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Abstract. Herein, we propose an anonymous broadcast authentication
(ABA) scheme to simultaneously control 109 devices practically. We find
a barrier to construct an ABA working with a larger number of devices.
In a nutshell, there is a trilemma between (i) security, (ii) ciphertext
length, and (iii) freedom in the target devices selection. For practical
use, we propose ABAs with a ciphertext size of O(logN) where N is the
number of target devices while we impose a certain restriction on (iii).
We provide an ABA template and instantiate it into specific schemes
from the discrete logarithm problem (DLP) or the learning with errors
(LWE) problem.

Keywords: Anonymous broadcast authentication · IoT Network · Dis-
crete logarithm problem · Learning with errors problem

1 Introduction

The ABA [1] is a one-way communication between a central server and multiple
resource-limited devices. The server broadcasts a command to control a subset of
devices. The following conditions (1)(2) are the minimum desired specifications
for correctness. (1) A message from the server includes information on the IDs of
the target devices and control commands. Each device that receives the message
either executes the command if the device is included in the target devices or
does nothing if the device is not included in the target devices. (2) The received
message has integrity and authenticity.

Also, it should satisfy two additional security notions (3)(4). (3) Unforgeabil-
ity: In a situation where secret information of some devices are leaked, an entity
with information cannot forge a legitimate ciphertext. (4) Anonymity: Each de-
vice can detect whether or not it is a target, but cannot determine whether
another device is a target.

An application that we envision is sending emergency signals to reboot or
shut down malware-infected devices. Thus, assume that the space of commands
is small (a few bits) to send reboot, shutdown, or other optional flags. We expect
the number of devices to be about 106 – 109 to control all the devices within
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a wireless area (several square kilometers) simultaneously in the 5G IoT or the
network beyond it. The entire process of command generation in a central server,
communication, and authentication in target devices must also be completed
within a few seconds for a fast response to an emergency.

A barrier on the length of ciphertexts has been known. The atomic model of
private broadcasting encryption (pBE) by Kiaias-Samari [2] and its adaptation
to ABA by Watanabe et al. [3] provide useful tool for discussing the problem. In
addition to the above application, ABA is technically interesting since it is an
authentication-oriented analog of anonymous BE (ANOBE). They proved that
if a protocol has anonymity the ciphertext length must be Ω(n), where n is the
number of target or joined devices; it depends on the security requirement of
anonymity. Aside from the limitation on the atomic model, a similar bound can
be considered from Shannon’s coding theorem because the condition (1) requires
that the amount of information contained in the ciphertext should exceed N
under the assumption that the target device set is randomly selected from a
family of any subset of N devices.

These observations deduce the following trilemma: In ABA, the three condi-
tions of (i) security (anonymity), (ii) ciphertext length and (iii) freedom in the
target devices selection are not simultaneously satisfied. For practical use, we
propose ABAs with a ciphertext size of O(logN) while we impose a certain re-
striction on (iii). Concretely, our ABA protocol has the device IDs represented by
a vector (id1, . . . , idK) where idj ∈ [Nj ] := {1, 2, . . . , Nj} and ciphertext length
O(
∑

Nj). It can control
∏

Nj devices, which is an exponential number to the
ciphertext length.

We first constructed an ABA template and provided instantiations from the
DLP or the LWE problem. The command ciphertext for controlling 109 devices
with a 128-bit security had lengths of 10 KBytes and 1MBytes in the elliptic
curve DLP and lattice situations, respectively.

1.1 Related Work

Atomic model: This model assumes that the server broadcasts a sequence
ct1, . . . , ctℓ of the ciphertexts of the control command. Each device j then tries
to decrypt each cti using its secret key dkj .

The lengths of the command ciphertext in this model is well-studied in the
private key broadcast encryption (prBE) [2] and ABA [3]. It has been shown
that ℓ ≥ N if an ABA controlling N devices has anonymity. If it has the weak-
anonymity instead of the anonymity the lower bound can be relaxed to ℓ ≥ |S|
where S ⊂ [N ] is the set of target devices. The bit lengths of total ciphertexts
are bounded by Ω(N · λ) and Ω(|S| · λ) where λ is the security parameter. In
both cases, concrete constructions achieving the bounds are given by [1, 3].

Broadcast encryption: ABA is considerably similar to broadcast encryption
(BE). At the formal definition level, the notion of ABA is equivalent to pBE
in [4, Def. 3.1]. Conversely, security notions are slightly different. Their gap is
mainly from the application.
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The anonymity notion in the BE framework was proposed by Barth et al. [5]
They assumed that the condition |S0| = |S1|, corresponds to the weak anonymity
in the ABA framework. They also assumed that the adversary can get all the
secret keys in S0 ∩ S1. This is in contrast to the setting in the ABA anonymity
game, in which the adversary can select id of which one wants the secret (ver-
ification) keys. After the work, an efficient scheme is given by Benoît et al. [6]
with the notion of ANOBE. Fazio et al. [7] gives a log-order ciphertext scheme
within the public key BE.

Following the existing works, we mention two issues when we import the tech-
niques in BE to our ABA. First, constructing a practical scheme with short, i.e.,
o(N) [bit] ciphertext with keeping reasonable anonymity has been considered as
one of the challenging problems in BE and its variants. It is not trivial to import
an existing scheme and give a proof of ABA anonymity. On the other hand, a
transformation technique to add the unforgeability can be used as explained in
the following paragraph.

Interpreting the authentication result as the transmission of an 1 bit message,
the framework of ABA can be considered as a prBE with additional function-
alities. Our scheme in this paper can be considered as a new result of short
ciphertext prBE, besides the context of ABA.

Transformation to add unforgeability: A similarity between the unforge-
ability of ABA and the CCA1 security of prBE should be considered. Although
their goals are different (i.e., forge and distinguish), the abilities of the adver-
saries in security games are similar. In the CCA1 game of pkBE, an adversary
can have a polynomial number of accesses to corrupt, encrypt, and decrypt or-
acles. However, an adversary can access the corrupt and encryption oracles in
the t-unforgeability game of ABA, where access to the corrupt oracle is limited
within t times.

Therefore, transformation techniques from a weak-security BE to strong-
security BE can be used to construct an ABA with unforgeability. The simplest
form of this conversion should be the simple addition of a signature to the
broadcasting ciphertext as in [8].

Rough estimation of ciphertext size: Consider a situation in which a stan-
dard encryption and a signature schemes is used as base gadgets to construct
an atomic type ABA. For example, a standard ElGamal encryption requires a
kilobyte ciphertext, while a standard (resp. structured) lattice-based encryption
needs tens of kilobytes (resp. a half of kilobyte) length ciphertexts; FrodoKEM
[9] and FALCON [10] provide good examples of sizes after optimization. This
implies that a system for controlling N = 106 devices requires ciphertexts for
sending a ciphertext is presented in gigabytes, which is too large to rapidly pro-
cess on low-resource devices. Thus, an ABA with short ciphertexts is necessary
to control millions of devices.



4 Y. Aono et al.

1.2 Our Contributions

Design rationale: We first explain our construction strategy from the view-
point of lower bound arguments. Let us organize the considered conditions and
the linear lower bound of the ciphertext length. We used At and An to represent
ABA with an atomic model and anonymity, respectively. LB represents ABA
with ciphertexts longer than N or |S| in average over the selection of target
sets and messages. Then, the result of Kobayashi et al. [3] can then be roughly
described as [At AND An]⇒ LB .

In addition, we denote F as the freedom in the choice of target devices, i.e.,
any S ⊂ [N ] can be selected as a target device, and assume that it is randomly
chosen from 2[N ]. According to Shannon’s coding theorem, the ciphertext must
be longer than N bits in average because the broadcasting ciphertext entropy
exceeds N bits. We remark that talking a variable ciphertext length depending
on S is a possible way to reduce the communication cost in many transmissions
because the distribution of S should be low entropy in many practical situations.
However, the length of ciphertext should leak information on S, and thus we
conclude the variable ciphertext length is not a better strategy to keep the
security.

Thus, we have F ⇒ LB and the following relation

¬LB ⇒ ¬F AND [¬At OR ¬An].

An ABA with short ciphertexts must restrict conditions among F , At and
An. We emphasize our construction is in an edge of the conditions. It satisfies
¬F , ¬At , and a nearly anonymity.

We also explain why we restrict the strength of anonymity by introducing a
new notion of anonymity. The single anonymity (Appendix A) which we denote

SA, is a notion about information leakage on id′
?
∈ S from other patterns {id

?
∈

S}. This notion is used to discuss the situation where the freedom in the choice
of target devices are limited. We proved that ¬F ⇒ ¬SA that derives SA ⇒
F ⇒ LB . Thus, any short ciphertext ABA inherently lacks the single anonymity,
and this is the reason that we do not investigate the anonymity for our ABA in
Section 5.2.

Construction of ABA with logarithmic-order We first considered a Vernam-
styled multirecipient encryption (MRE) as a fundamental gadget with information-
theoretic security. However, it cannot provide security if the server sends cipher-
texts with the same secret key many times. Thus, a Vernal-styled ABA might
be useless in practice even though it has very high performance. To address this
problem, we transformed MRE to a computationally secure ABA with a template
function fprm using the technique of Kurosawa et al. [11].

