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Abstract—During the last decade, there has been a stunning
progress in the domain of AI with adoption in both safety-
critical and security-critical applications. A key requirement
for this is highly trained Machine Learning (ML) models,
which are valuable Intellectual Property (IP) of the respective
organizations. Naturally, these models have become targets for
model recovery attacks through side-channel leakage. However,
majority of the attacks reported in literature are either on
simple embedded devices or assume a custom Vivado HLS
based FPGA accelerator.

On the other hand, for commercial neural network ac-
celerators, such as Google TPU, Intel Compute Stick and
NVDLA, there are relatively fewer successful attacks. Focussing
on that direction, in this work, we study the vulnerabilities
of commercial open-source accelerator NVDLA and present
the first successful model recovery attack. For this purpose,
we use power and timing side-channel leakage information
from Convolutional Neural Network (CNN) models to train
CNN based attack models. Utilizing these attack models, we
demonstrate that even with a highly pipelined architecture,
multiple parallel execution in the accelerator along with Linux
OS running tasks in the background, recovery of number of
layers, kernel sizes, output neurons and distinguishing different
layers, is possible with very high accuracy. Our solution is fully
automated, and portable to other hardware neural networks,
thus presenting a greater threat towards IP protection.

Index Terms—AI, ML, IP Stealing, Side-Channel, NVDLA

1. Introduction

Growing adoption of AI in various application segments
have created a huge demand for efficient machine learning
(ML) accelerators. Embedded ML accelerators represent
a significant domain of such accelerators, which are in-
tegrated with Internet-of-Things (IoT) platforms to drive
edge intelligence. Physical access to such platforms is not
uncommon, and therefore, various forms of (semi-)invasive
attacks present a serious threat to the operation of embedded
ML accelerators. In recent times, this has caught attention
of researchers, with multiple results clearly demonstrating
the feasibility of such attacks, for various platforms and
different attack objectives.

The reported attacks can be classified broadly in terms
of the attack objectives. First, when the attacker intends
to recover the input data. This is demonstrated in [30]
and [27] through power side channel information. Second,
when the attacker intends to disrupt the outcome of the
Neural Network (NN) by combining adversarial attacks with
active side-channel attack [11]. Third, also the focus of
the current work, is when an attacker intends to reverse
engineer the NN through side-channel information. Further
and overlapping taxonomies of attacks on embedded NN
can be defined in terms of the types of NN (e.g., binarized,
convolutional neural network), kinds of attack (e.g., passive,
active, remote).

Despite the impressive body of works in recent times,
there remains few hurdles towards deciphering the complete
operations of practical embedded neural networks. Nearly
all of the previous works have targeted embedded micro-
controllers on which the neural network is being executed.
It is comparatively easier to recover secret information from
microcontrollers. This is mainly because every operation
is executed sequentially in case of microcontrollers. These
settings considerably simplifies the problem at hand and
is not always representative of a practical setup. One of
the key requirement for a successful side-channel attack
is the precise target and noise-free traces. Both pipelining
and parallel execution, common optimization strategies used
for FPGAs make it quite difficult for side-channel attacks.
This is also noted in a recent paper along this line of
research [21], stating that, parallel execution of multiple
NN operations on an FPGA/ASIC platform makes the side
channel attack considerably harder. This is one of the reason
the current literature lacks the analysis and possible attacks
on hardware neural network accelerators.

Further, most of the current literature focused on BNN
architectures for FPGA platforms such as in [9], [32], [35].
To the best of our knowledge, no prior work has yet in-
vestigated CNN architectures on hardware neural network
accelerators using the power traces. Furthermore, the anal-
ysis and evaluation of commercial accelerators is yet to be
explored for side-channel leakage. It is crucial to investigate
the security of commercial accelerators due to their wide
deployment and support of multiple network architectures
compared to a custom HLS based accelerator. This is exactly



