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Abstract. It has been a long-standing viewpoint that doubling the
length of key seeds in symmetric cipher can resist the quantum search
attacks. This paper establishes a quantum key search model to deal with
the post-quantum security of symmetric ciphers. The quantum search is
performed in the punctured keystream/ciphertext space instead of the
key space. On inputting the punctured keystreams/ciphertexts, we rule
out the fake keys and find out the real key via the iterative use of the
quantum singular value search algorithm. We find out several parame-
ters, such as the length and min-entropy of the punctured keystream,
the iterations, and the error in the search algorithm, and all of them can
influence the resulting complexity. When these parameters are chosen
properly, a better complexity can be obtained than Grover algorithm.
Our search model can apply to any typical symmetric cipher. To demon-
strate the power, we apply our model to analyze block cipher AES fam-
ily, stream ciphers Grain-128 and ZUC-128. The resulting complexity of
AES-128 is Õ(230.8), Õ(232.0) of AES-192, Õ(232.7) of AES-256, Õ(227.5)
of Grain-128, and Õ(239.8) of ZUC-128.
Our results show that increasing the length of key seeds is not an effective
way anymore to resist the quantum search attacks, and it is necessary to
propose new measures to ensure the post-quantum security of symmetric
ciphers.

Keywords: Stream cipher · Block cipher · post-quantum security ·
quantum search algorithm.

1 Introduction

The symmetric cipher uses the same key in the encryption and decryption, which
consists of block ciphers and stream ciphers.

The stream cipher [1] encryption process consists of an initialization process
and a keystream output process. The initialization process doesn’t output any
keystream, with input of a fixed-length key seed and an optional initialization
vector (IV). And it makes sure that the key seed and initialization vector are
sufficiently mixed to make the states on each register more random and to pre-
pare for the keystream output process. The keystream output process starts after
the initialization process is completed, and each clock output one symbol (bit,
byte or word), with updating states on each register. When the required length
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of outputting keystream is in polynomial length, a secure stream cipher can be
considered as a pseudo-random function.

The block cipher [1], F : {0, 1}n × {0, 1}m → {0, 1}m, encrypts a block (m
bits) of plaintext into the ciphertext of the same length by a key in fixed length
of n. Moreover, F is a keyed function such that, for all keys k, the function Fk

defined by Fk(x)
def
= F (k, x) is a bijection, i.e., a permutation. And the main

distinction between block ciphers and pseudo-random permutations is that the
former typically only support a specific set of key/block lengths, and in particular
do not support arbitrary-length keys.

As for stream ciphers, it is difficult to traverse the full key space for the
large size due to the limitation of classical computers, so the distribution of each
symbol in the outputting keystream cannot be determined. Grover’s algorithm
[2] is able to search for M specific elements in a set with size of N , achieving
a squared speedup compared to classical search algorithms. Grover’s algorithm
can be illustrated in geometry. In the two-dimensional plane spanned by the
target vector and its orthogonal vector, the angle between the current quantum
state and the two vectors can be calculated by M and N . When Grover operator
is applied, the current quantum state rotates fixed degree in the above plane.
Based on the rotation degree, the number of the applied Grover operator can be
calculated, so that the quantum state is rotated near the target vector, where
the amplification of the target state is achieved. Grover’s algorithm can attack
against stream cipher algorithms with an initialization vector given, by traversing
the full key space on a quantum computer and amplifying the amplitude of the
quantum state corresponding to the key seed. The complexity is O(2n/2), where
n denote the length of the key seed. In above attack, Grover’s algorithm requires
that the search target is the unique correct key, which means the attacker must
be given a portion of the keystream such that it is uniquely mapped to the
correct key by the encryption function (no other fake keys exist).

The search algorithm by quantum singular value transformation (QSVT) [3],
combined with quantum signal process, can search for the unknown amount of
specific data in the overall N data. By transforming between the left and right
singular spaces and rotating within the spaces, in the Bloch sphere representa-
tion, the quantum state keeps spirally approaching and finally converges to the
target quantum state. Because of convergence property, the search algorithm by
QSVT only needs to know the size N of the search set. Besides, the amplification
of the target state can be achieved even if the search oracle is applied too many
times. As for Grover’s algorithm, if only the size N of the search set is known,
the optimal applied number of Grover search oracle can’t be calculated. There is
great probability that the Grover search oracle operates too many (or too few)
times, so that the total rotation angle in the two-dimensional plane is too large
(or too small), and the quantum state deviates from the target state, resulting
in a failure. Therefore, without knowing the number of the target in the dataset,
the Grover’s algorithm is likely to fail, but the search algorithm by QSVT is still
applicable.
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In [4], a quantum signal processing framework is proposed, which uses O(d)
elementary unitary quantum operations to achieve quantum subsystem’s evolu-
tionary transformation by simulation to nearly arbitrary d degree polynomials.
The authors in [3] solves the synthesis problem of unitary quantum functions
with a full characterization of achievable functions, and efficient techniques for
their implementation. In [5], the authors propose a simulation algorithm required
at most two auxiliary quits for the time-evolution operator e−iĤt, such that
the oracle in the algorithm is parameter-optimal in both asymptotic and non-
asymptotic states. The key technology of the algorithm is qubitization, which
uses a controlled oracle to embed the hermitian matrix Ĥ into the SU(2) sub-
space. Qubitization forms a core tenet of quantum singular value transformation.
In [6], the authors elaborate quantum singular value transformation combined
with quantum signal process framework [4], and its applications on three central
quantum problems, quantum search, factoring, and simulation.

As for block ciphers, Grover’s algorithm is widely used in key search model.
In [16], the authors apply Grover oracle in the AES key search. For detail, given
a small number of plaintext pairs, the key of AES is searching by Grover’s
algorithm. And the AES attacking quantum circuit is designed with minimum
qubits required and other quantum resources optimized, which has been adopted
by the National Institute of Standards and Technology (NIST). In [17], the au-
thors design an invertible quantum circuit for AES-128 algorithm with the same
condition of minimum qubits, which decreases the number of quantum gates
as well. The main optimized point is the quantum realization of S-box, which
achieves the affine transformation in the S-box over finite field GF (28) by Itoh-
Tsujii algorithm [18]. In [13], the authors optimize the AES attacking quantum
circuit based on [16], by searching two pairs of plaintext and ciphertext simulta-
neously in parallel in a quantum circuit, and prove that AES’s quantum security
is weaker than it NIST declares. Besides, they determine the relation between
the key length and the pairs, and design the LowMC attacking quantum circuit
in the same way. In [15], the off-line Simon algorithm is applied to the 2XOR-
Cascade construction, and the attacking complexity is beyond the quadratic
speedup of quantum search algorithm.

