
Authenticated Encryption for Very Short Inputs

Alexandre Adomnicăi1, Kazuhiko Minematsu2,3?, and Junji Shikata3

1 Independent researcher, Paris, France, alexandre@adomnicai.me
2 NEC, Kawasaki, Japan, k-minematsu@nec.com

3 Yokohama National University, Yokohama, Japan, shikata-junji-rb@ynu.ac.jp

Abstract. We study authenticated encryption (AE) modes dedicated to
very short messages, which are crucial for Internet-of-things applications.
Since the existing general-purpose AE modes need at least three block
cipher calls for non-empty messages, we explore the design space for AE
modes that use at most two calls. We proposed a family of AE modes,
dubbed Manx, that work when the total input length is less than 2n
bits, using an n-bit block cipher. Notably, the second construction of
Manx can encrypt almost n-bit plaintext and saves one or two block
cipher calls from the standard modes, such as GCM or OCB, keeping the
comparable provable security. We also present benchmarks on popular
8/32-bit microprocessors using AES. Our results show the clear advantage
of Manx over the previous modes for such short messages.

Keywords: Authenticated encryption, Block cipher, Short inputs, Internet-of-
Things

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptography function that
provides both confidentiality and integrity of the input. AE can be realized by
a mode of operation with a block cipher. Building such an AE mode has been
one of the central topics since the concept of AE was established in the early
2000s [13, 22, 31]. A general guideline for designing AEs is that they must be
able to accept messages of sufficient length. For example, GCM [1] is one of two
NIST-recommended AE modes. It is widely deployed and can handle a single
message of about 68 GBytes. The ongoing NIST lightweight cryptography (NIST
LwC), which is a competition for lightweight AE schemes, requires 250 bytes as
the maximum input length in its call for algorithms [4].

On the other hand, the rise of applications using wireless communication with
small devices – also known as Internet-of-Things (IoT) – has created a demand
for AEs specializing in short inputs. We can, of course, pick a popular scheme
from those used by (say) TLS, but their performances on short inputs are not
always satisfactory for the limited computational resources. The performance
problem of standard modes for short inputs was suggested by Iwata et al. [21],
? This work was conducted as part of his duties at Yokohama National University.

and they proposed an AE mode aiming at reducing the computational overhead
for short inputs. Since then, this problem has been acknowledged in the research
community; for example, some NIST LwC proposals, including the finalists,
feature good performance on short inputs, e.g., Ascon [18], ForkAE [7], and
Romulus [19]. However, these schemes also support a sufficiently long input, as
mentioned above.

Known AE modes, such as GCM, CCM [2] (another NIST-recommended
mode), OCB [25]4, and COFB [9,17] require 3 to 5 block cipher calls for any non-
empty message. This observation raises a natural question: what AE modes
are possible with at most two block cipher calls?
Of course, the acceptable input should be very short, and we are interested in
what input length could be covered by such two-call schemes. Our question may
be insignificant for general-purpose protocols. Yet it is practically relevant in
the field of IoT, where each message is very short, and one block cipher call
often occupies a significant amount of the total computation. For example, Sigfox
limits packet length up to 12 bytes [3], EnOcean limits 9 or 14 bytes [5] and
Electronic Product Code used by the RFID protocol has a 96-bit message. NIST
LwC call for algorithms states that efficiency for short messages, such as 8 bytes,
is one of the evaluation measures. In principle, even a 1-bit message is sufficient
for some applications such as device monitoring. Malik et al. [28] showed that
1 to 4 bytes are enough for healthcare applications for tiny medical sensors
using Narrow-Band IoT standards. See the work by Andreeva et al. [8] for more
examples. From a computational viewpoint, on 8-bit AVR microprocessors, one
call to AES-128 takes more than 2,000 cycles [16, 24], so reducing a few block
cipher calls would significantly improve the performance.

Our Contributions. We propose a family of two AE modes, dubbed Manx5, that
are dedicated to very short inputs. More concretely, Manx uses an n-bit block
cipher E, and for the input consisting of ν-bit nonce, α-bit associated data,
and `-bit message, it works when σ := ν + α + ` is (roughly) at most 2n with
certain restrictions on the parameters (ν, α, `), using at most two calls of E. In
particular, the first mode Manx1 allows ν+α ≈ 2n but limits ` < n−τ to achieve
τ -bit authenticity, while the second mode Manx2 allows ` ≈ n if ν = τ = n/2.
Moreover, Manx2 allows parallel implementation. By setting τ = n/2, Manx2
is the first two-call mode without precomputation that supports about n-bit
messages with n/2-bit security (thus the security is comparable to GCM or OCB).

Manx has some similarities to the classical Encode-then-Encipher (EtE) [15],
however, the original EtE clearly does not work when σ exceeds n. By definition,
the EtE uses just one call. Therefore, our work bridges the gap between the most
primitive AE mode, i.e., EtE, and the general-purpose AE modes.

We do not claim the ultimate novelties of our proposals. However, we are
unaware of any work on building concrete and optimized block cipher modes
specialized on a range of very short inputs beyond the original EtE. We provide
4 We mean the latest OCB3 [25] throughout the paper.
5 Manx are felines with very short tails.

2

security proofs for the standard AE security notions, namely privacy and au-
thenticity. The proved bounds for both schemes are comparable to the existing
popular modes. The proofs are relatively straightforward but need some care for
their unique structure to avoid trivial breaks, particularly for Manx2.

We implement Manx1 and Manx2 using AES-128 as the underlying block
cipher and compare them with common modes on 8-bit AVR and 32-bit ARM
microprocessors, which are widely deployed in many IoT use cases. Our imple-
mentation results show a clear advantage in favor of Manx over the other modes;
for example, on ARM Cortex-M4, Manx2 with (ν, α, `) = (64, 16, 44) runs around
5.2K cycles, whereas GCM and CCM run around 14K and 11K cycles, respectively.
For more details, refer to Section 4.

2 Preliminaries

For integers 1 ≤ i < j, let [i..j] := {i, i + 1, . . . , j} and [i] := [1..i]. Let {0, 1}∗
be the set of all finite bit strings. For X ∈ {0, 1}∗, |X| is its length in bits. The
empty string is denoted by ε and |ε| = 0. Let {0, 1}≤b denote

⋃
i=0,1,...,b{0, 1}i,

where {0, 1}0 = {ε}. For two bit-strings X and Y , X ‖Y is their concatenation.
We also write this as XY if it is clear from the context. Let 0i be the string of
i zero bits; for instance, we write 10i for 1 ‖ 0i. For X ∈ {0, 1}∗ with |X| ≥ i,
msbi(X) is the first (left) i bits of X, and lsbi(X) is the last (right) i bits of X.
If X is uniformly chosen from the set X , we write X $← X .

Let padn′ : {0, 1}≤n → {0, 1}n′ for any n′ ≥ n denote a so-called one-zero
(possibly non-injective) padding: padn′(X) = X‖10n′−|X|−1 when |X| < n and
padn′(X) = X when |X| = n and n′ = n. We define the (pseudo) inversion
depadn′ : {0, 1}n′ → {0, 1}≤n by removing the last 100 . . . sequence of the input
Y ∈ {0, 1}n′ . If Y = 0n′ , let depadn′(Y) be any fixed constant. Note that if we
know that the input to padn′ is shorter than n in advance or n′ > n is ensured,
padn′ is injective, and its inverse is uniquely determined by depadn′ .

