
FFT-less TFHE: Simpler, Faster and
Scale-invariant

Zhen Gu, Wen-jie Lu, and Cheng Hong

Alibaba Group

Abstract. Fully homomorphic encryption (FHE) has been one of the
most promising cryptographic tools for secure two-party computation
and secure outsourcing computation in recent years. However, the com-
plex bootstrapping procedure in FHE schemes is the main bottleneck of
it practical usage, and the TFHE scheme is the state-of-the-art for effi-
cient bootstrapping. To further improve the efficiency of bootstrapping
in TFHE, the number of fast Fourier transforms (FFT) should be reduced
since bootstrapping in TFHE is mainly composed of vast FFTs. In this
paper, we focus on a novel method of decomposing-in-Fourier (DIF) to
reduce the number of FFTs in bootstrapping of TFHE, from 2(ℓ + 1)n to
4n. As a result, our method would reduce the number of FFTs required by
each external product in bootstrapping to a constant number rather than
varying with decomposing parameters, which leads to a scale-invariant
bootstrapping structure.

Keywords: TFHE· FFT· Bootstrapping

1 Introduction

With the growing interest in data privacy, fully homomorphic encryption (FHE)
has been developed rapidly over the past decade. After the first bootstrappable
construction by Gentry [7], various schemes and implementations have been
designed for simpler and more efficient bootstrapping or more composable prim-
itives. Among these, BGV, B/FV, CKKS, GSW, FHEW and TFHE are the most famous
FHE schemes[1][6][2][8][5][3]. In the sense of bootstrapping, TFHE is one of the
fastest scheme with only milliseconds required to bootstrap a ciphertext. To fur-
ther improve the performance of bootstrapping, there have been some researches
of reducing the amortized complexity for bootstrapping [9][11][4]. However, few
significant attempts have been made for reducing the computational complex-
ity of bootstrapping. In this paper, we present FFT-less TFHE, which is lower in
computational complexity than the original TFHE.

We briefly describe the roadmap here and details are discussed in the follow-
ing sections. Step 1, we revisit the ExtProd in TFHE and analyze the operations
from the computational perspective; Step 2, we discuss the relationship between
Decomp and the number of required FFTs in a single ExtProd; Step 3, to unleash
the relationship between Decomp and the number of FFTs, we present the con-
straints of making a valid Decomp; Step 4, we present the properties of FFT and

show how to perform Decomp in FFT domain; Step 5, we show that the FFT-less
TFHE is possible with worst-case and average-case noise analysis. As a closure
of the paper, we have some interesting discussions about possible paths to the
FFT-free TFHE for the further complexity reduction.

2 Preliminaries

2.1 Learning with Errors and Its Ring Variant

Learning with errors (LWE) is a widely used lattice-based cryptographic scheme
that is convinced to resist attacks with quantum computing[12]. LWE and its
ring variant (RLWE) have been developed to construct most of nowadays FHE
schemes, like BGV, B/FV, CKKS, GSW, FHEW and TFHE [13][1][6][2][8][5][3]. In this
paper, R denotes Z[X]/(XN +1), and Rq, R2 denote R/qR, R/2R, respectively.

In LWE, a plaintext µ ∈ Zq is encrypted with a ciphertext (⃗a, b) ∈ Zn
q × Zq

using a secret key s⃗ ∈ Zn
q with elements in {0, 1}, such that b = a⃗ · s⃗+ e , where

a⃗ is uniformly sampled from Zn
q and e ∈ Zq is a noise with discrete gaussian

distribution. We can rewrite the LWE ciphertext as LWEs⃗ (µ|⃗a, e) = (⃗a, a⃗ · s⃗+ e).
In RLWE, a plaintext µ ∈ Rq is encrypted with a ciphertext (a, b) ∈ Rq ×Rq

using a secret key s ∈ Rq with coefficients in {0, 1}, such that b = as+ e, where
a is uniformly sampled from Rq and e ∈ Rq is a noise with discrete gaussian
distribution. We can rewrite the RLWE ciphertext as RLWEs (µ|a, e) = (a, as+ e).
Moreover, we define the phase function for RLWE ciphertexts as follows:

φs(RLWEs (µ|a, e)) = (as+ µ+ e)− as = µ+ e (1)

In GSW-like schemes such as FHEW and TFHE, RGSW ciphertexts are introduced
for homomorphic multiplications. In RGSW, two parameters ℓ,B are defined for
the balance between efficiency and noise propagation. The gadget vector g⃗ is(
Q/B1 · · · Q/Bℓ

)
, and the gadget matrix is

Gℓ,B =

[
Diagonal(g⃗) 0

0 Diagonal(g⃗)

]
. (2)

A RGSW ciphertext encrypting a plaintext µ ∈ Z with the secret key s ∈ Rq is
then defined as

RGSWℓ,Bs (µ|A,E) = µGℓ,B + Z = µGℓ,B +
[
A As+ E

]
(3)

where Z is a matrix of 2ℓ rows and each row contains a RLWE ciphertext encrypting
0 with s.