This paper searches in keystream/ciphertext space rather than key space.
When the keystream/ciphertext space size is larger than the key space size,
both Grover’s algorithm and search algorithm by QSVT have squared accelera-
tion effect. So consider a keystream/ciphertext space with much smaller size than
key space. A short keystream/ciphertext may correspond to lots of keys, where a
correct key and some fake keys exist. At this time, Grover’s algorithm is not suit-
able, because of the unknown relation between key and keystream/ciphertext.
Hence, using the search algorithm by QSVT [3], we propose a search model ap-
plicable to the quantum security analysis of symmetric ciphers. Firstly, we design
a quantum algorithm to calculate the min-entropy of keystreams as preprocess-
ing process, only for stream ciphers. And then, we design the single-round key
search algorithm combined with the search oracle by QSVT, according to the
operation rules of typical symmetric cipher. At last, based on the min-entropy
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(or pseudo-randomness), run the single-round key search algorithm for r rounds,
and return the correct key seed. Our search model attaches importance on how
to obtain the key seed using quantum algorithms, so ultimately the attacking
complexity against the symmetric cipher is our focus.

To verify the validity, we use our search model and instantiated block cipher
AES family, stream ciphers Grain-128 and ZUC-128. The security of block cipher
AES family is one of the most important issues in cryptanalysis. And these two
stream ciphers are chosen for the representativity, and they both output the
keystream after the initialization process. The keystream of the Grain type is
one bit per symbol, and the ZUC type is one word per symbol.

The block cipher AES [19], released by NIST in 2001, is intended to replace
DES as the widely used standard. In [20], the author publishes a probabilistic
mixture-differential distinguisher on five rounds as well as a key-recovery attack
on six rounds from [21], which costs 272.8 required chosen plaintexts, 2105 time
complexity and 233 memory.

The stream cipher Grain is one of the hardware implementation-oriented
stream ciphers solicited by the eSTREAM project. And the Grain-128 algorithm
[7] is proposed as an improvement on the Grain v0 algorithm. The main classical
attack algorithm against Grain-128 is chosen IV attack. Itai Dinur and others
propose a dynamic cubic attack [8], which recovers the key seed belonging to a
large subset of 2−10 of the key space. For 2118 key seeds applicable to Grain-128
stream cipher, an attacker can obtain 215 of improvement than the exhaustive
search.

The stream cipher ZUC [9] is identified as a next-generation international
standard for LTE by the Third Generation Partnership Project Protocol (3GPP)
in September 2011, and is established as a national standard in October 2016.
The ZUC algorithm absorbs the advantages of cycle sequence generated by linear
feedback shift register, bit-reorganization of Feistel structure with the nonlinear-
ity, and S-box with the nonlinearity and strong diffusivity. The current classical
attack algorithms are not effective in breaking the ZUC algorithm, so it is chal-
lenging to attack the ZUC algorithm.

By analyzing the number of quantum gates and the number of possible erro-
neous keys, we obtain optimal computational complexity of Õ(227.5) for Grain-
128, Õ(239.8) for attacking ZUC-128, Õ(230.8) for AES-128, Õ(232.0) for AES-
192, and Õ(232.7) for AES-256.

Therefore, the attacking complexity in the quantum computing environment
is much smaller than the classical attack. It indicates that two typical types
of stream ciphers and a representative block cipher have some security risks in
the quantum computing environment. Furthermore, increasing the key length of
Grain-like or ZUC-like stream ciphers and AES family block cipher is no longer
an effective method for enhancing the security to resist our search model.
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2 Preliminaries

2.1 Symbol Description

The symbols and their representative meanings are shown in the Table 1.

Table 1. Symbol Description

Symbols Representative Meaning
k key seed
n key seed length

IV/vi initialization vector
t plaintext
m initialization vector/block length
t plaintext
z punctured keystream
c′ punctured ciphertext
s punctured keystream/ciphertext length

Init(n) the complexity of full rounds initialization process
Output(s, n) the complexity of outputting s-bit keystream(without initialization)

Cblock the complexity of block cipher quantum circuit
h the min-entropy of keystream space
a the proportion of the target in the multi-set
r the iteration
Ki key space

2.2 Grover’s Algorithm

Grover’s algorithm solves the problem of searching some specific elements in
the set S = {1, . . . , N}. As for the function f : {1, . . . , N} → {0, 1}, Grover’s
algorithm can find elements {α}, for which f(α) = 1. And for other elements
x ∈ {1, . . . , N}\{α}, f(x) = 0.

Set an operator Uf : |x〉|y〉 → |x〉|y + f(x)〉. If x = α, Uf |x〉|y + f(x)〉 =
|α〉|y + 1〉. Else, Uf |x〉|y + f(x)〉 = |x〉|y〉. Specifically, if |y〉 = (|0〉+ |1〉) /

√
2,

Uf |x〉|y〉 = (−1)f(x)|x〉|y〉. Else if |y〉 = |ϕ〉 is quantum state with arbitrary
length,

Uf |α〉|ϕ〉 = sin(θ)|α〉|U(ϕ)〉+ cos(θ)|ψ⊥〉,

where (|α〉〈α| ⊗ I) |ψ⊥〉 = 0.
Define Grover operator G = (2|α〉〈α| − I)Uf , and operator S = −UfGU

†
fG.

We can get the relation

StUf |α〉|ϕ〉 = sin [(2t+ 1) θ] |α〉|U(ϕ)〉+ cos [(2t+ 1) θ] |ψ⊥〉.

We apply above operators to the quantum state |s〉, which means |s′〉 =
SUf |s〉. As is shown in Fig. 1, the above process can be seen as a rotation of 2θ
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Fig. 1. Grover’s algorithm

degree on the two-dimension plane, which is spanned by the superposition state
corresponding to the special vector and its orthonormal state.

When the goal is searching M elements out of N , then

sin2(θ) =M/N, 0 < θ ≤ π/2.

If M � N , θ ≈ sin(θ) =
√
M/N . We can successfully measure the special

vectors {α} with probability of 1−M
N , after applying

⌊
π
4

√
N
M

⌋
operator S. Above

all, Grover algorithm can achieve quadratic acceleration compared to classical
unordered database search algorithms.

2.3 Quantum Signal Processing

Set a quantum state |ψ〉 = cos θ
2 |0〉 + eiϕ sin θ

2 |1〉, where θ ∈ [0, π], ϕ ∈ [0, 2π].
The parameters θ and ϕ can locate a point in Bloch sphere [10], as shown in Fig.
2.

Quantum signal processing(QSP) is built on the idea of interleaving two kinds
of single-qubit rotations: a signal rotation operator W , and a signal processing
rotation operator S. These rotation operations are about different axes through

the Bloch sphere. For instances, W (a) =

[
a i

√
1− a2

i
√
1− a2 a

]
is an x-rotation

of θ = −2 cos−1(a) degree, and S(ϕ) = eiϕZ is a z-rotation of −2ϕ degree.

