
Off-Chain Programmability at Scale

Yibin Yang2⋆, Mohsen Minaei1⋆, Srinivasan Raghuraman1, Ranjit Kumaresan1, and Mahdi Zamani1

1 Visa Research
2 Georgia Institute of Technology

Abstract. A typical approach for scaling blockchains is to create bilateral, off-chain channels,
known as payment/state channels, that can protect parties against cheating via on-chain collater-
alization. While such channels have been studied extensively, not much attention has been given
to off-chain programmability, where the parties can agree to enforce arbitrary conditions over their
payments without going on-chain. Such ability is especially important for scaling off-chain channels
via the hub-and-spoke model, where each party establishes a channel with a highly available (but
untrusted) hub without a priori knowledge about the type and conditions of its off-chain transac-
tions.
We introduce the notion of a programmable payment channel (PPC) that allows two parties to agree
on a smart contract off-chain specifying the conditions on which the transactions can happen. If
either party violates any of the terms, the other party can later deploy the contract on-chain to
receive a remedy as agreed upon in the contract. Specifically, our PPC supports programmable
payments where only one party deposits to the agreed off-chain contract, enabling lightweight
payments. We further show that any two-party contract (even ones with two party deposits) can
be implemented with PPC, by a compiler and associated protocol, allowing the parties to use
their pre-deposited on-chain collaterals for any off-chain interaction potentially not anticipated at
the time of channel setup. We formalize and prove the security and correctness of our protocol
under the UC framework. We implement our protocol on Ethereum using accumulators to achieve
efficient concurrent programmable transactions and measure the gas overhead of a hash-time-lock
PPC contract to be < 100K which can be amortized over many off-chain payments.

1 Introduction

Today, financial institutions offer a variety of services such as payments, loans, trading, etc., to consumers
and businesses. These products heavily rely on some metrics of trustworthiness that allow the institution
and the clients to engage in transactions while minimizing the risk of financial loss in case either party
fails to meet certain requirements that protect both parties’ interests. These requirements are usually
specified as a mutual contract agreed upon by both parties, allowing the suffering party to collect all or
a portion of the other party’s assets as a remedy in case of failure.

With the rise of decentralized services, financial products can be offered on blockchains with higher
security and lower operational costs. With its ability to run arbitrary programs, called smart contracts,
and direct access to assets, a blockchain can execute complex financial contracts and settle disputes auto-
matically. Unfortunately, these benefits all come with a major scalability challenge due to the overhead of
on-chain transactions, preventing the adoption of blockchain services as mainstream financial products.

Payment channels [2,13] are a class of mechanisms for scaling blockchain payments, by “off-loading”
transactions to an off-chain communication channel between the two parties. The channel is “opened”
via an on-chain transaction to fund the channel, followed by any number of off-chain transactions. Even-
tually, by a request from either or both parties, the channel is “closed” via another on-chain transaction.

⋆ Both authors contributed equally and are considered co-first authors. This work was done while at Visa Re-
search.

2

Programmable
Payment Channel

HUB

AuctionHTLC …

O
n-

ch
ai

n
O

ff-
ch

ai
n

HUB
HTLCHTLC

HUB
AuctionAuction

HUB
LotteryLottery

Off-chain

Fig. 1: Left: Hub-and-spoke model: Each party creates a single channel with the hub;
Middle: Every pair of parties reuse their channels with the hub to execute different contracts; Right: PPC
between two parties supporting any off-chain application.

This design avoids the costs and the latency associated with on-chain operations, effectively amortizing
the overhead of on-chain transactions over many off-chain ones. While several proposals improve the
scalability of payment channels [30,22,3,16,24,18,25,31], they do not allow imposing arbitrary conditions
on off-chain payments.

State channels [4,28,4,17,14,12,10] allow two parties to perform general-purpose computation off-chain
by mutually tracking the current state of the program. Unfortunately, the existing state channel proposals
have two major drawbacks in practice. First, they require the parties to fix the program, which they wish
to run off-chain, at the time of channel setup. This means that no changes to the program are allowed
after the parties go off-chain. This is especially problematic in off-chain scalability approaches based on
the hub-and-spoke model [33,15,8], where each party establishes a general-purpose channel with a highly
available (but untrusted) hub during setup to be able to later transact with many other parties without
the need to establish an individual channel with each party (see Fig. 1 Left and Middle). In practice,
parties usually have no a priori knowledge about the specific set of conditions required to transact with
other parties that they have never established any relationship with.

Second, the complexity of the existing state channel proposals could be overkill for simple, pro-
grammable payments. The authorization of an off-chain transaction via a payment channel is significantly
simpler as the flow of the payments is usually unidirectional (i.e., from a payer to a payee) while state
channels need to track all state changes from both parties irrespective of the payment direction.

In this paper, we introduce the notion of programmable payment channels (PPC) that allows the
parties to agree off-chain on the set of conditions (i.e., a smart contract) they wish to impose for each of
their off-chain transactions (see Fig. 1 Right). A classic example of such a program is a hash-time-locked
contract (HTLC) [1] which is foundational to the design of payment channels [30,3]. These payment
channel networks rely on HTLCs to provide trustless routing of payments across the network.

While most current payment channels already embed HTLCs for routing, many useful applications
remain difficult to build on top of payment channels. Consider the following simple programmable pay-
ment example. Alice wants to reserve a room through an established payment channel with the hotel.
Alice would like to send a payment under the following conditions: (1) Alice is allowed to cancel the
reservation within 48 hours of booking to get back all of her funds, and (2) Alice can get back half of
her funds if she cancels the reservation within 24 hours of the stay date. Achieving this simple real-life
example of a payment with current payment channels and HTLCs is either inefficient or impossible.

Our Contribution. This paper makes the following contributions:

2. RELATED WORK 3

– We propose the notion of a programmable payment channel (PPC) that is a payment channel allowing
two parties to transact off-chain according to the collateral that they deposit on-chain and a smart
contract that they agree on off-chain. PPC provides the following features:

• Scalability: Only opening and closing the channel require on-chain access.

• Off-Chain Programmability : The PPC protocol does not need be modified for new payment logic
after the channel is opened.

• Completeness: Any two-party contract can be taken off-chain and compiled into two interlocked
programmable payments.

– We formalize PPC and prove its correctness and security in the Universal Composability (UC) frame-
work using a global ledger.

– We evaluate PPC by instantiating it on Ethereum. We show how the PPC contract can deploy new
contracts that embed the conditions of a payment. Furthermore, we use cryptographic accumulators to
achieve efficient concurrent payments. Our results show that deploying the PPC contract needs about
3M gas, and further see that in the optimistic case (honest parties) of settling on-chain we need only
75K gas, while in the pessimistic case (malicious parties) 700K more gas is needed for a simple logic
such as HTLC.

2 Related Work

Payment Channels. The key idea behind a payment channel is an on-chain contract: both parties
instantiate this contract and transfer digital money to it. Later on, whenever one party wants to pay
another, they simply signs on the other party’s monotonically-increasing credit. When the two parties
want to close the channel, they submit their final signed credits to rebalance the money in the channel.
Before closing the channel, no execution has to happen on the blockchain; the payment between two parties
relies only on sending digital signatures via a traditional communication network. Payment channels have
been heavily studied and deployed before [2,13,17,26,18,28,9,29].

State Channels. A proposal for executing arbitrary contracts off-chain is state chan-
nels [28,4,17,14,12,10]. The key idea is as follows: (1) The contract can be executed off-chain by exchanging
signatures, and (2) the contract can be executed on-chain from the agreed state to resolve disagreement.
For example, considering a two-party contract between Alice and Bob, whenever Alice wants to update
the current state, she simply signs the newer state. Then, she forwards her signature and requests for
Bob’s signature. While Bob may not reply with his signature, Alice can submit the pre-agreed state to
the blockchain with the contract and execute it on-chain. This idea can be naturally extended to multi-
party contracts (e.g., [28,14,11]). In the optimistic case, the execution of the contract will be finished
completely off-chain. However, due to its complexity, state channels largely remain in the realm of theory
today. We argue that the work [12] is closest to ours, but unlike us, they do not provide any formal
proofs or guarantees. Also, our protocols take advantage of the Ethereum CREATE2 opcode (which was
introduced subsequent to the work of [12]).

Channels Formalization. We follow [16,17,14,5] to formalize our channel using universal composable
(UC) framework with a global ledger. We note that these works mainly focus on channel virtualization,
which are not directly related to this work.

Other Related Work. An excellent systematization of knowledge that explores off-chain solutions can
be found in [20]. Coinbase Commerce uses CREATE2 on the state channel to reuse a fixed contract

4

Contract

Application 1 Logic Application 2 Logic

Application 3 Logic

…
Application 4 Logic

Authorize & Deploy

Contract

Resolve

Application 1 Logic

Contract 1

Application 2 Logic

Contract 2

Fig. 2: Application-dependent approach (top) and
on-the-fly promises as contracts (bottom)

Contract

Promise 1 Promise 2

First Promise
interlocked with a
promise to be sent

by the counter-party

Read

Fig. 3: Execute arbitrary two-party contract on
PPC. Compiler compiles any two-party contract
into two interlocked promises.

called Forwarder to process instant off-chain transactions3. This is different from our work where we
utilize CREATE2 to achieve and commit general programmable payments, while Coinbase uses it to save
gas fees by deploying the contract when the fees are less.

3 Technical Overview

Strawman Solution. Our starting point is to consider how programmability may be incorporated into
a payment channel. The straightforward solution is to hard-code the logic of an application inside the
protocol as a template. However, this approach is not desirable as every new application would require a
protocol update that would also include changes to the existing on-chain contract. Typical state channels
follow this application-based pattern. For instance, a state channel contract may enable off-chain chess
but not a poker game.

Our Approach: Contracts Deploy Contracts. Contracts on blockchains are now allowed to deploy
new contracts at deterministic addresses. For example, Ethereum introduced the opcode CREATE2 in
EIP-10144. Our PPC protocol crucially relies on the above feature to achieve general programmability.

In Ethereum, using the CREATE2 opcode, contracts deploy contracts whose address is set by
H(0xFF, sender, salt, bytecode) (where H is a hash function; we replace it by a random oracle denoted by

3 https://legacy.ethgasstation.info/blog/what-is-create2/
4 EIP stands for Ethereum Improvement Proposals. EIP-1014 is available at https://eips.ethereum.org/EIPS/eip-
1014.

https://legacy.ethgasstation.info/blog/what-is-create2/
https://eips.ethereum.org/EIPS/eip-1014
https://eips.ethereum.org/EIPS/eip-1014

4. NOTATIONS AND MODELS 5

RO in the rest of the paper). This capability implies that one can foresee the address of some yet-to-be-
deployed contract. This property, which we dub prescience, will be crucial later.

In our system, a promise represents a single instance of a programmable payment which is written
as a contract that can be deployed on-chain by the PPC contract. We rely on the PPC contract to
determine whether a promise should be deployed. The PPC contract simply requires the payer’s/sender’s
authentication via digital signatures, as funds flow unidirectionally in a programmable payment. After
deploying the promise, to fast-forward to the last agreed off-chain execution state, we require both parties’
signatures on the latest state. We directly embed this mechanism into the promise contract.

Promises are only deployed on-chain whenever a dispute arises, and the execution continues on-chain
via the newly deployed contract. However, in the optimistic case, when both parties are honest, the entire
execution is handled off-chain. Figure 2 presents our approach compared to the strawman solution.

To demonstrate that PPC is as expressive as two-party state channels, we also show how to compile
any two-party contract into two interlocked promises. This compilation relies on the prescience property
we described earlier. We briefly present this compiler by a toy example as shown in Figure 3: assume a
two-party betting chess game. Party A instantiates a promise that relies on the existence of a promise from
party B (cf. prescience). The promise authenticated by A can read the promise (yet to be) authenticated
by B that will be located at a specific address, which plays a role in executing the chess game as well as
settling the payment from B to A. B can only benefit from A’s promise if it correctly forms its promise,
which A is expecting. If a party deviates from the game, the other party can take both promises to the
PPC contract and resolve the game.

