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Abstract. Due to the completeness, reliability and zero-knowledge na-
ture, the zero-knowledge proof is widely used to designed various proto-
cols, including zero-knowledge authentication protocols. However, the ex-
isting zero-knowledge proof scheme cannot realize bidirectional authen-
tication. In this paper, we design a series of bidirectional zero-knowledge
protocols based on two new flavors of operations applicable to multi-
plicative cyclic group. The two notions are formally defined in this pa-
per. We also provide some formal definitions and properties for the two
notions. According to our definitions, any bounded polynomial function
defined on multiplicative cyclic group has duality and mirror. Based on
the two operations, we introduce and formally define dual commitment
scheme and mirror commitment scheme. Besides, we provide two efficient
constructions for dual commitment and mirror commitment respectively
based on CDH assumption and RSA assumption, and named DCcpu,
DCrsa, MCcpu and MCrsa respectively. We also provide the ex-
tended version supporting multiple messages in the appendix. Then, we
design some efficient non-interactive as well as interactive zero-knowledge
authentication protocols based on these commitments. The protocols al-
low two participants to submit commitments to each other so that they
can achieve mutual zero-knowledge authentication only a communication
initialization needed. Moreovere , similar to other commitment schemes,
our schemes also can be widely used to construction of other schemes
for cryptography, such as, verifiable secret sharing, zero-knowledge sets,
credentials and content extraction signatures.

Keywords: duality, mirror, dual commitment, mirror commitment, zero-
knowledge authentication, non-interactive protocol
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1 Introduction

A zero-knowledge proof, proposed by Goldwasser, Micali and Rackoff in 1985 [8],
has become a fundamental protocol in cryptography. Due to the completeness,
reliability and zero-knowledge nature , the zero-knowledge proof is favored by
experts and scholars. Then it is widely used to public key encryption [9], sig-
nature [10], identity authentication [11,17-19], secret sharing [23] and other
classical cryptography fields as well as blockchain [12,14-16, 24], privacy com-
puting [13], cloud computing [20], MPC [21] and other popular technology. How-
ever, The efficiency, Scalability and other problems make zero-knowledge proof
unable to run on resource-constrained equipment. A large number of scholars
have carried out in-depth research on this issue and proposed a variety of new
zero knowledge proof implementation schemes [26-32]. These schemes improve
the computational efficiency to a certain extent, which makes a prover be able
to convince a verifier of the validity of some NP statement disclosing more than
the fact that the prover knows a witness that satisfies the statement efficiently.
But, Under the condition of only one initialization, all schemes can only ver-
ify the verifier’s statement to the prover, and cannot realize role exchange. In
this paper , we designed a series of new zero-knowledge authentication proto-
cols based on our newly defined cryptographic primitive: dual commitment and
mirror commitment. These protocols can achieve mutual zero-knowledge authen-
tication only a communication initialization needed. Besides, our schemes also
can be widely used to some schemes, such as, verifiable secret sharing, zero-
knowledge sets, credentials and content extraction signatures and son on. Our
main contributions are as follows.

— We firstly provide two new notions applicable to multiplicative cyclic group,
named duality and mirror.

— We firstly propose two new cryptographic commitment schemes based on
duality and mirror, which we call dual commitment scheme and mirror com-
mitment scheme. Besides, we also provide two efficient constructions for dual
commitment and mirror commitment respectively based on CDH assumption
and RSA assumption, and named DCcpy, DCrsa, MCcpu and MCgrsa
respectively . Moreover, we give the extended version of these constructions,
which supports multiple messages.

— We first design two efficient non-interactive zero-knowledge authentication
protocols these commitments. The protocols allow two participants to submit
commitments to each other so that they can achieve mutual zero-knowledge
authentication only a communication needed.

2 Preliminaries

2.1 Notation

We denote by poly(\) any polynomial function that is bounded by a polynomial
in A, where A € N is the security parameter. We denote any function that is
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negligible in the security parameter with negl(\) if it vanishes faster than the
inverse of any polynomial. We say that an algorithm is ppt if and only if it is
modeled as a probabilistic turing machine that runs in time polynomial in A.
Given a set S, We denote by x < S that z is uniformly sampled from S.

2.2 Commitments

Commitment turned out to be an extremely important primitive in cryptography
and have been used as a building block to realize highly non-trivial protocols and
primitives. Informally, a commitment scheme is a two-phase protocol between
a prover P and a verifier V. In committing phase, the prover P commits to a
statement m with a string ¢ using some appropriate algorithm. In decommitting
stage, the prover reveals the opening information op and the message m to the
verifier, who can check whether ¢ was indeed a valid commitment on m. A
commitment scheme is said to be non-interactive if each phase requires only one
messages from P to V. All algorithms have access to a public random string r
generated by a trusted setup party.

In their most basic form commitment schemes are expected to meet hiding

and binding. A commitment scheme is hiding means with this that it should not
reveal information about the committed message to a computationally bounded
at tacker.
Definition 1 (Hiding). A commitment scheme with commitment algorithm
Commit is hiding if there exists a negligible function negl(A) such that for any
ppt attacker A, for a randomly sampled 7 < Setup(1}), and for all pairs of
messages (mg,mq), we have that

Pr{A(r,c) =blb < 0, 1; ¢ < Commit(r,mp)] < % + negl(A).

