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Abstract

Cryptographic hash functions map data of arbitrary size to a fixed size digest, and are one of
the most commonly used cryptographic objects. As it is infeasible to design an individual hash
function for every input size, variable-input length hash functions are built by designing and
bootstrapping a single fixed-input length function that looks sufficiently random. To prevent
trivial preprocessing attacks, applications often require not just a single hash function but rather
a family of keyed hash functions.

The most well-known methods for designing variable-input length hash function families from
a fixed idealized function are the Merkle-Damg̊ard and Sponge designs. The former underlies
the SHA-1 and SHA-2 constructions and the latter underlies SHA-3. Unfortunately, recent
works (Coretti et al. EUROCRYPT 2018, Coretti et al. CRYPTO 2018) show non-trivial time-
space tradeoff attacks for finding collisions for both. Thus, this forces a parameter blowup (i.e.,
efficiency loss) for reaching a certain desired level of security. We ask whether it is possible to
build families of keyed hash functions which are provably resistant to any non-trivial time-space
tradeoff attacks for finding collisions, without incurring significant efficiency costs.

We present several new constructions of keyed hash functions that are provably resistant
to any non-trivial time-space tradeoff attacks for finding collisions. Our constructions provide
various tradeoffs between their efficiency and the range of parameters where they achieve optimal
security for collision resistance. Our main technical contribution is proving optimal security
bounds for converting a hash function with a fixed-sized input to a keyed hash function with
(potentially larger) fixed-size input. We then use this keyed function as the underlying primitive
inside the standard Merkle-Damg̊ard and Merkle tree constructions. We strongly believe that
this paradigm of using a keyed inner hash function in these constructions is the right one, for
which non-uniform security has not been analyzed prior to this work.
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1 Introduction

A cryptographic hash function is a (deterministic) algorithm that takes arbitrary length input data
and outputs a fixed length digest. It is one of the most fundamental tools in modern applications
of cryptography, underlying numerous widely used applications. For example, it facilitates the
hash-and-sign paradigm, proofs-of-work for blockchains, and more. While it is empirically believed
that concrete cryptographic hash functions satisfy various useful security properties, formalizing
this seems to be currently out of reach. Thus, in the context of provable security, cryptographic
hash functions are usually modeled as random oracles, i.e., completely random functions [BR93].
This allows us to analyze specific properties and argue about the concrete security of systems that
use them. In this work, we focus on the property of a hash function being collision resistant,
i.e., the idea that although collisions exist in abundance in a compressing function, it should be
computationally hard to find them.

The task of finding collisions in a given compressing function is only interesting if the adversary
is uniform. That is, the adversary is “fixed” before the hash function. Indeed, otherwise, a non-
uniform attacker can simply have collisions hardwired. However, the uniform model of security does
not capture many real-world adversaries, and therefore it is common to model adversaries as non-
uniform in theoretical cryptography. Specifically, non-uniform security captures adversaries that
have been designed to attack specific instances, adversaries that have gone through an expensive
preprocessing stage, or even protect against (currently unknown) future attacks. Non-uniform
security is also necessary for composition within larger systems [GK96]. For all of these reasons,
it is widely believed by the theoretical community that modeling attackers as non-uniform is the
right thing to do, despite potentially being overly conservative and including unrealistic attackers.

Dealing with non-uniform attackers in the context of hashing and collision finding makes it
necessary to consider a family of keyed hash functions, rather than a single hash function. Collision
finding is then defined via the following two-stage game. First, a (keyed) family H of hash functions
is fixed, and the attacker can depend arbitrarily on H. Second, a random key key is sampled, and
the adversary needs to find a collision in H relative to key. Intuitively, in order to attack the
hash function (e.g., find a collision), a non-uniform attacker must either (a) have some hard-coded
information about key, or (b) can essentially be treated as uniform.

For applications, we typically want each member of H to operate on unbounded input lengths.
That is, H : {0, 1}κ × {0, 1}∗ → {0, 1}n should be viewed as a two-input function, operating on
(key,m), where key ∈ {0, 1}κ is the key and m ∈ {0, 1}∗ is an arbitrary length input. Since it is
practically infeasible to design a different hash function for every input length, what happens is
that a single basic compressing function h : {0, 1}a → {0, 1}n for some a > n is designed, and then
it is iterated in some way to get a hash function that compresses arbitrarily. For instance, the
well-known Merkle-Damg̊ard design [Mer89, Dam89] iterates such a basic compressing function in
order to get a variable-input-length hash function that can operate on arbitrary sized data up to
some maximum length (e.g., 264 bits).

AI-ROM. Since we consider non-uniform security in the random oracle model, we model attack-
ers using the auxiliary-input random oracle model (AI-ROM), formally defined by Unruh [Unr07]
although implicitly used earlier, for example, by Hellman [Hel80], Yao [Yao90], and Fiat and
Naor [FN99]. In this model, we assume a hash function h : {0, 1}a → {0, 1}n with a > n mod-
eled as a completely random one, i.e., a random oracle [BR93]. The AI-ROM models preprocessing
adversaries as two-stage algorithms (A1,A2) parameterized by S (for “space”) and T (for “time”).
We refer to such an attacker as an (S, T )-attacker. The first part A1 (i.e., the offline phase) has
unbounded access to h, and its goal is to compute an S-bit “advice” σ for A2. The second part
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A2 (i.e., the online phase) gets the advice σ, can make at most T queries to h, and attempts to
accomplish some task involving h. In our case, A2 gets a random key key←$ {0, 1}κ as a challenge
and its goal is to come up with a collision in H(key, ·). Aside from the restrictions that |σ| ≤ S
and that A2 can make at most T queries to h, both A1 and A2 are allowed to be computationally
unbounded.

Building a keyed hash from a single hash function. Observe that for every keyed hash
construction, there is an (S, T )-attacker that finds a collision relative to a random key with proba-
bility1 Ω(S/2κ + T 2/2n) via the following attack. First, the preprocessing adversary outputs Ω(S)
collisions with respect to arbitrary distinct keys. The online adversary receives a random key. If
key is in the remembered list from the preprocessing phase, it outputs the corresponding collision.
Otherwise, it performs a T -query birthday-style attack. The adversary wins if either the challenge
key appears in one of its preprocessed collisions (giving the S/2κ term) or if the birthday attack
succeeds (giving the T 2/2n term). We refer to this attack as the naive attack, and say that a
construction is optimally secure if there is provably no better attack. This brings us to the main
question we consider in this work.

Can we build a keyed hash function (i.e., H : {0, 1}κ × {0, 1}∗ → {0, 1}n)
from non-keyed one (i.e., h : {0, 1}a → {0, 1}n) with optimal non-uniform security?

If we could design an ha : {0, 1}a → {0, 1}n for every a ∈ N, then the above task is easy. We
can simply parse the input to the appropriate ha into two parts, one for the key and the other for
the input to H : {0, 1}κ × {0, 1}∗ → {0, 1}n. That is, define H(key,m) = hκ+|m|(key‖m), where ‖
stands for string concatenation and | · | stands for bit length. For this construction, Dodis, Guo
and Katz [DGK17] showed that the best attack achieves advantage O(S/2κ+T 2/2n), matching the
advantage of the naive attack.

Unfortunately, it is infeasible to design a different hash function for every input length as
discussed above. The design of a new h is a delicate and lengthy process that could take many
years to test and standardize. Having a single hash function is therefore more robust security-wise.
Thus, the standard procedure is to design a hash function h with fixed input size and then iterate
it in some way to get a hash function that supports arbitrary input lengths.

It may seem that standard domain extension techniques for hash functions (like Merkle-Damg̊ard,
Sponge, or Merkle trees) provide a solution for this problem. Indeed, their goal is to take a hash
function on a small domain and turn it into a hash function with arbitrary-size domain. But, as
we point out next, the standard constructions suffer from a significant security loss. A priori, it is
not even clear that this security loss is avoidable.

The security of existing constructions. First, consider (a keyed variant of) the Merkle-
Damg̊ard (MD) construction [Mer89, Dam89], perhaps the most widely popular design for get-
ting a hash function on long inputs from one on fixed input sizes. This design is not only ex-
tremely fundamental in cryptographic theory, but it also underlies popular hash functions used
in practice, most notably MD5, SHA-1, and SHA-2. The MD : {0, 1}κ × {0, 1}∗ → {0, 1}n con-
struction iterates the basic hash function h : {0, 1}a → {0, 1}n by feeding in input blocks of size
s = a − max{κ, n} one by one. It first pads the message appropriately such that it is a multiple
of s bits. For key key ∈ {0, 1}κ and input m ∈ {0, 1}s, define MD(key,m) = h(key‖m). Then,
for a longer input m ∈ ({0, 1}s)`, viewed as ` blocks m1, . . . ,m` each from {0, 1}s, recursively
define MD(key, (m1, . . . ,m`)) = h(MD(key, (m1, . . . ,m`−1)),m`). We note that in the standard MD

1To simplify notation throughout the introduction, we suppress poly factors in n in the asymptotic O(·) and Ω(·)
notation.
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construction (studied, for example, in [CDGS18, ACDW20, GK22, AGL22]), key is only explicitly
included once when processing the first message block.

Collision resistance of MD in the AI-ROM was first studied by Coretti, Dodis, Guo, and Stein-
berger [CDGS18] and more recently by [ACDW20, GK22, AGL22]. It is known that there is an
attack, loosely based on the idea of rainbow tables [Hel80, Oec03], which succeeds in finding a
collision with probability Ω(S/2κ + ST 2/2n). In typical settings of parameters, the ST 2/2n term
dominates the above expression and in this case it is evident that MD suffers from a significant
security loss.

Concretely, in the SHA-1 construction, a = 678 and κ = n = 160. If we model the underlying
primitive h : {0, 1}678 → {0, 1}160 as a perfectly random function, an (S, T )-attacker with S = 253

and T = 250 will find a collision with probability ≈ 2−7 (essentially completely breaking the
scheme).2 On the other hand, the best one could hope is a construction with maximal advantage
O(S/2κ + T 2/2n) ≈ 2−60 (obtained by the naive attack).

Another construction we mention is the Sponge [BDPVA07, BDPA08] construction, an alter-
native to the Merkle-Damg̊ard design that underlies the modern SHA-3 hashing standard. As
opposed to MD, the Sponge construction relies on a random permutation Π: {0, 1}n → {0, 1}n.
Sponge iterates Π by feeding in blocks of size r < n from the input one at a time in a certain
way. It results with a keyed hash function Sp : {0, 1}κ × {0, 1}∗ → {0, 1}r with κ+ r = n. Coretti
et al. [CDGS18] (see also [FGK22]) showed that there is a collision finding (S, T )-attack with ad-
vantage Ω(ST 2/2κ + T 2/2r) against Sp relative to a random key. Again, we see that there is a
non-trivial security loss in this construction.

It is important to note that for every choice of S and T the above attacks on Merkle-Damg̊ard
and Sponge beat the naive attack. In particular, there is no non-trivial choice of parameters where
MD or Sp achieve the optimal security bound.

Lastly, we mention two other popular (variable-input-length) hash function designs: Merkle
trees [Mer87] and the BLAKE family [AHMP08, AMPH14]. The former (Merkle trees) is a popular
design that has important features like local opening and can be easily parallelized. Although it is
extremely popular both in theory and in practice, we are not aware of a keyed variant that has been
studied in the non-uniform setting. The latter (BLAKE) is a runner-up in NIST’s competition to
create a new hashing standard (where Sponge ended up as the winner). This design is based on
the MD design, but they allow the inner hash function h to be keyed at every invocation. We are
not aware of a formal study of its security in the non-uniform setting. Looking ahead, two of our
main contributions are a proposal and analysis of the non-uniform security of Merkle tree and the
MD/ BLAKE design, where the inner hash function h is keyed in every invocation. Concretely, we
believe that this is the right notion to consider moving forward, in terms of non-uniform security.

A different perspective. Above, we considered the scenario where h : {0, 1}a → {0, 1}n is given,
and we want to build an H : {0, 1}κ × {0, 1}∗ → {0, 1}n which is as secure as possible for every
(S, T )-attacker. A different perspective, slightly more target oriented, is to first fix a desired security
level (say 2−50) and the power of adversaries (say S = T = 260) and then understand which h is
needed in order to get the desired H. If we use MD (for concreteness) for H, we will need n ≥ 230,
but if we had an optimally secure construction of H, we would need only n ≥ 170. The latter could
potentially be easier to design and argue about.

2These parameters roughly correspond to an attacker with ≈ 1000 terabytes of memory that uses optimized
hardware that can compute 3 billion hashes per second for a long weekend.

3



1.1 Our Results

We provide several constructions of keyed hash functions from non-keyed ones that do not suffer
from any security loss (i.e., the naive attack that has advantage Θ(S/2κ + T 2/2n) is provably
optimal). Our constructions provide various tradeoffs between their efficiency and the range of
parameters (S and T ) where they achieve optimal security.

Merkle-Damg̊ard and Merkle trees with a keyed inner hash. All of our constructions can
be viewed within a framework that builds on the Merkle-Damg̊ard and Merkle tree constructions.