From the template, we instantiated a discrete logarithm version of the pro-
tocol. The former is not secure against a large scale quantum computer and is
essentially similar with concatenation of the naïve multirecipient encryption in
[12, Sect. 1.3]. We also instantiated an LWE version throughout the template.
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The above template construction was within the atomic model that sends
M ≥ N ciphertexts to N devices. To control an exponential number of de-
vices by a short ciphertext, we consider a concatenation of the basic template
ABAs. However, the simple concatenated ABA does not have unforgeability and
anonymity. Herein, we propose a modification using the idea of Agrawal et al.’s
inner-product encryption [13].

Each device is indicated by a vector (i1, . . . , iK) where ij ∈ [Nj ] := {1, 2, . . . , Nj}
in the concatenated ABAs. The target set is defined by a sequence of sets
Sj ⊂ [Nj ] and a device is a target if ij ∈ Sj for all j. A trade-off between the
ciphertext length and the flexibility of target sets can be considered by chang-
ing Nj . For instance, setting all Nj equivalent, it derives an ABA controlling N
devices by O(N1/K) [bit] ciphertext. In the extreme case, taking Nj = 2 for all
j, it provides an ABA to control N devices by O(logN) [bit] ciphertext.

Data sizes Table 1 and 2 show the size estimation of a verification key and a
command ciphertext in our scheme to control 220 to 230 devices. The first table
gives the classical setting whose security is based on the standard and elliptic
curve DLP with parameter that are claimed 112 bit security.

Table 2 and 3 gives the parameter and sizes in the post-quantum setting
whose security is based on the LWE problem that are claimed 128 security. The
details of parameters and security estimation will be described in Section 6.2.

Table 1. Sizes of a verification key (2KM(log2 q)/8 + pksize [Byte]) and command
ciphertext ((1 + 4KM)(log2 q)/8 + sigsize [Byte]). Here, M = 3 is the dimension of
base vector, K is number of concatenated base ABAs, which makes possible to con-
trol 2K devices, and q is the bitsize of a modulus to define finite fields. We assume
⌊log2 q⌋ = 2048 in the DLP construction, and assume it spends 256 bits by a com-
pressed representation in Curve25519 in the ECDLP setting. pksize and sigsize are the
sizes of public key and signature in a strongly and existentially unforgeable signature.
We assume they are (log2 q)/8[bit] and 2 · (log2 q)/8[bit] following the DSA scheme.

Size(vk) [Byte] Size(cmd) [Byte]
Finite field K = 20 30976 62208
(112 bit security) K = 30 46336 92928
Elliptic curve K = 20 3872 7776
(112 bit security) K = 30 5792 11616

1.3 Paper Organization

Section 2 is the preliminary section. We provide background definitions, no-
tations, and theorems. In particular, computational problems on discrete loga-
rithms and lattices that are bases of the security of ABA are introduced, together
with notion and security definitions of ABA. In Section 3, we define Vernam-
styled multirecipient encryption (MRE) which allows broadcasting an encrypted
message only for target devices with information-theoretic security. In Section 4,
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Table 2. Sizes of a verification key ((4Kn)⌊log2 q⌋/8+pksize) and command ciphertext
((1+ 8Kn)⌊log2 q⌋/8+ sigsize) in our lattice based ABA. pksize and sigsize are the size
of public key and signature of a strongly and existentially unforgeable signature. We
assume that pksize=897 [Byte] and sigsize=666 [Byte] from 128 bit security FALCON
signature [10]. K sets the number of participant devices 2K , σ = 3.0 for all settings. L
and Q are the variety of message and buffer to prevent the overflow; see, Section 6.2
for detail.

Security Level (K,L) n (q,Q) Size(vk) [Byte] Size(cmd) [Byte]

128 bit

(20,4) 926 (68588467, 428678) 250917 500710
(20,256) 1164 (4921551113, 480621) 385017 768911

(30,4) 961 (128364259, 534852) 390102 779080
(30,256) 1119 (9176392691, 597422) 612387 1223651

Table 3. Sizes of a verification key ((4Kn)⌊log2 q⌋/8+pksize) and command ciphertext
((1+ 8Kn)⌊log2 q⌋/8+ sigsize) in our lattice based ABA. pksize and sigsize are the size
of public key and signature of a strongly and existentially unforgeable signature. We
assume that pksize=1793 [Byte] and sigsize=1280 [Byte] from 256-bit security FALCON
signature [10]. Other settings are the same as Table 2.

Security Level (K,L) n (q,Q) Size(vk) [Bytes] Size(cmd) [Bytes]

192 bits

(20,4) 1373 (83518147, 521989) 372503 742704
(20,256) 1715 (5973894821, 583389) 567743 1133185
(30,4) 1423 (156201391, 650840) 599453 1196604
(30,256) 1765 (11133577901, 724843) 901943 1801585

256 bits

(20,4) 1799 (95600731, 597505) 487523 972744
(20,256) 2238 (6824259821, 666432) 740333 1478365
(30,4) 1863 (178726489, 744694) 784253 1566204
(30,256) 2302 (12714961717, 827797) 1175813 2349325

we convert the MRE to the computationally secure ABA with a template func-
tion fprm. From the template, we instantiate the (standard and elliptic curve) dis-
crete logarithm problem and learning with errors (LWE) versions. In Section 5,
we propose an ABA of short command ciphertext by reducing the freedom in
the choice of target devices. Section 6 provides concrete protocols based on dis-
crete logarithms and lattices, and provides parameter sets and sizes of command
ciphertexts for practical usage. Finally, Section 7 gives concluding remarks and
future discussions.

2 Preliminaries

Z and N are the set of integers and natural numbers. For N ∈ N, denote the
set [N ] := {1, . . . , N}. Define Zq := {0, 1, . . . , q − 1} and q is assumed to be an

odd prime. Z×
q := Zq \ {0}. For a finite set A, let the notation a

$←− A be the
uniform sampling. Bold letters such as c represent a row vector. The transpose
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notation cT represents a column vector, We use ui to denote the i-th unit vector
(0, . . . , 1, . . . , 0) whereas the dimension is omitted if it is clear from the context.
For vectors and matrices, the notation || denotes the concatenation.

2.1 Computational Problems

We introduce the (EC)DLP and LWE, used as security bases of our ABA.
The finite field version of the DLP is to find an integer z that satisfies gz ≡

a (mod q) from a given tuple (g, a, p). Here, q is a prime that defines the finite
field Zq. g is a generator, that is, any integer h ∈ {1, . . . , q − 1} can be written
as gi mod q by using some i ∈ Z. a is an integer between 2 and q− 1. The DDH
assumption is to distinguish (ga, gb, gab) and (ga, gb, gr) where a, b, r are random
from Zq. The recommended parameter size is 2048 bits that achieves 112 bit
security [14, Sect. 5.5.1.1].

Variants of the DLP using other groups are considered. In particular, elliptic
curve instantiations are the most successful results that can reduce the com-
munication cost with keeping security. The Curve25519 used in the Ed25519
signature has 256 bit length public key and 512 bit length signatures keeping a
112 bit security by using a compressed representation of a point on the curve.

The LWE problem [15] is a fundamental toolkit for constructing lattice based
schemes. For a dimension parameter n, a modulo q, and an error distribu-
tion χ, the decision LWE is defined by the problem to distinguish the samples
{(ai,ais

T + ei)}i=1,...,m and {(ai, ui)}i=1,...,m where sT ∈ Zn
q is a random se-

cret vector fixed the all samples. ai, ei, ui are random vectors from Zn
q , random

errors from χ, and random elements from Zq respectively. χ is typically the
discrete Gaussian distribution DZ,σ whose density function defined over Z is
Pr[X = x] ∝ exp(−x2/2σ2). The goal of the search version of LWE is to recover
s from legitimate samples {ai,ai · sT + ei}i=1,...,m. The polynomial time equiv-
alence between decision and search is known [15]. We set the lattice parameter
using Albrecht et al.’s lattice estimator [16] as of May 2022.

2.2 Anonymous Broadcast Authentication (ABA)

The notion of ABA is stated by Watanabe et al. [1].

Definition 1. An ABA is formally defined by the tuple of four functions Π =
(Setup, Join,Auth,Vrfy).
• Setup(1λ, N,D) → ak: An algorithm that outputs the authorization key
ak from its inputs. 1λ is a security parameter, N is the maximum number
of joined devices, and D is a family of sets S ⊂ [N ] allowed to use as a
set of the target device.
• Join(ak, id) → vkid: An algorithm that outputs a verification key vkid

embedded to the device id.
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• Auth(ak,m,S) → cmdS : It outputs a command ciphertext that encrypts
the information of the message m and the set S of the target devices.
• Vrfy(vki, cmdS) → m/reject: It verifies the command ciphertext cmdS

using the verification key vkid. It returns the message or reject if it was
accepted or rejected, respectively.

The abovementioned algorithms, except for Vrfy are assumed to be proba-
bilistic polynomials. The family D is typically set as 2[N ] in several early works
whereas we restrict the freedom in the choice of a subset in [N ] to construct a
short ciphertext ABA.

We introduce the correctness, unforgeability, and anonymity notions of ABA.
They are essentially same as in the original work of Watanabe et al. [1] whereas
we explicitly mention t the number of corrupted devices.

Definition 2. We say an ABA Π has the correctness if for any fixed (1λ, N,D),
ak that are allowed to input, S ∈ D, and any m, id ∈ [N ],

Pr[Vrfy(Join(ak, id),Auth(ak,m,S))→ m] = 1− negl(λ) if id ∈ S, and

Pr[Vrfy(Join(ak, id),Auth(ak,m,S))→ reject] = 1− negl(λ) if id ̸∈ S

hold. Here, the probability is over the random coins in Join and Auth (and possibly
Vrfy).