4 Notations and Models

Contracts and Programmable Payment Channel. We define the object contracts and channel
as in [17]. A contract instance consists of two attributes: contract storage (accessed by key storage)
and contract code (accessed by key code), where the contract storage σ is an attribute tuple con-
taining at least the following attributes: σ.userL, σ.userR, σ.locked, σ.cash; and the contract code
is a tuple C := (Λ, g1, . . . , gr, f1, . . . , fs). A programmable payment channel is an attribute tuple
γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.pspace, γ.duration). Note that the attribute γ.duration was not part
of prior channel formalizations (e.g., [17,14]); we will discuss the need for it in more details in Section 5.
Appendix A.1 includes the complete descriptions for these two objects.

We further define two auxiliary functions: (1) γ.endusers := {γ.Alice, γ.Bob}; and (2) γ.otherparty(x) :=
γ.endusers \ {x} where x ∈ γ.endusers.

Promises. We name a programmable payment a promise. Informally, a promise instance can be viewed
as a special contract instance where only one party offers money. Formally, a promise instance consists
of two attributes: promise storage (accessed by key storage) and promise code (accessed by key code).
Promise storage σ is an attribute tuple containing at least the following attributes: (1) σ.payer denotes the
party who sends money; (2) σ.payee denotes the party who receives money; (3) σ.final ∈ R≥0 denotes the
amount of money transferred from payer to payee; and (4) σ.end ∈ {0, 1} denotes whether the payment
is finalized. A promise code is a tuple C := (Λ,Construct, f1, . . . , fs) similar to contract code with further
restrictions: (1) the unique constructor function Construct will always set the caller to be the payer in the
storage created; (2) the constructor function’s output is independent of input argument t; and (3) any
execution function f will not modify the end attribute in storage from 1 to 0.

GUC Model. We model and formalize PPC under global universal composable (GUC) framework [6,7].
UC is a general purpose framework for modeling and constructing secure protocols. The correctness and
security of protocols rely on simulation-based proofs. We defer the formal description to Appendix A.2.

6

Adversary. We consider the adversary who can corrupt one party in the two-party channel. The cor-
rupted party can deviate from the protocol arbitrarily and is also known as malicious or byzantine.

Network & Time. We assume a synchronous complete peer-to-peer authenticated communication net-
work. Thus, the execution of protocol can be viewed as happening in rounds. The round is also used as

global timestamp. We use msg
t≤T←↩ P to denote the message will be sent by party P before round T .

Similarly, we use msg
t≤T
↪→ P to denote that the message will be delivered to party P before round T .

Specifically, the adversary is allowed to introduce delays for messages delivery but the delays should be
bounded.

Cryptocurrency and Contracts. We follow [17,14] and model cryptocurrency as a global ledger func-
tionality L̂ in the GUC framework. Parties can shift funds from/to the ledger functionality solely by
invoking other ideal functionalities (including contracts) that can invoke the methods Add/Remove. How-
ever, any operation on the global ledger will happen within a delay of ∆ rounds as decided by the
adversary A, capturing the fact that this is an on-chain transaction.

5 Realizing PPC

We propose our PPC protocol under the UC framework following [16,17,14]. We first define the ideal
functionality FPPC (with dummy parties) which summarizes all the features that our PPC protocol will
provide. Our real PPC protocol π will be presented in a hybrid model, using a PPC contract functionality
GPPC . The functionality GPPC captures the on-chain contract functionality, which can be implemented
on Ethereum via multiple smart contracts. The protocol π, on the other hand, captures the off-chain
protocols between parties that will be executed via authenticated channels.

We make several reasonable simplifications for better presentation. Crucially, we assume the existence
of a public key infrastructure (PKI) and work in the random oracle (RO) model to capture the CREATE2
opcode in Ethereum. We defer the justification of our simplifications to Appendix B, partial protocol boxes
to Appendix C and the entire simulator-based proof to Appendix D.

5.1 The Ideal Functionality FPPC

F L̂PPC(PS) (see Fig. 4) is the UC ideal functionality achieved by our protocol. It will maintain a key-value
data structure Γ to track all programmable payment channels between parties. The functionality has an
argument promise set PS, which denotes all possible promise codes that can be instantiated and executed
in channels. Note that this does not harm our general programmability and on-the-fly logic since PS can
be any set of promise codes. In the following presentation, we will use FPPC as an abbreviation in the
absence of ambiguity. FPPC mainly contains the following 4 procedures.

PPC Creation. Similar to all other channels, a party can instantiate a channel with another party by
sending the channel creation information to FPPC . W.l.o.g., assume party P wants to construct a channel
with party Q. Within ∆ rounds, FPPC will take corresponding coins specified by the channel instance
from P ’s account from L̂. If Q agrees to the creation, within another ∆ rounds, FPPC will take Q’s coins.
Thus, the successful creation of a initial programmable payment channel takes at most 2∆ rounds.

Promise Initial Instance Creation. This procedure is used to create a promise, which is a pro-
grammable payment from payer P to the payee Q. The creation instance is specified by payer’s choice of
channel, contract code and arguments for the corresponding constructor function. Informally, this pro-
cedure captures the fact that the payee cannot refuse a payment from payer. Since payee always gains
coins in any promise, we don’t need an acknowledgement from the payee to instantiate a promise. Thus,

5. REALIZING PPC 7

Functionality FL̂PPC(PS)
Let RO be a random oracle.

Programmable payment channel creation

Upon (create, γ)
t0←↩ P where γ is a valid initial programmable payment channel (P ∈ γ.endusers, γ.cash(·) ≥ 0, γ.pspace = ⊥,

denote Q := γ.otherparty(P)):

1. Within ∆ rounds remove γ.cash(P) from P ’s account on L̂.

2. If (create, γ)
t1≤t0+∆
←↩ Q, remove within another ∆ rounds γ.cash(Q) coins from Q’s account on L̂, set Γ (γ.id) := γ, and

send (created, γ) ↪→ γ.endusers and stop.

3. Else, upon (refund, γ)
>t0+2∆
←↩ P , within ∆ rounds add γ.cash(P) coins to P ’s account on L̂.

Promise initial instance creation

Upon (create-instance, id, C, z)
t0←↩ P , let γ := Γ (id) and calculate pid := RO(id, P, C, z). If γ = ⊥ or P /∈ γ.endusers or

γ.pspace(pid) ̸= ⊥ or C /∈ PS then stop. Else proceed as follows:

– Let ν := ⊥ and σ := C.Construct(P, t0, z). Stop if σ = ⊥. Set ν.code := C and ν.storage := σ. Set Γ (id).pspace(pid) := ν.

Send (instance-created, id, pid, ν)
t0+1
↪→ γ.endusers.

Promise instance execution

Upon (execute, id, pid, f, z)
t0←↩ P , let γ := Γ (id). If P /∈ γ.endusers or γ.pspace(pid) = ⊥ or f /∈ γ.pspace(pid).code then stop.

Else proceed as follows:

– In the optimistic case when both parties in γ.endusers are honest, set T := t0 + 5.
– In the pessimistic case when at least one party in γ.endusers is corrupt, set T := t0 + 4∆ + 5.

If both party are honest, set t := t0, else t is set by the simulator (however t ≤ T). Let ν := γ.pspace(pid) and σ := ν.storage. Let

(σ̃,m) := f(σ, P, t, z). If m = ⊥, then stop. Else set Γ (id).pspace(pid).storage := σ̃ and send (executed, id, pid, P, f, t, z, ν)
t1≤T
↪→

γ.endusers.

Programmable payment channel closure

Upon (close, id)
t0←↩ P , let γ := Γ (id). If P /∈ γ.endusers then stop. Else block all future close invocations on γ. Wait at most

7∆ rounds and proceed as follows:

1. If there exists pid ∈ {0, 1}∗ such that γ.pspace(pid).storage ̸= ⊥ and γ.pspace(pid).storage.end = 0, then wait γ.duration
rounds.

2. Calculate the following values:
(a) Set total := γ.cash(γ.Alice) + γ.cash(γ.Bob).
(b) Set creditA :=

∑
γ.pspace(pid).storage.payer=γ.Bob(γ.pspace(pid).storage.final).

(c) Set creditB :=
∑

γ.pspace(pid).storage.payer=γ.Alice(γ.pspace(pid).storage.final).

3. Within ∆ rounds, add min{total,max{0, γ.cash(γ.Alice) + creditA − creditB}} coins to γ.Alice’s and
min{total,max{0, γ.cash(γ.Bob) + creditB − creditA}} coins to γ.Bob’s account.

4. Send (contract-close, id)
t1≤t0+8∆+γ.duration

↪→ γ.endusers.

Fig. 4: The ideal functionality F L̂PPC(PS) achieved by the PPC protocol.

the creation takes exactly 1 round. Note that this does not hold for state channels as formalized in [17]
where an instance requires coins from both parties. The created instance’s identifier is determined by a
random oracle (denote by RO). The random oracle ensures that a promise instance pid can be created
at most once. Since the channel identifier id is also an argument to the random oracle, statistically, there
will not be two promise instances even across different channels that share the same pid.

Promise Instance Execution. This procedure is used to update the promise instance’s storage. Specif-
ically, party P can execute the promise pid in channel id as long as P is one of the participants of the
channel. Note that the existence of pid implies that this instance is properly constructed by the payer
via the promise instance creation procedure. If both parties are honest, the execution completes in O(1)
rounds, inferring no on-chain operation. Otherwise, if one of them is corrupt, it relies on on-chain opera-
tions which takes O(∆) rounds. Note that, the adversary can select the function execution time, however,
it cannot block a party from executing and updating it.

8

Programmable Payment Channel Closure. When one party of the channel instance γ wants to close
the channel, the procedure checks whether there is still some promise that has not been finalized. If so,
it will wait for γ.duration rounds. The corresponding procedure in the state channel functionality of [17]
requires that all contract instances in the channel are finalized in order to close the channel. We cannot
imitate this approach because in our case, the creation of a promise instance need only be authenticated
by the payer, and so requiring finality will allow a malicious party to block closing by simply creating
some non-finalizable promise instance. Note that it could be the case that a malicious party overpays the
other party, but our ideal functionality ensures that no extra coins are created. Informally, this implies
that it is the users’ responsibility to ensure that all the expected promises can be finalized in γ.duration
rounds.

5.2 Protocol Realizing FPPC

We present the programmable payment channel protocol in this subsection. The protocol π(PS) is defined
assuming access to an ideal programmable payment channel smart contract functionality GPPC . All
specifications in π(PS) should be viewed as the procedure executed on the party’s local machine while
all specifications in GPPC should be viewed as on-chain smart contracts. Since GPPC emulates smart
contracts, coins in L̂ can be transferred to/from it.

Each party P will maintain a local key-value data structure ΓP to monitor all channels belongings. P
also locally monitors all promise instances executed on each channel. Besides the latest promise storage
σ, P also maintains another key-value object ΓP

aux to save auxiliary data including signatures, version,
etc. We briefly explain the use of signatures and version below.

Signature. The signatures are used to authenticate the creation as well as the latest state of promise
instances. Users need to provide a valid signature from the payer on the creation arguments in order
for the PPC contract to deploy the authenticated promise contract. To execute the contract off-chain,
two parties exchange their signatures on the latest state. For simplification, we directly allow the PPC
contract to “deploy” the promise instance if either party provides a state (including pid) with both parties’
signatures. Since one party is honest, pid is in line with creation process. Formally, the PPC contract
deploys an initial promise contract. Then a party can submit the latest state to the promise contract.

Version. Integer number version is used in order to obtain a total ordering for the states of promise
instance. We define that the initial promise storage created by constructor function is of version 0.

Register. A special sub-procedure (not interacting with environment) called Register is used to deploy a
promise instance on-chain. The PPC protocol π will heavily use this sub-procedure to register a promise
instance. The protocol requests both parties to submit a valid storage and will deploy the one with
larger version. The entire procedure will be finished within 3∆ rounds with one corrupt party and within
2∆ rounds with two honest parties. We defer the specification and discussion of this sub-procedure
to Appendix C.

We are now ready to describe the protocol that achieves the 4 procedures in FPPC . All UC-style
protocol boxes can be found in Appendix C.

Create a Programmable Payment Channel. Party P sends the valid initial channel object to the
PPC contract. If the other party agrees and they both have enough funds, coins will be transferred to
GPPC from L̂.
Create an Initial Promise Instance. Party P signs the constructor arguments (without time) and
forward it to party Q. Both parties then can use the Register sub-procedure to deploy it as a contract on
Layer-1 if needed.