Definition 1. [11] For a tuple of phases
−→
ϕ = (ϕ0, ϕ1, · · · , ϕd) ∈ Rd+1, the QSP

operation sequence U−→
ϕ

is defined as

U−→
ϕ
= eiϕ0Z

d∏
k=1

W (a)eiϕkZ .
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Fig. 2. Bloch sphere

Based on the definition 1, we have the following theorem:

Theorem 1. [11] The QSP sequence U−→
ϕ

produces a matrix which may be ex-
pressed as a polynomial function of a:

eiϕ0Z
d∏

k=1

(W (a)eiϕkZ) =

[
P (a) iQ(a)

√
1− a2

iQ∗(a)
√
1− a2 P ∗(a)

]
,

for a ∈ [−1, 1], and a
−→
ϕ exists for any polynomial P,Q in a such that:

1. deg(P ) ≤ d, deg(Q) ≤ d− 1.
2. P has parity d mod 2, Q has parity (d− 1) mod 2.
3. |P (a)|2 + (1− a2)|Q(a)|2 = 1.

The authors in [4] indicate that, Remez-type exchange algorithm can com-
pute a

−→
ϕ that produces a good approximation to any feasible polynomials P

and Q.

2.4 Search Algorithm by QSVT

Apply an operator U to initial state |B0〉. Our goal is to search target state |A0〉
among states U |B0〉.

Let a = 〈A0|U |B0〉, and a 6= 0(If a = 0, searching set U |B0〉 doesn’t contain
target state |A0〉). If a is known, Grover’s algorithm can be used for amplitude
amplification. Else, if a is unknown but the low bound of a, the search algorithm
by quantum singular value transformation(QSVT) can solve the problem. The
search algorithm by QSVT is elaborated as following:

Let |A⊥〉 = 1
N (I − |A0〉〈A0|)U |B0〉, where N is the normalization factor

needed to make |A⊥〉 a unit vector. And U |B0〉 = a|A0〉+
√
1− a2|A⊥〉, U |B⊥〉 =
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−a|A⊥〉+
√
1− a2|A0〉. Besides, the singular value decomposition is

U = a (|A0〉〈B0| − |A⊥〉〈B⊥|) +
√
1− a2 (|A⊥〉〈B0|+ |A0〉〈B⊥|) ,

where |A0〉, |A⊥〉 are left singular vectors, and |B0〉, |B⊥〉 are right singular
vectors.

Thus, the block encoding of the operator U is

U =

[
a

√
1− a2√

1− a2 −a

]
.

The search algorithm by QSVT can measure the target state |A0〉 with the
probability approximate to 1(poly(a) → 1), combined quantum signal processing
in a way of applying a sequence of rotation operators and operator U . Based on
Theorem 1, Theorem 2 can be deduced:

Theorem 2. [11] Given a unitary U , its inverse U†, and operator Aϕ = eiϕ|A0⟩⟨A0|,
Bϕ = eiϕ|B0⟩⟨B0|,

〈A0|

d/2∏
k=1

UBϕ2k−1
U †Aϕ2k

U |B0〉 = poly(a),

where poly(a) is a polynomial in a = 〈A0|U |B0〉 of degree at most d, satisfying
the conditions on P from Theorem 1.

As shown in Fig. 3, the geometry representation of Theorem 2 is as below:
Let HA = span(|A0〉, |A⊥〉) and HB = span(|B0〉, |B⊥〉) denote two invariant

subspaces separately spanned by left/right singular vectors.
1. The operator U maps vectors in space HB to vectors in space HA with a

rotation.
2. The operator Aϕ works as a rotation around vector |A0〉 with certain

degree, and the operator Bϕ works around vector |B0〉.
3. The operator U† maps vectors in space HA to vectors in space HB with a

rotation.
Theorem 2 indicates that, search algorithm by QSVT combined with quan-

tum signal proceeding, makes the final vector gradually converge on target vector
|A0〉 in a way of transforming between two singular vector spaces and rotations
around singular vectors.

As for Grover’s algorithm, on condition that only the low bound of a =
〈A0|U |B0〉 is known, we try to increase the number of applied Grover operator
to solve the problem. Specifically, if the low bound of a works as parameter
in Grover’s algorithm but not exact value of a, the number of applied Grover
operator can be much more than the optimal number corresponding to Grover’s
algorithm with exact value of a. As shown in Fig. 1, when the number of Grover
operator is more than excepted, vector rotates a lager angle in total in the plane,
and the probability p = |〈a ⊗ ϕ|StUf |s〉|2 no longer tends to 1. In result, the
final vector is diverging from target vector, which fails amplitude amplification.
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Fig. 3. The geometry representation of Theorem 2

In a word, compared to Grover’s algorithm, search algorithm by QSVT don’t
have the problem that too many rotation operators fail amplitude amplification
because of convergence.

In Theorem 2, the optimal function for poly(a) is sign function

Θ(x− c) =


−1 x < c

0 x = c

1 x > c

.

And sign function Θ(x − c) can be estimated with arbitrary precision by find-
ing a polynomial approximation to gauss error function erf (k [x− c]), for large
enough k. Particularly, a degree d = O

(
1
∆ log

(
1
ε

))
odd polynomial PΘ

ε,∆(x− c)

can be computed, where ε ∈
(
0,
√

2/eπ
)

, and such that

1. |PΘ
ε,∆(x− c)| ≤ 1 for x ∈ [−1, 1].

2. |Θ(x− c)− PΘ
ε,∆(x− c)| ≤ ε for x ∈ [−1, 1]\(c− ∆

2 , c+
∆
2 ).

All in all, PΘ
ε,∆(x− c) can ε-approximate sign function, as shown in Fig. 4.

Let N denote the searching set’s size, and |a| = |〈A0|U |B0〉| ≥ 1√
N

. In Fig.
4, for an arbitrary value |a| ≥ 1√

N
, PΘ

ε,∆(a) ≈ 1, when ∆/2 ≤ 1√
N

. Thus, we get
the Theorem 3.

Theorem 3. [11] Given unitary operators U , U†, and rotation operators Aϕ =
eiϕ|A0⟩⟨A0|, Bϕ = eiϕ|B0⟩⟨B0|,

〈A0|

d/2∏
k=1

UBϕ2k−1
U †Aϕ2k

U |B0〉 = PΘ
ε,∆(x− c),
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Fig. 4. Simulation of sign function

where PΘ
ε,∆(x − c)is polynomial with degree at most d, satisfying the condi-

tions on polynomial P in Theorem 1,∆ ≤ 2√
N

, and d = O
(

1
∆ log

(
1
ε

))
=

O
(√

N log(1/δ)
)

.

In practice, odd polynomial PΘ
ε,∆(x) is an approximation ofΘ(x) =


−1, x < 0

0, x = 0

1, x > 0

,

satisfying the conditions in Theorem 1 with poly(a) = 〈+|U−→
ϕ
|+〉. At this point,

the operator sequence U−→
ϕ
=
(
PΘ
ε,∆

)(SV )
(W ) ≈ Θ(SV )(W ).

In summary, search algorithm by QSVT is as below:
Algorithm 1: Unstructured Search Algorithm by QSVT[11]

Input: Access to a controlled version of the oracle U which bit-flips an
auxiliary qubit when given an unknown target state |m〉, an
error tolerance δ = 2ε, and a ∆ ≤ 2/

√
N .

Output: The flagged state |m〉.