2.2 External Product and Fast Fourier Transforms in TFHE

In TFHE, an external product performs the homomorphic multiplication of a RLWE
ciphertext and a RGSW ciphertext. For RGSW parameters ℓ,B, the decomposition

2

Algorithm 1 ExtProd in TFHE
Require: (a, b) = RLWEs (µ0|a, e) , RGSWℓ,Bs (µ1|A,E)
Ensure: ctExtProd = RLWEs (µ0µ1|aExtProd, eExtProd)

ctDecomp = Decompℓ,B ((a, b))
ctDecompFFT[i] = FFT(ctDecomp[i]) i = 0, · · · , 2ℓ
ctExtProdFFT = ctDecompFFT · RGSWℓ,Bs (µ1|A,E)
ctExtProd[i] = IFFT(ctExtProdFFT[i]) i = 0, 1

of a RLWE ciphertext RLWEs (µ|a, e) = (a, b) is defined as follows

Decompℓ,B ((a, b)) =
[
Dig(a, 0) · · · Dig(a, ℓ− 1) Dig(b, 0) · · · Dig(b, ℓ− 1)

]
,
(4)

where Dig(•, i) =
[⌊

•
Q/Bi+1

⌋]
B

. Meanwhile, εℓ,B(u), the decomposition error of

a polynomial u and the maximal decomposition error εℓ,B are defined as follows,
respectively,

εℓ,B(u) =

ℓ−1∑
i=0

Dig(u, i)
Q

Bi+1
− u =

ℓ−1∑
i=0

Dig(u, i)g⃗i − u (5)

εℓ,B = max
u∈RQ

{∥∥εℓ,B(u)
∥∥
∞

}
= Q/Bℓ (6)

With the decomposition of RLWE ciphertexts, the external product of a RLWE
ciphertext ct0 = RLWEs (µ0|a, e) and a RGSW ciphertext ct1 = RGSW

ℓ,B
s (µ1|A,E)

is defined as

ExtProd(ct0, ct1) = Decompℓ,B (ct0) · ct1. (7)

3

Actually, the external product of ct0 and ct1 is a RLWE ciphertext encrypting
µ0µ1 with s, because

ExtProd(ct0, ct1)

=Decompℓ,B (ct0) · ct1
=Decompℓ,B ((a, b))µ1Gℓ,B + Decompℓ,B ((a, b))

[
A As+ E

]
=µ1(

ℓ−1∑
i=0

Dig(a, i)g⃗i,

ℓ−1∑
i=0

Dig(b, i)g⃗i)

+
[
Decompℓ,B ((a, b))A Decompℓ,B ((a, b))As+ Decompℓ,B ((a, b))E

]
=(µ1a+ µ1ε

ℓ,B(a) + Decompℓ,B ((a, b))A, µ1b+ µ1ε
ℓ,B(b)

+ Decompℓ,B ((a, b))As+ Decompℓ,B ((a, b))E)

φs (ExtProd(ct0, ct1))

=µ1b+ µ1ε
ℓ,B(b) + Decompℓ,B ((a, b))As+ Decompℓ,B ((a, b))E

−
(
µ1a+ µ1ε

ℓ,B(a) + Decompℓ,B ((a, b))A
)
s

=µ1µ0 + µ1e+ µ1(ε
ℓ,B(b)− εℓ,B(a)s) + Decompℓ,B ((a, b))E

Therefore, the external product of RLWEs (µ0|a, e) and RGSW
ℓ,B
s (µ1|A,E) is

RLWEs (µ0µ1|aExtProd, eExtProd), where

aExtProd = µ1a+ µ1ε
ℓ,B(a) + Decompℓ,B ((a, b))A

eExtProd = µ1e+ µ1(ε
ℓ,B(b)− εℓ,B(a)s) + Decompℓ,B ((a, b))E.

For noise analysis, a straightforward conclusion about the external product is

∥eExtProd∥∞ ≤ µ1 ∥e∥∞ + µ1(1 +N)εℓ,B + 2ℓB ∥E∥∞
ExtProd is a basic building block in the bootstrapping of TFHE. Thus we look
into the computational structure of ExtProd to see how the number of FFTs
account to the total computational complexity.

