), then after t(a) = bπ4 ·

1
ac Grover operators, the amplitude

is amplified to ft(a) = sin(2t · a) ≈ sin(π2 ) = 1. At the i-th round of our search
model, set a random variable

Yi =
|Ki|
|Ki−1|

∼ N(µ, σ2
i ), i = 1, 2, · · · , r,

where
µ =

1

2s
, σ2

i =
µ (1− µ)
|Ki−1|

.

And, the amplitude of ’good’ state is a =
√
Yi at the i-th round. However, at

this point, the value of a is uncertain, so that the exact number t(a) is unknown.
1. In the first r − 2 rounds, Ki−1

search−−−−→Ki, i = 1, · · · , r − 2.
Consider random variables, Yi = |Ki|

|Ki−1| ∼ N(µ, σ2
i ), i = 1, · · · , r − 2.

At the i-th round, for amplitude amplification, the optimal number of Grover
operators is t1 = t(

√
µ) = bπ4 ·

1√
µc, and then amplified amplitude ft1(a) =

sin(2t1a) ≈ sin(π2 ·
a√
µ ).

Set a random variable
Ti = sin(

π

2
·
√
Yi√
µ
).

The Figure 7 shows the relations between Yi (starting amplitude) and Ti (am-
plified amplitude), when applying t1 Grover operators.
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Fig. 7: Value and Distribution of Random Variable Yi and Ti

By the formula (11), i.e.,
r � 2

s
2 .

Thus, we treat the value 2−
s
2 as negligible, i.e.,

1− c

2
s
2
= 1, (24)

where c is a constant.
Without loss of generality, set |Ki−1| = 2s+hi−1 . Then, by formula (24),

σi =

√
µ (1− µ)
|Ki−1|

≈ 1√
2s · |Ki−1|

=
1

2s+
hi−1

2

.

In this way, the 99.74% confidence interval of Yi

[µ− 3σi, µ+ 3σi] =

[
1

2s

(
1− 3

2
hi−1

2

)
,
1

2s

(
1 +

3

2
hi−1

2

)]
.

It’s easy to conclude that |Kr−3| = 2s+hr−3 > 22s, i.e.,

h1 > · · · > hr−4 > hr−3 > s,

for the choice of r and distributions of Y1, · · · , Yr−3.
For 1 ≤ i ≤ r − 2, and by formula (24),

µ− 3σi ≥ µ− 3σr−2 ≈
1

2s

(
1− 3

2
hr−3

2

)
≈ 1

2s
.

Thus,
Pr(Yi = µ) ≈ 1, i = 1, · · · , r − 2. (25)

Or to say, it’s of probability p ≈ 1 to amplify the amplitude by t( 1√
2s
) = bπ4

√
2sc

Grover operators in the first r − 2 rounds.



Nested Quantum Search Model on Symmetric Ciphers and Its Applications 37

2. At the r − 1-th round, Kr−2
search−−−−→Kr−1.

Consider Yr−1 = |Kr−1|
|Kr−2| ∼ N(µ, σ2

r−1), where µ = 1
2s , σ2

r−1 = µ(1−µ)
|Kr−2| .

As for the 99.74% confidence interval [µ−3σr−1, µ+3σr−1], it has been proved
that 1

4µ ≤ µ−3σr−1. Due to the symmetry of bell-shaped curve, 9
4µ ≥ µ+3σr−1,

i.e.,

[µ− 3σr−1, µ+ 3σr−1] ⊂
[
1

4
µ,

9

4
µ

]
.

As Figure 7 shows, in the worst case that y = 1
4µ or y = 9

4µ, sin(π2 ·
√
y√
µ ) ≈

0.71, while in the best case that y = µ, sin(π2 ·
√
y√
µ ) = 1. Besides, the expectation

of accuracy is

E(Tr−1) ≥
∫ 9

4µ

1
4µ

sin(
π

2
·
√
y
√
µ
)·fYr−1

(y)dy =

∫ 9
4µ

1
4µ

sin(
π

2
·
√
y
√
µ
)· 1√

2πσr−1

e
− (y−µ)2

2σ2
r−1 dy.

And it can be proved that

E(Tr−1) ≥
∫ 9

4µ

1
4µ

sin(
π

2
·
√
y
√
µ
) · 1√

2πσ∗
e
− (y−µ)2

2σ2
∗ dy ≈ 0.97,

where σ2
r−1 ≤ σ2

∗ = µ(1−µ)
2s+4 for |Kr−2| ≥ 2s+4, and s = 19, 25, 26.