Below are the game-based formal definitions of unforgeability and anonymity
within the situation where the receiver devices are colluded and can share their
verification keys.

Definition 3. (t-unforgeability [1]) Consider the game between a challenger C
and an adversary A.
0: C and A share (1λ, N,D) and C runs Setup(1λ, N,D)→ ak. Let Ma = Mv = ϕ

be the messages used in the authentication and verification queries. Also, let
D ⊂ [N ] and W ⊂ D be the set of considered devices during the game, and
the set of colluded devices. flag ∈ {0, 1} is a variable that indicates whether the
adversary gets the success forging.

1: (Key generation) A selects a set of considered devices D ⊂ [N ] and send it to
C.

2: (Collusion query) A selects id ∈ D and send it to C. C runs Join(ak, id)→ vkid.
Add id to W and send back vkid to A. A can repeat this step until the number
of colluded devices is less than t.

3: (Authentication query) A sends (m,S) to C where the selection is limited within
S ⊂ D and m ̸∈ Mv. Then, C runs Auth(ak,m,S) → cmdS and returns the
command ciphertext.

4: (Verification query) A generates a set (m, id, cmdS) and send them to C. C runs
Vrfy(vkid, cmdS) and returns the output to A. If Vrfy(vkid, cmdS) = m, id ̸∈ W
and m ̸∈Ma, set flag = 1 else set flag = 0. Add m to Mv.
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After repeating Steps 3 and 4, if there exists a verification trial such that
flag = 1, we define the output of the experiment ExpCMA

Π,A (λ,N, ℓ) is 1, and oth-
erwise it is 0. The advantage of A on the protocol Π is

AdvCMA
Π,A (λ,N, ℓ) := Pr[ExpCMA

Π,A (λ,N, ℓ)→ 1].

We say the ABA protocol Π has t-unforgeability if the advantage is a negligible
function of λ.

The above formal definition can be interpreted as follows. Suppose t devices
are taken over and colluded. Under a situation where an attacker collects secret
information in these devices, it cannot forge a legitimate command ciphertext
that an uncolluded device accepts. We will construct our unforgeable ABA from
a base ABA by adding a signature.

We deal with the following passive attack rather than the above active attack.

Definition 4. [1] (t-anonymity) Consider the game between a challenger C and
an adversary A. As the definition of unforgeability, t indicates the number of
colluded devices.
0: C and A share (1λ, N,D) and C runs Setup(1λ, N,D)→ ak. Let Ma = ϕ

be the set of the command used in the authentication. Also, let D ⊂ [N ]
and W ⊂ D be the set of considered devices during the game, and the
set of colluded devices.

1,2: The same as the Steps 1,2 in the unforgeability game (Definition 3)
3: (Authentication query) A selects a pair (m,S),S ⊂ D,m ̸∈Ma and send

it to C. Then, C runs Auth(ak,m,S)→ cmdS and return the output and
adds m to Ma.

4: (Challenge query) A selects a command m ̸∈Ma and two sets of devices
S0,S1 and send them to C. C runs Auth(ak,m,Sb) → cmdSb

where b ∈
{0, 1} is a random bit. Return the ciphertext to A and the adversary
guesses b′ for the random bit.

We define the output of the game is 1 if b = b′, i.e., the adversary succeeds
in guessing, and the output is 0 if otherwise. The advantage is

AdvANOΠ,A (λ,N, ℓ) :=
∣∣∣2Pr [ExpANOΠ,A (λ,N, ℓ)

]
− 1
∣∣∣ .

In Step 4, the considered sets S0 and S1 must satisfy

(S0△S1) ∩W = ϕ (1)

to prevent a trivial distinguishing; if the set Sd := (S0△S1) ∩ W ̸= ϕ, A can
check whether some id ∈ Sd is in S0 or not via the decryption oracle.

We pointed out that the condition (1) does not hide the size of sets. The
notion of weak anonymity is defined by adding the condition |S0| = |S1| besides
(1) in Step 4. Also, the outsider anonymity is defined by replacing (1) with
(S0 ∪ S1) ∩W = ϕ in Step 4. It is slightly weaker than the weak anonymity,
though it has no restriction on the size of sets [1].
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3 Vernam-Styled Multirecipient Encryption with
Information-theoretic Security

As a base gadget to construct our ABA, we introduce a simple multirecipient
secret key encryption. It is a noninteractive communication protocol from a cen-
tral server to N participant devices. The server packs a set of messages into one
ciphertext and broadcasts it to the devices. Each device decrypts the ciphertext
with its key. It has information-theoretic security on messages; that is, each de-
vice i can recover the i-th message mi whereas it can gain no information on
the messages mj (j ̸= i) to the other devices. We give the actual Vernam-styled
construction in the following subsection.

Definition 5. A multirecipient encryption (MRE) is formally defined by a tuple
of three functions MRE = (KeyGen,Enc,Dec).
• MRE.KeyGen(N, pp)→ (ek, dk1, . . . , dkN ): It outputs output an encryption key
ek and a sequence of decryption keys {dki}i∈[N ] for the number N of participant
devices.
• MRE.Enc(ek, {mi}i∈S) → ct: S is the set of target devices to which messages

are sent. mi is a message send to i-th device and the server can take different
mi for each i. An encryption algorithm outputs ct to be broadcasted.
• MRE.Dec(dki, ct)→ m′

i: A decryption algorithm that recovers a message in i-th
device from ct by using one’s secret key dki.

3.1 Construction

The public parameter pp = (M, q) is the pair of a vector dimension and a prime
modulus. With these parameters, the decryption keys are randomly generated
independent column vectors dki ∈ ZM

q . The encryption key is the set ek =
{dk1, . . . , dkN}. Each participant device i has pp and dki. For a set of target
devices S ⊂ [N ] and a set of messages {mi}i∈S where mi ∈ Z×

q , the ciphertext
ct is a randomly chosen vector in ZM

q that satisfies ct · dkTi ≡ mi (mod q)
for all i ∈ S. The decryption at device i is the computation of inner-product
ct · dkTi (mod q). Thus, the correctness is immediate.

Since each decryption key and ciphertext are elements of ZM
q , the sizes are

M log2 q bits, and the size of the encryption key saved in the central server is
NM log2 q bits.

This construction can be regarded as a generalization of the concatenation
of Vernam cipher since under the situation where N = M and all dki’s are a
multiple of i-th unit vector uT

i , the ciphertext ct = (c1, . . . , cN ) is the concate-
nation of ci by which i-th device can decrypt. We note the reason for setting dkTi
independent vectors instead of ki ·uT

i where kis are multiples. Consider a chosen
plaintext attack that an attacker can obtain a pair (mi, ct) for an index i. Then,
the decryption key can be easily found by a simple division where dkTi = ki ·uT

i .
However, in the case where dki’s are independent, the information-theoretic se-
curity can be ensured using vectors until M pairs of (mi, ct) are obtained by the
attacker. Using the M pairs, one can recover all the dkTi ’s via the solution of
simultaneous equations.
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3.2 Security of MRE

The information-theoretic security of the above vector-based MRE can be shown
as follows. Suppose the situation where the devices 1, 2, . . . , t are colluded, and
an attacker wants to recover the message mt+1 of the device t+ 1 from ct using
the leaked keys dkT1 , . . . , dk

T
t . In this case, the attacker can know only the fact

that dkt+1 is independent to dkT1 , . . . , dk
T
t .

Suppose that the attacker guess a vector vT and m′
t+1 = ct ·vT as candidates

of dkTt+1 and mt+1, respectively. Then, all the vectors vT , 2vT , 3vT , . . . , (q −
1)vT mod q can also be candidates for the secret keys with equal possibility.
Thus, m′

t+1, 2m
′
t+1, . . . , (q−1)m′

t+1, which are equal to the set Z×
q = {1, 2, . . . , q−

1}, are also candidates of the message with equal possibility. It means that the
information amount of attackers from ct and colluded secret keys is zero. A sim-
ilar argument can prove the impossibility forging ct that embeds a message to
the device t+ 1.

Although information-theoretic security in one-time broadcasting is guaran-
teed, any security under chosen-plaintext attacks and key reusing situations have
never been proven. Specifically, suppose the situation where the attacker can ob-
tain ct corresponding to any chosen {mi}i∈S and any S with fixed decryption
keys. The attacker can recover all dkTi s by solving linear simultaneous equations
if one has a sufficient number of pairs of messages and ciphertexts. Thus, a naïve
construction of ABA from the above MRE might be useless. We transform it to
a computationally secure ABA in the next section.

4 Template Construction of Base ABA

We transform the above information-theoretic MRE to ABA by adding a repeat-
able property. The main differences over the base MRE are: (1) it broadcasts
the same message to a selected subset of participant devices, and (2) its secu-
rity base is the hardness of a computational problem. First, we give a template
construction that includes protocols based on discrete logarithms and lattices.
Then, we discuss its anonymity and unforgeability.

4.1 A Template

We give a template of our base ABA using a function fprm(c
T ) defined over

an r-dimensional column vector with a parameter prm. We assume the function
has a somewhat homomorphic property as follows. For scalars a, b and vectors
x,y, fprm(axT + byT ) = a ◦ fprm(xT )⊗ b ◦ fprm(yT ) holds with operations (◦,⊗)
to compute a linear combination of vectors fprm(

∑M
i=1 viy

T
i ) in verification. We

also assume that an inverse fprm(x
T )−1 of fprm(x

T ) that satisfies fprm(x
T ) ⊗

fprm(x
T )−1 = I (an unit) is easily computable.