1 Use QSVT to construct the operator
(
PΘ
δ/2,∆

)(SV )

(W ), where W is the
block encoding of U .

2 Apply
(
PΘ
δ/2,∆

)(SV )

(W ) to the uniform superposition. If the auxiliary
is measured as |+〉, then |m〉 remains in the register. Else, repeat the
above process.

Algorithm 1 successes in the probability of at least 1-δ, and costs 1 extra
auxiliary qubit with complexity of Õ

(√
N log (1/δ)

)
.

3 Quantum Search Model for Symmetric Ciphers

In this section, we design a search model which is universal to search the key
both in block ciphers and stream ciphers. Because of the pseudo-randomness,
the procedure in searching the block cipher key is simpler than stream cipher’s.
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3.1 Quantum Search Model for Stream Ciphers

Preprocessing Algorithm For saving quantum resources, we consider a punc-
tured keystream, which only contains the first few bits rather than the full
keystream.

Given an initialization vector IV , let

EIV,n : {0, 1}n → {0, 1}n, ki 7→ zi

denote the encryption function with output of n-bit punctured keystream. Then,
the image multi-set EIV,n ({0, 1}n) is n-bit punctured keystream space under the
full key space.

Definition 2. [12] A random variable X has min-entropy at least h iff Pr(X =
x) ≤ 1

2h
for all x.

By Definition 2, let the min-entropy of image multi-set EIV,n ({0, 1}n) be
at least h. Specifically, Pr(X = z) ≤ 1

2h
, for an arbitrary keystream z ∈

EIV,n ({0, 1}n) and a random variableX representing an element in the keystream
multi-set EIV,n ({0, 1}n). Hence, let a denote the proportion of an arbitrary punc-
tured keystream z in the multi-set EIV,n ({0, 1}n), then

a ≤ 1

2h
. (1)

The following search model works as chosen IV attack, which means an at-
tacker has access to hold many pairs of an initialization vector and corresponding
punctured keystream. The main idea of search model is that, focus on several
punctured keystream spaces with given initialization vectors held by attacker,
and narrow down the key space by searching in above punctured keystream
spaces in turns until only the correct key seed remains. Note that all of initial-
ization vectors of the stream cipher can be applied in our search model, which
is more feasible than the usual chosen IV attack.

The decreasing scale of key space at the first round is at least 2h, because the
punctured keystream is generated by at least 2h key seeds with the given initial-
ization vector according to the inequality (1). However, the following decreasing
scale is unknown, because the min-entropy can’t be sure under the narrowed key
space. The specific process is discussed in next part. Thus, the value of h plays
an important role in calculating exact searching rounds (the pairs of IV and z).
In the following parameter selection part, we conclude the relation between the
rounds r and the min-entropy h, to make sure that the final measurement is the
correct key.

In this way, this paper designs Algorithm 2 to calculate the min-entropy of
image multi-set EIV,n ({0, 1}n), by figuring out whether each bit of the punctured
keystreams is uniformly distributed or not. If t bits of keystream are uniformly
distributed, we can deduce that the proportion a ≤ 1

2t , which means the min-
entropy of EIV,n ({0, 1}n) is at least t.
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Algorithm 2: Quantum Min-entropy Algorithm
Input: An initialization vector IV .
Output: The distribution of bits in keystream.

1 Prepare the state |0〉⊗n|0〉⊗m, stored separately in register K and
register V .

2 Apply n Hadamard gates to n qubits in the first register K, and load
initialization vector IV in the second register V , where
|0〉⊗n|0〉⊗m → 1√

2n

∑
k∈{0,1}n |k〉|v〉.

3 Add n qubits in the third register Z, where 1√
2n

∑
k∈{0,1}n |k〉|v〉|0〉⊗n.

4 Apply the oracle Ostream, where
1√
2n

∑
k∈{0,1}n |k〉|v〉|0〉⊗n → 1√

2n

∑
k∈{0,1}n |k′〉|v′〉|z〉,

|k〉 → |k′〉, |v〉 → |v′〉 is the state update process in registers, |z〉 is the
n-bit keystream after encryption, and the oracle Ostream achieves the
encryption of stream cipher.

5 Apply n Hadamard gates to n qubits in the third register Z, and
measure.

In step 2, the application of n Hadamard gates to qubits in the register K,
makes an initial state |0〉 evolve to a uniform superposition 1√

2n

∑
k∈{0,1}n |k〉,

which means each component of the state stored on register K is uniformly
distributed in the full key space. In step 4, each component of the state stored
on register Z corresponds to every possible punctured keystream after encryption
under the full key space.

Hence, calculate the distribution of each bit of punctured keystreams (whether
is uniform or not), for the punctured keystream space Z = {zi = (zi,0, · · · , zi,n−1)
|zi = EIV,n(ki), i = 0, · · · , 2n − 1}:

1. If z∗,j distributes uniformly in {0, 1}, |z∗,j〉 = 1√
2
(|0〉+ |1〉), meaning that

the jth bit of keystreams under the full key space is uniformly distributed on 0-1
space.

At this time, apply a Hadamard gate to this qubit, namely

H|z∗,j〉 =
1√
2

[
1 1
1 −1

]
· 1√

2

[
1
1

]
= |0〉.

We get the measurement of |0〉.
2. If z∗,j distributes non-uniformly in {0, 1}, |z∗,j〉 =

√
1
2 + ε|0〉+

√
1
2 − ε|1〉,

where ε ∈ [− 1
2 ,

1
2 ], meaning that the jth bit of keystreams under the full key

space is non-uniformly distributed on 0-1 space.
At this time, apply a Hadamard gate to this qubit,

H|z∗,j〉 =
1√
2

[
1 1
1 −1

]
·

√ 1
2 + ε√
1
2 − ε


=

1√
2

(√
1

2
+ ε+

√
1

2
− ε

)
|0〉+ 1√

2

(√
1

2
+ ε−

√
1

2
− ε

)
|1〉.
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The probability of measuring |1〉 is

Pr(|1〉) = |〈1|H|z∗,j〉|2 =
1

2

(
1− 2

√
1

4
− ε2

)
.

Hence, the measurement of |1〉 means that the jth bit is non-uniformly dis-
tributed.

As discussed above, run Algorithm 2 c times, where c is constant. Let ti =
(ti,0, · · · , ti,n−1) denote the measurement each time, where i = 0, · · · , c − 1.
Let t∗ = (t∗0, · · · , t∗n−1) denote distributions of each bit(whether is uniform or
not), where t∗j = t0,j ∨ · · · ∨ tc−1,j , and j = 0, · · · , n − 1. If t∗j = 0, the jth
bit is uniformly distributed. Else, the jth bit is non-uniformly distributed. Set
t∗,s = (t∗0, · · · , t∗s−1) as the first s-bit of vector t∗j , and h as the number of
components equal to 0 in vector t∗,s, where h = s−

∑s−1
i=0 t

∗,s
i .