5. REALIZING PPC 9

Execute a Promise Instance. Assume party P wants to execute a promise function to update promise
storage. If this promise instance is already on-chain, he directly calls the function on Layer-1. Otherwise,
P will first try to peacefully (off-chain) execute the promise function. P will fetch the latest storage σ
including version from his local memory, execute it locally and sign the newer storage σ̃ with (version+1).
P forwards the signature to Q and requests her signature. If Q accepts the execution, she sends back
her signature, and the execution will be finished off-chain in O(1) rounds. If not, P needs to execute the
function on-chain. He can register the latest promise instance on the Layer-1 blockchain. Note that since
Q already has both parties’ signatures on the newer version, she could register it directly on-chain to
invalidate the version P wants to register. If after the registration sub-procedure, the promise instance
on-chain is still P ’s version, P can then update it by on-chain function execution. We follow [17] to
sequentialize the execution.

Closing a PPC. For a party P to close a PPC channel γ with Q, he first (in parallel) registers all the
promise instances he has off-chain in γP .pspace within 3∆ rounds. Then P will notify the PPC contract
GPPC that he wants to close the channel. The contract will further notify Q about the closing and set up
a 3∆ time window for Q to register her local instances. Note that if both parties are honest, all promise
instances in γQ.pspace should already be registered by P . After the time window passes, GPPC will check
the status of all registered instances in γ. If all of them are finalized, the channel will be closed and
corresponding final balances will be transferred back to the party’s account on L̂ within ∆ rounds. If
there still exists a not finalized instance, it will wait for γ.duration rounds and split the coins.

5.3 Theorems

We formally claim our theorems and features of PPC captured by FPPC . All of the theorems are proved
in Appendix D.

Theorem 1 (Main). Suppose the underlying signature scheme is existentially unforgeable against cho-

sen message attacks. The protocol π(PS) working in GL̂(∆)
PPC (PS)-hybrid model emulates the ideal funci-

tonlity F L̂(∆)
PPC (PS) against any environment E in the random oracle model for every set of promise codes

PS and every ∆ ∈ N.

Claim 1 (Single round instance creation). The creation of an initial promise instance takes 1 round.

Claim 2 (Constant round off-chain execution). If both parties are honest, every call to instance execution
procedure of FPPC will finish in O(1) round.

Theorem 2 (Coins momentum). Any channel γ cannot produce coins.

Theorem 3 (Balance security). Honest users will not lose coins in channels.

5.4 Comparison with Previous Channels

Our formalization methodology follows the previous works on payment and state channels, i.e., [16,17,14].
Despite looking similar, there are some crucial differences between our work and prior works. In particular,
PPC has certain features that other works do not, and we discuss these below.

1. General Programmable Payment: Our PPC protocol and the ideal FPPC enable programmable
payments by defining the object promise and the procedure execute. These are not part of the tra-
ditional non-programmable payment channels [16]. Note that PPC’s programmability is general since
all execution functions f1, . . . , fs associated with a contract can be written inside the promise as
C = (·, ·, f1, . . . , fs).

10

2. Succinct Initialization: Our PPC protocol and the ideal FPPC initialize a promise using a single
digital signature from payer to payee, i.e., the procedure create-instance. This is appropriate since only
the payer will spend digital coins. State channels (e.g., [17,14]) do not have this feature. Formally, the
procedure named update (in [17,14]) involves exchanging multiple signatures and crucially, potential
on-chain interactions.

3. On-the-fly Logic: Our PPC protocol and the ideal FPPC instantiate a promise as a Layer-1 contract,
which will only be deployed in the pessimistic case. The execution of the promise is performed on the
blockchain directly via the corresponding contract. This is captured by the instance-construct procedure

in GL̂(∆)
PPC (PS), which is used to register an initial promise on-chain. The identifiers (i.e., the contract

address) of promises are determined by a random oracle (emulating the CREATE2 opcode). The
argument PS is just a formalization choice–it can contain all possible promises, and so, the protocol
does not need to be updated based on the promise types.

6 Compiling A Contract to Promises

On the one hand, our programmable payment channel protocol subsumes regular payment channel pro-
tocols. A simple payment can be captured by payer P creating an initial promise instance directly
constructed as finalized with the proper amount. On the other hand, it seems that our programmable
payment channel protocol may not subsume protocols for state channels, i.e., execute a contract where
two parties can both deposit coins in. Informally, a promise is somewhat a half state contract with the
specified payer and payee where only the payee can put money in. Surprisingly, this turns out to be
false. In this section, we provide a compiler that can compile any two-party contract into two promises.
With an associated protocol to set up these two promises, we enable arbitrary two-party contract to be
executed off-chain on the programmable payment channel.

Our compiler relies on two key observations:

– Since an on-chain promise is a contract, it can read/write other contracts.
– Since an on-chain promise is created by the CREATE2 opcode, a promise instance (even one that

has not been created yet) is bound to one address.

Consider a contract code as C := (Λ, g1, · · · , gr, f1, · · · , fs) where Alice (denoted by A) wants to start
an instance (with Bob, denoted by B) created by some g ∈ {gi} with auxiliary inputs z′ at time t′. That
is, the first state will be σ′ := g(A, t′, z′) (σ′ ̸= ⊥). At a high level, our compiler will compile this contract
code into two promise codes, one from A to B, and one from B to A. All the logic will be wrapped into
the promise from B to A. For example, if Alice and Bob want to play a chess game, the chess board logic
will be coded inside the promise from B to A. This promise will be updated into a final payment if B
indeed needs to pay A at the end of the game. The promise from A to B simply monitors the state of the
other promise and settles the payment if A needs to pay B. The CREATE2 opcode plays an important
role here as Alice can “play B in her head” and simulate the creation of B’s promise. B’s promise will
be assigned to a specific address that A can precompute via playing B in her head as above. A can thus
create a promise that reads B’s non-existing promise.

The construction of the promise code from Bob to Alice, defined as CB→A :=
(·,Construct, f1, · · · , fs,Enable,Finalize), is shown in Figure 5a. The construction of the promise
code from Alice to Bob, defined as CA→B := (·,Construct,Finalize), is shown in Figure 5b. We discuss
some crucial points:

– The constructor function of CB→A uses σ′ as a white-box. Note that the constructor function is
independent of input t. However, the contract address will be affected by the salt picked by Alice.

6. COMPILING A CONTRACT TO PROMISES 11

Promise Code CB→A

Construct(P, t, salt):
1. if P /∈ {σ′.userL, σ′.userR}, return ⊥.
2. σ ← σ′.
3. σ.payer := P, σ.expiry := t′ + 2∆ + 5, σ.payee :=
{σ′.userL, σ′.userR} \ P, σ.end := 0, σ.final :=
0, σ.valid := 0.

4. return σ.

Enable(σ, P, t, x):
1. if P ̸= σ.payer, return (σ,⊥).
2. if t > σ.expiry, return return (σ,⊥).
3. if σ.valid = 1, return (σ,⊥).
4. σ.valid := 1.
5. return (σ, 1).

Finalize(σ, P, t, x):
1. if P ̸= σ.payer and P ̸= σ.payee, return (σ,⊥).
2. if σ.valid = 0, return (σ,⊥).
3. if σ.locked > 0, return return (σ,⊥).
4. if σ.end = 1, return return (σ,⊥).
5. σ.end := 1.
6. σ.final := σ.cash(σ.payer) < 0 ? σ.cash(σ.payer) : 0.
7. σ.final := −σ.final.
8. return (σ, 1).

f1, · · · , fs.

(a) Promise code CB→A from Bob to Alice.

Promise Code CA→B

Construct(P, t, pid, salt):
1. σ ← ⊥.
2. σ.payer := A, σ.payee := B, σ.end := 0, σ.final :=

0, σ.pid := pid.
3. return σ.

Finalize(σ, P, t, x):
1. if σ.pid does not exist, return (σ,⊥), else let σB→A be

the storage of contract σ.pid.
2. if σB→A.end = 0, return (σ,⊥).
3. if P ̸= σ.payer and P ̸= σ.payee, return (σ,⊥).
4. if σ.end = 1, return return (σ,⊥).
5. σ.end := 1.
6. if σB→A.cash(σ.payer) < 0, then σ.final :=

σB→A.cash(σ.payer).
7. σ.final := −σ.final.
8. return (σ, 1).

(b) Promise code CA→B from Alice to Bob.

Fig. 5: The compiled promises

– Informally, CB→A is not valid when constructed, but can become valid before some expiry time by
invoking the function Enable. This is crucial because as we will show later, Alice will first send her
promise to Bob. We need to ensure that Bob cannot silently register this promise and punish Alice
without legally initializing the game.

– The two-party contract can be executed in the same way one would execute CB→A since we directly
clone f1, · · · , fs.

– CA→B trivially programs a payment from Alice to Bob while reading the state of corresponding CB→A.

– CA→B is independent from the contract code C.

We are now ready to present the protocol for executing application contract C with two compiled promises
CA→B and CB→A within a programmable payment channel between A and B. The protocol has 7 steps
and is shown in Figure 6. We directly present it in a hybrid model where A and B connected with some
PPC channel γ with identifier id stored in FPPC (defined and realized in Section 5).

While executing C using the PPC and the state channel both achieve the intended functionality,
executing C using two promises on PPC has an extra benefit. We end this section by briefly discuss this
benefit.

Free Cancellation. In state channels (e.g., [17]), Alice will sign the first state created by the constructor
function and send it to Bob. While an honest Bob will send back a signature based on whether he is in
or not, a malicious Bob could abort. In this case, Bob already has two signatures, so Alice needs to block
the contract identifier on the Layer-1 contract to prevent Bob from registering the state later. Executing
two promises on PPC does not need this on-chain blocking. To see this, note that Alice’s promise relies
on a valid promise from Bob. If the Bob does not want to execute the contract, Bob cannot create a valid
promise pidB→A after the expiry time σ.expiry.

12

1. At round t′, Alice wants to instantiate a contract instance created by contract code C and constructor function g. Note that
she currently knows corresponding CB→A. She picks a random salt string. Alice plays “Bob in her head” and calculates the
address of the promise Bob would create as pid := RO(id, B,CB→A, salt).

2. Alice sends (create-instance, id, CA→B , pid)
t′
↪→ FPPC to instantiate the promise to handle the payment from A to B. This

promise will read another promise instantiated by CB→A with fixed arguments (B, ·, salt) created by channel γ. Alice also
sends (C, salt) to Bob at round t′.

3. At round t′ + 1, Bob will receive the creation notification of CA→B from FPPC and also the (C, salt) values from Alice.
Assume the promise instance is assigned to pidA→B address. Bob checks every value is correctly generated. If Bob wants to

execute the contract C, he sends (create-instance, id, CB→A, salt)
t′+1
↪→ FPPC . Otherwise, Bob can simply stop/abort.

4. If Bob wants to execute the instance, he will receive (instance-created, id, pidB→A, ν) from FPPC at round t′ + 2. He
immediately sends (execute, id, pidB→A, Enable, ·) to make the instance of CB→A valid.

5. Alice and Bob execute the contract instance by executing corresponding fi in CB→A’s promise instance stored at pidB→A.
6. Suppose the execution of C’s logic (at pidB→A) is finished at round tend. Alice will send (execute, id, pidB→A, Finalize, ·) to

settle the payment of the C’s execution from B to A.
7. If Bob gets a notification of pidB→A’s finalization from FPPC before time tend + 4∆ + 5, he immediately sends

(execute, id, pidA→B , Finalize, ·) ↪→ FPPC to settle the payment from A to B. Otherwise, he will send (execute, id,
pidB→A, Finalize, ·) ↪→ FPPC to settle his payment to A first at round tend + 4∆ + 6. Within another 4∆ + 5 rounds,
once he gets the notification of pidB→A’s finalization, he sends (execute, id, pidA→B , Finalize, ·) ↪→ FPPC to settle the pay-
ment from A to B.

Fig. 6: The protocol for executing compiled promises CA→B and CB→A.

7 Implementation and Evaluation

We instantiated PPC in the Ethereum network. Here we provide an overview of the implementation and
evaluation and defer further details to Appendix F.

Receipts. To enable an aggregation of all the previously resolved promises we introduce the receipt object.
The message is signed by the payer and includes a credit value that denotes the aggregated amount of all
previously resolved promises. This message decrease the number of transactions taken on-chain.