what we address in this work.
Related Work. Side-channel attacks are well known

in literature for recovering secret keys from cryptographic
algorithms. It was only recently that researchers have started
exploiting side-channel leakage for recovering neural net-
work architecture, weights or inputs. For instance, Hua et. al.
[12] used off-chip memory access information to recover the
network structure. For this purpose, the authors implemented
a CNN model with a hardware Trojan on a custom Vivado
HLS based hardware accelerator. Later, Batina et. al. [1]
explored recovery of neural network structure and weights
in a grey box setting targeting micro-controllers using tim-
ing and Electromagnetic (EM) side-channel measurements.
This is followed by the work in [36] where the authors
utilized EM and a margin-based adversarial attack to recover
the structure and the weights for a BNN accelerator. In
another attempt Maji et. al. [21] utilized timing and SPA
techniques to recover inputs and model for different preci-
sions such as fixed point, floating point and binary NNs.
Further, they demonstrated their attacks on multiple micro-
controller based devices. The work by Yoshida et. al. [35]
demonstrated weight recovery around custom Systolic arrays
based NN FPGA implementation. For a timely and excellent
survey on the physical side-channel attacks on embedded
neural networks, readers may refer to [3], [25], [34].

All of the previous works targeted either micro-
controller devices or a custom Vivado HLS based accel-
erator. There are many commercial accelerators as well
which are being used extensively for edge computing such
as Google TPU [15], Intel NCS [13] and NVIDIA’s NVDLA
[29]. With regards to Intel NCS, three works have been
published in literature so far. The first work [33] developed
execution time templates using kernel density estimator
(KDE) corresponding to Resnet and VGG family of models
to find the model used. This is later followed by a cold-
boot based attack in [31]. In this case, the authors targeted
to recover the model by freezing the RAM on Raspberry Pi.
In both the mentioned works, the authors utilized Raspberry
Pi as the target for attack with Intel NCS being used for
inferencing purpose. The first attempt on an NN ASIC was
performed on an Intel NCS in [32]. The authors targeted
recovery of model weights using EM side-channel attack for
a BNN model. Using CPA, the authors demonstrate some
leakage in correlation with weights, but full recovery was
not possible. The authors further state that the execution of
NN inference is hard to distinguish in the captured trace
and model recovery was left as future work. For easier
comparison, Table 1 summarizes the state-of-the-art.

Contribution. As can be seen from Table 1 the current
literature lacks an in-depth evaluation of widely deployed
commercial NN hardware accelerators. In this work, we
explore the possibilities of reverse engineering NN models
from NVIDIA’s open-source accelerator NVDLA, which is
available in multiple NVIDIA Jetson Xavier platforms. We
demonstrate successful reverse engineering of neural net-
work architecture including number of layers, type of layers,
etc. Further, this is the first work demonstrating recovery of
hyperparameters such as stride size, kernel size, padding

size, etc from a hardware accelerator. For this purpose, we
first ported and integrated NVDLA to a Microblaze based
system suitable for execution on a side-channel evaluation
platform. In our attack, we utilized AI-assisted power anal-
ysis and timing side-channel attacks.

To the best of our knowledge, this is the first work
analyzing the vulnerabilities of NVDLA in a practical and
realistic setting. Further, demonstrating successful recovery
of neural network parameters even from a deeply pipelined
accelerator which allows parallel execution and is running
along with an OS. We effectively show that the leakage
corresponding to different parameters is distinctively visible
in the power traces and hence, can be easily exploited to
recover any CNN model. Using LeNet as the target victim
model, we demonstrate very high accuracy of more than
95% in recovering different parameters using trained attack
AI models. Even though in this work we used NVDLA as
the target, one of the main aim of this work is also to bring
attention towards:

• How secure are commercial NN accelerators?
• What are the challenges and possible remedies for

the overall experimental setup to analyze such ac-
celerators?

• Does parallel and pipelined execution affect the
overall recovery rate?

• How can we efficiently reduce the background
noise?

• To what extent, is it possible to recover hyperpa-
rameters from a highly optimized FPGA-based NN
accelerator?

