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Abstract. Long-term security, a variant of Universally Composable (UC)
security introduced by Müller-Quade and Unruh (JoC ’10), allows to analyze
the security of protocols in a setting where all hardness assumptions no longer
hold after the protocol execution has finished. Such a strict notion is highly
desirable when properties such as input privacy need to be guaranteed for
a long time, e.g. zero-knowledge proofs for secure electronic voting. Strong
impossibility results rule out so-called long-term-revealing setups, e.g. a common
reference string (CRS), to achieve long-term security, with known constructions
for long-term security requiring hardware assumptions, e.g. signature cards.
We circumvent these impossibility results by making use of new techniques,
allowing rewinding-based simulation in a way that universal composability is
possible. The new techniques allow us to construct a long-term-secure com-
posable commitment scheme in the CRS-hybrid model, which is provably
impossible in the notion of Müller-Quade and Unruh. We base our construction
on a statistically hiding commitment scheme in the CRS-hybrid model with
CCA-like properties. To provide a CCA oracle, we cannot rely on superpolyno-
mial extraction techniques, as statistically hiding commitments do not define a
unique value. Thus, we extract the value committed to via rewinding.
However, even a CCA “rewinding oracle” without additional properties may
be useless, as extracting a malicious committer could require to rewind other
protocols the committer participates in. If this is e.g. a reduction, this clearly is
forbidden. Fortunately, we can establish the well-known and important property
of k-robust extractability, which guarantees that extraction is possible without
rewinding k-round protocols the malicious committer participates in. While
establishing this property for statistically binding commitment schemes is
already non-trivial, it is even more complicated for statistically hiding ones.
We then incorporate rewinding-based commitment extraction into the UC
framework via a helper in analogy to Canetti, Lin and Pass (FOCS 2010),
allowing both adversary and environment to extract statistically hiding commit-
ments. Despite the rewinding, our variant of long-term security is universally
composable. Our new framework provides the first setting in which a commit-
ment scheme that is both statistically hiding and composable can be constructed
from standard polynomial-time hardness assumptions and a CRS only.
Unfortunately, we can prove that our setting does not admit long-term-secure
oblivious transfer (and thus general two-party computations). Still, our long-
term-secure commitment scheme suffices for natural applications, such as long-
term secure and composable (commit-and-prove) zero-knowledge arguments of
knowledge.



1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to
perform computations on their private inputs, guaranteeing properties such as
correctness, privacy or independence of inputs. To this end, the parties that wish
to perform an MPC jointly execute a protocol, i.e. exchange messages with each
other over a network.

In today’s highly connected world where devices are usually connected to
the Internet, it is important to judge the security of cryptographic protocols not
only in a stand-alone setting where only one instance of a protocol is executed
at any time. Indeed, it is known that protocols which are stand-alone-secure may
lose all security even if only two instances of the same protocol are executed in
parallel [GK90].

In contrast, composable security considers security when multiple, possibly
adversarially chosen, protocols may be executed concurrently. A very important
notion for this setting is the so-called Universally Composable (UC) security,
introduced by Canetti [Can01]. By default, UC security offers computational
security only, i.e. crucially relies on hardness assumptions. If these hardness
assumptions turn out to be wrong or eventually lose their validity (e.g. due to
the availability of universal quantum computers), all security may be lost. For
data that is very sensitive and must be kept secure for a long time, e.g. genomic
data or electoral choices with secure online voting, computational (UC) security
may be insufficient. In contrast, statistical security does not rely on hardness
assumptions at all—offering, in principle, adequate security guarantees even for
the most sensitive data. However, statistical (UC) security is often much harder
to achieve than computational (UC) security, for example because a 2/3 honest
majority [BGW88] or a very strong trusted setup [Bea97; DKM11] is needed.

Interestingly, there is a middle ground between statistical and computa-
tional security, called long-term security, introduced by Müller-Quade and Unruh
[MU10]. With long-term security, hardness assumptions are only assumed to hold
during the execution of a protocol. However, after the protocol execution has
finished, all hardness assumptions become invalid and security must hold against
(now) unbounded adversaries. Thus, long-term security offers a very interesting
trade-off, in particular when considering that many protocol executions only take
a comparatively short time compared to the assumed (and believed) validity of
today’s used cryptographic hardness assumptions, which is often measured in
years.

Impossibility Results of Long-Term Security. Unfortunately, long-term security
is subject to very strong impossibility results: Many commonly used and natural
setup assumptions (e.g. common reference strings (CRS) or certain public-key
infrastructures (PKIs)) that suffice for UC security are too weak to construct
long-term-secure composable commitment schemes. Indeed, the known construc-
tions for long-term-secure and composable commitment schemes require very
strong hardware assumptions such as (trusted) signature cards [MU10] or fully
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malicious physically unclonable functions (PUFs) [Mag+22]. While these hard-
ware assumptions are weaker than the assumptions required for statistical UC
security, they are very impractical, as they require a great deal of coordination
between protocol parties in order to exchange the necessary hardware.

Very informally, the strong impossibility results of long-term security come
from the fact that commitments created by a malicious committer must be
extractable, i.e. the simulator must be able to determine the value committed
to. In a UC-secure commitment scheme that uses a CRS, this can be achieved
by embedding an extraction trapdoor into the CRS (say, a public key used for
encryption for which the secret decryption key is known). Using this extraction
trapdoor, the value committed to can be determined in a straight-line way, i.e.
without rewinding the malicious committer.

If long-term security is desired, the above approach fails: If a commitment
scheme is straight-line extractable via an extraction trapdoor embedded into the
CRS, the commitment must statistically contain the value committed to. When
the protocol execution has finished, this extraction trapdoor can be (inefficiently)
obtained and used to extract the commitment, contradicting the very requirement
that the value committed to must be statistically hidden. Conversely, choosing the
CRS distribution so that the commitment is statistically hiding makes straight-
line extraction impossible. The example is generalized in [MU10], ruling out any
“long-term revealing” setup, in particular any CRS distribution.

This problem, namely the insufficiency of widely-used and practical classes of
setups such as common reference strings, raises our main research question:

Can we circumvent the impossibility results of [MU10] that rule out compos-
able and long-term-secure commitment schemes from many natural setups?

Perhaps surprisingly, we can answer this question affirmatively and construct
a long-term-secure composable commitment scheme in the CRS-hybrid model.
In order to circumvent the prior impossibility result, we propose a new security
notion based on (long-term) UC security which covers the possibility of extracting
statistically hiding commitment schemes via rewinding.

Having circumvented the impossibility results of Müller-Quade and Unruh
[MU10] for commitment schemes, we raise our second research question:

Can our techniques be used to construct protocols for composable general
two-party computation with long-term security from natural setups?

We answer this question negatively by giving an impossibility result for
oblivious transfer (OT) with long-term security for both sender and receiver. On
the positive side, we sketch how OT with long-term security for one party can
be achieved. This construction can then be generalized to (reactive) composable
general two-party computation with long-term security for one party. Given our
new impossibility result, this is the best one can hope for in the setting considered
in this paper.
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For the special case of (commit-and-prove) zero-knowledge, we give a positive
result: Using our long-term-secure composable commitment scheme, we construct
composable and long-term-secure (commit-and-prove) zero-knowledge.

1.1 Outline and Contribution

In this work, we construct protocols with composable long-term security for many
important tasks. Our main contributions are as follows:
1. We introduce pseudo-oracles in Section 3.1. A pseudo-oracle O is defined as

an oracle which is given its caller’s current view (and code), so that O can
rewind the caller in its head. With this, it is possible to extract a value from
statistically hiding commitment schemes via rewinding.

2. As a building block for the long-term-secure commitment scheme, we construct
a statistically hiding and equivocal CCA-secure commitment scheme in the
CRS-hybrid model in Section 3. Here, we make use of pseudo-oracles to
instantiate the CCA oracle.

3. We extend the notions of Universal Composability [Can01] and Long-Term Se-
curity [MU10] to a setting where commitments can be extracted by rewinding
via a helper. As the helper is accessible by environment and adversary, we re-
tain universal composability. We call the resulting security notion Long-Term
UC Security with Rewinding.

4. We construct a composable commitment scheme which is long-term-Rewinding-
UC-secure in the FCRS-hybrid model, circumventing the impossibility results
of Müller-Quade and Unruh [MU10] in Section 6. To the best of our knowledge,
we are the first to achieve such a strong notion of security for commitment
schemes without resorting to hardware assumptions (or assumptions that
already imply statistical UC security).

5. We present several applications of our commitment scheme in Section 7.
Using our composable and long-term-secure commitment scheme, we can
realize zero-knowledge as well as commit-and-proof with long-term security.
Moreover, we obtain composable oblivious transfer with long-term security
for one party. As we will show in Section 5, this is provably the best possible
security in our setting.

Unless noted otherwise, we assume ideally authenticated communication and
consider static corruptions only.

1.2 Technical Overview

As a first motivating example for the technical difficulty of this endeavor, first
consider the possibility of giving only the simulator the ability to rewind the
execution (as proposed by Nielsen [Nie03]). Conceptually, this approach is similar
to e.g. security with superpolynomial simulation (SPS) [Pas03] where the simulator
is given a (unilateral) complexity advantage. While such a model would allow the
simulator to extract statistically hiding commitments, universal composability is
lost due to the asymmetry between simulator and environment.
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Universal Composability with (Superpolynomial) Helpers. In the case of SPS
security, the problem of limited composability was solved by Prabhakaran and
Sahai [PS04] and Canetti, Lin, and Pass [CLP10] by outsourcing the simulator’s
additional capabilities to an external entity called Imaginary Angel [PS04] resp.
(superpolynomial) helper [CLP10]. By making this entity available not only to
the simulator but also to the environment, universal composability is recovered.

As we will use a similar approach to achieve composability, let us take a
closer look at the approach taken by Canetti, Lin, and Pass [CLP10], that also
illustrates the additional technical hurdles one faces when considering statistically
hiding instead of statistically binding (composable) commitment schemes.

In [CLP10], the helper H that provides the extraction oracle is parameterized
with a fixed commitment scheme COM. Adversary and environment may, acting
as committer for COM, perform commitments with H, which acts as receiver.
After the commit phase has finished, H extracts the commitment with inefficient
computations, solely based on the commitment transcript, which defines a value
committed to with overwhelming probability. Here, no rewinding whatsoever is
required. In order to prevent environment or adversary to create a commitment
with H as receiver in dependence on a commitment of an honest party, COM is
assumed to feature the property of security under chosen commitment attack
(CCA) as proposed in [CLP10]. Very informally, this property guarantees that an
adversary cannot break the hiding property of a commitment it receives even if
it has access to a commitment extraction oracle (for commitments where it plays
the committer), subject to the condition that the identity (or tag) used in the
commitment it receives (which should be hiding) is different from the identity
used in the commitment it wants to have extracted through the committed-value
oracle. Using COM, a composable commitment scheme is constructed.

For a statistically binding commitment scheme, the commitment transcript
determines an unique value committed to with overwhelming probability, and that
value can be recovered through inefficient computations. With statistically hiding
commitments, this is not possible anymore. Merely requiring (CCA) extractability
may not be very useful: For example, consider a UC protocol π that not only uses
COM, but also a stand-alone-secure OT protocol πOT. In order to reduce to the
computational sender security of πOT in the security proof of π, the reduction
adversary needs to provide the UC environment and UC adversary with H. In
the reduction to a computational security property, this may not be possible if
emulating H requires super-polynomial computations (or, alternatively, requires
rewinding the reduction). Interestingly, the CCA-secure commitment scheme
constructed in [CLP10] features an additional property called k-robustness: For
every PPT adversary A interacting with the (inefficient) CCA oracle of COM and
a k-round “external” protocol φ, there exists a PPT simulator interacting with φ,
but not with the CCA oracle of COM, that has an output that is computationally
indistinguishable from A’s output. The simulator S internally emulates A, but
provides the CCA oracle by rewinding the internally executed A in such a way
that the external k-round protocol need not be rewound. This important property
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enables the reuse of k-round UC-secure protocols in the first place, i.e. allows to
show that H does not negatively affect the protocols’ security.

Extracting Statistically Hiding Commitments Through Rewinding. In this work,
we adapt the approach of Canetti, Lin, and Pass [CLP10] in such a way that
extraction of statistically hiding commitments via rewinding is possible while uni-
versal composability is preserved. To this end, the extraction process must satisfy,
informally, a) natural properties normally provided by (inefficient) committed-
value oracles as well as b) robustness with respect to k-round protocols (as
explained above).

Towards achieving these goals, we face a number of technical challenges that
do not occur with “ordinary” inefficient oracles.

When the commitment scheme COM is not statistically binding, but sta-
tistically hiding, determining the value committed to is not possible from the
commitment transcript. This follows from the very definition of the statistical
hiding property. As such, the usual notion of a “committed-value oracle” is inap-
plicable. Instead, we show that it is possible to computationally define and extract
the committed value via rewinding. To formalize this, we need to generalize the
notion of oracles to capture rewinding.

To this end, we introduce the notion of pseudo-oracles, which are given their
caller’s current view as an implicit input, thus allowing a pseudo-oracle to rewind
its caller “in its head”.

Technical Challenges. In a composite execution of interactive algorithms B and
A, denoted by 〈B,A〉, providing such a pseudo-oracle O to A may require to
also provide B’s view to O, because B may be affected by the rewinding of A
performed by O. Let 〈B,A〉O denote this composed system. As outlined above,
giving O the view of B may simply not possible, e.g. because B is the challenger
in a security game. In contrast to normal oracles, pseudo-oracles do not generally
feature the natural property of composition-order invariance (COI). Informally,
this means that we may not simply consider 〈B,AO〉 (i.e. a system where O only
gets the view of A) instead of 〈B,A〉O (where O gets the view of both B and
A) and expect both systems to behave identically, despite the vastly different
capabilities of O in either case. Unlike with ordinary oracles that naturally
satisfy COI (because they do not need access to their caller’s view), this essential
property may simply not hold for arbitrary pseudo-oracles O. If it does, because
O is specifically designed to do so, it requires a non-trivial proof.

Starting from the work of Goyal et al. [Goy+15], in particular the robust
extraction lemma for PRS commitments [PRS02], we construct a statistically
hiding commitment scheme CCACOM in the CRS-hybrid model that is rewinding-
extractable, statistically trapdoor and features a committed-value pseudo-oracle
that satisfies a notion of COI.3 Concretely, we define and prove the k-robust
3 The work [Goy+15] implicitly relies on pseudo-oracles, although it never explicitly
acknowledges the fact that in the general robust extraction lemma, the “extractor” of
a committed value is not an ordinary oracle anymore. We were unable to establish
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composition-order invariance, which, informally, is COI for every k-round left side
B. Moreover, similar to the k-robustness property of [CLP10], we can replace a
PPT adversary A with access to our committed-value pseudo-oracle O interacting
with a k-round interactive algorithm B (denoted by 〈B,A〉O) with a simulator S
without O (denoted by 〈B,S〉), incurring a negligible statistical loss of security
only. This property is particularly useful in reductions.

Looking ahead, these properties of O will us allow to establish the a) statistical
trapdoor property of CCACOM for adversaries with access to O as well as the
b) extractable-binding property of CCACOM for adversaries with access to O, i.e.
CCA-security-like properties for the commitment scheme CCACOM.

Universal Composability with Rewinding. Towards using pseudo-oracles for com-
posable security, we modify the long-term (UC) execution to admit a helper
that implement pseudo-oracles. To this end, we change the execution experiment
to provide the pseudo-oracle with the necessary views. We call the resulting
framework the UC with Rewinding framework (short Rewinding UC framework)
and the resulting security notion Long-Term UC Security with Rewinding (short
Long-Term Rewinding UC security). We also define a non-long-term variant of
security in the presence of H.

The notion of (long-term-) Rewinding UC security has very similar properties
to the notion proposed by Canetti, Lin, and Pass [CLP10]: Not only is it closed
under composition, but also is compatible with UC security for k-round protocols
if the committed-value pseudo-oracle of the helper features k-robustness. This
important property allows to import (computationally, long-term and statistically)
UC-secure protocols into our framework.

Given that the helper may subtly affect the security of protocols, we provide
several justifications for our new notion: We prove that (long-term-) Rewinding
UC security implies standard (long-term) UC security resp. stand-alone real-ideal
security for large classes of protocols. This demonstrates that our helper does
not negatively affect the security of such protocols.

By importing our concurrently extractable and concurrently (statistically)
trapdoor commitment scheme CCACOM into the Rewinding UC framework, we
obtain a commitment scheme that satisfies the notion of long-term Rewinding
UC security. To the best of our knowledge, this is the first construction in
the CRS-hybrid model that is both composable and has long-term-like security.
The construction can be instantiated from standard polynomial-time hardness
assumptions and has an asymptotically optimal round complexity.

1.3 Related Work

Long-Term Security. In this paper, we build upon the notion of long-term security
as introduced by Müller-Quade and Unruh [MU10]. In [MU10], a composable

the required properties of pseudo-oracles, in particular COI, for their schemes. While
this does not mean that their schemes do not satisfy them, we stress that COI is an
essential notion, which is non-trivial to establish. See Example 1 and Remark 14 for
more discussions on such properties and Remark 15 for the relation to [Goy+15].
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long-term secure commitment scheme is constructed from a trusted signature card.
Conversely, large classes of setup assumptions, namely long-term revealing setups
(Definition 21), have been shown to not admit long-term composable commitment
schemes. In contrast to standard UC security [Can+02], long-term composable
commitment schemes do not admit composable general multi-party computation
with long-term security. Composable long-term commitment schemes also have
previously been constructed from other hardware assumptions, namely fully
malicious PUFs (together with a CRS) [Mag+22]. See Appendix B.3 for a short
introduction to long-term security.

Statistical Security. Assuming the existence of ideally secure communication and
an honest majority of more than 2/3, composable general MPC with even statis-
tical security is possible [AL17]. When there is no honest majority, strong setups
such as tamper-proof hardware tokens (e.g. [DKM11]) also admit statistically
secure composable general MPC. However, the use of such token-based protocols
is often impractical, in particular when computations with many participants
are desired. An alternative approach for statistical security is the use of pre-
distributed correlated randomness [Bea97]. However, if the party providing the
randomness is untrusted or becomes corrupted at any point, all security is lost.

Peikert, Vaikuntanathan, and Waters [PVW08] have presented several com-
posable OT protocols. By using a CRS with appropriate distribution, statistical
security for either the OT sender or the OT receiver is possible. However, if
a CRS admitting statistical security for one party is chosen, composability is
lost (see Appendix B.3 for a discussion). The same holds for many composable
commitment schemes with statistical security for one party, e.g. [DN02].

Rewinding and Composable Security. With respect to concurrent self-composability,
in particular for game-based security notions, several approaches using rewinding
exist, e.g. for the case of commitment schemes [CLP10; Goy+15] or zero-knowledge
[Kiy20; Orl+14]. To this end, a very helpful tool is a robust extraction lemma
[Goy+15], which allows rewinding-based extraction without disturbing “left sides”
up to a certain round complexity. While our protocol is based on [Goy+15]
and their robust rewinding lemma, we modify it so that we can prove that the
resulting pseudo-oracles satisfies essential properties, such as composition-order
invariance (cf. Appendix C.1).

Allowing a UC simulator to rewind the execution has first been proposed by
Nielsen [Nie03], leading to a security notion with properties reminiscent of SPS
security, namely limited composability.

Canetti, Lin, and Pass [CLP10] have presented the first CCA-secure commit-
ment scheme that can be extracted either straight-line by inefficient computations
or efficiently using rewinding. Using this commitment scheme, they realize com-
posable general MPC in the plain model, using the inefficient but straight-line
extraction. Instead of allowing the simulator to perform these inefficient computa-
tions itself, they are performed by a special party called the helper. By also giving
the environment access to the helper, the notion achieves universal composability.
A drawback of the proposed approach is that UC reusability is limited. Intuitively,
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this means that there exists a protocol π that UC-emulates a protocol φ, but that
does not emulate φ under the new notion. However, for any polynomial k, the
notion can be adapted such that any k-round UC-secure protocol can be reused,
at the expense of a higher round complexity of the CCA-secure commitment
scheme. This has subsequently improved, e.g. by [CLP13].

We use an approach that is reminiscent of the techniques of [CLP10]. In
particular, we also use a helper to allow the extraction of commitments. As
we are interested in commitment schemes with a statistical hiding property,
straight-line extraction is not possible anymore. Instead, we let the helper rewind
the execution, requiring changes to the execution experiment. For details, see
Section 5.

2 Preliminaries

We use standard notation. The security parameter is denoted by κ. All inputs are
assumed to be of length polynomial in κ. Often, we will provide Turing machines
(usually the adversary, the environment as well as entities helping them) with
input (1κ, z), where 1κ denotes the unary encoding of κ and z is some (possibly
non-uniform) input depending on κ. We use the usual notation for probability
ensembles and write

c
≈ for computational and

s
≈ statistical indistinguishability.

For two interactive machines A and B, we write 〈A,B〉 to denote the system
where A and B interact. We write outB〈A(x),B(y)〉(1κ, z) (or similar) to denote
the output of B after interaction with A, where A and B receive common input
(1κ, z), and A (resp. B) receives private input x (resp. y). Similarly, we write
viewA for the view of party A, which consists of the party’s random tape, all its
inputs and all messages it received. By abuse of notation, we sometimes write
〈A,B〉 for a protocol. A k-round protocol sends at most k messages between its
parties. An oracle algorithmA has an “oracle interface” (i.e. expected input-output
behavior), which can be filled in by an oracle O (but also by a pseudo-oracle, cf.
Section 3.1), and we write AO for the composed machine; an oracle O is itself a
(potentially unbounded) machine.