Accumulators. To provide maximum parallelization for a receiver that can process multiple promises
simultaneously, the PPC allows the sender to submit multiple promises without waiting for each promise to
be processed (we refer to this property as non-blocking/concurrent payments). The PPC implementation
provides this feature by asking the parties to commit to the set of pending promises along with every
receipt (to prevent double spending). To efficiently capture this set, we use cryptographic accumulators.

In this work, we considered two types of accumulators namely the Merkle Tree and RSA accumulators.
We compared the efficiency of the two by different operations, shown in Fig. 7. We observe that the Merkle
tree is the better choice as it has less overhead and much less gas cost for membership proof verification
(450K gas compared to 20K when 100K promises are stored in the accumulator).

Smart Contracts. Figure 10 shows our PPC contract which we have implemented it via the Solidity
language. Here we highlight three additional features to the protocols explained in Section 5.2 and defer
the details to Appendix F. Multiple Deposits: The Deposit function in the contract can be used by
the parties to increase their balance for off-chain payments. This function can be invoked any number of
times as long as the channel is active (i.e., not closing).

Receipts and Accumulators: As mentioned earlier we added a receipt message to efficiently close the
channel (i.e., consuming less amount of gas). The receipt object includes an accumulator to track the
pending promises. Upon claiming a promise, it will be checked against the accumulator to prevent double
spending.

Cooperative Closing: When parties submit receipts/promises to close a channel a channel expiry time will
be set. As this time can be long, parties can finalize the closing sooner than the channel expiry time by
invoking the Close function.

7. IMPLEMENTATION AND EVALUATION 13

0 20000 40000 60000 80000 100000
Number of promises in accumulator

10−4

10−3

10−2

T
im

e
in

se
co

nd
s

fo
r

a
si

ng
le

op
er

at
io

n

RSA insertion

Merkle insertion

(a) Accumulator Insertion

0 20000 40000 60000 80000 100000
Number of promises in accumulator

10−4

10−2

100

102

T
im

e
in

se
co

nd
s

fo
r

a
si

ng
le

op
er

at
io

n

RSA proof

Merkle proof

(b) Membership Proof

Fig. 7: Performance comparisons between Merkle Tree and RSA accumulators

Table 1: Gas units for invoking PPC contract’s functions
Function Deploy Deposit Receipt Close Withdraw HTLC Promise

Gas units 3,243,988 43,010 75,336 44,324 71,572 611,296

Evaluation. We begin by evaluating the gas needed for the deployment of the contract. The PPC
contract requires 3, 243, 988 gas to be deployed on the Ethereum blockchain. We emphasize that in our
implementation we did not aim to optimize gas costs and further optimizations can reduce the gas.
However, within its current state, the PPC contract is comparable to other simple payment channel
deployments 2M+ and 3M+ gas for Perun [16] and Raiden [3] respectively. The gas usage for functions
of PPC contract are reported in Table 1.

PPC can support many general applications and programmable payments. To evaluate its feasibility,
we tested it using the simple case of Hash Time Lock Contracts (HTLCs) [30,3,28] which due to space
constraints we detail in Appendices F.3 and F.4. In summary, to deploy a HTLC promise on-chain a
party will be consuming about 700K gas to resolve it.

We further evaluated the run-time of the protocol by performing a test on ten clients concurrently
sending transactions to a single server. Each client sent 1, 000 transactions, which made the server process
a total of 10, 000 promises, secret reveals, and receipts. We were able to achieve 110 TPS end-to-end on a
commodity machine. We note that the performance can be further improved by optimizing the off-chain
code and using a more powerful machine for the server.

References

1. Hash time locked contracts - bitcoin wiki. https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts, (Ac-
cessed on 10/18/2022)

2. Payment channels - bitcoin wiki. https://en.bitcoin.it/wiki/Payment_channels, (Accessed on
10/18/2022)

3. Raiden. https://raiden.network/, (Accessed on 10/18/2022)
4. State channels - ethereum.org. https://ethereum.org/en/developers/docs/scaling/state-channels/,

(Accessed on 10/18/2022)
5. Aumayr, L., Maffei, M., Ersoy, O., Erwig, A., Faust, S., Riahi, S., Hostáková, K., Moreno-Sanchez, P.: Bitcoin-

compatible virtual channels. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 901–918. IEEE
(2021)

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Payment_channels
https://raiden.network/
https://ethereum.org/en/developers/docs/scaling/state-channels/

14

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proceedings
42nd IEEE Symposium on Foundations of Computer Science. pp. 136–145. IEEE (2001)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Theory
of Cryptography Conference. pp. 61–85. Springer (2007)

8. Christodorescu, M., English, E., Gu, W.C., Kreissman, D., Kumaresan, R., Minaei, M., Raghuraman, S.,
Sheffield, C., Wijeyekoon, A., Zamani, M.: Universal payment channels: An interoperability platform for digital
currencies (2021). https://doi.org/10.48550/ARXIV.2109.12194, https://arxiv.org/abs/2109.12194

9. Christodorescu, M., English, E., Gu, W.C., Kreissman, D., Kumaresan, R., Minaei, M., Raghuraman, S.,
Sheffield, C., Wijeyekoon, A., Zamani, M.: Universal payment channels: An interoperability platform for digital
currencies (2021). https://doi.org/10.48550/ARXIV.2109.12194, https://arxiv.org/abs/2109.12194

10. Close, T.: Nitro protocol. Cryptology ePrint Archive (2019)

11. Close, T., Stewart, A.: Forcemove: an n-party state channel protocol. Magmo, White Paper (2018)

12. Coleman, J., Horne, L., Xuanji, L.: Counterfactual: Generalized state channels. Acessed: http://l4. ventures/-
papers/statechannels. pdf 4, 2019 (2018)

13. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin duplex micropayment channels.
In: Pelc, A., Schwarzmann, A.A. (eds.) Stabilization, Safety, and Security of Distributed Systems. pp. 3–18.
Springer International Publishing, Cham (2015)

14. Dziembowski, S., Eckey, L., Faust, S., Hesse, J., Hostáková, K.: Multi-party virtual state channels. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. pp. 625–656. Springer
(2019)

15. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment hubs over cryptocurrencies.
Cryptology ePrint Archive, Paper 2017/635 (2017), https://eprint.iacr.org/2017/635, https://eprint.
iacr.org/2017/635

16. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment hubs over cryptocurrencies.
In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 106–123. IEEE (2019)

17. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In: Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. pp. 949–966 (2018)

18. Erkan Tairi, Pedro Moreno-Sanchez, M.M.: a2l: Anonymous atomic locks for scalability and interoperability
in payment channel hubs. https://eprint.iacr.org/2019/589

19. Goldreich, O.: Foundations of cryptography: volume 2, basic applications. Cambridge university press (2009)

20. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-two blockchain protocols.
In: International Conference on Financial Cryptography and Data Security. pp. 201–226. Springer (2020)

21. Hearn, M., Corallo, M.: Connection Bloom filtering (2012), https://github.com/\bitcoin/bips/blob/

master/bip-0037.mediawiki

22. Khalil, R., Gervais, A.: Nocust-a non-custodial 2nd-layer financial intermediary. (2018)

23. Le, D.V., Hurtado, L.T., Ahmad, A., Minaei, M., Lee, B., Kate, A.: A tale of two trees: One writes, and
other reads: Optimized oblivious accesses to bitcoin and other utxo-based blockchains. Proceedings on Privacy
Enhancing Technologies 2020(2). https://doi.org/10.2478/popets-2020-0039, https://par.nsf.gov/biblio/
10200542

24. Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E.G., Pietzuch, P.R.: Teechain: a secure payment network
with asynchronous blockchain access. In: Brecht, T., Williamson, C. (eds.) Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-30, 2019. pp.
63–79. ACM (2019)

25. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S.: Concurrency and privacy with payment-
channel networks. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. pp. 455–471 (2017)

26. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Maffei, M.: Anonymous multi-hop locks for
blockchain scalability and interoperability. In: NDSS (2019)

27. Matetic, S., Wüst, K., Schneider, M., Kostiainen, K., Karame, G., Capkun, S.: BITE: Bitcoin lightweight
client privacy using trusted execution. In: 28th USENIX Security Symposium (2019), https://www.usenix.
org/conference/usenixsecurity19/presentation/matetic

https://doi.org/10.48550/ARXIV.2109.12194
https://arxiv.org/abs/2109.12194
https://doi.org/10.48550/ARXIV.2109.12194
https://arxiv.org/abs/2109.12194
https://eprint.iacr.org/2017/635
https://eprint.iacr.org/2017/635
https://eprint.iacr.org/2017/635
https://eprint.iacr.org/2019/589
https://github.com/\bitcoin/bips/blob/master/bip-0037.mediawiki
https://github.com/\bitcoin/bips/blob/master/bip-0037.mediawiki
https://doi.org/10.2478/popets-2020-0039
https://par.nsf.gov/biblio/10200542
https://par.nsf.gov/biblio/10200542
https://www.usenix.org/conference/usenixsecurity19/presentation/matetic
https://www.usenix.org/conference/usenixsecurity19/presentation/matetic

7. IMPLEMENTATION AND EVALUATION 15

28. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state channels: Payment networks
that go faster than lightning. In: Goldberg, I., Moore, T. (eds.) Financial Cryptography and Data Security.
pp. 508–526. Springer International Publishing, Cham (2019)

29. Minaei Bidgoli, M., Kumaresan, R., Zamani, M., Gaddam, S.: System and method for managing data in a
database (Feb 2023), https://patents.google.com/patent/US11556909B2/

30. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant payments. http://lightning.
network/lightning-network-paper.pdf (2016), (Accessed on 10/18/2022)

31. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and private: Efficient decentral-
ized routing for path-based transactions. arXiv preprint arXiv:1709.05748 (2017)

32. Stefano Martinazzi, A.F.: The evolving topology of the lightning network: Centralization, efficiency, robust-
ness, synchronization, and anonymity. Journal PLOS One

33. Todd, P.: [bitcoin-development] near-zero fee transactions with hub-and-spoke micropayments. https://

lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html (2014), (Accessed on
10/19/2022)

Disclaimer

Case studies, comparisons, statistics, research, and recommendations are provided “AS IS” and intended
for informational purposes only and should not be relied upon for operational, marketing, legal, technical,
tax, financial, or other advice. Visa Inc. neither makes any warranty or representation as to the com-
pleteness or accuracy of the information within this document nor assumes any liability or responsibility
that may result from reliance on such information. The information contained herein is not intended
as investment or legal advice, and readers are encouraged to seek the advice of a competent professional
where such advice is required. All trademarks are the property of their respective owners, are used for
identification purposes only, and do not necessarily imply product endorsement or affiliation with Visa.

These materials and best practice recommendations are provided for informational purposes only and
should not be relied upon for marketing, legal, regulatory, or other advice. Recommended marketing ma-
terials should be independently evaluated in light of your specific business needs and any applicable laws
and regulations. Visa is not responsible for your use of the marketing materials, best practice recommen-
dations, or other information, including errors of any kind, contained in this document.

https://patents.google.com/patent/US11556909B2/
http://lightning.network/lightning-network-paper.pdf
http://lightning.network/lightning-network-paper.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html

16

A Supplementary Material for Notations and Models

A.1 Definitions of Contracts, Channels

Contracts. A contract instance consists of two attributes: contract storage (accessed by key storage)
and contract code (accessed by key code). Contract storage σ is an attribute tuple containing at least
the following attributes: (1) σ.userL and σ.userR denoting the two involved users; (2) σ.locked ∈ R≥0
denoting the total number of coins locked in the contract; (3) σ.cash : {σ.userL, σ.userR} → R denoting
the coins available to each user. A contract code is a tuple C := (Λ, g1, . . . , gr, f1, . . . , fs) where (1) Λ
denotes the admissible contract storage; (2) each g denotes a constructor function that takes (P, t, z) as
inputs and provides as output an admissible contract storage or ⊥ representing failure to construct, where
P is the caller, t is the current time stamp and z denotes the auxiliary inputs; and (3) each f denotes an
execution function that takes (σ, P, t, z) as inputs and provides as output an admissible contract storage
(could be the same as the input) and an output message m, where m = ⊥ represents failure.

