
Programmable Payment Channels

Abstract—One approach for scaling blockchains is to create
bilateral, offchain channels, known as payment/state channels,
that can protect parties against cheating via onchain collateral-
ization. While such channels have been studied extensively, not
much attention has been given to programmability, where the
parties can agree to dynamically enforce arbitrary conditions over
their payments without going onchain.

We introduce the notion of a programmable payment channel
(PPC) that allows two parties to do exactly this. In particular,
our notion of programmability enables the sender of a (unidirec-
tional) payment to dynamically set the terms and conditions for
each individual payment using a smart contract. Of course, the
verification of the payment conditions (and the payment itself)
happens offchain as long as the parties behave honestly. If either
party violates any of the terms, then the other party can deploy
the smart contract onchain to receive a remedy as agreed upon in
the contract. In this paper, we make the following contributions:

• we formalize PPC as an ideal functionality FPPC in the
universal composable framework, and build lightweight
implementations of applications such as hash timelocked
contracts (HTLCs), “reverse HTLCs”, and rock-paper-
scissors in the FPPC-hybrid model;

• we show how FPPC can be easily modified to capture the
state channels functionality FSC (described in prior works)
where two parties can execute dynamically chosen arbitrary
two-party contracts (including those that take deposits from
both parties) offchain, i.e., we show how to efficiently realize
FSC in the FPPC-hybrid model;

• we show an implementation of FPPC on blockchains sup-
porting smart contracts (such as Ethereum), and provide
several optimizations to enable concurrent programmable
transactions—the gas overhead of a HTLC PPC contract is
< 100K, amortized over many offchain payments.

We note that our implementations of FPPC and FSC depend
on the CREATE2 opcode which allows one to compute the
deployment address of a contract (without having to deploy it).

I. INTRODUCTION

With the rise of decentralized services, financial products
can be offered on blockchains with higher security and lower
operational costs. With its ability to run arbitrary programs,
called smart contracts, and direct access to assets, a blockchain
can execute complex financial contracts and settle disputes
automatically. Unfortunately, these benefits all come with a
major scalability challenge due to the overhead of onchain
transactions, preventing the adoption of blockchain services
as mainstream financial products.

Payment channels [1], [2] are a class of mechanisms for
scaling blockchain payments, by “off-loading” transactions to
an offchain communication channel between the two parties.
The channel is “opened” via an onchain transaction to fund
the channel, followed by any number of offchain transactions.
Eventually, by a request from either or both parties, the
channel is “closed” via another onchain transaction. This

design avoids the costs and the latency associated with onchain
operations, effectively amortizing the overhead of onchain
transactions over many offchain ones. While several proposals
improve the scalability of payment channels [3], [4], [5],
[6], [7], [8], [9], [10], they do not allow imposing arbitrary
conditions on offchain payments.

State channels [11], [12], [13], [14], [15], [16] allow two
parties to perform general-purpose computation offchain by
mutually tracking the current state of the program. Typical
state channel proposals have two major drawbacks in practice.
With the exception of [15], state channel constructions require
the parties to fix the program, which they wish to run offchain,
at the time of channel setup. This means that no changes to
the program are allowed after the parties go offchain. This
is especially problematic in offchain scalability approaches
based on the hub-and-spoke model [6], [17], [18], where
each party establishes a general-purpose channel with a highly
available (but untrusted) hub during setup to be able to later
transact with many other parties without the need to establish
an individual channel with each party (see Figure 1 Left
and Middle). In practice, parties usually have no a priori
knowledge about the specific set of conditions required to
transact with other parties that they have never established
any relationship with.

Second, the complexity of the existing state channel propos-
als could be overkill for simple, programmable payments. The
authorization of an offchain transaction via a payment channel
is significantly simpler as the flow of the payments is unidi-
rectional while state channels need to track all state changes
from both parties irrespective of the payment direction.

In this paper, we introduce the notion of programmable
payment channels (PPC) that allows the parties to agree
offchain on the set of conditions (i.e., a smart contract)
they wish to impose for each of their offchain transactions
(see Figure 1 Right). A classic example of such a program is a
hash-time-locked contract (HTLC) [19] which is foundational
to the design of (multihop) payment channels [3], [5].

While most current payment channels already embed
HTLCs for routing, many useful applications remain difficult
to build on top of payment channels. Consider the following
example. Alice wants to reserve a room through an established
payment channel with the hotel. Alice would like to send a
payment under the following conditions: (1) Alice is allowed
to cancel the reservation within 48 hours of booking to get
back all of her funds, and (2) Alice can get back half of her
funds if she cancels the reservation within 24 hours of the stay
date. Achieving this simple real-life example of a payment
with current payment channels and HTLCs is inefficient.

Programmable
Payment Channel

HUB

AuctionHTLC …

O
n-

ch
ai

n
O

ff-
ch

ai
n

HUB
HTLCHTLC

HUB
AuctionAuction

HUB
LotteryLottery

Off-chain

Fig. 1: Left: Hub-and-spoke model: Each party creates a single channel with the hub; Middle: Every pair of parties reuse their channels
with the hub to execute different contracts; Right: PPC between two parties supporting any offchain application.

A. Our Contributions

• We propose the notion of a programmable payment channel
(PPC) that is a payment channel allowing two parties to
transact offchain according to a collateral that they deposit
onchain and a smart contract that they agree on offchain.
PPC provides the following features:

– Scalability: Only opening and closing the channel require
onchain Layer-1 access.

– Offchain Programmability: The PPC protocol stays iden-
tical for new payment logic after the channel is opened.

• We formalize PPC and prove its correctness and security
in the universal composable (UC) framework using a global
ledger. In particular, we provide an ideal functionality FPPC.
We then show how to build lightweight implementations of
simple applications such as HTLCs, “reverse HTLCs,” and
rock-paper-scissors in the FPPC-hybrid world.

• We show how PPC can be modified to capture the state
channels functionality where two parties can execute dy-
namically chosen arbitrary two-party contracts (including
those that take deposits from both parties) offchain, namely,
to realize FSC in the FPPC-hybrid world. In particular, to
launch an offchain contract, parties only need to make three
calls to FPPC to instantiate two programmable payments.

• We evaluate PPC by instantiating it on Ethereum. We show
how the PPC contract deploys new contracts that embed the
conditions of payments. Our results show that deploying the
PPC contract needs about 3M gas, and that settling onchain
in the optimistic case (honest parties) needs only 75K gas.
In the pessimistic case (malicious parties), 700K more gas
is needed for a simple logic such as HTLC.

We note that our implementations of FPPC and FSC depend
on the CREATE2 opcode which allow one to compute the
deployment address of a contract (without having to deploy
it). This opcode is available on any EVM (Ethereum Virtual
Machine) based chain (including Ethereum, Polygon, etc.).

B. Related Work

Payment Channels. The key idea behind a payment channel
is an onchain contract: both parties instantiate this contract

and transfer digital money to it. Later on, whenever one
party wants to pay another, they simply sign on the other
party’s monotonically-increasing credit. When the two parties
want to close the channel, they submit their final signed
credits to rebalance the money in the channel. No execution
happens on the blockchain before closing the channel; the
payment between two parties relies only on exchanging digital
signatures. Payment channels have been heavily studied and
deployed before [1], [2], [13], [20], [8], [12], [21], [22].

State Channels. A proposal for executing arbitrary contracts
offchain is state channels [12], [11], [13], [14], [15], [16].
The key idea is as follows: (1) the contract can be executed
offchain by exchanging signatures, and (2) the contract can
be executed onchain from the last agreed state to resolve
any disagreements. For example, consider a two-party contract
between Alice and Bob, whenever Alice wants to update
the current state, she simply signs the newer state. Then,
she forwards her signature and requests for Bob’s signature.
While Bob may not reply with his signature, Alice can submit
the pre-agreed state to the blockchain with the contract and
execute it onchain. This idea can be naturally extended to
multi-party contracts (e.g., [12], [14], [23]).

The works of [15] and [13] are closest to ours. Unlike
us, [15] do not provide any formal proofs or guarantees. As
mentioned in [13], their work lacks several features useful for
practical implementation. Also, our protocols take advantage
of the CREATE2 opcode which was introduced subsequent to
the work of [15]. We follow [6], [13], [14], [24] to formalize
our channel using universal composable (UC) framework
with a global ledger. However, these works focus on channel
virtualization1, and are not directly related to this work.

Other Related Work. An excellent systematization of knowl-
edge that explores offchain solutions can be found in [25].
See Section A for the comparison with rollups, a popular
Layer-2 scaling solution [26], [27], [28]. See Section B for
other works that use the CREATE2 opcode.

1Virtual channels focus on designing protocols between parties who do not
have a direct channel, but both have a channel with a (common) intermediary.

2

II. TECHNICAL OVERVIEW

In this section, we provide informal technical details for our
definitions and constructions. First, we motivate and describe
the ideal functionality FPPC and the interfaces it supports
for providing programmable payments. Then, we show how
we concretely implement FPPC on Ethereum, and detail both
the offchain components as well as the onchain contract.
Next, we show how to build lightweight applications using
programmable payment channels. Following this, we show
how FPPC generalizes to capture a natural variant of state
channels which we call FSC. We then show how to implement
FSC in the FPPC-hybrid model.

A. Defining FPPC

To incorporate programmability into a payment channel,
one might hard-code the logic of an application inside the
protocol as a template. However, this approach is not desirable
as every new application requires a protocol update that
would also include changes to the existing onchain contract.
Motivated by this, our definition of FPPC allows for on-the-fly
programmability as we explain below.

In the following, we call a programmable payment a
promise. Concretely, our ideal functionality FPPC allows the
following operations: (1) opening a payment channel, (2)
creating a promise, (3) executing a promise, and (4) closing a
payment channel. Our central observation is that a promise can
be viewed as a smart contract, and more importantly, a contract
can deploy another contract. Specifically, the storage of the
promise is captured by the storage of the contract, and the
execution logic of the promise is captured by functions in the
smart contract. The logic in different promises can be different
or related, thereby capturing on-the-fly programmability.

Any number of promises can be created by an open channel
and may be concurrently executed. Either party can create a
promise to the other party. Since the payment is unidirectional,
we refer to the creating party as the sender of a promise, and
the other party as the receiver of a promise.

Promises can be related to each other in the sense that the
state and the execution logic of a promise can depend on the
state and execution logic of other promises. We capture this
by allowing the functions of the promise have access to its
own storage, read access to the storage and functions of other
promises in this channel, and more generally, read access to
the storage and functions of other onchain contracts.2 Note
that the execution environment of promises is quite rich, and
we will show various examples of how to use this and certain
caveats associated with what is implementable.

This type of dependence is common in onchain smart
contracts especially in DeFi applications. However, capturing
this dependence (in the implementation of FPPC) needs to
be done carefully since promises executions are normally
executed offchain, and may sometimes need to be executed
onchain (and the dependence must be preserved even while

2In Solidity (a high level language for EVM) parlance, promises can also
call pure or view functions in onchain contracts or other promises.

the execution environment is changing). Care must be taken
to ensure that this change of execution environment (i.e., from
offchain to onchain) does not affect function output.

Promises are executed onchain only if requested by the
parties (following which, further executions related to that
promise are carried out onchain).3 Following prior work, we
differentiate between onchain and offchain executions in FPPC

by the amount of time it takes FPPC to respond to execution
requests. That is, onchain executions are slower and take O(∆)
rounds where ∆ is a blockchain parameter representing the
amount of time it takes for the miners/validators to deliver a
new block to the chain.

Each promise resolves to an unsigned integer value denoting
the amount that needs to be transferred from the sender to
the receiver. This resolved value is calculated at the time of
channel closing, and then the resolved values of all promises
are aggregated to determine the final settlements.

B. Concrete implementation of FPPC.

We show a pseudocode implementation of programmable
payment channels contract in Figure 2. In this subsection, we
will detail the methods in the programmable payment channels
contract, and along the way we will discuss the offchain
protocol that is executed to implement FPPC.

The programmable payment channel contract is initialized
with a channel id id, the parties’ public keys vkA and vkB, and
an expiry time claimDuration by which the channel settles the
amounts deposited. We track the deposit amount and the credit
amount (which will be monotonically increasing) for the two
parties. We also track a receipt id (i.e., rid) and an accumulator
value acc. We will describe what these are for below, but for
now think of receipts as keeping track of received promises
that have been resolved, and the accumulator as keeping track
of received promises that have not yet resolved.

Remark. Since promise executions may take some time
(e.g., HTLC, chess), it is important to support concurrency.
Promises issued by a sender are immediately added to an
accumulator associated with the sender (which is maintained
by both parties), and then are removed from the accumulator
when they get resolved.

Just like a regular payment channel, we also provide meth-
ods for the parties to deposit an amount (the pseudocode
supports multiple deposits), and also for initiating the closing
of a channel via the Close method. A call to the Close

method will ensure that the channel status is set to “Closing”
or “Closed”, and further, sets the channel expiry time.

During the time that a channel is “Active” parties exchange
any number of payment promises offchain. Each promise P
is essentially the smart contract code describing the logic of
the payment. Note that the promise contract logic may involve
multiple steps and parties may concurrently send and receive
any number of promises.

3In our implementation, we make the simplifying assumption that once a
promise is executed onchain, all the remaining promise executions happen
onchain as well.

3

PPC Contract

Init(id′, vk′A, vk
′
B, claimDuration′):

1) Set (id, claimDuration)← (id′, claimDuration′);

2) Set status← “Active”; chanExpiry← 0; unresolvedPromises← ⊥;

3) Set A← {addr : vk′A, deposit : 0, rid : 0, credit : 0, acc : ⊥, closed : F}

4) Set B← {addr : vk′B, deposit : 0, rid : 0, credit : 0, acc : ⊥, closed : F}

Deposit(amount):

1) Require status = “Active” and caller.vk ∈ {A.addr,B.addr};

2) If caller.vk = A.addr, then set A.deposit← A.deposit + amount;

3) If caller.vk = B.addr, then set B.deposit← B.deposit + amount.