Two machines A0 and A1 are indistinguishable w.r.t. rewinding, if no un-
bounded distinguisher D can distinguish black-box access to A0 or A1.

2.1 Commitment Schemes

In our constructions, we use (stand-alone) commitment schemes as building
blocks. In the following, we give a definition.

Definition 1 (Commitment Scheme). A commitment scheme (with setup),
non-interactive unveil phase and message spaceM is a tuple (Setup,C,R), with
the following syntax: 1. Setup takes (1κ) as input and outputs a commitment
key ck, 2. C and R have common input (1κ, ck). We usually write (c, d) for the
commitment-decommitment pair after the commit phase. The decommit phase is
non-interactive and we write OPEN(ck, c, v, d) for the function which outputs 1
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if a decommitment d of commitment c to value v is accepted w.r.t. commitment
key ck.

Definition 2 (Stateless and public-coin receivers). A commitment scheme
〈C,R〉 is stateless, or more concretely, has a stateless receiver, if every message
and output of the receiver is computed from the current (possibly empty) transcript.
If the receiver’s messages are a (fixed) portion of its random tape (independent
of the transcript), we call it a public-coin receiver.

Many commitment schemes, in particular all non-interactive ones, are public-coin.
Binding and hiding are defined as expected and omitted for space reasons. They
are included in Appendix B.1 for completeness.

3 A Statistically Hiding Concurrently Extractable and
Equivocal Commitment Scheme

In this section, we define pseudo-oracles which capture oracles which use rewind-
ing. Building on this, we define CCA-security of commitment schemes w.r.t.
a committed-value pseudo-oracle. Lastly, we construct a commitment scheme
which is computationally CCA-binding and statistically CCA-equivocal (so in
particular, statistically CCA-hiding). Our constructions and definitions are in
the CRS model.

3.1 Pseudo-Oracles

For our protocols, we must offer the adversary access to a commitment-extraction
oracle. However, the commitments are statistically hiding, so it is evidently
impossible for any (unbounded) oracle to extract them. Thus, we relax the notion
of “oracle-ness” to pseudo-oracles. The idea is, to make the view of the adversary
accessible to the pseudo-oracle. Thus, it can execute and rewind it in its head.
With this ability, even statistically hiding commitments can be extracted.

There is some freedom in the definition of pseudo-oracles and their properties.
Our definition intentionally limits the power of pseudo-oracle as much as possible,
see Remark 8 for a brief discussion. Fortunately, all our protocols should be robust
to natural definitional changes to pseudo-oracles, so if more refined definitions
are found, the protocols should remain their usefulness.

Definition 3 ((Pseudo-)Oracle). Suppose A is an (interactive) oracle al-
gorithm. Suppose O is a (stateful) algorithm which behaves like an oracle, i.e.
interfaces with A by responding to a query x with response y.
– For (stateful) oracles, y is computed from O’s state, randomness, and query x.
– For (stateful) pseudo-oracles, y is computed from O’s state, randomness, and
the current view of A (which includes the query x to O) as well as A’s code.

Remark 1 (Alternative interpretation). We give pseudo-oracles access to their
caller’s code and view. Alternatively, we may restrict to admissible callers, which
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pass their code and current view to the oracle (turning the pseudo-oracle into an
ordinary oracle). Evidently, any oracle algorithm which uses a pseudo-oracle can
be turned into an admissible oracle algorithm which uses an ordinary oracle.

The behavior of pseudo-oracles is quite different from ordinary oracles. For
example, they allow to capture rewinding-based properties. Consequently, the
familiar properties of ordinary oracles do not carry over in general, and we must
make explicit the properties which a (pseudo-)oracle should have. In our setting,
all pseudo-oracles of interest are black-box.

Definition 4 (Black-box Oracle). A (possibly stateful) pseudo-oracle O is
black-box, if its output y is computed from O’s state, randomness, black-box
(rewinding) access to A, and the current view of A but with A’s randomness
removed (i.e. only all inputs and messages which A received).

Like ordinary oracles, black-box pseudo-oracles are independent of implemen-
tation details of their caller. We record following trivial consequence.

Corollary 1. Let O be a black-box pseudo-oracle. Let A and B be oracle algo-
rithms which are perfectly indistinguishable w.r.t. rewinding. Then AO and BO
are again perfectly indistinguishable w.r.t. rewinding.

Another property of ordinary oracles is composition-order invariance, which
asserts that, in a larger system of composed machines, it does not matter when a
(pseudo-)oracle is connected to its caller.

Definition 5 (k-robust composition-order invariance (COI)). A pseudo-
oracle O is k-robust composition-order invariant w.r.t. PPT algorithms, if for a
pair of interacting PPT algorithms A, B, where 〈B,A〉 has at most k rounds, we
have

{outB,A〈B(x), AO(y)〉(1κ, z)}κ∈N,x,y,z∈{0,1}∗
s
≈ {outB,A〈B(x), A(y)〉O(1κ, z)}κ∈N,x,y,z∈{0,1}∗ .

That is, it is statistically indistinguishable whether the system was composed as
– 〈B,AO〉, that is, first the pseudo-oracle O is composed with A, and then AO
is composed with B, or

– 〈B,A〉O, that is, first A is composed with B, and then the pseudo-oracle O is
composed with 〈B,A〉.

We note that in the above, 〈B,A〉 is considered as a single entity, i.e. it is a
single machine which emulates both B, A and their interaction. Consequently,
for 〈B,AO〉, the pseudo-oracle has access to viewA only, whereas in 〈B,A〉O it
has access to view〈B,A〉 (where, by abuse of notation, we write view〈B,A〉 for the
view of the entity 〈B,A〉 as explained above).

Definition 5 is quite abstract. It helps to consider the pseudo-oracle OCCA

from Section 3.2. There, the core difference between 〈B,AO〉 and 〈B,A〉O is,
whether it is possible to rewind B alongside A, or not (because B is an external
entity). Composition-order invariance for OCCA intuitively ensures that, despite
this difference, the values extracted by OCCA for A remain unchanged.

11



Remark 2 (Relation to oracles). Ordinary oracles are evidently black-box and
∞-robust composition-order invariant (w.r.t. to unbounded algorithms).

We stress that composition-order invariance is a non-trivial property of pseudo-
oracles. Indeed, to verify that the CCA-commitment pseudo-oracle OCCA satisfies
composition-order invariance, we crucially rely on computational assumptions;
and we do not know whether it holds without such assumptions. For that reason,
Definition 5 restricts to PPT algorithms.

Another useful property allows the elimination of a pseudo-oracle altogether.
This corresponds to the k-robustness property of [CLP10; Goy+15].

Definition 6 (k-robust pseudo-PPT). A black-box pseudo-oracle is k-robust
pseudo-PPT if for every (interactive) PPT oracle algorithm A, there exists a
PPT algorithm S such that for every interactive PPT algorithm B interacting
with A in at most k rounds, we have

{outB,A〈B(x), AO(y)〉(1κ, z)}κ∈N,x,y,z∈{0,1}∗
s
≈ {outB,S〈B(x), S(y)〉(1κ, z)}κ∈N,x,y,z∈{0,1}∗ .

Besides these generic properties of pseudo-oracles, more concrete properties
are of interest in many cases. For example, for our OCCA pseudo-oracle we will
prove a “substitution rule” in Appendix C.2. This continues the pattern, that
properties which are obvious for oracles need not be obvious for pseudo-oracles,
but can (and must) be explicitly established.

3.2 Properties of Commitment Schemes

We require a commitment scheme which is concurrently extractable and statis-
tically hiding (indeed, equivocal) to achieve concurrent security. Consequently,
we define security notions in the presence of a committed-value oracle OCCA.
The security w.r.t. a committed-value oracle will be important, as it allows to
concurrently extract adversarial inputs to commitments, while at the same time
simulating commitments of honest parties. The committed-value oracle OCCA

for COM plays the receiver of COM in an arbitrary number of sessions. Upon
completion of a commitment phase in session s, OCCA outputs (End, s, vs, viewRs).
(The view of the receiver is outputted for technical reasons. For public-coin COM,
it contains no additional information anyway.)

Definition 7 (CCA-binding). Let COM be a commitment scheme with mes-
sage space M. Let OCCA be a pseudo-oracle whose interface is described below.
Let ExpCCA-bind

A,OCCA,COM(κ, z) be the output of the following experiment:
1. Run the adversary A on input (1κ, z) with access to a (committed-value)

pseudo-oracle OCCA provided through the game G. Formally, this means
〈G,A〉OCCA where game G passes messages between A and OCCA as follows:
– OCCA is proxied through G and allows A to choose common inputs (1κ, t)
and interact with an honest receiver Rs in session s (for arbitrarily
many concurrent sessions). For this, OCCA first generates a fresh setup
cks ← Setup(1κ, t) and sends it to A (through G).

12



– Whenever a session s is finished, OCCA responds with (End, s, vs, viewRs),
where vs is the extracted value of commitment (which may be ⊥, e.g. if
the receiver does not accept) or ⊥ext if extraction failed. The game passes
(End, s, vs) to A (but not viewRs).

2. In any session s whose commit phase finished, the adversary may complete
the unveil phase for s. This phase is simulated by the game (which has access
to viewRs). Suppose receiver Rs accepts opening to v 6= ⊥. If v 6= vs and
v ∈M, then the game outputs 1, i.e. A wins. (For v = ⊥, A does not win.)

3. If A stops, the game outputs 0, i.e. A loses the game.
We say COM is CCA-binding w.r.t. OCCA, if for every PPT adversary A, there
exists a negligible function negl, such that for all κ ∈ N and all z ∈ {0, 1}∗,
Pr[ExpCCA-bind

A,OCCA,COM(κ, z) = 1] ≤ negl. We then call OCCA a committed-value
pseudo-oracle.

Some remarks are in order: Firstly, Definition 7 is the binding analogue to
CCA-hiding of [CLP10]. Secondly, it is a multi-challenge variant (but as usual,
multi- and single-challenge are equivalent by a standard argument). Thirdly, it
would have been more straightforward to have the game or OCCA play the honest
receivers in both commit and unveil phase. However, we want a committed-value
pseudo-oracle with the interface as in Definition 7, i.e. only the commitment
phase. Lastly, OCCA even rewinds the game, but this only strengthening the
notion of binding. We note that, if OCCA is O(1)-robust COI, then a game with
a constant number of challenge sessions can be handled as a left side, so that
OCCA does not rewind the game anymore.

Terminology 1 (Value Committed To) Let COM be a commitment scheme
which is CCA-binding w.r.t. committed-value oracle OCCA. Let v ∈M∪{⊥,⊥ext}
be the value which is part of the output of OCCA in an interaction with a (possibly
malicious) committer. If v ∈ M, we say that v is the value committed to. If
v /∈M, i.e. v ∈ {⊥,⊥ext}, we do not consider the commitment to have a value.

For straight-line simulation of commitments, we define trapdoor commitment
schemes. These allow to generate and equivocate dummy commitments.

Definition 8 (Trapdoor Commitment Scheme). Let (Setup,C,R) be a
commitment scheme with message spaceM, and let (TSetup,Ctrap) be algorithms
which can be used in place of (Setup,C). Let OCCA be a committed-value pseudo-
oracle. Then TRAPCOM = (Setup,C,R,TSetup,Ctrap) is called trapdoor w.r.t.
OCCA if
– 〈C,R〉 and 〈Ctrap,R〉 are commitment schemes with message spaceM, and
– for all PPT adversaries A, it holds that

{ExpTDC
A,OCCA,TRAPCOM(κ, 0, z)}κ∈N,z∈{0,1}∗

s
≈ {ExpTDC

A,OCCA,TRAPCOM(κ, 1, z)}κ∈Nz∈{0,1}∗

that is, the ensembles are statistically indistinguishable.
The experiment ExpTDC

A,,OCCATRAPCOM(κ, b, z) is defined as follows:
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1. Run A(1κ, z) where A interacts with the game G as follows.
2. First, A sends (Setup). If b = 0, set ck ← Setup(1κ). Otherwise, set

(ck, td)← TSetup(1κ). The experiment sends ck to A.
3. By sending (Start, v) to G, A starts the commit phase of TRAPCOM, acting

as receiver. If b = 0, the experiment runs the code of the honest committer
C on input (1κ, ck, v). If b = 1, the experiment runs the code of the trapdoor
committer Ctrap on input (1κ, ck, |v|, td).

4. After the commit phase has finished, wait for a message (Unveil) and perform
the unveil phase. If b = 1, the trapdoor committer receives v as additional
private input.

5. The experiment gives A access to a committed-value pseudo-oracle OCCA as in
Definition 7. Concretely, we consider 〈G,A〉OCCA as the complete experiment.

6. The experiment outputs the view of A.

As for CCA-binding, in the CCA-equivocation experiment, OCCA rewinds the
whole game. This only makes the adversary (and hence security notion) stronger.
Unlike CCA-binding, Definition 8 is single-challenge.

3.3 Constructions

We first recall the definition of a PRS commitment for µ-bit messages from [Goy+15].

Construction 1 (PRS Commitment Scheme (adapted from [Goy+15]))
Let κ ∈ N be a security parameter. Let COM′ = (Setup′,C′,R′) be a commitment
scheme with message space M = {0, 1}µ(κ) for polynomial µ. Let ` = `(κ) de-
note a round parameter. The PRS commitment scheme with ` rounds and base
commitment COM′ is denoted PRS` or just PRS. It has message spaceM and is
defined as follows.
Setup. Generate ckbi,j ← Setup′(1κ) for b ∈ {0, 1}, i ∈ [κ], j ∈ [`].
Commit Phase. On common input (1κ) and private input v ∈M for C:

1. The committer C chooses κ · ` pairs of random shares (s0i,j , s
1
i,j) of v, i.e.

for all i, j it holds that s0i,j ⊕ s1i,j = v. Then, C runs C′ to commit to sbi,j
for b ∈ {0, 1}, i ∈ [κ], j ∈ [`] under commitment key ckbi,j (in parallel) to
obtain commitments cbi,j.

2. For j = 1, . . . , ` sequentially:
(a) The receiver R sends a challenge string rj = (r1,j , . . . , rκ,j)

$← {0, 1}κ.
(b) The committer C unveils the commitments cr1,j1,j , . . . , c

rκ,j
κ,j . The receiver

aborts if any unveil is invalid.
Unveil Phase. 1. The committer unveils all remaining shares that have not

been opened in the commit phase.
2. The receiver accepts a value v if u01,1⊕u11,1 = · · · = u0κ,`⊕u1κ,` = v, where

ubi,j is the message unveiled for commitment cbi,j.

Terminology 2 In the following, we call the commitment schemes used within
the PRS commitment scheme elementary or base commitment schemes, to
distinguish them from the PRS commitment scheme itself.
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Theorem 1. Let k ∈ N be a parameter (which may depend on κ). Let COM′ be
a base commitment scheme such that:
1. COM′ has a public-coin receiver and non-interactive unveil phase.
2. The commitment phase of COM′ has at most k rounds and the first message

is sent by the committer Ct.
3. COM′ is binding.
4. COM′ is trapdoor with trapdoor committing algorithm C′trap.

Define a commitment scheme CCACOM and round parameter ` ∈ ω(k(κ) log(κ))
as follows:
– Inputs: Common input is (1κ). Private input to C is v.
– Setup: Setup for PRS` (i.e. for base commitment COM′ and ` rounds).
– Commit Phase:

1. PRS commit: Run the PRS commitment phase of PRS`. Let τprs be the
PRS commitment transcript.

2. AoK: Run Blum’s graph hamiltonicity protocol κ-fold in parallel with
base commitments COM′ to prove: τprs is a valid PRS commitment to
some value v ∈M.

– Unveil Phase: Run the corresponding PRS unveil phase.
Let OCCA be the following pseudo-oracle:
– OCCA allows A to choose common inputs (1κ) and interact with an honest
receiver Rs in session s in arbitrarily many concurrent sessions. For this,
OCCA first generates a fresh setup cks ← Setup(1κ) and sends it to A.

– OCCA runs the rewinding-based extraction of PRS commitments as in [Goy+15],
c.f. Appendix C.1 for more details. Let vs denote the extracted value (which
may be ⊥) received in (main thread) session s. (If extraction failed, vs is the
special symbol ⊥ext.)

– When the commitment phase of session s completes, OCCA outputs (End, s, vs,
viewRs) where vs is replaced by ⊥ if R rejected the AoK.

Then the following holds for CCACOM w.r.t. OCCA:
1. CCACOM has at most O(k · (`+ 1)) rounds and non-interactive unveil phase.
2. CCACOM is CCA-binding w.r.t. OCCA.
3. CCACOM is trapdoor for some trapdoor committing algorithm Ctrap.
4. OCCA is black-box and O(k)-robust composition-order invariant.
5. OCCA is O(k)-robust pseudo-PPT.

Note that in Theorem 1, we use a parallel repetition of Blum’s graph hamil-
tonicity protocol instead of a general AoK. This is primarily for simplicity.

Proof (Proof sketch). The claims in Item 1 follow immediately. Item 2, i.e. CCA-
binding w.r.t. OCCA, follows immediately from Lemma 3, the generalized robust
extraction lemma of [Goy+15] (adapted to our setting). The rewinding schedule
of [Goy+15] only uses black-box rewinding access and at most squares the worst-
case runtime, hence Item 5, i.e. black-boxness and pseudo-PPT, follow as well. It
remains to show Item 3 and Item 4.

Claim 1 (Item 4). OCCA is O(k)-robust composition-order invariant.
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We defer the proof of this claim to Section 4.2.
Finally, we show the trapdoor property, Item 3. The trapdoor commitment

setup is obtained by (in the PRS commitment) replacing Setup′ with TSetup′

and C′ with C′trap, i.e., simply using the trapdoor commitment algorithms of the
base commitment COM′.

Claim 2 (Item 3). COM is trapdoor w.r.t. OCCA for trapdoor commitment
algorithms (TSetup,Ctrap) as described above.

To prove indistinguishability, we use following hybrids.
– Hybrid H0: Real game, i.e. the bit b in ExpTDC

A,OCCA,TRAPCOM is 0.
– Hybrid Hj : Same as H0, except that for PRS slots j′ ≤ j, the hybrid executes

the left commit phase using trapdoor algorithms TSetup′ and C′trap (and
trapdoor unveil) instead of the real algorithms.

– Hybrid H`: The simulation, i.e. the bit b in ExpTDC
A,OCCA,TRAPCOM is 1.

All hybrids output the view of A, denoted by viewA. Intuitively, indistinguisha-
bility of Hi and Hi+1 obviously follows from trapdoor property Definition 8.
However, the presence of rewinding OCCA makes the argument non-trivial and
we have to rely on COI. We sketch how the formal argument and embedding
works. Let Gi be the experiment Hi with OCCA factored out, i.e. Hi = GOCCA

i . Let
Eb := ExpTDC

Hi,OCCA,TRAPCOM′2κ(1
κ, b, z) be the TDC experiment from Definition 8.

Finally, let Gi be defined such that Gi = 〈E0,Gi〉, i.e. make session i explicit and
“move” it into Eb. Also observe that Gi+1 = 〈E1,Gi〉. This gives us

Hi = GOCCA
i = outGi〈E0,Gi〉OCCA

s
≈ outGi〈E0,GOCCA

i 〉,

where the first equality holds by definition, the next equality follows by black-
boxness of OCCA (Corollary 1), and the statistical indistinguishability follows
from O(k)-robust COI of OCCA (for PPT algorithms). We stress that this in-
distinguishability is not automatic for pseudo-oracles and requires justification,
given by COI. Next, we find

outGi〈E0,GOCCA
i 〉

s
≈ outGi〈E1,GOCCA

i 〉,

by using that COM′ is a trapdoor commitment by assumption. Now, we reverse
the previous steps, with the same arguments but E1 as left side to find

outGi〈E1,GOCCA
i 〉

s
≈ outGi〈E1,Gi〉OCCA = GOCCA

i+1 = Hi+1.

Thus, we have shown that Hi
s
≈ Hi+1 as claimed. This finishes the proof. ut

The base commitment COM′ in Theorem 1 can be instantiated using a number
of assumptions.

Proposition 1 (Possible Instantiations). Under the RSA assumption, the
DLOG assumption and the SIS assumption, there exist commitment schemes
COM′RSA [HW09], COM′DLOG [Ped92] and COM′SIS [GVW15] in the CRS-hybrid
model with
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1. a public-coin receiver and non-interactive unveil phase,
2. a commit phase of O(1) rounds and the first message is sent by the committer,
3. a computational binding property and
4. a statistical trapdoor property.

4 Analysis of the Committed-Value Oracle OCCA

In this section, we recall the PRS rewinding schedule from [Goy+15], presented
in our setting. Moreover, we show that the committed-value oracle OCCA from
Theorem 1 satisfies composition-order invariance. In Appendix C, we recall the
robust extraction lemma from [Goy+15] and present a useful substitution rule
for OCCA, namely the possibility to move receiver session in and out of OCCA (so
that they can be implemented and used in a security reduction).

4.1 The Rewinding Schedule from [Goy+15]

We recall the rewinding schedule of [Goy+15], which itself is based on [PRS02;
PTV14]. In [Goy+15], an adversary A interacting with an external party B and
an (external) PRS receiver is considered. Thus, A can send messages to
– the PRS receiver, which offers rewinding slots,
– the external party B, which is a barrier to rewinding.