Programmable Payment Channel. A programmable payment channel is an attribute tuple γ :=
(γ.id, γ.Alice, γ.Bob, γ.cash, γ.pspace, γ.duration) where (1) γ.id ∈ {0, 1}∗ is the identifier for the PPC
instance; (2) γ.Alice and γ.Bob denote the two involved parties; (3) γ.cash : {γ.Alice, γ.Bob} → R≥0
denotes the amount of money deposited by each participant; (4) γ.pspace stores all the promise instances
opened in the channel–it takes a promise identifier pid and maps it to a promise instance; and (5)
γ.duration ≥ 0 denotes the time delay to closing a channel, when there exists a promise that has not yet
been finalized.

A.2 Global Universal Composable Framework

UC models the execution of protocols as interactions of probabilistic polynomial-time (PPT) Iterative
Turing Machines (ITMs) and attempts to argue that interactions between ITMs in the “real” world (by
virtue of our defined real world protocols) are indistinguishable from the interactions between the ITMs
in an “ideal” world (where whatever security property we are after would be satisfied).

Formally, let π be a protocol working in the G-hybrid model with access to the global ledger L̂(∆)
(specified later). The output of an environment E interacting with the protocol π in the presence of

an adversary A on input 1λ and auxiliary input z is denoted as EXEC
L̂(∆),G
π,A,E (1λ, z). We define another

trivial protocol with ideal functionality F , dummy parties and a simulator S. We denote the output of

the environment (similar to the above) in this scenario as IDEAL
L̂(∆)
F,S,E(1

λ, z).

Definition 1. We say that a protocol π working in a G-hybrid model UC-emulates an ideal functionality
F with respect to a global ledger L̂(∆) i.f.f. for any PPT adversary A there exists a simulator S such that
for any environment E we have

{EXEC
L̂(∆),G
π,A,E (1λ, z)} λ∈N,

z∈{0,1}∗

c
≈ 5{IDEAL

L̂(∆)
F,S,E(1

λ, z)} λ∈N,
z∈{0,1}∗

B Simplifications

In this section, we provide and justify the full simplifications we made in Section 5 for better presentation:

5 “
c
≈” denotes computational indistinguishability of distribution ensembles, see [19].

B. SIMPLIFICATIONS 17

– We omit session and sub-session identifiers sid, ssid.
– We assume the existence of a PKI. Note that this also implies the existence of a complete peer-to-peer

authenticated communication network.
– We combine pairwise channel contracts into one single large hybrid functionality, i.e., in the imple-

mentation, this single hybrid can be separated into several pairwise contracts. This is permissible since
the entire Layer-1 network can be modeled as a large publicly available trusted virtual machine. This
combined hybrid will maintain a large set Γ to save all available PPC channels. Formally, the identifier
id of each channel γ reflects the corresponding contract address.

– We work in the random oracle model. In particular, we use random oracles to capture the CREATE2
opcode in Ethereum. Basically, every promise instance will be associated with an identifier pid deter-
mined by random oracle applied to the the following inputs: (1) creator channel identifier id; (2) payer
P ; (3) promise code C; and (4) arguments for the constructor function z. Note that the arguments
specified above are in line with the specification of CREATE2. We embed the salt value into the con-
structor arguments, which captures the fact the there might be several promise instances created by
the same constructor (with different salts). Similar to the channel identifier, pid formally reflects the
contract address of the promise contract created by the channel contract. Also note that the random
oracle ensures that it is statistically hard to create a second contract whose address is also pid.

– Whenever we say we put a promise instance inside some channel contract’s γ.pspace, it means that this
promise is deployed as a contract on Layer-1. We further combine processes to (1) create a promise
using the sender’s signature on the channel contract; and (2) bypass it to the latest state using both
parties’ signatures on the promise contract, into one process that saves the latest state into γ.pspace.

– We allow parties to “register” promises in parallel. We will further discuss this in Appendix F.1 where
we instantiate this parallelism using an accumulator.

18

Procedure Register(P, id, pid)

Denote GPPC := GL̂(∆)
PPC

(PS).

Party P

1. Let γP := ΓP (id), νP := γP .pspace(pid), (sP , sQ, version) := ΓP
aux(id, pid), and let t0 be the current round. Consider the following two scenarios:

– If version = 0 (i.e., this is an initial promise instance), fetch the constructing tuple (id, pid, C, z, A, sA) from P ’s local memory, then send

(instance-construct, id, C, z, A, sA)
t0
↪→ GPPC .

– If version ̸= 0 (i.e., this is a non-initial promise instance), send (instance-register, id, pid, νP , version, sP , sQ)
t0
↪→ GPPC .

Party Q upon (instance-registering, id, pid)
t1←↩ GPPC

2. Let γQ := ΓQ(id), νQ := γQ.pspace(pid), (sQ, sP , version) := Γ
Q
aux(id, pid). Consider the following two scenarios:

– If νQ = ⊥ (i.e., P wants to initialize a promise on-chain), send (instance-register, id, pid,⊥,−1,⊥,⊥)
t1
↪→ GPPC .

– If version = 0 (i.e., this is an initial promise instance), fetch the constructing tuple (id, pid, C, z, A, sA) from Q’s local memory, then send

(instance-construct, id, C, z, A, sA)
t1
↪→ GPPC .

– If version ̸= 0 (i.e., this is a non-initial promise instance), send (instance-register, id, pid, νQ, version, sQ, sP)
t1
↪→ GPPC .

3. Goto step 5.

Back to party P

4. If not (instance-registered, id, pid, ν)
t2≤t0+2∆
←↩ GPPC , then send (finalize-register, id, pid)

t3=t0+2∆+1
↪→ GPPC .

For both parties T

5. Upon (instance-registered, id, pid, ν) ←↩ GPPC , mark (id, pid) as registered in ΓT
aux. Set ΓT (id).pspace(pid) := ν. Stop.

Functionality GL̂(∆)
PPC

(PS): Promise instance registration

Let RO be a random oracle.

Upon (instance-construct, id, C, z, A, sA)
t0←↩ P , let γ := Γ (id) and do:

1. Stop if one of the following conditions holds: γ = ⊥; P /∈ γ.endusers; A /∈ γ.endusers; C /∈ PS; γ.pspace(pid) ̸= ⊥; VfypkA
(id, C, z, A; sA) = 0.

2. Let ν := ⊥ and pid := RO(id, A, C, z). Set ν.code := C. Let σ := C.construct(A, t0, z), stop if σ = ⊥ or σ.payer ̸= A. Else set ν.storage := σ.
3. Let Q := γ.otherparty(P) and consider the following three cases:

– If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion), then stop.

– If the functionality’s memory contains a tuple (Q, id, pid, ν̂, t̂0, ˆversion), then set ν̃ := ν̂. Within ∆ rounds, send

(instance-registered, id, pid, ν̃)
t1≤t0+∆

↪→ γ.endusers, set Γ (id).pspace(pid) := ν̃ and erase (Q, id, pid, ν̂, t̂0, ˆversion) from the memory.

– Else save (P, id, pid, ν, t0, 0) to the memory and send (instance-registering, id, pid)
t1≤t0+∆

↪→ Q.

Upon (instance-register, id, pid, ν, version, sP , sQ)
t0←↩ P , let γ := Γ (id) and do:

1. Stop if one of the following conditions holds: γ = ⊥; P /∈ γ.endusers; γ.pspace(pid) ̸= ⊥.
2. Let Q := γ.otherparty(P). If version = −1 and ν = ⊥ and the functionality’s memory contains a tuple (Q, id, pid, · · ·), goto step 4.
3. Stop if one of the following conditions holds: VfypkP

(id, pid, ν, version; sP) = false; VfypkQ
(id, pid, ν, version; sQ) = false; ν.code /∈ PS;

ν.storage /∈ ν.code.Λ.
4. Consider the following three cases:

– If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion), then stop.

– If the functionality’s memory contains a tuple (Q, id, pid, ν̂, t̂0, ˆversion), then compare the version number, i.e., ν̃ := version > ˆversion ? ν : ν̂.

Within ∆ rounds, send (instance-registered, id, pid, ν̃)
t1≤t0+∆

↪→ γ.endusers, set Γ (id).pspace(pid) := ν̃ and erase (Q, id, pid, ν̂, t̂0, ˆversion)
from the memory.

– Else save (P, id, pid, ν, t0, version) to the memory and send (instance-registering, id, pid)
t1≤t0+∆

↪→ Q.

Upon (finalize-register, id, pid)
t2←↩ P , let γ := Γ (id) and do:

1. Stop if γ = ⊥ or P /∈ γ.endusers.
2. If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion) such that t2 − t̂0 ≥ 2∆, then set Γ (id).pspace(pid) := ν̂, send

(instance-registered, id, pid, ν̂)
t3≤t2+∆

↪→ γ.endusers, and erase the tuple.

Fig. 8: The sub-procedure Register to register a pormise instance on-chain.

C. FORMAL PPC PROTOCOLS 19

C Formal PPC Protocols

In this section, we fully specify the PPC protocols described in Section 5.2. The protocols are formalized
in the UC framework [6], which UC-emulate FPPC (see Figure 4).

The special sub-procedure Register, which is used to deploy a promise instance on-chain, is specified
in Figure 8. The online contracts functionality GPPC will have 3 interfaces to handle this sub-procedure:

– instance-construct: This interface is used to initiate a promise instance. It requires an explicit
initiator with the corresponding signature. Note that this will be viewed as a party submitting a
promise instance of version = 0 .

– instance-register: This interface is used to submit an agreed upon promise storage. It requires a
promise instance specification with both parties’ signatures. Intuitively, the honest party will always
submit the largest version. Note that we have a special case for version = −1. This is used to capture
the case where a corrupted sender could initiate an instance directly on-chain and the honest receiver
will trivially accept it. Since RO is a random oracle, it is infeasible to create two different instances
that have the same pid.

– finalize-register: This interface is used to enable the honest party to deploy a promise even when
another party does not send any valid storage to the PPC contract. Informally, this means that the
party can convince the contract that the other party aborted after a 2∆ dispute period.

Protocol Π(PS): Create a programmable payment channel

Denote GPPC := GL̂(∆)
PPC (PS).

Party P upon (create, γ)
t0←↩ E

1. Send (construct, γ)
t0
↪→ GPPC and wait.

Party Q upon (create, γ)
t0←↩ E

2. If (initializing, γ)
t1≤t0+∆
←↩ GPPC , send (confirm, γ)

t1
↪→ GPPC and wait. Else stop.

3. If (initialized, γ)
t2≤t0+2∆
←↩ GPPC , then set ΓQ(γ.id) := γ, output (created, γ)

t2
↪→ E .

Back to party P

4. If (initialized, γ)
t2≤t0+2∆
←↩ GPPC , then set ΓP (γ.id) := γ, output (created, γ)

t2
↪→ E and stop. Otherwise,

execute next step.

5. If (refund, γ)
t3>t0+2∆
←↩ E , send (refund, γ)

t3
↪→ GPPC and stop.

Functionality/Contract GL̂(∆)
PPC (PS)

Upon (construct, γ)
t0←↩ P :

1. Let Q := γ.Bob, stop if one of the following conditions holds: there already exists a channel γ′ such that
γ.id = γ′.id; γ.Alice ̸= P ; γ.cash(P) < 0 or γ.cash(Q) < 0; γ.pspace ̸= {}; γ.duration < 0.

2. Within ∆ rounds remove γ.cash(P) coins from P ’s account on the ledger L̂. If it is impossible due to
insufficient funds, then stop. Else (initializing, γ) ↪→ Q and store the pair tamp := (t0, γ).

20

Upon (confirm, γ)
t1←↩ Q:

1. Stop if one of the following conditions holds: there is no pair tamp := (t0, γ) in the storage; (t1 − t0) > ∆;
γ.Bob ̸= Q.

2. Within ∆ rounds remove γ.cash(Q) coins from Q’s account on the ledger L̂. If it is impossible due to
insufficient funds, then stop. Else set Γ (γ.id) := γ and delete tamp from the memory. Thereafter send
(initialized, γ) ↪→ γ.endusers.

Upon (refund)
t2←↩ P :

1. Stop if one of the following conditions holds: there is no pair tamp := (t0, γ) in the storage; (t2− t0) ≤ 2∆;
P ̸= γ.Alice.

2. Within ∆ rounds add γ.cash(γ.Alice) coins to γ.Alice’s account in ledger L̂ and delete tamp from the
storage.

Protocol Π(PS): Create an initial promise instance

Denote GPPC := GL̂(∆)
PPC (PS).