For instance, our discrete logarithm construction assumes r = 1, prm = g, a
generator of a finite field and define fprm(x) = gx for x ∈ Zq. The homomorphic
property holds with a ◦ h = ha and a⊗ b = a · b. Concretely,

fg(ax+ by) = gax+by = gax ⊗ gby = a ◦ fg(x)⊗ b ◦ fg(y)
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holds. Also, the construction from the elliptic curve assumes r = 1 and prm = B,
where B is a base point with known order N . For x ∈ [N − 1], define fprm(x) =
xB. Similar to the finite field situations, the operations are defined by a◦P = aP
and a⊗ b = a · b mod N .

On the other hand, our lattice-based construction uses prm = p ∈ Zr
q. and

fp(x
T ) = pxT . The homomorphic property holds with defining a◦x = ax mod q

and x⊗y = x+y mod q for an integer a and vectors x,y. The proof is immediate.
Remark that the above property holds for any vector p though we use a small
p of which each coordinate is from a discrete Gaussian.

Definition 6. (MRE-based ABA template) Assume the function fprm(·) has the
above homomorphic property. A template of our ABA is defined as follows. As-
sume that pp = (M, q) in MRE is fixed from the security parameter λ.
• Setup(1λ, N,D)→ ak: Run MRE.Setup(N, pp = (M, q))→ (ek, {dkTi }) =: ak

• Join(ak, id)→ vkid: vkid := dkTid
• Auth(ak,m,S)→ cmdS: Randomly choose an r-dimensional column vector xT

from the domain of fprm. Generate random small vectors e1, . . . , eN from some
distribution. Randomly choose a matrix CT ∈ Zr×M

q that satisfies CT · dkTi =

xT + eTi for i ∈ S and CT · dkTi is far from xT for i ̸∈ S. Parse CT into the
column vectors ctT1 , . . . , ct

T
M , encode them by Fi = fprm(ct

T
i ) and the command

is cmdS = (m⊗ fprm(x), F1, . . . , FM ).
• Vrfy(vkid, cmdS) → m/reject: For the device’s key dki := (di,1, . . . , di,M ), com-

pute f = di,1 ◦ F1 ⊗ · · · ⊗ di,M ◦ FM , and m′ = m⊗ fprm(x)⊗ f−1.

For correctness, it is necessary to have some condition in fprm and error
vectors. For a legitimate command and decryption key

di,1 ◦ F1 ⊗ · · · ⊗ di,M ◦ FM

= fprm(di,1ct
T
1 + · · ·+ di,MctTM ) = fprm(CT · dki) = fprm(x

T + eTi )
(2)

Thus, by the homomorphic property, (m⊗ fprm(x
T ))⊗ fprm(x

T + eTi )
−1 = m⊗

f(eTi )
−1. A decoding mechanism is used to recover m from the above element.

In the discrete logarithm instantiation, we use eTi = 0 for all i and the verifi-
cation function returns m directly. On the other hand, in the lattice instantiation,
eTi is a vector whose components are from DZ,σ with and a rounding function is
used to recover.

For the device i ̸∈ S, the equation (2) computes

m⊗ fprm(x− x′) (3)

for another random x′ that is far from xT . Though it does not help to recover
the message, the result (3) is possibly included in the domain of legitimate
commands. To prevent the accident, it should use gimmicks separating the space
of scalars into the legitimate commands and the others. We give an example of
the separation in Section 6.2.

Below we discuss anonymity and unforgeability. We introduce a computa-
tional problem defined using fprm, directly deduced from the anonymity game.



Title Suppressed Due to Excessive Length 13

Its discrete logarithm version is reduced to the DDH problem. The lattice ver-
sion is reduced to the decision LWE problem. Adding a strongly unforgeable
signature, any ABA can be unforgeable.

Besides the anonymity and unforgeability, we also mention the security of the
message and verification key. The message security is the hardness of recovering
the message m from the command ciphertext without keys of target devices, but
assume that the one has additional commands and keys from oracles. We have
proved the message security in the discrete logarithm and the lattice instantia-
tions are reduced to the hardness of message security of ElGamal encryption and
the decision LWE problem, respectively. We postpone the proof to Appendix B
because the original ABA definition does not consider it.

Also, key security is the hardness of recovering the key dki or its alternative
dk′Ti of the device i from other colluded keys {dkTj }. It is easy to see that if
one can recover an alternative key, it breaks anonymity. Thus, security proof of
anonymity is also proof of key security.

4.2 Anonymity

We discuss the anonymity of the template construction. Note that it targets the
version before the transformation. In the Step 4 of the anonymity game (Def. 4),
the adversary can select m,S,S ′. Since we can cancel out m in the context of
our template construction, breaking anonymity is the same as distinguishing the
tuples

cmdS = (fprm(x
T ), fprm(ct

T
1 ), . . . , fprm(ct

T
M )) and

cmdS′ = (fprm((x
′)T ), fprm((ct

′
1)

T ), . . . , fprm((ct
′
M )T )).

We know there exists an index id ∈ S\S ′ such that dkid can recover fprm(xT+eTi )
via the relation (2).

We transform the above problem into a distinguishing problem between le-
gitimate sequences and random sequences.

Definition 7. ((fprm, χ,M)-linear distinguishing problem) For a function fprm(·)
used in the template construction, consider the computational problem to distin-
guish the sequence

(fprm(x
T ), fprm(c

T
1 ), . . . , fprm(c

T
M )) and (fprm(r

T ), fprm(c
T
1 ), . . . , fprm(c

T
M ))

where cT1 , . . . , c
T
M are randomly drawn from the domain of fprm.

In the former case, xT is computed (cT1 ||cT2 || · · · ||cTM )d+ eT = cT1 d1 + · · ·+
cTMdM +eT by a fixed secret vector d = (d1, . . . , dM )T and a small random error
eT from χr. In the latter situation, rT is random.

Theorem 1. Using an adversary A that can win the anonymity game (Def. 4)
with fprm and noise distribution χ and dimension 2M , it can solve the above
distinguishing problem with parameters (fprm, χ,M) with high probability.
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Proof. Fix the parameters fprm, χ and M , and suppose there exists an adver-
sary A. After the game setup of the anonymity game with 2M dimensions, the
challenger generates a (2M)× (2M) random invertible matrix U .

In the collision query phase, suppose the adversary requires t verification
keys; we can name them dk1, . . . , dkt without loss of generality. Upon the queries,
generate random M -dimensional vectors r1, . . . , rt and set the fake verification
keys to the adversary by dkTi = [(ri||ui)U ]T ∈ V 2M , i = 1, . . . , t.

Also, using the virtual secret vector d of the linear distinguishing problem,
define tentative decryption keys dkTi = [(d||ui)U ]T for i = t + 1, . . . ,M , that
are unknown by both the challenger and adversary. Upon requests from the
adversary, the challenger sends the corrupted keys dkT1 , . . . , dk

T
t .

In the authentication query phase, the challenger generates the command
ciphertext of a query (m,S) as follows. Call the problem oracle and get an
instance (fprm(yT ), fprm(c

T
1 ), . . . , fprm(c

T
M )) where yT is legitimate xT or random

rT . Denote C = [cT1 || · · · ||cTM ]. Fi = fprm(ci) for i = 1, . . . ,M . Then, for i =
M + 1, . . . ,M + t, compute

fprm(Cri) = F1 ◦ ri,1 ⊗ · · · ⊗ FM ◦ ri,M

and
FM+i :=

{
fprm(Cri)

−1 ⊗ fprm(y)⊗ fprm(ηi) (i ∈ S)
fprm(rand) (i ̸∈ S)

where rand means a random sampling from the domain of fprm.
For i = M + t+ 1, . . . , 2M , compute

FM+i :=

{
fprm(y)

−1 (i ∈ S)
fprm(rand) (i ̸∈ S)

Then, compute

(V1, . . . , V2M ) := (F1, . . . , F2M )U−1.

Here, the vector-matrix operations are performed with the operations (◦,⊗),
that is,

Vj = F1 ◦ u1,j ⊗ · · · ⊗ F2M ◦ u2M,j

where ui,j is the (i, j)-element of U−1. The command to the adversary is

cmdS = (m ◦ fprm(y), V1, . . . , V2M ).

It is easy to see that

Vrfy(vki, cmdS) = m⊗ fprm(y)⊗ f−1
prm(y) = m⊗

{
fprm(ηi) i = 1, . . . , t
fprm(e) i = t+ 1, . . . ,M

for i ∈ S if problem instance is legitimate.
However, if the problem instance is random, the relations on i = t+1, . . . ,M

do not hold.



Title Suppressed Due to Excessive Length 15

In the challenge query phase, for (m,S0,S1), the challenger returns cmdSb
for

b = 0 or 1 in the same manner and checks the adversary’s response. Checking
the adversary’s advantage, the challenger distinguishes the problem instance. □
Instantiations of Concrete Problems: We give instantiations of our problem
(Definition 7) in the discrete logarithm and lattice situations.

In the discrete logarithm situation, we set r = 1 and fprm(x) = gx and noise
variable is always zero. Thus, the problem is to distinguish

{(gx, gc1 , . . . , gcM )} and {(gr, gc1 , . . . , gcM )}

where (d1, . . . , dM ), (c1, . . . , cM ) and r are a fixed secret vector, uniformly ran-
dom vector, and a random number. In the legitimate situation, x = c1d1 + · · ·+
cMdM .