We start by discussing the MD-based approach. We consider an iterative hashing design where
a compression phase is performed in every step using an “inner hash” function. The input for the
compression phase is the current state and the next input. At the end, the compression phase
outputs the next state. Of course, the inner hash function in the compression phase can use h as
a subroutine. Abstractly, the compression phase for the MD-based construction is

y := compress(key, y,m),

where importantly the compress function takes key as input. See Figure 1 for an illustration. With
this notation, the compression function of the standard MD function (at least as studied in numer-
ous recent works including [CDGS18, ACDW20, GK22, AGL22]) is simply compress(key, y,m) =
h(y,m), and for the first step, y is initialized to key. Notably key is not included in every compres-
sion phases.

y0 y1 y2 y3

com
press

com
press

com
press

key

Figure 1: Our framework for building keyed hash functions based on the Merkle-Damg̊ard con-
struction with a keyed inner compression function.

We next consider a parallelizable hashing design that generalizes the Merkle tree hash function.
Here, each input is fed into a “leaf” of the Merkle tree, along with the key value. The compression
function is then used to recursively combine outputs in previous levels until a final output is
generated. Crucially, we always include key in the compression function. See Figure 2 for an
illustration. This framework provides an alternative to the generalized MD approach described
above. It requires at most a factor of two more calls to compress, but it is extremely parallelizable.
Further, it provides a local opening property, where someone can prove that an individual message
block mi was included in the hash, without providing the full message.

Our constructions are obtained by different implementations of compress, namely viewing compress
as an inner keyed hash function used in the MD and Merkle tree designs. Quantitatively, the MD
and Merkle tree approaches give similar results, so we focus our attention on instantiating compress
in the case of the MD-based framework. However, all of our main results extend to the setting of
the generalized Merkle tree framework, which we provide in Appendix A for completeness.
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Figure 2: Our framework for building keyed hash functions based on the Merkle tree construction.

For simplicity of presentation of our results, we slightly simplify notation and assume that κ (the
key length) is equal to n (the output size of the hash function).3 In our formal theorem statements
in the technical sections, κ and n are treated independently when relevant.

Efficiency: We measure efficiency of a given construction by the number of calls to h needed
to evaluate H at a single point. For example, in the standard MD construction with an underlying
hash that maps {0, 1}a to {0, 1}n, to hash a b-bit input, the query complexity is b/(a−n) (ignoring
rounding4). Indeed, every application of h takes as input the previous output (n bits) and so it
can process a− n bits from the input each time.

Assuming a large inner hash. Our first result shows that optimal security loss is achievable.
That is, we show that there is a way to take a random oracle that operates on a fixed input
length and get a keyed hash H that operates on arbitrary-length inputs with the following security
guarantee: for any S, T , any (S, T )-attacker has minimal possible advantage in finding a collision
in H relative to a random key. In words, the new construction is a variant of MD where we also
feed key as input in every block. We refer to this construction as the MD construction with a keyed
inner hash, in contrast to the standard MD construction where key is only fed in the first block.
At a high level, feeding the key into every invocation of h allows us to reduce the probability of
finding a long collision in H to that of finding a collision in h, which achieves optimal security
O(S/2n + T 2/2n) [DGK17]. Refer to Figure 3 for an illustration of how the construction works.5

Theorem 1.1 (Informal; see Theorem 4.3). Assume h : {0, 1}a → {0, 1}n is modeled as a random
oracle with a > 2n. Then, there is an H1 : {0, 1}n × {0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N and any (S, T )-attacker, their advantage in finding a collision in H1(key, ·)
relative to a random key←$ {0, 1}n is O(S/2n + T 2/2n).

3We note that there are constructions that use κ 6= n by design (e.g., BLAKE hash [AHMP08, AMPH14] uses
κ = n/2).

4To be more precise, MD requires d(b+ n+ 1)/(a− n)e calls to h after padding the input with its length followed
by a 1 and a sequence of 0s to fill the remaining current block. However, for ease of presentation, we ignore rounding
in the introduction. In the formal theorem statements, we give exact efficiency bounds.

5Essentially the same construction appears in Goldwasser-Bellare’s lecture notes [GB08, §8.5] where it is shown
that this construction is collision resistant in the uniform setting. Our result shows that this holds in the non-uniform
(AI-ROM) setting as well.
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2. One evaluation of H1 on a given key and a b-bit message requires b/(a− 2n) queries to h.

h0n

m1 2 {0, 1}a�2n

y0 h

m2 2 {0, 1}a�2n

h

m3 2 {0, 1}a�2n

y1 y2 y3

key 2 {0, 1}n

Figure 3: The construction H1 underlying Theorem 1.1 given a hash function h : {0, 1}a → {0, 1}n
for a > 2n.

The above result is optimal in terms of security and is almost as efficient as standard MD if
a ≥ 2n+ Ω(n). For example, if a = 3n, processing a b-bit input of H1 requires querying h as many
as b/(a− 2n) = b/n times. In the standard MD construction, only b/(a− n) = b/(2n) queries are
required, so our construction is less efficient than MD by a small constant factor at most 2 when
a = 3n.

However, H1 is significantly less efficient than MD if a is roughly 2n, i.e. h compresses by a
factor of 2. For example, if a = 2n+ 1, then processing a b-bit input of H1 requires invoking h as
many as b times. However, MD requires only b/(n+ 1) queries. This is a significant difference. We
emphasize that having an efficient construction even when a ≈ 2n is not only a technicality but is
rather important: concretely, assuming that the basic compressing function shrinks by a factor 2 is
extremely common, both in theory and in practice. Thus, our next results are focused on closing
this gap.

Instantiating the keyed inner hash with standard MD. To this end, we start by considering
a construction H2 that works for any a > n and only incurs a factor of 2 overhead in terms
of efficiency relative to MD. While this may seem too good to be true, we pay in terms of the
assumptions we need to make to claim optimal security for collision resistance. Namely, the scheme
has “optimal security,” meaning any (S, T )-attacker can find a collision with probability at most
O(S/2n + T 2/2n), only whenever S ≤ T and ST 2 ≤ 2n.

This main idea behind the construction H2 is to instantiate the compress function in the MD-
based framework of Figure 1 with a standard MD hash function. We use key as the key for MD,
and we treat yi−1‖mi as the message. If we use a message block size |mi| = n, this results in only
a factor of two overhead relative to MD (essentially, half of the invocations of h incorporate bits
of the message mi, and half of the invocations incorporate bits of the previous output yi−1). This
construction is depicted in Figure 4 and gives the following result.

Theorem 1.2 (Informal; see Theorem 5.2). Assume h : {0, 1}a → {0, 1}n is modeled as a random
oracle with a > n. Then, there is an H2 : {0, 1}κ × {0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N such that S ≤ T , ST 2 ≤ 2n, and any (S, T )-attacker, their advantage in
finding a collision in H2(key, ·) relative to a random key←$ {0, 1}n is O(S/2n + T 2/2n).

2. One evaluation of H2 on a given key and a b-bit input requires 2 · b/(a− n) queries to h.
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0n y0km1 2 {0, 1}2n y1km2 2 {0, 1}2n y2km3 2 {0, 1}2n

MDh MDh MDh

key 2 {0, 1}n

Figure 4: The construction H2 underlying Theorem 1.2 given a hash function h : {0, 1}a → {0, 1}n
for a > n. The gray dotted boxes represent the compress function, instantiated with the Merkle-
Damg̊ard construction, that uses key ∈ {0, 1}n as the key and yi−1‖mi ∈ {0, 1}2n as the message.

We note that the assumption that ST 2 ≤ 2n in the construction above comes from the fact that
best currently known time-space tradeoffs for the collision resistance of standard MD (culminating
in [GK22, AGL22] following the works of [CDGS18, ACDW20, CGLQ20]) require this assumption
to get optimal bounds when analyzing the `-block MD construction when ` ∈ ω(1). In the special
case where we only use a 2-block variant of MD as the underlying compress function, [ACDW20] give
tight bounds that do not require that ST 2 ≤ 2n (and furthermore, [GK22] gave tight bounds for all
constants `). This motivates our next construction, H3, which uses the 2-block MD construction for
compress, but requires that the input size to h satisfies a > 3n/2. See Figure 5 for an illustration,
and the corresponding result is given in the following theorem.

Theorem 1.3 (Informal; see Corollary 5.3). Assume h : {0, 1}a → {0, 1}n is modeled as a random
oracle with a > 3n/2. Then, there is an H3 : {0, 1}κ × {0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N such that S ≤ T and any (S, T )-attacker, their advantage in finding a
collision in H3(key, ·) relative to a random key←$ {0, 1}n is O(S/2n + T 2/2n).

2. One evaluation of H3 on a given key and a b-bit input requires 2 · b/(2a− 3n) queries to h.

Instantiating the keyed inner hash with a 2-level Merkle tree. For our final construction,
we seek to build a hash function H4 that is both efficient and optimally secure whenever a ≈ 2n
(h is only compressing by a factor of 2), without assuming that S ≤ T . In particular, S � T
makes sense in many practical scenarios: the pre-processing attacker may have much more than
time T to generate its advice string of size S, the online attacker may have easy random access to a
structured advice string, or the online time T may be small for applications that enforce a timeout
with fixed-time communication session (see [ASS+16] as an example of an attack on a TLS session
that requires relatively heavy computation in an offline phase). Lastly, we mention that the bounds
we obtain on H2 and H3 are tight—there is a non-trivial attack whenever S > T that scales with
advantage Ω(ST`/2n) for standard `-block MD [CDGS18, ACDW20].

For H4, we instantiate the compress function from the framework of Figure 1 using a keyed
variant of a Merkle tree construction (this has never been formally defined or analyzed to the best
of our knowledge). In our variant, we feed key into all leaves of the Merkle tree. Concretely, in
our construction, we use a 2-level Merkle tree and feed key to both of them, corresponding to two
distinct invocations of h, and we split the “message” yi−1‖mi into the remaining input bits for the
leaves. The second level of the Merkle tree combines the two outputs from the first level, to produce

7



h h

y0km1 2 {0, 1}2a�2n y1km2 2 {0, 1}2a�2n y2km3 2 {0, 1}2a�2n
0n

h h h h

key 2 {0, 1}n

Figure 5: The construction H3 underlying Theorem 1.3 given a hash function h : {0, 1}a → {0, 1}n
for a > 3n/2. The gray dotted boxes represent the compress function, instantiated with a two-block
Merkle-Damg̊ard construction, that uses key ∈ {0, 1}n as the key and yi−1‖mi ∈ {0, 1}2a−2n as the
message. The 2a − 2n bit message is split evenly into the first and second call to h, indicated in
the figure by a diamond.

a n bit output for compress. The full construction of H4 is illustrated in Figure 6. We conjecture
that this Merkle tree-based construction is optimally secure for collision resistance (see Remark 1.5
for more details), but analyzing its security turns out to be highly non-trivial. In particular, our
current analysis is only optimally secure when ST 2 ≤ 2n, as stated in the following theorem.

Theorem 1.4. Assume h : {0, 1}a → {0, 1}n is modeled as a random oracle with a ≥ 2n. Then,
there is an H4 : {0, 1}κ × {0, 1}∗ → {0, 1}n such that:

1. For any S, T ∈ N such that ST 2 ≤ 2n and any (S, T )-attacker, their advantage in finding a
collision in H4(key, ·) relative to a random key←$ {0, 1}κ is O(S/2n + T 2/2n).

2. One evaluation of H4 on a given key and a b-bit input requires 3 · b/(2a− 3n) queries to h.

h

h

h

y0km1 2 {0, 1}2a�2n0n y1km2 2 {0, 1}2a�2n

h

h

h

y2km3 2 {0, 1}2a�2n

h

h

h

key 2 {0, 1}n

Figure 6: The construction H4 underlying Theorem 1.4 given a hash function h : {0, 1}a → {0, 1}n
for a ≥ 2n. The gray dotted boxes represent the compress function, instantiated with a two-level
Merkle tree, that uses key ∈ {0, 1}n in each leaf and yi−1‖mi ∈ {0, 1}2a−2n as the message. The
2a−2n bit message is split evenly between the two leaves of the Merkle tree, indicated by a diamond
in the figure. We require a ≥ 2n so that both outputs from the leaves can be fed into the next layer
of the Merkle tree.
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Advantage Efficiency Input Size Assumptions

MD Θ(ST 2/2n) b/(a− n) a > n None

H1 (Thm. 1.1) Θ(S/2n + T 2/2n) b/(a− 2n) a > 2n None

H2 (Thm. 1.2) Θ(S/2n + T 2/2n) 2 · b/(a− n) a > n S ≤ T, ST 2 ≤ 2n

H3 (Thm. 1.3) Θ(S/2n + T 2/2n) 2 · b/(2a− 3n) a > 1.5n S ≤ T

H4 (Thm. 1.4) Θ(S/2n + T 2/2n) 3 · b/(2a− 3n) a ≥ 2n ST 2 ≤ 2n

Table 1: A summary of our results as well as the standard MD construction for reference. The
advantage of a construction is given in terms of the probability of (S, T )-attackers to find collisions
relative to a random key. The efficiency is measured in terms of the number of calls to h that maps
a-bit inputs to n when processing a b-bit input. The assumptions column specifies conditions on
various parameters.