For any X ∈ {0, 1}∗ and a positive integer n, X[1], X[2], . . . , X[m] n←−
X denotes the parsing into n-bits, i.e., X[1] ‖X[2] ‖ · · · ‖X[m] = X and
|X[i]| = n for all i < m, |X[m]| ∈ [n]. By extending the notation, we write
X[1], . . . , X[a] l1,l2,...,la←−−−−−− X such that X[1] ‖ · · · ‖X[a] = X and |X[i]| = li for
all i ∈ [a], assuming

∑
i∈[a] li = |X|.

Fields with 2n points. We interchangeably view an element a = (an−1 · · · a1a0) ∈
{0, 1}n as a point in GF(2n) as a coefficient vector of the corresponding polyno-
mial: a(x) =

∑n−1
i=0 aix. Following [32], by writing 2a for a ∈ {0, 1}s, we mean a

multiplication over GF(2s) by the polynomial x, also called doubling. Similarly,
3a means a multiplication by x + 1, i.e. 3a = 2a⊕ a. As popularized by [20,32],
these operations are quite efficient. For example, by taking the lexicographically
first irreducible polynomial for n = 128, which is u128 + u7 + u2 + u + 1, 2a means
a� 1 if a127 = 0, and (a� 1)⊕ 012010000111 otherwise.

3

(Tweakable) Block Ciphers and Random Primitives. A tweakable block cipher
(TBC) [27] is a keyed function Ẽ : K × Tw × M → M such that for each
(K,T) ∈ K × Tw, Ẽ(K,T, ·) is a permutation overM. Here, K is a key, and T
is a public value called a tweak. The encryption of a plaintext M ∈ M with
a key K ∈ K and a tweak T ∈ Tw is a ciphertext C = Ẽ(K,T,M). It is also
written as ẼK(T,X). Similarly, the decryption is written asM = Ẽ−1(K,T,C) or
Ẽ−1
K (T,C). Note that a conventional block cipher E : K×M→M is equivalent

to a TBC with |Tw| = 1. We write E−1
K (∗) to denote the decryption function.

Let TPerm(Tw,M) denote the set of all tweakable permutations over M
with tweak space Tw, and let Perm(M) be the set of all permutations over
M. A tweakable uniform random permutation (TURP) of tweak space Tw and
message spaceM is a random tweakable permutation uniformly sampled from
TPerm(Tw,M). It is denoted as P̃ : Tw ×M→M. Similarly, a uniform random
permutation (URP) of message space M is a random permutation uniformly
sampled from Perm(M). It is denoted as P :M→M. Their inverses are denoted
by P̃

−1
and P−1, respectively, where P̃

−1
additionally takes a tweak.

2.1 Authenticated Encryption
We describe the syntax of nonce-based AE (NAE). Let NAE = (NAE.E ,NAE.D)
be an NAE scheme. The (deterministic) encryption algorithm NAE.E takes a
key K ∈ K and a tuple (N,A,M) consisting of a nonce N ∈ N , an associated
data (AD) A ∈ A, and a plaintext M ∈ M as input, and returns a ciphertext
C ∈ M. Note that |C| > |M | must hold for authenticity. For some AE modes,
the output may also be written as a tuple (C, T) where T denotes the fixed-
length tag, but we adopt this unified syntax for notational compatibility with
our schemes. The (deterministic) decryption algorithm NAE.D takes K ∈ K and
the tuple (A,X) ∈ A× X as input, where X = {0, 1}∗, and returns M ∈M or
the reject symbol ⊥. We assume that when C is received by querying (N,A,M)
to NAE.EK , the trivial decryption query (A,X) is always uniquely determined
by the tuple (N,A,M,C). By trivial, we mean that NAE.DK(A,X) returns M
with probability one. Our proposals meet this assumption.

Note that our syntax for decryption is slightly more general than the usual
one (which specifies the tuple (N,A,C) as input, so N is explicit). We use this
syntax for its affinity with our proposals. Some of our proposals contain N as
a part of X, but some do not, depending on the input length. We remark that
the AD must be sent in clear (as this is the definitional requirement), but the
nonce is not necessarily transmitted in clear to ensure the standard NAE security
(Def. 1). We also remark that we do not consider security notions for nonce-hiding
AEs [14]. We use the abovementioned point to save bandwidth in one of our
proposals.

2.2 Security Notions
Let A be an adversary that queries an oracle O. We say A is a distinguisher if
it outputs x ∈ {0, 1} as an outcome. If the outcome is 1, we write AO = 1 to

4

denote this event. It is a probabilistic event whose randomness comes from those
of A and O. Queries of A may be adaptive unless otherwise specified. If there are
multiple oracles, O1,O2, . . . then AO1,O2,... means that A can query any oracle
in O in an arbitrary order.

Let O and O′ be the oracles. For an adversary A thats is a distinguisher for
O and O′ using adaptive queries, we define the indistinguishability as

Advind
O,O′(A) := |Pr[AO = 1]− Pr[AO

′
= 1]|.

For two (tuples of) oracles, O = (O1,O2, . . . ,Os) and O′ = (O′1,O′2, . . . ,O′s),
Advind

O,O′(A) is defined as |Pr[AO1,O2,...,Os = 1]− Pr[AO
′
1,O
′
2,...,O

′
s = 1]|.

For a TBC: ẼK : Tw×M→M, we define the tweakable strong pseudorandom
permutation (TSPRP) advantage and the tweakable pseudorandom permutation
(TPRP) advantage against an adversary A as

Advtsprp
Ẽ

(A) := Advind
(ẼK ,Ẽ

−1
K

),(P̃,̃P
−1

)
(A),

Advtprp
Ẽ

(A) := Advind
ẼK ,̃P

(A)

where P̃ is a TURP with tweak space Tw and message space M. For a block
cipher EK :M→M, we similarly define SPRP and PRP advantages as

Advsprp
E (A) := Advind

(EK ,E
−1
K

),(P,P−1)(A),

Advprp
E (A) := Advind

EK ,P(A),

where P is a URP overM.
We define the following privacy and authenticity notions for NAE. The

definitions mostly follow the standard ones; we just need to reflect the change in
the decryption syntax.

Definition 1. Let NAE = (NAE.E ,NAE.D) be an NAE scheme. We define

Advpriv
NAE(A1) := |Pr[ANAE.EK

1 = 1]− Pr[A$
1 = 1]|,

Advauth
NAE(A2) := |Pr[ANAE.EK ,NAE.DK

2 forges]|,

where $ denotes a random-bit oracle that returns a uniformly random string
of |NAE.EK(N,A,M)| bits for any query (N,A,M). The probability spaces are
defined over the experiment K $← K and the possible internal randomness of the
adversary. We say ANAE.EK ,NAE.DK

2 forges if A2 makes a non-trivial decryption
query (A′, X ′) and receives anyM 6= ⊥, i.e., there is no previous encryption query
(N,A,M) and its response C that determines (A′, X ′) as a trivial decryption
query. We require A1 and A2 to be nonce-respecting, i.e., using unique nonce for
each encryption query. Note that the authenticity adversary A2 has no restriction
on the nonces used by the decryption queries.