To our best knowledge, this problem is not well-known in the literature.
However, this can be captured as a discrete logarithm version of the standard
LWE problem and can be reduced to the DDH problem.

Proposition 1. The above distinguishing problem can be reduced to DDH.

Proof. First, we prove that an algorithm AM to distinguish the above M + 1
dimensional vectors can solve the M = 1 problem. We can construct an algo-
rithm A1 to solve the M = 1 problem. Before calling the oracle, A1 samples
a virtual secrets (d2, . . . , dM ) and fix them. Then, for a 1-instance (gx, gc1),
construct M -instance by (gy, gc1 , . . . , gcM ) with gy = gx · gc2d2+···+cMdM with
randomly generated c2, . . . , cM . If gx is a legitimate gc1d1 (resp. random gr), gy
is a legitimate (resp. random) number.

Next, we prove that A1 can distinguish DH instances. Fix a generator g and
let (ga, gb, gc) be a DDH sample where c = ab or random. Note that for any
randomly generated d1, d2, the relation (gd1 · (gb)d2)a = ((ga)d1 · (gc)d2) holds
if c = ab. Thus, a sequence of 1-instances with secret a can be generated by
(gx, gc1) = (gd1 · (gb)d2 , (ga)d1 · (gc)d2). If c = ab, it is a legitimate sample. On
the other hand, if c ̸= ab, the second component is gc1 = gad1+abd2 · g(c−ab)d2 .
Thus, the randomness of d2 makes its distribution random. □

In the lattice situation, the problem is to distinguish

(pxT ,pcT1 , . . . ,pc
T
M ) and (prT ,pcT1 , . . . ,pc

T
M )

where xT is computed by
∑M

i=1 dic
T
i + eT by a secret vector d = (d1, . . . , dM )

and an error vector eT , and rT is a random vector. This is the decision LWE
problem.

4.3 Unforgeability

This section gives a transformation method to construct a t-unforgeable ABA.
We first remark that the template construction does not have 1-unforgeability
due to the homomorphic property. In fact, for

cmdS = (m⊗ fprm(x
T ), fprm(ct

T
1 ), . . . , fprm(ct

T
M ))
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that targets S selected by an adversary having only vkid, cmdS = (m⊗fprm(xT )⊗
c, fprm(ct

T
1 ), . . . , fprm(ct

T
M )) is a legitimate ciphertext of the shifted message m⊗c

accepted by some id′ ∈ S \ {id}.
A simple transformation technique has been known from a CPA-secure public-

key BE to a CCA1-secure one [8]. Following these notions and techniques, we
construct our version of the transformation method from our template ABA to
an unforgeable ABA.

Definition 8. (Transformation)
For an ABA scheme ABA = (Setup, Join,Auth,Vrfy) and a strongly and exis-

tentially unforgeable signature Σ = (KeyGen, Sign,Vrfy), the transformation of
ABA, which we denote ABAΣ is defined as follows.
• ABAΣ .Setup(1

λ, N,D) → (ak, pk, sk): Run ABA.Setup(1λ, N,D) → ak and
Σ.KeyGen(1λ)→ (pk, sk).
• ABAΣ .Join(ak, id) → vkid: Run the ABA.Join command and let vkid =
(ABA.vkid, pk).
• ABAΣ .Auth(ak,m,S) → (cmdS , σ): Execute ABA.Auth(ak,m,S) → cmdS .

Generate the signature for the base command Σ.Sign(sk, cmdS)→ σ.
• ABAΣ .Vrfy(vki, (cmdS , σ)) → m/reject: Check the signature
Σ.Vrfy(pk, σ, cmdS). If the check fails, return reject. Passing the verifica-
tions, execute ABA.Vrfy(vkid, cmdS) and return the result.

Security proof is straightforward. In the security game (Definition 3), an
adversary can get verification keys and {(cmdS , σ)} upon one’s queries and sup-
pose one can forge a command pair (cmd′S′ , σ′) with (m′, id′) in Step 4. That is,
Σ.Vrfy(pk, σ′, cmd′S′) returns accept and ABA.Vrfy(vkid′ , cmd′S′) returns m′.

The forging is splitting into two situations. If cmd′S′ is not equal to any com-
mands returned from the challenger in the authentication query step, (cmd′S′ , σ′)
is a valid pair to break the strong unforgeability of the signature game, which is
assumed to be hard.

On the other hand, consider the situation where cmd′S′ is equal to cmdSa ,
one of returned commands in the authentication queries. We show this situation
is impossible. Recall that the corresponding message m′ and ma in the com-
mands cannot be equal by the requirement m ̸∈ Mv in Step 3. Thus, the first
element of cmd′S′ = cmdSa

is m′ ⊗ fprm(x
′T ) = ma ⊗ fprm(x

T
a ) which are differ-

ent representations of different messages. Thus, the verification results by vkid′

must satisfy ABA.Vrfy(vkid′ , cmd′S′) = m′ and ABA.Vrfy(vkid′ , cmdSa
) = ma.

This contradicts to the requirement m′ ̸= ma and cmd′S′ = cmdSa .
Therefore, forging a command ciphertext is hard due to the strong unforge-

ability of the signature.

5 Concatenation of ABAs

The sequential concatenation of small-size ABAs is a simple way to reduce the
length of ciphertexts by restricting choice of target devices.
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Definition 9. (Sequential concatenation of ABAs) Consider K ABAs. Let them
be ABAj = (Setupj , Joinj ,Authj ,Vrfyj) and Nj be the maximum number of de-
vices controlled by the j-th ABA. The concatenated ABA is defined as follows.
Each device is indicated by a vector id = (i1, . . . , iK).
• ABA.Setup: Execute ABAj .Setup(1

λ, N,D) → akj for all j ∈ [K]. The order
of execution does not matter and let ak := {ak1, . . . , akK}.
• ABA.Join(ak, id): For id = (i1, . . . , iK), execute ABAj .Join(akj , ij) → vkj,ij .

The verification key is the concatenation vkid = (vk1,i1 , . . . , vkK,iK ).
• ABA.Auth(ak,m,S): The set of target devices is indicated by S = S1×· · ·×SK

where Sj ⊂ [Nj ]. The command ciphertext cmdS is also the concatenation of
cmdSj = Auth(akj ,m,Sj) for j = 1, . . . ,K, and broadcast it.
• ABA.Vrfy(vkid, cmdS) → m/reject. Check whether Vrfy(vkj,ij , cmdSj ) for all j.

If all the verification has been accepted, output m, if otherwise, output reject.

Since we have proved the base ABA has anonymity from the computational
problems, the concatenated ABA also has anonymity on two sets of limited
forms. That is, S1 ×S2 × · · · × SK and S ′1 ×S2 × · · · × SK are indistinguishable
if all S2, . . . ,SK are equivalent. However, one can forge a ciphertext and break
anonymity by rearranging components when some devices collude via the follow-
ing example. To prevent such rearranging attacks, we modify the concatenated
scheme in the following subsection.

Example 1. Consider the concatenation of K = 2 ABAs with N1 = N2 = 2.
The composed ABA can control N1N2 = 4 devices and we name them by id =
(1, 1), (1, 2), (2, 1) and (2, 2).

Suppose that id = (1, 1) and id = (2, 2) are colluded, that is, an attacker
have vk1,1 = (vk1,1, vk2,1) and vk2,2 = (vk1,2, vk2,2). The one can generate other
verification keys vk12 = (vk1,1, vk2,2) and vk21 = (vk1,2, vk2,1) via the recombi-
nation of components. Thus, the attacker can recover any legitimate ciphertext
and know the target devices.

For instance, in the anonymity game, let the challenger’s set be S0 = {(1, 2)}
and S1 = {(2, 1)} which satisfies the condition (1). Then cmdSb

can be easily
verified to distinguish.

Another situation where one can forge a ciphertext is possible. Suppose a de-
vice is honest-but-curious, and it receives ciphertexts cmd1,1 = (cmdS1

, cmdS2
)

and cmd2,2 = (cmdS′
1
, cmdS′

2
) whose targets are {(1, 1)} and {(2, 2)}, respec-

tively. It can construct a forged ciphertext (cmdS1
, cmdS′

2
) targeting id = (1, 2)

if the attacker knows the ciphertexts contain the same message.

5.1 Modification Against Recombination Attack

The simple concatenated ABA does not have anonymity and unforgeability by
rearranging colluded keys. Also, a non-target device can recover the message.
To prevent recombination attacks, we employ two methods. The first idea is to
distribute m into K shares and recover it in a target device via the homomorphic
property of fprm. The other idea is from Agrawal et al.’s inner product encryption
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[13]. In the context of this paper, we employ the mechanism to increase the
amount of information to break the anonymity security by adding variables.

Definition 10. (A template construction against simple recombination attacks)
• Setup(1λ,K,D) → ak: Fix a prime field Fq and a dimension M of base
MREs. Execute MREj .KeyGen(pp) → (ekj , {dkTj,i}i∈[Nj ]}) for j ∈ [K], where

ekj := {dkTj,i}. Generate random matrices Aj,i
$←− Zr×M

q for j ∈ [K], i ∈ [Nj ],
a random invertible matrix W ∈ Z2M×2M

q and a vector u ∈ Zr
q. The key is

ak = ({dkTj,i}, {ekj}, {Aj,i},W,u).
• Join(ak, id)→ vkid: For a device id = (i1, i2, . . . , iK), generate a random vector
ukid such that

∑K
j=1 Aj,ijuk

T
id = u (mod q). Then, define the verification key by

vkid = (W (dk1,i1 ||ukid)T , . . . ,W (dkK,iK ||ukid)T ).