Computational Perspective on ExtProd We first take a brief glance of the
computational structure of ExtProd, and later we count the number of FFTs
required in a single ExtProd.

In an ExtProd, 2 polynomials in a RLWE ciphertext are first decomposed into
ℓ polynomials respectively. Then the vector of these 2ℓ polynomials is multiplied
by the RGSW ciphertext, which is matrix of 2ℓ× 2 polynomials. Consequently, in
a single ExtProd, 4ℓ polynomial multiplications are involved. Fast Fourier trans-
forms are applied for the reduction in computational complexity of polynomial
multiplications. Usually, the polynomials are converted to its evaluation form via
FFT, and converted back to its coefficient form via IFFT. In their evaluation forms,
polynomials can be multiplied with point-wise-multiplication (PWM). Therefore,
considering the transformations from and to evaluation forms, a single external
product can be evaluated via 2ℓ FFTs, 2 IFFTs and 4ℓ PWMs of polynomials:

4

1. Decompose the two polynomials of the RLWE ciphertext in their coefficient
forms.

2. Apply 2ℓ FFTs to the decomposed polynomials and convert them into eval-
uation forms.

3. Perform 4ℓ PWMs of the 2ℓ decomposed polynomials and the 4ℓ polynomials
in the RGSW ciphertext.

4. Sum the products up to the two polynomials in the result RLWE ciphertext.
5. Apply 2 IFFTs to the polynomials in the result RLWE ciphertext and convert

them into coefficient form.

In the above procedure, polynomials in the RGSW ciphertext are not trans-
formed into evaluation forms because in the case of bootstrapping, the RGSW
ciphertexts are pre-computed bootstrapping key components, and their conver-
sion to evaluation forms is not counted in the computational cost of ExtProds.

Most theoretical papers about homomorphic encryption schemes take fast
Fourier transforms and number-theoretic transforms (NTT) as a speeding up
technique for polynomial multiplications and would not discuss the details of
the transforms. However, in this paper, we take the advantage of the evaluation
form to reduce the number of FFTs and we present the details of FFT for further
discussions.

Fast Fourier transform is a fast algorithm for computing discrete Fourier
transform. We take ξ = exp

(
− 2π

2N I
)
, then for a polynomial f(X) =

∑N−1
i=0 aiX

i

in R, the FFT of the coefficient vector f⃗ of the polynomial f is

FFT(f⃗) =
(
f(ξ) f(ξ3) · · · f(ξ2N−1)

)T
=Vand

(
ξ, ξ3, · · · , ξ2N−1

)
f⃗

=

1 ξ · · · ξN−1

1 ξ3 · · · ξ3(N−1)

...
...

...
...

1 ξ2N−1 · · · ξ(2N−1)(N−1)

a0
a1
...

aN−1

In the above formula, Vand

(
ξ, ξ3, · · · , ξ2N−1

)
is the Vandermonde matrix gener-

ated by the primitive root ξ. Similarly, the inverse fast Fourier transform, IFFT
is

IFFT(FFT(f⃗)) = f⃗ =
1

N
Vand

(
ξ−1, ξ−3, · · · , ξ−(2N−1)

)
FFT(f⃗)

FFT and IFFT can be evaluated with computational complexity of O (N log2 N).

3 FFT-less External Product

3.1 Magnitude-Preserving Property of FFT

Unlike its finite filed variant NTT, FFT would preserve the magnitude when con-
verting a polynomial from (to) coefficient form to (from) evaluation form. In

5

brief (but not precisely), polynomials with small coefficients would be converted
to evaluation form with small terms; polynomials with large coefficients would be
converted to evaluation form with large terms. Such magnitude-preserving prop-
erty is not possible in NTT, since the wrapping-around in finite field arithmetic
is possible to map large coefficients to small terms. In this sense, our proposal
can only be applied to those schemes using FFT. In fact, all digit decompositions
in any homomorphic encryption scheme would benefit from our proposal.

We first introduce the linearity of FFT and then present a formal description
along with proof of the magnitude-preserving property, which would make up
all the ingredients required for our FFT-less TFHE.

Property 1 (Linearity of FFT).

FFT(saa+ sbb) = saFFT(a) + sbFFT(b), ∀sa, sb ∈ C,∀a, b ∈ CN (8)

Property 2 (Magnitude-preserving Property of FFT).