Definition 2 (Binding). A verification algorithm Verify is binding if there
exists a negligible function negl(\) such that for any ppt attacker A and for a
randomly sampled r + Setup(1?), we have that

Pr[Verify(r,c,op,m) =1AVerify(r,c,op’,m") =1 Am #m/|
(c,op,m,op’,m') = A(r)] < negl(N).

2.3 Computational Assumptions

Here we formally describe the computational hardness assumptions that we need
for the security of our construction.

Definition 3 (Discrete Logarithm Assumption). DLA Let G be a multi-
plicative cyclic group of order p proportional to the security parameter A and
let g be a generator of G. We say that the discrete logarithm problem is hard if,
for a random integer x € Z, and for all ppt attackers A, there exists a negligible
function negl(A) such that

P’I“[.A(g,g,gm) = 33] < negl()\)
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Definition 4 (Computational Diffie-Hellman Assumption, CDH). Let G
be a multiplicative cyclic group of order p proportional to the security parameter
A and let g be a generator of G. We say that the computational Diffie-Hellman
problem is hard if, for two random integers z,y € Z, and for all ppt attackers
A, there exists a negligible function negl(\) such that

PrlA(G.g.9%,9") = "] < negl(X).

Definition 5 (RSA Assumption, RSA). Let A € N be the security param-
eter, N is a random RSA modulus of length, z be a random element in Zy
and e be an (¢ + 1)-bit prime (for a parameter ¢ ).Then we say that the RSA
assumption holds if for any ppt attackers A, the probability

PrlA(N,y,y) = €] < negl(A).

Definition 6 (Square Computational Diffie-Hellman Assumption, CDH)
Let G be a multiplicative cyclic group of order p proportional to the security pa-

rameter A and let g be a generator of G and a & Z,. We say that the Square
Computational Diffie-Hellman Assumption holds in G if for every ppt attackers
A, the probability
a 112
PrlA(g,g") = g" ] < negl(})

In [2,3] is shown that the Square-CDH assumption is equivalent to the classical
Computational Diffie-Hellman (CDH) assumption.

2.4 Duality and Mirror Function on multiplicative cyclic group

Here we extend the notion of dual and mirror in logical algebra and provide a
formal definition of duality and mirror applicable to multiplicative cyclic group.
Definition 6 (Dual on multiplicative cyclic group). Let F be a polynomial
function defined on multiplicative cyclic group G, where g is the generator of
G. Another polynomial function F* defined on G is said to be the duality of
function F if it may be obtained from JF by replacing the corresponding operation
symbols with the following replacement rules and has the same operation order
as F, recording as F > F*.

— Replace 4+, x with x, +.
— Replace —, /k(k~ 1) with /k, —, where k € G.
— Replace 1,0 with 0, 1.

To facilitate readers to better understand the definition, we give three ex-
tended definitions and three examples to explain these definitions.
Definition 7 (One-way Dual) If F* is the duality of F while A* is not the
duality of F. We say F and F* are one-way dual, recording as F > F*.
Definition 8 (Double Dual) If F is the duality of F* while F* is also the
duality of F. We say F and F* are bidirectional dual, recording as F <a>F*.
Definition 9 (Self Dual) If F is the duality of F. We say F is self dual,recording

\Y

as F.
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Example 1 F* = x * g — y x h is the duality of F = ¢*/hY, where g,h,z,y € G.

However, F* is not the duality of . Then, F > F*.

Example 2 F* = (x 4+ g) * (y — h) <>F = 2g + y/h are double dual.

Example 3 F* = z is self dual, where z € G.

Definition 10 (Mirror on multiplicative cyclic group).Let F = Z?:o aim?"

be a polynomial function defined on multiplicative cyclic group G, where g is

the generator of G and Vi € Z,,a;,;,b; € G. Another polynomial function F*

defined on G is said to be the mirror of function F if it equals to Y. an,ix?"”'

and has the same operation order as F, recording as F < F*. To facilitate

readers to better understand the definition, we give a extended definition, a

example and a theorem based on definition 10.

Proposition 1. If F7* is the mirror of F, then F must also be the mirror of F*.

It can be easily proved accroding to the definition 10.

Definition 11 (Self Mirror) If F is the mirror of F. We say F is self mir-
*

ror,recording as F.
Example 4 If F = ZLLEIJ aixfi + a;z%__, then, F must be self mirror.

Proposition 2. If F is a poly(A) defined on multiplicative cyclic group G, where
g is the generator of G, F* is the duality of F and (F*)* is the mirror of F*, F*
is the mirror of F and (F*)* is the duality of F* then (F*)* = (F*)*, recording
as F**. We show the diagram for F, F*, F* and F** in Fig.1.

Example 5 If F = 3" a;z), then, we can get that F* = Y1 an_i:r?"‘i,
F* =37 o(a;+b;x;). Then we can compute that (F*)* = 3" (an—; +bn—iz;)
and (F*)* =31 ((an—i + bp—iz;). Obviously, (F*)* = (F*)* = F**.