We summarize our results in Table 1.

Remark 1.5 (A conjecture on the security of keyed Merkle trees). The main building block in our
construction of Theorem 1.4 is a Merkle tree where the key value key is included only at the leaves.
Concretely, we include a key key in each of the leaves of a Merkle tree and then fill in the rest of the
leaves with bits of some message m ∈ {0, 1}∗, and then run the Merkle tree construction (with an
unkeyed hash) as normal to get an n-bit output. In this work, we analyze the simplest case where
the Merkle tree has depth 2 with only two leaves. However, this naturally generalizes to any number
of ` leaves resulting in a tree of depth O(log `).

We conjecture that this approach, where only the leaves are keyed, is as secure as the Merkle tree
approach of Figure 2 where the inner hash function is keyed at every invocation, including interior
nodes. This latter approach requires a larger, more complicated, inner hash function, so we would
like to avoid this if at all possible.

First, for the simple case of a depth two tree with keyed leaves, we conjecture that the bound
we show in this work is not tight (see Theorem A.3 for the exact bound we show). Namely, we
believe that we should not need to assume ST 2 ≤ 2n (or make any assumptions on S, T ) in order
to get optimal security. Second, we believe that this intuition should extend to the arbitrary depth
Merkle trees that are keyed at the leaves, and we conjecture that it should also achieve optimal
(S, T ) security without any assumptions on S, T . However, even getting a bound in this case that is
optimal in the setting ST 2 ≤ 2n we believe would be very interesting. Additionally, handling deeper
Merkle trees could potentially allow for constructions that do not necessarily have even a two-to-
one structure, meaning that we could build a keyed hash function based on Merkle trees without
assuming the hash function h has input size a ≥ 2n.

1.2 Related Work

The motivation for this work comes from a recent line of results on the non-uniform security loss
of various hashing mechanisms.

For Merkle-Damg̊ard’s construction [Mer89, Dam89], this was first studied by Coretti et al. [CDGS18]
who showed how to find collisions with probability Ω(S/2κ+ST 2/2n). The idea is reminiscent of the
rainbow tables attack due to Oechslin [Oec03] (in turn building on Hellman [Hel80]). The collisions
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they get are rather long (of length proportional to T ). Akshima et al. [ACDW20] generalized the
attack to get an `-block collision with probability Ω(S/2κ+ST`/2n) and showed that this attack is
optimal for ` = 2. Ghoshal and Komargodski [GK22] showed that this attack is optimal for all con-
stant values of ` and Akshima, Guo, and Liu [AGL22] almost proved the tightness of the bound for
all `s by showing that the best possible attack has advantage O(ST`/2n · (1 + ST 2/2n) + T 2/2n).
For a single-block Merkle-Damg̊ard (i.e., just a compressing random oracle), Dodis, Guo, and
Katz [DGK17] showed that including a random key (optimally) defeats preprocessing attacks.

For Sponge [BDPVA07, BDPA08], Coretti, Dodis, and Guo [CDG18] stated a related attack
with advantage Ω(ST 2/2κ + T 2/2r) (with r being a “rate” parameter of the scheme). Again, this
attack resulted in very long collisions. The attack was formalized and extended to `-block collisions
with advantage Ω(ST`/2κ + T 2/2r) by Freitag, Ghoshal and Komargodski [FGK22]. Freitag et al.
also proved several upper bounds on the advantage of any attacker, but their bounds are not known
to be tight.

Indifferentiability. Our work focuses on collision resistance, but there are other security prop-
erties of interest (such as inversion, second preimage resistance, pseudo-randomness, and unpre-
dictability). In the uniform security setting there is a well-known framework called indifferentiability
(due to Maurer, Renner, and Holenstein [MRH04]) that is used to show that a (wide) class of secu-
rity goals are simultaneously met. This allows to modularly transition to a (simpler) hybrid world
where a complicated hash function construction is replaced with a monolithic random oracle (see,
for example, [CDMP05]). Such transitions are known to work for all single-stage games but not for
multi-stage games [RSS11]. Our non-uniform security model is fundamentally a two-stage model
and therefore the indifferentiability framework (as is) does not apply. It is an interesting open
problem to find an analogue in the non-uniform setting.

2 Technical Overview

In this section, we give a high level overview of our main techniques. Recall, our goal is to con-
struction a variable-input length, keyed, hash function Hh : {0, 1}κ × {0, 1}∗ → {0, 1}n from an
idealized, fixed-input length hash function h : {0, 1}a → {0, 1}n.

Non-uniform security in the AI-ROM. We consider non-uniform (S, T )-attackersA = (A1,A2)
in the auxiliary-input random oracle model (AI-ROM) [Unr07] with the following structure. First,
h is randomly sampled from the space of all a-bit to n-bit functions. Then, in the preprocessing
phase, A1 has unbounded access to h and outputs an advice string σ such that |σ| ≤ S. The online
phase A2 receives auxiliary input σ and a random key key← {0, 1}κ as input, and then has to find
two distinct messages msg,msg′ such that Hh(key,msg) = Hh(key,msg′) while making at most T
queries to h. Our goal is to give constructions Hh such that no (S, T )-attacker as above can find
a collision with better than O(S/2κ + T 2/2n) probability. This is “optimal” in the sense that this
matches a naive attack against a purely random H: the preprocessing attacker stores collisions for
Ω(S) keys, and the online attacker either gets “lucky” and receives one of those keys as input or
performs a standard birthday-style attack.

Merkle-Damg̊ard framework with a keyed inner hash. We consider a general framework
based on the Merkle-Damg̊ard (MD) transformation where we instantiate the inner hash func-
tion with a keyed one. Let s ∈ N be the desired message block size. Then, given a function
g : {0, 1}κ+n+s → {0, 1}n, we can build a function Hg where any attack on the collision resistance
of Hg implies an attack on g. The idea behind Hg is as follows. We first break our message up
into blocks m1, . . . ,m` of size a− κ− n. We initialize the value y0 = 0n, and for i = 1, 2, . . . , ` we
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compute yi = g(key‖yi−1‖mi). Finally, we output y`. It is known (e.g. see Section 8.5 of [GB08])
that if you can find a collision in the MD construction Hg for a keyed g in the uniform setting,
then this implies you can find a collision in g. Indeed, this reasoning extends to the non-uniform
setting with (S, T )-attackers in the AI-ROM. Hence, this shows that Hg is as secure as g. So,
our new goal is to construct such a g with “optimal security” given an idealized hash function
h : {0, 1}a → {0, 1}n.

Our first observation is that if a ≥ κ+n+ s, then we can simply use g = h. Furthermore, h has
optimal security O(S/2κ + T 2/2n) (first formalized by [DGK17] in the AI-ROM), so we are done!
So our next goal is to try to use an h from minimal assumptions. Namely, can we get a keyed hash
function with arbitrary length input from any h : {0, 1}a → {0, 1}n where a is much smaller, i.e.
even a = n+ 1? This will allow us to focus on building as simple a primitive as possible which we
can bootstrap to a full variable-input length hash function with optimal security.

Next, we note that for any a > max(κ, n), we can always do the standard Merkle-Damg̊ard
transformation using h to construct g, where key is not fed into every invocation of h. For standard
MD, it makes sense to set κ = n since we use the key key as the initialization vector. Recall,
the MDh construction sets y0 = key, computes yi = h(yi−1‖mi) for i = 1, . . . , `, and outputs y`.
This approach has a major downside in that instantiating MD without inserting key into each
invocation of h suffers non-trivial time-space tradeoffs. In general, there is an attack on the general
MDh construction with advantage Ω(ST 2/2n). This is strictly worse than the optimal bound of
O(S/2n + T 2/2n) for any setting of parameters with S, T � 1. However, this attack finds very
large—roughly length T—collisions. In our setting, we only care about using MDh to get a function
g with inputs of size 2n + s. Thus, we leverage a recent line of work (see [CDGS18, ACDW20,
CGLQ20, GK22, AGL22]) that shows that if you only use MDh on `-block messages, then the best
known attack has advantage at most O(ST`/2n + T 2/2n) (and further this is provably tight for
constant ` [ACDW20, GK22] and, when ST 2 ≤ 2n, is provably tight for all ` [AGL22]).

So, if we instantiate g in our framework with a fixed-length MDh construction where we set κ
and s to be equal to the output length n, we get a construction for Hh where any (S, T )-attacker
has advantage at most O(ST/2n+T 2/2n) (up to poly(n) factors). This is only “optimal,” however,
under the (strong) assumption that S ≤ T .

Our main technical contribution is instantiating g in the framework above using a new keyed
Merkle tree approach, which does not require the assumption that S ≤ T .

2.1 Keyed Merkle Tree Analysis

For the rest of this technical overview, we focus on our analysis of the keyed Merkle tree construction.

Construction. We start by defining the 2-level construction. We want a keyed function g : {0, 1}κ×
{0, 1}n+s → {0, 1}n from a hash function h : {0, 1}a → {0, 1}n where a ≥ 2n. To do so, we split
the (n + s)-bit input into two parts, call them mL,mR, of size at most a − κ (hence we require
here that a − κ ≥ (n + s)/2, or a ≥ κ + n/2 + s/2). We concatenate each part with the key key
and compute yL ← h(key‖mL) and yR ← h(key‖mR). We then concatenate yL with yR and feed
the resulting string into h to get the output z ← h(yL‖yR) (we require here that a ≥ 2n). For
technical purposes, we “domain separate” each call to h, so yL = h1(key‖mL), yR = h2(key‖mR),
and z = h3(yL‖yR).

Analysis. We want to bound the probability that any (S, T )-attacker can find a collision in this
keyed Merkle tree construction of g. To simplify the analysis here, we consider the case where κ
and s are equal to n. Hence, each call to h takes two n-bit inputs and has one n-bit output. We
also assume from the start that ST 2 ≤ 2n.
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We start with the following observation. The probability that any (S, T )-attacker finds a colli-
sion at the leaves, corresponding to the calls to h1, h2, is at most O(S/2n + T 2/2n). Because these
calls include the key key, if such an event happened, we could reduce to finding a collision in h
directly. So, the challenge is to reason about the advantage of an (S, T )-attacker finding a collision
at the second level of the Merkle tree, which is only implicitly related to the key key in the Merkle
tree construction. We have to somehow characterize all possible ways that an (S, T )-attack can
encode information about h in its advice string from the preprocessing phase.

One of the first tools one often turns to in such analysis is to use the presampling technique
from [Unr07, CDGS18]. We note that if we were to use the presampling technique, we would obtain
a term of the form ST/2n in out bound, which is optimally secure only in the range S ≤ T . Our
main technical contribution is getting an optimally secure protocol for the range S � T , which
therefore requires techniques other than presampling.

The AGL [AGL22] framework: reducing to multi-instance games. To make our lives
significantly easier, we use the multi-instance framework of [AGL22], previously used in somewhat
different forms in [IK10, ACDW20, CGLQ20, GK22]. At a very high level, this framework gives a
way to reason about (S, T )-attackers using an average-case advice string rather than a worst-case
one. In more detail, they show how to bound the advantage that any (S, T )-attacker A finds a
collision in gh by the advantage of a (uniform) attacker B in the following game. First, a random
function h is sampled. Then, B has to win the following game for all i = 1, . . . , S sequentially,
where it is allowed to maintain arbitrary state (that it generates) between each successive game.
In each game i, the attacker B receives a random key keyi, its state from the previous games, and
has to come up with a pair of messages msgi,msg′i such that gh(keyi,msgi) = gh(keyi,msg′i) using
at most T queries to h. [CGLQ20, AGL22] show that if the advantage of B is at most δS , then
the advantage of the (S, T )-attacker A is at most 2δ. The magic of this framework is that we can
analyze the advantage of B in each game i only given its state from the previous games, instead of
having to reason about arbitrary advice strings as in the case of (S, T )-attackers. Namely, we can
lazily sample h on any point that B has not queried, in a way that is independent of B’s current
state.

Note that it suffices to show that the advantage of B “in game i” is at most δ given it has won
all previous games. Let Wi be the event that B wins game i and W<i be the event that B wins all
games before i. This follows since Pr[W1∧ . . .∧WS ] =

∏S
i=1 Pr[Wi|W<i] ≤ δS if Pr[Wi|W<i] ≤ δ for

all i ∈ [S]. Hence, our goal is to show that Pr[Wi|W<i] ≤ O(S/2n + T 2/2n), up to poly(n) factors.

Knowledge gaining event: bounding “hitting” queries. Now, to even further simplify
the analysis of Pr[Wi|W<i], we define a key “knowledge gaining event” (based on the techniques
of [AGL22]) representing the kind of information that B may have encoded into its state based
on the queries it made to h before game i has started. At a high level, this is an event that we
show happens with very small probability (technically at most 2−2i·n) for an average-case advice
string for B at the start of game i. Then, assuming this event does not occur, we can more easily
characterize the strategies of B.