5

For a list of adversary parameters θ (such as the number of queries) and a
security notion sec, we write θ-sec adversary to mean an adversary using θ that
plays a game defined by the notion sec. In particular, for priv and auth notions
of NAE, we use qe and qd to denote the number of encryption and decryption
queries and t to denote the time complexity.

3 AE modes for very short inputs

3.1 Minimum calls of existing modes

Let us briefly summarize the minimum number of n-bit block cipher calls for
any non-empty plaintext for the existing general purpose (i.e., supporting long
inputs) modes. First, it is four for OCB (as of version 3 [25]); two for generating
the masks and two for encryption and authentication. In the case of GCM, n is
fixed to 128, and it needs three calls plus two GF(2128) multiplications when the
nonce is 96 bits; otherwise, two more multiplications are required for any shorter
nonce. Compared with them, COFB [9, 17] is a better scheme in this respect; it
needs three calls to encrypt a single-block message6. CCM needs four calls. See
also Table 1.

3.2 What can be done in 1 call?

Encode-then-Encipher [15] is the only viable approach if we use just one call.
Using EtE, we encrypt the vector V = (0c, N,A,M) for some fixed c > 0 and
obtain C = EK(f(V)) using a one-to-one encoding function f , and send (N,A,C)
to the receiver. The verification is done by checking if msbc(E−1

K (C)) is 0c. A
slight improvement could be achieved by Khovratovich at CT-RSA 2014 [23].
What [23] shows is a permutation-based EtE for deterministic AE [33]. However,
the core idea is also applicable to a block cipher-based NAE. The idea is to verify
if (0c,hash(A)) is correctly recovered from E−1

K (C ′) for the received (A′, C ′),
instead of just checking if 0c is correctly recovered. This generally extends the
possible input length for M as long as c + |hash(A)| is guaranteed not to be
smaller than the required authenticity bit security.

EtE is ultimately simple. However, it is clearly impossible to handle the case
of |N |+ |A|+ |M | > n.

3.3 What can be done in 2 calls?

For input (N,A,M), let σ = ν + α+ ` where |N | = ν, |A| = α, and |M | = `. We
explore the possibility for AE when σ may exceed n, allowing up to two n-bit
block cipher calls. In contrast to the case of one-call schemes (Sect 3.2), the design
space for two-call schemes significantly expands. To make the analysis feasible,
we set the following assumptions: (1) ν is fixed, and (2) 0 ≤ α ≤ αmax for some
6 There are several versions, and we mean (the mode part of) GIFT-COFB [9], which
uses GIFT [10] as the internal block cipher. It is one of the NIST LwC finalists.

6

predetermined αmax, irrespective of the plaintext length. Both are reasonable,
e.g., ν = 96 is a typical choice for GCM, and AD is often used as a protocol
header having a short fixed length. We also impose several assumptions to exclude
“cheating” constructions for efficiency consideration. We first assume that there
are no cryptographic primitives other than the block cipher, assume the key is
the single block cipher key, and exclude the use of a universal hash function, e.g.,
GHASH of GCM. We exclude any pre-computation beyond the block cipher’s key
schedule for efficiency and simplicity.

We remark that these limitations are still inherently not rigorous. Say, we
can extend the nonce/AD space for our first proposal (Manx1) by one bit with
little complexity using tripling (GF(2n) multiplication by x+1). In more detail,
we use either 2 ·3S or 2S as the offset of block cipher input (at line 5 of the left of
Fig. 1) depending on the extra bit. One can view this as a universal hash function
of a single bit [32]. By using more constants in GF(2n), we can significantly
extend the nonce/AD space in principle, but this effectively implements a full
field multiplication, which is costlier and conflicts with our assumption of the
no-universal hash function. Similarly, small-input universal hash functions can be
quite efficient (still, it needs an independent key), such as the stretch-then-shift
function proposed by [25].

With these considerations, we keep our goal simple and do not try to specify
the ultimately clear borderline on allowed operations beyond block cipher calls.
Finally, to achieve the standard model security (as GCM or OCB), we require
that the block cipher key is not changed during encryption/decryption. If we
use AES-128 (thus n = 128), a typical setting would be ν ∈ [64..128], but our
schemes support shorter value for ν. Whether small ν is acceptable or not is
beyond our scope. For the security goal, we set n/2 and τ ∈ [n] as the desired
security level in bits for privacy and authenticity notions, following GCM and
OCB. It turns out that the achievable range of τ has some restrictions depending
on the scheme and other parameters.

We must impose σ ≤ 2n since otherwise, the whole encryption query cannot
be processed by the block cipher, implying the break of the privacy notion. Hence,
we explore two-call AE modes within this σ ≤ 2n restriction.

3.4 Manx1 based on XEX

One natural way to extend the single-block EtE shown above is to add a mask to
the input and output of EtE, by generating a mask using another block cipher
call. The mask-generating call can extend the input space. More specifically, we
can use a mode that turns a block cipher into a TBC, such as XEX [32]. Below
we present an XEX-based two-call AE mode, Manx1. For generality, we introduce
a vector encoding function vencode : N × A → M× V for M = {0, 1}n and
V ⊆ {0, 1}≤n.

Definition 2. For vencode : N ×A →M×V, let (V [1], V [2]) = vencode(N,A)
for N ∈ N (= {0, 1}ν) and A ∈ A. For N and A, vencode is sound with respect
to N and A if (N,A) is uniquely determined by (V [1], V [2]) and V = {0, 1}v2 ,

7

Algorithm Manx1.E [EK](N,A,M)

1 (V [1], V [2])← vencode(N,A)
2 v2 ← |V [2]|
3 M ← padn−v2

(M)
4 S ← EK(V [1])
5 S ← 2S
6 C ← EK(S ⊕ (V [2] ‖M))⊕ S
7 return C

Algorithm Manx1.D[EK](A,X)

1 if |X| 6= n+ ν then
2 return ⊥
3 (N,C) ν,n←−− X
4 (V [1], V [2])← vencode(N,A)
5 v2 ← |V [2]|
6 S ← EK(V [1])
7 S ← 2S
8 Y ← E−1

K (S ⊕ C)⊕ S
9 (Ṽ [2], M̃) v2,n−v2←−−−−− Y

10 if Ṽ [2] 6= V [2] then
11 return ⊥
12 else
13 M ← depadn−v2

(M̃)
14 return M

Fig. 1: The algorithms of Manx1. The sender transmits (A,X) via the channel,
where X = (N ‖C).

where v2 is a fixed positive integer not smaller than τ , for any (N,A) ∈ N ×A.
We say vencode is sound if N and A are clear from the context.

The vencode allows a flexible choice on ν and α. When AD can be of variable
length (A = {0, 1}≤αmax), αmax < 2n − ν must hold as for the injectivity of
padding, and when AD is fixed to αmax bits, αmax ≤ 2n − ν must hold. The
existence of a sound vector encoding depends on the nonce and AD spaces. For
example, when ν = n and A = {0, 1}αmax with some τ ≤ αmax ≤ 2n− ν (i.e. AD
length is fixed to αmax bits), a simple encoding of vencode(N,A) = (V [1], V [2]) =
(N,A) is sound. Another example is that ν ≤ n and A = {0, 1}≤αmax for some
0 ≤ αmax < 2n − ν. In this case, a slightly more complex encoding works as
A = pads(A) for s = max{n − ν + τ, αmax} and V [1] = N ‖ msbn−ν(A) and
V [2] = lsbs−(n−ν)(A). More complex cases might occur in practice, say A
consisting of noncontiguous lengths (e.g., 2 or 4 bytes), but designing efficient
vencode for such cases is beyond our scope.