∥FFT(a)∥∞ ≤ N ∥a∥∞ ,∀a ∈ CN (9)

∥IFFT(a)∥∞ ≤ ∥a∥∞ ,∀a ∈ CN (10)

The above linearity of FFT is quite straightforward. The magnitude-preserving
property is a direct corollary of Cauchy-Schwarz Inequality

Proof (Correctness of Property 2).
For arbitrary a =

(
a0 a1 · · · aN−1

)
∈ CN , we have

∥FFT (a)∥∞
=
∥∥Vand (ξ1, ξ3, · · · , ξ2N−1

)
a
∥∥
∞

= max
k=0,1,··· ,N−1

{∥∥∥∥∥
N−1∑
i=0

ξ(2k−1)iai

∥∥∥∥∥
}

≤ max
k=0,1,··· ,N−1

√√√√(N−1∑

i=0

∥∥ξ(2k−1)i
∥∥2)(N−1∑

i=0

∥ai∥2
)

= max
k=0,1,··· ,N−1

√√√√N

N−1∑
i=0

∥ai∥2

≤ max
k=0,1,··· ,N−1

{√
N ×N ∥a∥2∞

}
=N ∥a⃗∥∞

The magnitude-preserving property for IFFT can be similarly proven.

6

3.2 Decomposition in FFT Form

Before presenting our algorithm, we have to investigate why Decomp is used in
TFHE and show the main constraints of constructing a valid Decomp. Actually,
for ExtProd, its noise estimation is

eExtProd ≤ µ1 ∥e∥∞ + µ1(1 +N)εℓ,B + 2ℓB ∥E∥∞

= µ1 ∥e∥∞ + µ1(1 +N)
Q

Bℓ
+ 2ℓB ∥E∥∞ .

Therefore, Decomp is used for the reduction of noise growth in ExtProd and there
are two constraints for Decomp :

1. The norm of the decomposed ciphertext should not be too large, which in
Decomp is upper bounded the base B.

2. The reconstructed ciphertext, which is the inner product of the decomposed
ciphertext and the gadget vector, is close to the original ciphertext with a
limited error, which in our case, is εℓ,B.

The necessity of decomposition in coefficient form has not been seriously
discussed ever. Actually, in NTT-based implementations, the only choice for digit
decomposition is converting to coefficient forms and then decomposing. However,
with the magnitude-preserving property and linearity of FFT, decomposition in
FFT-based implementations is possible for decomposing in evaluation forms.

With the magnitude-preserving property and linearity of FFT, we present
here our proposal of Decomposition-in-FFT-Form as follows:

DecompFFTℓ,B ((a, b))

=
[
DigFFT(a, 0) · · · DigFFT(a, ℓ− 1) DigFFT(b, 0) · · · DigFFT(b, ℓ− 1)

]
where DigFFT(a, i) =

[⌊
FFT(a)

QN/Bi+1

⌋]
B

, and g⃗FFT = N · g⃗, Gℓ,B
FFT = N · Gℓ,B.

On one hand, such DecompFFTℓ,B ((a, b)) is a valid decomposition. Actually,
since ∥FFT(a)∥∞ ≤ N ∥a∥∞ ≤ NQ, we have

εℓ,BFFT (a) =FFT(a)− DecompFFTℓ,B (a) · g⃗FFT

=FFT(a)−
ℓ−1∑
i=0

DigFFT(a, i)
QN

Bi+1

=FFT(a)−
ℓ−1∑
i=0

[⌊
FFT(a)

QN/Bi+1

⌋]
B

QN

Bi+1

=FFT(a)−
⌊
FFT(a)
QN/Bℓ

⌋
QN

Bℓ

Therefore, εℓ,BFFT = maxa∈RQ

{∥∥∥εℓ,BFFT (a)
∥∥∥
∞

}
=

√
2QN
Bℓ .

On the other hand, the norm of the decomposed ciphertext is upper bounded
by

√
2B. Therefore, our construction makes a valid decomposition. Our FFT-less

external product is then shown in Algorithm.2.

7

Algorithm 2 ExtProdFFT in TFHE
Require: (a, b) = RLWEs (µ0|a, e) , RGSWℓ,Bs (µ1|A,E)
Ensure: ctExtProd = RLWEs (µ0µ1|aExtProd, eExtProd)

ctDecompFFT = DecompFFTℓ,B ((a, b))
ctExtProdFFT = ctDecompFFT · RGSWℓ,Bs (µ1|A,E)
ctExtProd[i] = [⌊ℜ{IFFT(ctExtProdFFT[i])}⌋]Q i = 0, 1

3.3 Noise Analysis

To prove the correctness of Algorithm.2, we only to show that the error

ϵExtProd = ctExtProd[1]− ctExtProd[0]s− µ0µ1

would not blow up. Actually, assume that

ϵi = IFFT(ctExtProdFFT[i])− ⌊ℜ{IFFT(ctExtProdFFT[i])}⌋ i = 0, 1

then we have

ϵExtProd

=ctExtProd[1]− ctExtProd[0]s− µ0µ1

=IFFT(ctExtProdFFT[1])− ϵ1 − IFFT(ctExtProdFFT[0])s+ ϵ0s− µ0µ1

=IFFT

(
ℓ−1∑
i=0

[⌊
FFT(a)