As usual, we assume (for presentational simplicity) that PRS messages from
(and to) A are of the form (Type, values). Thus, we have following message types,
where m is the “actual” message. Firstly, messages which are irrelevant to the
rewinding schedule:
– (Init, s): Initiate PRS session s.
– (Other, s,m): These are all other messages (to and from A) which are not

covered below (e.g. the commitment phase step 1).
The messages related to the challenge-response phase/the slots, and message to
the external party B, are used in the rewinding schedule. These are the following:
– (Start, s,m): Start of challenge-response in PRS session s.4 (Sent by A.)
– (Challi, s,m): Challenge for i-th slot of PRS session s. (Sent by PRS oracle.)
– (Respi, s,m): Response to i-th slot of PRS session s. (Sent by A.)
– (End, s,m): Extracted PRS session result. (Sent by PRS oracle.)
– (ExtSendi,m): The i-th message from A to B. (Sent by A.)
– (ExtRespi,m): The i-th response from B to A. (Sent by PRS oracle.)
We assume for simplicity that A is well-behaved, i.e. never sends unexpected

or malformed messages, skips steps, etc. Moreover, we note (and will see) that
the presence of a CRS does not affect the rewinding schedule of PRS extractor,
which only depends on challenge slots.
4 Eitherm is the last message of the commitment phase step 1. Or one lets (Other, s,m)
finish that step and sets m = ⊥ here. Either way, the message is a “start marker”
initiating the first challenge. The choice does not affect the rewinding schedule.
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With notation in place, we recall the rewinding schedule of [Goy+15] (adapted
to our notation). We ignore the messages (Init, s) and (Other, s,m) in the descrip-
tion, as they are simply handled “honestly” and do not affect the rewinding sched-
ule in any way. Rewinds only happen to sample fresh challenges (Challi, s,m)
and gather (fresh) responses, while respecting external messages (ExtRespi,m)
which cannot be rewound. We use the PRS preamble as defined in Construction 1.
The procedure recurse(t, st, T , f, aux, id) is recursively defined with base case
for step size t = 1. We assume w.l.o.g. that t is a power of 2.

Base case: procedure recurse(1, st, T , f, aux, id)
1. If the next message is (Start, s,m), start a new session s:

– Send (Chall1, s, r1) for r1 ← C, where C = {0, 1}κ.
– Add ((s, id), 1, r1,m) to T .

2. If the next message is (Respi, s,m):
– If the simulated PRS receiver in session s would abort (due to a failing

check), abort session s and add (s, i,⊥,⊥) to T . Else continue.
– If i ∈ {1, . . . , `}
• Add (s, i, ri,m) to T
• If i < `: Send (Challi, s, ri) for r ← C.
• If i = `: Send (End, s, extract(s, id, T , aux)).

3. If the next message is (ExtSendi,m):
– If f = 0, i.e. this is a look-ahead thread, return (st, T ). (Early return.)
– If f = 1, i.e. this is the main thread, then:
• For every live session s ∈ LIVE(st) do:

∗ ×s,id = 1,
∗ for every block id′ that contains the block id, set ×s,id′ = 1.

• Send m to B and receive response m′. Forward (ExtRespi,m
′) to A.

4. If not early returned, update state st to current state of A and return (st, T ).
Note that whenever we record a response of sessions s, we also remember the

identity id of the block where this has occurred. This is used to disambiguate
sessions which occur in parallel in different look-ahead threads. For example, the
third session on a look-ahead thread and on the main thread may be completely
different sessions. This ensures that (s, id) is a unique identifier across all threads.

Recursive case: procedure recurse(t, st, T , f, aux, id)
// Rewind the first half twice:
1. (st1, T1)← recurse(t/2, st, T , 0, aux, id ◦ 1) (look-ahead block)
2. Let aux2 = (aux, T1 \ T )

(st2, T2)← recurse(t/2, st, T , f, aux2, id ◦ 2) (main block)
// Rewind the second half twice:
3. Let T ∗ = T1 ∪ T2

(st3, T3)← recurse(t/2, st2, T ∗, 0, aux, id ◦ 3) (look-ahead block)
4. Let aux4 = (aux, T3 \ T ∗)

(st4, T4)← recurse(t/2, st2, T ∗, f, aux4, id ◦ 4) (main block)

Extraction: procedure extract(s, id, T , aux)
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1. Search in T for a pair of ((s, id′), i, ri,m), ((s, id′′), i, r′i,m′) with r′i 6= ri
and such that id′, id′′ lie after id. If found, extract that pair and return an
extracted value.

2. If no such pair exists in T , consider every block id1 for which ×s,id1 = 1.
– Let id′1 be the sibling5 of id1 with input/output tables Tin, Tout respec-

tively.
– Attempt to extract (as before) from auxid′1 := Tin \ Tout.
– If all attempts fail, return ExtFail, otherwise return the extracted value.

Remark 3 (Ambiguous extraction). In extract(s, id, T , aux), it can happen that
multiple distinct values could be extracted, e.g. because the PRS preamble was
inconsistent, and different values were shared in different slots or within a slot.
We do not specify which value should be extracted in this case; any choice is fine.

Remark 4 ((Hierarchically) Structured randomness). The procedure recurse
is deterministic in all recursive calls, except the base calls. It will be helpful
to assume that recurse interprets its randomness in a structured manner into
disjoint/independent parts as follows:
– A tuple (rChallid )id which specifies challenge messages the for slot in atomic

block id, i.e. base call ids (i.e. strings in {1, 2, 3, 4}log(t)).
– A tuple (rOtherid )id which specifies randomness for all other probabilistic com-

putations, e.g. the receiver randomness used in base commitments in the
PRS commitment phase.

In particular, it is possible to identify and fix the randomness of the main thread,
and thus all messages and challenges “sent” by recurse on the main thread. This
separation of randomness into atomic blocks will be conceptually helpful later.

4.2 Composition-Order Invariance of OCCA

In this section, we prove the k-robust composition-order invariance of OCCA from
Theorem 1. For this, we consider an adversary A with access to OCCA and an
external protocol B, so that the interaction 〈B,A〉 has at most k rounds.

Remark 5. The switch fromA interacting with external B to 〈B,A〉 as a composed
system effectively corresponds to making the previously external messages between
A and B “internal”, hence they are not visible to recurse anymore. For example, in
a system composed of three machines and a pseudo-oracle OCCA, we can compose
the system in several ways:
– 〈C, 〈B,AOCCA〉〉: Here, all messages from A and to B or C are external (for
OCCA), whereas C and B are the single external entity to OCCA. Indeed, this
is equivalent to 〈C ‖ B,AOCCA〉.

– 〈C, 〈B,A〉OCCA〉: Here, all messages from A or B (i.e., from the composed
system 〈B,A〉) to C are external (for OCCA).

– 〈B, 〈C,A〉OCCA〉: Same as above, with roles of B and C swapped.
5 The sibling of a block/identity if the other block/identity in the paired calls, e.g. the
sibling of id ◦ 1 is id ◦ 2 and vice versa.
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– 〈B, 〈C,A〉〉OCCA : Here, there are no external messages. Indeed, this is equivalent
to (C ‖ B ‖ A)OCCA .

Before analyzing OCCA from Theorem 1 further, note that it generates the
setup and outputs the receiver’s view viewRs , unlike the PRS extractor. This
does not affect security in any way. Indeed, setup generation is clearly not a
problem. And, perhaps surprisingly, outputting the receiver’s view also poses no
problem in the security reduction.

Lemma 1. Let A, B, OCCA as above and recall that 〈B,A〉 has at most k rounds.
Suppose that COM′ has stateless receiver. Suppose M = 2m is an upper bound on
the number of messages A to the PRS oracle or to B. Let T be an upper bound
of the number of sessions started by A on the main thread. Define the random
variables
– out1(κ, x, y, z) as outB,A〈B(x), AOCCA(y)〉(1κ, z), and
– out2(κ, x, y, z) as outB,A〈B(x), A(y)〉OCCA(1κ, z).

Then there exists an adversary ACOM′ against the binding property of COM′ with
expected6 run-time bounded roughly by the (strict) runtime of extractor E〈B,A〉
(cf. Lemma 3). Concretely, if 〈B,A〉 has worst-case run-time S, then E〈B,A〉 and
ACOM′ has expected run-time bounded roughly by 2 ·M2S. In particular, if B and
A are PPT, then ACOM′ is expected polynomial time. For ACOM′ , it holds that
for all κ ∈ N and all z ∈ {0, 1}∗:

∆(out1(κ, x, y, z), out2(κ, x, y, z)) ≤ 2 · (2−`+(k+2) log(M) +M2/|C|) + 2−κ

+
1

T · poly
·Advbind

COM′,ACOM′
(κ, z)

where poly(κ) = polyAoK(κ) + κ · `(κ) and polyAoK is a bound on the number of
commitments made during in the AoK step.

The proof idea is straightforward: Whenever extract is called for a session
which is visible on the main thread and thus part of the view, the extracted
value must be the same for both Π1 = 〈B,AOCCA〉 and Π2 = 〈B,A〉OCCA . Indeed,
running the extractor, i.e. recurse, with fixed randomness for E , and A and B (and
fixed inputs x, y) either the outputs of Π1 and Π2 are identical, or at some point,
the result of an extraction, i.e. the output of OCCA, on the main thread must
have been different. Since extraction succeeds with overwhelming probability
(statistically), the only failure case is a break of the binding property of the base
commitment or an inconsistent PRS commitment, which is a break of the AoK
(which reduces to a binding break). Moreover, despite the different rewinding
schedules, OCCA (i.e. E) sends the same challenges on the main thread. This is a
simple consequence of the “disjoint partition of randomness” we postulated in
Remark 4. The claim follows. When embedding the binding game on the main
thread, one must simulate the receiver in look-ahead threads (in such a way, that
6 Expected run-time stems from extraction of the AoK via rewinding. It can be traded
for only one rewind, hence strict PPT, but with a quadratic loss in advantage.
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the PRS analysis still applies). This is where the stateless receiver property is
used, as it ensures that anyone can continue the receiver’s interactions. A more
detailed proof is provided below.

Proof. Suppose w.l.o.g. that A resp. B are deterministic and fix inputs x resp.
y. Draw and fix the random tape r for recurse and all other randomness of
OCCA. Note that we assume (Remark 4) that the randomness r is of the form
r = (rid)id∈{1,2,3,4}log(M) such that all atomic blocks use disjoint randomness.
W.l.o.g., the rewinding sets t = M . Let Π1 = 〈B,AOCCA〉 and Π2 = 〈B,A〉OCCA ,
Since the extractor E , i.e., recurse, is used to implement the PRS extraction in
OCCA, we will talk about threads of Π1 resp. Π2 by an abuse of notation.

Now, compare the main thread on Π1 and Π2. Since randomness r for recurse
is fixed and A and B assumed deterministic, we observe (by induction) that:
1. If all messages received by A or B in Π1 resp. Π2 on the main thread are

identical, then the next message of A or B will again be identical
2. Only OCCA may send messages which are not identical in Π1 and Π2. We

say, that (the responses of OCCA in) Π1 and Π2 diverge.
Thus, we will in the following view the execution of Π1 and Π2 in parallel and in
lock-step on the main thread, until they diverge.

There are two possible cases for diverging responses on the main thread: For
some session s, the AoK was accepting but
1. Extraction via recurse failed for one of Π1 or Π2 (but not both). Denote such

an extraction failure event in Πi by Fi for i = 1, 2. Clearly, the event by
F1 ∨ F2 is a superset of this case of divergence.

2. Extraction via recurse succeeds for both sessions, but extracted values are
unequal, i.e. v1 6= v2. Denote this event by F6=.

By Lemma 3 and a union bound, the probability of an extraction failure for the
run with Π1 or Π2 is at most

Pr[F1 ∨ F2] ≤ 2 · (2−`+(k+2) log(M) +M2/|C|).

In the following, we consider modified outputs out1, out2 which always output
0 if F1 ∨ F2 occurred. (For this, they run both Π1 and Π2 with the same
randomness.) The change in statistical distance is at most Pr[F1 ∨ F2]. Thus,
from now on, we can ignore the failure case F1 ∨ F2.

Next, we show following claim:

Claim 3. Pr[F 6=] ≤ 2−κ + 1
poly·T ·Advbind

COM′,ACOM′
(κ).

The lemma then immediately follows. To prove Claim 3, first denote by s∗ the
first session (on the main thread) where the divergence of Π1 and Π2 occurs.
Consider the experiment where after the occurrence of F6=, the corresponding
AoK gets extracted, and if extraction is successful, let (d′′i,j)κi=1 be the extracted
decommitments in session s∗ slot j ∈ {1, . . . , `}. Note already here that, even
though the extraction of the AoK uses rewinding, it will never rewind before the
PRS commitment phase step 1 ended for session s∗ (on the main thread).

Observe that F6= implies that at least one of the following is true.
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– If the AoK extraction fails, then for our concrete instantiation, either
• no two different responses were found (during rewinding), which happens
with negligible probability 2−κ.7 Call this event Fcoll.
• or two different responses were found but they were inconsistent, i.e. the
decommitments they had in common were not all to the same values.
Thus, this yields a binding break.

– If AoK extraction succeeds, then at least one extracted decommitment d′′i,j
unveils to a different value than recurse extracted for Π1 or Π2. Again, this
yields a binding break.

Now, we construct an adversary ACOM′ against the binding property of COM′.
Note that ACOM′ has to rewind A, but cannot rewind the embedded binding
game. As a consequence, arguing that ACOM′ correctly simulates the experiment
requires some care. Unsurprisingly, ACOM′ embeds its binding challenge in a
random instance of COM′ on the main thread. It does so by passing the (external)
messages for COM′ from A to the game and returning the challenge receiver’s
responses. However, ACOM′ must also play the receiver in look-ahead threads,
where it cannot embed the binding game anymore. That is, ACOM′ must procure
responses for A whose distribution is identical to that of the receiver of COM′

(with the same state as that in the “past” of the thread under consideration).
For this, we exploit that COM′ has stateless receiver : Thus, ACOM′ can simply
continue the execution of any COM′ receiver. Observe, that since the randomness
in all atomic blocks is independent (cf. Remark 4), the embedding of the COM′

challenger in the main thread and computing the stateless receiver responses
in look-ahead threads does not affect the distribution (in fact, it is possible to
map random tapes from one execution to the other and vice versa). Thus, the
probability for F6= is unchanged. In full, ACOM′ works as follows:
– Pick a random commitment index t∗ on the main thread. That is, pick a

random session s∗ ← {1, . . . , T} and index i∗
$← {1, . . . , poly(κ)}, where

poly(κ) = polyAoK(κ) + κ · `(κ) is an upper bound for the number of COM′

commitments made in a PRS commitment phase (i.e. both in step 1 and the
AoK).

– Run Π1 and Π2 in parallel and synchronized on the main thread.
– If F 6= occurs before session s∗, output ⊥ to the challenger.8
– Emulate the rest of the extractor/rewinding schedule essentially unchanged.
– Embed the binding challenge in session s∗ and commitment with index i∗.
– After session s∗, extract the AoK (via rewinding) and output a potential

binding break for commitment i∗ to the challenger, or ⊥ if none occurred or
extraction of the AoK failed. Observe that:

7 Resampling challenges uniformly with replacement, the probability of a collision is
1/n if there are n accepting challenges, and n/2κ is the probability that the verifier
accepted the AoK (and extraction was started). Thus max2κ

n=1 2
−κn/n = 2−κ is an

upper bound on failure.
8 If F1 ∨ F2 occurs before F 6=, the modified experiment immediately outputs 0, so F 6=
will not occur and this case is irrelevant.
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• The rewinding-based AoK extraction occurs strictly after the embed-
ded challenge commitment completed, hence ACOM′ never attempts to
rewinding the challenger.

• The reduction ACOM′ never provides (End, s∗, vs∗ , viewRs∗ ) to A. Indeed,
it could not provide viewRs∗ , since in general, viewRs∗ is only known to
the binding challenger.

Overall, this yields our adversary ACOM′ against the multi-binding game with
the claimed advantage. In more detail: Let B be the event that a binding break
is found on the main thread when the AoK for the first diverging session s∗ is
extracted. We find that

Pr[F 6=] ≤ Pr[Fcoll] + Pr[B] ≤ 2−κ +
1

poly · T
·Advbind

COM′,ACOM′
(κ).

Putting everything together, we find that for all κ ∈ N and all z ∈ {0, 1}∗, it
holds that

∆(out1(κ, x, y, z), out2(κ, x, y, z)) ≤ Pr[F1 ∨ F2 ∨ Fcoll ∨B]

≤ 2 · (2−`+(k+2) log(M) +M2/|C|) + 2−κ

+
1

poly · T
·Advbind

COM′,ACOM′
(κ, z)

This proves the claimed advantage of ACOM′ .
Lastly, observe that if B and A are PPT, then Π1 and Π2 are (overall) PPT

algorithms, since OCCA is k-robust pseudo-PPT. In particular, rewinding them
for AoK extraction is efficient (and the expected time bound is roughly double
the worst-case time since in expectation 1 rewind happens). ut

5 Framework and Notion

With UC security and its variants, all entities keep their run-time complexity
throughout the whole execution, making them unsuitable to analyze the security
of protocols in a setting where cryptographic hardness assumptions may lose
their validity.

In order to circumvent the impossibility results of Long-Term Security [MU10],
we want to modify the protocol execution such that rewinding-based extraction
of long-term hiding commitment schemes is possible in a way that preserves
universal composability.

To this end, we take a route similar to [PS04; CLP10] and provide environ-
ment and adversary with an entity called the helper H. This efficient helper
is parameterized with an extractable commitment scheme COM and allows the
rewinding-based extraction of instances of COM where the commitment is per-
formed with H as receiver.

Formally, our notion is cast in the GUC framework [Can+07], allowing both
the use of the helper H as well as other global ideal functionalities. We assume
that the reader is familiar with the basic concepts of (G)UC security. For a
short overview, see Appendix A. Due to space constraints, this chapter is a short
version only. For the full treatment of framework and notion, see Appendix D.
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Extracting (Statistically Hiding) Commitments. H provides an oracle that allows
the extraction of commitments (cf. Section 3.2), similar to a CCA oracle. This part
is analogous to the helper of [CLP10], with the following differences: The helper
of [CLP10] is able to extract statistically binding commitments by inefficient
computations. In contrast, we want to consider commitments that are statistically
hiding. Such commitments cannot be extracted by brute force, but require different
techniques such as an appropriate setup allowing for straight-line extraction (see
[MU10] for an example) or rewinding. More specifically, we adapt the rewinding-
based extraction techniques of [Goy+15] to our setting, via pseudo-oracles and a
suitably adapted analysis in Sections 3 and 4. We provide the helper with the
views of all ITIs that may be affected by a performed rewinding.

While we do not (intend to) achieve composability in the plain model, the
resulting security notion has properties and limitations similar to Angel-based
security [PS04] or UC with super-polynomial helpers [CLP10], e.g. with respect
to protocol reusability.

As we will later use commitment schemes in the FCRS-hybrid model, we have
adapted the helper accordingly. When a corrupted party starts a new commitment
session with H, the committed-value oracle OCCA within H honestly executes the
CRS generation algorithm of the desired commitment scheme and H returns the
resulting CRS ck to the party initiating the session.

As the commitment key is generated honestly, it is guaranteed to be inde-
pendent from all other commitment keys. Thus, a corrupted party cannot take
a key ck′ from another session (e.g. where the sender is honest) and have H
extract commitments relative to ck. A similar policy is enforced in [CLP10] by
the use of tags, which we omit as they are not necessary (with different sessions
distinguished by their commitment key).

To establish meaningful properties, we require the commitment scheme to
feature a committed-value oracle which is black-box (Definition 4) and k-robust
composition-order invariant and pseudo-PPT (Definitions 5 and 6), This allows
to a) import protocols with appropriate round complexity into our framework
without loss of security due to the committed-value oracle and b) prove the
security of protocols within our framework by reducing to security properties
with a certain (bounded) round complexity. The robustness property guarantees
that we can efficiently simulate the committed-value oracle without having to
rewind the challenger in a reduction.

The helper H is formally defined in Definition 9.

Definition 9 (The helper H). H is parameterized with 1. a security parameter
κ ∈ N, 2. auxiliary input z and 3. a commitment scheme COM with committed-
value (pseudo-)oracle OCCA.
– Upon receiving an input (corrupt, Pi, sid) from the environment, record
(corrupt, Pi, sid).

– Upon receiving an input (ext-init, Pi, sid , k) from a corrupted party Pi in
the protocol with SID sid : If there is a recorded session (Pi, sid , k), ignore this
message. Otherwise, initialize the k-th sub-session of (Pi, sid) with OCCA and
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receive a setup ck. Record session (Pi, sid , k) and return (setup, sid , k, ck) to
Pi.

– Upon receiving a message (ext-mesg, Pi, sid , k,m) from a corrupted party Pi
in the protocol with SID sid : If there is no recorded session (Pi, sid , k), ignore
the message. Otherwise, give input (sid , k,m) to OCCA, possibly obtain a reply
m′. Ifm′ is a special message (End, s, ws, viewRs), return (ext-val, Pi, sid , k, ws)
to Pi. Otherwise, return (ext-mesg, Pi, sid , k,m′) to Pi.

In order to allow the helper to perform the rewinding-based extraction, it needs
to be provided with the views of the entities to be rewinded. This requires slight
changes to the framework, which can be found in Appendix D.1. Knowledge of
these changes is not necessary to understand the following. We call the framework
resulting from this modification the UC Security with Rewinding framework.