To define this event, we introduce some notation to characterize B’s queries. We refer to all
(i − 1) · T queries B makes before the start of game i as “offline” queries, and we refer to the T
queries made in game i as “online” queries. An offline query is said to be “hitting” if its output is
equal to an output or either of the two inputs to some prior query, i.e. it “hits” a previous query.
We are now ready to state our key knowledge gaining event.

• We say that Eihit holds if there are more than i · poly(n) hitting queries among the (i− 1) · T
offline queries.
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Briefly, we justify why Eihit holds with very small probability. The output for each query is
uniformly sampled, and there are at most 3 · (i − 1) · T values to hit across inputs/outputs in the
previous (i − 1) · T offline queries. So the probability each offline query is a hitting query is at
most 3iT/2n, meaning we expect at most 3i2T 2/2n hitting queries accounting for all (i − 1) · T
offline queries. Furthermore, we show using a Chernoff bound that there will not be more than
i ·poly(n) ·max(1, iT 2/2n) = O(i) hitting queries (assuming ST 2 ≤ 2n) with high probability (recall
that we ignore poly(n) terms).

A case analysis based on collision queries. Now, assuming there are at most i · poly(n)
hitting queries, we are ready to show that Pr[Wi|W<i] ≤ O(S/2n + T 2/2n). To do so, we look at
the following “collision” queries corresponding to the valid collision msgi = (mL,mR) 6= msg′i =
(m′L,m

′
R) that B outputs in game i (we assume that B makes all of these queries at some point

during or before game i).

• Q1, Q2, Q3 are the queries yL ← h1(keyi‖mL), yR ← h2(keyi‖mR), z ← h3(yL‖yR), respec-
tively.

• Q′1, Q
′
2, Q

′
3 are the queries y′L ← h1(keyi‖m′L), y′R ← h2(keyi‖m′R), z ← h3(y

′
L‖y′R), respec-

tively.

Recall that we assumed the collision occurs among Q3, Q
′
3 (not at the leaves), so it must be the

case that (yL, yR) 6= (y′L, y
′
R) and queries Q3, Q

′
3 are distinct.

If all of these collision queries are online (were first made during game i), then clearly Pr[Wi|W<i] ≤
O(T 2/2n). Specifically, as Q3 and Q′3 are online (and distinct by assumption) and form a collision,
this follows by a birthday bound on at most T online—and hence lazily sampled—queries that B
makes during game i. The challenge comes when analyzing the cases where B may have made some
of these queries before game i, so it could have encoded information about these queries in its state.
To do so, we consider the following remaining cases, which cover all possible strategies that B may
employ.

As we already considered when both Q3, Q
′
3 are online queries, it must be the case that one of

Q3, Q
′
3 must be an offline query. Assume without loss of generality that Q3 is offline. Then either

(A) both Q1, Q2 are online, (B) exactly one of Q1, Q2 are online, or Q1, Q2 are both offline. The
latter case implies that Q1, Q2, Q3 are all offline. Then either is the case that (C) Q′3 is online, or
Q′3 is also offline. If Q′3 is also offline, then either we reduce to case (A) or (B) above by symmetry,
or it holds that (D) all Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 are offline. So, it suffices to show in cases (A-D) that

Pr[Wi|W<i] ≤ δ ≤ O(S/2n + T 2/2n), at least assuming ST 2 ≤ 2n. We proceed to give the main
ideas behind each of these cases.

(A) Q3 is offline but Q1, Q2 are online.

There are at most (i− 1) · T options for the offline query Q3. Both online queries Q1 and Q2

have to hit such a query, which happens with at most (i − 1) · T · (T/2n)2 = O(iT 3/22n) ≤
O(T/2n) when ST 2 ≤ 2n since i ≤ S.

(B) Q1, Q3 are offline but Q2 is online (symmetrically for Q1 online and Q2 offline).

In this case, we claim we can “associate” the key keyi in game i to the query Q3 since both Q1

and Q3 are offline queries. If we can associate keyi to at most k possible Q3 queries, then this
implies the probability the output of some online query hits an input of such an associated
query is at most k · T/2n. But how many Q3 queries can we associate to a key keyi?

In the worst case, keyi may be associated to (i − 1) · T many Q3 queries, but this implies
a suboptimal bound of O(iT 2/2n). But this cannot be true for too many values of key
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simultaneously. In particular, if a Q3 query is associated with more than k possible values of
key, this means there are k hitting queries, so each Q3 query can be associated with at most
O(i) keys. This implies there are at most O(i2T ) pairs of associated key values with potential
Q3 queries, meaning a random keyi value will be associated with at most O(i2T/2n) potential
Q3 values on average. Plugging this average-case bound into k above, this implies a bound
of O(i2T 2/22n) ≤ O(S/2n) assuming ST 2 ≤ 2n given i ≤ S.

(C) Q1, Q2, Q3 are offline but Q′3 is online.

In this case, Q′3 is a distinct query from Q3 by assumption, but again we can “associate” Q3

with keyi as above. Then, since Q′3 must share an output with Q3, the same argument as
above gives a bound of O(S/2n) in this case.

(D) All collision queries Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 are offline.

In this case, we show that every full collision structure with respect to some key among
the offline queries leads to a hitting query. Furthermore, two collision structures cannot
share the same hitting query. So if there are at most O(i) hitting queries, the probability
Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 are all offline for a random keyi is at most O(i/2n) ≤ O(S/2n).

Thus, we showed that Pr[Wi|W<i] ≤ O(S/2n + T 2/2n) no matter when Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3

were queried before or during game i. Further, recall the last case where there is a collision at one
of the leaves (corresponding to Q1, Q

′
1 or Q2, Q

′
2), which can happen with at most O(S/2n+T 2/2n)

probability since such a collision directly involves keyi. Thus, in all possible cases, we have shown
Pr[Wi|W<i] ≤ δ ≤ O(S/2n + T 2/2n), at least assuming ST 2 ≤ 2n. Finally, by the framework
of [CGLQ20, AGL22], this implies the same bound (up to a multiplicative factor of 2) on the
advantage of finding a collision for any (S, T )-attacker.

3 Preliminaries

We let N = {1, 2, 3, . . .} denote the natural numbers. The set of all functions with domain D and
range R is denoted by Fcs(D,R). We let ∗ denote a wildcard element. For example (∗, z) ∈ L is
true if there is an ordered pair in L where z is the second element (the type of the wildcard element
shall be clear from the context). For a random variable X we use E [X] to denote its expected value.
We use x←$D to denote sampling x uniformly sampling from the elements of D. All logarithms
in this paper are for base 2 unless otherwise specified.

For a bit-string s, we use |s| to denote the number of bits in s. For two strings s1, s2, we use
s1‖s2 to denote the concatenation of two strings. We use standard regular expression notation
where s∗ denotes 0 or more copies of s, s+ denotes one or more copies of s, and sk denotes k copies
of s. Similarly, for a set S, we use S∗, S+, and Sk to represent 0 or more, 1 or more, of k elements
takes from a set S. In particular, we use {0, 1}∗ to represent any arbitrary string of bits. We use
the notation {0, 1}≤k to represent a string of length at most k.

Chernoff bound. We state a Chernoff bound which we use in the technical part of the paper.

Proposition 3.1. Let n ∈ N. Let X1, X2, . . . , Xn be independent 0-1 random variables. Let
X =

∑n
i=1Xi. Let µ′ be such that E [X] ≤ µ′. Then we have that

Pr
[
X ≥ (1 + δ)µ′

]
≤ e−δµ′/3 .
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Game Gai-cr
gh (A = (A1,A2))

1. h←$ Fcs({0, 1}a, {0, 1}n)

2. σ←$A1(h)

3. key←$ {0, 1}κ

4. (msg,msg′)←$Ah2 (σ, key)

5. Return true if:

(a) msg 6= msg′, and

(b) gh(key,msg) =
gh(key,msg′)

6. Else, return false

Figure 7: The collision resistance game Gai-cr
gh

in AI-ROM for a function gh based on a random

oracle h : {0, 1}a → {0, 1}n. The construction gh has a parameter κ associated with it, where κ is
the bit length of key used in g.

Notice that this version is somewhat non-standard as it even works when we know only an
upper bound on the expectation (usually, in standard formulations of Chernoff bound, we need to
know the expectation exactly). For the sake of completeness we include a proof of this Chernoff
bound in Appendix B.

Auxiliary-input Random Oracle Model (AI-ROM). The auxiliary-input random oracle
model, introduced by Unruh [Unr07], captures the power of non-uniform adversaries against ran-
dom oracles. An attacker A = (A1,A2) in this model is formalized as a two stage adversary. In its
first stage, which is referred to as the preprocessing phase, A1 has unbounded access to the random
oracle h, and outputs any arbitrary S-bit advice string or auxiliary input σ. In the second stage,
referred to as the online phase, gets σ as input, A2 can make at most T queries to its oracle h. Its
aim is to accomplish some task involving h, e.g. find a collision in a construction based on h. We
refer to such an adversary A = (A1,A2) as an (S, T )-attacker.

Collision resistance of gh in AI-ROM. We next formalize the keyed-collision resistance of an
iterated hash function construction g relative to a hash function h : {0, 1}a → {0, 1}n in the AI-
ROM. The construction g has a parameter κ associated with it, where κ is the bit length of key used
in g. It first samples a random function h : {0, 1}a → {0, 1}n. The adversary A1 gets unbounded
access to h, and it outputs an advice string σ. At this time, A2 is given the auxiliary input σ, a
randomly sampled key from {0, 1}κ, as well as oracle access to h, and it needs to find msg 6= msg′

such that gh(key,msg) = gh(key,msg′). This game, denoted Gai-cr
gh

is formally defined in Fig. 7.

Definition 3.2 (AI-CR Advantage). The advantage of an adversary A against the collision resis-
tance of gh in the AI-ROM is

Advai-crgh (A) = Pr
[
Gai-cr
gh (A) = true

]
.

For parameters S, T ∈ N, we overload notation and denote

Advai-crgh (S, T ) = max
A

{
Advai-crgh (A)

}
,
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where the maximum is over all (S, T )-attackers.

Throughout the paper, for any (S, T )-attacker A that outputs messages msg,msg′ that causes
Gai-cr
gh

(A) to output true on a key key, we assume that A has fully queried gh(key,msg) and

gh(key,msg′). This is true without loss of generality (up to constant factors in the advantage) as if
there exists any (S, T )-attacker A that does not, you can construct an (S, T + 2`)-attacker B that
does, where gh requires at most ` invocations of h to compute either gh(key,msg) or gh(key,msg′).
As ` ≤ T , the resulting attacker will have comparable advantage up to constant factors in T . We
note that this is a standard assumption in existing related works in the AI-ROM.

On padding. The variable-input length hash functions we consider of this work all act on messages
which have been parsed into many fixed size blocks of some specified size s. We therefore need a
padding function that takes arbitrary length inputs and converts them to a sequence of fixed-size
blocks. We need to ensure that this padding function maintains certain properties like injectivity
in order to guarantee that if an adversary finds a collision on the padded versions of messages,
then it implies a collision with respect to the underlying messages as well. For the purpose of this
paper, we define the following padding function, which is a slightly simplified version of the padding
function used by the SHA family of hash functions (see [GB08, Section 8.5] for more discussion on
MD-compliant padding functions). The function pad we use takes in a message msg ∈ {0, 1}∗, an
integer s ∈ N representing the size of each block, and an integer n that stipulates that |msg| ≤ 2n.
The construction is formally defined as follows.

pad(msg, s, n):

1. Let k = s− ((|msg|+ n) mod s+ 1).

2. Interpret |msg| ∈ [2n] as an n-bit string.

3. Output (m1, . . . ,m`) ∈ ({0, 1}s)` where m1‖ . . . ‖m` = msg‖|msg|‖1‖0k.

We formalize the guarantees we use for this padding function in the following theorem.

Theorem 3.3 (Padding). Let s, n ∈ N. The function pad(msg, s, n) on messages msg ∈ {0, 1}2n
satisfies the following properties:

1. |pad(msg, s, n)| ∈ ({0, 1}s)` for ` = d(|msg|+ n+ 1)/se.

2. There is a unique decoding procedure that outputs msg given pad(msg, s, n), and outputs ⊥ on
invalid padded messages.

3. If pad(msg, s, n) = pad(msg′, s, n), then msg = msg′.

4. If |msg| < |msg′|, then pad(msg, s, n) is not a suffix of pad(msg′, s, n).

Proof. The length of a padded message follows by construction.
For the decoding process, note that to recover msg from pad(msg, s, n), you simply need to

remove the trailing 0s and preceding 1. Parse the remaining final n bits as an integer |msg| and
check that there are exactly |msg| bits leftover. If such a recovery process fails, we output ⊥ and
say that the padded message is invalid (as it corresponds to no message msg).