Let EIV,s : {0, 1}n → {0, 1}s denote stream cipher encryption function with
output of s-bit punctured keystream. And the image multi-set EIV,s ({0, 1}n)
is equal to s-bit punctured keystream multi-set under the full key space. By
the Algorithm 2, set the min-entropy of image multi-set EIV,s ({0, 1}n) at least
h. Namely, a ≤ 1

2h
, where a is the proportion of each possible s-bit punctured

keystream z in the image multi-set EIV,s ({0, 1}n) under the full key space.
Because EIV,s ({0, 1}n) ⊂ {0, 1}s,

1

2s
≤ a ≤ 1

2h
.

In summary, we run Algorithm 2 constant times, and figure out which bits are
uniformly distributed of n-bit punctured keystream. And we choose the length s,
to make sure that the first s-bit punctured keystream has min-entropy at least h,
where h meets the limitations as discussed in the following parameter selection
part.

Quantum Key Search Model Now, we design the key search model for stream
cipher, but actually, it’s suitable for block cipher by changing the input param-
eters and encryption oracle, as discussed in next section.

1. Single-round Key Search Model
Suppose an attacker want to get the key k∗ of stream cipher. The attacker

can choose an initialization vector IVi, and get the s-bit punctured keystream
zi = (zi,0, zi,1, . . . , zi,s−1), corresponding to (k∗, IVi). And then, search zi in
punctured keystream space Z = {z|EIVi,s(k) = z, k ∈ {0, 1}n} by Algorithm
1 to search k∗ in full key space, where EIVi,s(k

∗) = zi. Noticed, we don’t use
search algorithm in key space but keystream space. If s ≥ n, searching space Z
has the almost same size of the key space where the key k in. Else, the size of
searching space Z is |EIVi,s ({0, 1}n) | ≤ 2s. The reasonable value range of s is
discussed later. The design of search algorithm is as following: (quantum circuit
is shown in Fig. 5)
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Algorithm 3: Single-round Key Search Model
Input: The m-bit initialization vector IVi, and s-bit punctured

keystream zi = (zi,0, zi,1, . . . , zi,s−1).
Output: The n-bit key.

1 Prepare the state |0〉⊗n|0〉⊗m, stored separately in register K and
register V .

2 Add s qubits in the third register Z, where |0〉⊗n|0〉⊗m|0〉⊗s.
3 Apply n Hadamard gates to n qubits in the first register K, where

|0〉⊗n|0〉⊗m|0〉⊗s → 1√
2n

∑
k∈{0,1}n |k〉|0〉⊗(m+s).

4 Load the initialization vector IV in the second register V , where
1√
2n

∑
k∈{0,1}n |k〉|0〉⊗(m+s) → 1√

2n

∑
k∈{0,1}n |k〉|vi〉|0〉⊗s.

5 Apply the oracle Ostream, where
1√
2n

∑
k∈{0,1}n |k〉|vi〉|0〉 → 1√

2n

∑
k∈{0,1}n |k′〉|v′i〉|z〉,

|k〉 → |k′〉, |v〉 → |v′〉 is the state update process in registers of stream
cipher, |z〉 is the s-bit punctured keystream after encryption, and the
oracle Ostream achieves the encryption of stream cipher.

6 Add one auxiliary qubit stored in register flag, and initialize the state
to |−〉. Apply function fi(z) to bit-flip, where |flag〉 → |(−1)fi(z)flag〉,

fi(z) =

{
1 z = zi

0 z 6= zi
.

7 Apply the search algorithm by QSVT for amplitude amplification of
|flag〉 = |+〉, where a1

(∑
k∈Ki

|k′〉
)
⊗ |ϕ〉|+〉+ a2|ψ⊥〉|−〉, a1 → 1√

|Ki|
,

a2 → 0, and Ki = {k|E(k, IVi) = zi}.
8 Measure register flag, where the quantum state collapses to

1√
|Ki|

∑
k∈Ki

|k′〉|ϕ〉|+〉.

9 Uncompute operations in step 5 and 4, where
1√
|Ki|

∑
k∈Ki

|k〉|0〉⊗m+s|+〉.

10 Measure and return the state in register K.

Here are some implementation details about Algorithm 3. The search algo-
rithm in step 6 is Algorithm 1, where the parameter ∆ is related to s and n.
And the oracle Ostream in step 4, which achieves the encryption of stream cipher
consisting of an initialization process and a keystream output process, takes a
key seed, an initialization vector and value s (punctured keystream’s length) as
input, and s-bit punctured keystream as output. In step 9, the uncomputing
operation aims for rollbacking the state on registers to recover the original key
and all-zero state for the measurement or the input of an initialization vector in
next round search (Algorithm 4).

Let Init(n) denote the complexity of full-round initialization in stream ci-
pher, and Output(s, n) denote the complexity of outputting s-bit punctured
keystream (excluding initialization process). Therefore, the complexity of the
oracle Ostream is Init(n) +Output(s, n).
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1. If s ≤ n, ∆ ≤ 2/
√
2s. The complexity of Algorithm 3 is

Õ
(√

2s log (1/δ) · Ostream

)
= Õ

(
2

s
2 log (1/δ) (Init(n) +Output(s, n))

)
.

2. If s > n, ∆ ≤ 2/
√
2n. The complexity of Algorithm 3 is

Õ
(√

2n log (1/δ) · Ostream

)
= Õ

(
2

n
2 log (1/δ) (Init(n) +Output(s, n))

)
.

Let h denote the min-entropy of the s-bit punctured keystream space. If
h ≥ n, run Algorithm 3 and return the correct key k∗, where EIVi,s(k

∗) = zi.
Because s ≥ h ≥ n, the attacking complexity is

Õ
(
2

n
2 log (1/δ) (Init(n) +Output(s, n))

)
,

which is still larger than 2
n
2 . Consequently, the designer can extend the key’s

length to resist the attack from Algorithm 3. We design a search model, multi-
round key search model by QSVT, based on Algorithm 3. In brief, for the re-
duction of attacking complexity, shrink the length of punctured keystream, and
repeat Algorithm 3 r times.

2. Multi-round Key Search Model
Algorithm 4 reduces the complexity of search algorithm in a smaller searching

space of s-bit punctured keystreams, which in return has a better effect than
quadratic speedup. The quantum circuit of Algorithm 4 is shown in Fig. 6.

Algorithm 4: Multi-round Key Search Model
Input: The r initialization vector s IV0, . . . , IVr−1, and r corresponding

punctured keystreams z0, . . . , zr−1 (s-bit).
Output: The n-bits key.