Description of Manx1. The algorithms of Manx1 are as follows. For encryption,
we first encode (N,A) via a sound encoding vencode to obtain (V [1], V [2]). We
encrypt (V [2] ‖ padn−v2

(M)) by XEX mode using V [1] as a tweak to obtain
C ∈ {0, 1}n, where v2 = |V [2]| is a fixed value (Def. 2). The tuple (A,X) for
X = N ‖C is sent to the receiver. The decryption is done by checking the
correctness of V [2]. See Fig. 1 for the pseudocode. Note that the multiplication
by 2 (the generator of the field, x) applied to S is needed for security [29,32]. For
any input (N,A,M), it must be ensured (at the protocol level) that |M | < n−v2
where v2 = |V [2]| and (V [1], V [2]) = vencode(N,A). We assume vencode is sound
(Def. 2) and fixed in advance. The scheme is pretty simple while introducing
vencode allows more flexible choices for the possible parameter choices.

8

3.5 Security of Manx1

We present the security bounds for Manx1.

Theorem 1. Let A1 be a (qe, t)-priv adversary and let A2 be a (qe, qd, t)-auth
adversary against Manx1 using a block cipher E : K×M→M forM = {0, 1}n.
Then, assuming a sound vector encoding vencode and qe ≤ 2n−1 for A2, we have

Advpriv
Manx1[E](A1) ≤ Advprp

E (A′1) + 5q2
e

2n

Advauth
Manx1[E](A2) ≤ Advsprp

E (A′2) + 4.5(qe + qd)2

2n + 2qd
2τ

for some A′1 using qe encryption queries with t+O(qe) time, and some A′2 using
2qe encryption and 2qd decryption queries with t+O(2qe + 2qd) time.

Proof. We derive the bounds for Advpriv
Manx1[P](A

∗
1) and Advauth

Manx1[P](A
∗
2) for n-bit

URP P against (qe,∞)-priv adversary A∗1 and (qe, qd,∞)-auth adversary A∗2. Using
TURP P̃ : Tw ×M →M with Tw = {0, 1}n, we define an idealized version of
Manx1, i-Manx1: its encryption returns C = P̃(V [1], (V [2] ‖M)). The decryption
is defined similarly. Then, from TSPRP advantage of XEX [29, Corollary 1], we
have

Advpriv
Manx1[P](A

∗
1) ≤ Advpriv

i-Manx1[̃P]
(A∗1) + 4.5q2

e

2n (1)

Advauth
Manx1[P](A

∗
2) ≤ Advauth

i-Manx1[̃P]
(A∗2) + 4.5(qe + qd)2

2n (2)

We observe that N and A in any (A,X) are uniquely determined as ν is fixed.
Thanks to the soundness of vencode (Def. 2), the tuple (N,A) effectively works
as a nonce, that is, the tuple (V [1], V [2]) never repeats in encryption queries, and
the correct nonce and AD are always retrieved. For the privacy notion, the first
term of the right-hand side of (1) is at most q2

e/2n+1 which is achieved when V [1]
is entirely determined by AD and thus can be fixed (i.e., V [2] contains the entire
nonce). This proves the first (privacy) claim of the theorem. For the authenticity
claim, we first consider the case qd = 1 for the first term of the right-hand side
of (2). A simple analysis shows that this is at most 1/(2v2 − qe) ≤ 1/(2τ − qe)
since v2 ≥ τ from Def. 2. To see this, let (A′, X ′ = N ′ ‖C ′) be the decryption
query and let (V ′[1], V ′[2]) = vencode(N ′, A′). The worst case is achieved when,
again, V [1] is fixed for all encryption queries7 and N ′ is used in an encryption
query. The soundness of vencode guarantees that the “target” v2(≥ τ)-bit value
obtained by decrypting C ′ with tweak V ′[1] must be matched with V ′[2]. Hence,
the first term of the right hand side of (2) is at most 2n−τ/(2n − qe) ≤ 2/2τ
from qe ≤ 2n−1. Note that the case where depad takes the all-zero string (hence
not correctly decrypting) only occurs if the forgery is successful. Applying the
standard technique from single to multiple decryption queries [12], we obtain
7 This can happen e.g. vencode(N,A) = (A,N) with |A| fixed to n.

9

Algorithm Manx2.E [EK](N,A,M)

1 A← encode(A)
2 α∗ ← |A|
3 r ← n− (ν + α∗ + 2)
4 if |M | < r then //tiny message
5 C ← EK(N ‖ 10 ‖A ‖ padr(M))
6 else if |M | = r then //tiny message
7 C ← EK(N ‖ 11 ‖A ‖M)
8 else //short message
9 (M [1],M [2]) r,|M|−r←−−−−− (M)

10 r′ ← n− (ν + 2)
11 C[1]← EK(N ‖ 00 ‖A ‖M [1])
12 C[2]← EK(N ‖ 01 ‖ padr′(M [2]))
13 C ← C[1] ‖C[2]
14 return C

Algorithm Manx2.D[EK](A,X)

1 A← encode(A)
2 α∗ ← |A|
3 if |X| = ν + n then //tiny message
4 r ← n− (ν + α∗ + 2)
5 (N,C) ν,n←−− X
6 S ← E−1

K (C)
7 (Ñ , b̃, Ã, M̃) ν,2,α∗,r←−−−−− S
8 if (Ñ , b̃, Ã) = (N, 10, A) then
9 M ← depadr(M̃)

10 return M
11 else if (Ñ , b̃, Ã) = (N, 11, A) then
12 M ← M̃
13 return M
14 else
15 return ⊥
16 else if |X| = 2n //short message
17 r′ ← n− (ν + 2)
18 (C[1], C[2]) n,n←−− X
19 S[1]← E−1

K (C[1])
20 S[2]← E−1

K (C[2])
21 (Ñ [1], b̃[1], Ã, M̃ [1]) ν,2,α∗,r←−−−−− S[1]
22 (Ñ [2], b̃[2], M̃ [2]) ν,2,r′←−−− S[2]
23 if (Ñ [1] 6= Ñ [2]) or (̃b[1], b̃[2]) 6= (00, 01) or

Ã 6= A then
24 return ⊥
25 else
26 M ← M̃ [1] ‖ depadr′(M̃ [2])
27 return M
28 else //unsupported length
29 return ⊥

Fig. 2: The algorithms of Manx2. The sender transmits (A,X) via the channel,
where X = (N ‖C) when |M | ≤ n− (ν + α∗ + 2) and X = C otherwise, where
α∗ = |encode(A)| for an injective encode function over A. For encryption to
work, we must ensure that |M | < 2n− 2ν− 4−α∗ for any AD A ∈ A in advance.

2qd/2τ for the general case of qd ≥ 1. This proves the authenticity bound of (2).
To conclude the proof, the final step is to obtain the computational counterparts,
which is standard [11]. ut

3.6 Limitations of Manx1 and our solution, Manx2

Manx1 is pretty simple. However, it incurs several drawbacks. Most importantly,
the message length ` is at most (n− τ − 1) no matter how AD is short, and it
needs two calls irrespective of `. As τ cannot be arbitrarily small (otherwise, the
scheme effectively reduces to unauthenticated encryption), we cannot employ
Manx1 in case ` ≈ n. Moreover, the two calls are not parallelizable.