• Auth(ak,m,S)→ cmdS : Suppose the target devices are indicated by S1 × · · · ×
SK ⊂

∏
[Nj ]. Pick random vectors tTj ∈ Zr

q and let xT := tT1 + · · ·+tTK . Generate
random matrices CTj,i (j ∈ [M ], i ∈ [Nj ]) such that

CTj,i · dkj,ℓ =
{
tTj + eTj,i (i = ℓ and i ∈ Sj)
rand (i ̸∈ Sj)

where rand represents a random far from tTj . Define the matrix Cj,i := (CTj,i||Aj,i)W
−1

and split it into the 2M column vectors by Cj,i = (cTj,i,1|| · · · ||cTj,i,2M ). Then, the
command ciphertext cmdS is m⊗ fprm(x

T +uT ) and the sequence {fprm(cTj,i,ℓ)}.
• Vrfy(vkid, cmdS): For id = (i1, . . . , iK), denote vkid = (v1, . . . , vK) and let the
ℓ-th element of vj be vj,ℓ. For the command (m⊗fprm(xT+uT ), {Fj,i,ℓ}), compute
the sum Tj =

∑2M
ℓ=1 vj,ℓ ⊗ Fj,ij ,ℓ and m⊗ fprm(x

T + uT )⊗ (T1 ⊗ · · · ⊗ TK)−1.

The correctness is immediate as follows. For a target id = (i1, . . . , iK),

Tj =

2M∑
ℓ=1

vj,ℓ ⊗ fprm(c
T
j,ij ,ℓ) = fprm

(
eM∑
ell=1

cTj,ij ,ℓvj,ℓ

)
= fprm((CTj,ij ||Aj,ij )W

−1 ·W (dkj,ij ||ukid)) = fprm(t
T
j + eTj,i +Aj,ijukid)

and the sum in the sense of ⊗ is

T1 ⊗ · · · ⊗ TK = fprm

 K∑
j=1

tTj + uT +

K∑
j=1

ej,ij

 .

Therefore, it recovers m⊗ fprm

(∑K
j=1 e

T
j,ij

)
.

The unforgeability is realized by adding a signature as in Section 4.3. We
discuss the anonymity.
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5.2 On the Anonymity

We emphasize that we can guarantee the above modification has t-anonymity
with a limited range of t, though a more complicated heuristic obfuscation would
increase t by sacrificing resources. As we will discuss in Appendix A, under the

situation where the freedom in the choice of S is limited, a pattern of id
?
∈ S

obtained by an attacker can reveal information on whether id′
?
∈ S for other id′s

even if the cryptographic gadgets work completely and the standard anonymity
(Definition 4) is satisfied. Therefore, we think constructing a more complicated
scheme to achieve stronger anonymity is not a good strategy for practical pur-
pose. As the next best thing, we discuss the security via the relation between
the number of variables and equations in algebraic systems.

To distinguish two commands cmdS and cmdS′ that contain the same mes-
sage, it is necessary to find whether the sum

∑K
j=1

∑2M
ℓ=1 vj,ℓ⊗ fprm(c

T
j,ij ,ℓ

) nears
to fprm(x

T +uT ) for an unknown verification key vkid. Here, we discuss a neces-
sary number of colluded keys and authentication queries to reveal vkid.

Suppose an attacker wants to distinguish two commands from two sets S0 and
S1 so that id ∈ S0△S1 for id selected by the attacker. Also, assume that the at-
tacker’s distinguishing is via recovering the verification key vkid. Let (1, 1, . . . , 1)
be the id without loss of generality. Split the matrix W into the upper and lower
matrices with M × 2M dimensions:

W =

[
W1

W2

]
Denote wj,i = W1dk

T
j,i and uid = W2uk

T
id. Then, the verification key that one

wants to recover is written as vkid = (w1,1 + uid, . . . ,wK,1 + uid). Here, uid also
satisfies

∑K
j=1 Aj,1uk

T
id = uT for unknown matrices Aj,1.

Thus, the number of variables to fix is KM for wj,1 (j = 1, . . . ,K), K · rM
for Aj,i, 2M2 for W2 and r for u. Also, the number of unknown variables in
ukid is r since the other M − r variables can be random by construction. With
a new colluded key vkid′ , MK equations can be obtained and it introduces new
variables on wj,i and Aj,i. For the authentication query, it does not introduce
new equations due to the random variables tj in construction.

To minimize the number of unknown variables, we minimize the range of
indexes. For id = (i1, . . . , iN ) that satisfies ij ∈ [2] for j = 1, . . . , s and ij = 1
for i = s + 1, . . . ,K, t = 2s − 1 colluded keys are possible. Here, the number
of variables are 2(K + s)M for wj,ij , 2(K + s) · rM for Aj,ij , 2M2 for W2,
tr for ukid, r for u. Therefore the total number of variables is totally, V =
2M2 + 2(K + s)rM + 2(K + s)M + tr + r.

After getting t colluded keys, the problem is to solve simultaneous equations
with 2M2 + 2(K + s)rM + 2(K + s)M + tr + r variables and tKM equations.
It is necessary to satisfy at least

2M2 + 2(K + s)rM + 2(K + s)M + tr + r < tKM

⇔ t >
2M2 + 2(K + s)rM + 2(K + s)M + r

KM − r
.
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to fix a unique solution. The left-hand side is bounded by M/K+2r+2. There-
fore, it has evidence of anonymity against 2 + 2r corruption.

For the situation r = 1, the lower bound is only four corruption. However,
the situation we use in this paper is the discrete logarithm construction, which
might be secure by the one-wayness of the discrete logarithm. On the other hand,
in the lattice situation, r is the number of samples in LWE, and it should be
greater than 900, which guarantees the security against collusion of 1800 devices.
We think they are practically secure in the both situations.

6 Concrete Schemes and Security Parameters

This section gives concrete schemes based on discrete logarithms and lattices,
security parameters, and rough estimations of communication costs. Both con-
struction assumes Nj = 2 for all j.

We should discuss a relation between the space of an ABA command and
cryptographic message. Let us denote C space of ABA commands and denoteM
be of the messages. A target device can recover m, whereas a nontarget device
gets a random number which is possibly interpreted as a legitimate command.
It can cause a serious error. To prevent accidents, we should employ a gimmick
in the authentication algorithm. Here, note that a simple signature to the com-
mand may be useless because a nontarget device can know the command by the
exhaustive search when the command space is small.

In the discrete logarithm construction, the probability of the accident, that
is, the situation where a random number in Zq is in the message space, is expo-
nentially small since we should take q exceeds 22000. On the other hand, in the
lattice construction, we should sophisticate it more carefully.

6.1 Discrete Logarithm Construction

We instantiate the discrete logarithm construction by setting fprm(a) = ga mod q
to Definition 8 and 10.

Definition 11. (Discrete Logarithm Construction)
• Setup(1λ,K,D) → ak: Fix a prime field Zq and a dimension M of base
MREs. Execute MREj .KeyGen(pp) → (ekj , {dkTj,i}i∈[Nj ]}) for j ∈ [K] where

ekj := {dkTj,i}. Generate random vectors aj,i
$←− ZM

q for j ∈ [K], i = 1, 2,
a random invertible matrix W ∈ Z2M×2M

q and a constant u ∈ Zq. Execute
Σ.KeyGen(1λ)→ (pk, sk) The key is ak = ({dkTj,i}, {ekj}, {aj,i},W, u, pk, sk).
• Join(ak, id)→ vkid: For a device id = (i1, i2, . . . , iK), generate a random vector
ukid such that

∑K
j=1 aj,ijuk

T
id = u (mod q). Then, put the verification key by

vkid = {(W (dk1,i1 ||ukid)T , . . . ,W (dkK,iK ||ukid)T ), pk}.

• Auth(ak,m,S)→ cmdS : Suppose the target devices are indicated by S1 × · · · ×
SK ⊂ [2]K . Pick random numbers tj ∈ Fq and let x := t1 + · · · + tK . Generate
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random vectors ctj,i (j ∈ [M ], i ∈ [2]) such that

ctj,i · dkTj,ℓ =
{
tj (i = ℓ and i ∈ Sj)
rand (i ̸∈ Sj)

where rand represents an output from random number generator except for tj.
Define the vector cj,i := (ctTj,i||aj,i)W

−1 and parse it into the coordinates by
cj,i = (cj,i,1, . . . , cj,i,2M ). Then, the command cmdS is m ·gx+u and the sequence
{gcj,i,ℓ}. Finally, generate a signature to the command Σ.σ(sk, cmdS) → σ.
Ciphertext is the pair (cmdS , σ).
• Vrfy(vkid, (cmdS , σ)): Check the signature by Σ.Vrfy(pk, σ, cmdS) at first and if
it returns reject, it stops with returning reject. Otherwise, continue the process.
For id = (i1, . . . , iK), denote the vector part of vkid be (v1, . . . , vK) and let the
ℓ-th element of vj be vj,ℓ. For the command (m · gx+u, {gcj,i,ℓ}), compute Tj =∏2M

ℓ=1(g
cj ,ij ,ℓ)vj,ℓ and m · gx+u · (T1 · · · · · TK)−1.