Organization. The paper is organized as follows. Sec-
tion 2 provides the necessary preliminaries regarding the
side-channel attack techniques (SPA and timing), the overall
NVDLA architecture and platform flow and threat model. In
Section 3, we present in-depth details about the experimental
setup, its challenges and how we resolved them. This is
followed by the model extraction discussion in Section 4.
The results and evaluation of our attack is presented in
Section 5 followed by some discussion in Section 6. We
finally conclude the paper in Section 7.

2. Preliminaries

2.1. NVDLA Architecture

In this section, we briefly talk about the NVDLA ar-
chitecture consisting of its software stack as well as the
hardware architecture. The interested readers are referred to
[29] for more in-depth details about the architecture.

Figure 1 shows the overall flow of the NVDLA platform.
NVDLA natively supports Caffe framework only. Hence,
the model is trained using Caffe. This is followed by
generating the calibration table using NVIDIA TensorRT.
This is required for quantization. NVDLA’s software stack
consists of a compiler which is used to parse the caffemodel
and generate a loadable file. This loadable file consists of



TABLE 1: Overview of state-of-the-art

Attack Attacked Network Physical Target Type of attack Limitations
Hua et. al. [12] CNN Custom self designed HLS based

accelerator
Memory access patterns Hardware Trojan utilized to access memory trace.

Target platform not publicly used, attack depends on
the ability to control pruning threshold.

Batina et. al. [1] MLP, CNN Atmel ATmega328P, ARM Cortex-
M3 Microcontrollers

Timing & EM Hyper-parameters such as kernel size, stride, padding
etc. not targeted.

Yu et. al. [36] BNN Custom self designed HLS based
accelerator

EM & Margin based Adversarial
training

Target platform not publicly used. Guessed multiple
parameters resulting in multiple NN candidates.

Maji et. al. [21] Low level operations like
RELU, MAC, Multiply
etc.

Micro-controllers such as AT-
mega328P, ARM Cortex-M0+ &
custom RISC-V chip

SPA & Timing Disabled peripherals such as interrupt controllers,
serial communication interfaces, etc. used in com-
mercial micro-controllers.

Yoshida et. al. [35] Systolic Array Custom wavefront array based im-
plementation.

CPA Utilized a simulated setup of just the systolic array
instead of a full setup. Strong assumptions regarding
model architecture.

Won et. al. [33] CNN Raspberry Pi Timing Templates Distinguishing attack applicable only on known
models.

Won et. al. [31] CNN Raspberry Pi Cold-boot attack Not easily ported to other platforms.
Won et. al. [32] BNN Intel NCS CPA Partial weight recovery with strong assumptions.
Dubey et. al. [9] BNN Self designed BNN inference hard-

ware accelerator
CPA Target platform not publicly used. Accelerator is

very specific to their trained network model.

Caffe
Framework

Caffe
Framework

Network
Architecture

Training
Dataset

Test
Dataset

NVIDIA
TensorRT

Trained model

NVDLA Compiler

Caffe Parser Compiler

Calibration
Table

Compilation
Parameters

NVDLA
Loadable

User
Application

User-mode driver
(UMD)

Kernel-mode
driver (KMD)

NVDLA
Hardware

User
Application

Offline Model Training

Compilation Phase

NVDLA
Loadable

Runtime
Inferencing Phase

Figure 1: The overall platform flow

hardware understandable sequence and parameters related to
neural network model. The runtime environment of NVDLA
consists of a user-mode driver and a kernel-mode driver.
The two drivers acts as portability layers between the user
application and the NVDLA hardware. The user-mode driver
is responsible for loading the network into main memory,
parsing and preparing the input and output tensors, etc.
Whereas, the kernel-mode driver is responsible for schedul-
ing the different layers onto hardware.

The hardware architecture for NVDLA core is shown in
Figure 2. As can be seen from the figure, NVDLA has a
dedicated unit which is used to perform different operations
required in a neural network. Convolution core is used to
perform the MAC operations required for a convolution
and a fully connected layer. The SDP unit is used for
bias addition as well as for activation layer. Similarly, PDP
engine is used for pooling operations. The CSB interface is

Configuration interface block

Convolution
buffer

Convolution
core

Activation
engine (SDP)

Pooling engine
(PDP)

Memory
interface
block

CPU

External
DRAM

CSB
interface

interrupt

DBB
interface

NVDLA Core

Figure 2: The hardware architecture of NVDLA core

used by the kernel-mode driver to configure and schedule the
required tasks for execution. For simplicity, we have shown
the units which are available in nv small configuration. The
nv large or nv full configuration further has support for
more features/units such as batch normalization, a dedicated
SRAM interface, etc.