J —5" F =7F
@' |1Ii @l |1I
’{]_'* > gj** '(]_'*& j:**
(a) the dual is one- (b) the dual is double
way dual dual

Fig. 1: Relation for F, F*, F* and F**

3 Dual Commitment

In this section, On the basis of the definition for duality in section 2.4, we provide
a formal definition of a dual commitment scheme, followed by two constructions.
In the first construction, the commitment ,designed based on CDH Assumption,
is one-way dual commitment. While in the second construction, the commitment,
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designed based on RSA Assumption, is double dual commitment. We also prove
the security properties and discuss some useful features of our constructions.
3.1 Definition

A dual commitment consists of seven ppt algorithms: Setup, Commit, Open,
VerifyP2™ | Verify™!, Update™*28° and UpdateP™°°f.

(¢,pp) <+ Setup(1*) Given the security parameter )\, the setup algorithm
Setup outputs a public random string ¢ and some public parameters pp
(which implicitly define the message space M,,,, randomizer space R, and
commitment space Cpp.)

- (¢, c¢*, auz) + Commit(c, m,pp) Given the public random string ¢, a mes-
sage m and public parameters pp, the commitment algorithm Commit out-
puts a commitment ¢, a dual commitment ¢* and corresponding an auxiliary
information auzx.

op + Open(m, aux, pp) This algorithm is run by the committer to produce
a proof op that m is the committed message and pp is the public parameters.
In particular, notice that in the case when some updates have occurred the
auxiliary information aux can include the update information produced by
these updates.

b < Verify®**(c,m, c|c*, pp, op) Given the public random string ¢, a mes-
sage m, a commitment ¢ and opening information op, the partial verification
algorithm VerifyP®t outputs 1 if op is a valid opening for commitment ¢ or
dual commitment ¢* on message m.

(b,t) + Verifyf“”(c, m, ¢, c*, pp, op)Given the public random string ¢, a mes-
sage m, a commitment ¢, a commitment ¢*, opening information op, the full
verification algorithm Verify/*! outputs b=1 if op is a valid opening for
commitment ¢ and dual commitment ¢* on message m. Verifyf*“! outputs
t=2if b=1 and c<> ¢* are double dual, outputs t=1 if b=1 and c>c*, outputs
t=- 1 if other conditions occur.

- (¢, ¢, U) + Update™es&° (¢, ¢* m, m’)This algorithm is run by the com-
mitter to update the dual commitment by changing the message m to m/'.
The algorithm takes as input the old message m, the new message m’, the
commitment ¢ and the dual commitment ¢* of message m. It outputs a new
commitment ¢ and a new dual commitment ¢* together with an update
information U.

(op)) + Updatepmc’f(c7 ¢*,U,op) This algorithm can be run by any user
who holds a proof op for message m, and it allows the user to compute an
updated proof op’ (and the updated commitment ¢’ and c*/) such that op’
will be valid. Basically, the value U contains the update information.

For correctness, we require that YA € N, for all honestly generated parameters
pp, a honest committer should be able to correctly generate a commitment, a dual
commitment and a proof op for all message m € M. Then, a honest verifier can
correctly verify the correctness of a proof, a commitment and a dual commitment
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and the relevance of the commitment and the dual commitment for all message
m e M.

For security, we require that a malicious committer should not be able to
convincingly present two different messages m and m’ with respect to ¢ and c*.
we formally define the security and correctness of a dual commitment scheme.
Definition 12. We say (Setup, Commit, Open, VerifyP®™* Verify™!
Update™®528° and Updatepm(’f) is a secure dual commitment scheme if it
satisfies the following properties.

Correctness. Let (r,pp) < Setup(1*) and (c,c* , auzx) < Commit(r, m, pp).
For a commitment ¢ and a dual commitment ¢* output by Commit(r, m, pp),
and all m € M, the output of Open(m, aux, pp) can be successfully verified by
VerifyP 't (r, m, c|c*, pp, op) and Verify™"(r, m, ¢, ¢*, pp, op).

Binding. For all adversaries A = (Ap,.A1), where Aj is ppt (and A; is not
computationally bounded), and for a randomly sampled (r,pp) < Setup(1*),
we have that:

PriVerify?**(r,m, c|c*, pp,op) = 1 A VerifyP*"*
(r,m’, c|c*, pp,op’) = 1 Am # m'|(c|c*, op,m) +
Ao(r); (m', op’) < Ay (r, state)] < negl(N).

Besides,

Pr[Verifyf“”(r, m,c,c*,pp,op) = 1 A Vem’fyf“”
(r,m’,c,c*,pp,op’) = 1 Am # m/|(c,c*, op,m)
Ao(r); (m',op’) < Ay (r, state)] < negl(N).