QN/Bi+1

⌋]
B

⊙ FFT(Bi) +

ℓ−1∑
i=0

[⌊
FFT(b)

QN/Bi+1

⌋]
B

⊙ FFT(Bi+ℓ + µ1
QN

Bi+1
)

)
− ϵ1

− IFFT

(
ℓ−1∑
i=0

[⌊
FFT(a)

QN/Bi+1

⌋]
B

⊙ FFT(Ai + µ1
QN

Bi+1
) +

ℓ−1∑
i=0

[⌊
FFT(b)

QN/Bi+1

⌋]
B

⊙ FFT(Ai+ℓ)

)
s+ ϵ0s− µ0µ1

=IFFT

(
ℓ−1∑
i=0

[⌊
FFT(a)

QN/Bi+1

⌋]
B

⊙ FFT(Bi − (Ai + µ1
QN

Bi+1
)s)

+

ℓ−1∑
i=0

[⌊
FFT(b)

QN/Bi+1

⌋]
B

⊙ FFT(Bi+ℓ + µ1
QN

Bi+1
−Ai+ℓs)

)
− ϵ1 + ϵ0s− µ0µ1

=IFFT

(
ℓ−1∑
i=0

[⌊
FFT(a)

QN/Bi+1

⌋]
B

⊙ FFT(−µ1
QN

Bi+1
s+ Ei) +

ℓ−1∑
i=0

[⌊
FFT(b)

QN/Bi+1

⌋]
B

⊙ FFT(µ1
QN

Bi+1
+ Ei+ℓ)

)
− ϵ1 + ϵ0s− µ0µ1

=µ1IFFT

(
ℓ−1∑
i=0

([⌊
FFT(b)

QN/Bi+1

⌋]
B

QN

Bi+1
−
[⌊

FFT(a)
QN/Bi+1

⌋]
B

QN

Bi+1
⊙ FFT(s)

))

+

ℓ−1∑
i=0

IFFT
([⌊

FFT(a)
QN/Bi+1

⌋]
B

)
Ei +

ℓ−1∑
i=0

IFFT
([⌊

FFT(b)
QN/Bi+1

⌋]
B

)
Ei+ℓ − ϵ1 + ϵ0s− µ0µ1

8

=µ1IFFT
(
FFT(b)− εℓ,BFFT (b)− (FFT(a)− εℓ,BFFT (a))⊙ FFT(s)

)
+

ℓ−1∑
i=0

IFFT
([⌊

FFT(a)
QN/Bi+1

⌋]
B

)
Ei

+

ℓ−1∑
i=0

IFFT
([⌊

FFT(b)
QN/Bi+1

⌋]
B

)
Ei+ℓ − ϵ1 + ϵ0s− µ0µ1

=µ1(b− as)− µ1IFFT(ε
ℓ,B
FFT (b)− εℓ,BFFT (a)⊙ FFT(s)) +

ℓ−1∑
i=0

IFFT
([⌊

FFT(a)
QN/Bi+1

⌋]
B

)
Ei

+

ℓ−1∑
i=0

IFFT
([⌊

FFT(b)
QN/Bi+1

⌋]
B

)
Ei+ℓ − ϵ1 + ϵ0s− µ0µ1

=µ1(µ0 + e)− µ1IFFT(ε
ℓ,B
FFT (b)− εℓ,BFFT (a)⊙ FFT(s)) +

ℓ−1∑
i=0

IFFT
([⌊

FFT(a)
QN/Bi+1

⌋]
B

)
Ei

+

ℓ−1∑
i=0

IFFT
([⌊

FFT(b)
QN/Bi+1

⌋]
B

)
Ei+ℓ − ϵ1 + ϵ0s− µ0µ1

=µ1e− µ1IFFT(ε
ℓ,B
FFT (b)− εℓ,BFFT (a)⊙ FFT(s)) +

ℓ−1∑
i=0

IFFT
([⌊

FFT(a)
QN/Bi+1

⌋]
B

)
Ei

+

ℓ−1∑
i=0

IFFT
([⌊

FFT(b)
QN/Bi+1

⌋]
B

)
Ei+ℓ − ϵ1 + ϵ0s

Therefore, the noise growth of ExtProdFFT can be estimated by the following
two theorems:

Theorem 1. The noise growth in worst case of ExtProdFFT is

∥ϵExtProd∥∞ ≤ ∥µ1∥1 ∥e∥∞ + (1 +N)
√
2 ∥µ1∥1

QN

Bl
+ 2

√
2ℓNB ∥E∥∞ + (1 +N)

Theorem 2. The noise growth in average case of ExtProdFFT is

Var (ϵExtProd) = ∥µ1∥1 Var (e) + ∥µ1∥1
2(Q2N2 −B2ℓ)

3NB2ℓ

(
1 +NVar (si) + E2 (si)

)
+

4ℓB(B− 1)

3
Var (Ei) +

1

12
+

N

12

(
4Var (si) + E2 (si)

)

The Worst Case Noise Growth First of all, as discussed before, εℓ,BFFT (a), ε
ℓ,B
FFT (b) ≤

εℓ,BFFT ≤
√
2QN

Bl .

Secondly,
∥∥∥IFFT([⌊ FFT(a)

QN/Bi+1

⌋]
B

)∥∥∥
∞

≤
∥∥∥[⌊ FFT(a)

QN/Bi+1

⌋]
B

∥∥∥
∞

≤
√
2B.

Finally, ∥ϵi∥∞ ≤ 1, ∥ϵ0s∥∞ ≤ 1 ∗N ∗ 1 = N .

9

Therefore, the worst-case noise growth is bounded by:

∥ϵExtProd∥∞

=

∥∥∥∥∥µ1e− µ1IFFT(ε
ℓ,B
FFT (b)− εℓ,BFFT (a)⊙ FFT(s)) +

ℓ−1∑
i=0

IFFT
([⌊

FFT(a)
QN/Bi+1

⌋]
B

)
Ei

+

ℓ−1∑
i=0

IFFT
([⌊

FFT(b)
QN/Bi+1

⌋]
B

)
Ei+ℓ − ϵ1 + ϵ0s

∥∥∥∥∥
∞

≤∥µ1∥1 ∥e∥∞ + (1 +N) ∥µ1∥1 ε
ℓ,B
FFT + ℓ ∗

√
2B ∗N ∥E∥∞ + ℓ ∗

√
2B ∗N ∥E∥∞ + 1 +N

≤∥µ1∥1 ∥e∥∞ + (1 +N)
√
2 ∥µ1∥1

QN

Bl
+ 2

√
2ℓNB ∥E∥∞ + (1 +N)

which is exactly as stated in Theorem.1.

The Average Case Noise Growth Before going to the analysis of the noise
terms, we have a look at the variance of a general case:

Lemma 1. For a complex vector u with N i.i.d elements, which are uniformly
distributed on {a+ bI|a, b ∈ [−T, T] ∩ Z} with T ∈ N+, then

E(IFFT(u)[i]) = 0

Var (IFFT(u)[i]) =
2T (T + 1)

3N

Actually, we have

E(IFFT(u)[i]) = E(
1

N

N−1∑
j=0

uj exp

(
ij × 2πI

2N

)
) =

1

N

N−1∑
j=0

E(uj) exp

(
ij × 2πI

2N

)

=
1

N

N−1∑
j=0

T∑
s,t=−T

s+ tI

(2T + 1)2
exp

(
ij × 2πI

2N

)
= 0

Var (IFFT(u)[i]) = E ∥IFFT(u)[i]− E(IFFT(u)[i])∥22

= E

 1

N2

N−1,N−1∑
j=0,k=0

ujuk exp

(
i(j − k)× 2πI

2N

)
= E

 1

N2

N−1∑
j=0

∥uj∥22

+ E

 1

N2

∑
0≤j ̸=k≤N−1

ujuk exp

(
i(j − k)× 2πI

2N

)
= E

 1

N2

N−1∑
j=0

∥uj∥22

+
1

N2

∑
0≤j ̸=k≤N−1

E (uj)E (uk) exp

(
i(j − k)× 2πI

2N

)

= E

 1

N2

N−1∑
j=0

∥uj∥22

 =
N

N2
E(∥uj∥22) =

1

N

∑T
s,t=−T s2 + t2

(2T + 1)2
=

1

N

2(2T + 1)
∑T

s=−T s2

(2T + 1)2

10

=
1

N

2

2T + 1

T (T + 1)(2T + 1)

6
× 2 =

2T (T + 1)

3N

For IFFT(εℓ,BFFT (b)), one needs to set T = QN
Bℓ − 1, and for IFFT(

[⌊
FFT(a)

QN/Bi+1

⌋]
B
),

one needs to set T = B− 1, namely

Var
(
IFFT(εℓ,BFFT (b))

)
=

2QN
Bℓ (

QN
Bℓ − 1)