RegisterReceipt(R):

1) Require status ∈ {“Active”, “Closing”};

2) If status = “Active” then set chanExpiry ← now + claimDuration and
status← “Closing”.

3) Require caller.vk ∈ {A.addr,B.addr};

4) If caller.vk = A.addr, then:
a) Require SigVerify(R.σ, [id, R.idx, R.credit, R.acc],B.addr);

b) Set A.rid← R.idx, A.credit← R.credit, and A.acc← R.acc;
Otherwise:
a) Abort if SigVerify(R.σ, [id, R.idx, R.credit, R.acc],A.addr);

b) Set B.rid← R.idx, B.credit← R.credit, and B.acc← R.acc;

RegisterPromise(P):

1) Require status ∈ {“Active”, “Closing”};

2) If status = “Active”, then set chanExpiry ← now + claimDuration, and
status← “Closing”.

3) Require caller.vk ∈ {A.addr,B.addr};

4) Require [P.addr, P.receiver] ̸∈ unresolvedPromises;

5) If P.sender = A.addr, set sender← A and receiver← B;
Otherwise set sender← B and receiver← A;

6) Require SigVerify(P.σ, [id, P.rid, P.sender, P.receiver, P.addr], sender.addr);

7) If caller.vk = receiver.addr and P.rid < receiver.rid,
Require ACC.VerifyProof(acc, P.addr, P.proof);

8) Invoke Deploy (P.byteCode, P.salt);

9) Set unresolvedPromises.push([P.addr, receiver])

Close():

1) Require caller.vk ∈ {A.addr,B.addr};

2) If caller.vk = A.addr, set A.closed← T; Otherwise set B.closed← T;

3) If A.closed and B.closed, set status← “Closed”;

4) If status = “Active”, then set chanExpiry ← now + claimDuration, and
status← “Closing”.

Withdraw():

1) Require status ∈ {“Closing”, “Closed”};

2) If status = “Closing”, Require now > chanExpiry;

3) For each (addr, receiver) ∈ unresolvedPromises:
receiver.credit← receiver.credit + addr.resolve();

4) Invoke transfer(A.addr,min(total,max(0,A.deposit + A.credit −
B.credit)) and transfer(B.addr,min(total,max(0,B.deposit +
B.credit− A.credit)), where total = A.deposit + B.deposit.

Fig. 2: PPC Contract

At a high level, the lifecycle of a promise is as follows:
the sender sends the promise offchain, then the sender and
the receiver execute the promise contract offchain. When both
parties agree to the value of the final output of the resolve
method on the promise, the sender of the promise signs a
receipt signaling the fulfillment of the promise that reflects

the updated credit balance of the receiver.

Remark. Note that if we restrict the set of promises that can
interact with the PPC contract to be ones that have the resolve
method return a hard-coded value, then the PPC contract
described in Figure 2 is just a vanilla payment channel.

In more detail, a receipt from a sender consists of
• a monotonically increasing index, which keeps track of

the number of fulfilled promises from the sender,
• a monotonically increasing credit, which keeps track of

the sum of all resolved amounts in the fulfilled promises
originating from the sender,

• an accumulator, which keeps track of all the pending
promises issued by the sender, and

• a signature from the sender on all the above values along
with the channel id.

If the receiver obtains a faulty receipt (or did not receive the
receipt, or is just malicious), then the receiver can deploy the
promise onchain via the PPC contract. Note that in some cases
(e.g., promises which involve multiple steps), it is possible that
the sender (as opposed to the receiver) may need to deploy the
promise onchain via the PPC contract.

This brings us to another important detail concerning the
offchain execution of the promises that involve multiple steps
(e.g., chess). In this case, parties will need to additionally ex-
change signatures with each other to commit to the storage of
the promise contract after the offchain execution of individual
steps. This is done in order to ensure that the offchain and
onchain executions produce the same state changes.

To continue the promise execution onchain (we assume that
the party also wishes to subsequently close the channel), the
party calls RegisterReceipt with the latest receipt (along
with the signature from the counterparty) that it possesses,
and then calls RegisterPromise with the promise P .

We now detail the components of a promise P :
• P.sender (resp. P.receiver) denotes the sender (resp. the

receiver) of the promise,
• P.byteCode denotes the smart contract corresponding to

the payment logic,
• P.salt denotes a one-time salt chosen by the sender,
• P.addr denotes the address at which the promise will be

deployed by the PPC contract; note that P.addr is derived
deterministically from P.byteCode and P.salt using a
collision resistant hash function (e.g., CREATE2 opcode),

• P.rid denotes the latest receipt index at the time of
generating this promise,

• P.proof denotes the proof that the promise is contained in
the accumulator (i.e., is unresolved at the time the latest
receipt was generated), and

• P.σ denotes the signature of the sender on the tuple
(id, P.rid, P.sender, P.receiver, P.addr).

When RegisterPromise is called with a valid promise,
the PPC contract deploys P.byteCode (i.e., the smart con-
tract associated with the payment logic of promise P) at a
predetermined address. The fact that the contract is deployed

4

HTLC Contract

Init(amount′, hash′, expiry′):

1) Set (amount, hash, expiry)← (amount′, hash′, expiry′);
2) Set secretRevealed← F.
RevealSecret(secret):

1) Require now < expiry and Hash(secret) = hash;
2) Set secretRevealed← T;
Resolve():
1) If secretRevealed, then return amount, else return 0.

Fig. 3: HTLC Contract

at a predetermined address is what makes it possible to have
promises depend on each other (cf. Section V). Here, we as-
sume that the PPC contract uses CREATE2 opcode to deploy
the contract. In Ethereum, using the CREATE2 opcode (EIP-
1014), contracts can deploy contracts whose address is set
by H(0xFF, sender, salt, bytecode) (where H is a collision
resistant hash function). This capability implies that one can
foresee the address of some yet-to-be-deployed contract.

Following deployment, parties can interact with the de-
ployed promise independent of the PPC contract. However,
note that when a party calls RegisterPromise, the chan-
nel automatically goes into a closing state, and then after
claimDuration time has passed, either party can withdraw
funds. Thus, it is critical that the promises exchanged by the
parties also meaningfully resolve within claimDuration time.

When a party calls the Withdraw method, the resolve
method is called for each unresolved promise that is registered
with the PPC contract. The value returned by the resolve
method is then added to the credit of the corresponding
receiver. Finally, each party gets transferred an amount that
corresponds to its initial deposit and the difference of the credit
that it is owed and the credit that it owes.

C. Lightweight applications of programmable payments

We use programmable payments on PPC to implement
many lightweight applications and report the evaluations
in Section VI. Here, we focus on discussing how PPC helps
us implement these applications as smart contracts.
HTLC. See Figure 3 for an implementation of HTLC
promises. The constructor specifies the amount this HTLC is
for, and the hash image for which the preimage is requested,
and the expiry time by which the preimage must be provided.
Observe that these values are specified by the sender of the
promise. On sending the preimage to the sender, the receiver
will expect a receipt reflecting the updated credit (i.e., an
increase by amount). If such a receipt was not provided, then
the receiver will deploy the HTLC promise contract onchain4

and then execute the RevealSecret function to lock the final
resolved amount to the HTLC amount. On the other hand, if
the secret was not revealed, then when the PPC channel closes

4Note that the deployment byteCode already contains the constructor
arguments hardcoded in it.

Reverse HTLC Contract

Init(amount′, hash′, expiry′, receiver′):

1) Set(amount, hash, expiry, receiver)← (amount′, hash′, expiry′, receiver′);
2) Set (secretRevealed, ackSubmitted)← (F, F).
RevealSecret(secret):

1) Require now < expiry and Hash(secret) = hash;
2) Set secretRevealed← T;
SubmitAck(secret, sig):

1) Require Hash(secret) = hash and SigVerify(sig, secret, receiver);
2) Set ackSubmitted← T;
Resolve():
1) If secretRevealed or ackSubmitted, then return 0;
2) Return amount.

Fig. 4: Reverse HTLC Contract

(which we assume happens after the HTLC expiry), the resolve
function will return zero.
Reverse HTLC. See Figure 4 for an implementation of the
reverse HTLC promise. In reverse HTLC, the sender commits
to revealing a hash preimage within a given expiry time or else
stands to lose the promise amount to the receiver. (Note that
the roles are somewhat reversed in a regular HTLC promise.)
This is a useful promise in, e.g., committing a reservation.

To implement reverse HTLC promise, the sender initializes
the promise with the amount, the hash image, the expiry time,
and the address of the receiver. Then the sender would reveal
the hash preimage to the receiver offchain, and provide a
receipt amount (reflecting a zero increase in credit). However,
unlike a HTLC promise, here the sender additionally expects
an acknowledgment from the receiver that they received the
preimage (in the form of a signature on the preimage). If
the acknowledgment is received, then the sender is assured
that the promise will resolve to zero (since it can always
call SubmitAck if the promise gets deployed onchain after
the expiry time), and concludes the promise execution. Other-
wise, the sender continues the promise execution onchain by
deploying the reverse HTLC promise via the PPC contract,
and then calling the RevealSecret method. This ensures that
the promise will resolve to zero. Thus, reverse HTLC is an
example (different from HTLC) where the sender might have
to deploy the promise onchain.
On-chain Event Betting. See Figure 5 for an example promise
where the sender is betting that the price of Ethereum will not
go above a certain threshold (say, $2,000) within a certain
time period. In such a scenario, the party can send a promise
that reads the price of Ethereum on-chain from an oracle (e.g.,
eth-usd.data.eth). This is an example of a promise that
depends on the state of external onchain contracts. In such
cases, it is important to design the promise carefully as the
external contract may change state and cause offchain and
onchain execution of promises to be different. Thus we use the
function getRoundData (say, instead of latestPrice). This
way, suppose the receiver does not send an acknowledgment
that the price was indeed above the threshold (i.e., a receipt

5

On-chain Event Betting

Init(amt′, threshold′, tMin′, tMax′):

1) Set (amount, threshold, tMin, tMax)← (amt′, threshold, tMin′, tMax′);
2) Set roundID← 0

SetRoundID(roundID′):

1) Require tMax ≥ getTimestamp(roundID′) ≥ tMin;
2) Set roundID← roundID′

Resolve():
1) If roundID = 0, return 0
2) (price, timestamp)← eth-usd.data.eth.getRoundData(roundID)

3) If price > threshold and timestamp > 0

Fig. 5: Onchain event betting

Rock-Paper-Scissors Promise

Init(amt′, C′
1, C

′
2, receiver

′, expiry′):

1) Set (amt, C1, C2, receiver, expiry)← (amt′, C′
1, C

′
2, receiver

′, expiry′);
2) Set (revealed1, revealed2)← (F, F), and (ch1, ch2)← (⊥,⊥).
Reveal(i,m, r):

1) Require i ∈ {1, 2}, now < expiry and Hash(m, r) = Ci;
2) Revert if i = 1 and revealed2 = F;
3) If revealedi = F, set revealedi ← T, chi ← m, and expiry← expiry + ∆;
Resolve():
1) Return amt if

• revealed1 ∧ revealed2 ∧ didReceiverWin(ch1, ch2), or:
• revealedreceiver = T and revealed3−receiver = F.

2) Return 0.

Fig. 6: Rock-Paper-Scissors Promise

reflecting the updated credit), then the sender can deploy the
promise onchain (without worrying about the exact block in
which its promise will appear). In the example, we assume that
the roundID values are calculated offchain and correspond to
a time duration that both parties agree on.
Rock-Paper-Scissors. Next, we show that two promises can
be used to implement two-party contracts where both parties
provide money. See Figure 6 for an implementation of a
promise that can be used by two parties to deposit amt
coins to play a game of rock-paper-scissors such that the
winner of the contest will get the counterparty’s deposit. In
the offchain protocol, first party A sends commitment C1

to party B. Next, party B sends the promise in Figure 6
with receiver′ = 1 (denoting A as the receiver) along with
the commitment C1 from A and its own commitment C2

hardcoded in the constructor with an extra requirement: C1 can
only be revealed after C2 is revealed. This extra requirement
ensures A will send the promise as follows. Upon receiving the
promise offchain from B with the correct C1 value hardcoded
in it, party A sends a promise in Figure 6 with receiver′ = 2
(denoting B as the receiver) along with the commitments C1

and C2. As before, parties will abort the offchain protocol if
the commitment hardcoded in the promises are inconsistent
with what they expect. If the commitments are consistent,
then the parties go ahead and reveal the openings of the

commitments offchain (B first, and then A) and expect to
receive updated receipts reflecting the outcome of the game.
Now if the winner does not get the correct receipt (before
expiry), then it can deploy the promise from the loser, onchain,
and then open its commitment on the onchain promise. This
process will ultimately ensure that the onchain promise will get
the winning amount. On the other hand, a malicious loser may
deploy the winner promise onchain and submit its opening.
Here, note that the expiry time is increased by an additional
∆ rounds, so that the winner has sufficient time to submit its
opening, and ensures that its promise resolves to zero.5

Of course, the above rock-paper-scissors protocol is ad-hoc
and application-specific. A natural question is whether PPC
can execute other two-party contracts, and if so, how general
the protocol is. Next, we show how to generally implement
arbitrary two-party contracts from FPPC.