Hiding.for any ppt attacker A, for a randomly sampled (r,pp) < Setup(1*),
and for all pairs of messages (mg,m1), we have that

1
Pr[A(r,c,c*) =blb + 0,1; (¢, ¢*, aux) < Commit(r,m, pp)] < 3 + negl(N).

3.2 A One-way Dual Commitment based on CDH: DCcpy

Here we propose an implementation of concise one-way dual commitment DCcpg
for single message based on the CDH assumption of multiplicative cyclic group
of order p proportional to the security parameter A, where g is the generator .
Precisely , the security of the scheme reduces to the Square Computational Diffie-
Hellman assumption (see Definition 6 in Section 2.1 ), which has been shown
equivalent of the standard CDH assumption [2,3](see Definition 4 in Section 2.1

Setup(1*) Let G be a multiplicative cyclic group of order p proportional to the
security parameter A and let g be a generator of G. Randomly choose z., 21, 2o <
Zy. Set r = g*, hy = g**, ha = g*2. Set pp = (g, h1, h2). The message space is
M =7y,

Commit(r, m, pp) Compute

c=hT"hs, " =mxhy + 1% ho
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and output C = (¢, ¢*, aux) and the auxiliary information auz = none.
Open(m,r,pp) Compute
R G moshy +7hs

Opc = ¢ y OPcx = @

and output op = (0pe, 0per )-
VerifyP®* (r,m, c|c*, pp, opc|op.-) Compute

b 1, ifb=1 and g° = op,
e 0 otherwise

1, if gc* = 0P+
by = )
0 otherwise

and output by V bs.
Verifyf“"(r, m, ¢, c*, pp, 0pe, ope~ ) Compute

b 1, ifb=1 and ¢g° = op,
e 0 otherwise

1, if g¢ = ope
by = .
0 otherwise

b="01 Aby

1, ifb=1and c<apc*
t=4¢0, ifb=1andcr>c*

—1 otherwise

and output (b,t).

Update™®**?8°(¢, c¢*, m, m’) Compute the updated commitment ¢’ = c x h;"/_m
and dual commitment ¢ = ¢* 4+ hy(m’ — m). Finally output ¢’ = (¢, ¢*') and
U= (m,m).

Updatepmc’f(c, c*,U,op) A client who owns a proof op, that is valid to ¢ and ¢*

m!/—m

for the message m, can produce a new proof op’ = (opc* , OPex * ghz(m/_m).
The correctness of the scheme can be easily verified by inspection. We prove

its security via the following theorem.

Theorem 1. If the CDH assumption holds, then the scheme defined above is a

concise dual commitment.

proof 1 We prove the theorem by showing that the scheme satisfies the bind-
ing property. For sake of contradiction assume that there exists an efficient
attackers A who produces two valid openings to two different messages, then
we show how to build an efficient algorithm B to break the CDH assumption.
First, B chooses z1, 29, 23 < Zj,it computes: h; = g*', hg = g**,r = g¢**. B
sets pp = (g, h1, ha) and runs A(pp). Notice that the public parameters are
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perfectly distributed as the real ones. The adversary is supposed to output a
tuple (¢, c*,m,m’, opc, 0pe~, opl., op..) such that m # m’ and both op, op.~
and op’,, op.. correctly verify. Then B computes

r—1
m m
1 7h1

9" = (ope * opl,)"

’ BEPAT |

g" = (ope- fop.-) " ™)

To see that the output is correct, observe that since the two openings verify
correctly, then it holds:

m __ m’
ope * h1" = op, * h

! !
Opc» * hy' = op .+ * hy'

which means that ,
(b7 —hT")

*hl /
g 2 = 0p. * Opc

g =) = opJopes

One can easily sees that this justifies the correctness of B s output. Notice
that if B has probability € of breaking the Square CDH assumption.

3.3 A Double Dual Commitment based on RSA: DCrsa

Here we propose a realization of double dual commitment DCgrga for single
message from the RSA assumption (whose definition is given in section 2.1).
Appendix A shows the double dual commitment scheme supporting multiple
messages.

Setup(1*, /) Randomly choose two £/2-bit primes p;, p2, set N = p;ps, and
then choose 2(¢ + 1)-bit primes e, ez, a, r that do not divide p(IV). Compute,

Sl = aez, Sg =a"!

The public parameters pp are (N, a,r, S, 52, €1, e2). The message space is M =

{0,1}".
Commit(r, m, pp) Compute

c= S{nsg — aegm+elcrs

o= a(eg +m)(e1+r)

and output C' = (¢, ¢*, aux) and the auxiliary information aux = none.
Open(m,r, pp) Compute

ope = 51?2
OPex = 51?1 52?2
and output op = (0p, op.~ ). Notice that knowledge of pp allows to compute op,
efficiently without the factorization of V.
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Verify®2" (1, m, c|c*, pp, op.|ope~) Compute

b — 1, if S1.520p%ta™*" mod N = opc-
e 0 otherwise
p— d b if S5op%? mod N = op,
z 0 otherwise

and output b = by V bs.
Verifyf“"(r, m, ¢, c*, pp, 0pe, op+ ) Compute

b — 1, if S1.520p%ta™*" mod N = c*
"7 )0 otherwise

by — 1, if (S5op%* ® ¢) mod N = ¢
710 otherwise

b=b1 NAb

1, ifb=1and c<pc*
t=<¢0, ifb=1andcpc*

—1 otherwise

and output (b,t).

Update™***?8°(¢, ¢*, m, m’) Compute the updated commitment ¢’ = ¢* S{"Lm
and dual commitment ¢ = ¢* % a(e1+7)(m'=m) Binally output ¢’ = (¢, ¢*') and
U= (m,m).