1 Run step 1 to step 9 of Algorithm 3 with inputs of initialization vector
IV0 and keystream z0. The state in registers K,V,Z is∑

k∈K0
ak|k〉|0〉⊗(m+s), where K0 = {k|EIV0,s(k) = z0}. Quantum state

collapses because of the measurement on the register flag.
2 For i = 1, . . . , r − 1, repeat step 4 to step 9 of Algorithm 3 with inputs

of initialization vector IVi and keystream zi.
3 Measure and return the state in register K, which belongs to key space

Kr−1 = {k|EIVi,s(k) = zi, i = 0, . . . , r − 1}.
In Algorithm 4, the decreasing process of key space in each round is

{0, 1}n
EIV0,s(·)=z0−−−−−−−−→ K0 = {k|EIV0,s(k) = z0}

EIV1,s(·)=z1−−−−−−−−→

K1 = {k|EIV1,s(k) = z1, EIV0,s(k) = z0}
EIV2,s(·)=z2−−−−−−−−→ · · ·

EIVr−1,s(·)=zr−1

−−−−−−−−−−−→ Kr−1 = {k|EIVi,s(k) = zi, i = 0, . . . , r − 1}

Besides, the decreasing scale of key space at the first round is at least 2h,
because the punctured keystream can be generated by at least 2h key seeds
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Fig. 5. Single-round key search model

Fig. 6. Multi-round key search model

under the full key space with the given initialization vector, according to the
inequality (1). However, the following decreasing scale is unknown, because the
min-entropy can’t be sure under the narrowed key space. But, in next part, we
can guarantee that the result is the unique and correct key seed by meeting some
certain conditions.

In the last round of searching, the size of punctured keystream space may be
smaller than 2h, where the percentage a of the target vector in searching space is
more than 1

2h
. Specifically, a ≥ 1

2h
≥ 1

2s , by the inequality s ≥ h. Because of the
convergence of search algorithm by QSVT, it still works well. Hence, Algorithm
4 can return the unique key, even if searching space has constant size in the last
round.

Here is our search model’s procedure. At the beginning, run preprocessing
algorithm with an initialization vector IV several times, and make that the min-
entropy of image multi-set EIV,s ({0, 1}n) is at least h with the chosen of s. Then,
prepare r pairs of the initialization vector and keystream, put into Algorithm 4
as inputs, and measure the correct key, where the parameter r is related with h.

Consider the design idea of stream cipher, we make such reasonable assump-
tion:

Assumption 1 For most initialization vectors IVi, the min-entropy of image
multi-set EIVi,s ({0, 1}n) is at least h.
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This assumption is reasonable, because only weak initialization vector will
generate keystreams with abnormal min-entropy, while stream cipher algorithms
widely analyzed always have very few weak initialization vectors. Based on As-
sumption 1, run one round search algorithm with cost of 1 auxiliary qubit and
complexity of Õ(2

s
2 log 1

δ (Init(n) +Output(s, n))), to narrow down correspond-
ing key space. And measure the register flag, which causes the collapse of state
components while the corresponding keystreams aren’t expected, in case that
the wrong keys re-entry the following search process. Thus, before next round
of searching, it is needed to prepare a new auxiliary qubit again.

All in all, the multi-round key search model costs

n+m+ s+ r + q

qubits, with complexity of

Õ
(
r · 2 s

2 log (1/δ) (Init(n) +Output(s, n))
)
, (2)

where n represents key length, m represents initialization vector length, r rep-
resents the number of auxiliary qubits or the iteration, and q represents the
number of extra qubits in the quantum realization of stream cipher.

Based on Assumption 1, we can see that our search model is of generality
against stream ciphers. The initialization process of stream cipher is aimed to
fully mix the key seed (and optional initialization vector) into some seemingly
random initial states as input of outputting process, which in deed we take use of.
Furthermore, the attacking complexity in (2) is mostly dependent on the value
of s. A smaller s means the smaller complexity. It seems that we can decrease the
attacking complexity by choosing a shorter keystream. However, the parameter
s is restricted by the min-entropy of the punctured keystreams, and we cannot
choose it on one’s own will. In particular, more random the initial states are,
more bits of keystreams under the full key space are uniformly distributed, and
smaller value of s can be chosen where s-bits punctured keystreams have min-
entropy at least h settled by Algorithm 2, which results in smaller attacking
complexity. On the other hand, as for some stream ciphers whose initial states
appear not so random, distinguishing attack must be a huge security threat.

Parameters Selection According to paper [13], we give analysis as follows.
Let k denote the n-bit key, k∗ denote the correct key, IV denote an initial-

ization vector, z denote s-bit keystream, and

EIV,s : {0, 1}n → {0, 1}s, k 7→ z

denote the funtion of outputting s-bit keystream.

Definition 3. For two initialization vectors IV0, IV1, if key k′ satisfies EIV0,s(k
∗)

= EIV0,s(k
′), EIV1,s(k

∗) = EIV1,s(k
′) and k′ 6= k∗, k′ is called fake key.
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It’s of great possibility for the existence of fake keys because of the short
length of keystream. By Assumption 1, Prk∗ ̸=k′ (EIV,s(k

∗) = EIV,s(k
′)) ≤ 2−h.

Given r initialization vectors IV0, · · · , IVr−1,

p = Pr
k∗ ̸=k′

((
EIV0,s(k

∗), · · · , EIVr−1,s(k
∗)
)
=
(
EIV0,s(k

′), · · · , EIVr−1,s(k
′)
))

≤
r−1∏
i=0

1

2h − i
.

For the condition
r2 � 2h, (3)

we have

p ≤
r−1∏
i=0

1

2h − i
≈ 2−rh. (4)

Set the fake key set as FK = {k′|k′ 6= k∗,
(
EIV0,s(k

∗), . . . , EIVr−1,s(k
∗)
)
=(

EIV0,s(k
′), · · · , EIVr−1,s(k

′)
)
}. By the inequality (4), |FK| ≤ (2n − 1) 2−rh.

Let random variable X be the number of fake keys |FK|, where X follows
the binomial distribution, and

Pr(X = α) = Cα
2n−1p

α(1− p)2
n−1−α.

By the inequality (4),

Pr(X = 0) = C0
2n−1p

0(1− p)2
n−1 ≥

(
1− 2−rh

)2n−1 ≈ e−2n−rh

. (5)

By the inequality (5), if the pairs r of initialization vector and keystream,
and min-entropy h of punctured keystream space, satisfy

r =
⌊n
h
+ 1
⌋
, (6)

it is p ≥ e−2n−rh probability to confirm the unique and correct key.
Above all, if the parameters r and h satisfy the inequalities (3) and (6), we

can guarantee that the probability of returning a unique key is p ≥ e−2n−rh .

3.2 Quantum Search Model for Block Ciphers

As for searching block cipher key, we adopt the similar approach as above. Con-
cluded from the structure of block cipher, we can make the assumption.

Assumption 2 The encryption function of block cipher is a strong pseudo-
random function.

Set the encryption function of block cipher as

Ek : {0, 1}m → {0, 1}m, t 7→ c,



New Quantum Search Model on Symmetric Ciphers and Its Applications 19

where k denotes the key of n bits, t denotes the plaintext of m bits, and c denotes
corresponding ciphertext. By Assumption 2, function Ek(·) is a pseudo-random
function.

Set the puncture function

fs ((x1, · · · , xm)) = (x1, · · · , xs),

where s ≤ m. And define a compound function gk,s : {0, 1}m → {0, 1}s,

gk,s(t) = fs ◦ Ek(t) = fs(c) = c′.