3. At the r-th round, Kr−1
search−−−−→Kr.

Consider Yr = |Kr|
|Kr−1| ∼ N(µ′, σ2

r).
By the selection rules formula (15), it’s confirmed that |Kr| = 1, i.e.,

Yr =
|Kr|
|Kr−1|

=
1

|Kr−1|
, E(Yr) = µ′ =

1

2n−s(r−1)
.

The amplitude of ’good’ state is a = 1√
|Kr−1|

. Thus, our main goal is to figure
out the value and distribution of |Kr−1|.

Set a variable
Z = Y1 · · ·Yr−1,

where Yi ∼ N(µ, σ2
i ), and i = 1, · · · , r − 1. And it’s easy to deduce that

E(Z) = µr−1.

Then,

|Kr−1| = |K0| ·
|K1|
|K0|

· · · |Kr−1|
|Kr−2|

= 2n · Z,

Yr =
1

|Kr−1|
=

1

2nZ
.

By Figure 7, when Yr ∈ [ 14µ
′, 94µ

′], p(Yr) = sin
(

π
2

√
Yr√
µ′

)
≥

√
2
2 ,

Pr(Yr ∈ [
1

4
µ′,

9

4
µ′]) = Pr(Z ∈ [

4

9 · 2nµ′ ,
4

2nµ′ ]) = Pr(Z ∈ [
4

9
· µr−1, 4 · µr−1]).
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So our problem turns out to be calculation of the probability Pr(Z ∈ [ 49 ·
µr−1, 4 · µr−1]).

Deduced by the definition of Z, the analytic solution is

Pr

(
Z ∈ [

4

9
· µr−1, 4 · µr−1]

)
=

∫ 4·µr−1

4
9 ·µr−1

∫ +∞

−∞

1

|tr−2|
fYr−1(

tr−1

tr−2
)∫ +∞

−∞

1

|tr−3|
fYr−2

(
tr−2

tr−3
) · · ·

∫ +∞

−∞

1

|t1|
fY2

(
t2
t1
)fY1

(t1) dt1 dt2 · · · dtr−1.

But, it’s difficult to get the exact result.
In another way, by formula (25),

Pr(Z ∈ [
4

9
µr−1, 4µr−1]) =Pr(Y1 · · ·Yr−1 ∈ [

4

9
µr−1, 4µr−1])

≥Pr(Y1 = · · · = Yr−2 = µ, Yr−1 ∈ [
4

9
µ, 4µ])

=Pr(Yr−1 ∈ [
4

9
µ, 4µ])

≥
∫ 4µ

4
9µ

1√
2πσ∗

e
− (x−µ)2

2σ2
∗ dx ≈ 0.9869.

Hence,

Pr

(
Yr ∈ [

1

4
µ′,

9

4
µ′]

)
= Pr(Z ∈ [

4

9
µr−1, 4µr−1]) ≥ 0.9869.

In this way, the needed number of Grover operators is bπ4
√
2n−(r−1)sc, and the

success probability is p ≥ 0.9869.
In summary, in the first r− 1 round, the needed number of Grover operators

is bπ4
√
2sc, while in the last round, the needed number of Grover operators is

bπ4
√
2n−(r−1)sc.

However, in the last round, the prerequisite for Grover’s algorithm is that
|Kr−1| � 1. And the uncertainty of |Kr−1| brings troubles in testifying whether
|Kr−1| � 1, resulting in a more complex error estimation and propagation. Thus,
we prefer search algorithm by QSVT rather than Grover algorithm.

B The proof of Theorem 4

Consider separately in two cases, p ∈
[(

1
2 − ε

)s
, 1
2s

]
and p ∈

[
1
2s ,
(
1
2 + ε

)s].
1. When p ∈

[(
1
2 − ε

)s
, 1
2s

]
, the decreasing scale from |Ki−1| to |Ki| might

be too large. It’s needed to confirm that 1
2s+2 still work well as the lower bound

of Y = |Ki|
|Ki−1| with probability at least 0.9987.