2.1.1. NVDLA Convolution Operation. The convolution
operation of NVDLA is performed using multiple operations
- atomic, stripe, block, channel and group operations. From
the attack perspective, atomic and stripe operations are
important. Thus, we present details about these operations
only.

For the sake of simplicity and explanation, here we
assume the kernel size to be 3×3. The weight matrix is
represented as below:

W =

wk0 wk1 wk2

wk3 wk4 wk5

wk6 wk7 wk8

 (1)

where wk0 denotes first weight byte corresponding to kth

kernel. The input image is assumed to be 7×7 and is



represented as:

Img =


in0 in1 in2 . . . in6

in7 in8 in9 . . . in13

in14 in15 in16 . . . in20

...
. . .

in42 in48

 (2)
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Figure 3: Convolution operation: considering input image of
size 7×7 and only one filter of 3×3 to generate one row of
output

Figure 3 illustrates how the filter slides on input image
across different stripe operations to create the first row of
output feature map. A stripe operation comprises of multiple
atomic operations. In a stripe operation, the weights are
kept stationary throughout whereas input is updated in each
clock cycle. Within an atomic operation, the same input is
broadcasted to all the MAC units. The weights are updated
across different stripe operations. The stripe operations are
performed in the MAC Unit, and the generated partial
results are accumulated together in the Accumulation Unit
of NVDLA. The individual atomic operations (multiply-and-
accumulate) being performed at each clock cycle inside a
stripe operation are shown in Figure 4. Considering stripe
operation 1, the weight and input data selected for this
operation will be [w00, w01] and [in0, in1, in2, in3, in4]
using equations 1 and 2 where k = 0. The computation
done at clock cycle 1 can be summarised as (in0 ∗ w00

+ in1 ∗ w01). Similar operation is performed for the rest
of the clock cycles 2, 3 and 4 with different inputs ([in1,
in2] at clock cycle 2, [in2, in3] at clock cycle 3 and so

on). As mentioned before, weight remains stationary during
the stripe operation. Note that a stripe of size four results
in four partial results corresponding to 4 different output
bytes. Further, for stripe operations 1, 2, 3, 7, 8, and 9, two
weights are being multiplied with two input bytes whereas
for stripe operations 4, 5, 6, 10, 11, and 12 only one weight
is multiplied with one input byte. This is because the kernel
size is odd (3×3). Hence, in the latter case, the output of
stripe operation will be (in0 ∗ w00).
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*
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*
=

Clk cycle 1 Clk cycle 2

*
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*
=
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Stripe Operations 4, 5, 6
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*
=
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*
=
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*
=

Clk cycle 4

Figure 4: Stripe operation: considering only one filter and a
stripe of size 4

Figure 3 and Figure 4 shows the data-flow for both
inputs and weights and also the mathematical operation
being performed for a single kernel (one MAC instance).
But, NVDLA architecture allows multiple MAC instances in
parallel. For instance, for NVDLA small architecture, one
can use 8 such instances. Each MAC is being utilized to
perform convolution with one, resulting in convolution of
8 kernels with the input image in parallel with each other
as shown in Figure 5. The partial results corresponding to
each kernel are stored in a buffer and accumulated at a later
stage.
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Figure 5: Stripe operation: considering n filters and a stripe
of size 4



2.2. Side-Channel Attacks

The seminal work by Paul Kocher in 1996 [17] led to the
development of a new form of attack known as Side-Channel
Attacks (SCA). These attacks focus on the implementation
of a cryptographic algorithm instead of its mathematical
structure to extract the secret information (for instance,
key). Over the years, it has been shown that any device
while performing cryptographic operations leaks data in the
form of power consumption [6], [16], [26], electromagnetic
emanations [2], [4], [10], [23], timing information [5], [18],
etc. Since 1996, a lot of contribution has been made in this
field. Recently, practical attacks have been demonstrated on
ML accelerators allowing the attackers to extract NN model
architecture, its parameters such as weights, input, etc. and
hence, are considered to be a serious threat.