It is easy to conclude that function gk,s(·) is a strong pseudo-random function
as well. By the definition and property of gk,s(·), we can map each plaintext t
to the first s bits of corresponding ciphertext c′ uniformly, which means

∀c′ ∈ {0, 1}s, Pr
t∈{0,1}m

(gk,s(t) = c′) =
1

2s
. (7)

We define the first s bits of ciphertext as punctured ciphertext.
Hence, we can apply Algorithm 4 with input of r pairs of plaintext and

punctured ciphertext by replacing initialization vector with plaintext, keystream
with punctured ciphertext, and stream cipher encryption oracle with block cipher
encryption oracle. Deduced by equation (7), it’s no need to run preprocessing
algorithm because of pseudo-randomness, i.e., each bit in ciphertext is uniformly
distributed in 0-1 space.

All in all, the complexity of searching block cipher’s key by Algorithm 4 is

Õ
(
r · 2 s

2 log (1/δ)Cblock

)
, (8)

and the qubits are
n+m+ s+ r + q,

where n represents key length, m represents block length, r represents the it-
eration or the number of auxiliary qubits, s represents punctured ciphertext
length, q represents the number of extra qubits in the block cipher quantum cir-
cuit, δ represents the error tolerance in search algorithm by QSVT, and Cblock

represents the complexity of quantum block cipher circuit.

Parameters Selection The rules of parameters selection for block cipher are
similar for stream cipher but a little different.

Let k′ denote the n-bit key, k∗ denote the correct key, and (t1, c
′
1), (t2, c

′
2)

denote two pairs of plaintext and punctured ciphertext.

Definition 4. For two pairs (t1, c
′
1), (t2, c

′
2), if the key k′ satisfies gk′,s(t1) =

gk∗,s(t1) = c′1, gk′,s(t2) = gk∗,s(t2) = c′2 and k′ 6= k∗, then k′ is called fake key.

It’s of great possibility for the existence of fake keys because of the short
length of punctured ciphertext.
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By the pseudo-randomness of function gk,s(·),

∀t ∈ {0, 1}m, Pr
k′ ̸=k∗

(gk′,s(t) = gk∗,s(t)) =
1

2s
.

Given r pairs of plaintext and punctured ciphertext (t1, c
′
1), · · · , (tr, c′r),

p = Pr
k′ ̸=k∗

(gk∗,s(ti) = gk′,s(ti), i = 1, · · · , r) =
r−1∏
i=0

1

2s − i
.

For the condition
r2 � 2s, (9)

we have

p =

r−1∏
i=0

1

2s − i
≈ 2−rs. (10)

Set the fake key set as FK = {k′|k′ 6= k∗, (gk∗,s(ti) = gk′,s(ti), i = 1, · · · , r)}.
By equation (10), |FK| ≈ (2n − 1)2−rs.

Let random variable X be the number of fake keys |FK|, where X follows
the binomial distribution, and

Pr(X = α) = Cα
2n−1p

α(1− p)2
n−1−α.

By equation (10),

Pr(X = 0) = C0
2n−1p

0(1− p)2
n−1 = (1− p)

2n−1 ≈ e−2n−rs

.

Hence, it is p ≈ e−2n−rs probability to return a unique and correct key.
In order to guarantee the success probability and use fewer pairs of plaintext

and punctured ciphertext, we let the pairs r satisfy

r =
⌊n
s
+ 1
⌋
. (11)

Above all, if the parameters r and s satisfy the inequality (9) and equation
(11), we can guarantee that the probability of returning a unique key is p ≈
e−2n−rs .

4 Implementation of Multi-round Key Search Model

To evaluate the specific searching complexity on symmetric ciphers, we imple-
ment our search model on block cipher AES family, two kinds of stream ciphers
Grain-128 and ZUC-128.

As for stream ciphers Grain-128 and ZUC-128, we need to calculate quan-
tum gates number in circuits of two stream ciphers with the initialization and
keystream output process. As for block cipher AES, we have to figure out the
complexity of quantum AES’s encryption oracle.
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4.1 Stream Cipher Grain-128

Stream Cipher Grain-128 Oracle The Grain-128 algorithm [7] is proposed
in 2006, with input of 128-bit key and 96-bit initialization vector, and output
of keystream with arbitrary length. The Grain-128 algorithm consists of two
processes, 256-round initialization process and keystream output process. The
specific components include linear feedback shift registers, nonlinear feedback
shift registers, and filter function generators, etc.

The construction of the oracle for Grain-128 is as follows.
1. Initialization process
The state update equations on each component during initialization are as

follows.
a. Linear feedback shift register(LFSR):

si+128 = si + h(x) + si+7 + si+38 + si+70 + si+81 + si+96.

b. Non-linear feedback shift register(NFSR):

bi+128 = si + bi + h(x) + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13+

bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84.

c. Filter function:

h(x) = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95.

We implement the Grain-128 algorithm into a quantum circuit by state up-
date equations on each register, which is simpler and easier than constructed by
feedback polynomials. It is known that the number of quantum gates required
in one round is 36. And the number of quantum gates within 256 rounds of
initialization is

Init(128) = 9216. (12)

2. Keystream output process
Similarly, the state update equations are as follows:
a. Linear feedback shift register(LFSR):

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96.

b. Non-linear feedback shift register(NFSR):

bi+128 = si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13+

bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84.

c. Filter function:

h(x) = bi+12si+8 + si+13si+20 + bi+95si+42 + si+60si+79 + bi+12bi+95si+95.

d. Keystream output:

ki = h(x) + si+93 + bi+2 + bi+15 + bi+36 + bi+45 + bi+64 + bi+73 + bi+89.
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By the keystream output equation, if the bit s of punctured keystream re-
quired in Algorithm 4 is smaller than 32, it is no need to update states on
registers. At this time, the number of gates required to output 1 bit is 18. Else,
if s > 32, there are s − 32 bits needed to update, and the number of gates re-
quired to output 1 bit is 42. Hence, the complexity of outputting s-bit keystream
is

Output(s, 128) =

{
18s , s ≤ 32

42s− 768 , s > 32
. (13)

Multi-round Key Search Model Attacking Effect on Grain-128 For
stream cipher Grain-128, the key’s length n = 128. By the inequality (3), it
might be good that

1000 · r2 ≤ 2h. (14)

Put equation (6) into (14), and get the solution h ≥ 17. Let h = 17, and then
r = 8. Hence, after constant times of Algorithm 2, get the optimal value of
parameter s, where there are at least 17 bits uniformly distributed at the first
s bits of the punctured keystreams. Denote δ = 0.01 as the error tolerance of
search algorithm, put it into equation (2), and the complexity is

Õ
(
8 · log(1/0.01) · (9256 + 18s)2

s
2

)
.

Hence, according to the quantitative relation between s and h, the attacking
complexity against Grain-128 is shown in Table 2.