We present an alternative scheme that solves these problems, which we call
Manx2. It accepts the message length ` about 2n− 2ν−αmax, and needs just one

10

N 00 A M [1]

C[1]
n

EK

ν 2 α∗ r

N 01 padr′(M [2])

C[2]
n

EK

ν 2 r′

N 10/11 A

C

n

EK

ν 2 α∗ r

padr(M [2])

Fig. 3: Encryption of Manx2. (Left) Short message case, (Right) Tiny message
case.

call when ` is smaller than about n− (ν + αmax), and two calls otherwise. For
convention, we call the former and the latter cases tiny message case and short
message case, respectively (see Figs. 2 and 3). For simplicity, we assume αmax is
at most about n− ν because longer ADs are already supported by Manx1. The
exact limits of αmax and ` depend on the internal encoding of A (see below). See
Fig. 2 for the algorithms of Manx2.

For example, when ν = n/2, Manx2 enables encrypting a plaintext of about n
bits, which was impossible with Manx1. Interestingly, Manx2 has some similarities
to RPC mode by Katz and Yung [22], which was one of the earliest designs of
AE and has been largely overlooked since the proposal. Unfortunately, RPC fails
to meet our goal: it needs d`/(n− ν)e+ 2 calls for any ` > 0, hence 4 calls when
ν = n/2 and ` = n. Moreover, there is no mechanism to absorb AD.

Moreover, Manx2 has smaller bandwidth than RPC. Assuming AD is absent,
the output bandwidth of RPC is ν + n · (d`/(n − ν)e + 2) bits, hence ν + 3n
bits for the tiny message case, and ν + 4n bits for the short message case. In
contrast, Manx2 has output bandwidth ν + α+ n bits for the tiny message case
and ν + α+ 2n bits for the short message case. As a result, Manx2 saves 2n bits
in both cases, which is non-negligible. In practice, saving bandwidth is important
for IoT use cases from the power consumption perspective.

Fig. 4 shows the achievable parameter areas of (ν, `) for Manx1 and Manx2,
assuming (for simplicity) αmax = 0 and τ = n/2. We remark that τ is the
minimum authenticity level we accept. As we mentioned, Manx1 allows very long
nonce; however, the message length ` must be significantly smaller than n, and
Manx2 enables to extend ` close to n. Note that ν > n is not very common when
n = 128 (thus AES), and too small ν also severely limits usability. Hence, this
figure highlights the practical usefulness of Manx2 over Manx1 when the nonce
has a reasonable length.

11

Description. Manx2 for the tiny message case is similar to the improved version
of EtE described at Sect. 3.2; it encrypts as C = EK(N,A,M) and sends (A,X)
to the receiver where X = N ‖C The decryption routine verifies the tuple
(A,X = N ‖C) by checking if N is correctly recovered from msbν(E−1

K (C)). It
also checks the domain separation bits to recover M correctly. For the short
message case, Manx2 first parses M into two parts, M [1] and M [2], where
|M | ≈ n−ν−α and |M [2]| ≈ n−ν, and encrypts as C[1] = EK(N,A,M [1]) and
C[2] = EK(N,M [2]), and sends (A,X) where X = C[1] ‖C[2]. The decryption
of a tiny message case is similar to EtE decryption, while in the case of a short
message, we verify the ciphertext by comparing the first ν bits of E−1

K (C[1])
with E−1

K (C[2]). Note that this is an intuitive description. The exact algorithms
are shown in Fig. 2. Also, Fig. 3 depicts the encryption. It turns out that the
algorithms have to incorporate domain separations and an encoding function for
AD to make it secure, keeping efficiency. For example, we define the encoding
function encode : A → {0, 1}∗ that is injective with respective to A as in the
same manner to vencode for Manx1. Such encode function can be realized by
encode(A) = padαmax+1(A) when A = {0, 1}≤αmax or encode(A) = A when
A = {0, 1}αmax . The former allows αmax < n − ν − 2, and the latter allows
αmax ≤ n− ν − 2. The encryption can accept a message of length ` as long as
` < 2n − 2ν − 4 − |encode(A)| for any A ∈ A. Note that these conditions are
determined by fixing M, A, and encode, thus cannot be manipulated by the
adversary.

In Manx2, the first block cipher call takes encode(A) instead of plain A,
as otherwise, a simple authenticity attack would be possible when AD has a
variable length. Moreover, we optimize the design to maximize the input space
and minimize the bandwidth. Specifically, we utilize the 2-bit domain separation
for separating the tiny and short message cases. At the same time, these 2 bits
are also used to extend the possible message length of the tiny message case by a
bit (lines 5 and 8 of the left part of Fig. 2). We do not explicitly send N for the
short message case to reduce the bandwidth consumption by ν bits (see also the
caption of Fig. 2).

3.7 Security of Manx2

We present the security bounds of Manx2. For the tiny message case, the proof
basically follows EtE, while for the short message case, the way it guarantees
security (in particular authenticity) is somewhat unusual. The security proof
is rather intuitive; however, some careful analysis is needed, mainly due to the
complexity around unifying the tiny and short message cases without explicit
authentication of input lengths.

Theorem 2. Let A1 be a (qe, t)-priv adversary and let A2 be a (qe, qd, t)-auth
adversary against Manx2. We assume the encode function is injective. Then,

12

n− 2

τ

2(n− τ) − 4

ν

`

2n− 4

2n

n− τ0
0

Fig. 4: Achievable parameter areas of (ν, `) for Manx1 (blue) and Manx2 (red)
when AD is empty (α = 0) and τ = n/2.

assuming qe, qd ≤ 2n−1 for A2, we have

Advpriv
Manx2[E](A1) ≤ Advprp

E (A′1) + 2q2
e

2n

Advauth
Manx2[E](A2) ≤ Advsprp

E (A′2) + 2qd
2ν

for some A′1 using qe encryption queries with t+O(qe) time, and some A′2 using
2qe encryption and 2qd decryption queries with t+O(2qe + 2qd) time.

Theorem 2 tells that, by setting ν ≥ τ , our security goal (n/2-bit privacy and
τ -bit authenticity) is achieved.

Proof. We consider the idealized version, Manx2[P], that uses an n-bit URP P
instead of a block cipher. We prove

Advpriv
Manx2[P](A

∗
1) ≤ 2q2

e

2n , (3)

Advauth
Manx2[P](A

∗
2) ≤ 2qd

2ν . (4)

Let q(1)
e (q(2)

e) be the number of encryption queries of the short (tiny) message
case. Here, qe = q

(1)
e + q

(2)
e holds. The privacy claim of (3) is straightforward:

as we have a nonce in every P call and all the block inputs in the game are
unique thanks to the domain separation b ∈ {0, 1}2. Eq. (3) holds from the
hybrid argument involving the PRP-PRF switching lemma, which adds at most
(2q(1)

e)2/2n+1 = 2(q(1)
e)2/2n ≤ 2q2

e/2n to the bound. Note that the privacy notion
requires the pseudorandomness of the output of the encryption routine, i.e.,

13

C ∈ {0, 1}n
⋃
{0, 1}2n, and not that of X (which will contain N in case of the

tiny message). This is not a problem as the privacy notion does not require hiding
the message length or nonce.