D. Modifying FPPC to capture state channels

Our formalization of programmable payment channels is
heavily inspired by the formalization of state channels in [13].
In fact, FPPC can be easily modified to yield a variant of state
channel functionality FSC, which can be used to execute any
two-party contract offchain. We call these contracts covenants.
Note that the ideal functionality for state channels FSC al-
lows the following operations: (1) opening a (state) channel,
(2) creating a covenant instance, (3) executing a covenant
instance, and (4) closing the channel. Covenant instances,
unlike promise instances, do not have a designated sender or
receiver. Like FPPC, any number of covenant instances can be
created and executed using FSC. Unlike FPPC though, the ideal
functionality FSC accepts a covenant creation operation from
a party only if the other party consents to it. The covenant
instances allowed by FSC resolve to two integer values (that
corresponds to the payout of each party). Again, this resolved
value is calculated at the time of channel closing, and then
the resolved values of all contract instances are aggregated to
determine the final settlements.

E. Implementing FSC in the FPPC-hybrid world

Perhaps surprisingly, FPPC can be used to implement FSC.
In particular, a covenant can be compiled into two promises
on FPPC that can be used to execute the covenant offchain.

To implement a covenant creation of a contract c in FSC,
we use two promises p0, p1, one from each endpoint of FPPC.
The promise p0 contains all the logic of the covenant instance
c. Note that c will resolve to either (k, 0) or (0, k), where k is
non-negative. In particular, (k, 0) denotes that the first party
needs to pay k to the second party and (0, k) denotes that the
second party needs to pay k to the first party. Note that the
resolved state of c will be saved in p0 as well. Accordingly,
p0 will resolve to 0 in the case of (0, k), otherwise as k. The
resolve method of promise p1 will instead read the state of
p0, and resolves in the opposite direction. That is, p1 resolves

5Increasing the expiry time is just a simple technique that works in this
setting. More generally, one would use the acknowledgments of the most
recent offchain state like we used in the reverse HTLC example.

6

Contract

Promise 1 Promise 2

First Promise
interlocked with a
promise to be sent

by the counter-party

Read

Fig. 7: Execute arbitrary two-party contract on PPC. Com-
piler compiles the contract into two interlocked promises.

to 0 in the case of (k, 0), otherwise as k. That both parties
consent to the contract instance is captured by requiring each
party to provide its promise.

We illustrate this with an example of two-party contract for
chess (cf. Figure 7). We assume that each party puts in $50,
and the winner gets $100. Assume that there exists a smart
contract c that contains the entire logic of chess (i.e., checking
validity of a move, checking whether the game has ended, who
has won the game, and the payout to each party, etc.).

To play a game of chess offchain, parties each first create
a promise. The promise from Bob contains all the logic in
c and additionally has a resolve method which will depend
on the payout logic in c in the following way: if the winner
is Alice, then the resolve method returns $50, else it returns
zero. The promise from Alice is such that the resolve method
invokes the resolve method of Bob’s promise to get value v
and returns $50− v as the resolved amount.

III. PRELIMINARIES

Adversary. We consider an adversary who can corrupt one
party in the two-party channel. The corrupted party is byzan-
tine and can deviate from the protocol arbitrarily.
Network & Time. We assume a synchronous complete peer-
to-peer authenticated communication network. Thus, the exe-
cution of protocol can be viewed as happening in rounds. The
round is also used as global timestamp. We use msg

t≤T
←↩ P

to denote the message will be sent by party P before round
T . Similarly, we use msg

t≤T
↪→ P to denote that the message

will be delivered to party P before round T . Specifically, the
adversary is allowed to introduce delays for message delivery
but the delays should be bounded.
GUC Model. We model and formalize PPC under global
universal composable (GUC) framework [29], [30]. UC is
a general purpose framework for modeling and constructing
secure protocols. The correctness and security of protocols
rely on simulation-based proofs. We defer the formal descrip-
tion to Section C-A. We acknowledge that we restrict the
distinguisher to a subclass of environments to simplify the

formalizations. This restriction is standard (e.g., [6], [13]) and
can be easily removed using straightforward checks.
Cryptocurrency and Contract Functionalities. We fol-
low [13], [14] and model cryptocurrency as a global ledger
functionality L̂(∆) in the GUC framework. Parties can move
funds from/to the ledger functionality solely by invoking other
ideal functionalities (including contracts) that can invoke the
methods Add/Remove. However, any operation on the global
ledger will happen within a delay of ∆ rounds as decided by
the adversary A, capturing that this is an onchain transaction.

We note that we diverge from [13], [14] and assume that the
global ledger functionality L̂(∆) stores the code and storage
of onchain contracts. Looking ahead, the promise functions
have read access to the code and storage of onchain contracts
which we capture by providing oracle access to the contract
functions G1, . . . ,Gm (see also Figure 11 in Section C-B).

IV. PROGRAMMABLE PAYMENT CHANNELS

Contracts. We define contracts as in [13]. A contract instance
consists of two attributes: contract storage (accessed by key
storage) and contract code (accessed by key code). Contract
storage σ is an attribute tuple containing at least the following
attributes: (1) σ.userL and σ.userR denoting the two involved
users; (2) σ.locked ∈ R≥0 denoting the total number of coins
locked in the contract; (3) σ.cash : {σ.userL, σ.userR} → R
denoting the coins available to each user. A contract code is
a tuple C := (Λ,Construct, f1, . . . , fs) where (1) Λ denotes
the admissible contract storage; (2) Construct denotes a con-
structor function that takes (P, t, y) as inputs and provides as
output an admissible contract storage or ⊥ representing failure
to construct, where P is the caller, t is the current time stamp
and y denotes the auxiliary inputs; and (3) each f denotes an
execution function that takes (σ, P, t, z) as inputs and provides
as output an admissible contract storage (could be unchanged)
and an output message m, where m = ⊥ represents failure.
PPC Parameters. A programmable payment channel is pa-
rameterized by an attribute tuple γ := (γ.id, γ.Alice, γ.Bob,
γ.cash, γ.pspace, γ.duration) where (1) γ.id ∈ {0, 1}∗ is
the identifier for the PPC instance (think of this as the
address of the PPC contract); (2) γ.Alice and γ.Bob denote the
two involved parties; (3) γ.cash : {γ.Alice, γ.Bob} → R≥0
denotes the amount of money deposited by each participant;
(4) γ.pspace stores all the promise instances opened in the
channel–it takes a promise identifier pid and maps it to a
promise instance; and (5) γ.duration ≥ 0 denotes the time
delay to closing a channel.

Note that the attribute γ.duration was not part of prior
channel formalizations (e.g., [13], [14]); we will further
clarify it in Section IV-A. We further define two auxil-
iary functions: (1) γ.endusers := {γ.Alice, γ.Bob}; and (2)
γ.otherparty(x) := γ.endusers \ {x} where x ∈ γ.endusers.
Promises. We name a programmable payment a promise.
Informally, a promise instance can be viewed as a special
contract instance where only one party offers money. Formally,
a promise instance consists of two attributes: promise storage

7

(accessed by key storage) and promise code (accessed by key
code). Promise storage σ is an attribute tuple containing at
least the following attributes: (1) σ.payer denotes the party
who sends money; (2) σ.payee denotes the party who receives
money; and (3) σ.resolve ∈ R≥0 denotes the amount of
money transferred from payer to payee. A promise code is a
tuple C := (Λ,Construct, f1, . . . , fs) similar to contract code
with further restrictions: (1) the unique constructor function
Construct will always set the caller to be the payer in the
storage created; and (2) the constructor function’s output is
independent of input argument t, which is a time parameter
capturing the current time of the blockchain. We add these
restrictions to ensure that, even when the promise is registered
onchain by CREATE2, the initial state remains identical.

We further assume that each fi has access to the code
and storage of other promises in the same channel, as well
as the code and storage of all Layer-1 onchain contracts.
Formally, we capture this by providing oracle access to the
ideal functionalities. This is why we use the notation fG,γ in
the definition of FPPC (see Figure 8), i.e., f has oracle access
to the storage and the functions of onchain smart contracts
and to the promises in the channel.

A. Ideal functionality FPPC

We propose our PPC protocol under the UC framework
following [6], [13], [14]. We first define the ideal function-
ality F L̂(∆)

PPC (with dummy parties) which summarizes all the
features that our PPC protocol will provide. We use FPPC

as an abbreviation in the absence of ambiguity. Our real
PPC protocol Π will be presented in a hybrid model, using
a PPC contract functionality GPPC (the formal counterpart
of Figure 2). The protocol Π, instead, captures the offchain
protocols between parties that via authenticated channels.

See Figure 8 for the definition of FPPC. The functionality
will maintain a key-value data structure Γ to track all pro-
grammable payment channels between parties. FPPC contains
the following 4 procedures.

(1) PPC Creation. Assume party P wants to construct
a channel with party Q. Within ∆ rounds, FPPC will take
corresponding coins specified by the channel instance from
P ’s account from L̂. If Q agrees to the creation, within another
∆ rounds, FPPC will take Q’s coins. Thus, the successful
creation of a initial programmable payment channel takes at
most 2∆ rounds. Note that if Q does not want to create the
channel, P can take her money back after 2∆ rounds.

(2) Promise Creation. This procedure is used to create a
programmable payment aka promise (offchain) from payer P
to the payee Q. The promise instance is specified by payer’s
choice of channel γ, contract code C and arguments for the
constructor function y, and a salt z that is used to identify this
promise instance. Among other things, the ideal functionality
ensures that pid := (id, C, y, z) does not exist in γ.pspace.
Since payee always gains coins in any promise, we do not need
an acknowledgment from the payee to instantiate a promise.

Thus, the creation takes exactly 1 round.6

(3) Promise Execution. This procedure is used to update the
promise instance’s storage. Specifically, party P can execute
the promise pid in channel id as long as P is one of the
participants of the channel. Note that the existence of pid
implies that this instance is properly constructed by the payer
via the promise instance creation procedure. If both parties are
honest, the execution completes in O(1) rounds, inferring no
onchain operation (i.e., optimistic case). Otherwise, if one of
them is corrupt, it relies on onchain operations which takes
O(∆) rounds (i.e., pessimistic case). Note that, the adversary
can select the function execution time, however, it cannot
block a party from executing and updating it.

In particular, FPPC uses an attribute flag for each promise to
trace the onchain/offchain status. Note that when the promise
goes onchain for the first time, it takes at most 3∆ rounds to
put the promise onchain. Once the promise is onchain, the ex-
ecution will be taken on Layer-1 in ∆ rounds. We follow [13]
to break ties when both parties want to simultaneously execute
the same promise, which includes at most 5 rounds delay.

(4) PPC Closure. When a party of the channel γ wants to
close the channel, FPPC will wait for γ.duration rounds to
execute the remaining promises that have not been finalized.
The corresponding procedure in the state channel functionality
of [13] requires that all contract instances in the channel are
finalized in order to close the channel. We cannot imitate
this approach because in our case, the creation of a promise
instance need only be authenticated by the payer, and so
requiring finality will allow a malicious party to block closing
by simply creating some non-finalizable promise instance.
Note that a malicious party could overpay the other party, but
FPPC ensures that no extra coins are created. We acknowledge
that FPPC does not ensure that all the expected promises can be
finalized in γ.duration rounds. Furthermore, a simple imple-
mentation optimization we use is that waiting for γ.duration
can be avoided if both parties agree to cooperatively close
the channel. For simplicity, we did not capture this in the UC
formalization.

B. Realizing FPPC and features

We formally state our theorems and features of PPC cap-
tured by FPPC. The formal protocol is described in Section D.
All of the theorems are proved in Section G.

Theorem 1 (Main). Suppose the underlying signature scheme
is existentially unforgeable against chosen message attacks.
The protocol Π working in GL̂(∆)

PPC -hybrid model emulates the
ideal functionality F L̂(∆)

PPC against any restricted environment
Eres for every ∆ ∈ N. Note the following claims hold:

Claim 1 (Single round instance creation). The creation of an
initial promise instance takes 1 round.

6Note that this does not hold for state channels as formalized in [13] where
an instance requires coins from both parties.

8

Functionality F L̂(∆)
PPC

Programmable payment channel opening

Upon (open, γ)
t0←↩ P where γ is a valid initial programmable payment channel, i.e., P ∈ γ.endusers, γ.cash(·) ≥ 0, γ.pspace = ⊥,

denote Q := γ.otherparty(P):
1) Within ∆ rounds remove γ.cash(P) from P ’s account on L̂.

2) If (open, γ)
t1≤t0+∆
←↩ Q, remove within another ∆ rounds γ.cash(Q) coins from Q’s account on L̂, set Γ(γ.id) := γ, and send

(opened, γ) ↪→ γ.endusers and stop.

3) Else, upon (refund, γ)
>t0+2∆
←↩ P , within ∆ rounds add γ.cash(P) coins to P ’s account on L̂.

Promise initial instance creation

Upon (create, id, C||y, z)
t0←↩ P , let γ := Γ(id) and let pid := (id, C, P, y, z). If γ = ⊥ or P /∈ γ.endusers or γ.pspace(pid) ̸= ⊥

then stop. Else proceed as follows:
• Let ν := ⊥ and σ := C.Construct(P, t0, y). Stop if σ = ⊥. Set ν.code := C and ν.storage := σ. Set Γ(id).pspace(pid) := ν

and Γ(id).pspace(pid).flag := 0. Send (instance-created, id, pid, ν)
t0+1
↪→ γ.endusers.

Promise instance execution

Upon (execute, id, pid, f, z)
t0←↩ P , let γ := Γ(id). If P /∈ γ.endusers or γ.pspace(pid) = ⊥ or f /∈ γ.pspace(pid).code then stop.