UpdateP™°f (¢, ¢*, U, op) A client who owns a proof op, that is valid to ¢ and ¢*

for the message m, can produce a new proof op’ = (op. * S; @ ,0pe~ * Sy ).
In order for the verification process to be correct, notice that one should also

check that the S, S5 are correctly generated with respect to a and the exponents

e1,ez. The correctness of the scheme can be easily verified by inspection. We

prove its security via the following theorem.

Theorem 2. If the RSA assumption holds, then the scheme defined above is a

concise dual commitment.

proof 2 We prove the theorem by showing that the scheme satisfies the
binding property. More precisely, assume for sake of contradiction that there
exists an efficient adversary that produces two valid openings to two different
messages, then we show how a ppt attacker A to build an algorithm B that
breaks the RSA assumption. First, B is run on input (N, z,e1,es), where
e is an (¢ + 1)-bit prime, then, it is used to compute a value y such that
z1 = y“*modN, zo = y*>modN. The proceeds as follows. First, it sets a; =
z1,a2 = 2. B runs Setup and gets back (S1,S2,m,m’, op., 0pex, op’, opl.)
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where m # m’ and both op., op and ope«,opl. are correctly verified. From
the equations S op%* = S{"/op;ez, STopat = Sg”lopcil we get

S{"fm, = op./op.”

S5 = ope- fopl-"!

if op./op., = 1 or ope«/opl.. = 1 then we can factor with non-negligible
probability. Thus, assuming op./op., # 1 and op.~/opl.. # 1 we can apply
the Shamir’s trick [4] to get an e; — th root of aj,as. In particular, since
gcd(mer,es) = 1, by the extended Euclidean Algorithm we can compute

two integers A, i such that mAe; + pes = 1.This leads to the equation
ay = (ope/op,) 2 at

az = (ope- fopl. ) 2 at!

thus (op./opl.) e2a*t and (ope+ /opl. ) ¢2a*e! is the required corresponding
root.

4 Mirror Commitment

In this section, On the basis of the definition for mirror in section 2.4, we pro-
vide a formal definition of a mirror commitment scheme, followed by two con-
structions. In the first construction, the commitment ,designed based on CDH
Assumption. While in the second construction, the commitment, designed based
on RSA Assumption. We also prove the security properties and discuss some
useful features of our constructions.

4.1 Definition

A mirror commitment consists of seven ppt algorithms: Setup, Commit, Open,
VerifyP2™, Verify™!!, Update™®*28° and UpdateP™°f,

- (r,pp) Setup(l)‘) Given the security parameter A, the setup algorithm
Setup outputs a public random string r and some public parameters pp
(which implicitly define the message space M,,,, randomizer space R, and
commitment space Cpp.)

- (¢, ¢, auz) <+ Commit(r,m,pp) Given the public random string r, a mes-
sage m and public parameters pp, the commitment algorithm C'ommit out-
puts a commitment ¢, a dual commitment ¢* and corresponding an auxiliary
information auzx.

- op + Open(m, auzx, pp) This algorithm is run by the committer to produce
a proof op that m is the committed message and pp is the public parameters.
In particular, notice that in the case when some updates have occurred the
auxiliary information auz can include the update information produced by
these updates.
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- b < VerifyP?"*(r,m, c|c*, pp, op) Given the public random string r, a mes-
sage m, a commitment ¢ and opening information op, the partial verification
algorithm VerifyP%" outputs 1 if op is a valid opening for commitment ¢ or
dual commitment ¢* on message m.

(b,t) Verifyf“ll(r7 m, ¢, c*, pp, op)Given the public random string r, a mes-
sage m, a commitment ¢, a commitment ¢*, opening information op, the full
verification algorithm Verify/*! outputs b=1 if op is a valid opening for
commitment ¢ and dual commitment ¢* on message m. Verifyf“ outputs
t=1 if b=1 and ¢ & ¢*, and outputs t=0 if other conditions occur.

(¢, ¢, U) + Update™es&° (¢, ¢* m, m’)This algorithm is run by the com-
mitter to update the dual commitment by changing the message m to m/.
The algorithm takes as input the old message m, the new message m’, the
commitment ¢ and the dual commitment ¢* of message m. It outputs a new
commitment ¢ and a new dual commitment ¢* together with an update
information U.

(op') + UpdateP™°f (¢, ¢*,U, op) This algorithm can be run by any user
who holds a proof op for message m, and it allows the user to compute an
updated proof op’ (and the updated commitment ¢ and ¢*') such that op’
will be valid. Basically, the value U contains the update information.

For correctness, we require that VA € N, for all honestly generated parameters
pp, a honest committer should be able to correctly generate a commitment, a
mirror commitment and a proof op for all message m € M. Then, a honest
verifier can correctly verify the correctness of a proof, a commitment and a mirror
commitment and the relevance of the commitment and the mirror commitment
for all message m € M.

For security, we require that a malicious committer should not be able to
convincingly present two different messages m and m’ with respect to ¢ and c*.
we formally define the security and correctness of a mirror commitment scheme.
Definition 13. We say (Setup, Commit, Open, Verify?®™ Verify™!
Update™e528° and UpdateP™°") is a secure dual commitment scheme if it
satisfies the following properties.