The correctness and security are given in the template construction. We
explain the communication cost. Remember that K,M, q are the parameter of
the number of concatenated ABAs, vector dimensions, and the modulus. We also
denote pksize and sigsize the sizes of public key and signature for unforgeability.
The size of vkid is 2MK log2 q + pksize [bits] since it consists K vectors of 2M
dimension in Zq and the public key of the signature. Each command consists
1 +K · 2 · 2M = 1 + 4KM numbers in Zq and thus, the communication cost is
(1 + 4KM) log2 q + sigsize.

Since we take Nj = 2 for all j, it is necessary to take M ≥ 2 for decryption
keys. M ≥ 3 is suitable to introduce some randomness in the keys. We use M = 3.
Since it can control 2K devices, about K = 20 – 30 is enough to control 106 –
109 devices in practice. For the security of DLP, log2 q ≥ 2048 is required [14,
Sect. 5.5.1.1]. Also, for the security of ECDLP, we assume Curve25519 spends
256 bits to store a point on the curve in the compressed representation. Table 1
gave the summary.

6.2 LWE-based Construction

We instantiate the LWE-based construction by setting fp(x) = xpT mod q to
Definition 8 and 10. M,K, r are parameters. Also, we use Q to the multiple of
plaintext to avoid the effect of noises. Concretely, plaintext m is an integer such
that 0 ≤ m < q/Q and embed it in the form of m = m · Q in the command
ciphertext. In verification, the device rounds the decoded message m′ to m′ =
⌊m′/Q⌉. Also, we use an integer L to distinguish a legitimate and a nonlegitimate
command. If the verification function returns m < L, it is interpreted as a
legitimate command and executes it. If otherwise, return the reject symbol. In
our construction, we assume q > 2KLQ to separate the legitimate commands
and the rejecting messages.

Definition 12. (LWE-based Construction)



22 Y. Aono et al.

• Setup(1λ,K,D)→ ak: Fix a prime field Fq and a dimension M of base MREs.
Execute MREj .KeyGen(pp)→ (ekj , {dkTj,i}i∈[2]) for j ∈ [K], where ekj := {dkTj,i}.
Generate random matrices Aj,i

$←− Zr×M
q for j ∈ [K], i ∈ [2], a random invertible

matrix W ∈ Z2M×2M
q and a vector u ∈ Zr

q. Execute Σ.KeyGen(1λ) → (pk, sk)
The key is ak = ({dkj,i}, {ekj}, {aj,i},W, u, pk, sk).
• Join(ak, id)→ vkid: For a device id = (i1, i2, . . . , iK), generate a random vector
ukid such that

∑K
j=1 Aj,ijuk

T
id = u (mod q). Then, define the verification key by

vkid = {(W (dk1,i1 ||ukid)T , . . . ,W (dkK,iK ||ukid)T ), pk}.

• Auth(ak,m ∈ M,S) → cmdS : Suppose the target devices are indicated by
S1× · · ·×SK ⊂

∏
[2]. Pick random vectors tTj so that ptTj ∈ {LQ, . . . , 2LQ− 1}

and let xT := tT1 + · · · + tTK . Here, pxT is greater than KLQ since there is no
overflow in Zq by the condition q > 2KLQ.

Generate random matrices CTj,i (j ∈ [M ], i ∈ Nj) such that

CTj,i · dkTj,ℓ =
{
tTj + eTj,i (i = ℓ and i ∈ Sj)
zj,i (i ̸∈ Sj)

(4)

where zj,i is a random vector such that pzT
j,i is less than LQ.

Define the matrix Cj,i := (CTj,i||Aj,i)W
−1 and split it into the 2M column

vectors by Cj,i = (cTj,i,1|| · · · ||cTj,i,2M ). Let the command part be (m ·Q+ p(xT +

uT ), {pcTj,i,ℓ}) and generate its signature σ. Then, the command cmdS is the pair
of the above command and σ.
• Vrfy(vkid, cmdS): Check the signature by Σ.Vrfy(pk, σ, cmdS) at first and if it
returns reject, it stops with returning reject. If the signature is valid, execute
the decryption process as follows. For id = (i1, . . . , iK), denote the vector part
of vkid be (v1, . . . , vK) and let the ℓ-th element of vj be vj,ℓ. For a command
(m + p(xT + uT ), {pcTj,i,ℓ}), compute the sum Tj =

∑2M
ℓ=1 vj,ℓFj,ij ,ℓ and m′ =

m+ p(xT +uT )− (T1 + · · ·+ TK). Decode the message by m′ = ⌊m′/Q⌉. If it is
greater than L, return reject and if otherwise, return m′.

The correctness and securities are already given in the template construction.
We should give detail on distinguishing the legitimate command. In the com-

putation of m′, we have

p(xT + uT )− (T1 + · · ·TK) = pxT −
K∑
j=1

p(CTj,ij · dkj,ij ). (5)

after cancelling uT . Here, each factor is p(tTj + eTj,i) or pzj,i by (4). By the
conditions pxT ≥ KLQ and pzj,i < LQ, if there is a factor from pzj,i, the sum
is greater than LQ and the resulting m′ is greater than L.

We describe the processing resources. As in the discrete situation, we assume
Nj = 2 for all j and K is about 20 – 30. From Theorem 1 (with instantiation
to decision LWE), the hardness of the decision LWE problem with parameters
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(n,m, q, σ) is the security base of the anonymity of lattice-based ABA with
parameters M = 2n, modulus q, and the error parameter σ. Thus, we take the
parameters M = 2n and the same (q, σ) so that the LWE problem is intractable.

On the other hand, it should reduce the probability of decoding errors by
modifying q and Q. Concretely, following the detail of recovering m′ in the veri-
fication, the noises are

p(xT + uT )− (T1 + · · ·TK) =

K∑
j=1

p · eTj,ij . (6)

Assuming each coordinates of eTj,ij are continuous Gaussian N(0, σ2), the
distribution of the error is N(0,K||p||2σ2). For the extremely low probability
case, the following bound gives a good approximation

Pr[|N(0, s2)| ≥ β] = 1− erf (β/s) < exp
(
−β2/s2

)
.

Thus, taking β so that the bound is very small, it derives a bound of the error
in practice. For example, take the error bound by the inverse of 109 · 232 · 264 ≈
8·1037 ≈ e87.3, whose factors are the number of controlled devices, the number
of seconds in 100 years, and safety margins. This derives β >

√
87.3s. Therefore,

we can assume the absolute value of (6) is smaller than
√
87.3 ·

√
2K||p||σ in

practice. Since p works as a secret vector of LWE in the security proof, it should
be a discrete Gaussian [17] and its derivation is σ. As the same argument, we
can assume ||p|| <

√
87.3
√
Mσ = 2

√
2 · 87.3nσ and thus we take Q so that√

87.3 ·
√
2Kσ · 2

√
2 · 87.3nσ ≈ 350

√
Knσ2 < Q.

As an example situation, we set K = 20 for controlling a million devices, and
set σ = 3. Let the space of legitimate message space be 4 (two bits). Then, q is a
prime larger than 2KLQ > 2LK · 350

√
Knσ2 ≈ 2253956

√
n. To achieve 128-bit

security in ABA. We use Albrecht et al.’s lattice estimator [16] as of May 2022,
and obtain the dimension 926.

For another set, we summarize the parameter in Table 2 and Table 3. Since
one verification key and a command ciphertext consists of 2KM = 4Kn and
1 + 4KM = 1 + 8Kn elements of Zq respectively, the sizes in bytes are the
smallest integers greater than (4Kn)⌊log2 q⌋/8 and (1 + 8Kn)⌊log2 q⌋/8.

7 Concluding remarks

We proposed a template construction of ABA that can control an exponential
number of devices compared to the length of ciphertexts. Our design rationale is
taking an edge of conditions from the trilemma among the security, ciphertext
length, and freedom in the choice of target devices. Then we achieved ABA
with logarithmic-order ciphertexts by restricting the third condition, namely
the choice of controllable devices.
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A Anonymity from a Single Command

In the notion of standard anonymity (Definition 4), the situation where no infor-
mation leakage except for the corrupted devices is defined via the indistinguisha-
bility on two sets S0 and S1. We think the validity of this definition bases on the
assumption that the target set is uniformly chosen from 2[N ] and information
leakage always results from cryptographic vulnerability.

On the other hand, we emphasize that there is a possibility that information
is leaked regardless of the cryptographic vulnerability if freedom in the target
devices selection is limited. We explain a situation below.
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Example 2. Consider an ABA whose id’s are indicated by two dimensional vec-
tors (i1, i2) and ij = 1, 2. Thus, total of four devices are controlled. Suppose
the target ids are indicated by S = S1 × S2,Sj ⊂ [2], which is equivalent to
the family of set of ids indicated by d1d2 ∈ {0, 1, ∗}2 where ∗ is the wild-card.
Totally, nine patterns are possible as in Table 4.

Table 4. Selection of target devices.

(d1, d2) (1,1) (1,2) (2,1) (2,2)

(1,1) •
(1,2) •
(1,*) • •
(2,1) •
(2,2) •
(2,*) • •
(*,1) • •
(*,2) • •
(*,*) • • • •

Consider the situation where id = (1, 2) and (2, 1) are colluded and one can
know only vk1,2 and vk2,1 by a protection against recombination attack. Suppose
the attacker knows a command ciphertext targets both id = (1, 2) and (2, 1).
Then, from the Table 4, d1d2 = (∗, ∗) is revealed and it can know id = (1, 1) and
(2, 2) are also target devices without any attacks on cryptographic components.