To see injectivity, suppose two messages msg,msg′ are padded to the same value. This means
they both end in 1‖0k for k = (|msg| + n + 1) mod s and |msg| = |msg′|. Thus, if both are valid
padded messages, they only consist of |msg| remaining bits, which are the same, implying that
msg = msg′, as required.
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Construction KMDh(key,msg):

1. (m1,m2, . . . ,m`) ←
pad(msg, s, n) where
` = d(|msg| + n + 1)/se
given by Theorem 3.3.

2. Initialize y0 = 0n, and com-
pute yi ← h(key, yi−1‖mi) for
i = 1, . . . , `.

3. Output y`.

Figure 8: The keyed Merkle-Damg̊ard construction KMDh : {0, 1}κ × {0, 1}∗ → {0, 1}n given any
underlying function h : {0, 1}κ × {0, 1}n+s → {0, 1}n, where κ is the key length, n is the output
length, and s is the message block size.

Now suppose that |msg| < |msg′| but pad(msg, s, n) is a suffix of pad(msg′, s, n). This implies
that both strings end in 1‖0k for k = (|msg| + n + 1) mod s and |msg| = |msg′|. Thus, one of the
encodings must be invalid as we assumed |msg| < |msg′|.

4 Merkle-Damg̊ard Framework with a Keyed Inner Hash

In this section, we lay out the general framework for our main results, based on the Merkle-Damg̊ard
transform using a keyed inner hash. We note that this framework has been explicitly considered
in the uniform setting in Section 8.5 of the lecture notes of Goldwasser and Bellare [GB08].6 We
extend this framework to the preprocessing setting, modeled by the AI-ROM of Unruh [Unr07],
noting that the high level ideas are similar.

For a key length κ, output length n, and message block size s, we assume an underlying primitive
h : {0, 1}κ×{0, 1}n+s → {0, 1}n. In other words, viewing the primitive h as a function from {0, 1}a
to {0, 1}n, this implies that a = κ+ n+ s.

Given such a primitive h, we define the following keyed Merkle-Damg̊ard hash function KMDh : {0, 1}κ×
{0, 1}∗ → {0, 1}n. On input key key ∈ {0, 1}κ and message msg ∈ {0, 1}∗ of length at most 2n, the
function KMDh first pads the message to split it into ` = d(b + n + 1)/se message blocks of size
s as in Theorem 3.3. It then essentially computes the Merkle-Damg̊ard hash function using the
underlying hash function h, except that the key key is inserted into every invocation of h. This is
formalized in Figure 8.

Since the key key is included in every call to the underlying primitive h, it follows that any
(S, T )-attacker that finds a collision in KMDh with respect to a key key also finds a collision in h
with respect to key. This is formalized via a reduction, which gives the following theorem. Again,
we note that the following theorem very closely follows the reduction given in [GB08, Section 8.5],
but we give the full details in the AI-ROM for completeness.

Theorem 4.1. Let κ, n, s ∈ N. Let h : {0, 1}κ × {0, 1}n+s → {0, 1}n be any function, and let
KMDh : {0, 1}κ × {0, 1}∗ → {0, 1}n. Then, for every S, T ∈ N, it holds that

Advai-cr
KMDh

(S, T ) ≤ Advai-crh (S, T ).

6The existence of this variant of the Merkle-Damg̊ard transform has gone completely unnoticed in recent works
studying non-uniform security of this transformation [CDGS18, ACDW20, GK22, AGL22].
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Proof. Let A = (A1,A2) be any (S, T )-attacker against the collision resistance of the construction
KMDh. Recall that we assume for simplicity that if A2 outputs a successful collision msgA 6= msg′A
such that KMDh(key,msgA) = KMDh(key,msg′A), then A2 queried all the necessary values to fully
compute each of these functions. We construct an (S, T )-attacker B = (B1,B2) against the collision
resistance of h as follows.

In the preprocessing phase, B1(h) simply computes σ ← A1(h) and outputs σ where |σ| ≤
S. In the online phase, Bh2 (σ, key) is given a random key key ← {0, 1}κ that it needs to find a
collision for. B2 computes (msgA,msg′A) ← Ah2(σ, key), where it uses its own query access to the
function h to answer queries that A2 makes to h. B2 sets (m1, . . . ,m`) ← pad(msgA, s, n) and
(m′1, . . . ,m

′
`′)← pad(msg′A, s, n), where ` = d(|msgA|+ n+ 1)/se and `′ = d(|msg′A|+ n+ 1)/se. It

initializes y0 = y′0 = 0n as in the construction of KMDh. For i = 1, . . . , `, it looks for the queries
yi ← h(key, yi−1‖mi), and for j = 1, . . . , `′, it looks for the queries y′j ← h(key, y′j−1‖m′j) made by
A2 (which must exist if A2 succeeds in outputting a collision by assumption). Let i?, j? be the
minimal i, j > 0 such that yi = y′j but yi−1‖mi 6= y′j−1‖m′j−1. If such an i?, j? exists, B2 outputs
(msg,msg′) where msg = yi?−1‖mi? and msg′ = y′j?−1‖m′j? . Otherwise, B2 aborts and outputs ⊥.

It remains to analyze the complexity and success probability of B. First, as B simply runs A
in the preprocessing and online phases, it follows that if A is an (S, T )-attacker, then so is B.

For the success probability, we claim that whenever A succeeds, then B also succeeds. To see
this, first observe that y` = y′`′ by assumption. If y`−1‖m`−1 6= y′`′−1‖m′`′−1, that implies that such
an i?, j? exist leading to a valid collision, and we are done. Otherwise, we have that y`−1 = y′`′−1.
Assume without loss of generality that `′ ≥ ` and let `′ = ` + i for i ≥ 0. Peeling back message
blocks one at a time, B will either find a collision in h relative to key, or we will have two sequences
of identical message blocks (m1, . . . ,m`) and (m′i+1, . . . ,m

′
i+`). We proceed to show that if B does

not find a collision, then A must have not actually succeeded in finding a collision.
First, consider the case where `′ = ` so i = 0. By injectivity of pad of Theorem 3.3, this

implies that msgA = msg′A, so A in fact did not succeed at finding a valid collision. Next, consider
the case where `′ > ` so i > 0. Theorem 3.3 guarantees that pad(msgA, s, n) is not a suffix of
pad(msg′A, s, n), so one of the padded messages must be invalid.

Thus, whenever A succeeds, B will also succeed, so it follows that

Advai-cr
KMDh

(S, T ) ≤ Advai-crh (S, T ),

as required.

Next, we recall that if h is a keyed function modeled as a random oracle (in the AI-ROM of
Unruh [Unr07]), Dodis, Guo, and Katz [DGK17] give the following bound on the success probability
that any (S, T )-attacker can find a collision in h with respect to a random key.

Theorem 4.2 ([DGK17]). Let h : {0, 1}κ×{0, 1}b → {0, 1}n be modeled as a random oracle in the
AI-ROM. Then, for any S, T ∈ N,

Advai-crh (S, T ) ≤ 2S + 2κ

2κ
+

50T 2

2n
.

Combining Theorems 4.1 and 4.2, we get the following result.

Theorem 4.3. Let a, κ, n ∈ N be such that a > κ + n. Let h : {0, 1}a → {0, 1}n be modeled as a
random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ × {0, 1}<2n → {0, 1}n such that:

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤ 2S + 2κ

2κ
+

50T 2

2n
.
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Construction FMDhb (key,msg):

1. Parse msg into ` blocks (m1,m2, . . . ,m`) each of size s where
` = db/se and m` is padded with 0s if needed.

2. Initialize y0 = key, and compute yi ← h(yi−1,mi) for i =
1, . . . , `.

3. Output y`.

Figure 9: The standard Merkle-Damg̊ard construction with fixed input message length b
FMDhb : {0, 1}n × {0, 1}b → {0, 1}n given any underlying function h : {0, 1}n × {0, 1}s → {0, 1}n,
where n is the key and output length, and s is the message block size.

2. One evaluation of Hh on messages of length b requires d(b + n + 1)/se queries to h, where
s = a− κ− n.

Proof. As a > κ + n, we define s = a − κ − n > 0. Then, we view h as a function from
{0, 1}κ × {0, 1}n+s to {0, 1}n and use it in the construction KMDh of Figure 8 to get the hash
function Hh required by the theorem.

The bound on the advantage immediately follows as a corollary of Theorems 4.1 and 4.2. As
for efficiency, we note that padding a message msg ∈ {0, 1}b via Theorem 3.3 results in a message
consisting of ` blocks each of length s, where ` = d(b+n+1)/se. Each block of the message requires
a single invocation of h, so evaluating KMDh on msg requires ` = d(b + n + 1)/se queries to h as
required.

5 Instantiating the Inner Hash: Standard MD

We next consider instantiating the Merkle-Damg̊ard framework of Section 4 whenever the under-
lying hash function h : {0, 1}a → {0, 1}n has input length a such that n < a < κ+ n+ s, where κ
is the key length, n is the output length, and s is the desired message block size. Specifically, our
goal is to use such a primitive h : {0, 1}a × {0, 1}n to build a larger (fixed-length) hash function

gh : {0, 1}κ × {0, 1}n+s that can be plugged into the construction KMDg
h
.

The first approach we consider is by simply building g from h using the standard Merkle-
Damg̊ard construction where h is not keyed in every invocation. We emphasize that in the standard
version of MD, a random initialization vector/ key is still included in the first invocation of h.
However, it is not included in the subsequent invocations of h, allowing h to take in smaller inputs
overall.

Given an underlying hash function h : {0, 1}a → {0, 1}n where a > max(κ, n), we define the stan-
dard Merkle-Damg̊ard hash function with fixed input message length b FMDhb : {0, 1}κ × {0, 1}b →
{0, 1}n as follows. For sake of simplicity and due to the nature of the MD construction, we will
assume that the key length κ is equal to the output length n. Let s = a− n be the message block
size we will include in each invocation of the underlying h. On input a key key ∈ {0, 1}n and a
message msg ∈ {0, 1}b, the function FMDhb splits the message msg into ` = db/se message blocks of
size s (adding 0s to the last block if needed). It initializes y0 = key, and for i = 1, . . . , `, computes
yi as the hash of yi−1 concatenated with mi using h. The output of FMDhb is then y`. This is
formalized in Figure 9.
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If we instantiate gh := FMDhb only on input messages of size at most b = n + s as required

to instantiate it inside KMDg
h
, then we only need to worry about `-block collisions for ` = d(n +

s)/(a− n)e. Akshima, Guo, and Liu [AGL22] currently show the best known upper bound on the
advantage of finding general `-block collisions in MDh, given by the following theorem.

Theorem 5.1 ([AGL22]). Let b, n, s ∈ N such that b > s, and set ` = db/se. Let h : {0, 1}n ×
{0, 1}s → {0, 1}n be modeled as a random oracle in the AI-ROM. Then, for any S, T ∈ N,

Advai-cr
FMDhb

(S, T ) ≤


200n·(ST+T 2)

2n if ` = 2, and

34n·ST`
2n ·max

(
1, ST

2

2n

)
+ 2·T 2

2n if ` > 2.

We note that Ghoshal and Komargodski [GK22] give a bound of O(ST/2n + T 2/2n) whenever
` is a constant, which doesn’t require the assumption that ST 2 ≤ 2n. However, their bound does
not extend to super constant `.

Combined with Theorem 4.1, we get the following result.

Theorem 5.2. Let a, n, s ∈ N be such that a > n. Let ` = d(n+s)/(a−n)e. Let h : {0, 1}a → {0, 1}n
be modeled as a random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ×{0, 1}<2n → {0, 1}n
such that:

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤


200n·(ST+T 2)

2n if ` = 2, and

34n·ST`
2n ·max

(
1, ST

2

2n

)
+ 2·T 2

2n if ` > 2.

2. One evaluation of Hh on messages of length b requires ` · d(b+ n+ 1)/se queries to h.

Proof. As a > n, we parse h : {0, 1}n × {0, 1}a−n → {0, 1}n and use it to construct FMDhn+s as
defined in Figure 9. We then use FMDhn+s as the primitive underlying our MD-based hash function
of Figure 8. So, we set

Hh := KMDFMDhn+s .

The bound on the advantage follows as a corollary to Theorems 4.1 and 5.1, where the message
length required for the FMDhn+s construction is only n+ s. Furthermore, this implies that FMDhn+s
requires ` = d(n+s)/(a−n)e invocations of h per invocation of FMDhn+s, and KMDFMDhn+s requires
d(b+ n+ 1)/se invocations of FMDhn+s, giving the resulting efficiency bound.

We emphasize that because our reduction in Theorem 4.1 is generic, any improvement on the
bound of [AGL22, GK22] for finding an `-block collision in MD will immediately imply an improved
bound in Theorem 5.2.

We next state a corollary of Theorem 5.2 where we restrict to using ` = 2 invocations of h
in the underlying FMDhn+s construction. For this setting, the bound of [AGL22] above is optimal
(up to poly(n) factors), and we observe that the resulting bound matches our desired bound of
O(S/2n + T 2/2n) whenever S ≤ T .