5.1 Protocol Emulation

Before stating long-term protocol emulation, we provide the standard notion of
computational protocol emulation adapted to our setting.

Definition 10 (UC Security with Rewinding Protocol Emulation). Let
π and φ be PPT protocols and let H be the helper of Definition 9. We say that
π Rewinding-UC-emulates φ if for all PPT adversaries A, there exists a PPT
simulator S such that for all H-aided9 balanced PPT environments Z, there exists
a negligible function negl such that for all κ ∈ N, z ∈ {0, 1}∗ it holds that

|Pr[Exec
(
π,A,Z

)
(κ, z) = 1]− Pr[Exec

(
φ,S,Z

)
(κ, z) = 1]| ≤ negl(κ)

If π Rewinding-UC-emulates φ, we write π ≥R φ.
We adapt the notion of long-term protocol emulation in our framework in

analogy to the established definition due to Müller-Quade and Unruh [MU10].
In contrast to standard UC emulation, long-term emulation allows the environ-
ment to output an arbitrary string of polynomial length and requires statistical
indistinguishability of the resulting ensembles. Intuitively, this means that all
(polynomial-time) hardness assumptions lose their validity after the protocol
execution has finished.

To this end, let ExecS denote the random variable that is identically defined
to Exec, except that the environment outputs an arbitrary string (of polynomial
length).

Definition 11 (Long-term UC Protocol Emulation). Let π and φ be PPT
protocols and let H be the helper of Definition 9. We say that π long-term-
Rewinding-UC-emulates φ if for all PPT adversaries A, there exists a PPT
9 We restate the definition of H-aided environments due to Canetti, Lin, and Pass
[CLP16]: a) Z invokes a single instance of H immediately after invoking the adversary.
b) As soon as a party (i.e. an ITI) P is corrupted (i.e. P receives a corruptedmessage),
Z lets H know of this fact. H interacts only with the environment, the adversary,
and the corrupted parties.
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simulator S such that for all H-aided balanced PPT environments Z, the ensem-
bles {ExecS

(
π,A,Z

)
(κ, z)}κ∈N,z∈{0,1}∗ and {ExecS

(
φ,S,Z

)
(κ, z)}κ∈N,z∈{0,1}∗

are statistically indistinguishable.

If π long-term-Rewinding-UC-emulates φ, we write π ≥lt
R φ. If π long-term-

Rewinding-UC-emulates the ideal protocol of a functionality F , then we say that
π long-term-Rewinding-UC-realizes F .

Remark 6. In contrast to the definition of long-term security in [MU10], the
environment of Definition 11 has access to the helper H, which provides a
committed-value oracle that does not exist in the original definition.

5.2 Properties

We now discuss the properties of our notion, which are mostly similar to the
properties of long-term security and UC security with super-polynomial helpers.
In particular, the dummy adversary is complete and both notions of protocol
emulation are transitive. Like UC security with superpolynomial helpers [CLP10]
and long-term security [MU10]), our notion is closed under general concurrent
(i.e. universal) composition.

Theorem 2 (Composition Theorem). Let ρ, π, φ be PPT protocols where π
and φ subroutine-respecting. If π (long-term-) Rewinding-UC-emulates φ, then,
ρφ→π (long-term-) Rewinding-UC-emulates ρ.

The proof is very similar to the ones presented in [CLP10; Can+07; MU10] and
we omit it.

UC Compatibility. When introducing a new security notion that features modular
design, a natural question to ask is which existing protocols (that are secure
according some other notion) can be reused.

Let π and φ be PPT protocols such that π ≥UC φ. Due to the helper H,
just as in [PS04; CLP10], we cannot hope that we can import an arbitrary UC
protocol π securely, i.e. that π ≥UC φ implies that π ≥R φ. This is because a
Rewinding UC environment is more powerful than a normal UC environment due
to the access to H: The committed-value oracle of H could invalidate assumptions
made in the security proof.

Nevertheless, we can show the compatibility with UC security for large classes
of protocols, namely those that have less than or equal to k rounds if the
committed-value (pseudo-)oracle provided by H is black-box (Definition 4) k-
robust composition-order invariant (Definition 5) and pseudo-PPT (Definition 6).
This criterion essentially is the same as in [CLP10], except for the additional
requirements for the (pseudo-)oracle.

Theorem 3 (UC Compatibility). Let H be the helper that is parameter-
ized with a commitment scheme COM that features an O(k)-robust black-box
composition-order invariant pseudo-PPT committed-value (pseudo-)oracle OCCA,
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where k ∈ O(poly(κ)). Let φ be a subroutine-respecting PPT protocol and let π
be a subroutine-respecting PPT protocol with less than or equal to k rounds such
that
– π ≥stat-UC φ. Then, π ≥lt

R φ.
– π ≥ltUC φ. Then, π ≥lt

R φ.
– π ≥UC φ. Then, π ≥R φ.

Here, ≥stat-UC denotes statistical UC emulation, ≥ltUC denotes long-term emula-
tion and ≥UC denotes standard UC emulation.

For the proof, see Appendix D.3.
Of course, compatibility is not limited to the cases mentioned in Theorem 3

and its variants. However, manual proofs may be necessary.

Meaningfulness. Just like the angel in [PS04] or the helper in [CLP10], our helper
may negatively affect the security guarantees provided by ideal functionalities. To
illustrate this, consider a variant F ′COM of the ideal functionality for commitments
FCOM, which we extend to accept a CRS from the adversary. When the honest
committer provides its input v, F ′COM first checks if the CRS is a valid CRS for
the statistically hiding commitment scheme COM of H10. Then, it performs the
commit phase with the adversary, acting as an honest committer with input v.

In the presence of H, F ′COM provides no meaningful security. The adversary
simply can start a new session with the committed-value oracle provided by
H, receiving a valid CRS which it provides to F ′COM. Then, it can forward all
commitment-related messages between H and F ′COM. In the end, the adversary
will learn v, i.e. the value committed to by the honest committer, from H. (The
argument for [CLP10; PS04] is analogous.)

Thus, (long-term) Rewinding UC security only guarantees meaningful security
for ideal functionalities with less than or equal to k rounds if OCCA (in H) is
O(k)-robust, pseudo-PPT O(k)-robust composition-order invariant. Note that
very similar limitations with respect to the meaningfulness apply to e.g. [CLP10;
PS04].

Justification. We now discuss under which circumstances our notion implies
existing security notions for (composable) multi-party computation. This is
helpful to grasp the (intuitive) security guarantees of (long-term) Rewinding UC
security. First, we show that Rewinding UC security implies UC security for a
large class of protocols.

Proposition 2 (Justification: UC Security). Let π, φ be PPT protocols such
that π ≥R φ (resp. π ≥lt

R φ) and the simulator never needs to interacts with H
on the committed-value oracle for the challenge session. Then, π ≥UC φ (resp.
π ≥ltUC φ).
10 Here, we assume that a CRS that leads to a statistically hiding commitment scheme

is efficiently recognizable.
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For the proof, see Appendix D.3. For the case of ideal functionalities that can
be expressed by stand-alone real-ideal security (see e.g. [Gol04]), the following
holds regardless of the simulator using the committed-value oracle of H.

Proposition 3 (Justification: Stand-Alone Security for SFE). Let H
be a helper with a committed-value oracle that is black-box and O(1)-robust
composition-order invariant and pseudo-PPT. Let π be a N -party PPT protocol
in the FCRS-hybrid model such that π (long-term-) Rewinding-UC-realizes FSFE

(with H) for some function f : ({0, 1}κ)N × {0, 1}poly(κ) → ({0, 1}κ)N . Then, π
securely computes f with abort in the presence of static malicious adversaries.

In particular, Proposition 3 captures the stand-alone real-ideal security of e.g.
zero-knowledge proof systems. The restriction to protocols in the FCRS-hybrid
model can be relaxed to other hybrid functionalities that can be expressed by
stand-alone real-ideal security.

We omit the proof of Proposition 3, but note that that the distinguisher
in the real-ideal security notion is not provided with a committed-value ora-
cle (corresponding to an Rewinding UC environment that never queries the
committed-value oracle of H). Thus, the (PPT) simulator may only need to
extract commitments for its own simulation, which it can do efficiently via
rewinding, regardless of the number of rounds of π.

Environmental Friendliness. Similar to [CLP10], our notion partially fulfills
the notion of environmental friendliness [CLP13]. Suppose that the committed-
value oracle of H is O(k)-robust, pseudo-PPT O(k)-robust composition-order
invariant and that a PPT protocol π (long-term-) Rewinding-UC-realizes an
ideal functionality G. Then, we can show that for every k-round game-based
property of a protocol that is executed concurrently (outside the Rewinding UC
execution), the protocol π does not affect this game-based property if it is not
already affected by G (in an execution without H). For details, see Appendix D.3.

Impossibility Results. While the addition of the helper H, which allows the extrac-
tion of statistically hiding commitments, suffices to “circumvent” the impossibility
results of Müller-Quade and Unruh [MU10], our setting still faces an important
impossibility result for long-term Rewinding UC.

Theorem 4. Let F be a functionality that is long-term revealing (Definition 21)
for any party. Then, there is no bilateral11 nontrivial PPT protocol πOT that
long-term-Rewinding-UC-realizes FOT in the F-hybrid model (assuming ideally
authenticated communication).

Theorem 4 is a direct consequence of the folklore impossibility result of
correct statistically secure oblivious transfer in the plain model (even with passive
security only). For the proof, see Appendix D.3.
11 We recall the definition of a bilateral protocol due to Canetti and Fischlin [CF01]:

“[A] protocol π between n parties P1, . . . , Pn is bilateral if all except two parties stay
idle and do not transmit messages.”
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6 Long-Term-Secure Composable Commitment Scheme

In this chapter, we present the construction of our long-term-secure commitment
scheme πCOM.

In Section 3, we have constructed a commitment scheme CCACOM that is
both CCA-binding (Definition 7) and trapdoor (Definition 8). The equivocation
is performed by embedding a (statistically hidden) trapdoor into the CRS. In
contrast, the extraction is performed using rewinding. For the committed-value
oracle OCCA, we have been able to establish several important properties such as
the black-box property (Definition 4) and k-robust composition-order invariant
and pseudo-PPT (Definitions 5 and 6). In Section 5, we have embedded the
committed-value (pseudo-)oracle OCCA into the UC execution through the helper
H.

Thus, the construction is straight-forward: πCOM merely wraps an instance
of CCACOM, inheriting its properties. In particular, the equivocation by the
simulator is done by choosing an appropriate CRS, while the extraction is
performed via the helper.

Even though the construction is simple, the proof needs to carefully deal
with the pseudo-oracle OCCA, which is part of the helper. In order for the
reductions to properties of CCACOM to go through, we will make heavy use of
the aforementioned properties of OCCA.

Construction 2 (Protocol πCOM) Parameterized by a security parameter κ
and a commitment scheme COM with non-interactive unveil phase.
– On input (commit, sid , v) for C:

1. C and R execute COM with SID (sid ||COM) and input v for the committer.
Let d denote the unveil information. If the sub-party of the receiver in
COM accepts, R outputs (committed, sid). Subsequent commit inputs are
ignored.

– On input (unveil, sid) for C:
1. C sends (unveil, sid , v, d) to R.
2. R outputs (unveil, sid , v) if the commitment opens to v using unveil

information d. Otherwise, it halts without output.

We can now state our main theorem. In the following, we always assume that
the protocol under consideration, helper and ideal functionality are consistent, i.e.
parameterized with the same commitment scheme COM. The proof of following
theorem is in Appendix E.

Theorem 5. Let OCCA be a black-box committed-value pseudo-oracle for the
commitment scheme COM. If COM is a CCA-binding and trapdoor commitment
scheme w.r.t. OCCA and has an appropriate message space, then πCOM long-term-
Rewinding-UC-realizes FCOM.

7 Applications

We present several applications of our composable long-term-secure commitment
scheme. For a full treatment, see Appendix F.
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7.1 Zero-Knowledge and Commit-and-Prove

By plugging our long-term-secure commitment scheme into an appropriate zero-
knowledge proof system with statistical UC security in the FCOM-hybrid model
(e.g. [CF01]), we can long-term-Rewinding-UC-realize FZK. The resulting protocol
thus features composable statistical zero-knowledge and knowledge soundness
against computationally bounded provers.

Using a similar approach, we obtain a protocol that long-term-Rewinding-
UC-realizes the ideal functionality FCP for commit-and-prove (Definition 15) for
a bounded number of proofs per instance.

7.2 Two-Party Computation with Long-term Security for One Party

Even given a commitment scheme that is long-term-Rewinding-UC-secure, we can-
not hope to achieve long-term secure oblivious transfer from long-term-revealing
setups (cf. Theorem 4), which also rules out general secure two-party computation
with long-term security for both parties.

By combining FCP with an appropriate oblivious transfer (OT) protocol that
provides statistical security for one party, e.g. the dual-mode construction of
[PVW08], we obtain a protocol for composable OT where one party is protected
with long-term security.

Using a very similar approach, we can construct protocols for composable
general two-party computation where one party enjoys long-term security.

Unfortunately, meaningfully defining security in such a setting is not straight-
forward: The simulation of an (honest) party that is only given computational
security must depend on this party’s secrets, which are (not even indirectly)
available for the simulator.

For the constructions and further discussions, see Appendix F.2.

8 Conclusion

Previous constructions for protocols with composable long-term security required
hardware-based setups, often making them impractical due to the necessary
distribution of the setup. In particular, natural setups such as common reference
strings were shown to be insufficient to achieve long-term security.

We circumvent this impossibility result by enabling a rewinding-based ex-
traction through the introduction of pseudo-oracles. Towards this, we faced and
solved many technical hurdles to construct a robust, extractable, and well-behaved
CCA-commitment scheme. With rewinding-based extraction at hand, we are
the first to construct a statistically hiding and composable long-term-secure
commitment scheme from standard polynomial-time hardness assumptions solely
in the FCRS-hybrid model, i.e. without the use of hardware assumptions.

We give several applications of our commitment scheme, including composable
oblivious transfer with long-term security for one party in the FCRS-hybrid model
and showed how this approach can be extended to general two-party computation
with similar guarantees. Due to impossibility results within our security notion,
this is the best security one can hope for, unless stronger setups are used.
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A A Short Introduction to (G)UC

In the following, we give a brief overview of UC and GUC security. The following
is adapted from [Bro+21]. For detailed introductions, see [Can01; Can+07].

In the (G)UC framework, security is defined by the indistinguishability of
two experiments: the ideal experiment and the real experiment. In the ideal
experiment, the task at hand is carried out by dummy parties with the help of an
ideal incorruptible entity—called the ideal functionality F . In the real experiment,
the parties execute a protocol π in order to solve the prescribed task themselves.
A protocol π is said to be a (secure) realization of F if no PPT machine Z, called
the environment, can distinguish between these two experiments. In contrast to
previous simulation-based notions, indistinguishability must not only hold after
the protocol execution has completed, but even if the environment Z—acting
as the interactive distinguisher—takes part in the experiment, orchestrates all
adversarial attacks, gives input to the parties running the challenge protocol,
receives the parties’ output and observes the communication during the whole
protocol execution.

UC Framework Conventions. In the (G)UC framework, each party is identified
by its party identifier (PID) pid which is unique to the party and is the UC
equivalent of the physical identity of this party. A party runs a protocol π is
called the main party of this instance of π. A subsidiary and its parent use
their input/subroutine output tape to communicate with each other. The set of
machines taking part in the same protocol but for different parties communicate
through their incoming message tapes. An instance of a protocol is identified by
its session identifier (SID) sid . All machines taking part in the same protocol
instance share the same SID. A specific machine is identified by unique its ID
id = (pid, sid).

The (Dummy) Adversary. The adversary A is instructed by Z and represents Z’s
interface to the network. To this end, all messages from any party to a party that
has a different main party and that are intended to be written to an incoming
message tape are copied to the adversary. The adversary can process the message
arbitrarily. The adversary may decide to deliver the message (by writing the
message on its own outgoing message tape), postpone or completely suppress
the message, inject new messages or alter messages in any way including the
recipient and/or alleged sender.
Z may also instruct A to corrupt a party. In this case, A takes over the

position of the corrupted party, reports its internal state to Z and from then on
may arbitrarily deviate from the protocol in the name of the corrupted party as
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requested by Z. This means whenever the corrupted machine would have been
activated (even due to subroutine output), the adversary gets activated with the
same input.

A special case for the adversary is the so-called dummy adversary that reports
all received messages to the environment and delivers all messages coming from
the environment. It can be shown that the dummy adversary is complete, i.e. that
if a simulator for the dummy adversary exists, then there also exists a simulator
for any other adversary.

Ideal Functionalities and the Ideal Protocol. An ideal functionality F is a special
type of entity whose instances bear a SID but no PID. Hence, it is an exception
to the aforementioned identification scheme. Input to and subroutine output
from F is performed through dummy parties. Dummy parties merely forward
their input to the input tape of F and subroutine output from F to their own
outgoing message tape. They share the same SID as F , but additionally have
individual party identifiers (PIDs) as if they were the actual main parties of a
(real) protocol. The ideal functionality F is simultaneously a subroutine for each
dummy party and conducts the prescribed task. IDEAL(F) is called the (ideal)
protocol for F and denotes the set of F together with its dummy parties.

The UC Experiment. Let π be a protocol, Z an environment and A an adversary.
The UC experiment, denoted by Execπ,A,Z(n, a), initially activates the environ-
ment Z with security parameter 1n and input a ∈ {0, 1}∗. The first machine that
is invoked by Z is the adversary A. All other parties invoked by Z are set to be
main parties of the challenge protocol π. Z freely chooses their input, their PIDs
and the SID of the challenge protocol. The experiment is executed as outlined
above.

Definition of Security. Let π, φ be protocols. π emulates φ in the UC framework,
denoted by π ≥ φ, if for every PPT adversary A there is a PPT adversary S
such that for every PPT environment Z there is a negligible function negl such
that for all n ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[Exec
(
π,A,Z

)
(n, a) = 1]− Pr[Exec

(
φ,S,Z

)
(n, a) = 1]| ≤ negl(n),

where Exec
(
π,A,Z

)
(n, a) denotes the random variable for the environment Z’s

output in the UC execution experiment with protocol π and adversary A on
input a and security parameter n.

The simulator S mimics the adversarial behavior to the environment as if
this were the real experiment with real parties carrying out the real protocol
with real π-messages. Moreover, S must come up with a convincing internal state
upon corrupted parties, consistent with the simulated protocol execution up to
this point (dummy parties do not have an internal state).
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Protocol Composition. UC security is closed under protocol composition: Let
π, φ, be subroutine-respecting PPT protocols12 and let ρ be an PPT arbitrary
protocol. Then,

π ≥ φ =⇒ ρφ→π ≥ ρ
where ρφ→π is identical to ρ, except that sub-protocol instances of φ are replaced
by instances of π.

The GUC Framework and GUC Security. Being a generalization of UC security,
Generalized UC (GUC) security [Can+07] captures the case of global subroutines.
Typical examples of global subroutines are ideal functionalities that are used
by multiple protocols. In UC security, this is not possible as protocols accessing
such a global functionality are not subroutine-respecting. Like UC security, GUC
security features a general composition theorem and shares its properties like
the completeness of the dummy adversary. For the formal definitions, please see
[Can+07].

A.1 Important Ideal Functionalities

In the following, we give definitions of important ideal functionalities.
We start with the ideal functionality for commitments FCOM, which allows a

party C to commit to a bit b and to unveil it later on.

Definition 12 (The Ideal Functionality FCOM, adapted from [CF01]).
FCOM proceeds as follows, running with a committer C and a receiver PR and an
adversary S.
1. Upon receiving an input (commit, sid , b) from C, where b ∈ {0, 1}, record the

value b and generate a public delayed output (committed, sid) to R.
2. Upon receiving an input (unveil, sid) from C, generate a public delayed

output (unveil, sid , b) to R.

The ideal functionality FCRS models a common reference string that is
accessible by all parties.

Definition 13 (The Ideal Functionality FCRS, adapted from [CF01]).
FCRS proceeds as follows, when parameterized with a distribution D.
1. When activated for the first time on input (value, sid) by a party P , choose a

value d← D and generate a public delayed out (value, sid , d) for P . Answer
subsequent value inputs from parties P ′ by generating a public delayed output
(value, sid , d) for P ′.

The ideal functionality for zero-knowledge allows a prover P to prove the
validity of a statement x to a verifier V .

Definition 14 (The Ideal Functionality FZK, adapted from [Can+02]).
FZK proceeds as follows, running with a prover P , a verifier V and an adversary
S, and parameterized with a relation R:
12 Very informally, a protocol π is subroutine-respecting if a machine µ of π does not

communicate with a machine µ′ that is not part of π or of a sub-protocol of π.
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– Upon receiving (ZK− prover, sid , x, w) from P , do: If R(x,w) = 1, generate
a public delayed output (ZK− proof, sid , x) to V and halt. Otherwise, halt
without output.

The ideal functionality for commit-and-prove FZK combines the functionalities
FCOM and FZK, allowing a prover to repeatedly commit to values and to prove
statements, using the committed values as witnesses.

Definition 15 (Ideal Functionality for Commit-and-Prove FCP, adapted
from [Can+02]). FCP proceeds as follows, running with a committer C, a
receiver V and an adversary S, and is parameterized by a security parameter κ
and a relation R:
– Commit phase: Upon receiving an input (commit, sid , w) from C where w ∈
{0, 1}κ, append the value w to the list w and generate a public delayed output
(receipt, sid) to V . (Initially, the list w is empty.)