To prove the authenticity claims of (4), as in the case of Manx1, we start with
the case qd = 1 and assume the adversary makes the decryption query after qe
encryption queries, which is optimal. Let Θe = {(N (i), A(i),M (i), C(i)) | i ∈ [qe]}
be the encryption transcript, where (N (i), A(i),M (i)) and C(i) denote the i-th
encryption query and its response. Let Q1 ⊆ [qe] be the index sets for the
encryption queries of short message case, and let Q2 = [qe] \Q1 be those for tiny
message case, where |Q1| = q

(1)
e and |Q2| = q

(2)
e . For convenience, we may write

(Ñ (i), Ã(i), M̃ (i), C̃(i)) when i ∈ Q2. Let Θ1
e = {(N (i), A(i),M (i), C(i)) | i ∈ Q1}

and Θ2
e = {(Ñ (i), Ã(i), M̃ (i), C̃(i)) | i ∈ Q2}. Note that Θe = Θ1

e ∪ Θ2
e . For any

i ∈ Q1, |C(i)| = 2n, and for any j ∈ Q2, |C̃(j)| = n. We write C(i)[1] = msbn(C(i))
and C(i)[2] = lsbn(C(i)). Observe that, thanks to the domain separation and
nonce, all ciphertext blocks in Θe are distinct. That is, the three sets, Ck :=
{C(i)[k] | i ∈ Qk} for k = 1 and k = 2, and C̃ := {C̃(j) | j ∈ Q2}, have
no intersections and each set has no repeating elements. We use C to denote
C1 ∪ C2 ∪ C̃.

Let (A′, X ′) be the decryption query. We first consider when the decryption
query falls into the short message case, i.e., |X ′| = 2n. We write C ′ for X ′
and let msbn(C ′) = C ′[1] and lsbn(C ′) = C ′[2]. Let S′[1] = P−1(C ′[1]) and
S′[2] = P−1(C ′[2]). Following the pseudocode, we define

(Ñ ′[1], b̃′[1], Ã′, M̃ ′[1]) ν,2,α∗,r←−−−−− S′[1]

for α∗ = |A′| where A′ = encode(A′), and

(Ñ ′[2], b̃′[2], M̃ ′[2]) ν,2,n−(ν+2)←−−−−−−−− S′[2].

When C ′[1] = C ′[2], it means b̃′[1] = b̃′[2], hence it never successes in forgery.
So we assume C ′[1] 6= C ′[2]. Let pf be the probability of successful forgery, i.e.,
the probability of receiving 6= ⊥ from the decryption oracle. We provide a case
analysis.

– Case 1-1. If ∃i ∈ Q1 and C ′ = C(i), we haveA′ 6= A(i). From the injectiveness
of encode, A(i) 6= Ã′ holds thus pf = 0.

– Case 1-2. If C ′ 6= C(i) for all i ∈ Q1, we have further sub-cases. If C ′1 6∈ C,
P−1(C ′1) is uniform over a set of size (2n − qe), thus Pr[Ñ [1] = msbν(C ′2)] is
at most 2n−ν/(2n − qe) ≤ 2/2ν by the assumption.

– Case 1-3. If C ′[1] ∈ C2 ∪ C̃, it holds that b̃′[1] 6= 00, hence pf = 0.
– Case 1-4. If C ′[1] = C(i)[1] for some i ∈ Q1, we have C ′[2] 6= C(i)[2]. We

have sub-cases: (1) if C ′[2] 6∈ C then P−1(C ′[2]) is uniform over a set of size
(2n − qe) and thus pf ≤ 2/2ν as in Case 1-2. The remaining cases are (2)
C ′[2] ∈ C1 and (3) C ′[2] = C(h)[2] for some h ∈ Q1, h 6= i, and (4) C ′[2] ∈ C̃.
Any sub-cases have pf = 0 due to the domain separation or a difference in
the decrypted nonce.

14

We consider the tiny message case, i.e., |X ′| = n+ ν. Let C ′ be lsbn(X ′) and
N ′ be msbν(X ′).

– Case 2-1. Suppose C ′ = C̃(j) for some j ∈ Q2. We have either A′ 6= Ã(j) or
N ′ 6= Ñ (j), hence pf = 0.

– Case 2-2. If C ′ ∈ C1 ∪ C2, the domain separation bits guarantee pf = 0.
– Case 2-3. If C ′ 6∈ C, P−1(C ′) is uniform over a set of size (2n − qe), hence

the probability Pr[msbν(P−1(C ′)) = N ′] is at most 2/2ν as in Case 1-2.

Overall, when qd = 1, we have pf ≤ 2/2ν . Combining with the standard technique
by Bellare et al. [12], we prove the authenticity bound of (4). The derivation of
the computational counterpart is also standard [11]. This concludes the proof. ut

4 Implementations

This section reports software implementation results of Manx in order to measure
its benefits over existing modes when processing short inputs. Since Manx aims
to be deployed on embedded devices, we run benchmarks on 8-bit and 32-bit
microprocessors for several parameters sets using AES-128 as the underlying
block cipher. Our Manx implementations are publicly available at www.github.
com/aadomn/manx_ae.

4.1 Benchmark settings

Platforms. We consider two popular microprocessors for the IoT: the 8-bit AVR
ATmega128 and the 32-bit ARM Cortex-M4. For benchmarks on ATmega128, we
used Microchip Studio 7.0.2594 in debugging mode with avr-gcc 12.1.0. For
benchmarks on ARM Cortex-M4, we used an STM32F407VG microcontroller
with arm-none-eabi-gcc 10.3.1. Both environments allow us to accurately
measure the number of clock cycles required to complete the encryption process.

AES implementations. For both platforms, we consider the fastest constant-
time AES implementations that are publicly available. On AVR, we use the
RijndaelFast variant from [30] which requires around 2.4K clock cycles to
encrypt a 128-bit block (using pre-computed round keys) and around 800 cycles
to run the key schedule. It implements the S-box using a look-up table which is
considered safe against timing attacks since AVR microcontrollers do not embed
any cache memory. On ARM Cortex-M4 we use the fixsliced implementation from
Adomnicai and Peyrin [6] which currently constitutes the fastest constant-time
AES implementation on this platform. It requires around 2.8K cycles to encrypt
two blocks at a time (with pre-computed round keys) and around 1.5K cycles
to run the key schedule. However its performance are reduced by a factor of 2
when combined with a sequential mode of operation since the second block is
computed for nothing (it can actually be used for side-channel countermeasures
if needed). Therefore, on top of providing performance insights on both 8-bit

15

www.github.com/aadomn/manx_ae
www.github.com/aadomn/manx_ae

and 32-bit architectures, our benchmark also highlights the discrepancies that
may arise when using a serial versus a parallel implementation of the underlying
block cipher.

Reference modes. As reference, we consider the following four AE modes of
operation: GCM, CCM, OCB and COFB. All modes are implemented in C while
the AES implementations mentioned above are both written in assembly. For the
hash function GHASH in GCM, we use the 32-bit constant-time implementation
from BearSSL8. For each mode, the round key material is calculated only once.