As formula (5) indicates, the 99.74% confidence interval is

p−
3
√
p(1− p)√
|Ki−1|

≤ Y ≤ p+
3
√
p(1− p)√
|Ki−1|

.
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Set the function f(p) = p− 3
√

p(1−p)√
|Ki−1|

, and solve the inequality

p−
3
√
p(1− p)√
|Ki−1|

≥ 1

2s+2
. (26)

And formula (26) is equivalent to a quadratic inequality

(1 +
9

|Ki−1|
)p2 − (

1

2s+1
+

9

|Ki−1|
)p+

1

22s+4
≥ 0, (27)

when
p ≥ 1

2s+2
, (28)

deduced from formula (26). For simplicity, let |Ki| = 2s+h, and h ≥ 0. According
to formula (27), get

− b

2a
=

1

2
· 2h + 18

2h2s+1 + 18
≥ 1

2s+2
, ∆ =

9

22s+h
+

81

22s+2h
− 9

23s+h+2
> 0,

and two roots

p0, p1 =
−b±

√
∆

2a
=

2h−1 + 9± 3
2

√
2h+2 + 36− 2h−s

2h+s+1 + 18
.

Thus, only when p ∈ [0, p0] ∪ [p1, 1], inequality (27) holds. However, it’s easy to
deduce that p0 < 1

2s+2 which contradicts formula (28). Consequently, we have to
make sure p ∈

[(
1
2 − ε

)s
, 1
2s

]
⊂ [p1, 1], i.e.,

p1 ≤
(
1

2
− ε
)s

.

And the solution is

0 ≤ ε ≤ 1

2
− s

√
2h−1 + 9 + 3

2

√
2h+2 + 36− 2h−s

2h+s+1 + 18
. (29)

Let function t(h) = 1
2 −

s

√
2h−1+9+ 3

2

√
2h+2+36−2h−s

2h+s+1+18
, and variable x = 2h. Solve

the inequality t(h) ≥ 0, which making the formula (29) hold. Taking x = 2h into
the inequality t(h) ≥ 0, we get

x2 + (
25

2s
− 16)x+

144

22s
− 144

2s
≥ 0.

The roots of this quadratic equation is that

x0 < 0, x1 =
1

2

(
16− 25

2s
+

√
162 − 224

2s
+

49

22s

)
≤ 16,
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i.e., if
2h ≥ 16, h ≥ 4,

then t(h) > 0, which perfectly satisfies condition (6) in the ideal situation.
Because t(h) is a monotonic increasing function,

0 ≤ ε ≤ ε0 ≤ t(4),

when h ≥ 4, i.e.,

ε0 ≤ t(4) =
1

2
− s

√
17 + 3

√
25− 4 · 2−s

2s+5 + 18
. (30)

Hence, if the inequality (30) holds, search algorithm by QSVT can still work
well with parameter ∆ = 2−

s
2 .

2. When p ∈
[

1
2s ,
(
1
2 + ε

)s], the decreasing scale from Ki−1 to Ki might be
too little, so that the final measurement may be a spurious key rather than the
correct key k∗. We have to confirm that the iteration number r guarantees the
uniqueness and correctness of our model.

Let
pi = Pr

k′ ̸=k∗
(gvi,s(k

′) = gvi,s(k
∗) = zi) ,

and pi ∈
[

1
2s ,
(
1
2 + ε

)s].
Then, given r pairs of (v1, z1), · · · , (vr, zr),

p = Pr
k′ ̸=k∗

(gvi,s(k
∗) = gvi,s(k

′), i = 1, · · · , r) =
r∏

i=1

pi.

Hence,

p ∈
[

1

2rs
,

(
1

2
+ ε

)rs]
. (31)

As analyzed above, the random variable W , representing the number of spu-
rious keys, W ∼ B(2n − 1, p). And by the formula (31),

Pr(W = 0) = (1− p)2
n−1 ≈ e−(2n−1)·p ≥ e−(2n−1)·( 1

2+ε)
rs

. (32)

Choose constant u as the least expected probability, and solve the inequality

e−(2n−1)·( 1
2+ε)

rs

≥ u.

The solution is

ε ≤ ε0 ≤ rs

√
− lnu

2n − 1
− 1

2
. (33)

Hence, if inequality (33) holds, after r iterations, it’s of at least u probability
to return the unique and correct key k∗.
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In summary, by the formula (30) and (33),

ε0 = min

 rs

√
− lnu

2n − 1
− 1

2
,
1

2
− s

√
17 + 3

√
25− 4 · 2−s

2s+5 + 18

 ,

where u is a constant of the least expected probability. At this time, even if
p ∈

[(
1
2 − ε0

)s
,
(
1
2 + ε0

)s], our nested search model can work as well as in the
ideal situation p = 1

2s .
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