2.2.1. Simple Power Analysis. The basic principle of a
power analysis attack is to analyze the power consumption
of a device when it is performing cryptographic operations.
A power trace is the current signature produced when a
device is performing an operation. There are numerous
ways in which the power traces can be analyzed and the
relationship between secret data and power consumption
can be exploited. One of them is Simple Power Analysis
(SPA) [22], [24]. SPA usually requires a single trace and the
attack works by visual inspection or template based analysis
of the power trace.

2.2.2. Timing Attacks. Timing attacks exploit the execution
time of any operation. The technique has been applied
extensively to recover secret information depending on the
execution time. For instance, memory accesses with cache
hit or miss, conditional branches, etc result in varied execu-
tion times, which can be linked with the sensitive data. Such
attacks necessitated the need for so called constant-time
implementations. In our study, we demonstrate how timing
attacks can be employed to recover different parameters of
a neural network.

2.3. Threat Model and Attacker’s Motivation

In this paper, we assume that the attacker has physical
access to the device with NVDLA being used for inferenc-
ing. Further, the attacker is able to capture power traces and
observe timing patterns for the different operations. One
should note that the operations are executed in a black-
box setting. The main target of the attacker is to recover
the network structure by identifying different layer types,
possible recovery of hyperparameters such as kernel size,
number of filters, etc. One possible motivation behind the
attack is IP stealing. Typically, it requires a lot of resources
both in terms of computational power and time for training
a neural network customized for a specific application by
fine-tuning the parameters. A motivated attacker can attempt
to perform network recovery in order to significantly reduce
development time and effort, thereby gaining monetary ben-
efits or market advantage.

3. Experimental Setup and Challenges

3.1. NVDLA integration

The first obstacle to analyze the security of NVDLA
using side-channels is a working setup on a side-channel
evaluation platform. In our experiments, we chose to use
SASEBO-GIII as the platform. It utilizes Xilinx XC7K160T
FPGA as the cryptographic FPGA and has 162,240 logic
cells. Out of the three configurations - nv small, nv large
and nv full provided by NVIDIA, nv small configuration
takes about 90k logic cells. Thus, it is the only configuration
that can fit in the evaluation platform along with the logic for
a Microblaze based system. Hence, we integrated nv small
in our attack setup. The DDR3 based RAM is shared be-
tween Linux and NVDLA by mapping specific regions in the
device tree. We faced many challenges as discussed below in
order to successfully develop the setup. These changes are
necessary for any Microblaze based side-channel evaluation
platform.

1) The NVDLA’s kernel-mode driver utilizes certain
low-level drivers such as Direct Rendering Man-
ager (DRM) for low-level communication with the
Linux kernel. In order to successfully insert the
kernel module, it is critical to ensure that the cor-
rect low-level drivers are available in the system.
For a ZYNQ platform these drivers are enabled
by default, but this is not true for a Microblaze
system. One needs to manually enable the correct
drivers while compiling the PetaLinux project. In
our design, we used PetaLinux 2019.1 with all the
required drivers (DRM, etc.) enabled for NVDLA
support.

2) Microblaze support was not natively provided by
NVIDIA. Further, the Linux kernel version is
different in our case. As a result, we ported
and recompiled the user-mode (consisting of lib-
nvdla compiler and libnvdla runtime) and kernel-
mode (opendla.ko) drivers. Also, the provided pre-
compiled libraries such as libprotobuf.a had to be
recompiled using cross-compilation tools.

3) Xilinx does not provide PetaLinux support for 64-
bit Microblaze, hence we used 32-bit Microblaze
system. However, the drivers provided by NVIDIA
access memory using 64-bit address which con-
flicts with a 32-bit based Microblaze. To address
this issue, we modified the provided drivers source
code to handle 32-bit addresses instead of 64-bit
addresses.