Else proceed as follows:
• If γ.pspace(pid).flag = 0, and both parties are honest or the simulator keeps the promise offchain, then set T := t0+5 and t := t0.
• Else if γ.pspace(pid).flag = 0, and one party is malicious and the simulator makes it onchain, then set T := t0 +4∆+ 5, t is set

by the simulator and γ.pspace(·).flag = 1.
• Else if γ.pspace(pid).flag = 1, one party must be malicious, then set T := t0 +∆+ 5, t is set by the simulator.

Let ν := γ.pspace(pid) and σ := ν.storage. Let (σ̃,m) := fG,γ(σ, P, t, z). Set Γ(id).pspace(pid).storage := σ̃ and send

(executed, id, pid, P, f, t, z, ν)
t1≤T
↪→ γ.endusers.

Programmable payment channel closure

Upon (close, id)
t0←↩ P , let γ := Γ(id). If P /∈ γ.endusers then stop. Else block all future close invocations on γ. Wait at most

γ.duration+ 7∆ rounds and proceed as follows:
1) Calculate the following values:

a) Set total := γ.cash(γ.Alice) + γ.cash(γ.Bob).
b) Set creditA :=

∑
γ.pspace(pid).storage.payer=γ.Bob(γ.pspace(pid).storage.resolve).

c) Set creditB :=
∑

γ.pspace(pid).storage.payer=γ.Alice(γ.pspace(pid).storage.resolve).
2) Within ∆ rounds, add min{total,max{0, γ.cash(γ.Alice) + creditA − creditB}} coins to γ.Alice’s and

min{total,max{0, γ.cash(γ.Bob) + creditB − creditA}} coins to γ.Bob’s account on L̂.

3) Send (contract-close, id)
t1≤t0+8∆+γ.duration

↪→ γ.endusers.

Fig. 8: The ideal functionality F L̂(∆)
PPC achieved by the PPC protocol.

Claim 2 (Constant round off-chain execution). If both parties
are honest, every call to instance execution procedure of FPPC

will finish in O(1) round.

Claim 3 (Coins momentum). Any γ cannot produce coins.

Claim 4 (Balance security). Honest users will not lose coins.

V. COMPILING A CONTRACT TO PROMISES

On the one hand, our programmable payment channel
protocol subsumes regular payment channel protocols. A
simple payment can be captured by payer P creating an
initial promise instance directly constructed as finalized with

the proper amount. On the other hand, it seems that our
programmable payment channel protocol may not subsume
protocols for state channels, i.e., execute a contract where
two parties can both deposit coins in. In this section, we first
formalize a variant of state channels that we call FSC that
is very similar to PPC. Then we provide a construction that
compiles a contract instance input to FSC into two promises
that can be input to FPPC. That is, we show how to efficiently
realize FSC in the FPPC-hybrid model.

Just like how FPPC creates and executes promise instances,
we will have FSC create and execute covenant instances.

Covenant Instance. A covenant instance can be viewed as a

9

Promise Code CB→A

Construct(P, t, z):
1) if P /∈ {σ′.userL, σ′.userR}, return ⊥.
2) σ ← σ′.
3) σ.payer := P, σ.expiry := t′ + 2∆ + 5, σ.payee :=
{σ′.userL, σ′.userR} \ P, σ.resolve := 0, σ.valid := 0.

4) return σ.
Enable(σ, P, t, x):

1) if P ̸= σ.payer, return (σ,⊥).
2) if t > σ.expiry, return return (σ,⊥).
3) if σ.valid = 1, return (σ,⊥).
4) σ.valid := 1.
5) return (σ, 1).

Finalize(σ, P, t, x):
1) if P ̸= σ.payer and P ̸= σ.payee, return (σ,⊥).
2) if σ.valid = 0, return (σ,⊥).
3) σ.resolve := σ.resolveA.
4) return (σ, 1).

f1, · · · , fs.

(a) Promise CB→A from Bob.

Promise Code CA→B

Construct(P, t, pid, z):
1) σ ← ⊥.
2) σ.payer := A, σ.payee := B, σ.end := 0, σ.resolve := 0, σ.pid :=

pid.
3) return σ.

Finalize(σ, P, t, x):
1) if σ.pid does not exist, return (σ,⊥), else let σB→A be the storage of

contract σ.pid.
2) if σB→A.valid = 0, return (σ,⊥).
3) if P ̸= σ.payer and P ̸= σ.payee, return (σ,⊥).
4) σ.resolve := σB→A.reso-lveB .
5) return (σ, 1).

(b) Promise CA→B from Alice.

Fig. 9: The compiled promises from a covenant code C at time
t′ and constructor inputs y, where σ′ := C.Construct(t′, y).
CB→A will hard-code σ′.

special contract instance consisting of two attributes: covenant
storage (accessed by key storage) and covenant code (accessed
by key code). Covenant storage σ is an attribute tuple contain-
ing at least the following attributes: (1) σ.resolveA ∈ R≥0
denotes the amount of money transferred from party B to
party A; and (2) σ.resolveB ∈ R≥0 denotes the amount of
money transferred from party A to party B. Covenant code is a
tuple C := (Λ,Construct, f1, . . . , fs) similar to contract code.
W.l.o.g., we assume Construct does not take caller as inputs
but it can be incorporated into y. We note that, for covenant,
we do not restrict the independence of the constructor.

A. Defining FSC

See Figure 10 for the definition of the ideal functionality
that captures state channels. Like FPPC, the functionality FSC

contains the following 4 procedures.
(1) State channel creation. Similar to FPPC, a party can

instantiate a channel with another party by sending the channel
creation information to FSC. The operation of this procedure
is identical to that of FPPC.

(2) Covenant Creation. The covenant instance is specified
by choice of channel γ, contract code C and arguments for the
constructor function y, and a salt z that is used to identify this

Functionality F L̂(∆)
SC

State channel opening

Identical to programmable payment channel opening in F L̂(∆)
PPC

but with a state channel of covenants (saved in cspace) as inputs.

Covenant creation

Upon (create, id, C||y, z)
t0←↩ P , let γ := Γ(id) and let cid :=

(id, C, y, z). If γ = ⊥ or P /∈ γ.endusers or γ.cspace(pid) ̸= ⊥
then stop. Else let Q := γ.otherparty(P).

• If (create, id, C||y, z)
t0←↩ Q and P,Q are honest or

the the simulator behaves honestly, then let ν := ⊥
and σ := C.Construct(t0, y). Stop if σ = ⊥. Within
7 rounds, set ν.code := C and ν.storage := σ. Set
Γ(id).cspace(cid).flag = 0. Set Γ(id).cspace(cid) := ν. Send

(instance-created, id, cid, ν)
t≤t0+7
↪→ γ.endusers.

• If (create, id, C||y, z)
t0←↩ Q and one party is mali-

cious, then let ν := ⊥ and σ := C.Construct(t0, y).
Stop if σ = ⊥. Within 4∆ + 7 rounds, set ν.code :=

C and ν.storage := σ. Set Γ(id).cspace(cid).flag

by the simulator. Set Γ(id).cspace(cid) := ν. Send

(instance-created, id, cid, ν)
t≤t0+4∆+7

↪→ γ.endusers.

Covenant execution

Identical to promise instance execution in F L̂(∆)
PPC but with a state

channel identity and a covenant identity as inputs.

State channel closure

Upon (close, id)
t0←↩ P , let γ := Γ(id). If P /∈ γ.endusers then

stop. Else block all future close invocations on γ. Wait at most
2γ.duration+ 11∆ + 5 rounds and proceed as follows:
1) Calculate total := γ.cash(γ.Alice) + γ.cash(γ.Bob),

creditA :=
∑

(γ.pspace(pid).storage.resolveA), and
creditB :=

∑
(γ.pspace(pid).storage.resolveB).

2) Within ∆ rounds, add min{total,max{0, γ.cash(γ.Alice)+
creditA − creditB}} coins to γ.Alice’s and
min{total,max{0, γ.cash(γ.Bob) + creditB − creditA}}
coins to γ.Bob’s account.

3) Send (contract-close, id)
t1≤t0+12∆+2γ.duration+5

↪→
γ.endusers.

Fig. 10: The ideal functionality F L̂(∆)
SC .

promise instance. Among other things, the ideal functionality
ensures that cid := (id, C, y, z) does not exist in γ.cspace.
Note that unlike FPPC, we need an acknowledgment from the
counterparty before creating a covenant instance. Thus, the
creation takes more rounds but optimistically remains O(1).

(3) Covenant Execution. This procedure is used to update
the covenant instance’s storage. The operation of this proce-
dure is identical to that of FPPC.

(4) State Channel Closure. When a party of the channel
instance γ wants to close the channel, FSC will wait for

10

γ.duration rounds to execute the remaining covenants that
have not been finalized. The crucial difference from FPPC is
in the way in which the credits are calculated (simply because
of the difference in the final values of covenant instances vs.
promise instances). We note that the closure requires extra
O(∆) rounds. Looking ahead, this is because we “compile”
a covenant into two promises on FPPC, and require an extra
function call to settle down the resolved values of them.

Remarks. Our state channel ideal functionality differs from
prior formalizations in many ways. Crucially, it makes explicit
the dependence of covenant instances on other onchain con-
tracts. Also, a covenant instance can depend on other covenant
instances (this is something not considered in prior works).
Our formalization also helps make obvious the difference
between FPPC and state channels.

B. Realizing FSC in the FPPC-hybrid

As discussed in Section II, recall that despite the difference,
there exists a simple protocol that can implement FSC in
the FPPC-hybrid model. The essential step is to compile a
covenant into two associated promises as Figure 9 and then
execute them on FPPC. We present this formally as follows.

Protocol ΠSC: Implement state channel in the F L̂(∆)
PPC -hybrid

Denote FPPC := F L̂(∆)
PPC .

State channel opening

Open a programmable payment channel between two parties.

Covenant creation

Party A upon (create, id, C||y, z)
t0←↩ E

1) Let σ′ := C.Construct(t0, y). Using σ′ to construct associated
promise code CB→A, then calculate pid := (id, CB→A,⊥, z).
Send (create, id, CA→B ||pid, ·)

t0
↪→ FPPC.

Party B upon (create, id, C||y, z)
t0←↩ E

2) Let σ′ := C.Construct(t0, y). Using σ′ to construct
associated promise code CB→A, then calculate pid := (id,

CB→A,⊥, z). Upon receiving (instance-created, id, pid′,
ν)

t0+1
←↩ FPPC where pid′ = (id, CA→B , A, pid, ·) and ν is

the valid CA→B , send (create, id, CB→A, z)
t0+1
↪→ FPPC.

3) Upon receiving (instance-created, id, pid′′, ν)
t0+2
←↩ FPPC

where pid′′ = (id, CB→A, B,⊥, z) and ν is the valid
CB→A, send (execute, id, pid′′,Enable, ·)

t0+2
↪→ FPPC.

4) Upon receiving (executed, · · ·)
t0+2<t1≤t0+4∆+7

←↩ FPPC

which indicates that the promise related to CB→A is enabled.
Let cid := (id, C, y, z) and save ΨB(cid) := (pid′′, pid′).
Output (instance-created, id, cid, ν)

t1
↪→ B where

ν.code := C and ν.storage := σ′.

Back to party A

5) Upon receiving (executed, · · ·)
t0+2<t1≤t0+4∆+7

←↩ FPPC

which indicates that the promise related to CB→A is enabled.

Let CA→B is saved in pid′ and CB→A is saved in pid′′. Let
cid := (id, C, y, z) and save ΨA(cid) := (pid′′, pid′). Output
(instance-created, id, cid, ν)

t1
↪→ A where ν.code := C

and ν.storage := σ′.

Covenant execution

Party T upon (execute, id, cid, f, z)
t0←↩ E

1) Fetch (pid′′, pid′) := ΨT (cid). Send (execute, id, pid′′,

f, z)
t0
↪→ FPPC. Within 4∆ + 5 rounds, output accordingly.

State channel closure

Party T upon (close, id)
t0←↩ E

1) Wait for γ.duration rounds.
2) Fetch (in parallel) each (pid′′, pid′) := ΨT (·). Send

(execute, id, pid′′,Finalize, z)
t0
↪→ FPPC and (execute, id,

pid′,Finalize, z)
t0
↪→ FPPC. This will be finished within 4∆+5.

Close the programmable payment channel between two parties.

We formally state our theorem below.

Theorem 2. There exists protocol ΠSC working in F L̂(∆)
PPC -

hybrid model that emulates the ideal functionality F L̂(∆)
SC

against any restricted environment Eres for every ∆ ∈ N. Note
furthermore that the following claims hold:

Claim 5 (Constant rounds creation). The protocol ΠSC re-
quires only three invocations of FPPC to create a covenant.

Similar to Theorem 1, Theorem 2 can be formally proved
by constructing straightforward simulators to translate between
covenant and associated promises. Note that the crucial point
is to argue the rounds taken by the two worlds are identical.
We argue this by the following protocol analysis.

Protocol analysis. Recall that our compiler takes advantage of
the following two features provided by promises.

• Promises in the same channel can read each other.
• A promise instance (even one that has not been deployed)

is uniquely identifiable (recall this is because promises
are deployed to a deterministic address thanks to the
CREATE2 opcode), and hence one promise can refer to
functions defined in other future promises.

Consider a covenant code as C := (Λ,Construct, f1, · · · ,
fs) where Alice (denoted by A) wants to start a covenant
instance (with Bob, denoted by B) created via call to
Construct with auxiliary inputs y at time t0. As mentioned
in the overview, our compiler (see Figure 9) will compile
this contract code into two promise codes, one from A to
B, and one from B to A. All the logic will be wrapped
into the promise from B to A. The construction of the
promise code from Bob to Alice, defined as CB→A :=
(·,Construct, f1, · · · , fs,Enable,Finalize), is shown in Fig-
ure 9a. The construction of the promise code from Alice to
Bob, defined as CA→B := (·,Construct1,Finalize), is shown
in Figure 9b. We discuss some crucial points:

11

TABLE I: Gas prices for invoking PPC contract’s functions.