Party P upon (create-instance, id, C, z)
t0←↩ E

1. Calculate pid := RO(id, P, C, z).
2. Stop if one of the following conditions holds: ΓP (id) = ⊥; P /∈ ΓP (id).endusers; ΓP (id).pspace(pid) ̸= ⊥;

C /∈ PS. Else let γ := ΓP (id).
3. Let ν := ⊥ and σ := C.Construct(P, t0, z). Stop if σ = ⊥. Else set ν.code := C and ν.storage := σ. Set

ΓP (id).pspace(pid) := ν and set ΓP
aux(id, pid) := (⊥,⊥, 0).

4. Compute sP := SignskP
(id, C, z, P), save (id, pid, C, z, P, sP) and send

(create-instance, id, C, z, sP) ↪→ Q.

5. Output (instance-created, id, pid, ν)
t0+1
↪→ E .

Party Q upon (create-instance, id, C, z, sP)
t1←↩ P

6. Calculate pid := RO(id, P, C, z)
7. Stop if one of the following conditions holds: ΓQ(id) = ⊥; P /∈ ΓQ(id).endusers; ΓQ(id).pspace(pid) ̸= ⊥;

C /∈ PS. Else let γ := ΓQ(id).
8. Let σ := C.Construct(P, t1 − 1, z). Stop if σ = ⊥. Let ν := ⊥. Set ν.code := C and ν.storage := σ. Stop if

VfypkP
(id, C, z, P ; sP) ̸= 1.

9. Set ΓQ(id).pspace(pid) := ν and set ΓQ
aux(id, pid) := (⊥,⊥, 0). Save (id, pid, C, z, P, sP). Output

(instance-created, id, pid, ν)
t1
↪→ E .

Protocol Π(PS): Promise instance execution

Denote GPPC := GL̂(∆)
PPC (PS).

Party P upon (execute, id, pid, f, z)
t0←↩ E

1. Stop if ΓP (id) = ⊥, else let γP := ΓP (id). Stop if P /∈ γP .endusers or γP (pid) = ⊥, else let
νP := γP .pspace(pid). Stop if f /∈ νP .code, else let CP := νP .code and σP := νP .storage. Let
Q := γP .otherparty(P). Let (·, ·, versionP) := ΓP

aux(id, pid).

C. FORMAL PPC PROTOCOLS 21

2. Set t1 := t0 + x, where x is the smallest offset such that t1 ≡ 1(mod 4) if P = γP .Alice and t1 ≡ 3(mod 4)
if P = γP .Bob.

3. If (id, pid) is marked as registered in ΓP
aux, goto step 12 at round t1.

4. Compute (σ̃,m) := f(σP , P, t0, z). Stop if m = ⊥. Otherwise, set ˜version := versionP + 1. Let
ν̃ := ⊥. Set ν̃.code := CP and ν̃.storage := σ̃. Compute sP := SignskP

(id, pid, ν̃, ˜version). Send

(peaceful-request, id, pid, f, z, sP , t0)
t1
↪→ Q. Goto step 11.

Party Q upon (peaceful-request, id, pid, f, z, sP , t0)
tQ
←↩ P

5. Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈ γQ. endusers or P /∈ γQ.endusers or γQ(pid) = ⊥,
else let νQ := γQ.pspace(pid). Stop if f /∈ νQ.code, else let CQ := νQ.code and σQ := νQ.storage. Let
(·, ·, versionQ) := ΓQ

aux(id, pid).
6. Stop if “P = γQ.Alice and tQ ̸≡ 2(mod 4)” or “P = γQ.Bob and tQ ̸≡ 0(mod 4)”.
7. Stop if t0 /∈ [tQ − 4, tQ − 1].
8. If (id, pid) is not marked as registered in ΓQ

aux, do:
(a) Compute (σ̃,m) := f(σQ, P, t0, z). Stop if m = ⊥.
(b) Set ˜version := versionQ + 1. Let ν̃ := ⊥. Set ν̃.code := CQ and ν̃.storage := σ̃.
(c) If VfypkP

(id, pid, ν̃, ˜version; sP) ̸= 1, then stop.

(d) Compute sQ := SignskQ
(id, pid, ν̃, ˜version). Set ΓQ(id). pspace(pid) := ν̃ and

ΓQ
aux(id, pid) := (sQ, sP , ˜version). Send (peaceful-confirm, id, pid, sQ)

tQ
↪→ P .

(e) Send (executed, id, pid, P, f, t0, z, ν̃)
tQ+1

↪→ E .

Back to party P

11. Distinguish the following two cases:

– If (peaceful-confirm, id, pid, sQ)
t2=t1+2
←↩ Q such that VfypkQ

(id, pid, ν̃, ˜version ; sQ) = 1, set ΓP (id).

pspace(pid) := ν̃ and ΓP
aux(id, pid) := (sP , sQ, ˜version).

– Otherwise (i.e., Q aborts or replies with invalid signature). Execute Register(P, id, pid) to mark (id, pid)
as registered in ΓP

aux. Once the register procedure is executed (in round t3 ≤ t0 + 3∆ + 5), check if
ΓP (id).pspace(pid) = ν̃. If so (i.e., Q agrees the execution by registering the newest version onchain),

output (executed, id, pid, P, f, t0, z, ν̃)
t3
↪→ E and stop.

12. Send (instance-execute, id, pid, f, z) ↪→ GPPC .

For both parties T

13. If (executed-onchain, id, pid,Caller, f, t, z, ν̂)
t4≤t0+4∆+5
←↩ GPPC , set Γ

T (id).

pspace(pid) := ν̂ and output (executed, id, pid,Caller, f, t, z, ν̂)
t4
↪→ E .

Functionality/Contract GL̂(∆)
PPC (PS)

Upon (instance-execute, id, pid, f, z)
t←↩ P , proceed as follows:

22

1. Let γ := Γ (id). Stop if γ = ⊥.
2. Set ν := γ.pspace(pid) and σ := ν.storage. Stop if one of the following conditions holds: P /∈ γ.endusers;

ν = ⊥; f /∈ ν.code.
3. Within ∆ rounds, i.e., t1 ≤ t+∆. Compute (σ̂,m) := f(σ, P, t1, z). Stop if m = ⊥.
4. Set Γ (id).pspace(pid).storage := σ̂ and send (executed- onchain, id, pid, P, f, t, z, ν̂)

t1
↪→ γ.endusers.

Protocol Π(PS): Close a programmable payment channel

Denote GPPC := GL̂(∆)
PPC (PS).

Party P upon (close, id)
t0←↩ E

1. Stop if ΓP (id) = ⊥, else let γP := ΓP (id). Stop if P /∈ γP .endusers. For each γP .pspace(pid) ̸= ⊥
and (id, pid) is not marked as registered, execute (in parallel) Register(P, id, pid) immediately. Then send

(contract-close, id)
t1≤t0+3∆

↪→ GPPC .

Party Q upon (contract-closing, id)
t2≤t0+4∆
←↩ GPPC

2. Let γQ := ΓQ(id). For each γQ.pspace(pid) ̸= ⊥ and (id, pid) is not marked as registered, execute (in
parallel) Register(Q, id, pid) immediately.

For both parties T

3. If (contract-close, id)
t3≤t0+8∆+γT .duration

←↩ GPPC , output (closed, id)
t3
↪→ E .

Functionality/Contract GL̂(∆)
PPC (PS)

Upon (contract-close, id)
t0←↩ P , let γ := Γ (id) and proceed as follows:

1. Stop if γ = ⊥ or P /∈ γ.endusers.
2. Block all the messages in the future related to close channel id.

3. Within ∆ rounds send (contract-closing, id)
t1≤t0+∆

↪→ γ.otherparty(P).
4. Within another 3∆ rounds. If there a exists pid ∈ {0, 1}∗ such that γ.pspace(pid) ̸= ⊥ and

γ.pspace(pid).storage.ended = 0, wait for next γ.duration rounds.
5. At round t2 ≤ t0 + 4∆+ γ.duration:

(a) Set total := γ.cash(γ.Alice) + γ.cash(γ.Bob).
(b) Set creditA :=

∑
γ.pspace(pid).storage.payer=γ.Bob(γ.pspace (pid).storage.final).

(c) Set creditB :=
∑

γ.pspace(pid).storage.payer=γ.Alice(γ.pspace (pid).storage.final).

(d) Within ∆ rounds, add min{total,max{0, γ.cash(γ.Alice) + creditA−
creditB}} coins to γ.Alice’s account and min{total,max{0, γ.cash(γ.Bob)+ creditB − creditA}} coins
to γ.Bob’s account.

(e) Send (contract-close, id) ↪→ γ.endusers.

D Security Proofs

In this section, we formally prove our theorems.

Theorem 1 (Main). Suppose the underlying signature scheme is existentially unforgeable against chosen

message attacks. The protocol π(PS) working in GL̂(∆)
PPC (PS)-hybrid model emulates the ideal funcitonlity

D. SECURITY PROOFS 23

F L̂(∆)
PPC (PS) against any environment E in the random oracle model for every set of promise codes PS

and every ∆ ∈ N.

Proof. We follow the framework of [17]. We will show that for any set of promise codes PS, π(PS) UC-

emulates the ideal functionality F L̂(∆)
PPC in the GL̂(∆)

PPC (PS)-hybrid model assuming random oracles. In other

words, for any PPT adversary A, we construct a simulator Sim that operates in the GL̂(∆)
PPC (PS)-hybrid

model and simulates the F L̂(∆)
PPC -hybrid world to any environment E .

As in [17], since registration of a contract instance is defined as a separate procedure that can be
called by parties of the protocol π(PS), we define a “subsimulator” SimRegister(P, id, pid) which can be
called as a procedure by the simulator Sim.

The technical details and approach to designing the simulator follow standard techniques (e.g., [17]),
and hence we omit further description here due to lack of space.

Simulator Sim: Create a programmable payment channel

Denote FPPC := F L̂(∆)
PPC (PS).

Let RO be a random oracle.

P is honest and Q is corrupt

Upon (create, P, γ)
t1≤t0+∆
←↩ FPPC (the delay is set by simulator as real adversary):

1. Send (initializing, γ)
t1
↪→ Q.

2. If (confirm, γ)
t1←↩ Q, then send (create, γ)

t1
↪→ FPPC on behalf of Q.

3. If (created, γ)
t2≤t1+∆
←↩ FPPC , send (initialized, γ)

t2
↪→ Q and set ΓP (id) := γ, Γ (id) := γ.

P is corrupt and Q is honest

Upon (construct, γ)
t0←↩ P :

1. Stop if one of the following conditions holds: there already exists a programmable payment channel γ′

such that γ.id = γ′.id; γ.Alice ̸= P or γ.Bob ̸= Q; γ.cash(P) < 0 or γ.cash(Q) < 0; γ.pspace ̸= {};
γ.duration < 0.

2. Send (create, γ)
t0
↪→ FPPC on behalf of P .

3. Distinguish the following two situations:

– If (created, γ)
t1≤t0+2∆
←↩ FPPC , send (initialized, γ)

t1
↪→ P . Set ΓQ(id) := γ, Γ (id) := γ and stop.

– Else if (refund, γ)
t2>t0+2∆
←↩ P , send (refund, γ)

t2
↪→ FPPC .

Sub-simulator SimRegister(P, id, pid)

Denote FPPC := F L̂(∆)
PPC (PS).

Let RO be a random oracle.

P is honest and Q is corrupt

1. Let γP := ΓP (id), νP := γP .pspace(pid), (sP , sQ, version) := ΓP
aux(id, pid).

24

2. Set t0 be the current round. Send (instance-registering, id, pid)
t1≤t0+∆

↪→ Q.
3. Q can have two following reactions:

– If (instance-construct, id, C, z, A, sA)
t1←↩ Q, ignore if RO(id, A,C, z) ̸= pid or the signa-

ture is not valid. Let σ := C.Construct(A, t1, z). Ignore if σ = ⊥ or σ.payer ̸= A. Send

(instance-registered, id, pid, νP)
≤t1+∆
↪→ Q and goto step 5.

– If (instance-register, id, pid, νQ, ˆversion, ŝQ, ŝP)
t1←↩ Q, ignore if some signature is not valid ex-

cept ˆversion = −1. Else set ν̃ := version > ˆversion ? νP : νQ. Set ΓP (id).pspace(pid) := ν̃. Send
(instance-registered, id, pid, ν̃)
≤t1+∆
↪→ Q and goto step 5.