To formulate this kind of anonymity, we introduce the notion of single anonymity.
This insecurity is independent of the security of cryptographic components.

Definition 13. (Single Anonymity) Suppose D be a family of sets S ⊂ 2[N ] that
can be specified as a target of ABA. We say it has a single anonymity if a pattern
of {Vrfy(vkid, cmdS)}id∈W does not reveal whether id′ ∈ cmdS for id′ ̸∈W .

Proposition 2. If the freedom in the target devices selection, it does not have
the single anonymity.

Proof. Suppose the selection of target devices has restricted freedom. That
is, assume there is a subset S ⊂ [N ] that cannot be specified as a target. We
separate the situation. First, in the situation where there exists a S ′ ⊃ S that can
be specified as a target. Take the smallest S that satisfies the condition. Then,
suppose all the devices S ∪ ([N ] \ S ′) has been colluded and receive a command
cmdS′ that targets S ′. The adversary can verify the commands in the infected
devices and can know for id ∈ S (resp. id ∈ [N ] \ S ′), they are in target (resp.
non-target.) With the restriction of the choice of S, the adversary also obtain
that the devices in S ′ \ S are in the target without using any cryptographic
attacks.
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Next, consider the situation where for any subset S ⊂ [N ] that cannot be
specified as a target, a subset S ′ ⊃ S does not exist. Let S be a non-target set
and take S̄ as a maximal target set so that S̄ ⊂ S. We can show the information
leakage with a similar argument. Suppose all the devices S̄ ∪ ([N ] \ S) has been
colluded and receive a command cmdS that targets S. The adversary can verify
the commands in the infected devices and can know for id ∈ S̄ (resp. id ∈ [N ]\S),
they are in target (resp. non-target.) With the restriction of the choice of S, the
adversary also obtain that the devices in S ′ \ S are not in the target. □

We think one of our future works is to investigate the relationship between
the restriction of target devices choice (that bounds ciphertext length) and the
strength of anonymity.

B Message Security

This section discusses the hardness of distinguishing messages from the command
ciphertexts without keys of target devices.

We introduce a game-based definition of message indistinguishability.

Definition 14. (IND-CPA security of ABA with t-collusion) Consider the fol-
lowing game between an adversary A and a challenger C.

0: Share N the number of participant devices and pp the public parameter.
C runs Setup(1λ, N,D)→ ak = (ek, {dki}).

1: (Collusion query) A selects id ∈ [N ] and send it to the challenger. C runs
Join(ak, id) → vkid. Add id to W and send vkid to A. A can repeat this
step until the number of colluded devices is less than t.

2: (Challenge ciphertext) A selects a set of target devices S ⊂ [N ],S ∩W =
ϕ and two messages m0,m1 and send them to C. C generates a ciphertext
cmdS from mb where b is randomly chosen from {0, 1} and return the
ciphertext to A.

3: (Encryption query) A can ask C to encrypt (m′,S ′) and receive the ci-
phertext cmdS′

4: A guesses b′ from cmdS.
The advantage of A is defined by 2 · |Pr[b = b′]− 1/2|. The scheme is said to

be IND-CPA secure if the advantage is negligible.

In our template construction, a challenge ciphertext has a form

cmdS = (mb ⊗ fprm(x
T ), fprm(c

T
1 ), . . . , fprm(c

T
M ))

and also a command ciphertext with known m′ in the encryption query phase is

cmdS′ = (m′ ⊗ fprm(x
T ), fprm((c

′
1)

T ), . . . , fprm((c
′
M )T )).

Theorem 2. The IND-CPA security of ABA in the discrete logarithm instan-
tiation can be reduced to the DDH assumption.
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Proof. Suppose A can distinguish the command ciphertext of ABA with discrete
logarithm instantiation, working with M dimensional vectors, N devices, fg(a) =
ga and t colluded devices. We show how the challenger distinguishes an instance
of DDH assumption (g, gr, gx, gc) where c = rx or a random number.

Let dk
T

i , i ∈ [N ] be fake decryption keys of base MRE that the challenger
randomly generates. Upon the adversary’s collusion queries, it returns a sequence
of the fake keys. Upon the adversary’s set S, generate a random number x and
a row vector CT so that

CT · dkTi =

{
x (i ∈ S)

rand (i ̸∈ S)

where rand is a random number except for x. Then, parse CT = (ct1, . . . , ctM ).
Upon the messages m0,m1, choose mb randomly and let the returning com-

mand be
cmdS′ = (mb · gc, grct1 , . . . , grctM ).

Let dkTi s be the true keys assumed to be used in a virtual encryption system
from the adversary’s view. It satisfies CT · dkTi = x. The relation between the
fake and true keys are dk

T

i = dkTi · (x/x).
Then, upon the adversary’s encryption query (m′,S ′), again generate a ran-

dom number x′ and a matrix CT ′ so that

CT ′ · dkTi =

{
x′ (i ∈ S)

rand (i ̸∈ S)

and the command ciphertext be

cmdS′ = (m′ · gx·(x′/x), gct
′
1 , . . . , gct

′
M ).

Since we have gx, x and x′ the first element is easily computable. For the true
key dkTi = (di,1, . . . , di,M )T , we have

M∏
i=1

(gct
′
i)di,j = gCT ′·dki = gdki

T ·(x/x) = gx
′·(x/x)

Thus, this is a legitimate command that encrypts m′.
Finally, the adversary guesses b′ and the advantage |Pr[b = b′]− 1/2| should

be high if c = rx and small if c is random. □
Besides the discrete logarithm situation, we connect the security of ABA to

the hardness of the decision LWE in the lattice case.

Theorem 3. Let (n, q,m) be the LWE parameter, and suppose the noise distri-
bution is from χ. The hardness of the decision LWE guarantees the security of
ABA against CPA with lattice instantiation with noise distribution χ + χ and
vector dimension M = 2n. Also, assume the domain of fprm(·) has dimension r.
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Proof. Let a1, . . . ,ar and bT = (b1, . . . , br)
T be sample instances of the decision

LWE. Here, bi = ais
T+ei mod q or a random in Zq. We also let eT = (e1, . . . , er)

from the noise distribution χr.
Let A be an adversary that can distinguish two messages of ABA working

with 2n dimensional vectors, N devices, and t colluded devices. The template
function fp(x

T ) = pxT is defined over r dimensional vectors and p is assumed
to be a small vector to be kept secret but random for security.

For collusion queries, we can assume the ID’s id = 1, . . . , t w.l.o.g, and also we
let fake verification keys by 2n dimensional vector vk

T

i = [(ri||ui)U ]T where ris
and U are random vectors from Zn

q and a random matrix in Z2n×2n
q , respectively.

Also, for other IDs, we tentatively put vk
T

i = [(s||ui)U ]T which is unknown for
both challenger and adversary since s is the secret vector of the LWE instance.

Upon the adversary’s request m0,m1 and S in Step 2, the challenge ciphertext
is constructed by using LWE samples ai, b and randomly generated mb as follows.
For the row vectors ai, construct the r × n matrix and parse it into n column
vectors a1

...
ar

 =
[
AT

1 · · · AT
n

]
and define Ai the transpose of AT

i . Then, the command is

cmdS = (mb + bpT , [A1p
T , . . . , Anp

T , Fn+1, . . . , F2n]U
−1 mod q).

Here, the latter elements are defined by

Fn+i =

 rand (i ̸∈ S)
0 (i ∈ S ∩ {t+ 1, . . . , N}) //non-colluded keys

bpT −
∑n

i=1 riAip
T + ηip

T (i ∈ S ∩ [t]) //colluded keys

where ηi is a vector from Dr
Z,σ. For this setting, the results of the target and

nontarget device’s verifications are as follows. For i ∈ S ∩ [t], we have

(A1p
T , . . . , Anp

T , Fn+1, . . . , F2n)U
−1 · (vki

T
)

= (A1p
T , . . . , Anp

T , Fn+1, . . . , F2n) · (ri||ui)
T = bpT + ηip

T .

Thus,
Vrfy(vki, cmdS) = mb − ηip

T (7)

For i ∈ S ∩ ([N ] \ [t]), we have

(A1p
T , . . . , Anp

T , Fn+1, . . . , F2n)U
−1 · (vki

T
)

= (A1p
T , . . . , Anp

T , Fn+1, . . . , F2n) · (si||ui)
T =

n∑
i=1

siaip
T

Thus,

Vrfy(vki, cmdS) = mb + bpT −
n∑

i=1

siaip
T = m+ (e+ ηi)p

T . (8)
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For the encryption queries (m′,S ′), it can construct the command in the
same manner.

Therefore, LWE samples can be converted to the instance of ABA. If the
LWE instance is legitimate (resp. random), the advantage of A should be high
(resp. low). Thus, A can solve the decision LWE problem.

Finally, it is necessary to keep attention to the noise distribution. In the above
transformation, the noises (7) and (8) are slightly different. Replacing both eT +
ηT
i and ηT

i by (η′)Ti which has larger derivations, the hardness of distinguishing
is amplifying. If one takes eT ,ηT

i are discrete Gaussians of variance σ2, (η′)Ti
should be the discrete Gaussians of variance 2σ2. We completee the proof of the
relation between noise parameters. □