Function Gas Units HTLC Specific Gas Units
Deploy 3,243,988 Promise 611,296 (w/o. proof)
Deposit 43,010 Promise 626,092 (Merkle-100K txs)
Receipt 75,336 Reveal 66,340
Close 44,324 Withdraw 71,572

TABLE II: The gas usage of the different functions of various
applications. *:For Resolve functions we report the execution
costs as these functions are view functions. +: The Reveal
functions in the RockPaperScissor contracts need to be called
twice to reveal the commitments for both parties.

HTLC ReverseHTLC OnchainBetting
Deploy 222,795 Deploy 423,265 Deploy 442,479
Reveal 28,391 Reveal 28,413 checkPrice 48,093
Resolve* 4,582 SubmitAck 30,247 Resolve* 4,632

Resolve* 2,499
RockPaperScissor RockPaperScissor-P1 RockPaperScissor-P2

Deploy 534,167 Deploy 598,088 Deploy 381,537
Reveal+ 34,887 Reveal+ 34,773 Resolve* 16,937
Resolve* 9,571 Resolve* 6,573

• The constructor function of CB→A uses σ′ as a white-box,
where σ′ can be computed by both parties using y and t0.
More importantly, the address of CB→A can be fixed by
two parties using the same z (identical inputs from E). To
create a covenant, the protocol starts by constructing these
two promises in FPPC (2 rounds in total).

• Informally, CB→A is not valid when constructed, but can
become valid before some expiry time by invoking the
function Enable. This is crucial because we want to the
bound the rounds needed to create a covenant. Recall in FSC,
even a malicious Bob can only create a covenant instance
within 4∆ + 7 rounds (and he cannot create it after this).
Without this, once Alice sends her promise, a malicious Bob
can create this covenant at any time later. Thus, the final step
to create a covenant is to call Enable by Bob via FPPC. Note
that a malicious player can only delay this execution by at
most 4∆+5 rounds. The overall creation uses at most 4∆+7
rounds, so it is well-simulated.

• The two-party contract can be executed in the same way one
would execute CB→A (created in FPPC) since we directly
clone f1, · · · , fs. Thus, the round delay stays identical.

• CA→B trivially programs a payment from Alice to Bob
while reading the state of corresponding CB→A. However,
we need to move resolveA and resolveB into resolve
of two promises. We achieve this by another execution of
function Finalize at the beginning of the closure. This incurs
another γ.duration+4∆+5 rounds delay. Thus, the overall
closure uses at most 2γ.duration+ 12∆ + 5 rounds.

VI. IMPLEMENTATION AND EVALUATION

PPC gas usage costs. We implemented the PPC contract
presented in Figure 2 in Solidity. We evaluate our implemen-
tation in terms of Ethereum gas usage. The PPC contract
requires 3, 243, 988 gas to be deployed on the Ethereum
blockchain. While we did not aim to optimize gas costs. the
PPC contract is already comparable to other simple payment

channel deployments 2M+ and 3M+ gas for Perun [6] and
Raiden [5]7 respectively. The gas usage for the remaining
functions of the contract are reported in Table I.
HTLC application. In the optimistic case after a promise is
sent from the sender, the receiver releases the secret for the
HTLC and consequently, the sender sends a corresponding
receipt to the receiver. In such a scenario, the receiving party
will submit the receipt to the contract and close accordingly.
However, in the pessimistic case, where the receiving party
releases the secret but does not receive a receipt, it goes
onchain and first submit its latest receipt. Next, it submits the
promise for the HTLC which will be deployed by PPC where
the party can reveal the secret of HTLC. Comparing the two
scenarios (cf. Table I), we see that the pessimistic case costs
about 700K more gas to resolve the promise.

Since HTLC is such an important application, we further
evaluated the run-time of the protocol by performing a test
on ten clients concurrently sending transactions to a single
server. Each client sent 1, 000 transactions, which made the
server process a total of 10, 000 promises, secret reveals, and
receipts. We were able to achieve 110 TPS end-to-end on
a laptop running 2.6 GHz 6-Core Intel Core i7. The end-
to-end process included random secret creation, hashing of
secret, promise creation/verification, secret reveal/verification,
and receipt creation/verification.
Other applications. For the sake of completeness, we in-
clude gas usage costs for other applications mentioned in
the overview, i.e., reverse HTLC, onchain event betting, and
rock-paper-scissors in Table II. For the rock-paper-scissors,
we provide two implementations: one using the compiler,
and one without. This is to emphasize that our compiler is
highly efficient. Note that all this is relevant only when one
of the parties is malicious. When both parties are honest, the
executions are always offchain, and the application-specific
onchain deployment costs are zero.

VII. CONCLUSION

In this paper, we introduced programmable payment chan-
nels (aka PPC), a new and simple abstraction for adding pro-
grammability to offchain payments, which is at least as pow-
erful as state channels formalized in prior works. Practically
speaking, programmable payments, also known as promises,
take the form of familiar Solidity code. This allows us to very
quickly build applications as if they were onchain applications,
except thanks to PPC they run offchain. A very interesting
property that is crucial to the power of PPC is the ability of
promises within a channel to depend on each other and on
other onchain contracts.

For future work, one might want to build more powerful
applications in the hub and spoke model with each endpoint
having a PPC channel with the hub. This will also open the
possibility of promises from different channels to depend on
each other, thereby enabling multiparty applications.

7https://tinyurl.com/etherscanRaiden

12

https://tinyurl.com/etherscanRaiden

Acknowledgments

We thank Pedro Moreno-Sanchez for many useful discus-
sions and insightful comments.

REFERENCES

[1] “Payment channels - bitcoin wiki,” https://en.bitcoin.it/wiki/Payment
channels, (Accessed on 5/15/2023).

[2] C. Decker and R. Wattenhofer, “A fast and scalable payment network
with bitcoin duplex micropayment channels,” in Stabilization, Safety,
and Security of Distributed Systems, A. Pelc and A. A. Schwarzmann,
Eds. Cham: Springer International Publishing, 2015, pp. 3–18.

[3] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” http://lightning.network/lightning-network-paper.pdf,
2016, (Accessed on 5/15/2023).

[4] R. Khalil and A. Gervais, “Nocust-a non-custodial 2nd-layer financial
intermediary.” 2018.

[5] “Raiden,” https://raiden.network/, (Accessed on 5/15/2023).
[6] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual

payment hubs over cryptocurrencies,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 106–123.

[7] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. R. Pietzuch,
“Teechain: a secure payment network with asynchronous blockchain
access,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27-
30, 2019, T. Brecht and C. Williamson, Eds. ACM, 2019, pp. 63–79.

[8] E. Tairi, P. Moreno-Sanchez, and M. Maffei, “a2l: Anonymous atomic
locks for scalability in payment channel hubs,” in 2021 IEEE Symposium
on Security and Privacy (SP), 2021, pp. 1834–1851.

[9] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 455–471.

[10] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg,
“Settling payments fast and private: Efficient decentralized routing
for path-based transactions,” in 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet Society,
2018. [Online]. Available: http://wp.internetsociety.org/ndss/wp-content/
uploads/sites/25/2018/02/ndss2018 09-3 Roos paper.pdf

[11] “State channels - ethereum.org,” https://ethereum.org/en/developers/
docs/scaling/state-channels/, (Accessed on 5/15/2023).

[12] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
Financial Cryptography and Data Security, I. Goldberg and T. Moore,
Eds. Cham: Springer International Publishing, 2019, pp. 508–526.

[13] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel
networks,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 949–966.

[14] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková, “Multi-
party virtual state channels,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2019,
pp. 625–656.

[15] J. Coleman, L. Horne, and L. Xuanji, “Counterfactual: Generalized state
channels,” Acessed: http://l4.ventures/papers/statechannels.pdf, vol. 4, p.
2019, 2018.

[16] T. Close, “Nitro protocol,” Cryptology ePrint Archive, 2019.
[17] P. Todd, “[bitcoin-development] near-zero fee transactions with

hub-and-spoke micropayments,” https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2014-December/006988.html, 2014, (Accessed
on 10/19/2022).

[18] M. Christodorescu, E. English, W. C. Gu, D. Kreissman, R. Kumaresan,
M. Minaei, S. Raghuraman, C. Sheffield, A. Wijeyekoon, and
M. Zamani, “Universal payment channels: An interoperability platform
for digital currencies,” 2021. [Online]. Available: https://arxiv.org/abs/
2109.12194

[19] “Hash time locked contracts - bitcoin wiki,” https://en.bitcoin.it/wiki/
Hash Time Locked Contracts, (Accessed on 5/15/2023).

[20] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability.” in NDSS, 2019.

[21] M. Christodorescu, E. English, W. C. Gu, D. Kreissman, R. Kumaresan,
M. Minaei, S. Raghuraman, C. Sheffield, A. Wijeyekoon, and
M. Zamani, “Universal payment channels: An interoperability platform
for digital currencies,” 2021. [Online]. Available: https://arxiv.org/abs/
2109.12194

[22] M. Minaei Bidgoli, R. Kumaresan, M. Zamani, and S. Gaddam,
“System and method for managing data in a database,” Patent
US11 556 909B2, Feb 28, 2023. [Online]. Available: https://patents.
google.com/patent/US11556909B2/

[23] T. Close and A. Stewart, “Forcemove: an n-party state channel protocol,”
Magmo, White Paper, 2018.

[24] L. Aumayr, M. Maffei, O. Ersoy, A. Erwig, S. Faust, S. Riahi,
K. Hostáková, and P. Moreno-Sanchez, “Bitcoin-compatible virtual
channels,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 901–918.

[25] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“Sok: Layer-two blockchain protocols,” in International Conference on
Financial Cryptography and Data Security. Springer, 2020, pp. 201–
226.

[26] P. McCorry, C. Buckland, B. Yee, and D. Song, “Sok: Validating bridges
as a scaling solution for blockchains,” Cryptology ePrint Archive, 2021.

[27] L. T. Thibault, T. Sarry, and A. S. Hafid, “Blockchain scaling using
rollups: A comprehensive survey,” IEEE Access, vol. 10, pp. 93 039–
93 054, 2022.

[28] B. Yee, D. Song, P. McCorry, and C. Buckland, “Shades of finality and
layer 2 scaling,” arXiv preprint arXiv:2201.07920, 2022.

[29] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in Proceedings 42nd IEEE Symposium on
Foundations of Computer Science. IEEE, 2001, pp. 136–145.

[30] R. Canetti, Y. Dodis, R. Pass, and S. Walfish, “Universally composable
security with global setup,” in Theory of Cryptography Conference.
Springer, 2007, pp. 61–85.

[31] L. Breidenbach, P. Daian, F. Tramèr, and A. Juels, “Enter the
hydra: Towards principled bug bounties and Exploit-Resistant
smart contracts,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018,
pp. 1335–1352. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/breindenbach

[32] L. Breidenbach, “libsubmarine,” https://github.com/lorenzb/
libsubmarine, 2018.

[33] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

APPENDIX A
COMPARSION WITH ROLLUPS

Rollups are the most popular Layer-2 scaling solutions right
now (on Ethereum). The high-level idea is that there is a
special entity (or entities) called sequencers that aggregate
transactions from multiple users on a separate Layer-2 system
and then submits batched transactions every once in a while
to Layer-1. Rollups come in two flavors: optimistic rollups
or zk rollups. Both variants share many similarities with
(programmable) payment channels (or state channels) such as:
• there is a smart contract on Layer-1 on which parties de-

posit money, and this smart contract controls the balances
available on Layer-2 ;

• there are forced transactions that happen on Layer-1 if
there is misbehavior or unavailability of parties (e.g.,
sequencers on rollups) on Layer-2.

On the other hand, there are significant differences too, such
as:
• the sequencer in an optimistic rollup needs to keep

submitting all the transactions (albeit in some compressed
form) that it obtained (in order to prove correctness and
also for data availability), whereas in a payment channel
or state channel only the final states need to be submitted;

13

https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
http://lightning.network/lightning-network-paper.pdf
https://raiden.network/
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2014-December/006988.html
https://arxiv.org/abs/2109.12194
https://arxiv.org/abs/2109.12194
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://arxiv.org/abs/2109.12194
https://arxiv.org/abs/2109.12194
https://patents.google.com/patent/US11556909B2/
https://patents.google.com/patent/US11556909B2/
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://www.usenix.org/conference/usenixsecurity18/presentation/breindenbach
https://github.com/lorenzb/libsubmarine
https://github.com/lorenzb/libsubmarine

• the sequencer in a zk rollup needs to provide time-
consuming zk proofs about validity of state changes that it
submits (and in some cases the proof itself spans multiple
Layer-1 blocks), whereas no such overheads exist for
payment channels (barring signature verification).

We wish to highlight that PPC allows for Layer-2 contracts
to interact/depend directly with Layer-1 contracts but such a
thing is not possible for rollups since they usually function as
an independent blockchain systems. That said, rollups can have
Layer-2 contracts which interact with each other, but there are
some additional restrictions on the size of the contracts due to
the use of some special opcodes which need to be translated
into contract calls on Layer-1.

APPENDIX B
OTHER WORKS THAT USE CREATE2

Coinbase Commerce uses CREATE2 on the state channel
to reuse a fixed contract called Forwarder to process instant
offchain transactions8. This is different from our work, where
we utilize CREATE2 to achieve and commit general pro-
grammable payments, while Coinbase uses it to save gas fees
by deploying the contract when the fees are less. Breidenbach
et al. also introduced the use of CREATE2 opcode to ensure
fairness in the Hydra system [31], a new model for auto-
payout bug bounty system for finding vulnerabilities in smart
contracts. In their work, CREATE2 functions as a commit then
reveal mechanism (i.e., libsubmarine [32]) that prevents front-
running adversaries from stealing the bounty opportunities
from honest users.