Parameter sets. Our benchmark consider the following three parameter sets
for (ν, α, `) to cover different cases. The first case is (64, 0, 120) for the largest
input message (in terms of nibbles) that can be handled by Manx2, keeping
the capability of 264 messages for its 64-bit security. The second case (96, 0, 56)
follows the same motivation, but with ν = 96 to avoid two additional GHASH calls
in GCM, which is the common choice for this mode. The third case (64, 16, 44)
considers tiny messages with tiny associated data.

4.2 Results

As detailed in Table 1, our benchmark shows that the Manx family of AE modes
outperforms all other reference modes, for all parameters sets on both platforms.

8-bit AVR. On ATmega128, when considering tiny messages with associated
data, Manx2 runs around 240% faster than COFB, which is the fastest option
among the reference modes. However, the improvement is less pronounced for
short messages mainly because we are only saving a single call to AES-128 instead
of two. Also, when ν mod 8 = 0, Manx2 requires many bitshifts to concatenate
A and M into the input blocks N ‖ 00 ‖A ‖M [1] and N ‖ 01 ‖ padr′(M [2]) since
the 2-bit domain separator introduces a misalignment (i.e. the block is not byte-
aligned anymore). Since the shift instruction on AVR can only shift by a single
bit a time, this can result in a non-negligible overhead in terms of performance.
Note that when ν and α are fixed at the protocol level, the amount of bits
to shift is known in advance and the corresponding code can optimized using
dedicated assembly routines [26]. For instance, by fixing ν and α such that
ν mod 8 = α mod 8 = 0 and hard coding the bitshifts accordingly, Manx2 now
requires 7 466 cycles instead of 8 411 for (ν, α, `) = (64, 44, 16).

All in all, the performance gain on 8-bit AVR is close to the number of calls
to the internal block cipher since the AES-128 implementation processes a single
block at a time on this platform. Note that GCM is clearly not relevant on AVR
because of the challenge of efficiently implementing GF(2128) multiplications due
to 8-bit multiplications and single bit shift instructions. An optimized assembly
implementation could definitely improve its performance, but presumably not to
the extent of competing with the other modes.
8 https://bearssl.org/

16

https://bearssl.org/

Parameters (bits)
Mode AES-128 calls

Speed (clock cycles)
ν α ` ATmega128 Cortex-M4

GCM 3* (3) 147 871 13 208
CCM 4 (2+2) 12 029 7 905
OCB 4 (2+2) 14 933 8 371

COFB 3 (1+1+1) 10 768 11 322
Manx1 2 (1+1) - -

64 0 120

Manx2 2 (2) 8 411 5 379

GCM 3* (3) 53 898 10 468
CCM 4 (2+2) 11 679 7 842
OCB 4 (2+2) 14 540 8 280

COFB 3 (1+1+1) 10 990 10 821
Manx1 2 (1+1) 6 525 7 817

96 0 56

Manx2 2 (2) 7 597 5 179

GCM 3* (3) 159 912 14 551
CCM 5 (2+2+1) 14 355 10 919
OCB 5 (2+2+1) 17 661 11 392

COFB 3 (1+1+1) 11 144 11 649
Manx1 2 (1+1) 6 586 7 858

64 16 44

Manx2 1 4 643 5 008

* GCM needs additional GF(2128) multiplications (2 when ν = 96 and 4 when ν = 64)

Table 1: Benchmark on 8-bit AVR ATmega128 and 32-bit ARM Cortex-M4
microprocessors when encrypting/authenticating messages with different parame-
ter sets. The number of calls to the internal block cipher indicates the degree of
parallelism provided by the mode (e.g. 2+1 means two calls can be processed
in parallel except the last one). The AES-128 implementation on 8-bit AVR
processes a single block at a time while the one on 32-bit ARM processes two
blocks in parallel. No results are reported for Manx1 when (ν, α, `) = (64, 0, 120)
since it cannot handle such long inputs.

32-bit ARM. On Cortex-M4, the results are now correlated to the degree of
parallelism provided by the mode since the AES-128 implementation reaches
its best performance when processing two blocks at once. This explains why
CCM and OCB are faster than COFB on this platform: although it requires more
calls to the internal block cipher, they provide the ability to process blocks in
parallel while COFB is fully sequential. When omitting associated data, Manx2
runs approximately 30% faster than CCM, which is the fastest option among

17

the reference modes. However, CCM requires an additional call to AES-128 when
processing associated data, which makes Manx2 around twice faster in this setting.

All things considered, the Manx family allows to reduce the overhead of AE
based on software AES-128 from 30% to 240% over previous solutions on AVR
ATmega128 and ARM Cortex-M4, depending on parameters sets and the degree
of parallelism which can be fully exploited. Note that the gain should be even
more significant when the internal primitive embeds side-channel countermeasures
(e.g. masking), which may decrease its performance manyfold. While we chose
AES as the standard cipher, expanding the benchmarking using other lightweight
block ciphers, say GIFT [10], and comparing with NIST LwC candidates would
be interesting future work.

5 Concluding remarks

We studied the problem of AE for very short messages, say smaller than the block
size of the block cipher we use. Based on the observation that the known popular
modes need at least 3 to 5 calls for any non-empty messages, we explored the
design space for AE with up to two block cipher calls. We proposed a family of AE
modes, Manx, that can handle total input space at most 2n bits with additional
restrictions and have comparable security as existing AE modes. Notably, Manx2
is the first proposal to encrypt about n-bit plaintext using two calls and achieve
comparable security to the standard AE modes. Our microprocessor benchmark
showcases the significant advantages of Manx2 over the known popular modes.

By design, Manx cannot handle long messages. Hence its scope is niche.
However, if we want to support long messages, it can be combined with an
existing mode, say by using different keys or using domain separation by AD. For
applications where message lengths are widely distributed (e.g., few bytes to few
kilobytes), such a combination may improve the average speed from using a single
existing mode, say GCM. A formal analysis of the security/efficiency of such a
combination would be a future topic. Further design investigation to expand the
achievable domain of input parameters within two calls and extend the problem
to TBC/permutation-based constructions are also interesting directions.

Acknowledgements

We thank Yoshinori Aono and Takenobu Seito for the fruitful discussions.
This research was in part conducted under a contract of “Research and develop-
ment on IoT malware removal / make it non-functional technologies for effective
use of the radio spectrum” among “Research and Development for Expansion of
Radio Wave Resources (JPJ000254)”, which was supported by the Ministry of
Internal Affairs and Communications, Japan. This work was in part supported
by JSPS KAKENHI Grant Number JP22K19773.

18

References

1. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D (2007), National Institute
of Standards and Technology.

2. Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authen-
tication and Confidentiality. NIST Special Publication 800-38C (2007), National
Institute of Standards and Technology.