– Prove phase: Upon receiving an input (CP− prover, sid , x) from C, where
x ∈ {0, 1}poly(κ), compute R(x,w): If R(x,w) = 1, generate a public delayed
output (CP− proof, sid , x). Otherwise, ignore the input.

B Preliminaries (continued)

We write [n] := {1, . . . , n}, where n ∈ N. For a probabilistic machine A, we
write A(x; r) for executing A on input x with random tape r, and A(x) for
(implicitly) choosing uniform r and executing A(x; r). We write a← A(x) for the
(probabilistic) output a of A(x), and a $← S for sampling a uniformly random
element from a set S.

Definition 16 (k-round protocol). Let A and B be interactive (PPT) algo-
rithms. A round in 〈B,A〉 is defined as one message sent either from A to B or
from B to A.

If 〈B,A〉 has at most k = k(κ) rounds, we say that it is a k-round protocol.

Definition 17 (Indistinguishable w.r.t. rewinding). Two (interactive ora-
cle) algorithms A0, A1 are perfectly (resp. statistically) indistinguishable w.r.t.
rewinding, if for any unbounded distinguisher D which gets black-box (rewinding)
access to A0 or A1 the distinguishing advantage is 0 (resp. negligible). Formally,
black-box (rewinding) access to Ab is defined by access to the next-message func-
tion of Ab (with uniformly sampled and fixed random tape). In particular, D
learns all messages Ab would send (including oracle queries) and responds in
place of all communication partners (including oracles).

Corollary 2. Let A0 and A1 be oracle-algorithms and suppose they are per-
fectly indistinguishable w.r.t. rewinding. Then AO0 and AO1 are again perfectly
indistinguishable w.r.t. rewinding for any (potentially unbounded) oracle O.
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Some (machine) modelling details Composition and interaction of machines can
be specified very abstractly [MR11] or very concretely [Can01]. We take a middle
ground: For concreteness, we assume that “direct interfacing” with machines
such as oracles happens through a single external message tape, where a sends
a message to a receiver by writing its own address, the receiver’s address, and
the message on the tape. Moreover, there is some mechanism which ensures that
only admissible messages are allowed (e.g., because machine B may not have
access to oracle O of AO). This modelling works nicely with black-box access to
an interactive machine, especially since we can also interpret inputs and outputs
of machine as special addresses, providing a uniform mechanism for modelling
(non-interactive) algorithms with or without input and/or output. Moreover, in
order to consider composed machines, say AO, or 〈B,A〉, or 〈B,AO〉 as a single
entity, we allow a machine to have multiple addresses. In case of 〈B,A〉, the
addresses of B and A.

B.1 Commitment Schemes and Security Definitions

Definition 18 (Commitment Scheme). A commitment scheme (with setup),
non-interactive unveil phase and message spaceM is a tuple (Setup,C,R), where
1. Setup is a PPT algorithm which on input (1κ) outputs a commitment key ck.
2. 〈C,R〉 is an interactive protocol with PPT machines.
3. The protocol has two phases: a commit phase and an unveil phase. In

both phases, C and R receive common input (1κ, ck), where κ is a security
parameter 1κ, and ck the commitment key. C additionally receives a private
input v ∈M to be committed.

4. The commit phase results in a joint output c, called the commitment, a private
output d for C, called the decommitment. Without loss of generality, c can be
the full transcript of the interaction between C and R.

5. In the unveil phase, committer C sends the pair (v, d) to the receiver R, and
decides to accept or reject the decommitment (c, v, d) deterministically. We
let OPEN denote the function that verifies the validity of (v, d) w.r.t. ck; the
receiver accepts (v, d) if OPEN(ck, c, v, d) = 1, and rejects otherwise.

If C and R do not deviate from the protocol, then R should accept (with probability
1) during the unveil phase, where the probability is over the randomness used to
generate ck, the randomness of C and the randomness of R. Moreover, we assume
thatM is efficiently recognizable and R rejects a decommitment if v /∈M.

Standard commitments

Definition 19 (Binding). Let COM be a commitment scheme with message
spaceM, and let A be a malicious committer. Let Expbind

A,COM(κ, z) be the output
of the following experiment:
1. Run the malicious committer A on input (1κ, z).
2. The experiment generates ck← Setup(1κ).
3. A gets ck as input and can engage in a commit phase with an honest receiver

R on common input (1κ). Let c denote the commitment.
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4. After the commitment phase finishes, A must provide two decommitments
(v0, d0) and (v1, d1).

5. A wins the game if both of the following hold:
(a) OPEN(ck, c, v0, d0) = OPEN(ck, c, v1, d1) and v0, v1 ∈M and v0 6= v1.

We define the advantage Advbind
A,COM(κ, z) as the probability that A wins. A com-

mitment scheme is computationally binding if for any PPT adversary A, there
exists a negligible function negl such that for all κ ∈ N and all z ∈ {0, 1}∗, the
advantage of A is negligible.

Now, we define the trapdoor property. The notion provides strong and statis-
tical guarantees.

Definition 20 (Trapdoor Commitment Scheme). Let (Setup,C,R) be a
commitment scheme with message spaceM, and let (TSetup,Ctrap) be algorithms
which can be used in place of (Setup,C). Then TRAPCOM = (Setup,C,R,TSetup,
Ctrap) is called trapdoor w.r.t. if
– 〈C,R〉 and 〈Ctrap,R〉 are commitment schemes with message spaceM, and
– for all PPT adversaries A, it holds that

{ExpTDC
A,TRAPCOM(κ, 0, z)}κ∈N,z∈{0,1}∗

s
≈ {ExpTDC

A,TRAPCOM(κ, 1, z)}κ∈Nz∈{0,1}∗

that is, the ensembles are statistically indistinguishable.
The experiment ExpTDC

A,TRAPCOM(κ, b, z) is defined as follows:
1. Run A(1κ, z) where A interacts with the game G as follows.
2. First, A sends (Setup). If b = 0, set ck ← Setup(1κ). Otherwise, set

(ck, td)← TSetup(1κ). The experiment sends ck to A.
3. By sending (Start, v) to G, A starts the commit phase of TRAPCOM, acting

as receiver. If b = 0, the experiment runs the code of the honest committer
C on input (1κ, ck, v). If b = 1, the experiment runs the code of the trapdoor
committer Ctrap on input (1κ, ck, |v|, td).

4. After the commit phase has finished, wait for a message (Unveil) and perform
the unveil phase. If b = 1, the trapdoor committer receives v as additional
private input.

5. The experiment outputs the view of A.

Remark 7 (Multi-challenge experiments). In the multi-challenge binding experi-
ment, the malicious committer may concurrently engage with arbitrarily many
honest receivers. It wins if it wins in any session. In the multi-challenge trapdoor
experiment, the malicious receiver may concurrently engage with arbitrarily many
committers.

By a standard hybrid argument, multi-challenge security follows from single-
challenge security.

B.2 Pseudo-Oracles

Remark 8. Our definition of pseudo-oracle limits their power as much as possible:
Their only advantage over oracles is that they can access their caller’s view. This
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is sufficient to handle rewinding-based setting. However, a natural alternative
definition is more simulation-based: A pseudo-oracle O might simply be an
algorithm which is given full (black-box) access to its caller A and replaces its
caller ; AO denotes the resulting algorithm. In a sense, “AO” now actually denotes
OA, since O can freely act in place of A. While this significantly, broadens
the scope of what is considered a pseudo-oracle, the extraordinary power O
wields over its caller make any reasoning about “AO” basically impossible. E.g.
A may query its oracle on input 1κ, ignore the response and then output 0κ.
Our notion of pseudo-oracle can never affect the output of A in AO. However,
a simulation-based pseudo-oracle as outlined above can replace the output of
A with whatever it wants. Hence, in order for these relaxed notions to behave
oracle-like, one must impose additional properties.

In summary, we intentionally choose a notion of pseudo-oracle, whose sole
advantage over a standard oracle is that it learns the caller’s view (and the caller
does not need to pass its view explicitly, and thus cannot lie about it).

Remark 9 (Interaction vs. multiple (pseudo-)oracles). In Definition 5, we allow
the pseudo-oracle O access the combined view of 〈B,A〉 when composed as
〈B,A〉O. This is arguably a natural choice w.r.t. to pseudo-oracles and composition
of interactive algorithms. However, we note that the “correct” behavior of pseudo-
oracles is less clear if an algorithm A has with multiple (pseudo-)oracles. For
example consider an oracle algorithm A requires oracle O1 and pseudo-oracle O2.
Does O2 have access to the view of O1 in (AO1)O2 or not? Since oracles usually
encapsulate a “special power” which A gets access to, the conservative choice
is to give O2 only viewA. In particular, for black-box O1, it is not possible to
rewind O1. For black-box O2, this conservative choice ensures that (AO1)O2 and
(AO2)O1 behave identically.

B.3 (Long-Term) Universal Composability

In this section, we briefly recapitulate the notion of long-term universal compos-
ability [MU10]. For a general introduction to (G)UC security, see Appendix A.

Long-term universal composability extends the notion of universal compos-
ability to a setting where all hardness assumptions eventually lose their validity.
Intuitively, this captures a setting where information about a protocol execution
is stored for the future, when cryptographic hardness assumptions may be broken
due to e.g. computational advances or better methods for cryptanalysis.

Formally, the long-term execution is defined like UC protocol emulation, with
the exception that the environment outputs an arbitrary string of polynomial
length instead of a single bit. Without loss of generality, we may assume that
the environment outputs its view, which contains all its information about
the protocol execution. As environment and adversary are PPT machines (like
with UC security), hardness assumptions remain valid throughout the protocol
execution.

We say that a protocol π long-term-emulates a protocol φ if for all PPT
adversaries A, there exists a PPT simulator S such that for all PPT environments
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Z, the output of Z in an execution with π and A is statistically indistinguishable
from the output of Z in an execution with φ and S. Here, the requirement of
statistical indistinguishability captures that hardness assumption no longer hold.

Long-term security features the same properties as UC security like complete-
ness of the dummy adversary, transitivity and universal composability. For a
formal treatment, see [MU10].

Unfortunately, long-term security is subject to even stronger impossibility
results than UC security. To this end, we first recall the definition of long-term
revealing functionalities as introduced by Müller-Quade and Unruh [MU10].

Definition 21 (Long-term Revealing Functionality, adapted from [MU10]).
For a given protocol execution, let trans denote the transcript of all communica-
tion between a functionality F and all other machines (including the adversary).
Let trans \ µ denote the transcript of all communication between F and all
machines except the machine with the extended identity µ. We say a function-
ality F is long-term revealing (LTR) for µ if in any execution, there exists a
deterministic function f (not necessarily efficiently computable) such that with
overwhelming probability, we have trans = f(κ, trans \ µ), where κ ∈ N is the
security parameter.

Intuitively, a functionality F is long-term revealing for a party P if all
communication between P and F can be computed from all other communication
with F .

Remark 10. As we consider subroutine-respecting protocols only, the only parties
communicating with a functionality F are its dummy parties, which are part
of the ideal protocol IDEAL(F). Nevertheless, we will often say that F is long-
term-revealing for some party P of a protocol π which is in the F -hybrid model,
instead of referring to the appropriate dummy party of P .

Many widely-used and natural ideal functionalities are long-term revealing:

Lemma 2 (Examples for Long-term Revealing Functionalities, adapted
from [MU10]). Coin toss (FCT) and CRS (FCRS) with any distribution D
are LTR for all parties. Commitment (FCOM) and ZK (FZK) are LTR for the
recipient/verifier. If G is a key generation algorithm, such that the secret key
depends deterministically on the public key (e.g. for RSA, ElGamal), the PKI
FKRK parameterized with G is LTR for all parties registered with FKRK.

Functionalities that are long-term-revealing for the committer (e.g. the ones
in Lemma 2) cannot be used to long-term-UC-realize the ideal functionality for
commitments FCOM [MU10]. This stands in stark contrast to the well-known
feasibility results of UC security, e.g. the possibility to construct a UC-secure
commitment scheme (solely) in the FCRS-hybrid model [CF01]. Given that
statistically hiding UC-secure commitment schemes can be constructed from
standard assumptions [DN02], this impossibility result seems surprising. However,
the statistically hiding property of e.g. [DN02] is only guaranteed in the real
execution. In the ideal execution, the protocol may be computationally hiding
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only (in order to allow straight-line extraction), incurring a large statistical
distance between the executions. A similar argument holds for the OT protocol
of Peikert, Vaikuntanathan, and Waters [PVW08], which can be instantiated to
provide statistical security for one party at the expense of composability. For a
discussion, see Appendix F.2.

To construct long-term-secure and composable commitment schemes, stronger
setups such as a signature card [MU10] or a physically unclonable function (PUF)
and a CRS [Mag+22] are necessary. One can also use protocols with statistical UC
security. If more than 2/3 of the parties are honest (in case of malicious security),
such protocols (e.g. [AL17]) can be constructed from ideal secure channels only. If
no honest majority is available, protocols such as [DKM11] again require strong
setups.

C Analysis of the Committed-Value Oracle OCCA

(continued)

In this section, we recall the robust extraction lemma from [Goy+15], presented
in our setting. Then we discuss a useful substitution rules and further asides.

C.1 The Robust Extraction Lemma from [Goy+15]

We recall the robust extraction lemma of [Goy+15].

Lemma 3 (Robust concurrent extraction, adapted from [Goy+15]).
Let COM′ be the base commitment used in the PRS commitment and suppose
that COM′ has stateless receiver. Let ` be the rounds of the PRS preamble. Let E
be a black-box extractor with extraction based on the rewinding schedule recurse
with extraction method extract. Let A be a (not necessarily efficient) well-behaved
adversary which expects access to a PRS extraction oracle. Let M = 2m be a
bound on the maximal number of messages sent by A, and let k bound the maximal
number of (ExtSendi,m) messages of A.
1. Extraction failure. Let EExtFail be the event that in the execution EA, the

extraction returned ExtFail. Then

Pr[EExtFail] ≤ 2−`+(k+2) log(M) +M2/|C|

2. Extraction efficiency. The number of oracle calls to A by E is bounded
by M2. Aside from that, E emulates the honest PRS receiver and does some
bookkeeping. Thus, if A is PPT, then asymptotically E runs in time roughly
M(κ)2poly(κ) where poly(κ) is the worst-case run-time of A plus the PRS
receiver and bookkeeping overhead per message.

3. Validity constraint (on the main thread). Let B be the event that in an
execution, in some session s on the main thread the value v 6= vs is opened in
the decommitment phase (and v 6= ⊥), where vs is the extracted value. Then

Pr[B] ≤ 1

M · ` · 2κ
Advbind

COM′,B(κ)

where the adversary B has runtime roughly that of E applied to A.
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Proof. The extraction failure probability follows from the proof of [Goy+15,
Lemma 1]. The efficiency can be derived from recurse directly (and is also part
of [Goy+15, Lemma 1]). In both cases, our expression differs slightly, since we use
M , an upper bound on the number of messages, instead of T , an upper bound
on the number of sessions.

The validity constraint follows by a straightforward reduction, namely, guess
the (first) session s∗, the (first) slot `∗, and the index (i∗, b∗) of a commitment
which is broken, and embed the (external) receiver from the binding game on
the main thread. Observe that this is possible, because the base commitment
is stateless by assumption. Thus, look-ahead threads can perfectly simulate
embedded (honest) receiver as well.13 Recall that the base commitment scheme has
non-interactive decommitment by assumption. Moreover, if the guess was correct,
the extractor finds a valid decommitment d′ (for value vs) of the commitment in
session s∗, slot `∗ and index (i∗, b∗) and the base decommitment d (for session
s∗, slot `∗, index (i∗, b∗)) unveiled later by A is to a different value v 6= vs (and
v 6= ⊥). Thus, d′ and d constitute a binding break, and the reduction adversary
B wins the binding game. ut

Remark 11. We remark that the loss factor 1/(M · ` · 2κ), could be replaced by
1/(T · ` · 2κ), where T is the maximal number of sessions opened by A on the
main thread. Or, one could strengthen validity to all threads; this increases the
loss to 1/(M2 · ` · 2κ), since some sessions may exist in look-ahead threads only.

C.2 Substitution rules

Oftentimes, one wants to modify some game by moving some computation into or
out of an oracle, e.g. the game may compute encryptions itself or query the oracle
instead. For ordinary oracles, such changes are often trivially justified. With
pseudo-oracles, the same problems as with composition-order invariance resurface.
Thus, we have to establish substitution rules explicitly. With our committed-value
oracle OCCA, the substitution rule of interest allows to move an honest receiver
session into the OCCA oracle, or a session out of the OCCA oracle provided that
the extracted committed-value is ignored.

This intuition can be formalized as follows: LetWb for b ∈ {0, 1} be a wrapper
for OCCA and R, such that
– To start a new session, Wb expects an additional bit e ∈ {0, 1} as input,

which indicates whether the session’s committed-value will be extracted and
returned (upon completion of the commitment phase) as in OCCA, or whether
it will be ignored (i.e., replaced by >).

– W0 forwards everything to OCCA.
– W1 forwards only sessions with e = 1 to OCCA, and runs R for e = 0.

13 In Lemma 1, it is described in more detail how to embed the reduction so that the
PRS analysis still applies. Statelessness is used in to ensure look-ahead threads can
continue the challenge receiver’s interaction. In [Goy+15], stateless receivers are not
explicitly required for the validity constraint. See Remark 14 for a discussion.
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By an argument similar to k-robust composition-order invariance, one obtains
a k-robust substitution rule, which asserts that 〈B,AW

OCCA
0 〉

s
≈ 〈B,AW

OCCA
1 〉. Note

that rewriting a game so as to introduce or remove W0 (resp. W1) can be justified
by black-boxness of OCCA, cf. Corollary 1.

Lemma 4. Let B, WOCCA
0 and WOCCA

1 as described above and suppose that 〈B,A〉
has at most k rounds. Suppose that COM′ has a stateless receiver. Suppose
M = 2m is an upper bound on the number of messages A to the PRS oracle or to
B. Let T be an upper bound of the number of sessions started by A on the main
thread. Define the random variables
– out1(κ, x, y, z) as outB,A〈B(x), AW

OCCA
0 (y)〉(1κ, z), and

– out2(κ, x, y, z) as outB,A〈B(x), AW
OCCA
1 (y)〉(1κ, z).

Then there exists an adversary ACOM′ against multi-binding (Remark 7) with

run-time roughly upper bounded by the maximal runtime of 〈B, EA
W
OCCA
b 〉 (for

b = 0 or 1) (cf. Lemma 3) in expectation. In particular, if W0, W1, B, A are
PPT, so is ACOM′ (as an oracle-algorithm). such that for all κ ∈ N and all
x, y, z ∈ {0, 1}∗, it holds that

∆(out1(κ, x, y, z), out2(κ, x, y, z)) ≤ 2 · (2`−(kass+k+2) log(M) +M2/|C|) + 2−κ

+
1

T · poly
·Advbind

COM′,ACOM′
(κ, z).

where poly(κ) = polyAoK(κ) + κ · `(κ) and polyAoK is a bound on the number of
commitments made during in the AoK step, as in Lemma 1.

Proof (Proof sketch). The argument is similar to k-robust composition-order
invariance, Lemma 1. Again, one fixes the randomness of B and A. Instead
of “matching” the randomness of the main threads of OCCA in two different
executions, as in Lemma 1, one (fixes and) “matches” the randomness of Wb

and OCCA. (Recall that the randomness of OCCA is can be structured suitably to
simplify this matching, cf. Remark 4.) That is,
– WOCCA

0 simply runs everything through OCCA. Let r′ be the randomness of
the main thread of OCCA, i.e. the challenges sent by OCCA.

– WOCCA
1 runs sessions with e = 1 through OCCA and those with e = 0 are

emulated by W1 itself. Let r′OCCA
be the randomness in the main session of

OCCA and r′W be the randomness in the sessions run byW1, i.e. the challenges
sent by OCCA resp. W1.

Observe that there is an obvious mapping between r′ and (r′OCCA
, r′W ). Moreover,

both specify behavior on the main thread completely as long as extracted values
on the main threads do not diverge,14 as in Lemma 1. Following the proof of
Lemma 1, we get a statistical bound on divergence plus a reduction to the
14 This mapping is not strictly a bijection, since r′ and r′OCCA

already have the same
size. However, the “actually used” prefixes of the main thread randomness r′ and
(r′OCCA

, r′W ) are evidently in bijection. After the main thread terminates, the mapping
is unspecified — but then it is also irrelevant for the output.
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binding property of the base commitment COM′ (which includes soundness of
the AoK) which ensures that divergent extractions on the main thread happen
with probability at most

2 · (2−`+(kass+k+2) log(M) +M2/|C|) + 2−κ +
1

T · poly
·Advbind

COM′,ACOM′
(κ, z)

for a suitable (expected-time) adversary ACOM′ . Thus, the claim follows. ut

Remark 12. We formulated Lemma 4 with k-robustness for B for convenience.
As a corollary of composition-order invariance, B could be introduced anyway.
Yet, unlike composition-order invariance, no “break-points” change and thus,
OCCA is essentially unaffected by B. Thus, it may be possible to make Lemma 4
independent of k. For now, this setting appears to be of little interest.

C.3 Asides

Example 1 (PRS is not necessarily COI). The composition-order invariance PRS-
commitments depend on their definition of extract (which, following [Goy+15],
we left open in cases of ambiguities). If extract outputs the value of a random
extracted slot, the following is an attack on COI: External algorithm B does
nothing, except acknowledge receipt of a message. The adversary A runs a single
PRS-commit to value 1 almost honestly, except in a random slot, where it commits
to 0. Moreover, A wraps that random slot in external messages to B. Now in case
〈B,AOCCA〉, all extracted slots yield 1. In case 〈B,A〉OCCA , there is a non-negligible
probability that the slot with 0 is extracted and outputted.