4. Send (instance-registered, id, pid, νP)
≤t0+3∆
↪→ Q and goto step 5. (This captures the situation when

honest P completes the registration alone).
5. Mark (id, pid) as register in ΓP

aux.

P is corrupt and Q is honest

Upon (instance-construct, id, C, z, A, sA)
t0←↩ P , ignore if Γ (id) = ⊥ or P /∈ Γ (id).endusers. Let pid :=

RO(id, A,C, z). Ignore if (id, pid) is marked as registered in ΓQ
aux. Let σ := C.Construct(A, t0, z). Ignore if

σ = ⊥ or σ.payer ̸= A. Then distinguish the following two situations:

– If ΓQ(id).pspace(pid) ̸= ⊥: let ν := ΓQ(id).pspace(pid). Send

(instance-registered, id, pid, ν)
≤t0+2∆
↪→ P . Mark (id, pid) as registered in ΓQ

aux.
– If ΓQ(id).pspace(pid) = ⊥: let ν := ⊥ and set ν.code := C, ν.storage := σ. Set

ΓQ(id).pspace(pid) := ν, Γ (id).pspace(pid) := ν, mark (id, pid) as registered in ΓQ
aux. Send

(instance-registered, id, pid, ν)
≤t0+2∆
↪→ P .

Upon (instance-register, id, pid, ν, version, sP , sQ)
t0←↩ P , ignore if Γ (id) = ⊥ or P /∈ Γ (id).endusers or

version = −1 or at least one signature is not valid or (id, pid) is marked as registered in ΓQ
aux. Let νQ :=

ΓQ(id).pspace(pid) and fetch versionQ of (id, pid) from ΓQ
aux. Set ν̃ := version > versionQ ? ν : νQ. Mark

(id, pid) as registered in ΓQ
aux. Set Γ

Q(id).pspace(pid) := ν̃. Send (instance-registered, id, pid, ν̃)
≤t0+2∆
↪→ P .

Simulator Sim: Create an initial promise instance

Denote FPPC := F L̂(∆)
PPC (PS).

Let RO be a random oracle.

P is honest and Q is corrupt

Upon (create-instance, id, C, z)
t0←↩ FPPC :

1. Compute pid := RO(id, P, C, z). Let ν := ⊥, compute σ := C.Construct(P, t0, z). Set ν.code := C and
ν.storage := σ.

2. Compute sP := SignskP
(id, P, C, z).

3. Set ΓP (id).pspace(pid) := ν and set ΓP
aux(id, pid) := (⊥,⊥, 0).

4. Send (create-instance, id, C, z, sP) ↪→ Q on behalf of P .

P is corrupt and Q is honest

D. SECURITY PROOFS 25

Upon (create-instance, id, C, z, sP)
t0←↩ P :

1. Stop if one of the following conditions holds: ΓQ(id) = ⊥; P /∈ ΓQ(id).endusers; ΓQ(id).pspace(pid) ̸= ⊥;
C /∈ PS. Else let γ := ΓQ(id).

2. Let pid := RO(id, P, C, z). Let σ := C.Construct(P, t0, z). Stop if σ = ⊥. Let ν := ⊥. Set ν.code := C and
ν.storage := σ. Stop if VfypkP

(id, P, C, z; sP) ̸= 1.

3. Set ΓQ(id).pspace(pid) := ν and set ΓQ
aux(id, pid) := (⊥,⊥, 0). Send

(create-instance, id, C, z)
t0
↪→ FPPC on behalf of P .

Simulator Sim: Promise instance execution

Denote FPPC := F L̂(∆)
PPC (PS).

Let RO be a random oracle.

P is honest and Q is corrupt

Upon (execute, id, pid, f, z)
t0←↩ FPPC , let γP := ΓP (id), νP := γP .pspace(pid), σP :=

νP .storage, (·, ·, versionP) := ΓP
aux (id, pid):

1. Stop if γP = ⊥ or νP = ⊥ or P /∈ γP .endusers or f /∈ γP .code.
2. Set t1 := t0 + x, where x is the smallest offset such that t1 ≡ 1(mod 4) if P = γP .Alice and t1 ≡ 3(mod 4)

if P = γP .Bob.
3. If (id, pid) is not marked as registered in ΓP

aux:
(a) Compute (σ̃,m) := f(σP , P, t0, z). Stop if m = ⊥. Otherwise, set ˜version := versionP + 1. Let ν̃ := ⊥.

Set ν̃.code := CP and ν̃.storage := σ̃. Compute sP := SignskP
(id, pid, ν̃, ˜version).

Send (peaceful-request, id, pid, f, z, sP , t0)
t1+1
↪→ Q.

(b) If (peaceful-confirm, id, pid, sQ)
t1+1
←↩ Q such that VfypkQ

(id, pid, ν̃, ˜version) = 1, then set

ΓP
aux(id, pid) := (sP , sQ, ˜version) and instruct the FPPC to execute at time t0 and output at time

t1 + 2 and stop.
(c) Execute sub-simulator SimRegister(P, id, pid) (end at round t2 ≤ t0+5+3∆). If ΓP

aux(id).pspace(pid) =
ν̃ (Q registered the latest state), instruct the FPPC to execute at time t0 and output at time t2 and
stop.

(d) Let t3 be the current round. Instruct the FPPC to execute at time t3 and out-

put according to the onchain delay. Get (executed, id, pid, P, f, t, z, ν)
t4≤t3+∆
←↩ FPPC . Send

(executed-onchain, id, pid, P, f, t, z, ν)
t4
↪→ Q.

4. If (id, pid) is marked as registered in ΓP
aux:

(a) Let t3 be the current round. Instruct the FPPC to execute at time t3 and out-

put according to the onchain delay. Get (executed, id, pid, P, f, t, z, ν)
t4≤t3+∆
←↩ FPPC . Send

(executed-onchain, id, pid, P, f, t, z, ν)
t4
↪→ Q.

P is corrupt and Q is honest

Upon (peaceful-request, id, pid, f, z, sP , t0)
t1←↩ P :

1. Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈ γQ.endusers or P /∈ γQ.endusers or γQ(pid) = ⊥,
else let νQ := γQ.pspace(pid). Stop if f /∈ νQ.code, else let CQ := νQ.code and σQ := νQ.storage. Let
(·, ·, versionQ) := ΓQ

aux(id, pid).

26

2. Stop if “P = γQ.Alice and t1 ̸≡ 1(mod 4)” or “P = γQ.Bob and t1 ̸≡ 3(mod 4)”.
3. Stop if t0 /∈ [t1 − 3, t1].
4. Stop if (id, pid) is marked as registered, else do:

(a) Compute (σ̃,m) := f(σQ, P, t0, z). Stop if m = ⊥.
(b) Set ˜version := versionQ + 1. Let ν̃ := ⊥. Set ν̃.code := CQ and ν̃.storage := σ̃.
(c) If VfypkP

(id, pid, ν̃, ˜version; sP) ̸= 1, then stop.

(d) Compute sQ := SignskQ
(id, pid, ν̃, ˜version). Send (peaceful-confirm, id, pid, sQ)

t1+1
↪→ P . Set ΓQ(id).

pspace(pid) := ν̃, ΓQ
aux(id, pid) := (sQ, sP , ˜version).

(e) Send (execute, id, pid, f, z)
t1
↪→ FPPC and instruct FPPC to execute at time t0 and output at time

t1 + 1.

Upon (instance-execute, id, pid, f, z)
t2←↩ P :

1. Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈ γQ.endusers or P /∈ γQ.endusers or γQ.pspace(pid) =
⊥, else let νQ := γQ.pspace(pid). Stop if f /∈ νQ.code, else let CQ := νQ.code and σQ := νQ.storage. Let
(·, ·, versionQ) := ΓQ

aux(id, pid). Stop if (id, pid) is not marked as registered in ΓQ
aux.

2. Send (execute, id, pid, f, z)
t2
↪→ FPPC and instruct FPPC to execute at time t2 and out-

put according to the onchain delay. Get (executed, id, pid, P, f, t2, z, ν)
t3≤t2+∆
←↩ FPPC . Send

(executed-onchain, id, pid, P, f, t, z, ν)
t3
↪→ P .

Simulator Sim: Close a programmable payment channel

Denote FPPC := F L̂(∆)
PPC (PS).

Let RO be a random oracle.

P is honest and Q is corrupt

Upon (close, P, id)
t0←↩ FPPC :

1. Stop if id is marked as closed. Otherwise, mark id as closed.
2. Stop if ΓP (id) = ⊥, else let γP := ΓP (id). For each γP .pspace(pid) ̸= ⊥ and (id, pid) is not marked as

registered in ΓP
aux, execute (in parallel) sub-simulator SimRegister(P, id, pid) immediately. This execution

will be finished in 3∆ rounds. Within another ∆ rounds (set as real), send (contract-closing, id)
t1≤t0+4∆

↪→
Q.

3. Execute sub-simulator SimRegister(Q, id, pid) if there exists some pid registered by Q. This will be finished
in 3∆ rounds.

4. At round t2 ≤ t0 + 7∆, instruct FPPC to set the first waiting time till t2.
5. If there exists some pid such that ΓP (id).pspace(pid).ended = 0 at t2, wait for γ

P .duration rounds. Within
∆ rounds, send (contract-close, id)
t3≤t0+8∆+γP .duration

↪→ Q and instruct FPPC to send messages at round t3.

P is corrupt and Q is honest

1. Execute sub-simulator SimRegister(P, id, pid) if there exists some pid registered by P at round t0.

2. If (contract-close, id)
t1≤t0+2∆
←↩ P after the registration, send (close, id)

t1
↪→ FPPC on behalf of P .

3. Stop if id is marked as closed. Otherwise, mark id as closed.

E. THE GLOBAL LEDGER FUNCTIONALITY 27

4. Within ∆ rounds, for each γQ.pspace(pid) ̸= ⊥ and (id, pid) is not marked as registered in ΓQ
aux, execute (in

parallel) sub-simulator SimRegister(Q, id, pid) immediately. This execution will be finished in 3∆ rounds
(or at t2 ≤ t1 + 3∆ round).

5. If there exists some pid such that ΓQ(id).pspace(pid).ended = 0 at t2, wait for γ
Q.duration rounds. Within

∆ rounds, send (contract-close, id)
t3≤t0+8∆+γQ.duration

↪→ P and instruct FPPC to send messages at round t3.

Theorem 2 (Coins momentum). Any channel γ cannot produce coins.

Proof. Alice will get min{total,max{0, γ.cash(γ.Alice) + creditA − creditB}} coins and Bob will get
min{total,max{0, γ.cash(γ.Bob)+ creditB − creditA}} coins while closing. Both are non-negative values
and sum up to total.

Theorem 3 (Balance security). Honest users will not lose coins in channels.

Proof. (sketch) For corrupted Q to steal coins from P , Q must have an initial promise from P , which
requires an unforgeable signature from P .

E The Global Ledger Functionality

Functionality L̂(∆)
Functionality L̂, running with parties P1, ..., Pn and several ideal functionalities F1, ...,Fm, maintains a vector
(x1, ..., xn) ∈ Rn

≥0 representing the balances (in coins) of parties. L̂ is also parameterized by a positive integer
∆, representing the delay (controlled by the adversary) in updating its state.

Adding money

Upon receiving a message (add, Pi, y) from Fj (j ∈ [m], y ∈ R≥0), set xi := xi + y within ∆ rounds. We say
that y coins are added to Pi’s account in L̂.

Removing money

Upon receiving a message (remove, Pi, y) from Fj (j ∈ [m], y ∈ R≥0):

– Stop if xi < y,
– Otherwise, set xi := xi − y within ∆ rounds. We say that y coins are removed from Pi’s account in L̂.

Fig. 9: The global ledger functionality L̂.

F Implementation and Evaluation

We instantiated PPC in the Ethereum network. In this section, first, we introduce some building blocks
for creating an efficient PPC protocol in the Ethereum. Next, we evaluate our implementation in terms
of Ethereum gas usage. Finally, we measure the transaction throughput.

28

F.1 Extra Building Blocks

Receipts. We introduce a new type of message that corresponds to a particular promise. A receipt is sent
by the sender of the promise after it is resolved between the two parties. The message is signed by the
payer and includes a credit value that denotes the aggregated amount of all previously resolved promises.
This message enables the parties to only present the receipt message to the on-chain contract, resulting
in less number of transactions posted on-chain.