Correctness. Let (r,pp) < Setup(1?) and (c, c* , auzr) + Commit(r, m, pp).
For a commitment ¢ and a mirror commitment ¢* output by Commit(r, m, pp),
and all m € M, the output of Open(m, aux, pp) can be successfully verified by
VerifyP** (r, m, c|c*, pp, op) and Verify™"(r, m, ¢, ¢*, pp, op).

Binding. For all adversaries A = (Ap,.A1), where Aj is ppt (and A; is not
computationally bounded), and for a randomly sampled (r,pp) <+ Setup(1*),
we have that:

PriVerify?**(r,m, c|c*, pp,op) = 1 A Verify?*"
(r,m’, c|c*, pp,op’) = 1 Am # m'|(c|c*, op,m) +
Ao(r); (m/,op’) < Ai(r, state)] < negl(N).
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Besides,

Pr[Verifyf“”(r, m,c, ¢, pp,op) = 1A Verify/u!
(r,m’,c,c*,pp,op’) =1 Am #m/|(c,c*, op,m) <
Ao(r); (m', op’) = Ay (r, state)] < negl(N).

Hiding.for all ppt adversaries A, for a randomly sampled (r, pp) < Setup(1*),
and for all pairs of messages (mg,m1), we have that

1
PriA(r,c,c*) = blb + 0,1; (¢, ¢, aux) < Commit(r,m,pp)] < 3 + negl()\).

4.2 A Mirror Commitment based on CDH: MCcpu

Here we propose an implementation of concise mirror commitment MCcpu
for single message based on the CDH assumption in multiplicative cyclic group
G of order p proportional to the security parameter A, where g the generator.
Precisely, the security of the scheme reduces to the Square Computational Diffie-
Hellman assumption(see Definition 6 in Section 2.1), which has been shown
equivalent to the standard CDH assumption [2, 3](see Definition 4 in Section
2.1). Appendix B shows the mirror commitment scheme supporting multiple
messages.

Setup(1*) Let G be a multiplicative cyclic group of order p proportional to the
security parameter A and let g be a generator of G. Randomly choose z., 21, 2o <
Zy. Set r = g¥, hy = g**, ha = g**. Set pp = (g, h1, ha). The message space is
M =17y,

Commit(r, m, pp) Compute

mipr * TLm
Cc = hl h2,C == h1h2

and output C' = (¢, ¢*, aux) and the auxiliary information aux = none.
Open(m,r, pp) Compute

hT? ha®
Opc =g, Opcr = g2

and output op = (0pe., 0per )-
VerifyP®* (r, m, c|c*, pp, opc|ope+ ) Compute

b 1, ifgc/h‘:’:opc
L 0 otherwise

1, if ¢¢/M = opes
by = .
0 otherwise

and output b = by V bs.
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Verifyf“"(r, m, ¢, c*, pp, 0p., ope+ ) Compute

by — 1, ifgc/hg:opC
e 0 otherwise

by =

1, if g9/ = opes
0 otherwise

b=0b1 Aby
1, ifb=1land c&c*
10 otherwise

and output (b,t).

Update™***?8° (¢, ¢*, m, m’) Compute the updated commitment ¢’ = ¢ x h;"/_m
and dual commitment ¢*' = ¢* x hg"l_m. Finally output ¢’ = (¢, c*') and U =
(m,m’).

UpdateP (¢, ¢*, U, op) A client who owns a proof op, that is valid to ¢ and ¢*

for the message m, can produce a new proof op’ = (op?;n m,opgén m).

The correctness of the scheme can be easily verified by inspection. We prove
its security via the following theorem.
Theorem 3. If the CDH assumption holds, then the scheme defined above is a

concise dual commitment.

proof 3 We prove the theorem by showing that the scheme satisfies the bind-
ing property. For sake of contradiction assume that there exists an efficient
sttacker A who produces two valid openings to two different messages, then
we show how to build an efficient algorithm B to break the CDH assumption.
First, A chooses z1, 22, 23 < Zp,it computes: hy = ¢g**, hy = ¢*>, 7 = ¢*. B
sets pp = (g, h1, ha) and runs Setup. Notice that the public parameters are
perfectly distributed as the real ones. The adversary is supposed to output a
tuple (¢, c*, m, m’, 0pe, 0per , 0pl,, 0p,. ) such that m # m’ and both op,, ope-
and op?,, oplc* correctly verify. Then A computes

R _hm/ -1
31 1

g"> = (ope * opl.)

r ’ m m/ 1
9" = (oper * op,.)E

To see that the output is correct, observe that since the two openings verify
correctly, then it holds:
ope * Wi = op' * hi"
0pes * ' = ope. * by
which means that ,
(7" —hT")

*hb /
g ? = 0p, * Opc

m m’ r ’
g(h2 _h2 )*hl — Opc* * OpC*

One can easily sees that this justifies the correctness of B s output. Notice
that if A succeeds with probability € breaking the Square CDH assumption.
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4.3 A Mirror Commitment based on RSA: MCgrsa

Here we propose a implication of mirror commitment MCgrgsa for single message
from the RSA assumption (whose definition is given in section 2.1).Appendix C
shows the dual commitment scheme supporting multiple messages.
Setup(1*, /) Randomly choose two £/2-bit primes p;, p2, set N = pips, and
then choose 2(¢ 4 1)-bit primes ej, es, a,r that do not divide ¢(N). Compute,

Sl = (162, SQ =a“!