3. Sigfox Technical Overview (2017), https://www.ismac-nc.net/wp/wp-content/
uploads/2017/08/sigfoxtechnicaloverviewjuly2017-170802084218.pdf, ac-
cessed: 2023-01-23

4. Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process (2018), https://csrc.nist.
gov/CSRC/media/Projects/Lightweight-Cryptography/documents/
final-lwc-submission-requirements-august2018.pdf, accessed: 2023-01-23

5. EnOcean Serial Protocol 3 (ESP3) Specification (2020), https://www.enocean.com/
wp-content/uploads/Knowledge-Base/EnOceanSerialProtocol3.pdf, accessed:
2023-01-23

6. Adomnicai, A., Peyrin, T.: Fixslicing AES-like ciphers. IACR TCHES 2021(1),
402–425 (2021). https://doi.org/10.46586/tches.v2021.i1.402-425, https://
tches.iacr.org/index.php/TCHES/article/view/8739

7. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
ForkAE. A submission to NIST Lightweight Cryptography (2019)

8. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.:
Forkcipher: A new primitive for authenticated encryption of very short messages.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol.
11922, pp. 153–182. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/
978-3-030-34621-8_6

9. Banik, S., Chakraborti, A., Inoue, A., Iwata, T., Minematsu, K., Nandi, M., Peyrin,
T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT-COFB. A submission to NIST Lightweight
Cryptography (2019)

10. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A
small present - towards reaching the limit of lightweight encryption. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 321–345. Springer, Heidelberg
(Sep 2017). https://doi.org/10.1007/978-3-319-66787-4_16

11. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryption. In: FOCS. pp. 394–403. IEEE Computer Society (1997)

12. Bellare, M., Goldreich, O., Mityagin, A.: The power of verification queries in message
authentication and authenticated encryption. Cryptology ePrint Archive, Report
2004/309 (2004), https://eprint.iacr.org/2004/309

13. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (Dec 2000).
https://doi.org/10.1007/3-540-44448-3_41

14. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol.
11692, pp. 235–265. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/
978-3-030-26948-7_9

15. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-

19

https://www.ismac-nc.net/wp/wp-content/uploads/2017/08/sigfoxtechnicaloverviewjuly2017-170802084218.pdf
https://www.ismac-nc.net/wp/wp-content/uploads/2017/08/sigfoxtechnicaloverviewjuly2017-170802084218.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
https://www.enocean.com/wp-content/uploads/Knowledge-Base/EnOceanSerialProtocol3.pdf
https://www.enocean.com/wp-content/uploads/Knowledge-Base/EnOceanSerialProtocol3.pdf
https://doi.org/10.46586/tches.v2021.i1.402-425
https://doi.org/10.46586/tches.v2021.i1.402-425
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://tches.iacr.org/index.php/TCHES/article/view/8739
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-030-34621-8_6
https://doi.org/10.1007/978-3-319-66787-4_16
https://doi.org/10.1007/978-3-319-66787-4_16
https://eprint.iacr.org/2004/309
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/978-3-030-26948-7_9
https://doi.org/10.1007/978-3-030-26948-7_9

ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (Dec 2000).
https://doi.org/10.1007/3-540-44448-3_24

16. Bos, J.W., Osvik, D.A., Stefan, D.: Fast Implementations of AES on Various
Platforms. Cryptology ePrint Archive, Paper 2009/501 (2009), https://eprint.
iacr.org/2009/501

17. Chakraborti, A., Iwata, T., Minematsu, K., Nandi, M.: Blockcipher-based au-
thenticated encryption: How small can we go? In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 277–298. Springer, Heidelberg (Sep 2017).
https://doi.org/10.1007/978-3-319-66787-4_14

18. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon. A submission to
NIST Lightweight Cryptography (2019)

19. Guo, C., Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus. A sub-
mission to NIST Lightweight Cryptography (2019)

20. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (Feb 2003). https:
//doi.org/10.1007/978-3-540-39887-5_11

21. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: Authenticated en-
cryption for short input. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 149–167. Springer, Heidelberg (Mar 2015). https://doi.org/10.
1007/978-3-662-46706-0_8

22. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299. Springer,
Heidelberg (Apr 2001). https://doi.org/10.1007/3-540-44706-7_20

23. Khovratovich, D.: Key wrapping with a fixed permutation. In: Benaloh, J. (ed.)
CT-RSA 2014. LNCS, vol. 8366, pp. 481–499. Springer, Heidelberg (Feb 2014).
https://doi.org/10.1007/978-3-319-04852-9_25

24. Kim, Y., Seo, S.C.: Efficient Implementation of AES and CTR_DRBG on 8-Bit
AVR-Based Sensor Nodes. IEEE Access 9, 30496–30510 (2021). https://doi.org/
10.1109/ACCESS.2021.3059623

25. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (Feb 2011). https://doi.org/10.1007/978-3-642-21702-9_18

26. van Laethem, A.: Optimizing constant bitshifts on AVR (2021), https://aykevl.
nl/2021/02/avr-bitshift, accessed: 2023-01-2023

27. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (Aug 2002).
https://doi.org/10.1007/3-540-45708-9_3

28. Malik, H., Alam, M.M., Moullec, Y.L., Kuusik, A.: NarrowBand-IoT Performance
Analysis for Healthcare Applications. In: ANT/SEIT. Procedia Computer Science,
vol. 130, pp. 1077–1083. Elsevier (2018)

29. Minematsu, K.: Improved security analysis of XEX and LRW modes. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 96–113. Springer, Heidelberg
(Aug 2007). https://doi.org/10.1007/978-3-540-74462-7_8

30. Poettering, B.: AVRAES: The AES block cipher on AVR controllers. http://
point-at-infinity.org/avraes/, accessed: 2023-01-23

31. Rogaway, P.: Authenticated-encryption with associated-data. In: Atluri, V. (ed.)
ACM CCS 2002. pp. 98–107. ACM Press (Nov 2002). https://doi.org/10.1145/
586110.586125

32. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,

20

https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/3-540-44448-3_24
https://eprint.iacr.org/2009/501
https://eprint.iacr.org/2009/501
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-319-66787-4_14
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-662-46706-0_8
https://doi.org/10.1007/978-3-662-46706-0_8
https://doi.org/10.1007/978-3-662-46706-0_8
https://doi.org/10.1007/978-3-662-46706-0_8
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/978-3-319-04852-9_25
https://doi.org/10.1007/978-3-319-04852-9_25
https://doi.org/10.1109/ACCESS.2021.3059623
https://doi.org/10.1109/ACCESS.2021.3059623
https://doi.org/10.1109/ACCESS.2021.3059623
https://doi.org/10.1109/ACCESS.2021.3059623
https://doi.org/10.1007/978-3-642-21702-9_18
https://doi.org/10.1007/978-3-642-21702-9_18
https://aykevl.nl/2021/02/avr-bitshift
https://aykevl.nl/2021/02/avr-bitshift
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-540-74462-7_8
https://doi.org/10.1007/978-3-540-74462-7_8
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125
https://doi.org/10.1145/586110.586125

vol. 3329, pp. 16–31. Springer, Heidelberg (Dec 2004). https://doi.org/10.1007/
978-3-540-30539-2_2

33. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer,
Heidelberg (May / Jun 2006). https://doi.org/10.1007/11761679_23

21

https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/11761679_23

	Authenticated Encryption for Very Short Inputs
	Introduction
	Preliminaries
	Authenticated Encryption
	Security Notions

	AE modes for very short inputs
	Minimum calls of existing modes
	What can be done in 1 call?
	What can be done in 2 calls?
	Manx1 based on XEX
	Security of Manx1
	Limitations of Manx1 and our solution, Manx2
	Security of Manx2

	Implementations
	Benchmark settings
	Platforms.
	AES implementations.
	Reference modes.
	Parameter sets.

	Results
	8-bit AVR.
	32-bit ARM.

	Concluding remarks