APPENDIX C
SUPPLEMENTARY MATERIAL FOR NOTATIONS AND

MODELS

A. Global Universal Composable Framework

UC models the execution of protocols as interactions of
probabilistic polynomial-time (PPT) Iterative Turing Machines
(ITMs) and attempts to argue that interactions between ITMs
in the “real” world (by virtue of our defined real world proto-
cols) are indistinguishable from the interactions between the
ITMs in an “ideal” world (where whatever security property
we are after would be satisfied).

Formally, let π be a protocol working in the G-hybrid model
with access to the global ledger L̂(∆) (specified later). The
output of an environment E interacting with the protocol π in
the presence of an adversary A on input 1λ and auxiliary input
z is denoted as EXEC

L̂(∆),G
π,A,E (1λ, z). We define another trivial

protocol with ideal functionality F , dummy parties and a
simulator S. We denote the output of the environment (similar
to the above) in this scenario as IDEAL

L̂(∆)
F,S,E(1

λ, z).

Definition 1. We say that a protocol π working in a G-hybrid
model UC-emulates an ideal functionality F with respect to a
global ledger L̂(∆) i.f.f. for any PPT adversary A there exists
a simulator S such that for any environment E we have

8https://legacy.ethgasstation.info/blog/what-is-create2/

Functionality L̂(∆)
Functionality L̂, running with parties P1, ..., Pn and several ideal func-
tionalities G1, ...,Gm, maintains a vector (x1, ..., xn) ∈ Rn

≥0 representing
the balances (in coins) of parties. L̂ is also parameterized by a positive
integer ∆, representing the delay (controlled by the adversary) in updating
its state.

Adding money
Upon receiving a message (add, Pi, y) from Fj (j ∈ [m], y ∈ R≥0), set
xi := xi + y within ∆ rounds. We say that y coins are added to Pi’s
account in L̂.

Removing money
Upon receiving a message (remove, Pi, y) from Fj (j ∈ [m], y ∈ R≥0):

• Stop if xi < y,
• Otherwise, set xi := xi − y within ∆ rounds. We say that y coins

are removed from Pi’s account in L̂.

Fig. 11: The global ledger functionality L̂(∆).

{EXEC
L̂(∆),G
π,A,E (1λ, z)} λ∈N,

z∈{0,1}∗

c
≈ 9{IDEAL

L̂(∆)
F,S,E(1

λ, z)} λ∈N,
z∈{0,1}∗

B. The Global Ledger Functionality

The global ledger functionality is shown in Figure 11.

APPENDIX D
IMPLEMENTING FPPC

We detail the programmable payment channel protocol in
this subsection. In particular, we focus on describing the
protocol intuitions and defer the formal description to Sec-
tion F. The protocol Π is defined assuming access to an ideal
programmable payment channel smart contract functionality
GPPC. Note GPPC is the PPC smart contract. All specifications
in Π should be viewed as the procedure executed on the
party’s local machine while all specifications in GPPC should
be viewed as onchain smart contracts. Since GPPC emulates
smart contracts, coins in L̂(∆) can be transferred to/from it.

Each party P will maintain a local key-value data structure
ΓP to monitor all channels belongings. P also locally monitors
all promise instances executed on each channel. Besides the
latest promise storage σ, P also maintains another key-value
object ΓP

aux to save auxiliary data including signatures, ver-
sion, etc. We briefly explain the use of signatures and version.
Signature. The signatures are used to authenticate the creation
as well as the latest state of promise instances. Users need to
provide a valid signature from the payer on the creation argu-
ments in order for the PPC contract to deploy the authenticated
promise contract. To execute the contract offchain, two parties
exchange their signatures on the latest state. For simplification,
we directly allow the PPC contract to “deploy” the promise
instance if either party provides a state (including pid) with
both parties’ signatures. Since one party is honest, pid is in
line with creation process. Formally, the PPC contract deploys

9“
c
≈” denotes computational indistinguishability of distribution ensembles,

see [33].

14

https://legacy.ethgasstation.info/blog/what-is-create2/

an initial promise contract. Then a party can submit the latest
state to the promise contract.
Version. Integer number version is used to obtain a total
ordering for the states of promise instance. We define that
the initial promise storage is of version 0.
Register. A special sub-procedure (not interacting with envi-
ronment) called Register is used to deploy a promise instance
onchain. The PPC protocol Π will heavily use this sub-
procedure to register a promise instance. The protocol requests
both parties to submit a valid storage and will deploy the
one with larger version. The entire procedure will be finished
within 3∆ rounds with one corrupt party and within 2∆
rounds with two honest parties. We defer the specification and
discussion of this sub-procedure to Section F.

We are now ready to describe the protocol that achieves
the 4 procedures in FPPC. All UC-style protocol boxes can be
found in Section F.
Create a Programmable Payment Channel. Party P sends
the valid initial channel object to the PPC contract. If the other
party agrees and they both have enough funds, coins will be
transferred to GPPC from L̂.
Create an Initial Promise Instance. Party P signs the
constructor arguments (without time) and forward it to party
Q. Both parties then can use the Register sub-procedure to
deploy it as a contract on Layer-1 if needed.
Execute a Promise Instance. Assume party P wants to
execute a promise function to update promise storage. If this
promise instance is already onchain, he directly calls the
function on Layer-1. Otherwise, P will first try to peacefully
(offchain) execute the promise function. P will fetch the latest
storage σ including version from his local memory, execute it
locally and sign the newer storage σ̃ with (version + 1). P
forwards the signature to Q and requests her signature. If Q
accepts the execution, she sends back her signature, and the
execution will be finished offchain in O(1) rounds. If not,
P needs to execute the function onchain. He can register the
latest promise instance on the Layer-1 blockchain. Note that
since Q already has both parties’ signatures on the newer
version, she could register it directly onchain to invalidate
the version P wants to register. If after the registration sub-
procedure, the promise instance onchain is still P ’s version,
P can then update it by onchain function execution. We
follow [13] to sequentialize the execution.
Closing a PPC. For a party P to close a PPC channel γ
with Q, he first (in parallel) registers all the promise instances
he has offchain in γP .pspace within 3∆ rounds. Then P
will notify the PPC contract GPPC that he wants to close the
channel. The contract will further notify Q about the closing
and set up a 3∆ time window for Q to register her local
instances. Note that if both parties are honest, all promise
instances in γQ.pspace should already be registered by P .
After the time window passes, GPPC will check the status of
all registered instances in γ. If all of them are finalized, the
channel will be closed and corresponding final balances will be
transferred back to the party’s account on L̂ within ∆ rounds.

If there still exists a not finalized instance, it will wait for
γ.duration rounds and split the coins.

APPENDIX E
SIMPLIFICATIONS

In this section, we provide and justify the full simplifications
we made in Section IV for better presentation:
• We omit session and sub-session identifiers sid, ssid.
• We assume the existence of a PKI. Note that this also im-

plies the existence of a complete peer-to-peer authenticated
communication network.

• We combine pairwise channel contracts into one single large
hybrid functionality, i.e., in the implementation, this single
hybrid can be separated into several pairwise contracts.
This is permissible since the entire Layer-1 network can
be modeled as a large publicly available trusted virtual
machine. This combined hybrid will maintain a large set Γ
to save all available PPC channels. Formally, the identifier
id of each channel γ reflects the contract address.

• We use collision-resistant hash functions to capture the
CREATE2 opcode in Ethereum. Basically, every promise
instance will be associated with an identifier pid determined
by a collision-resistant hash function applied to the the
following inputs: (1) creator channel identifier id; (2) payer
P ; (3) promise code C; (4) arguments for the constructor
function y; and (5) a salt value z. Note that the argu-
ments specified above are in line with the specification of
CREATE2. The salt captures the fact that there might be
several promise instances created by the same constructor
(with different salts). Similar to the channel identifier, pid
formally reflects the contract address of the promise contract
created by the channel contract. Also note that collision
resistance ensures that it is computationally infeasible to
create a second contract whose address is also pid. This
is also why we can avoid making any references to such
hash functions and use just their corresponding input tuples
in the descriptions of our ideal functionalities and the UC
protocols realizing them.

• Whenever we say we put a promise instance inside some
channel contract’s γ.pspace, it means that this promise is
deployed as a contract on Layer-1. We further combine
processes to (1) create a promise using the sender’s signature
on the channel contract; and (2) bypass it to the latest state
using both parties’ signatures on the promise contract, into
one process that saves the latest state into γ.pspace.

• We allow parties to “register” promises in parallel. We
instantiate this parallelism using an accumulator.

APPENDIX F
FORMAL PPC PROTOCOLS

In this section, we fully specify the PPC protocols described
in Section D. The protocols are formalized in the UC frame-
work [29], which UC-emulate FPPC (see Figure 8).

The special sub-procedure Register, which is used to deploy
a promise instance onchain, is specified in Figure 12. The

15

online contracts functionality GPPC will have 3 interfaces to
handle this sub-procedure:
• instance-construct: This interface is used to initiate

a promise instance. It requires an explicit initiator with the
corresponding signature. Note that this will be viewed as a
party submitting a promise instance of version = 0 .

• instance-register: This interface is used to submit
an agreed upon promise storage. It requires a promise in-
stance specification with both parties’ signatures. Intuitively,
the honest party will always submit the largest version. Note
that we have a special case for version = −1. This is used
to capture the case where a corrupted sender could initiate
an instance directly onchain and the honest receiver will
trivially accept it. Note that it is infeasible to create two
different instances that have the same pid.

• finalize-register: This interface is used to enable
the honest party to deploy a promise even when another
party does not send any valid storage to the PPC contract.
Informally, this means that the party can convince the
contract that the other party aborted after a 2∆ dispute
period.

Protocol Π: Open a programmable payment channel

Denote GPPC := GL̂(∆)
PPC .

Party P upon (open, γ)
t0←↩ E

1) Send (construct, γ)
t0
↪→ GPPC and wait.

Party Q upon (open, γ)
t0←↩ E

2) If (initializing, γ)
t1≤t0+∆
←↩ GPPC, send (confirm, γ)

t1
↪→ GPPC

and wait. Else stop.

3) If (initialized, γ)
t2≤t0+2∆
←↩ GPPC, then set ΓQ(γ.id) := γ,

output (opened, γ)
t2
↪→ E .

Back to party P

4) If (initialized, γ)
t2≤t0+2∆
←↩ GPPC, then set ΓP (γ.id) := γ,

output (opened, γ)
t2
↪→ E and stop. Otherwise, execute next step.

5) If (refund, γ)
t3>t0+2∆
←↩ E , send (refund, γ)

t3
↪→ GPPC and stop.

Functionality/Contract GL̂(∆)
PPC

Upon (construct, γ)
t0←↩ P :

1) Let Q := γ.Bob, stop if one of the following conditions holds:
there already exists a channel γ′ such that γ.id = γ′.id; γ.Alice ̸=
P ; γ.cash(P) < 0 or γ.cash(Q) < 0; γ.pspace ̸= {};
γ.duration < 0.

2) Within ∆ rounds remove γ.cash(P) coins from P ’s account on the
ledger L̂. If it is impossible due to insufficient funds, then stop. Else
(initializing, γ) ↪→ Q and store the pair tamp := (t0, γ).

Upon (confirm, γ)
t1←↩ Q:

1) Stop if one of the following conditions holds: there is no pair
tamp := (t0, γ) in the storage; (t1 − t0) > ∆; γ.Bob ̸= Q.

2) Within ∆ rounds remove γ.cash(Q) coins from Q’s account on the
ledger L̂. If it is impossible due to insufficient funds, then stop. Else
set Γ(γ.id) := γ and delete tamp from the memory. Thereafter
send (initialized, γ) ↪→ γ.endusers.

Upon (refund)
t2←↩ P :

1) Stop if one of the following conditions holds: there is no pair
tamp := (t0, γ) in the storage; (t2 − t0) ≤ 2∆; P ̸= γ.Alice.

2) Within ∆ rounds add γ.cash(γ.Alice) coins to γ.Alice’s account
in ledger L̂ and delete tamp from the storage.

Protocol Π: Create an initial promise instance

Denote GPPC := GL̂(∆)
PPC .

Party P upon (create, id, C||y, z)
t0←↩ E

1) Set pid := (id, C, P, y, z).
2) Stop if one of the following conditions holds: ΓP (id) = ⊥; P /∈

ΓP (id).endusers; ΓP (id).pspace(pid) ̸= ⊥. Else let γ := ΓP (id).
3) Let ν := ⊥ and σ := C.Construct(P, t0, y). Stop if σ = ⊥. Else

set ν.code := C and ν.storage := σ. Set ΓP (id).pspace(pid) := ν
and set ΓP

aux(id, pid) := (⊥,⊥, 0).
4) Compute sP := SignskP

(id, C, y, z, P), save (id, pid, C, y, z, P,
sP) and send (create-instance, id, C, y, z, sP) ↪→ Q.

5) Output (instance-created, id, pid, ν)
t0+1
↪→ E .

Party Q upon (create-instance, id, C, y, z, sP)
t1←↩ P

6) Set pid := (id, C, P, y, z)
7) Stop if one of the following conditions holds: ΓQ(id) = ⊥; P /∈

ΓQ(id).endusers; ΓQ(id).pspace(pid) ̸= ⊥. Else let γ := ΓQ(id).
8) Let σ := C.Construct(P, t1 − 1, y). Stop if σ = ⊥. Let ν := ⊥.