The public parameters pp are (N, a,r, S1, 52, €1, e2). The message space is M =

{0,1}*.

Commit(r, m, pp) Compute
_ Sms'f‘ __ _eam-+tejcrs
C* — SIS;L — a61m+5207"s

and output C = (¢, ¢*, aux) and the auxiliary information aux = none.
Open(m,r, pp) Compute

op. = S;? mod N
Opex = SQ"‘T mod N

and output op = (0p., ope~ ). Notice that knowledge of pp allows to compute op,
efficiently without the factorization of V.
Verify®?" (1, m, c|c*, pp, opc|ope~) Compute

b 1, if S5op% mod N =c
e 0 otherwise

by 1, if STopSt mod N = ¢*
°T 0, otherwise

and output b = by V bs.
Verifyf“"(r, m, ¢, c*, pp, op., op~) Compute

b — 1, if S50p%? mod N =c
' 0 otherwise

by — 1, if STopst mod N = ¢*
> 0, otherwise

b=0b1 Aby

L 1, ifb=1and c& c*
B 0, otherwise
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and output (b,t).

Update™***?€°(¢, ¢*, m, m’) Compute the updated commitment ¢’ = ¢* S{”Lm
and dual commitment ¢* = ¢* * S;"Lm. Finally output ¢’ = (¢, ¢*') and U =
(m,m').

Updatepmc’f(c, ¢*, U, op) A client who owns a proof op, that is valid to ¢ and ¢*

for the message m, can produce a new proof op’ = (op, * SlT ,OPex xSy ).
In order for the verification process to be correct, notice that one should also

check that the S7, .Sy are correctly generated with respect to a and the exponents

e1,es. The correctness of the scheme can be easily verified by inspection. We

prove its security via the following theorem.

Theorem 4. If the RSA assumption holds, then the scheme defined above is a

concise mirror commitment.

proof 4 We prove the theorem by showing that the scheme satisfies the
binding property. More precisely, assume for sake of contradiction that there
exists an efficient adversary that produces two valid openings to two dif-
ferent messages at the same position, then we show how a ppt attacker
A to build an algorithm B that breaks the RSA assumption. Firstly, B
is run on input (N, z,ej,e2), where e is an (£ + 1)-bit prime, and it is
used to compute a value y such that z; = y**modN, zo = y*>modN. The
proceeds as follows. First, it sets a; = 21,a2 = 29. Then,it runs Setup
and gets back (S1,Sa,m,m’, ope, opex,op’, opl..) where m # m’ and both
Ope, 0pe and opex, opl.. are correctly verified. From the equations S opt? =
S op.e2, Syoplh = S%”lop;il we get

m—m’ __ /€2
Sy = op./op,,

ST = opes Jopl.

it opc/opl, = 1 or ope/op.. = 1 then we can factor with non-negligible
probability. Thus, assuming op./op.. # 1 and ope«/opl.. # 1 we can apply
the Shamir’s trick [4] to get an e; — th root of aj,aq. In particular, since
ged(mer,es) = 1, by the extended Euclidean Algorithm we can compute

two integers A, i such that mAe; + pes = 1.This leads to the equation

ay = (ope/op,,)ak*

ag = (0per Jopl. ) 2 ke

thus (op./opl.) e2a”t and (opes /opl. ) ¢2a*e! is the required corresponding
root.

5 Features on Mirror Commitment and Dual
Commitment

We next discuss some important features of Mirror Commitment and Dual Com-
mitment.
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Theorem 5. Homomorphism. DCcpy and MCepy are both (additive)
homomorphic in nature.

proof 5 Observe that given DCcpm commitments C7 = (¢1,¢}) and Cy =
(ca, c3) associated with message pairs (mq, ms) respectively, one can compute
the commitment C' = (¢, ¢*) for m = mq + mg as C = (¢1 * ¢o, ¢} + ¢5).
proof 6 Observe that given MCgpn commitments C7 = (¢1,¢}) and Cy =
(c2, ¢5) associated with message pairs (mi, ms) respectively, one can compute
the commitment C' = (¢, c*) for m = my +mg as C = (¢ * 2, ¢} x c3).

Theorem 6. (Standard Security Properties DCrga and MCgrga are com-
putationally hiding under the RSA assumption. DCcpy and MCcpy are sta-
tistically binding.

proof 7 The construction is computationally hiding under the RSA assump-
tion, because the commitment algorithm is identical to the one for ElGa-
mal commitments. For binding, pedersen commitments are computationally
binding under the CDH assumption. We refer the reader to ElGamal [6] and
Pedersen [7] for detailed discussions.