Monotonically Increasing Credits. With the introduction of receipt messages, a malicious party can
deceive the contract by presenting a (promise, receipt) pair for which the amount of the promise is already
included in the receipt. This problem is known as the double spending attack. Such an attack can simply
be mitigated by including an index/counter for the promises and receipts, i.e., old promises are invalidated
by higher index values included in every receipt.

In order to avoid introducing new variables to order transactions, each party in PPC implementation
maintains two credit values for the aggregated amounts that they have sent and received via off-chain
transactions. Since the credit values are monotonically increasing they can be used to serve the purpose of
indexes. Futhermore, since at least one of the credit values is incremented for every off-chain transaction,
their combination could be used to uniquely identify each message, and thus protect against replay
attacks.

Accumulators. One downside of using monotonically increasing values is that they force off-chain trans-
actions to happen sequentially, and so, no new promise can be accepted unless the previous one is sat-
isfied (i.e., the corresponding receipt is received). To provide the maximum parallelization for a receiver
that can process multiple promises simultaneously, the PPC implementation allows the sender to submit
multiple promises without waiting for each promise to be processed (we refer to this property as non-
blocking/concurrent payments). The PPC implementation provides this feature by asking the parties to
commit to the set of pending promises along with every receipt.

As the list of pending promises grows linearly, it is inefficient to include the entire list in every
receipt, as significant fees will be associated to claiming a receipt on-chain. To address this issue, PPC
implementation uses cryptographic accumulators such as Merkle tree and RSA accumulator. Usage of
accumulators reduces the asymptotic bandwidth/fee overhead of inclusion proofs to a logarithm (e.g., for
a Merkle tree) or a constant (e.g., for an RSA accumulator) in the number of pending promises.

F.2 Smart Contract of PPC Implementation

In this subsection, we present the smart contract of the implementation presented in Fig. 10, which were
implemented via the Solidity language. Here, we provide an overview of the contract’s functionalities and
the added features to the protocol presented in Fig. 8 and Appendix C.

Multiple Deposits. The Deposit function in the contract can be used by the parties to increase their
balance for off-chain payments. This function can be invoked any number of times as long as the channel
is active (i.e., not closing).

Receipts and Accumulators. As mentioned earlier we added a receipt message to efficiently close
the channel (i.e., consuming less amount of gas). The receipt object R is formally defined as a tuple
(idx, credit, acc), where (1) idx is the receipt’s index6; (2) credit is the aggregated amounts of resolved
promises off-chain; and (3) acc is an accumulator for tracking the pending promises. Upon claiming a
promise, the index in the promise object is checked to see if it is less than the index (idx) of the receipt

6 Here we use index for ease of understanding, but as mentioned in Appendix F.1, we can use the credit values
as indexes for more efficiency

F. IMPLEMENTATION AND EVALUATION 29

PPC Contract

Init(cid′, vk′A, vk
′
B, claimDuration′):

1. Set (cid, claimDuration)← (cid′, claimDuration′);

2. Set status← “Active”; chanExpiry← 0; unresolvedPromises← ⊥;

3. Set A← {addr : vk′A, deposit : 0, rid : 0, credit : 0, acc : ⊥, closed : F}

4. Set B← {addr : vk′B, deposit : 0, rid : 0, credit : 0, acc : ⊥, closed : F}

Deposit(amount):

1. Require status = “Active” and caller.vk ∈ {A.addr,B.addr};

2. If caller.vk = A.addr, then set A.deposit← A.deposit + amount;

3. If caller.vk = B.addr, then set B.deposit← B.deposit + amount.

RegisterReceipt(R):

1. Require status ∈ {“Active”, “Closing”};

2. Require caller.vk ∈ {A.addr,B.addr};

3. If caller.vk = A.addr, then:
(a) Require SigVerify(R.σ, [cid, R.idx, R.credit, R.acc],B.addr);

(b) Set A.rid← R.idx, A.credit← R.credit, and A.acc← R.acc;
Otherwise:
(a) Abort if SigVerify(R.σ, [cid, R.idx, R.credit, R.acc],A.addr);

(b) Set B.rid← R.idx, B.credit← R.credit, and B.acc← R.acc;

4. If status = “Active” then set chanExpiry← now + claimDuration and status← “Closing”.

RegisterPromise(P):

1. Require status ∈ {“Active”, “Closing”};

2. Require caller.vk ∈ {A.addr,B.addr};

3. Require [P.addr, P.receiver] ̸∈ unresolvedPromises;

4. If P.sendr = A.addr, set sendr← A and receiver← B;
Otherwise set sendr← B and receiver← A;

5. Require SigVerify(P.σ, [cid, P.rid, P.sendr, P.receiver, P.addr], sendr.addr);

6. If caller.vk = receiver.addr and P.rid < receiver.rid,
Require ACC.VerifyProof(acc, P.addr, P.proof);

7. Invoke Deploy (P.byteCode, P.salt);

8. Set unresolvedPromises.push([P.addr, receiver])

9. If status = “Active”, then set chanExpiry← now + claimDuration, and status← “Closing”.

Close():

1. Require caller.vk ∈ {A.addr,B.addr};

2. If caller.vk = A.addr, set A.closed← T; Otherwise set B.closed← T;

3. If A.closed and B.closed, set status← “Closed”;

4. If status = “Active”, then set chanExpiry← now + claimDuration, and status← “Closing”.

Withdraw():

1. Require status ∈ {“Closing”, “Closed”};

2. If status = “Closing”, Require now > chanExpiry;

3. For each (addr, receiver) ∈ unresolvedPromises:
receiver.credit← receiver.credit + addr.resolve();

4. Invoke transfer(A.addr,A.deposit + A.credit− B.credit) and
transfer(B.addr,B.deposit + B.credit− A.credit).

Fig. 10: UPC Contract

30

submitted previously. In such a case, the claiming party should provide an extra inclusion proof to show
that the promise is included in the accumulator (of the submmitted receipt) to avoid double spending.

Cooperative Closing. Parties can close the channel by submitting a receipt and/or a set of promises.
In any case of closure, the contract status changes to “Closing” and the channel expiry is set (i.e., the
timestamp that the parties have to submit any receipt and/or promises). However, as this time can be
long, parties can finalize the closing sooner than the channel expiry time by invoking the Close function.
Once both parties have finalized closing, the status of the channel changes to “Closed” and parties can
withdraw their balances.

F.3 Hash-Time-Locked Contracts on PPC

As stated in the previous sections, many general applications and programmable payments can be defined
and implemented on PPC. Here, we present a simple case of HTLC and due to space constraints leave
other applications for future work.

HTLCs are one of the most used contracts on Layer-2 networks for routing payments between different
parties [30,3,28]. Consider the case that there exists (1) a payment channel between parties A and B
(A↔B); and (2) another channel between parties B and C (B↔C). A can utilize the B↔C channel to
transfer funds to C off-chain without establishing a new channel. To remove any trust in party B, HTLCs
can be used, by making the payment conditional on providing a preimage to a hash value specified in the
HTLC before some expiry time. Fig. 11 shows the smart contract code for the HTLC. The compiled code
along with the constructor values will construct the bytecodes of the promise, which can be deployed by
the PPC contract (see Fig. 10).

HTLC Contract

Init(amount′, hash′, expiry′):

1. Set (amount, hash, expiry)← (amount′, hash′, expiry′);

2. Set secretRevealed← F.

RevealSecret(secret):

1. Require now < expiry;

2. Require Hash(secret) = hash;

3. Set secretRevealed← T;

Resolve():

1. If secretRevealed, then return amount;

2. Require now ≥ expiry;

3. Return 0.

Fig. 11: HTLC Contract

In a similar manner, the routing can be extended to multi-hops where each pair of parties in the route
will construct their own HTLC contract. We can also consider the following optimization factor, where
only one instance of HTLC code can be used7 for all the promises within a route. In other words, all
the promises will be referencing the same address, and the HTLC contract will be only deployed once
(saving gas in the pessimistic case where multiple parties would need to go on-chain). A similar concept
exists in [28] where a registry contract that all parties can reference stores the secret value of an HTLC
payment.

7 Contract changes to consider different timings for each party in the route.

F. IMPLEMENTATION AND EVALUATION 31

Many related works [32,3,26,28,16] have extensively studied the use of HTLCs for routing. Due to
space constraints, we refer the readers to the related work for detailed explanations of the off-chain
protocol and in the following subsection, we present the performance results.

F.4 Evaluation

We have created a proof of concept implementation of our PPC protocol with promises containing HTLCs.
The ledger contract presented in Fig. 10 has been implemented using the Solidity programming language
for Ethereum. As discussed in Appendix F.1, we have used accumulators to allow for sending and process-
ing concurrent promises. In this work, we considered two types of accumulators namely the Merkle Tree
and RSA accumulators. We compared the efficiency of the two by different operations, shown in Fig. 12.
We observe that the Merkle tree is the better choice as it has less overhead. We further investigated the
gas consumption of the two and saw that membership proof verification of RSA consumes significantly
more gas on-chain (450K gas compared to 20K when 100K promises are stored in the accumulator).

0 20000 40000 60000 80000 100000
Number of promises in accumulator

10−4

10−3

10−2

T
im

e
in

se
co

nd
s

fo
r

a
si

ng
le

op
er

at
io

n

RSA insertion

Merkle insertion

(a) Accumulator Insertion

0 20000 40000 60000 80000 100000
Number of promises in accumulator

10−4

10−2

100

102

T
im

e
in

se
co

nd
s

fo
r

a
si

ng
le

op
er

at
io

n

RSA deletion

Merkle deletion

(b) Accumulator Deletion

0 20000 40000 60000 80000 100000
Number of promises in accumulator

10−4

10−2

100

102

T
im

e
in

se
co

nd
s

fo
r

a
si

ng
le

op
er

at
io

n
RSA proof

Merkle proof

(c) Membership Proof

Fig. 12: Performance comparisons between Merkle Tree and RSA accumulators

We begin by evaluating the gas needed for the deployment of the contract. The PPC contract requires
3, 243, 988 gas to be deployed on the Ethereum blockchain. We emphasize that in our implementation
we did not aim to optimize gas costs and further optimizations can reduce the gas. However, within its
current state, the PPC contract is comparable to other simple payment channel deployments 2M+ and
3M+ gas for Perun [16] and Raiden [3]8 respectively. The gas usage for the remaining functions of the
contract are reported in Table 2.

Table 2: Gas prices for invoking PPC contract’s functions.
Function Gas Units HTLC Specific Gas Units

Deploy 3,243,988 Promise 611,296 (w/o. proof)

Deposit 43,010 Promise 626,092 (Merkle-100K txs)

Receipt 75,336 RevealKey 66,340
Close 44,324 Withdraw 71,572

8 https://tinyurl.com/etherscanRaiden

https://tinyurl.com/etherscanRaiden

32

In the case of HTLC application, we can consider two main scenarios. In the optimistic case after
a promise is sent from the sender, the receiver releases the secret for the HTLC and consequently, the
sender sends a corresponding receipt to the receiver. In such a scenario, the receiving party will submit
the receipt to the contract and close accordingly. However, in the pessimistic case, where the receiving
party releases the secret but does not receive a receipt, it goes on-chain and first submit its latest receipt.
Next, it submits the promise for the HTLC which will be deployed by PPC where the party can reveal the
secret of HTLC. Comparing the two scenarios and referencing the Table 2, we see that in the pessimistic
case about 700K more gas will be needed to resolve the promise.

We further evaluated the run-time of the protocol by performing a test on ten clients concurrently
sending transactions to a single server. Each client sent 1, 000 transactions, which made the server process
a total of 10, 000 promises, secret reveals, and receipts. We were able to achieve 110 TPS end-to-end on
a laptop running 2.6 GHz 6-Core Intel Core i7. The end-to-end process included random secret creation,
hashing of secret, promise creation/verification, secret reveal/verification, and receipt creation/verifica-
tion. We note that the performance can be further improved by optimizing the off-chain code and using
a more powerful machine for the server.

Finally, we would like to highlight that the HTLC payment demonstrated between two parties with
established payment channels can be expanded to parties that are not directly connected but are linked
through intermediaries, also referred to as payment channel networks [30,16,18,3]. This method can also
be utilized to facilitate cross-chain payments involving an intermediary on multiple chains or with the
aid of relayers and light clients [23,27,21].

	Off-Chain Programmability at Scale-0.5em