Set ν.code := C and ν.storage := σ. Stop if VfypkP
(id, C, y, z, P

; sP) ̸= 1.
9) Set ΓQ(id).pspace(pid) := ν and set ΓQ

aux(id, pid) := (⊥,⊥, 0).
Save (id, pid, C, y, z, P, sP). Output (instance-created, id, pid,

ν)
t1
↪→ E .

Protocol Π: Promise instance execution
Denote GPPC := GL̂(∆)

PPC .

Party P upon (execute, id, pid, f, z)
t0←↩ E

1) Stop if ΓP (id) = ⊥, else let γP := ΓP (id). Stop if P /∈
γP .endusers or γP (pid) = ⊥, else let νP := γP .pspace(pid). Stop
if f /∈ νP .code, else let CP := νP .code and σP := νP .storage.
Let Q := γP .otherparty(P). Let (·, ·, versionP) := ΓP

aux(id, pid).
2) Set t1 := t0 + x, where x is the smallest offset such that t1 ≡

1(mod 4) if P = γP .Alice and t1 ≡ 3(mod 4) if P = γP .Bob.
3) If (id, pid) is marked as registered in ΓP

aux, goto step 12 at round t1.
4) Compute (σ̃,m) := fG,γP

(σP , P, t0, z). Stop if m = ⊥. Other-
wise, set ˜version := versionP + 1. Let ν̃ := ⊥. Set ν̃.code := CP

and ν̃.storage := σ̃. Compute sP := SignskP
(id, pid, ν̃, ˜version).

Send (peaceful-request, id, pid, f, z, sP , t0)
t1
↪→ Q. Goto step 11.

Party Q upon (peaceful-request, id, pid, f, z, sP , t0)
tQ
←↩ P

5) Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈ γQ.
endusers or P /∈ γQ.endusers or γQ(pid) = ⊥ or (id, pid) is
marked as registered, else let νQ := γQ.pspace(pid). Stop if
f /∈ νQ.code, else let CQ := νQ.code and σQ := νQ.storage. Let
(·, ·, versionQ) := ΓQ

aux(id, pid).
6) Stop if “P = γQ.Alice and tQ ̸≡ 2(mod 4)” or “P = γQ.Bob and

tQ ̸≡ 0(mod 4)”.
7) Stop if t0 /∈ [tQ − 4, tQ − 1].
8) If (id, pid) is not marked as registered in ΓQ

aux, do:

a) Compute (σ̃,m) := fG,γQ
(σQ, P, t0, z). Stop if m = ⊥.

b) Set ˜version := versionQ + 1. Let ν̃ := ⊥. Set ν̃.code := CQ

and ν̃.storage := σ̃.
c) If VfypkP

(id, pid, ν̃, ˜version; sP) ̸= 1, then stop.
d) Compute sQ := SignskQ

(id, pid, ν̃, ˜version). Set ΓQ(id).

pspace(pid) := ν̃ and ΓQ
aux(id, pid) := (sQ, sP , ˜version). Send

(peaceful-confirm, id, pid, sQ)
tQ
↪→ P .

16

e) Send (executed, id, pid, P, f, t0, z, ν̃)
tQ+1
↪→ E .

Back to party P

11) Distinguish the following two cases:

• If (peaceful-confirm, id, pid, sQ)
t2=t1+2
←↩ Q such

that VfypkQ
(id, pid, ν̃, ˜version ; sQ) = 1, set ΓP (id).

pspace(pid) := ν̃ and ΓP
aux(id, pid) := (sP , sQ, ˜version).

• Otherwise (i.e., Q aborts or replies with invalid signature).
For all γP .pspace(pid′) where pid′ is not registered, execute
Register(P, id, pid′) (in parallel) to mark (id, pid′) as registered
in ΓP

aux. Once the register procedure is executed (in round t3 ≤
t0 + 3∆ + 5), check if ΓP (id).pspace(pid) = ν̃. If so (i.e., Q
agrees the execution by registering the newest version onchain),

output (executed, id, pid, P, f, t0, z, ν̃)
t3
↪→ E and stop.

12) Send (instance-execute, id, pid, f, z) ↪→ GPPC.

For both parties T

13) If (executed-onchain, id, pid,Caller, f, t, z, ν̂)
t4≤t0+4∆+5

←↩
GPPC, set ΓT (id).pspace(pid) := ν̂ and output (executed,

id, pid,Caller, f, t, z, ν̂)
t4
↪→ E .

Functionality/Contract GL̂(∆)
PPC

Upon (instance-execute, id, pid, f, z)
t
←↩ P , proceed as follows:

1) Let γ := Γ(id). Stop if γ = ⊥.
2) Set ν := γ.pspace(pid) and σ := ν.storage. Stop if one of the

following conditions holds: P /∈ γ.endusers; ν = ⊥; f /∈ ν.code.
3) Within ∆ rounds, i.e., t1 ≤ t + ∆. Compute (σ̂,m) :=

fG,γ(σ, P, t1, z). Stop if m = ⊥.
4) Set Γ(id).pspace(pid).storage := σ̂ and send (executed-

onchain, id, pid, P, f, t1, z, ν̂)
t1
↪→ γ.endusers.

Protocol Π: Close a programmable payment channel

Denote GPPC := GL̂(∆)
PPC .

Party P upon (close, id)
t0←↩ E

1) Stop if ΓP (id) = ⊥, else let γP := ΓP (id). Stop if P /∈
γP .endusers. For each γP .pspace(pid) ̸= ⊥ and (id, pid) is
not marked as registered, execute (in parallel) Register(P, id, pid)

immediately. Then send (contract-close, id)
t1≤t0+3∆

↪→ GPPC.

Party Q upon (contract-closing, id)
t2≤t0+4∆
←↩ GPPC

2) Let γQ := ΓQ(id). For each γQ.pspace(pid) ̸= ⊥ and (id, pid) is
not marked as registered, execute (in parallel) Register(Q, id, pid)
immediately.

For both parties T

3) If (contract-close, id)
t3≤t0+8∆+γT .duration

←↩ GPPC, output

(closed, id)
t3
↪→ E .

Functionality/Contract GL̂(∆)
PPC

Upon (contract-close, id)
t0←↩ P , let γ := Γ(id) and proceed as

follows:
1) Stop if γ = ⊥ or P /∈ γ.endusers.
2) Block all the messages in the future related to close channel id.

3) Within ∆ rounds send (contract-closing, id)
t1≤t0+∆

↪→
γ.otherparty(P).

4) Within another 3∆ rounds. Wait for next γ.duration rounds.
5) At round t2 ≤ t0 + 4∆+ γ.duration:

a) Set total := γ.cash(γ.Alice) + γ.cash(γ.Bob).

b) Set creditA :=
∑

γ.pspace(pid).storage.payer=γ.Bob(γ.pspace
(pid).storage.resolve).

c) Set creditB :=
∑

γ.pspace(pid).storage.payer=γ.Alice(γ.pspace
(pid).storage.resolve).

d) Within ∆ rounds, add min{total,max{0, γ.cash(γ.Alice) +
creditA − creditB}} coins to γ.Alice’s account and
min{total,max{0, γ.cash(γ.Bob) + creditB − creditA}}
coins to γ.Bob’s account.

e) Send (contract-close, id) ↪→ γ.endusers.

APPENDIX G
SECURITY PROOFS

In this section, we formally prove our theorems.

Theorem 1 (Main). Suppose the underlying signature scheme
is existentially unforgeable against chosen message attacks.
The protocol Π working in GL̂(∆)

PPC -hybrid model emulates the
ideal functionality F L̂(∆)

PPC against any restricted environment
Eres for every ∆ ∈ N.

Proof. We follow the framework of [13]. We will show that
Π UC-emulates the ideal functionality F L̂(∆)

PPC in the GL̂(∆)
PPC -

hybrid model. In other words, for any PPT adversary A,
we construct a simulator Sim that operates in the GL̂(∆)

PPC -
hybrid model and simulates the F L̂(∆)

PPC -hybrid world to any
environment E .

As in [13], since registration of a contract instance is defined
as a separate procedure that can be called by parties of the pro-
tocol Π, we define a “subsimulator” SimRegister(P, id, pid)
which can be called as a procedure by the simulator Sim.

The technical details and approach to designing the simula-
tor follow standard techniques (e.g., [13]), and hence we omit
further description here due to lack of space.

Simulator Sim: Open a programmable payment channel

Denote FPPC := F L̂(∆)
PPC .

P is honest and Q is corrupt

Upon (open, P, γ)
t0←↩ FPPC:

1) Wait until round t1 ≤ t0 +∆, send (initializing, γ)
t1
↪→ Q.

2) If (confirm, γ)
t1≤t′1≤t0+∆

←↩ Q, then send (open, γ)
t′1
↪→ FPPC

on behalf of Q.

3) If (opened, γ)
t2≤t′1+∆
←↩ FPPC, send (initialized, γ)

t2
↪→ Q and

set ΓP (id) := γ, Γ(id) := γ.

P is corrupt and Q is honest

Upon (construct, γ)
t0←↩ P :

1) Stop if one of the following conditions holds: there already exists
a programmable payment channel γ′ such that γ.id = γ′.id;
γ.Alice ̸= P or γ.Bob ̸= Q; γ.cash(P) < 0 or γ.cash(Q) < 0;
γ.pspace ̸= {}; γ.duration < 0.

2) Send (open, γ)
t0
↪→ FPPC on behalf of P .

3) Distinguish the following two situations:

• If (opened, γ)
t1≤t0+2∆
←↩ FPPC, send (initialized, γ)

t1
↪→

P . Set ΓQ(id) := γ, Γ(id) := γ and stop.

• Else if (refund, γ)
t2>t0+2∆
←↩ P , send (refund, γ)

t2
↪→ FPPC.

17

Sub-simulator SimRegister(P, id, pid)

Denote FPPC := F L̂(∆)
PPC (PS).

P is honest and Q is corrupt

1) Let γP := ΓP (id), νP := γP .pspace(pid), (sP , sQ, version)
:= ΓP

aux(id, pid).
2) Set t0 be the current round. Send (instance-registering,

id, pid)
t1≤t0+∆

↪→ Q.
3) Q can have two following reactions:

• If (instance-construct, id, C, y, z, A, sA)
t1←↩ Q, ignore if

(id, C,A, y, z) ̸= pid or the signature is invalid. Let σ :=
C.Construct(A, t1, y). Ignore if σ = ⊥ or σ.payer ̸= A. Send

(instance-registered, id, pid, νP)
≤t1+∆
↪→ Q, goto step 5.

• If (instance-register, id, pid, νQ, ˆversion, ŝQ, ŝP)
t1←↩ Q,

ignore if some signature is not valid except
ˆversion = −1. Else set ν̃ := version >
ˆversion ? νP : νQ. Set ΓP (id).pspace(pid) := ν̃.

Send (instance-registered, id, pid, ν̃)
≤t1+∆
↪→ Q and goto step 5.

4) Send (instance-registered, id, pid, νP)
≤t0+3∆

↪→ Q and goto
step 5. (This captures the situation when honest P completes the
registration alone).

5) Mark (id, pid) as register in ΓP
aux.

P is corrupt and Q is honest

Upon (instance-construct, id, C, y, z, A, sA)
t0←↩ P , ignore if

Γ(id) = ⊥ or P /∈ Γ(id).endusers. Let pid := (id, C,A, y, z).
Ignore if (id, pid) is marked as registered in ΓQ

aux. Let σ :=
C.Construct(A, t0, y). Ignore if σ = ⊥ or σ.payer ̸= A. Then
distinguish the following two situations:

• If ΓQ(id).pspace(pid) ̸= ⊥: let ν := ΓQ(id).pspace(pid). Send

(instance-registered, id, pid, ν)
≤t0+2∆

↪→ P . Mark (id, pid)

as registered in ΓQ
aux.

• If ΓQ(id).pspace(pid) = ⊥: let ν := ⊥ and set
ν.code := C, ν.storage := σ. Set ΓQ(id).pspace(pid) :=

ν,Γ(id).pspace(pid) := ν, mark (id, pid) as registered in ΓQ
aux.

Send (instance-registered, id, pid, ν)
≤t0+2∆

↪→ P .

Upon (instance-register, id, pid, ν, version, sP , sQ)
t0←↩ P , ignore

if Γ(id) = ⊥ or P /∈ Γ(id).endusers or version = −1 or at
least one signature is not valid or (id, pid) is marked as registered
in ΓQ

aux. Let νQ := ΓQ(id).pspace(pid) and fetch versionQ of
(id, pid) from ΓQ

aux. Set ν̃ := version > versionQ ? ν : νQ. Mark
(id, pid) as registered in ΓQ

aux. Set ΓQ(id).pspace(pid) := ν̃. Send

(instance-registered, id, pid, ν̃)
≤t0+2∆

↪→ P .

Simulator Sim: Create an initial promise instance

Denote FPPC := F L̂(∆)
PPC .

P is honest and Q is corrupt

Upon (create, id, C||y, z)
t0←↩ FPPC:

1) Compute pid := (id, C, P, y, z). Let ν := ⊥, compute σ :=
C.Construct(P, t0, y). Set ν.code := C and ν.storage := σ.

2) Compute sP := SignskP
(id, C, y, z, P).

3) Set ΓP (id).pspace(pid) := ν and set ΓP
aux(id, pid) :=

(⊥,⊥, 0).
4) Send (create-instance, id, C, y, z, sP) ↪→ Q on behalf of P .

P is corrupt and Q is honest

Upon (create-instance, id, C, y, z, sP)
t0←↩ P :

1) Stop if one of the following conditions holds: ΓQ(id) = ⊥;
P /∈ ΓQ(id).endusers; ΓQ(id).pspace(pid) ̸= ⊥. Else let
γ := ΓQ(id).