3N
=

2(Q2N2 −B2ℓ)

3NB2ℓ

Var

(
IFFT(

[⌊
FFT(a)

QN/Bi+1

⌋]
B

)

)
=

2B(B− 1)

3N

Further, we have

Var
(
IFFT(εℓ,BFFT (b)− εℓ,BFFT (a)⊙ FFT(s))

)
=Var

(
IFFT(εℓ,BFFT (b))

)
+ Var

(
IFFT(εℓ,BFFT (a))s

)
=
2(Q2N2 −B2ℓ)

3NB2ℓ
+NVar

(
IFFT(εℓ,BFFT (a))[i]si

)
=
2(Q2N2 −B2ℓ)

3NB2ℓ
+N

(
Var

(
IFFT(εℓ,BFFT (a))[i]

)
Var (si) + E2

(
IFFT(εℓ,BFFT (a))[i]Var (si)

+Var
(
IFFT(εℓ,BFFT (a))[i]

)
E2 (si)

))
=
2(Q2N2 −B2ℓ)

3NB2ℓ
+N(

2(Q2N2 −B2ℓ)

3NB2ℓ
Var (si) +

2(Q2N2 −B2ℓ)

3NB2ℓ
E2 (si))

=
2(Q2N2 −B2ℓ)

3NB2ℓ

(
1 +NVar (si) + E2 (si)

)

Var

(
ℓ−1∑
i=0

IFFT
([⌊

FFT(a)
QN/Bi+1

⌋]
B

)
Ei +

ℓ−1∑
i=0

IFFT
([⌊

FFT(b)
QN/Bi+1

⌋]
B

)
Ei+ℓ

)

=2NℓVar

(
IFFT

([⌊
FFT(a)

QN/Bi+1

⌋]
B

))
Var (Ei)

=2Nℓ
2B(B− 1)

3N
Var (Ei)

Var (e1 + e0s)

=
1

12
+N(

1

12
Var (si) +

1

4
Var (si) +

1

12
E2 (si))

=
1

12
+

N

12

(
4Var (si) + E2 (si)

)
Var (ϵExtProd)

= ∥µ1∥1 Var (e) + ∥µ1∥1
2(Q2N2 −B2ℓ)

3NB2ℓ

(
1 +NVar (si) + E2 (si)

)
+

4ℓB(B− 1)

3
Var (Ei)

11

+
1

12
+

N

12

(
4Var (si) + E2 (si)

)
Considering the imaginary part is always ignored, the variance can be even
smaller, which is

Var (ϵExtProd) = ∥µ1∥1 Var (e) + ∥µ1∥1
Q2N2 −B2ℓ

3NB2ℓ

(
1 +NVar (si) + E2 (si)

)
+

2ℓB(B− 1)

3
Var (Ei)

+
1

12
+

N

12

(
4Var (si) + E2 (si)

)
With the above noise analysis, we say Algorithm.2 is correct with similar

noise growth as the original TFHE ExtProd.

4 Discussions and Future Work

With Algorithm.2, we obtain a TFHE external product with fewer FFTs. We
present a very brief comparison on the number of FFTs required by an ExtProd
in with (w/) or without (w/o) FFT-less method in Figure.1. It is straightforward
to see that our method outperform the original TFHE in performance as long as
ℓ ≥ 2.

Meanwhile, beyond the reduction in computational complexity, Algorithm.2
introduces many other benefits, and we discuss about two most significant ben-
efits here.

Firstly, in Algorithm.2 the number of FFTs is no longer dependent on ℓ, which
makes Algorithm.2 scale-invariant in the number of FFTs. This is quite important
in the design of hardware accelerators, since the design would need no changes
or redundancy to satisfy the requirement of different choices of ℓ.

Secondly, the order of FFT and Decompose is switched in Algorithm.2, which
makes the very first and the very last operations of Algorithm.2 are a pair of
FFT and IFFT. In BlindRotate, IFFT-FFT and Matrix-vector multiplication are
interleaved. In this way, the computational pattern is much simpler than the
original TFHE.

With the above two benefits, our algorithm would show advantage over the
original TFHE in some cases.

4.1 Is FFT-free possible?

So far we have presented a FFT-less TFHE, a quick question is that, is FFT-
free TFHE possible? We have not any answer to the question, but some simple
observations are presented.

Modular Reduction in FFT Domain and The Cloest-Vector Problem
A naive thought of transforming FFT-less to FFT-free is to perform modular re-
duction in Fourier domain without transforming to and from the normal domain

12

0

2

4

6

8

10

12

l=1 l=2 l=3 l=4

Comparison on Number of FFTs per EP

w/o FFT-less w/ FFT-less

Fig. 1. Comparison on Number of FFTs per ExtProd

via FFT/IFFTs. We found that without the help of FFT/IFFTs, performing the
modular reduction in Fourier domain is equivalent to solving a variant of the
Closest-Vector Problem (CVP).