Small variations of this example show that it does not help to output ⊥ if
not all extracted values are consistent, nor does a simple majority decision avoid
an attack. Nevertheless, this does not rule out COI for a suitable extract.

Remark 13. It is not obvious how far the requirements in Lemma 1 could be
relaxed, i.e. whether a reduction to binding is strictly necessary, or if it is possible
to avoid it, and a similar result holds unconditionally.

Remark 14 (Necessity of special commitment schemes). While a stateless receiver
of COM′ may be traded for other (stronger) notions of binding in Lemma 1,
it seems necessary to impose requirements beyond generic binding. Consider
following pathological example: The receiver “protects” its messages by using a
signature (or MAC) on the partial transcript and its response. The committer
and receiver check these authentications, and halt if they are invalid. Clearly, the
receiver is not stateless anymore. Moreover, suppose the commitment has many
rounds, e.g. by adding dummy rounds. Now, embedding a binding challenge is
not as simple anymore: The scheduling chosen by A might require the reduction
to continue a partially completed embedded challenge commitment in a look-
ahead thread, but with different responses from A (e.g. add some garbage (e.g.
randomness or hash of the view) to make sure A sends different messages with
overwhelming probability). While continuing the receiver was trivial for stateless
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receivers, now, the reduction has to break EUF-CMA security of the signature
(or MAC) scheme. This seems to preclude simple (black-box) reductions.

We also note that similar problems apply when establishing the “validity
constraint” for [Goy+15, Lemma 6]. The idea to circumvent problems by moving
the binding challenger to the left side runs afoul to composition-order invariance.
Indeed, examples which show that COI fails for PRS preamble extraction in
general (e.g. Example 1), can be modified to apply adapt to this situation. Thus,
some non-trivial justification (or the restriction of COM′) is required for [Goy+15,
Lemma 6] as well.

Remark 15 (Relation to [Goy+12, Lemma 6]). At first glance, Lemma 1 might
be superfluous as the generalized robust concurrent extraction lemma in [Goy+12]
could be used instead. However, we ran into some obstacles. Firstly, we failed
to justify [Goy+12, Lemma 6] for general commitment schemes as noted in
Remark 14. And secondly, there are unfortunate ambiguities in [Goy+12], so it is
not clear if and how their generalized robust concurrent extraction lemma would
apply. More precisely:
– The extractor E in [Goy+12] merely interacts with the adversary. As such, it

is impossible for E to run the (rewinding-based) simulation for statistically
hiding PRS preambles. To fix this, we view E as a black-box pseudo-oracle.

– The formal statement, [Goy+12, Lemma 6], claims in constraint (b) that
for every statistically hiding preamble, the extracted decommitment will
coincide with a potential value unveiled by A. This suggests that constraint
(b) holds with probability 1, but evidently, it only holds by reduction to
the binding property, so with overwhelming probability (at best). While
missing in the statement of [Goy+12, Lemma 6], it is clearly explained before
and after [Goy+12, Lemma 6]. Indeed, a proof sketch is given which hints
at a reduction (which, as noted before, we could only justify for stateless
commitment schemes).

– With the proposed corrections to the statement and the extractor (and as-
suming stateless commitment schemes), one observes that it is not (obviously)
possible to swap out the external protocol Π from the rewinding (of the
simulator S) anymore, because the extractor E (which is not straight-line
anymore) acts exactly as S for statistically hiding preambles, and thus also
uses rewinding and is dependent on the external protocol Π.15

Thus, at least when the ambiguities are resolved as suggested, there is still a gap
we have to fill for our proofs to work. This is addressed by Lemma 1.

D Framework and Notion

15 In the non-generalized robust extraction lemma [Goy+12, Lemma 1], E is a normal
oracle and extraction is straight-line. As such, it is trivial to see that “swapping out”
which protocol parts are considered the external protocol does not affect REALAE,Π .
Consequently, “swapping out” the external protocol also works for simulations, simply
by arguing through the extractor E and indistinguishability of E and the respective
simulator S.
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This chapter contains the full treatment of framework and notion. Major
changes and additions are highlighted in boxes. For the sake of a cohesive
presentation, we re-state the other parts unmodified and unboxed.

With UC security and its variants, all entities keep their run-time complexity
throughout the whole execution, making them unsuitable to analyze the security
of protocols in a setting where cryptographic hardness assumptions may lose
their validity.

In order to circumvent the impossibility results of Long-Term Security [MU10],
we want to modify the protocol execution such that rewinding-based extraction
of long-term hiding commitment schemes is possible in a way that preserves
universal composability.

To this end, we take a route similar to [PS04; CLP10] and provide environ-
ment and adversary with an entity called the helper H. This efficient helper
is parameterized with an extractable commitment scheme COM and allows the
rewinding-based extraction of instances of COM where the commitment is per-
formed with H as receiver.

Formally, our notion is cast in the GUC framework [Can+07], allowing both
the use of the helper H as well as other global ideal functionalities. We assume
that the reader is familiar with the basic concepts of (G)UC security. For a
short overview, see Appendix A. Due to space constraints, this chapter is a short
version only. For the full treatment of framework and notion, see Appendix D.

Extracting (Statistically Hiding) Commitments. H provides an oracle that allows
the extraction of commitments (cf. Section 3.2), similar to a CCA oracle. This part
is analogous to the helper of [CLP10], with the following differences: The helper
of [CLP10] is able to extract statistically binding commitments by inefficient
computations. In contrast, we want to consider commitments that are statistically
hiding. Such commitments cannot be extracted by brute force, but require different
techniques such as an appropriate setup allowing for straight-line extraction (see
[MU10] for an example) or rewinding. More specifically, we adapt the rewinding-
based extraction techniques of [Goy+15] to our setting, via pseudo-oracles and a
suitably adapted analysis in Sections 3 and 4. We provide the helper with the
views of all ITIs that may be affected by a performed rewinding.

While we do not (intend to) achieve composability in the plain model, the
resulting security notion has properties and limitations similar to Angel-based
security [PS04] or UC with super-polynomial helpers [CLP10], e.g. with respect
to protocol reusability.

As we will later use commitment schemes in the FCRS-hybrid model, we have
adapted the helper accordingly. When a corrupted party starts a new commitment
session with H, the committed-value oracle OCCA within H honestly executes the
CRS generation algorithm of the desired commitment scheme and H returns the
resulting CRS ck to the party initiating the session.

As the commitment key is generated honestly, it is guaranteed to be inde-
pendent from all other commitment keys. Thus, a corrupted party cannot take
a key ck′ from another session (e.g. where the sender is honest) and have H
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extract commitments relative to ck. A similar policy is enforced in [CLP10] by
the use of tags, which we omit as they are not necessary (with different sessions
distinguished by their commitment key).

To establish meaningful properties, we require the commitment scheme to
feature a committed-value oracle which is black-box (Definition 4) and k-robust
composition-order invariant and pseudo-PPT (Definitions 5 and 6), This allows
to a) import protocols with appropriate round complexity into our framework
without loss of security due to the committed-value oracle and b) prove the
security of protocols within our framework by reducing to security properties
with a certain (bounded) round complexity. The robustness property guarantees
that we can efficiently simulate the committed-value oracle without having to
rewind the challenger in a reduction.

The helper H is formally defined in Definition 9.

Definition 22 (The helper H). H is parameterized with 1. a security pa-
rameter κ ∈ N, 2. auxiliary input z and 3. a commitment scheme COM with
committed-value (pseudo-)oracle OCCA.
– Upon receiving an input (corrupt, Pi, sid) from the environment, record
(corrupt, Pi, sid).

– Upon receiving an input (ext-init, Pi, sid , k) from a corrupted party Pi in
the protocol with SID sid : If there is a recorded session (Pi, sid , k), ignore this
message. Otherwise, initialize the k-th sub-session of (Pi, sid) with OCCA and
receive a setup ck. Record session (Pi, sid , k) and return (setup, sid , k, ck) to
Pi.

– Upon receiving a message (ext-mesg, Pi, sid , k,m) from a corrupted party Pi
in the protocol with SID sid : If there is no recorded session (Pi, sid , k), ignore
the message. Otherwise, give input (sid , k,m) to OCCA, possibly obtain a reply
m′. Ifm′ is a special message (End, s, ws, viewRs), return (ext-val, Pi, sid , k, ws)
to Pi. Otherwise, return (ext-mesg, Pi, sid , k,m′) to Pi.

In the following, we first introduce changes to the framework that are
necessary to enable the extraction of statistically hiding commitments. Then,
we adapt the definitions of protocol emulation from [CLP10; Can+07; MU10]
and discuss the properties of the new notion.

D.1 Changes to the Framework.

Due to the technicalities of pseudo-oracles outlined in Section 3.1, we need
to slightly adapt the model of execution, so that the pseudo-oracle (and
implicitly the helperH) have access to the view(s) of all (possibly dynamically
created) instances of interactive Turing machines (ITIs).

Execution ITI. We assume that all ITIs, with the exception of H, are
emulated within a special “execution ITI” E . In particular, E executes the
control function, the environment, the adversary as well as all other entities
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like protocol parties and (global) ideal functionalities. E also appropriately
maps the communication between internally emulated ITIs and H, which is
not governed by the (G)UC control function anymore, but is subject to the
usual mechanisms and rules of communication in the (G)UC framework. H
can then provide its internal execution of OCCA with the necessary view(s), cf.
Definition 5. Clearly, the introduction of E incurs only at most a polynomial
overhead compared to an execution without E , i.e. where all entities run on
individual ITIs and H is provided with the necessary randomness via some
other mechanism.

Changes to the Execution Experiment. We modify the execution experiment
to use E as follows:
1. E is the first ITI (initial ITI) to be invoked on input (1κ, z).
2. On invocation, E immediately invokes H, giving its code17 and input to
H as first input.

3. On its first activation, H immediately activates E again.
4. E continues the internal execution of the (G)UC experiment, interacting

with H.
5. H has read-only access to the random tape of E .
6. Eventually, E outputs what the internally executed environment outputs.
The random variable Exec(π,A,Z)(κ, z) is re-defined accordingly.

As E is merely a wrapper that does not affect the (G)UC execution it
emulates in any way, we will ignore it from now on. In particular, we will
adhere the usual conventions and notation.

We call the framework resulting from above modifications the UC Security
with Rewinding framework.

D.2 Protocol Emulation

Before stating long-term protocol emulation, we provide the standard notion of
computational protocol emulation adapted to our setting.

Definition 23 (UC Security with Rewinding Protocol Emulation). Let
π and φ be PPT protocols and let H be the helper of Definition 9. We say that
π Rewinding-UC-emulates φ if for all PPT adversaries A, there exists a PPT
simulator S such that for all H-aided18 balanced PPT environments Z, there
exists a negligible function negl such that for all κ ∈ N, z ∈ {0, 1}∗ it holds that

|Pr[Exec
(
π,A,Z

)
(κ, z) = 1]− Pr[Exec

(
φ,S,Z

)
(κ, z) = 1]| ≤ negl(κ)

17 Actually, it suffices to give H black-box (rewinding) access to E .
18 We restate the definition of H-aided environments due to Canetti, Lin, and Pass

[CLP16]: a) Z invokes a single instance of H immediately after invoking the adversary.
b) As soon as a party (i.e. an ITI) P is corrupted (i.e. P receives a corruptedmessage),
Z lets H know of this fact. H interacts only with the environment, the adversary,
and the corrupted parties.
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If π Rewinding-UC-emulates φ, we write π ≥R φ.
We adapt the notion of long-term protocol emulation in our framework in

analogy to the established definition due to Müller-Quade and Unruh [MU10].
In contrast to standard UC emulation, long-term emulation allows the environ-
ment to output an arbitrary string of polynomial length and requires statistical
indistinguishability of the resulting ensembles. Intuitively, this means that all
(polynomial-time) hardness assumptions lose their validity after the protocol
execution has finished.

To this end, let ExecS denote the random variable that is identically defined
to Exec, except that the environment outputs an arbitrary string (of polynomial
length).

Definition 24 (Long-term UC Protocol Emulation). Let π and φ be PPT
protocols and let H be the helper of Definition 9. We say that π long-term-
Rewinding-UC-emulates φ if for all PPT adversaries A, there exists a PPT
simulator S such that for all H-aided balanced PPT environments Z, the ensem-
bles {ExecS

(
π,A,Z

)
(κ, z)}κ∈N,z∈{0,1}∗ and {ExecS

(
φ,S,Z

)
(κ, z)}κ∈N,z∈{0,1}∗

are statistically indistinguishable.

If π long-term-Rewinding-UC-emulates φ, we write π ≥lt
R φ. If π long-term-

Rewinding-UC-emulates the ideal protocol of a functionality F , then we say that
π long-term-Rewinding-UC-realizes F .

Remark 16. In contrast to the definition of long-term security in [MU10], the
environment of Definition 11 has access to the helper H, which provides a
committed-value oracle that does not exist in the original definition.

It is easy to see that long-term emulation implies classical emulation:

Proposition 4 (Long-term Emulation Implies Classical Emulation).
Let π and φ be PPT protocols. If π ≥lt

R φ, then π ≥R φ (for the same helper
H).

The proof of Proposition 4 is simple and we omit it.

D.3 Properties

We now discuss the properties of our notion, which are mostly similar to the
properties of long-term security and UC security with super-polynomial helpers.

Proposition 5 (Completeness of the Dummy Adversary). The
dummy adversary is complete.

The proof is identical to the one for UC security and we omit it.
Also, our notion is transitive.

Proposition 6 (Transitivity). Let π1, π2, π3 be PPT protocols. If π1 (long-
term-) Rewinding-UC-emulates π2 and π2 (long-term-) Rewinding-UC-emulates
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π3 (for the same helper H), then π1 (long-term-) Rewinding-UC-emulates
π3.

As the proof is very similar to the one for transitivity of GUC security, we
omit it.

Like UC security with superpolynomial helpers [CLP10] and long-term security
[MU10]), our notion is closed under general concurrent (i.e. universal) composition.

Theorem 6 (Composition Theorem). Let ρ, π, φ be PPT protocols where π
and φ subroutine-respecting. If π (long-term-) Rewinding-UC-emulates φ, then,
ρφ→π (long-term-) Rewinding-UC-emulates ρ.

Again, the proof is very similar to the ones presented in [CLP10; Can+07; MU10]
and we omit it.

UC Compatibility. When introducing a new security notion that features modular
design, a natural question to ask is which existing protocols (that are secure
according some other notion) can be reused.

Let π and φ be PPT protocols such that π ≥UC φ. Due to the helper H,
just as in [PS04; CLP10], we cannot hope that we can import an arbitrary UC
protocol π securely, i.e. that π ≥UC φ implies that π ≥R φ. This is because a
Rewinding UC environment is more powerful than a normal UC environment due
to the access to H: The committed-value oracle of H could invalidate assumptions
made in the security proof.

Nevertheless, we can show the compatibility with UC security for large classes
of protocols, namely those that have less than or equal to k rounds if the
committed-value (pseudo-)oracle provided by H is black-box (Definition 4) k-
robust composition-order invariant (Definition 5) and pseudo-PPT (Definition 6).
This criterion essentially is the same as in [CLP10], except for the additional
requirements for the (pseudo-)oracle.

Before stating the theorem, we give a formal definition of k-round protocols.
As the model of execution in Rewinding UC is different from stand-alone
execution, we cannot simply reuse the stand-alone definition of k-round
protocols (Definition 16).

As we eventually want to make use of the k-robust composition-order
invariance (Definition 5), we need a definition of k-round protocols within
Rewinding UC that is compatible with the stand-alone definition. In par-
ticular, this compatibility needs to hold in the case where protocol and
(dummy) adversary are considered as a “left side” and everything else (i.e.
environment and helper) as a “right side”.

The same is necessary to argue the compatibility with UC security in
e.g. [CLP10]. Unfortunately, Canetti, Lin, and Pass [CLP10] do not give a
definition of k-round UC protocols.21 We thus provide a possible definition
here. We stress that any definition that works for [CLP10] works for our
setting and vice versa.
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Definition 25 (Protocol Round). Let π be a subroutine-respecting PPT
protocol. We define a round of π to be one of the following:
1. Input given to a main party.
2. Subroutine output given by a main party.
3. Subroutine output given by a sub-party P (i.e. not a main party) triggered

by input of a (sub-party) P ′ such that
– P is a subsidiary of a main party M of π and
– P ′ is a subsidiary of a main party M ′ 6=M of π or the recipient of
P ’s output is not a subsidiary of M .

4. Messages between (sub-)parties of π and the adversary.
5. Messages between the adversary and an ideal functionality.

Remark 17. Item 3 captures messages sent from a sub-party µ, which is part
of a larger protocol π, to a sub-party µ′ (of π) via an ideal functionality (and
the corresponding dummy parties), e.g. via FAUTH or FSMT. However, “local”
interactions with an ideal functionality, e.g. with a random oracle, are not
counted as a round. Unless governed by Item 3, “immediate” communication
within a protocol (i.e. through inputs and subroutine outputs) is not counted
towards the number of protocol rounds, as it is not externally visible (unless
a party is corrupted).

Definition 26 (k-round Protocol). Let π be a subroutine-respecting
PPT protocol. We say that π is a k-round protocol if for all environments
Z and adversaries A interacting with π, there exists
– for each (honest) main party Pi of π a bound nIi for the number of inputs

for Pi,
– for each (honest) main party Pi of π a bound nOi for the number of
subroutine outputs by Pi,

– for each (honest) main party Pi of π (and its sub-parties) a bound ni
for the number of rounds according to Items 3 and 4 in Definition 25,

– for each (honest) main party Pi of π (and its sub-parties) a bound nAi for
the number of rounds for communication with the adversary according
to Item 4 in Definition 25,

– a bound nA for the communication with the adversary according to
Item 5 in Definition 25 if π is the ideal protocol of F

such that the number of rounds of π is bounded by k = k(κ) = nA +∑
Pi∈P n

I
i +n

O
i +ni+n

A
i . Here, P denotes the set of main parties of π that

may be jointly invoked.

Remark 18. Definitions 25 and 26 impose hard restrictions on the number
of protocol rounds. For example, a (main) party P of a k-round two-party
protocol will halt after receiving k messages from the adversary, regardless of
whether these messages are valid in the context of π. This could be possibly
modified to only count “valid” protocol messages at the sake of a more
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complicated definition and the possible challenge to identify “valid” protocol
messages.

Remark 19. Other definitions of protocol rounds and k-round protocols are
conceivable. In particular, it may hold that protocols that are (informally)
considered to be k-round are not so according to our definition. However,
we believe that our notion is sufficiently general as it naturally covers many
protocols (in particular if they are adapted to halt after a certain number of
rounds).

Throughout the paper, we assume that protocols and functionalities with
a bounded round complexity adhere to their natural bound of rounds, in
particular counting bogus messages (from the adversary) towards the number
of rounds.

Example 2. We analyze the round complexity of several protocols.
– IDEAL(FCOM) where the commit and unveil phase are performed has

eight rounds:
• Two rounds for the input of the committer.
• Two rounds for the output of the receiver.
• Four rounds for the communication between FCOM and the adversary
(i.e. the delayed outputs).

– IDEAL(FAUTH) where the message is delivered has four rounds:
• Two rounds for input and subroutine output.
• Two rounds for the communication between FAUTH and the adver-

sary (i.e. the delayed output).
– Let π be the protocol that has two main parties P1 and P2. P1 accepts

one input, invokes an instance of FAUTH to send its input it to a (sub-
party of) P2. Upon receiving subroutine output y from (its sub-party of
FAUTH), P2 outputs y and both parties halt. π has five rounds:
• Two rounds for input and subroutine output of P1 and P2.
• One round for the communication via FAUTH.
• Two rounds for the communication between FAUTH and the adver-

sary (i.e. the delayed output).
We stress that, in order to be a k-round protocol according to Definition 26,
the protocols above need not accept additional messages after k rounds have
been performed in total. This may not be satisfied by the usual definitions
of e.g. FCOM or FAUTH.

Remark 20. Example 2 illustrates the number of rounds of a protocol π,
according to Definition 26, may be smaller than the number of rounds of
its building blocks. However, it is easy to see that an upper bound for the
number of protocol rounds can be obtained by adding the number of rounds
of π and its components.
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Remark 21. Note that the numbers of rounds of a protocol π may change
under composition, i.e. when a sub-protocol φ of π is replaced with a sub-
protocol σ with a different number of rounds.

Remark 22. Often, we consider a protocol π that executes several instances
of a sub-protocol φ in parallel, e.g. a commitment scheme. While we would
like to count all messages of the l-th round of all m instances of φ executed in
parallel as one round, this is technically incorrect: In the UC framework, only
one external write instruction can be issued at the same time, formally
leading to m rounds in π for every round of φ.

If the number of instances m executed in parallel is known at the time
of invocation of φ, we can instead consider a wrapper protocol φ′ that
includes all m instances of φ and performs all communication in parallel. By
modifying π to use instance of φ′ instead of (several parallel instances of) φ,
we obtain a protocol with the “correct” round complexity.

We will implicitly use this transformation in the following.

With the above definition at hand, we are ready to state the following
theorem.