2) Let pid := (id, C, P, y, z). Let σ := C.Construct(P, t0, y). Stop
if σ = ⊥. Let ν := ⊥. Set ν.code := C and ν.storage := σ. Stop
if VfypkP

(id, C, y, z, P ; sP) ̸= 1.
3) Set ΓQ(id).pspace(pid) := ν and set ΓQ

aux(id, pid) :=

(⊥,⊥, 0). Send (create, id, C||y, z)
t0
↪→ FPPC on behalf of P .

Simulator Sim: Promise instance execution
Denote FPPC := F L̂(∆)

PPC (PS).

P is honest and Q is corrupt

Upon (execute, id, pid, f, z)
t0←↩ FPPC, let γP := ΓP (id), νP

:= γP .pspace(pid), σP := νP .storage, fetch (·, ·, versionP) :=
ΓP
aux(id, pid):
1) Stop if γP = ⊥ or νP = ⊥ or P /∈ γP .endusers or f /∈ γP .code.
2) Set t1 := t0 + x, where x is the smallest offset such that t1 ≡

1(mod 4) if P = γP .Alice and t1 ≡ 3(mod 4) if P = γP .Bob.
3) If (id, pid) is not marked as registered in ΓP

aux:

a) Compute (σ̃,m) := fG,γP
(σP , P, t0, z). Stop if

m = ⊥. Otherwise, set ˜version := versionP + 1. Let
ν̃ := ⊥. Set ν̃.code := CP and ν̃.storage := σ̃.
Compute sP := SignskP

(id, pid, ν̃, ˜version). Send

(peaceful-request, id, pid, f, z, sP , t0)
t1+1
↪→ Q.

b) If (peaceful-confirm, id, pid, sQ)
t1+1
←↩ Q such that

VfypkQ
(id, pid, ν̃, ˜version) = 1, then set ΓP

aux(id, pid) :=

(sP , sQ, ˜version) and instruct the FPPC to (keep the promise
offchain) execute at time t0 and output at time t1 +2 and stop.

c) Execute sub-simulator SimRegister(P, id, pid′) for all pid′

(in parallel, end at round t2 ≤ t0 + 5 + 3∆). If
ΓP
aux(id).pspace(pid) = ν̃ (Q registered the latest state),

instruct the FPPC to (make the promise onchain) execute at time
t0 and output at time t2 and stop.

d) Let t3 be the current round. Instruct the FPPC to (make the
promise onchain) execute at time t3 and output according to

the delay. Get (executed, id, pid, P, f, t, z, ν)
t4≤t3+∆
←↩ FPPC.

Send (executed-onchain, id, pid, P, f, t, z, ν)
t4
↪→ Q. Stop.

4) If (id, pid) is marked as registered in ΓP
aux:

a) (The promise is already onchain.) Instruct the FPPC to ex-
ecute at time t1 and output according to the onchain delay.

Get (executed, id, pid, P, f, t, z, ν)
t5≤t1+∆
←↩ FPPC. Send

(executed-onchain, id, pid, P, f, t, z, ν)
t5
↪→ Q.

P is corrupt and Q is honest

Upon (peaceful-request, id, pid, f, z, sP , t0)
t1←↩ P :

1) Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈
γQ.endusers or P /∈ γQ.endusers or γQ(pid) = ⊥ or (id, pid)
is marked as registered, else let νQ := γQ.pspace(pid). Stop if
f /∈ νQ.code, else let CQ := νQ.code and σQ := νQ.storage.
Let (·, ·, versionQ) := ΓQ

aux(id, pid).
2) Stop if “P = γQ.Alice and t1 ̸≡ 1(mod 4)” or “P = γQ.Bob

and t1 ̸≡ 3(mod 4)”.
3) Stop if t0 /∈ [t1 − 3, t1].
4) Stop if (id, pid) is marked as registered, else do:

a) Compute (σ̃,m) := fG,γQ
(σQ, P, t0, z). Stop if m = ⊥.

b) Set ˜version := versionQ + 1. Let ν̃ := ⊥. Set ν̃.code := CQ

and ν̃.storage := σ̃.
c) If VfypkP

(id, pid, ν̃, ˜version; sP) ̸= 1, then stop.
d) Compute sQ := SignskQ

(id, pid, ν̃, ˜version). Send

(peaceful-confirm, id, pid, sQ)
t1+1
↪→ P . Set ΓQ(id).

pspace(pid) := ν̃, ΓQ
aux(id, pid) := (sQ, sP , ˜version).

18

e) Send (execute, id, pid, f, z)
t1
↪→ FPPC and instruct FPPC to

execute at time t0 and output at time t1 + 1.

Upon (instance-execute, id, pid, f, z)
t2←↩ P :

1) Stop if ΓQ(id) = ⊥, else let γQ := ΓQ(id). Stop if Q /∈
γQ.endusers or P /∈ γQ.endusers or γQ.pspace(pid) = ⊥,
else let νQ := γQ.pspace(pid). Stop if f /∈ νQ.code, else let
CQ := νQ.code and σQ := νQ.storage. Let (·, ·, versionQ) :=

ΓQ
aux(id, pid). Stop if (id, pid) is not marked as registered.

2) Send (execute, id, pid, f, z)
t2
↪→ FPPC and instruct FPPC to

execute at time t2 and output according to the onchain de-

lay. Get (executed, id, pid, P, f, t2, z, ν)
t3≤t2+∆
←↩ FPPC. Send

(executed-onchain, id, pid, P, f, t2, z, ν)
t3
↪→ P .

Simulator Sim: Close a programmable payment channel

Denote FPPC := F L̂(∆)
PPC .

P is honest and Q is corrupt

Upon (close, P, id)
t0←↩ FPPC:

1) Stop if id is marked as closed. Otherwise, mark id as closed.
2) Stop if ΓP (id) = ⊥, else let γP := ΓP (id). For each

γP .pspace(pid) ̸= ⊥ and (id, pid) is not marked as registered in
ΓP
aux, execute (in parallel) sub-simulator SimRegister(P, id, pid)

immediately. This execution will be finished in 3∆ rounds. Within
another ∆ rounds (set as real), send (contract-closing, id)
t1≤t0+4∆

↪→ Q.
3) Execute sub-simulator SimRegister(Q, id, pid) if there exists some

pid registered by Q. This will be finished in 3∆ rounds.
4) At round t2 ≤ t0 +7∆, instruct FPPC to set the first waiting time

till t2.
5) Wait for γP .duration rounds. Within ∆ rounds, send

(contract-close, id)
t3≤t0+8∆+γP .duration

↪→ Q and instruct
FPPC to send messages at round t3.

P is corrupt and Q is honest

1) Execute sub-simulator SimRegister(P, id, pid) if there exists some
pid registered by P at round t0.

2) If (contract-close, id)
t1≤t0+2∆
←↩ P after the registration, send

(close, id)
t1
↪→ FPPC on behalf of P .

3) Stop if id is marked as closed. Otherwise, mark id as closed.
4) Within ∆ rounds, for each γQ.pspace(pid) ̸= ⊥ and (id, pid) is

not marked as registered in ΓQ
aux, execute (in parallel) sub-simulator

SimRegister(Q, id, pid) immediately. This execution will be fin-
ished in 3∆ rounds (or at t2 ≤ t1 + 3∆ round).

5) Wait for γQ.duration rounds. Within ∆ rounds, send

(contract-close, id)
t3≤t0+8∆+γQ.duration

↪→ P and instruct
FPPC to send messages at round t3.

Claim 3 (Coins momentum). Any γ cannot produce coins.

Proof. Alice will get min{total,max{0, γ.cash(γ.Alice) +
creditA − creditB}} coins and Bob will get
min{total,max{0, γ.cash(γ.Bob) + creditB − creditA}}
coins while closing. Both are non-negative values and sum
up to total.

Claim 4 (Balance security). Honest users will not lose coins.

Proof. (sketch) For corrupted Q to steal coins from P , Q must
have an initial promise from P , which requires an unforgeable
signature from P .

19

Procedure Register(P, id, pid)

Denote GPPC := GL̂(∆)
PPC .

Party P

1) Let γP := ΓP (id), νP := γP .pspace(pid), (sP , sQ, version) := ΓP
aux(id, pid), and let t0 be the current round. Consider the following

two scenarios:
• If version = 0 (i.e., this is an initial promise instance), fetch the constructing tuple (id, pid, C, y, z, A, sA) from P ’s local memory,

then send (instance-construct, id, C, y, z, A, sA)
t0
↪→ GPPC.

• If version ̸= 0 (i.e., this is a non-initial promise instance), send (instance-register, id, pid, νP , version, sP , sQ)
t0
↪→ GPPC.

Party Q upon (instance-registering, id, pid)
t1←↩ GPPC

2) Let γQ := ΓQ(id), νQ := γQ.pspace(pid), (sQ, sP , version) := ΓQ
aux(id, pid). Consider the following two scenarios:

• If νQ = ⊥ (i.e., P wants to initialize a promise onchain), send (instance-register, id, pid,⊥,−1,⊥,⊥)
t1
↪→ GPPC.

• If version = 0 (i.e., this is an initial promise instance), fetch the constructing tuple (id, pid, C, y, z, A, sA) from Q’s local
memory, then send (instance-construct, id, C, y, z, A, sA)

t1
↪→ GPPC.

• If version ̸= 0 (i.e., this is a non-initial promise instance), send (instance-register, id, pid, νQ, version, sQ, sP)
t1
↪→ GPPC.

3) Goto step 5.
Back to party P

4) If not (instance-registered, id, pid, ν)
t2≤t0+2∆
←↩ GPPC, then send (finalize-register, id, pid)

t3=t0+2∆+1
↪→ GPPC.

For both parties T

5) Upon (instance-registered, id, pid, ν)←↩ GPPC, mark (id, pid) as registered in ΓT
aux. Set ΓT (id).pspace(pid) := ν. Stop.

Functionality/Contract GL̂(∆)
PPC : Promise instance registration

Upon (instance-construct, id, C, y, z, A, sA)
t0←↩ P , let γ := Γ(id) and do:

1) Let pid := (id, C,A, y, z). Stop if one of the following conditions holds: γ = ⊥; P /∈ γ.endusers; A /∈ γ.endusers;
γ.pspace(pid) ̸= ⊥; VfypkA

(id, C, y, z, A; sA) = 0.
2) Let ν := ⊥. Set ν.code := C. Let σ := C.construct(A, t0, y), stop if σ = ⊥ or σ.payer ̸= A. Else set ν.storage := σ.
3) Let Q := γ.otherparty(P) and consider the following three cases:

• If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion), then stop.
• If the functionality’s memory contains a tuple (Q, id, pid, ν̂, t̂0, ˆversion), then set ν̃ := ν̂. Within ∆ rounds, send

(instance-registered, id, pid, ν̃)
t1≤t0+∆

↪→ γ.endusers, set Γ(id).pspace(pid) := ν̃ and erase (Q, id, pid, ν̂, t̂0, ˆversion) from
the memory.

• Else save (P, id, pid, ν, t0, 0) to the memory and send (instance-registering, id, pid)
t1≤t0+∆

↪→ Q.

Upon (instance-register, id, pid, ν, version, sP , sQ)
t0←↩ P , let γ := Γ(id) and do:

1) Stop if one of the following conditions holds: γ = ⊥; P /∈ γ.endusers; γ.pspace(pid) ̸= ⊥.
2) Let Q := γ.otherparty(P). If version = −1 and ν = ⊥ and the functionality’s memory contains a tuple (Q, id, pid, · · ·), goto

step 4.
3) Stop if one of the following conditions holds: VfypkP

(id, pid, ν, version; sP) = 0; VfypkQ
(id, pid, ν, version; sQ) = 0.

4) Consider the following three cases:
• If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion), then stop.
• If the functionality’s memory contains a tuple (Q, id, pid, ν̂, t̂0, ˆversion), then compare the version number, i.e., ν̃ := version >

ˆversion ? ν : ν̂. Within ∆ rounds, send (instance-registered, id, pid, ν̃)
t1≤t0+∆

↪→ γ.endusers, set Γ(id).pspace(pid) := ν̃
and erase (Q, id, pid, ν̂, t̂0, ˆversion) from the memory.

• Else save (P, id, pid, ν, t0, version) to the memory and send (instance-registering, id, pid)
t1≤t0+∆

↪→ Q.

Upon (finalize-register, id, pid)
t2←↩ P , let γ := Γ(id) and do:

1) Stop if γ = ⊥ or P /∈ γ.endusers.
2) If the functionality’s memory contains a tuple (P, id, pid, ν̂, t̂0, ˆversion) such that t2 − t̂0 ≥ 2∆, then set Γ(id).pspace(pid) := ν̂,

send (instance-registered, id, pid, ν̂)
t3≤t2+∆

↪→ γ.endusers, and erase the tuple.

Fig. 12: The sub-procedure Register to register a promise instance onchain.

20

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Defining FPPC
	Concrete implementation of FPPC.
	Lightweight applications of programmable payments
	Modifying FPPC to capture state channels
	Implementing FSC in the FPPC-hybrid world

	Preliminaries
	Programmable Payment Channels
	Ideal functionality FPPC
	Realizing FPPC and features

	Compiling A Contract to Promises
	Defining FSC
	Realizing FSC in the FPPC-hybrid

	Implementation and Evaluation
	Conclusion
	References
	Appendix A: Comparsion with Rollups
	Appendix B: Other works that use CREATE2
	Appendix C: Supplementary Material for Notations and Models
	Global Universal Composable Framework
	The Global Ledger Functionality

	Appendix D: Implementing FPPC
	Appendix E: Simplifications
	Appendix F: Formal PPC Protocols
	Appendix G: Security Proofs