Theorem 7. Trapdoor Commitment. DCcpy, MCcpa, DCrsa, MCrsa
are also trapdoor commitment schemes, where r = g% is the trapdoor.

proof 8 For DCcpy, given r, a simulator can create witnesses for arbitrary
values with respect to C' = hj*h% for an unknown r. To ”prove” m (where
m is message supposedly committed to by C'), output op. It can easily be
checked that VerifyP**(C, m,op, pp) = 1 and Verify™"(C,m,op,pp) = 1
The same also applies to MCcpa, DCrsa, MCRrsa -

6 Two-way Zero-knowledge Authentication Protocols

In this section, we describe applications of our commitment schemes to con-
struct bidirectional non-interactive zero-knowledge authentication protocols. A
Prover(P) can convince a Verifier (V) that it is legal user by proving c¢* is the
duality of ¢ or ¢* is the mirror of ¢ without revealing any privacy information
and they can still continue to authenticate without another initialization even
after changing roles. Here, we give the instance of constructing non-interactive
and interactive bidirectional zero-knowledge authentication protocols through
DCgrsa and MCgrga . However, DCcpn is one-way dual commitment so that
it can’t be used to build bidirectional authentication protocol, but, it can be used
to build tone-way authentication protocol. The rest 2 instances of constructing
zero-knowledge authentication protocol through DCcopn, MCcpy are similar
to DCrsa and MCRrsa. They are showed in Appendix D.
zero-knowledge authentication for DCgrga

Let p1, p2 are two £/2-bit primes , set N = pips. Let eq,ea,a,r are three
2(¢ + 1)-bit primes that do not divide ¢(N). Let S; = a2, Sy = a®*,m € {0, 1}*.
The protocol presented in algorithm 1 as a sigma protocol for the relation R;.
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Algorithm 1 Interactive protocol for DCrsa
Ri=c,c* €Gymy,mg € Zy : c = ae2mtercrs o — gleatm)(ertr)

P: ro,r1 & Z; and computes :
Ry = aTo(61+62)’R1 — gri(ei—e2)
P—V: Ro, R1
V:t (i 7y
VPt
P: computes:
Yo = aTo+t(m+T‘)7
P—V: Yo, Y1
V: returns Accept if and only if the following hold:

y(()e1+€2) " yfl*e?)/c% z Ro*x Ri (1)

y1 = ar1+t(r—m)

proof 9 Completeness follows trivially by inspection. We next show that
the protocol is 2-special sound by a standard rewinding argument, where
we define an extractor that produces valid witness elements on accept-
ing transcripts using distinct verifier challenges. Fix an initial transcript
(¢, c*,Ro, R1), and let ¢ # ¢ be distinct verifier challenges for this transcript,
with corresponding responses (yo,y1) and (y(,y;). We apply Equations (1)
to these transcripts to obtain

(I ferren(Lyermen = (e (g)

Yo Y
and hence rten) ( )
yo €1 3/2 yl e%7i2
() T (L) U = 2 3)
Yo hn
_a a1
Define ap = (£)© and oy = ()7, and note that both are well

Jo 1
defined since ¢ # ¢’. According Equation (3) and definition, we obtain the
following expressions for ¢ and c*

Cc = (0[0 * al)% * (&)672 — aezm-‘relcrs
Oél)
= (ﬂ)% * (aO * 041)671 % géreztmar a(62+m)(el+7\)

041)

We finally show that the protocol is special honest-verifier zero knowledge.
To do so, we define a simulator that, on a valid statement and uniformly
sampled verifier challenge, produces transcripts indistinguishable from those
of real proofs. Fix a valid prover statement (¢,c¢*) and sample a nonzero
challenge ¢ € Z;. The simulator samples random yg,y; € Z; and defines
Ry, Ry using Equations (1), respectively. The resulting simulated proof will
be accepted by an honest verifier. Because e, e are different primes, such
a simulated proof is distributed identically to a real proof, and hence the
protocol is special honest-verifier zero knowledge. This completes the proof.
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This protocol may be made non-interactive via the Fiat-Shamir [33] technique,
where the verifier challenge is replaced by a suitable transcript hash. This tech-
nique further allows for binding an arbitrary proof context into the transcript.
Algorithm 2 shows an example non-interactive protocol.

Algorithm 2 Non-interactive protocol for DCrgsa
Ri=c,c* €Gimy,mg €7 : ¢ = ae2mtercrs o — gleatm)(ertr)

3
P: ro,71 < Z; and computes :
Ry = aro(eﬁrez)’Rl _ arl(el—eg)

t = Hs(Ro * R1,¢,c*) where Hs(x) is a hash function
Yo = ar0+t(m+'r)’ 0 r1+t(r—m)

P—V:t yo, 11

V: returns Accept if and only if the following hold:
H(ySere2) s ylerme2) je2t oo ox) Ly

=a

Theorem 8 Both non-interactive and interactive zero-knowledge authentication
protocols for DCgrga can be used to realize bidirectional authentication with
only an initialization.

proof 10 According to the definition 8 in Section 3.4, we know c¢* is the
dual of ¢, the reverse is also true, so Prover P and Verifier V are allowed
exchange roles so that they can realize bidirectional authentication with only
an initialization without additional initialization.

zero-knowledge authentication for MCgrsa

Let p1, pa are two £/2-bit primes , set N = pips. Let e1,e2,a,r are three
2(¢ + 1)-bit primes that do not divide ¢(N). Let S; = a2, Sy = a®*,m € {0, 1}*.
The protocol presented in algorithm 3 a