To see this, assuming that we have to obtain FFT
([

A⃗
]
Q

)
from FFT

(
A⃗
)
,

where A ∈ ZN , we have to find out a integral linear combination of FFT (QEi)
with Ei being a vector of zeros expect i-th element being one, such that the linear
combination is closest to FFT

(
A⃗
)
, namely,

FFT
([

A⃗
]
Q

)
= FFT

(
A⃗− k⃗Q

)
= FFT

(
A⃗
)
− FFT

(
k⃗Q
)
= FFT

(
A⃗
)
−

N−1∑
i=0

kiFFT (QEi)

where
⌈
A⃗
Q

⌋
.Therefore, we can see that the modular reduction in Fourier domain

without FFT/IFFTs is equivalent to finding the lattice vector closest to FFT
(
A⃗
)

in the lattice generated by the basis {FFT (QEi)}N−1
i=0 .

It is quite interesting to bridge modular reduction in Fourier domain and the
CVP. From the computational perspective, the lattice is only linear in dimension
and the basis can be easily transformed to a standard basis. Thus, whether or
not there exists a efficient way of performing modular reduction in Fourier is
itself interesting.

Lazy Reduction for Fewer FFTs Though we have not known any way of ob-
taining FFT-free TFHE, a method of performing lazy reduction with fewer FFTs

13

than FFT-less TFHE actually exits. In brief, as long as the result of the matrix-
vector multiplication in Algorithm.2 still can be reconstructed via DecompFFTℓ,B (·),
it can be directly bypassed to the next matrix-vector product without performing
any IFFT/FFTs. However, the parameters should be carefully selected to satisfy
such requirement.

A severe problem of aggressive lazy reduction is that the decomposition re-
dundancy would make the bootstrapping key vulnerable. Consider that the gad-
get matrix is multiplied by a large scalar for the application of lazy reduction.
Then when added to the RGSW ciphertext, it is easy to tell is it encrypting 0 or 1
since the infinity norm of ciphertexts encrypting 1s are significantly larger than
the ciphertexts encrypting 0s. Therefore, out of the consideration of security, we
suggest the largest term of the gadget vector should be smaller than the average
case of the maximal possible term in a RGSW ciphertext.

4.2 Hardware Acceleration

The hardware accelerators like MATCHA, FPT, cuFHE and nuFHE can easily adapt
to our FFT-less TFHE [10][14][15]. Actually, FFTs of TFHE occupy most of the
resources in these accelerators. Therefore, with the FFT-less technology, they will
either obtain higher throughput with similar resources, or remain the throughput
with less resource utilization.

References

1. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 1–36 (2014)

2. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23.
pp. 409–437. Springer (2017)

3. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

4. De Micheli, G., Kim, D., Micciancio, D., Suhl, A.: Faster amortized fhew boot-
strapping using ring automorphisms. Cryptology ePrint Archive (2023)

5. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Advances in Cryptology–EUROCRYPT 2015: 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34. pp. 617–640. Springer
(2015)

6. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. pp. 169–178
(2009)

14

8. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in
Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I. pp. 75–92. Springer (2013)

9. Guimarães, A., Pereira, H.V., van Leeuwen, B.: Amortized bootstrapping revisited:
Simpler, asymptotically-faster, implemented. Cryptology ePrint Archive (2023)

10. Jiang, L., Lou, Q., Joshi, N.: Matcha: A fast and energy-efficient accelerator
for fully homomorphic encryption over the torus. In: Proceedings of the 59th
ACM/IEEE Design Automation Conference. pp. 235–240 (2022)

11. Micciancio, D., Sorrell, J.: Ring packing and amortized fhew bootstrapping. Cryp-
tology ePrint Archive (2018)

12. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

13. Regev, O.: Learning with errors over rings. In: Algorithmic Number Theory: 9th
International Symposium, ANTS-IX, Nancy, France, July 19-23, 2010. Proceedings
9. pp. 3–3. Springer (2010)

14. Van Beirendonck, M., D’Anvers, J.P., Verbauwhede, I.: Fpt: a fixed-point accel-
erator for torus fully homomorphic encryption. arXiv preprint arXiv:2211.13696
(2022)

15. Zhang, J., Cheng, X., Yang, L., Hu, J., Liu, X., Chen, K.: Sok: Fully homomorphic
encryption accelerators. arXiv preprint arXiv:2212.01713 (2022)

15