Theorem 7 (UC Compatibility). Let H be the helper that is parameter-
ized with a commitment scheme COM that features an O(k)-robust black-box
composition-order invariant pseudo-PPT committed-value (pseudo-)oracle OCCA,
where k ∈ O(poly(κ)). Let φ be a subroutine-respecting PPT protocol and let π be
a subroutine-respecting PPT protocol with less than or equal to k rounds

according to Definition 26

such that
– π ≥stat-UC φ. Then, π ≥lt

R φ.
– π ≥ltUC φ. Then, π ≥lt

R φ.
– π ≥UC φ. Then, π ≥R φ.

Here, ≥stat-UC denotes statistical UC emulation, ≥ltUC denotes long-term emula-
tion and ≥UC denotes standard UC emulation.

Proof. We only prove the first part of Theorem 7, as the other parts are
very similar. Let π be a subroutine-respecting PPT protocol with up to
k rounds such that π ≥stat-UC φ. Let S be the (PPT) simulator for the
dummy adversary in the UC execution. We transform S to a (presumptive)
simulator S ′ in the Rewinding UC execution. Namely, S ′ is identical to S
but additionally handles messages between H and corrupted parties like the
dummy adversary. We recall that, according to the definition of statistical

21 Canetti, Lin, and Pass [CLP10] focus on constant-round protocols, which are usually
easy to recognize. However, they state that their result can be extended to the general
case.
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UC security, the run-time of S is polynomial in the run-time of the adversary
it simulates. As we consider only polynomial-time adversaries, S ′ is PPT.

First, we note that the round complexity between the environment and π
and D in an UC execution of π and D is bounded by O(k) if π is a k-round
protocol according to Definition 26.

As π emulates φ, this also holds in the UC execution with φ and the
simulator S for the dummy adversary.

For the sake of contradiction, assume that π 6≥lt
R φ for the dummy

adversary and simulator S ′ and some Rewinding UC environment Z. Let
D be an (unbounded) distinguisher that distinguishes with non-negligible
advantage.

We construct an (unbounded) UC environment Z ′ that uses the Rewind-
ing UC environment Z to break the statistical UC emulation of π and
φ.

Let E be the ITM defined in Appendix D.1 that interacts with H. Clearly,
E is PPT. Let E ′1 be identical to E , but instead of interacting with H, interact
with a (pseudo-)oracle OCCA and adapt the communication as necessary.
Using the black-box property of OCCA, we can establish that this change is
perfectly indistinguishable.

We now “externalize” the challenge protocol and the dummy adversary
resp. simulator and treat them as a left side. Note that this does not work
directly for S ′, as S ′ may perform queries to H for the environment, leading
to more than O(k) rounds to be performed in the external interaction.
However, we can avoid the problem in the following by differently handling
these messages.

Towards this, we state and prove the following proposition.

Proposition 7. Let π be a subroutine-respecting k-round PPT protocol
according to Definition 26. Let H be a helper. Let T1 be the Turing machine
comprised of (the honest parties of) π and an adversary D with the interface
of the dummy adversary and T2 be the Turing machine comprised of the
environment Z, the helper H as well as an adversary D′ that is defined as
follows:
– Messages from the environment to corrupted parties intended for H (and
vice versa) are forwarded between H and Z.

T1 and T2 communicate as follows:
– T1 forwards messages from its internally emulated machines to T2.
– T2 forwards messages from its internally emulated machines to T1, subject
to the (per-entity) bounds of π according to Definition 26.

Moreover,
– T2 passes its input (1κ, z) as input to its internally emulated environment
and

– eventually outputs what the internally emulated environment outputs.
Then, the interaction between T1 and T2 has O(k) rounds according to

Definition 16.
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Proof. By definition, the communication between T1 and T2 consists of the
following messages:
– The initial message from T1 to T2.
– Inputs and outputs of (honest) main parties of π.
– Messages reported by the dummy adversary to the environment related

to π.
– Messages sent from the environment to the dummy adversary related to
π.

Using Definition 25 and the fact that π is a k-round protocol, it is easy to
see that the number of these messages is bounded by O(k).

We now split up E ′1 like in Proposition 7. To this end, let E ′2 be an ITM
that is identical to E ′1, except with the following differences:
– Externally, interact with a protocol and an adversary.
– Internally, execute an adversary D′ that is defined as follows:
• Messages from the environment to corrupted parties intended for H
(and vice versa) are forwarded between H and Z.

– Forward messages from the internally emulated machines to an exter-
nal machine T1, subject to the (per-entity) bounds of π according to
Definition 26.

Here, OCCA does not have access to the views of the (external) protocol
and adversary. We can see the external protocol and (dummy) adversary
resp. simulator (for the dummy adversary) as machine T1 and E ′2 as T2 in
Proposition 7 and conclude that the interaction between external protocol
and (dummy) adversary on the left side and E ′2 has O(k) rounds. Also, it
is easy to see that E ′2 is PPT. By using the black-box property and the
O(k)-robust composition-order invariance of OCCA, it thus follows that the
statistical distance between the output of E ′1 and E ′2 is negligible.

By using the O(k)-robust pseudo-PPT property of OCCA (Definition 6),
we can replace E ′2 with access to OCCA with a PPT ITM E ′3 without access to
any (pseudo-)oracle, incurring a negligible change in the statistical distance
between the outputs only.

Let Z ′ be the UC environment that internally executes E ′3 and relays
messages between E ′3 and the challenge protocol and adversary appropriately.
Eventually, Z ′ runs the (unbounded) D on the output of E ′3 and outputs
what D outputs. We obtain a distinguishing UC environment Z ′ from an
Rewinding UC environment Z and distinguisherD, leading to a contradiction
of the fact that π statistically UC-emulates φ.

Of course, compatibility is not limited to the cases mentioned in Theorem 7
and its variants. However, manual proofs may be necessary.

Meaningfulness. Just like the angel in [PS04] or the helper in [CLP10], our helper
may negatively affect the security guarantees provided by ideal functionalities. To
illustrate this, consider a variant F ′COM of the ideal functionality for commitments
FCOM, which we extend to accept a CRS from the adversary. When the honest
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committer provides its input v, F ′COM first checks if the CRS is a valid CRS for
the statistically hiding commitment scheme COM of H24. Then, it performs the
commit phase with the adversary, acting as an honest committer with input v.

In the presence of H, F ′COM provides no meaningful security. The adversary
simply can start a new session with the committed-value oracle provided by
H, receiving a valid CRS which it provides to F ′COM. Then, it can forward all
commitment-related messages between H and F ′COM. In the end, the adversary
will learn v, i.e. the value committed to by the honest committer, from H. (The
argument for [CLP10; PS04] is analogous.)

Thus, (long-term) Rewinding UC security only guarantees meaningful security
for ideal functionalities with less than or equal to k rounds if OCCA (in H) is
O(k)-robust, pseudo-PPT O(k)-robust composition-order invariant. Note that
very similar limitations with respect to the meaningfulness apply to e.g. [CLP10;
PS04].

Justification. We now discuss under which circumstances our notion implies
existing security notions for (composable) multi-party computation. This is
helpful to grasp the (intuitive) security guarantees of (long-term) Rewinding UC
security. First, we show that Rewinding UC security implies UC security for a
large class of protocols.

Proposition 8 (Justification: UC Security). Let π, φ be PPT protocols such
that π ≥R φ (resp. π ≥lt

R φ) and the simulator never needs to interacts with H
on the committed-value oracle for the challenge session. Then, π ≥UC φ (resp.
π ≥ltUC φ).

Proof. We prove Proposition 8 only for the standard non-long-term notion.
The proof for the other case is similar.

Let π, φ be protocols such that π ≥R φ and the simulator S (for the
dummy adversary) never queries H on the committed-value oracle for the
challenge session. Suppose that for the sake of contradiction it holds that
π 6≥UC φ, i.e. for all (presumptive) PPT UC simulators S ′ for the dummy
adversary, there exists an environment Z that can distinguish between the
UC execution of π and D and the UC execution of φ and S ′.

We construct an environment Z ′ that distinguishes between the Rewind-
ing UC execution of π and D and the Rewinding UC execution of φ and S
as follows:
– On input (1κ, z), activate Z on input (1κ, z).
– Whenever Z corrupts a party, send an appropriate corrupt message to
H.

– Relay all messages between Z, the challenge protocol and the adversary.
– Output whatever Z outputs.

24 Here, we assume that a CRS that leads to a statistically hiding commitment scheme
is efficiently recognizable.
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As Z is a UC environment, it never queries H or instructs the dummy
adversary to do so. By assumption, neither does S query the committed-
value (pseudo-)oracle of H. Thus, in the execution with Z ′, S behaves like
an UC simulator and the view of Z is correctly distributed as in an UC
execution with the challenge protocol and the dummy adversary resp. the
(presumptive) simulator with the dummy adversary. As a consequence, the
distinguishing advantage of Z ′ in the Rewinding UC execution is identical
to the distinguishing advantage of Z, leading to a contradiction.

For the case of ideal functionalities that can be expressed by stand-alone
real-ideal security (see e.g. [Gol04]), the following holds regardless of the simulator
using the committed-value oracle of H.

Proposition 9 (Justification: Stand-Alone Security for SFE). Let H
be a helper with a committed-value oracle that is black-box and O(1)-robust
composition-order invariant and pseudo-PPT. Let π be a N -party PPT protocol
in the FCRS-hybrid model such that π (long-term-) Rewinding-UC-realizes FSFE

(with H) for some function f : ({0, 1}κ)N × {0, 1}poly(κ) → ({0, 1}κ)N . Then, π
securely computes f with abort in the presence of static malicious adversaries.

In particular, Proposition 9 captures the stand-alone real-ideal security of e.g.
zero-knowledge proof systems. The restriction to protocols in the FCRS-hybrid
model can be relaxed to other hybrid functionalities that can be expressed by
stand-alone real-ideal security.

We omit the proof of Proposition 9, but note that that the distinguisher
in the real-ideal security notion is not provided with a committed-value ora-
cle (corresponding to an Rewinding UC environment that never queries the
committed-value oracle of H). Thus, the (PPT) simulator may only need to
extract commitments for its own simulation, which it can do efficiently via
rewinding, regardless of the number of rounds of π.

Environmental Friendliness. Similar to [CLP10], our notion partially fulfills
the notion of environmental friendliness [CLP13]. Suppose that the committed-
value oracle of H is O(k)-robust, pseudo-PPT O(k)-robust composition-order
invariant and that a PPT protocol π (long-term-) Rewinding-UC-realizes an ideal
functionality G. Then, we can show that for every k-round game-based property
of a protocol that is executed concurrently (outside the Rewinding UC execution),
the protocol π does not affect this game-based property if it is not already affected
by G (in an execution without H). For details, see Appendix D.3.

The following is largely based on the full version of [BMM21]. First, we
restate the notion of a security game as defined in [CLP13].

Definition 27 (Security Game, [CLP13]). A security game (or game)
consists of an ITM Chal, called the challenger, that is polynomial-time in
the length of the messages it receives, and a constant τC, called the threshold,
in the interval [0, 1). In an execution of a security game, the challenger Chal
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interacts with an adversary A on common input 1n and outputs accept or
reject at the end of the interaction.

We say that An breaks Chaln with advantage ε, if An makes Chaln
accept with probability τC + ε. We say that A breaks Chal, or the game-based
assumption C, if An breaks Chaln with advantage ε(n) for infinitely many
n ∈ N for a non-negligible function ε. ε is the advantage of the adversary.

An example for such a security game could be the IND-CPA game for
encryption schemes with τ = 1/2, i.e. the trivial winning probability of an
adversary. However, Definition 27 is also valid for IND-CPA security with
τ = 1.

Based on games, one can define assumptions, which restrict the parameter
τ such that there exists a trivial strategy for adversaries to win the game
with probability τ .

Definition 28 (Game-Based Assumptions, [CLP13]). A game-based
assumption is simply a security game C = (Chal, τ), such that, there is a
non-uniform PPT adversary A, called the trivial strategy, satisfying that An
breaks Chaln with probability at least τ (possibly without any advantage) for
all n ∈ N. We say that assumption C holds if no non-uniform PPT adversary
can break the game (Chal, τ).

Definition 28 would rule out τ = 1 for IND-CPA security, as there is no
trivial winning strategy for the IND-CPA game with winning probability 1.
However, the definition of game-based assumptions does not rule out the
existence of insecure schemes Π for which the adversary has a non-negligible
advantage over τ . This is covered in the following definition of game-based
security properties.

Definition 29 (Game-Based Security Property, [CLP13]). A game-
based security property of a cryptographic scheme Π is simply a security
game PΠ = (Chal, τ). We say that the property PΠ holds if no non-uniform
PPT adversary can break the game (Chal, τ).

However, the game for IND-CPA security does not capture a setting where
other protocols are executed concurrently. In order to argue that the security
ofΠ is not impacted by a protocol ρ that runs concurrently and implements a
functionality G, the game PΠ has to be modified accordingly. The proceedings
version [CLP13] gives an informal description of the associated game (see
the full version26 for a complete description):

Similar to UC security, an environment Z that gives input to the chal-
lenger Chal as well as ρ and may freely interact with the adversary A, is
introduced. The adversary A not only interacts with Chal, but also with ρ
(which may be a “real” protocol or the ideal protocol of some functionality
G). Z may, in particular, correlate the inputs of ρ and Chal. However, Π and
ρ are never sub-routines of one another. As a consequence, environmental
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friendliness does not generally imply composability in the sense of subroutine
replacement. Also, the adversary A does not “attack” the execution of ρ as
in the UC execution experiment. Furthermore, there is no simulator. Like
in the security game (Chal, τ), the adversary’s success is determined by the
output of Chal and not e.g. by the output of Z.

The game ChalG/ρ is defined similar to Chal, with the exception that
(the ideal protocol of) G is replaced with ρ. In contrast to UC security, the
environment Z and the adversary know whether G or ρ are executed.

The outlined game is (implicitly) considered in the following definition.

Definition 30 (Environmental Friendliness, [CLP13]). Let P = (Chal, τ)
be a game-based security property of a cryptographic scheme Π, and ρ a pro-
tocol implementing a functionality G. Then we say that ρ is environmental
friendly to Π with property P , if the security property PG/ρ = (ChalG/ρ, τ)
holds.

Proposition 10 (Environmental Friendliness of (long-term) Rewind-
ing UC Security). Let H be a helper where the committed-value (pseudo-)oracle
provided by H is black-box (Definition 4), O(k)-robust composition-order
invariant (Definition 5) and pseudo-PPT (Definition 6). Let π be a pro-
tocol that (long-term-) Rewinding-UC-emulates the ideal protocol of some
functionality G (with respect to H). Then π is friendly to every k-round
game-based property P of a protocol Π with property P .

The intuition behind Proposition 10 is as follows. Suppose that a game-based
property P holds in the execution with G, but not in the execution with π.
We can then use the Rewinding UC simulator and G to emulate π (with
the help of H), incurring at most a negligible difference in the adversary’s
success. As a next step, we use the robustness of OCCA within H to replace
the simulator S with access to H with an efficient simulator26 S ′. This again
incurs only a negligible difference in the adversary’s success. We again arrive
at an execution with G and a PPT adversary, leading to a contradiction
because P holds in an execution with G by assumption.

The proof of Proposition 10 is very similar to the proof of [CLP13,
Theorem 7] (in the full version) and the proof of Theorem 7 and we thus
omit it.

Impossibility Results. While the addition of the helper H, which allows the extrac-
tion of statistically hiding commitments, suffices to “circumvent” the impossibility
results of Müller-Quade and Unruh [MU10], our setting still faces an important
impossibility result for long-term Rewinding UC.

26 https://www.cs.cornell.edu/~rafael/papers/EnvFriendly-proc.pdf
26 For this argument, we only need the committed-value oracle of H, but not its

complexity oracles
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Theorem 8. Let F be a functionality that is long-term revealing (Definition 21)
for any party. Then, there is no bilateral27 nontrivial PPT protocol πOT that
long-term-Rewinding-UC-realizes FOT in the F-hybrid model (assuming ideally
authenticated communication).

Theorem 8 is a direct consequence of the folklore impossibility result of
correct statistically secure oblivious transfer in the plain model (even with passive
security only).

In the following, we give a formal proof, using a similar approach to the one
in [MU10]. We note that we can extend Theorem 8 to the case of ideally
secure communication using a slightly different proof (where the adversary
passively corrupts parties to obtain the communication).

Proof. For a protocol πOT to long-term-Rewinding-UC-realize FOT, πOT

must simultaneously fulfill the properties of i) correctness, ii) long-term
sender security and iii) long-term receiver security. We show that these
properties cannot be fulfilled simultaneously if F is long-term-revealing for
either party.

To this end, we consider an execution of πOT with an environment Z
and the dummy adversary on security parameter κ where Z (i) instructs the
dummy adversary to immediately deliver all messages, (ii) never instructs
the dummy adversary to corrupt a party and (iii) never interacts with H (i.e.
does not extract commitments), (iv) receives (external) input (m0,m1, b)
and uses (m0,m1) as input for the (honest) OT sender and b as input for
the (honest) OT receiver. As usual, all communication between parties goes
either through the adversary or through F .

We use the following notation, based on [MU10, Section 4.1]:
– COMm0,m1,b(. . . ) denotes the communication of the parameterized

machine pairs in the above execution when the OT input of the re-
ceiver is b and the input of the sender is (m0,m1). For example,
COMm0,m1,b(Z S,SA,SF) contains all communication of the sender,
which consists of the communication between Z and S (inputs and
subroutine outputs), between S and A (messages) and S and F (inputs
and subroutine outputs).

– OUTm0,m1,b denotes the output of the receiver.
– For families of variables Aκ,z and Bκ,z, we write ABB if there is some

probabilistic function G such that Bκ,z
s
≈ G(κ,Aκ,z) (and vice versa for

C). It is easy to see that B and C are transitive. For the sake of an
easier notation, we will ignore κ from now on.
We first establish several properties.

27 We recall the definition of a bilateral protocol due to Canetti and Fischlin [CF01]:
“[A] protocol π between n parties P1, . . . , Pn is bilateral if all except two parties stay
idle and do not transmit messages.”
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For an OT protocol with long-term receiver security, it holds for all
m0,m1 that

COMm0,m1,0(Z S,SA,SF)
s
≈ COMm0,m1,1(Z S,SA,SF) (1)

Conversely, for long-term sender security, it holds for all mb,m1−b,m
′
1−b

and b ∈ {0, 1} that28

COMm0,m1,b(Z R,RA,RF)
s
≈ COMmb,m

′
1−b,b(Z R,RA,RF) (2)

For a correct protocol, it must hold that for all m0,m1 and all b ∈ {0, 1}
that

mb
s
≈ OUTm0,m1,b C COMm0,m1,b(RA,RF) (3)

COMm0,m1,b(SA,SF)Bmb (4)

and, if m0 6= m1,

m0
s
≈ OUTm0,m1,0 6

s
≈ OUTm0,m1,1 s

≈ m1 (5)

where Eq. (3) means that the receiver’s output (but not necessarily b) can
be reconstructed with overwhelming probability from the receiver’s commu-
nication, Eq. (4) means that (at least) the result mb can be reconstructed
from the sender’s communication (including its communication with F) and
Eq. (5) guarantees that if m0 and m1 differ, then, for different choice bits,
the output of the receiver will be (statistically) different.

Claim 4. If F is long-term-revealing for R and πOT is long-term receiver-
secure, then πOT cannot be correct.

Proof. If F is long-term-revealing for R, it holds that

COMm0,m1,b(RA,RF)C COMm0,m1,b(RA,SF) (6)

i.e. the communication between R and F can be computed from the commu-
nication between S and F . As the communication between R and A can be
computed from the communication between S and A, it holds that

COMm0,m1,b(RA,SF)C COMm0,m1,b(SA,SF) (7)

Combining Eqs. (1), (3), (6) and (7), using the definition of C and the
transitivity of indistinguishability, we obtain

m0
s
≈ OUTm0,m1,0 s

≈ G(COMm0,m1,0(SA,SF))
s
≈ G(COMm0,m1,1(SA,SF))

s
≈ OUTm0,m1,1

s
≈ m1

(8)
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which contradicts Eq. (5), i.e. the correctness.

Claim 5. If F is long-term revealing for S and πOT is correct and long-term
receiver-secure, then πOT cannot be long-term sender-secure.

Proof. Using that F is long-term revealing for S and that the communication
between S and A can be computed from the communication between R and
A, it follows that for b ∈ {0, 1}

COMm0,m1,b(RA,RF)B COMm0,m1,b(SA,SF)Bmb (9)

Combining Eqs. (1), (4) and (9) and using the definition of B and the
transitivity of indistinguishability, it follows that

m0
s
≈ G(COMm0,m1,1(RA,RF)) (10)

which contradicts Eq. (2), i.e. the sender security (because m0 can be
computed from R’s interaction with A and F , even though its choice bit
was 1).

Combining Claims 4 and 5, the theorem follows.

Remark 23. While we have considered the case of long-term security, the
proof similarly holds for statistical security. As all parties are honest and by
considering an appropriate environment, there is no communication with H
and it can thus be ignored.

E Proof of Theorem 5

Proof. In the following, we prove Theorem 5.
We assume static corruptions and can thus distinguish between the corrupted

parties in the following proof. We obtain a simulator S for all possible corruptions
by combining the individual simulators. As the dummy adversary is complete
(see Proposition 5), we consider simulators for the dummy adversary.

Corrupted Committer. We now state the simulator for the dummy adversary and
a corrupted committer.