Corollary 5.3. Let a, n, s ∈ N be such that a ≥ 3n/2 + s/2. Let h : {0, 1}a → {0, 1}n be modeled
as a random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ×{0, 1}<2n → {0, 1}n such that:
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Game Gmi-cr
g,S (B)

1. h←$ Fcs({0, 1}a, {0, 1}n)

2. key1, . . . , keyS ←$ {0, 1}κ

3. st← ⊥
4. For i = 1 to S

(a) (msg,msg′, st)←$ Bh(st, keyi)

(b) Output false if:

i. msg = msg′, or,

ii. gh(keyi,msg) 6= gh(keyi,msg′)

5. Otherwise, output true

Figure 10: The multi-instance game Gmi-cr
gh,S

, where B is a uniform adversary with oracle access to
the function h.

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤ 200n · (ST + T 2)

2n

2. One evaluation of Hh on messages of length b requires 2 · d(b+ n+ 1)/se queries to h.

Proof. Restricting to ` = 2 in Theorem 5.2, we require that ` = d(n+ s)/(a−n)e ≤ 2. This holds
as long as a ≥ 3n/2 + s/2, as required.

6 Instantiating the Inner Hash: Two-Level Merkle Tree

In this section, we instantiate the Merkle-Damg̊ard framework of Section 4, that uses a keyed
inner hash, in the setting where the underlying hash function h : {0, 1}a → {0, 1}n satisfies a ≥
max(2n+ 2, κ+ dn/2e+ 3).

The compression function in this instantiation of the MD-based framework, is a Merkle tree with
two leaves, where we additionally input the key into each leaf. We describe next the framework
introduced in [AGL22] that we use to analyze the collision-resistance of this construction in AI-
ROM.

6.1 The [AGL22] Framework

In this section, we briefly introduce the framework given by [AGL22] which is useful in analyzing
non-uniform security. An earlier version of this framework was introduced by [CGLQ20, ACDW20]
inspired by techniques used in proving constructive Chernoff bounds in [IK10] and later refined
by [ACDW20, GK22, AGL22] to upper bound Advai-crgh (S, T ). This framework involves upper
bounding the advantage of an (S, T )-attacker using the advantage of a uniform adversary for a
multi-instance game that has to find collisions for S randomly chosen values of key.

We define the “multi-instance” game Gmi-cr
gh,S

(B) in Fig. 10. We refer an adversary playing Gmi-cr
gh,S

and making at most T queries for each key as a (S, T )-MI adversary. For any (S, T )-MI adversary,

21



define

Advmi-cr
gh (B) = Pr

[
Gmi-cr
gh,S (B) = true

]
.

Further,

Advmi-cr
gh (S, T ) = max

B
Advmi-cr

gh (B) ,

where the maximum is taken over all (S, T )-MI adversaries. The following key lemma relates
Advai-crgh (S, T ) to Advmi-cr

gh (S, T ), which is proven in [AGL22].

Lemma 6.1 ([AGL22]). Fix S, T ∈ N and 0 ≤ δ ≤ 1, if Advmi-cr
gh (S, T ) ≤ δS, then Advai-crgh (S, T ) ≤

2δ.

Offline and Online queries. Since the adversary in the multi-instance game is stateful, we can
assume without loss of generality that it does not repeat queries since they can simply remember
the answers. Additionally, [AGL22] formalized the notion of “offline” and “online” queries during a
particular instance of the game. When running the adversary on keyi, the queries that were made
while the adversary was run on key1, . . . , keyi−1 are collectively known as the “offline” queries, and
the queries made while running on keyi are “online queries”.

6.2 Two-Level Merkle Tree

In this section, we present our construction of a keyed Merkle tree and analyze its collision resistance
in the AI-ROM using the framework in the previous section. Specifically, given an underlying hash
function h : {0, 1}a → {0, 1}n where a ≥ max(2n + 2, κ + dn/2e + 3), we define a keyed, 2-level
Merkle tree 2MThb for message length b ≤ 2a− 2κ− 4.

Before we define 2MThb , we introduce notation that allows use to “domain-separate” h into
three separate functions. Given a fixed hash function h : {0, 1}a → {0, 1}n, we define three domain-
separated functions h1, h2, h3 : {0, 1}a−2 → {0, 1}n, where hi(x) outputs h(̂i‖x) where î ∈ {0, 1}2 is
the 2-bit binary representation of i. Moreover, we refer to a query h(̂i‖∗) as a query to the function
hi (which is also clearly a query to h).

To construct 2MThb : {0, 1}κ × {0, 1}b → {0, 1}n, we use h1 and h2 above to process the two
leaves of the depth-2 Merkle tree, where we include key ∈ {0, 1}κ in each leaf. We then feed those
outputs as input to h3 to get the output of 2MThb . This construction is formalized in Figure 11.

Our main result of this section is the following theorem, which bounds the probability that any
(S, T )-attacker finds a collision in 2MThb .

Theorem 6.2. Let a, κ, n ∈ N be such that a ≥ max(κ+dn/2e+3, 2n+2). Let h : {0, 1}a → {0, 1}n
be modeled as a random oracle in the AI-ROM. Then, for s = 2a − 2κ − n − 4, the construction
2MThn+s : {0, 1}κ × {0, 1}n+s → {0, 1}n of Figure 11 satisfies the following.

• For any S, T ∈ N,

Advai-crgh (S, T ) ≤
(
S

2κ
·
(
14n+ 42nγ + 42nγ2

)
+
T 2

2n
·
(

2 +
2γ

T
+

2

T 2

))
,

where γ = ST 2/2n.

We prove this theorem using the framework described in Section 6.1. So, by Lemma 6.1, it
suffices to prove the following lemma which bounds the advantage of an (S, T )-MI adversary.
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2MThb (key,msg)

1. Parse msg ∈ {0, 1}2a−2κ−4 as
msgL‖msgR where msgL,msgR ∈
{0, 1}a−κ−2.

2. Compute yL ← h1(key‖msgL).

3. Compute yR ← h2(key‖msgR).

4. Output z ← h3(yL‖yR).

Figure 11: The two-level, keyed Merkle tree construction 2MThb : {0, 1}κ × {0, 1}b → {0, 1}n
with fixed input message length b given any underlying function h : {0, 1}a → {0, 1}n, where
a ≥ max(2n+ 2, κ+ 3) and b ≤ 2a− 2κ− 4. h1, h2, h3 are all domain-separated using the first two
bits of h to encode 1, 2, 3, respectively.

Lemma 6.3. Let S, T ∈ N. Then

Advmi-cr
gh (S, T ) ≤

(
S

2κ
·
(
7n+ 21n · γ + 21n · γ2

)
+
T 2

2n
·
(

1 +
γ

T
+

1

T 2

))S
,

where γ = ST 2/2n.

Proof. Following the techniques of [AGL22], we reduce the task of bounding Advmi-cr
gh (S, T ) to

that of bounding any T -query adversaries advantage of succeeding in iteration i given that it has
succeeded in all previous iterations. Fix any (S, T )-MI attacker A. Let Wi be the indicator random
variable that A wins on keyi in Gmi-cr

gh,S
. Define the random variable W<i := W1 ∧ . . . ∧Wi−1. We

have that

Advmi-cr
gh (A) = Pr [W1 ∧W2 ∧ . . . ∧WS ] =

S∏
i=1

Pr [Wi|W<i] .

We will prove that for every A and each i ∈ [S], Pr [W<i+1] ≤ (δS)i where

δS =
T 2

2n
+ 7n · S

2κ
+ 21n · S

2T 2

2n+κ
+
ST 3

22n
+ 21n · S

3T 4

22n+κ
+

1

2n
.

Note that δS is equal to the term in the lemma statement raised to the S power. Also, we observe
that if Pr [W<i] ≤ (δS)i, then we are done since Pr [W<i+1] ≤ Pr [W<i]. Therefore, we assume from
here on that Pr [W<i] > (δS)i.

To simplify the analysis of Pr[Wi|W<i], we define the “knowledge-gaining event” Eihit as follows.
We say that an offline query to h (via h1, h2, or h3) is a “hitting” query if its output is equal to the
output or the left/ right inputs of a prior h query (after removing the first two bits if necessary).
We define Eihit to be the event that there are more than 7n ·max(i, 3i2T 2/2n) hitting queries among
the first (i− 1) · T offline queries.
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Conditioning on this event, we upper bound Pr[Wi|W<i] for any i ∈ [S] as follows.

Pr [Wi|W<i] = Pr
[
Wi|W<i ∧ ¬Eihit

]
· Pr

[
¬Eihit|W<i

]
+ Pr

[
Wi|W<i ∧ Eihit

]
· Pr

[
Eihit|W<i

]
≤ Pr

[
Wi|W<i ∧ ¬Eihit

]
+ Pr

[
Eihit|W<i

]
≤ Pr

[
Wi|W<i ∧ ¬Eihit

]
+

Pr
[
Eihit
]

Pr [W<i]

≤ Pr
[
Wi|W<i ∧ ¬Eihit

]
+ Pr

[
Eihit
]
· (2n·i),

where the last line follows by the assumption that Pr[W<i] > (δS)i ≥ (1/2n)i. Hence, it suffices to
separately bound Pr[Eihit] and Pr[Wi|W<i ∧¬Eihit], which we do in Claims 6.4 and 6.5, respectively,
below.

Specifically, we show in Claim 6.4 that Pr
[
Eihit
]
≤ (2−n·2i), so Pr

[
Eihit
]
· (2n·i) ≤ 1/2n. Then in

Claim 6.5, we show that Pr[Wi|W<i ∧ ¬Eihit] ≤ δS − 1/2n.
It follows that for any (S, T )-MI attacker A,

Advmi-cr
gh (A) = Pr [W<S+1] =

S∏
i=1

Pr [Wi|W<i] ≤ (δS)S .

As this holds for any such A, it follows that Advmi-cr
gh (S, T ) ≤ (δS)S , as required by the lemma

statement. It remains to prove the claims.

Claim 6.4. Pr
[
Eihit
]
≤ (2n)−2i.

Proof. Let the random variable Zj be an indicator random variable for the j-th query among the

first (i−1) ·T queries being a hitting query. Define the random variable Z :=
∑(i−1)·T

j=1 Zj to denote

the total number of hitting queries. Thus, it suffices to show that Pr
[
Z ≥ 7n ·max(i, 3i2T 2/2n)

]
≤

2−2n·i.
First, note that output of each query can hit either the output of a previous query, or one of the

left/right inputs. As each new output is lazily sampled and has to match n bits of some previous
value, this implies that

E [Zj ] = Pr[Zj = 1] ≤ 3iT/2n = 3iT/2n.

Using linearity of expectation over at most iT possible offline queries, we have that

E [Z] ≤ 3i2T 2/2n.

We next give a general tail bound on Z for any upper bound µmax on E [Z]. Let δ := 7n − 1,
which is at least 1 as n ≥ 1. So, we can apply the Chernoff bound of Proposition 3.1 to get the
following tail bound on Z.

Pr [Z ≥ 7n · µmax] ≤ Pr [Z ≥ (1 + δ) · µmax]

≤ exp (−µmax · δ/3)

≤ 2−µmax·(7n/3−1/3)·log e

≤ 2−2n·µmax .

We consider two cases: (a) i ≥ 3i2T 2/2n, or (b) i < 3i2T 2/2n. In case (a), this implies that
E [Z] ≤ i = µmax, so by the above tail bound,

Pr
[
Z ≥ 7n · i | i ≥ 3i2T 2/2n

]
≤ 2−2n·i.
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In case (b), we use µmax = 3i2T 2/2n and the fact that µmax ≤ i in the tail bound above. Further-
more, i < µmax, so it follows that

Pr
[
Z ≥ 7n · (3i2T 2/2n) | i < 3i2T 2/2n

]
≤ 2−2n·i.

Combining the two cases, it holds that

Pr
[
Z ≥ 7n ·max(i, 3i2T 2/2n)

]
≤ 2−2n·i,

as required.

Claim 6.5. Pr
[
Wi|W<i ∧ ¬Eihit

]
≤ δS − 1/2n.

Proof. Suppose that the adversary A wins in game i on key keyi. We can assume without loss of
generality that the adversary makes all the queries that are required to compute a collision. We
define the queries Q1, Q2, Q3, Q

′
1, Q

′
2, Q

′
3 corresponding to a collision on keyi as follows:

1. Q1 = (1, (keyi‖x1), y1), where y1 = h1(keyi‖x1) was queried.

2. Q2 = (2, (keyi‖x2), y2), where y2 = h1(keyi‖x2) was queried.

3. Q3 = (3, (y1‖y2), z), where z = h3(y1‖y2) was queried.

4. Q′1 = (1, (keyi‖x′1), y′1) where y′1 = h1(keyi‖x′1) was queried.

5. Q′2 = (2, (keyi‖x′2), y′2), where y′2 = h1(keyi, x
′
2) was queried.

6. Q′3 = (3, (y′1‖y′2), z), where z = h3(y
′
1‖y′2) was queried.

If there are multiple such candidates of queries (Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3), we fix the candidate that

is the lexicographically smallest.
We categorize the possibilities for the queries of keyi into one of the following cases and sub-

cases for the following analysis. Recall that an offline query is one made before game i started, and
an online query is one made during game i.