Table 2. Searching Complexity of the Stream Cipher Grain-128

s h/s Searching Complexity Qubits
17 1 Õ(227.5) 280
19 0.9 Õ(228.5) 282
21 0.8 Õ(229.5) 284
24 0.7 Õ(231.0) 287
28 0.6 Õ(233.0) 291
32 0.5 Õ(235.0) 296

4.2 Stream Cipher ZUC-128

Stream Cipher ZUC-128 Oracle The ZUC-128 algorithm [9] is a synchronous
stream cipher algorithm with input of a 128-bit key seed and a 128-bit initializa-
tion vector, and output of a 32-bit keystream at a time. The ZUC-128 algorithm
consists of two processes.

1. Initialization process
Divide the key k and the initialization vector IV by 8 bits, where k =

k0‖k1‖ · · · ‖k15, and IV = IV0‖IV1‖ · · · ‖IV15. Load them into linear feedback
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shift registers, where si = ki‖di‖IVi, 0 ≤ i ≤ 15, and di is a 15-bit constant. Set
memory unit variables R1 = R2 = 0, run Initialization process 32 rounds.(The
output W of the nonlinear function F needs to round off the last 1 bit to par-
ticipate in the state update process of the LFSR)

2. Keystream output process
After loading the key, the iterative process of bit-reorganization, nonlinear

function, and LFSR state update is first executed in sequence, but no keystream
is output. After that, the word keystream output process begins. Every iteration,
a 32-bit (one word) keystream z =W ⊕X3 is output.

As for the construction of the oracle for ZUC-128, a quantum circuit for the
stream cipher ZUC-128 is designed in [14], where a round of initialization process
requires 3000 Toffoli gates, 9488 CNOT gates and 736 Pauli X gates, the first
round of operations in working mode executed after initialization requires 2754
Toffoli gates, 8849 CNOT gates, 672 Pauli X gates, and a round of operation
in working mode (outputs a 32-bit keystream) requires 2754 Toffoli gates, 8913
CNOT gates, and 672 Pauli X gates.

To sum up, the complexity Init(128) is 435443 of 32 rounds initialization
processes and first round of operations in working mode, and the complexity of
outputting 32-bit keystream is Output(32, 128) = 12339.

As for the qubits, 496 qubits hold each state on the linear feedback shift
register, 64 qubits hold the two memory unit variables R1 and R2, s qubits hold
the values of the output keystream, and 64 auxiliary qubits count.

Multi-round Key Search Model Attacking Effect on ZUC-128 For
stream cipher ZUC-128, the key length n = 128, and one word keystream length
is 32 at one time. Thus, 32|s. Similarly, Algorithm 4 works well if h ≥ 17. Set
s = 32, and our search model needs 656+b128/h+1c bits of qubits. Run constant
times of preprocessing algorithm 2, compute the number of uniformly distributed
bits h (min-entropy) in the first 32 bits of the keystream. The relation between
the min-entropy h and the attacking complexity can be seen in the following
Fig. 7.

As for the worst case that h = 17, which means only 17 bits are uniformly
distributed in the one word keystream, the attacking complexity is Õ

(
240.5

)
,

and the number of required quantum bits is 664. And as for the best case that
h = 32, which means each bit is uniformly distributed in the one word keystream,
the attacking complexity is Õ

(
239.8

)
, and the number of required quantum bits

is 661.

4.3 Block Cipher AES

Block Cipher AES Oracle The three main kinds in block cipher AES family
[19] are AES-128, AES-192, and AES-256, whose key length is 128, 192, and 256
bits, and round is 10, 12, and 14, separately. Besides, all three algorithm encrypt
with block length of 128 bits.
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Fig. 7. Searching complexity against ZUC-128

Block cipher AES consists of a rounding function and key schedule, based on
the substitution-permutation network structure. Firstly, there are three subrou-
tines of a round function, SubBytes, ShiftRows, MixColumns, and AddRound-
Key. Secondly, for key schedule, it consists of three subroutines, SubWord, Rot-
Word, and Rcon. In SubBytes and SubWord subroutines, S-box substitution is
applied to build up the whole encryption system’s nonlinearity. And in ShiftRows
and RotWord subroutines, some particular permutations are implemented by ap-
propriate rewiring. As for MixColumns subroutine, a specific matrix is used to
operate the entire column. In AddRoundKey subroutine, the bitwise XOR is
operated of the 128-bit roundkey to the internal AES state. At last, Rcon is a
round constant.

In [22], the authors design four kinds of quantum circuits for each AES-
128/192/256 separately, which can be used as an oracle implemented in Grover’s
key search model and our search model as well. And we select one designed
quantum circuit for each block ciphers in Table 3.

Table 3. Quantum Circuit of the Block Cipher AES-128/192/256

Block Cipher Qubits Toffoli Depth Total Number of Gates
AES-128 400 1108 99824
AES-192 464 1340 115256
AES-256 528 1540 139919
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Multi-round Key Search Model Attacking Effect on AES Like the sec-
tion 3.2 discussed, we solve three inequalities

1000 ·
⌊n
s
+ 1
⌋
≤ 2s,

where the key length of AES-128/192/256 is separately put into as the value of
n. And we get

s ≥


17, n = 128

18, n = 192

18, n = 256

.

For the sake of lower searching complexity, we choose the lower bound as the
value of s, get the corresponding value of r by equation (11), and calculate the
searching complexity of each block cipher by equation (8), as Table 4 shows.

It can be concluded from Table 4, increasing the key length doesn’t enhance
the security against our key search model.

Table 4. Searching Complexity of the Block Cipher AES-128/192/256

Block Cipher s r Searching Complexity Qubits
AES-128 17 8 Õ(230.8) 408
AES-192 18 11 Õ(232.0) 475
AES-256 18 15 Õ(232.7) 543

5 Conclusion

Our model takes use of the security property of symmetric ciphers. For stream
ciphers, more random the initial states appears, more secure stream cipher gets,
more bits of keystreams under the full key space distribute uniformly, smaller
length s of punctured keystream has, and lower complexity of search model will
be. Besides, for block ciphers, the pseudo-randomness is our standpoint, which
guarantees each bit of ciphertext is uniformly distributed. Thus, our search model
can function well on block ciphers without the preprocessing algorithm.

As for searching cost, the complexity is Õ
(
r · 2 s

2 log (1/δ) · C
)
, where n de-

notes key length, s denotes the length of punctured keystream/ciphertext, r
denotes the iteration in our model, and C denotes the complexity of quantum
stream/block cipher’s encryption oracle. Besides, the required bits of qubits is
n+m+ s+ r+ q, where m denotes initialization vector/block length, r denotes
the number of auxiliary qubits or the iteration, and q denotes the number of
extra qubits in the quantum stream/block cipher’s encryption oracle.

According to the parameter selection rules, the attacking complexity of our
search model outperform Grover algorithm against symmetric ciphers. Further-
more, our search model shows that increasing the key seed length have little
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influence on the resulting complexity. Thus, this common countermeasure to
resist the quantum search attacks does not work anymore in the quantum com-
putation environment. It is necessary to propose new design idea for symmetric
ciphers in the future.
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