Definition 31 (Simulator for the Dummy Adversary, Corrupted Com-
mitter, Honest Receiver).
1. Handle messages between Z and H like the dummy adversary.
2. Report all messages coming from internally simulated honest parties to the

environment and wait for its confirmation to deliver them. Until the reported
message of the honest party is delivered, pause the simulation of this party.

28 In abuse of notation, we write COMmb,m
′
1−b,b to denote COMm0,m

′
1,0 resp.

COMm′0,m1,1.
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3. Deliver messages as instructed by the environment to internal simulations of
the honest party.

4. Send (ext-init,C, sid , r $← {0, 1}κ) to H in the name of C and receive
(setup, sid , ck) from H. Report ck as output of FCRS with SID sid ||crs.
(When the environment has already queried H on sub-session (1, r), use a
different r′ instead. If the environment later queries H on sub-session (1, r),
use a different r′ and report the answers with r instead of r′.)

5. Commit phase: Let m denote a commitment message received from the cor-
rupted committer and send (ext-mesg,C, sid ,m) to H. If H answers with
(ext-mesg,C, sid ,m′), report m′ as message from R to C. If H answers with
(ext-val, sid , 1, v, view),
– output a special symbol ⊥ if v = ⊥ext,
– halt the simulation of the receiver if v′ = ⊥, i.e. the receiver would not
accept the commitment,

– Otherwise, send (commit, sid , v) to FCOM on behalf of C. Also allow the
committed output of FCOM for the receiver.

6. Eventually receive a message (unveil, sid , v′, d′) from the committer and
proceed as follows:
– If v′ = v and the honest receiver would accept, send (unveil, sid) to
FCOM and allow the output.

– If v′ 6= v and the honest receiver would accept, output a special error
symbol ⊥.

In order to prove the validity of the simulator S in Definition 31, we define a
number of hybrids. We start with the real execution of πCOM and the dummy
adversary D and gradually change it to an execution of FCOM and the simulator
S. For each pair of hybrids, we prove the statistical indistinguishability.
– H0: The real execution with πCOM and D.
– H1: Execution with the ideal functionality F1 that lets the adversary de-

termine all inputs and learn all outputs. S1 is the simulator that executes
the protocol πCOM honestly on behalf of the honest party, using the inputs
learned from F1 and making the outputs through F1. Messages related to H
are handled like by the dummy adversary.

– H2: The ideal execution with FCOM and S.

Claim 6. If OCCA is black-box, then out0 and out1 are identically distributed.

Proof. As the changes between H0 and H1 are only syntactic and oblivious for
the environment, the claim follows due to the black-box property of OCCA.

Claim 7. Let OCCA be a black-box committed-value pseudo-oracle for COM. If
COM is a CCA-binding commitment scheme (Definition 7) with respect to OCCA,
then out1

s
≈ out2.

Proof. It is easy to see from the definition of S and the black-box property of
OCCA that out1 and out2 are identically distributed unless S outputs ⊥ in H2.
Let E⊥ denote this event.
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We show that Pr[E⊥] ≤ negl for some negligible function negl. To this end,
we construct an adversary B against the CCA binding property that includes the
execution H1, but plays the commitment it receives from the corrupted committer
with the experiment. After the commit phase has finished, it receives either the
extracted value e ∈ {0, 1}κ, a special error symbol ⊥ext (if the commitment could
not be extracted) or ⊥ if the receiver did not accept. We distinguish between the
following cases for the extracted value:
– e = ⊥: The receiver would not accept and the execution would not continue.

Thus, also halt.
– e = ⊥ext: If the commitment gets unveiled later on, send the unveil informa-

tion to the game, winning it.
By definition, B wins the CCA-binding game if E⊥ occurs. Thus, Pr[E⊥] can

be bounded by the success probability of an adversary in the CCA-binding game.
We now give a formal proof based on the above intuition.
Let B be the following adversary against the CCA-binding property of COM.

1. Initially, set e = ⊥.
2. On input (1κ, z), emulate an execution of H1 with input (1κ, z) for the

environment. In deviation from H2, perform all commitments with a cor-
rupted committer (i.e. the commitment of the challenge session as well as
commitments wit H) with OCCA. We only sketch how the challenge session is
handled. To this end, start a session with OCCA. Initially, receive a CRS ck
from OCCA. Report cki as output of FCRS with SID sid ||crs where sid is the
SID of the challenge session in H1. At the end of the commit phase, set e
to the extracted value returned by OCCA and let c denote the corresponding
transcript.

3. Simulate H has follows:
– Appropriately forward ext-init and ext-mesg messages between OCCA

and Z, exposing the same interface to Z as with H.
4. After the commit phase has finished, do the following:

– If e = ⊥, i.e. the receiver would not accept, halt.
– If e = ⊥ext or e = v ∈M, continue.

5. If the corrupted committer eventually performs the unveil phase by sending
(v′, d′), send (v′, d′) to the CCA binding game as unveil message.
It is easy to see that the view of the internally simulated environment Z

is distributed as in H1. By the definition of B and the black-box property of
OCCA

29, it thus holds that its advantage in the CCA binding game is greater
than or equal to Pr[E⊥]. As COM is CCA binding by assumption, we can thus
bound Pr[E⊥] by a negligible function neglCCA-binding for the advantage of an
adversary in the CCA-binding game. The claim follows.
29 Formally, we cannot apply the black-box property as-is. This is due to the fact that

the number of queries to OCCA changes between hybrids H1 and H2. This problem
can be solved by introducing an intermediate hybrid where all commitments with
the corrupted committer are forwarded to OCCA, but the extracted value discarded.
Clearly, this does not change the distribution. Coming from this hybrid, we can apply
the black-box property.

68



As the number of hybrids is constant, it follows that out0
s
≈ out2 in case of a

corrupted committer.

Corrupted Receiver. We now state the simulator for the dummy adversary and a
corrupted receiver.

Definition 32 (Simulator for the Dummy Adversary, Corrupted Re-
ceiver).
– Handle messages between Z and H like the dummy adversary.
– Report all messages coming from internally simulated honest parties to the
environment and wait for its confirmation to deliver them. Until the reported
message of the honest party is delivered, pause the simulation of this party.

– Deliver messages as instructed by the environment to internal simulations of
the honest party.

– Initially, sample (ck, td) ← TSetup(1κ). Report ck as output of FCRS with
SID sid ||crs.

– When receiving the message (committed, sid) from FCOM, use the trapdoor
committer algorithm Ctrap of COM on input (1κ, ck, κ, td) to perform the
commitment with the corrupted receiver. After the commit phase has finished
and all messages have been delivered, allow the output.30

– When receiving the message (unveil, sid , v) from FCOM: Use the trapdoor
committer Ctrap of COM to create unveil information d for a commitment to
v and send (v, d) to the receiver.

To show that the simulator is valid, we consider the following hybrids and
prove their statistical indistinguishability:
– H0: The real execution with πCOM and D.
– H1: Execution with the ideal functionality F1 that lets the adversary de-

termine all inputs and learn all outputs. S1 is the simulator that executes
the protocol πCOM honestly on behalf of the honest party, using the inputs
learned from F1 and making the outputs through F1. Messages related to H
are handled as by the dummy adversary.

– H2: F2 is identical to F1. S2 is defined as S1, but uses the algorithm of the
trapdoor committer of COM like the simulator in Definition 32.

– H3: The ideal execution with FCOM and S.

Claim 8. If OCCA is black-box, then out0 and out1 are identically distributed.

Proof. As the changes between H0 and H1 are only syntactic and oblivious for
the environment, the claim follows.

Claim 9. Let OCCA be a black-box committed-value pseudo-oracle for COM.
If COM is a trapdoor commitment scheme with respect to OCCA, then out1

and out2 are statistically indistinguishable.
30 As R is corrupted, allowing the output has no visible effect. However, it is necessary

for FCOM to continue.
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Proof. We prove Claim 9 by a reduction to the trapdoor property of COM
(Definition 8) with respect to the pseudo-oracle OCCA.

Let (BOCCA be the following PPT adversary against the trapdoor property
(Definition 8) of the commitment scheme COM:
1. Handle messages for H like the dummy adversary. In order to emulate H,

use the pseudo-oracle OCCA provided by the game.
2. On input (1κ, z), internally start an execution of H2, but perform the com-

mitment with the game. More specifically, send (Setup) to obtain a setup ck
and report ck as output of the instance of FCRS with SID sid ||n||crs.

3. At the beginning of the commit phase, receive the honest committer’s input v
and send (Start, v) as challenge to the game and forward messages between
the game and the corrupted receiver.

4. When receiving the message (unveil, sid , v) from F2, send (Unveil) to the
game and obtain the unveil information d. Send (v, d) to the corrupted
receiver.

5. Continue the execution.
If the challenge bit b in the TDC game is 0, then the view of the internally

emulated environment is distributed as in an execution of H1 due to the black-
boxness of OCCA. If b = 1, it is distributed in H2. It follows from a standard
argument that if out1(κ, z) 6

s
≈ out2(κ, z), then outTDC

0 (κ, z) 6
s
≈ outTDC

1 (κ, z), i.e.
the output of the trapdoor game with choice bit b and input (κ, z), contradicting
the trapdoor property of COM.

Proof. As the changes between H2 and H3 are only syntactic and oblivious for
the environment, the claim follows.

As there is a common bound between the hybrids, it follows that out0
s
≈ out3

and the claim follows.

Both parties honest. This case is very similar to the case of the corrupted receiver
and we omit it.

F Applications

We present several applications of our long-term composable commitment scheme.

F.1 Zero-Knowledge and Commit-and-Prove

By plugging in our commitment scheme into an appropriate zero-knowledge
proof system in the FCOM-hybrid model with statistical UC security, e.g. the
construction of Canetti and Fischlin [CF01], we obtain the following theorem.

Theorem 9. Assume that computationally binding, statistically hiding trapdoor
commitment schemes with public-coin receiver and non-interactive unveil phase
exist (in the FCRS-hybrid model). Then, for every NP relation R, there exists
a protocol π′R in the FCRS-hybrid model such that π′R long-term-Rewinding-UC-
realizes FRZK.
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The resulting protocol π′R thus features statistical zero-knowledge and knowl-
edge soundness against computationally bounded provers.

Using a similar approach, we obtain a protocol that long-term-realizes the
ideal functionality for commit-and-prove (Definition 15) for a bounded number
of proofs per instance.

Theorem 10. Let us assume that computationally binding, statistically hiding
trapdoor commitment schemes with public-coin receiver and non-interactive unveil
phase exist (in the FCRS-hybrid model). Let k ∈ poly(κ). There exists a protocol
SCP′ (accepting at most k inputs) in the FCRS-hybrid model such that SCP′

long-term-Rewinding-UC-realizes FCP (for up to k inputs).

F.2 Oblivious Transfer with Long-term Security for One Party

In the following, we construct a protocol for composable oblivious transfer where
one party is protected with long-term security, which is the best we can hope for
due to the impossibility result of our notion (Theorem 4).

Oblivious Transfer with Long-Term Security for one Party
Even given a commitment scheme that is long-term-Rewinding-UC-secure, we
cannot hope to achieve long-term-secure secure function evaluation from long-
term-revealing setups when at least one party’s output depends on inputs from
both parties.

However, we can construct an OT protocol πltOT that at least guarantees
long-term security for one party. Before presenting the protocol, we first discuss
the difficulties of defining security in this setting.

Defining Security. In the case of long-term security, an unbounded distinguisher is
given (w.l.o.g.) the environment’s view, which may contain messages from honest
parties that are only given computational privacy. For long-term emulation of the
ideal functionality to hold, these messages must be statistically indistinguishable
in the real resp. ideal execution. Thus, the long-term simulation must statistically
depend on the honest parties’ secrets, which are usually not available to the
simulator in an execution with an ideal functionality.

As a consequence, we cannot realize e.g. FOT or FSFE in our framework with
long-term security using long-term-revealing setups only. We leave the definition
of ideal functionalities with meaningful security guarantees that can be realized
in this setting as an interesting future work.

In the following, we will resort to an approach that is closely related to the one
proposed by Peikert, Vaikuntanathan, and Waters [PVW08]. In [PVW08], com-
posable oblivious transfer in the FCRS-hybrid model is constructed. Depending
on the CRS distribution, it is possible to either i) achieve universal composability
and computational security for both parties or ii) not achieve composability,
but statistical security for the OT sender or iii) not achieve composability, but
statistical security for the OT receiver.
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To prove the security in the two latter cases, the security of the protocol in
[PVW08] is proven only for the case that the party with long-term security is
honest and the other party (i.e. the one with computational security) is corrupted.
The consequences are two-fold: For the corrupted party, the simulator can learn
the input in the ideal execution, resulting in a statistically correct simulation.
Conversely, it is necessary that the party with statistical security remains honest,
because its inputs cannot be extracted in the setting considered by [PVW08].
More concretely, if the OT protocol is, say, statistically sender-secure, a corrupted
sender’s input cannot be extracted in a straight-line way, as the sender’s input is
statistically hidden. (This is the very observation of Müller-Quade and Unruh
[MU10] that protocols in the FCRS-hybrid model cannot be, at the same time,
both composable and statistically or long-term-secure when the simulation is
straight-line.)

In contrast to [PVW08], we can prove the security of our following construc-
tions in the FCRS-hybrid model not only in the case that the party with long-term
security is honest, but also in the case that this party is (actively) corrupted. This
is because we can have both protocol parties first commit to their inputs, and, for
each step, prove consistency of the following protocol relative to the committed
inputs. As our long-term-secure commitment scheme is extractable, we can also
learn a corrupted party’s input without weakening its long-term security. However,
for the reasons outlined above (namely that for the party without long-term
security, the simulation must statistically depend on the input), we still assume
the party with computational security to be corrupted, too.

When all parties are corrupted, real-ideal security often provides no meaningful
security. In order to still prove meaningful guarantees, we make the following
assumptions about the ideal execution with FOT:
1. One party is only passively corrupted.
2. If both parties are corrupted, the simulator only learns the passively corrupted

party’s input from the ideal functionality after it has provided the input of
the maliciously corrupted party.

3. The output of the passively corrupted party is through the functionality,
preventing the simulator from cheating.

Of course, considering both parties to be actively corrupted is possible. However,
we cannot hope to express (and achieve) any meaningful security guarantees in
such a setting.

This approach gives only a very incomplete overview of the following con-
structions’ security as we always assume the party with computational security
to be (passively) corrupted in order for the simulator to learn its secrets, which
provably cannot be protected in the protocol.

Using an appropriate notion, one can show that our constructions indeed
provide meaningful security guarantees for parties that are given computational
security only. We leave the design of such a notion for future work.

Oblivious Transfer. We start by presenting the protocol πltOT for oblivious
transfer with statistical UC security for one party in the FCRS-hybrid model,
which works as follows.
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First, each party uses an instance of the commit-and-prove functionality FCP

to commit to its input and its randomness. This step enables composability
in the first place. Subsequently, both parties execute a protocol πOT in the
FCRS-hybrid model with appropriate properties (e.g. the protocol due to Peikert,
Vaikuntanathan, and Waters [PVW08], which provides statistical security for
one party but does, in this mode, not compose) on their committed inputs and
randomness. After each sent message, the message sender proves the correctness
relative to the committed input and randomness as well as the previously received
messages. The use of FCP allows for easy extraction resp. equivocation.

By replacing FCP with an appropriate protocol in the FCRS-hybrid model,
we obtain a composable OT protocol in the FCRS-hybrid model with long-term
Rewinding UC security for one party.

Construction 3 (The OT Protocol πltOT)
Parameterized with an actively secure and constant-round OT protocol πOT in
the FCRS-hybrid model.
1. On input (sid , b), the OT receiver R samples randomness rR and sends

(commit, sid ||R, (b, rR)) to an instance of FCP with SID sid ||R.
2. On input (sid , (m0,m1)), the OT sender S samples randomness rS and sends

(commit, sid ||S, (m0,m1, rS)) to an instance of FCP with SID sid ||S.
3. R and S keep a list of received messages mR resp. mS.
4. S and R execute πOT on their respective private inputs and randomness rS

resp. rR.
5. For every messagem sent to R by S, S sends (CP-prover, sid ||S, (m,mS)) with

the relation RπOT

S = {(m,mS), (m0,m1, rS) | m = πOT((m0,m1),mS; rS)}
to prove to R that m is consistent relative to the committed inputs and
the received messages. R only continues the execution when it has received
(CP-proof, sid ||S, (m,mS)).

6. Similarly, for every messagem sent to S by R, R sends (CP-prover, sid ||R, (m,mR))
with the relation RπOT

R = {(m,mR), (b, rR) | m = πOT(b,mR; rR)} to prove to S
that m is consistent relative to the committed inputs and the received messages.
S only continues the execution when it has received (CP-proof, sid ||R, (m,mR)).

7. When the receiver of πOT outputs mb, R outputs (output, sid ,mb).

We first prove that the above construction statistically UC-realizes FOT if an
appropriate protocol πOT is used (and the party without statistical protection in
πOT is (passively) corrupted).

Theorem 11. Let πS
OT be the constant-round maliciously secure OT protocol

of [PVW08] with statistical sender security in the FCRS-hybrid model. Then,
πltOT with πOT = πS

OT statistically UC-realizes FOT for adversaries that at least
passively corrupt the receiver R.

Let πR
OT be the constant-round maliciously secure OT protocol of [PVW08]

with statistical receiver security in the FCRS-hybrid model. Then, πltOT with
πOT = πR

OT statistically UC-realizes FOT for adversaries that at least passively
corrupt the sender S.
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We do not give a full proof of Theorem 11, but rather the following proof
sketch to show the main aspects.

Proof (Sketch). We distinguish between the following cases:
– Protocol πltOT with πOT = πS

OT, i.e. statistical security for the OT sender:
• Honest sender, passively corrupted receiver: The simulator learns the
receiver’s input from FOT. Otherwise, the simulation is essentially the
same as in [PVW08], with the additional handling of FCP.

• Honest sender, actively corrupted receiver: The simulation is essentially
the same as in [PVW08], with the additional handling of FCP.

• Corrupted sender, passively corrupted receiver: The corrupted sender’s
input can be extracted from its call to FCP. As the simulator learns
the receiver’s input, it can faithfully execute the real protocol on its
behalf. As the corrupted sender is forced to honest behavior due to the
use of FCP and the fact that πS

OT ≥stat-UC FOT for honest senders and
(passively) corrupted receivers, real and ideal execution are statistically
indistinguishable.

– Protocol πltOT with πOT = πR
OT, i.e. statistical security for the OT receiver:

• Honest receiver, passively corrupted sender: The simulator learns the
sender’s input from FOT. Otherwise, the simulation is essentially the
same as in [PVW08], with the additional handling of FCP.

• Honest receiver, actively corrupted sender: The simulation is essentially
the same as in [PVW08], with the additional handling of FCP.

• Corrupted receiver, passively corrupted sender: The corrupted receiver’s
input can be extracted from its call to FCP. As the simulator learns the
sender’s input, it can faithfully execute the real protocol on its behalf.
As the corrupted receiver is forced to honest behavior due to the use
of FCP and the fact that πR

OT ≥stat-UC FOT for honest receivers and
(passively) corrupted senders, real and ideal execution are statistically
indistinguishable.

ut

By replacing FCP with an appropriate long-term-secure protocol, we obtain
the following corollaries.

Corollary 3 (Oblivious Transfer with Long-Term Security for the Sender
in the FCRS-hybrid Model). Let πCP be a protocol that long-term-Rewinding
UC-realizes FCP in the FCRS-hybrid model. Then, πFCP→πCP

ltOT with πOT = πS
OT

Long-Term-Rewinding-UC-realizes FOT in the FCRS-hybrid model for adversaries
that at least passively corrupt the receiver R.

Corollary 4 (Oblivious Transfer with Long-Term Security for the Re-
ceiver in the FCRS-hybrid Model). Let πCP be a protocol that long-term-
Rewinding UC-realizes FCP in the FCRS-hybrid model. Then, πFCP→πCP

ltOT with
πOT = πR

OT Long-Term-Rewinding-UC-realizes FOT in the FCRS-hybrid model
for adversaries that at least passively corrupt the sender S.
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Observe that πltOT is a constant-round protocol in the {FCP,FCRS}-hybrid
model. Using Theorem 7, we import the statistically UC-secure protocol πltOT

with an appropriate round complexity into our framework. It follows that
πltOT ≥lt

R FOT for the cases outlined in Theorem 11. Using the composition
theorem (Theorem 6), we can replace FCP by an appropriate protocol in the
FCRS hybrid model (e.g. Theorem 10) and the corollaries follow.

Secure Function Evaluation We can use a similar approach to construct (reactive)
secure two-party function evaluation with long-term Rewinding UC security for
one party. In the following we describe shortly the conceptual idea to highlight
the adaptions.

In order to import a k-round UC-secure protocol into our framework, we need
the committed-value oracle OCCA in the helper H to be k-robust. For efficiency
reasons, it is thus highly desirable to use building blocks with a constant round
complexity. We propose a construction based on garbled circuits, which allows
constant-round general two-party computation.

Most garbled circuit schemes only provide computational security. While
constructions with information-theoretic security exist, they suffer from efficiency
problems, especially as the circuit depth grows. Given the fact that we only can
construct OT with long-term security for one party, the garbled circuit scheme,
interestingly, does not need to provide information-theoretic security. Indeed,
if the party Pi with information-theoretic security is known in advance (as we
assume for the OT protocol), Pi performs the garbling and the OT protocol
provides long-term security for P1−i, then there is no information flow from Pi−1
to Pi.

This shows that we can get a secure two-party function evaluation long-term-
Rewinding UC security for one party based on garbled circuits. We leave further
details for future work.
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