1. The queries Q3, Q
′
3 are identical queries. Assume without loss of generality that the queries

Q1, Q
′
1 are different (the other symmetric possibility is that the queries Q2, Q

′
2 are different,

since otherwise if Q1, Q
′
1 are same, Q2, Q

′
2 are same, Q3, Q

′
3 are same then by definition they

cannot lead to a collision). We further have the following sub-cases.

(a) Q1, Q
′
1 are both online queries.

(b) One of Q1, Q
′
1 is offline, and the other is online.

(c) Q1, Q
′
1 are both offline.

2. Q3, Q
′
3 are different queries. We have the following sub-cases.

(a) Q3, Q
′
3 are both online queries.

(b) Q3 is offline, but Q1, Q2 are online.

(c) Q3 is offline, and one of Q1, Q2 is online, and the other is offline.

(d) Q1, Q2, Q3 are offline but Q′3 is online.
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Case Probability

1a T 2

2n

1b iT 2

2n+κ

1c 7n · i
2κ + 21n · i2T 2

2n+κ

2a T 2

2n

2b iT 3

22n

2c 7n · i2T 2

2n+κ
+ 21n · i3T 4

22n+κ

2d 7n · i2T 2

2n+κ
+ 21n · i3T 4

22n+κ

2e 7n · i
2κ + 21n · i2T 2

2n+κ

Table 2: Upper bounds on probability of the cases

(e) Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 are all offline.

First, we argue that these cases are exhaustive. If the queries Q3, Q
′
3 are identical, we can

assume without loss of generality that Q1, Q
′
1 are different queries that have the same answer. So

the three possibilities are both are online (sub-case 1a), exactly one of them is online (sub-case 1b),
and both are offline (sub-case 1c). When Q3, Q

′
3 are different, the possibility that they are both

online is captured by sub-case 2a. If one of them is offline–say Q3 without loss of generality– then
either one of Q1, Q2 is online (captured by sub-case 2b), or one of Q1, Q2 is offline and the other
online (captured by sub-case 2c), or they are both offline (this is captured by sub-case 2d since we
know Q′3 is online). Finally when Q3, Q

′
3 are both offline – if any of Q1, Q2, Q

′
1, Q

′
2 is online, this is

captured by one of the sub-cases 2b and 2c. The final possibility is Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 are all

old which is captured by sub-case 2e.
We will upper bound Pr[Wi|W<i ∧ ¬Eihit] by upper bounding the probability of each of these

cases happening. We will prove the upper bound on the probability of the cases as shown in Table 2.
As Pr

[
Wi|W<i ∧ ¬Eihit

]
is at most the maximum of the probabilities in Table 2, it follows that

Pr
[
Wi|W<i ∧ ¬Eihit

]
≤ T 2

2n
+ 7n · i

2κ
+ 21n · i

2T 2

2n+κ
+
iT 3

22n
+ 21n · i

3T 4

22n+κ
.

We proceed to prove the upper bound on the probability of each case happening one by one.

Case 1a: (Q3 = Q′3, and Q1, Q
′
1 are both online queries) We can simply upper bound the proba-

bility of this case happening by the probability of two h1 online queries producing a collision, which
is at most T 2/2n by a birthday bound.

Case 1b: (Q3 = Q′3, and exactly one of Q1, Q
′
1 are online) Assume without loss of generality that

Q1 is the offline query and Q′1 is online. Q1 must correspond to some offline h1 query that contains
keyi as a prefix. If there are k such offline queries, then one of the online queries has to hit the same
output as one of those k queries to be the Q′1 query. This implies a bound of k · T/2n probability.
But, the expected number of offline h1 queries that had keyi as a prefix is at most (i − 1) · T/2κ.
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Thus, this case happens with probability at most

(i−1)·T∑
k=0

Pr[there are k offline h1 queries prefixed by keyi] · k · T/2n

= E [number of offline h1 queries prefixed by keyi] · T/2n

≤ iT 2/2n+κ.

Case 1c: (Q3 = Q′3, and both of Q1, Q
′
1 are offline) If this case happens, there are two different

offline h1 queries on (key‖∗) such that they both produce the same answer, i.e., in particular there
is hitting query of the form h1(key‖∗). If this happens for k different keys, there are at least k
hitting queries. Since we know that there are at most 7n · max(i, 3i2T 2/2n) hitting queries, and
key is sampled uniformly at random this case happens with probability at most 7n · i/2κ + 7n ·
(3i2T 2/2n)/2κ = 7n · i/2κ + 21n · i2T 2/2κ+n.

Case 2a: (Q3 6= Q′3, and both of Q3, Q
′
3 are online) We can simply upper bound the probability

of this case happening by the probability of two h3 online queries producing a collision, which is at
most T 2/2n by a birthday bound.

Case 2b: (Q3 6= Q′3, Q3 is offline, but Q1, Q2 are online) For this case to occur, the adversary
needs to make distinct online queries Q1, Q2 whose outputs hit the input of some offline query Q3.
Since there are (i − 1) · T offline queries, and T online queries, this happens with probability at
most (i− 1) · T · T 2/22n ≤ iT 3/22n.

Case 2c: (Q3 6= Q′3, Q3 is offline, and exactly one of Q1, Q2 is online) Assume without loss of
generality that Q2, Q3 are offline and Q1 is online. We say that an offline h3 query on (x‖y) is
“associated” with keyi if either there exists an offline query h1(keyi‖∗) = x or there exists an offline
query h2(keyi‖∗) = y. Given that the event Eihit does not hold, there cannot exist a set of more
than k = 7n · max(i, 3i2T 2n/2n) distinct h1 or h2 queries that all have the same output, since
otherwise there will be k hitting queries. Hence, an h3 query can be associated with at most
7n ·max(i, 3i2T 2n/2n) distinct key values. Given that there are at most (i−1) ·T offline h3 queries,
it follows that there are at most 7n · iT ·max(i, 3i2T 2n/2n) different pairs of associated h3 queries
and key values. Therefore, for any randomly sampled key, the expected number of h3 queries it is
associated with it is at most 7n · iT ·max(i, 3i2T 2n/2n)/2κ.

For the specific keyi value sampled, if there are k h3 queries associated with keyi, then there are
at most k possible values of the output of some potential online Q1 query. Hence, the probability
of this case happening is at most

(i−1)T∑
k=0

Pr [there are k h3 queries associated with keyi] · k · (T/2n)

= T/2n · E [number of h3 queries associated with keyi]

≤ 7n · i2T 2/2n+κ + 21n · i3T 4/22n+κ

Case 2d: (Q3 6= Q′3, Q1, Q2, Q3 are offline but Q′3 is online) Suppose for the value of keyi sampled
there are k h3 queries associated with keyi as above. Then, there are at most k possible values that
some potential online Q′3 query has to hit to cause this case to happen. Thus, the analysis follows
identically to the previous case, giving a bound of 7n · i2T 2/2n+κ + 21n · i3T 4/22n+κ.

Case 2e: (Q3 6= Q′3 and Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 are all offline) We refer to a collision structure for

key as a set of offline queries of the form Q1, Q2, Q3, Q
′
1, Q

′
2, Q

′
3 corresponding to key. We claim
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that if there are k values of key with a corresponding collision structures queried, then there must
be at least k different hitting queries.

First it is easy to see that for every key that gets classified into this case, at least one out of
Q3, Q

′
3 is a hitting query because they have the same answer. It remains to show that a set of k

collision structures implies k distinct hitting queries.
To do so, we build a set of hitting queries as follows assuming there are k values of key with

queried collision structures. For every such key value in lexicographic order, do the following.

• If one of Q1, Q2, Q
′
1, Q

′
2 is a hitting query, add it to this set,

• Otherwise, Q3 or Q′3 must be a hitting query, so add it to the set.

We now claim this set has size at least k. Note that if a Q1, Q2, Q
′
1, Q

′
2 is added to the set, it

is unique since it is an h1 or h2 query that contains key, so it increases the size of the set by one.
Otherwise, a Q3 or Q′3 query is added. Assume without loss of generality this Q3 is added. Either
this increases the size of the set by one, or Q3 was already in the set. In the latter case, there
must exist some previous key ˜key for which some h3 query corresponding to Q3 was added. We
use Q̃1, Q̃2, Q̃3, Q̃

′
1, Q̃

′
2, Q̃

′
3 to denote the corresponding queries in the collision structure for ˜key. By

assumption Q3 = Q̃3 and neither of the two collision structures have a h1 or h2-type hitting query.
But this is impossible since there must exist a pair of h1 or h2 queries, containing key and ˜key, with
output contained in the input of Q3 = Q̃3, so there must be a h1 or h2-type hitting query for either
key or ˜key. Therefore, for k collision structures, there will be at least k distinct hitting queries.

Given the above claim regarding collision structures, and assuming Eihit doesn’t hold, this implies
there are at most 7n · max(i, 3i2T 2/2n) distinct key values with collision structures queried. But
this implies that a randomly sampled keyi gets classified into this case is at most

7n ·max(i, 3i2T 2/2n)/2κ = 7n · i/2κ + 21n · i2T 2/2n+κ.

This completes the proof of Lemma 6.3.

6.3 Variable-Input Length Hash from Two-Level Merkle Trees

We combine the construction of Section 6.2 with the framework of Section 4 to get a variable-input
length hash function. This construction is optimally secure as long as ST 2 ≤ 2n and requires an
underlying function h : {0, 1}a → {0, 1}n where a ≥ max(κ+ dn/2e+ 3, 2n+ 2). This results in the
following theorem.

We note if we modify values of κ, n by additive constant factors, we can get the same result as
below with only O(1) multiplicative loss in security. In this sense, we can achieve the theorem below
assuming a function h : {0, 1}2n → {0, 1}n, i.e. a = 2n so only compressing by a factor exactly two.

Theorem 6.6. Let a, κ, n ∈ N be such that a ≥ max(κ+dn/2e+3, 2n+2). Let h : {0, 1}a → {0, 1}n
be modeled as a random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ×{0, 1}<2n → {0, 1}n
such that:

1. For any S, T ∈ N,

Advai-crHh (S, T ) ≤
(
S

2κ
·
(
14n+ 42nγ + 42nγ2

)
+
T 2

2n
·
(

2 +
2γ

T
+

2

T 2

))
,

where γ = ST 2/2n.
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2. One evaluation of Hh on a message b bits long requires 3 · d(b+ n+ 1)/se queries to h where
s = 2a− 2κ− n− 4.

Proof. We define H := KMD2MThn+s where 2MThn+s is defined in Figure 11. From Theorem 4.1,
we have that Advai-crHh (S, T ) is upper bounded by Advai-cr

2MThn+s
(S, T ). Therefore, the bound on the

advantage of any (S, T )-attacker on Hh follows from Theorem 6.2.
We have that 2MThn+s{0, 1}κ × {0, 1}n+s → {0, 1}n, for s = 2a− 2κ− n− 4. A b bit message,

after padding, will result in d(b+n+ 1)/se message blocks that are fed into 2MThn+s. For each call
of 2MThn+s, we need 3 calls to h, which implies the bound on the efficiency of Hh.
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A Merkle Tree Framework with a Keyed Inner Hash

In this section, we give another framework similar to the MD-based framework in Section 5. This
framework is a keyed version of the Merkle tree construction where the key is used in every invo-
cation of the inner hash function, not just at the leaves.

For a key length κ, output length n, and message block size s (where s ≥ 2n), we assume an
underlying primitive h : {0, 1}κ × {0, 1}s+1 → {0, 1}n. Given h, we define the keyed Merkle tree
hash function KMTh : {0, 1}κ × {0, 1}∗ → {0, 1}n. On input key key ∈ {0, 1}κ, and message msg.
The function KMTh first pads the message to split it into ` = d(b+ 1)/se message blocks of size s
using padding pad′ which is defined as follows.
pad′(msg, s):

1. Let k = s− ((|msg| mod s) + 1).

2. Output (m1, . . . ,m`) ∈ ({0, 1}s)` where m1‖ . . . ‖m` = msg‖1‖0k.

Similar to Theorem 3.3 we can prove the following theorem for pad′.

Theorem A.1. Let s ∈ N. The function pad′(msg, s) on messages msg ∈ {0, 1}∗ satisfies the
following properties:

1. |pad′(msg, s)| ∈ ({0, 1}s)` for ` = d(|msg|+ 1)/se.

2. There is a unique decoding procedure that outputs msg given pad′(msg, s), and outputs ⊥ on
invalid padded messages.

Note that the second point implies that pad′ is injective. We omit the proof of this theorem
because it follows from the proof of Theorem 3.3.

After padding the message msg to get message blocks (m1, . . . ,m`), the construction essentially
computes a standard Merkle tree with message blocks at the leaves, using the hash function h(key, ·)
as the compression function. For technical reasons, we additionally use a single bit appended to
key to indicate whether a block in the Merkle tree corresponds to a leaf (specified by a 0) or an
interior node (specified by a 1). This is done to avoid trivial collisions that can be obtained by just
outputting a subtree of a given tree (say the root and its two children). To deal with trees with `
leaves where ` is not a power of 2, we simply “push” a value up the levels of the tree until it needs
to be merged. This is formalized in Figure 11. We illustrate an example of how the Merkle tree is
built for ` = 7 in Fig. 12. Since the key key is included in every call to the underlying primitive h,
it follows that any (S, T )-attacker that finds a collision in KMTh with respect to a key key also finds
a collision in h with respect to key. This is formalized via a reduction, which gives the following
theorem.

Theorem A.2. Let κ, n, s ∈ N such that s ≥ 2n. Let h : {0, 1}κ × {0, 1}s+1 → {0, 1}n be any
function, and let KMTh : {0, 1}κ × {0, 1}∗ → {0, 1}n as shown in Figure 13. Then, for every
S, T ∈ N, it holds that

Advai-cr
KMTh

(S, T ) ≤ Advai-crh (S, T ).

Proof. Let A = (A1,A2) be any (S, T )-attacker against the collision resistance of the construction
KMTh. Recall that we assume for simplicity that if A2 outputs a successful collision msgA 6= msg′A
such that KMDh(key,msgA) = KMDh(key,msg′A), then A2 queried all the necessary values to fully
compute each of these functions. We construct an (S, T )-attacker B = (B1,B2) against the collision
resistance of h as follows.
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h

h h

h h h

h h hh h h h

I

𝗄𝖾𝗒∥0 m1 m2 m3 m4 m5 m6 m7

𝗄𝖾𝗒∥1  mi ∈ {0,1}a−κ−1

𝗄𝖾𝗒 ∈ {0,1}κ

y1,0 y2,0 y3,0 y4,0 y5,0 y6,0 y7,0

y1,1 y2,1 y3,1 y4,1

y1,2 y2,2

y1,3 = 𝖪𝖬𝖳h(𝗄𝖾𝗒, (m1, m2, …, m7))

Figure 12: The construction KMTh given a hash function h : {0, 1}a → {0, 1}n for a ≥ max(κ +
2, 2n+ 1). Let s = a− κ− 1. The inputs to h are padded with appropriate number of zeros if the
size of the input is less than κ+ s+ 1 bits. I is the identity function that is used to “push” a value
up the tree until it needs to be merged.

In the preprocessing phase, B1(h) simply computes σ ← A1(h) and outputs σ where |σ| ≤ S.
In the online phase, Bh2 (σ, key) is given a random key key← {0, 1}κ that it needs to find a collision
for. B2 computes (msgA,msg′A)← Ah2(σ, key), where it uses its own query access to the function h
to answer queries that A2 makes to h. B2 sets (m1, . . . ,m`)← pad′(msgA, s) and (m′1, . . . ,m

′
`′)←

pad′(msg′A, s), where ` = d(|msgA| + 1)/se and `′ = d(|msg′A| + 1)/se. Assume without loss of
generality that `′ ≥ `.
B looks at the queries made by A2 and recovers the corresponding Merkle trees with leaves

(m1, . . . ,m`) and (m′1, . . . ,m
′
`′) (A2 must have made the queries which are required to compute

these trees since A2 succeeds in outputting a collision by assumption). It looks for any collisions in
h among these queries in the Merkle tree. If it finds one, it outputs the collision, otherwise aborts
and outputs ⊥.

It remains to analyze the complexity and success probability of B. First, as B simply runs A
in the preprocessing and online phases and makes no additional queries to h, it follows that if A is
an (S, T )-attacker, then so is B.

To analyze the success probability of B, we claim that whenever A succeeds, then B also
succeeds. To help in our analysis, we define a recursive procedure CollisionSearch (in Figure 14)
that takes as input two different nodes in a Merkle tree with the same value (i.e., same inputs and
output), treated as the roots, and outputs true if there is a collision and false otherwise.

First, we claim that CollisionSearch outputs true only if it finds a collision. This is because it
is always called on two roots which have the same value and returns true only if the two children
of the roots have different values (in which case it has found a collision because the roots have
the same value), or if one root is a leaf and the other is not (in this case it has to be the collision
because the leaves have input prefixed by key‖0 while other nodes have inputs prefixed by key‖1).

As a result, it remains to argue that whenever CollisionSearch returns false, A fails to find a
collision. If ` = `′, then the two Merkle trees will have the same structure, so CollisionSearch
will return false only if all the leaves of the two trees are same. This means that (m1, . . . ,m`) =
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Construction KMTh(key,msg):

1. (m1,m2, . . . ,m`)← pad′(msg, s) where ` = d(|msg|+ 1)/se.
2. Initialize yi,0 ← h(key‖0,mi) for i = 1, . . . , `.

3. `′ ← `.

4. For j = 1 to dlog `e.

(a) Compute yi,j = h(key‖1, y2i−1,j−1‖y2i,j−1‖0s−2n) for i = 1, . . . , b`′/2c.
(b) If `′ mod 2 = 1 then y(`′+1)/2,j = y`′,j−1, `′ ← (`′ + 1)/2.

(c) Else `′ ← `′/2.

5. Output y1,dlog `e.

Figure 13: The Merkle tree construction with a keyed inner hash.

(m′1, . . . ,m
′
`), so msg = msg′ by injectivity of pad′. Therefore, A did not find a valid collision, as

required. If one of ` or `′ is 1 and CollisionSearch returns false, then it must be that ` = `′ = 1,
meaning A has failed to find a collision as above. Finally, consider the case where `′ > ` ≥ 2. Let
`L, and `R be the number of leaves in the left and right subtrees of the tree with ` leaves, i.e.,
`L + `R = `. Similarly define `′L, `

′
R so that `′L + `′R = `′. Then it must be the case that either

`L 6= `′L or `R 6= `′R at every step. It follows inductively that at every step of the recursion, either
the left or the right subtree will have a different number of leaves, so eventually, CollisionSearch will
arrive at a case when one subtree has one leaf and the other has more than one, returning true, in
contradiction.

Thus, whenever A succeeds, B will also succeed. Therefore, it follows that

Advai-cr
KMTh

(S, T ) ≤ Advai-crh (S, T ),

as required.

We combine the construction of Section 6.2 with the framework presented above to get a
variable-input length hash function. This construction is optimally secure as long as ST 2 ≤ 2n

and requires an underlying function h : {0, 1}a → {0, 1}n where a ≥ max(κ+ dn/2e+ 3, 2n+ 2, κ+
3dn/2e − 1). This results in the following theorem.

We note if we modify values of κ, n by additive constant factors, we can get the same result as
below with only O(1) multiplicative loss in security. In this sense, we can achieve the theorem below
assuming a function h : {0, 1}2n → {0, 1}n, i.e. a = 2n so only compressing by a factor exactly two.

Theorem A.3. Let a, κ, n ∈ N be such that a ≥ max(κ+3dn/2e+2, 2n+2). Let h : {0, 1}a → {0, 1}n
be modeled as a random oracle in the AI-ROM. Then, there is an Hh : {0, 1}κ × {0, 1}∗ → {0, 1}n
such that:

1. For any S, T ∈ N, letting γ = ST 2/2n, it holds that

Advai-crHh (S, T ) ≤
(
S

2κ
(
14n+ 42nγ + 42nγ2

)
+
T 2

2n
·
(

2 +
2γ

T
+

2

T 2

))
.

2. One evaluation of Hh on a message b bits long requires at most 6 · d(b+ 1)/se − 3 queries to
h where s = 2a− 2κ− n− 4.
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Procedure CollisionSearch(root1, root2):

1. Let the number of leaves of the tree rooted at root1 be `, and the number of leaves of the
tree rooted at root2 be `′.

2. If ` = `′ = 1, then return false.

3. If ` = 1, `′ > 1 or `′ = 1, ` > 1, then return true.

4. Find the left and the right child of root1, (going down the I nodes if required), call these
root1,L and root1,R. Find the left and the right child of root2, (going down the I nodes if
required), call these root2,L and root2,R.

5. If the value at root1,L and root2,L are different or if the value at root1,R and root2,R are
different return true.

6. Make a recursive call to CollisionSearch(root1,L, root2,L), and return true if it returns true.

7. Make a recursive call to CollisionSearch(root1,R, root2,R), and return true if it returns true.

8. Otherwise return false.

Figure 14: Recursive collision search procedure used in the proof of Theorem A.2

Proof. Let s = 2a−2κ−n−4. We define H := KMT2MThn+s where 2MThn+s is defined in Figure 11.
Since we have that a ≥ κ + 3dn/2e + 2, it implies s = 2a − 2κ − n − 4 ≥ 2n. Therefore, from
Theorem A.3, we have that Advai-crHh (S, T ) is upper bounded by Advai-cr

2MThn+s
(S, T ). Therefore, the

bound on the advantage of any (S, T )-attacker on Hh follows from Theorem 6.2 since a ≥ max(κ+
3dn/2e+ 2, 2n+ 2) ≥ max(κ+ dn/2e+ 3, 2n+ 2).

We have that 2MThn+s{0, 1}κ × {0, 1}n+s → {0, 1}n, for s = 2a− 2κ− n− 4. A b bit message,
after padding, will result in d(b+1)/se message blocks that are fed into 2MThn+s. To build a Merkle
tree on d(b + 1)/se blocks we need 2d(b + 1)/se calls to 2MThn+s, and for each call of 2MThn+s, we
need 3 calls to h, which implies the bound on the efficiency of Hh.

B Proof of Proposition 3.1

For the sake of completeness we include a proof from [Har15] of the Chernoff bound in Proposi-
tion 3.1.

Proof. [Proposition 3.1]
We state the two following claims that we use in our proof.

Claim B.1. For all t ≥ 0, 0 ≤ x ≤ 1

etx ≤ 1 + (et − 1)x

Claim B.2. Let δ ≥ 1. We have that

eδ

(1 + δ)1+δ
≤ e−δ/3 .
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Let t = ln(1 + δ), where ln denotes the natural logarithm. We have that

Pr
[
X ≥ (1 + δ)µ′

]
≤ Pr

[
etX ≥ et(1+δ)µ′

]
≤ E

[
etX
]

et(1+δ)µ′
=

E
[∏n

i=1 e
tXi
]

et(1+δ)µ′
=

∏n
i=1 E

[
etXi

]
et(1+δ)µ′

.

The first inequality above follows since ex is an increasing function and t ≥ 0. The second inequality
follows from Markov’s inequality. The last step follows since Xis are independent. Notice that using
the fact that 0 ≤ E [Xi] ≤ 1 and Claim B.1 we have that

E
[
etXi

]
≤ E

[
1 + (et − 1)Xi

]
= 1 + (et − 1)E [Xi] ≤ e(e

t−1)E[Xi] .

The second step above follows from linearity of expectation, and the last step follows since 1+x ≤ ex.
Plugging in this upper bound for E

[
etXi

]
, we get that

Pr
[
X ≥ (1 + δ)µ′

]
≤
∏n
i=1 e

(et−1)E[Xi]

et(1+δ)µ′
= e(e

t−1)
∑n
i=1 E[Xi]−t(1+δ)µ′

≤ e(et−1)µ′−t(1+δ)µ′ = eδµ
′−(1+δ) ln(1+δ)µ′ =

(
eδ

(1 + δ)1+δ

)µ′
Above, we plugged in the value of t. Finally, using Claim B.2 we have that

Pr
[
X ≥ (1 + δ)µ′

]
≤
(
e−δ/3

)µ′
= e−

δµ′
3 .

We finally prove the two claims that we used above.

Proof. [Claim B.1] Let f(x) = 1 + (et − 1)x− etx. We have that f(0) = 0 = f(1). The derivative
of f(x) with respect to x is f ′(x) = et − 1 − tetx. It is clear that the derivative of f(x) changes
sign only at one point between 0 and 1, and it is positive at x = 0 since et ≥ 1 + t. Because f(x)
is continous and differentiable, its derivative is positive at x = 0, its derivative changes sign only
once between 0 and 1, and f(0) = f(1) = 0, we have that f(x) ≥ 0 for all 0 ≤ x ≤ 1. Therefore for
all 0 ≤ x ≤ 1,

etx ≤ 1 + (et − 1)x

Proof. [Claim B.2] Consider the functions f(x) = (1 + x) ln(1 + x) − x (where ln denotes the
natural logarithm), g(x) = x/3. We have that f(1) = 2 ln 2 − 1 > 1/3 = g(1). The derivative of
f(x) with respect to x is f ′(x) = ln(1 + x), which is at least ln 2 > 1/3 for x ≥ 1 because ln is an
increasing function. The derivative of g(x) with respect to x is g′(x) = 1/3.

Therefore f(x) ≥ g(x) for all x ≥ 1. Since ex is an increasing function and δ ≥ 1, we have that

e−f(δ) ≤ e−g(δ) .

It follows that
eδ

(1 + δ)1+δ
≤ e−δ/3 .
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