4) Further, the recompiled libnvdla compiler.so file
has to be loaded as a shared library file for lib-
nvdla runtime. But, we encountered issues in load-
ing the libnvdla compiler.so file. The same issue
does not arise for a ZYNQ based system and we be-
lieve it might be due to some dependency related to
Microblaze. Hence, we combined the source code
for both libnvdla compiler and libnvdla runtime



for compiling into a single libnvdla file which is
then used at runtime.

5) Apart from porting the source code for Microblaze
system, the setup for NVDLA requires loading the
loadable files for inferencing using a SD-card or
using SSH/SCP through ethernet. The SASEBO-
GIII does not have the support for either. Hence,
we wrote some firmware and programmed the
SPARTAN-6 FPGA available on-board to bypass
the UART. This allowed us to use a custom tool to
transfer all the files using a serial port connection
from PC to the board.

These changes allowed for execution of NVDLA load-
able files on the SASEBO board. This was necessary for
side-channel trace capture.

3.2. Generation of different models

For the target network, we used CNNs as they are one
of the most commonly used neural networks. The network
is trained offline using Caffe framework [14] and then
compiled into a loadable file using NVDLA compiler. As
shown in Figure 1, a 4-stage process is used to generate
a single loadable file. The loadable file is then used to run
inferencing using the NVDLA accelerator on SASEBO-GIII.

For proof-of-concept, we trained a 4-layer DNN. The
base target architecture consists of the following layers: one
convolution layer, one activation layer (ReLU), one pooling
layer and a fully connected layer. The input size is 28×28
and the architecture is trained on the MNIST dataset [19].
In this work, our main goal is to highlight the observed
differences in power leakage patterns based on different
network parameter variations. For this, we trained around
28 different models with variations in different kernel sizes,
different number of filters, different filter sizes etc. for the
convolution layer. Similarly, with different strides, different
kernel sizes for pooling layer as well. The complete list
of models is provided in Appendix C. One can create
many other variations of models with many more layers
or parameter variations. But, the basic idea for the attack
remains the same as discussed in this work.

3.3. Need for signal filtering

For a successful structure recovery using side-channel
attacks, it is necessary to capture traces with leakage cor-
responding to the desired operation. But, as NVDLA is a
highly optimized accelerator, multiple operations execute in
parallel and in a pipelined manner. For instance, the accu-
mulation starts in parallel with the convolution operation.
Similarly, the bias addition also starts in parallel as soon
as the updated data is available. Apart from this, the data
transfer from DRAM also sometimes happen in parallel.
Moreover, we have random noise coming from Linux tasks
running in the background. So, it is not an ideal setup free of
noise. There are so many different components interacting
with each other and thus, resulting in overall leakage. One

possible way to reduce this noise is by using filters in
the setup. We experimented with several combinations of
custom high-pass, low-pass and band-stop filters as many of
the noise components are unknown and cannot be isolated
using a single filter.

In our design, NVDLA is running at 50 MHz and the
OS is running at 100 MHz. To characterize the noise profile,
we started with seven low-pass filters (10, 35, 50, 75, 100,
200, 300 MHz). We sequentially evaluated these filters for
suitability in removing high-frequency components. Using
visual inspection, we observed that the 75 and 100 MHz
filters yield good signal quality for convolution and fully
connected layers. But, this does not suffice to discriminate
the pooling layer in all cases. This is due to the fact that
pooling layer performs very low-complexity operations such
as averaging, which results in very low power leakage
leading to low signal amplitude in the trace. Further, a large
amount of noise is present in the lower frequency ranges (5
- 20 MHz) which dominates the overall leakage profile. To
overcome this and make the pooling layer signal more clear,
we tested high-pass filters ranging from 10-50 MHz. It was
observed that using a 35 MHz filter resulted in a very clear
signal for the pooling layer as well.

In general, we observed that using higher order filters
provide better signal resolution. We ended up using seventh-
order Butterworth filters to ensure low disortion in the
passband. Moreover, we observed that the sequence of high-
pass and low-pass filter in the setup provided quite close but
slightly different results. So, we used the best sequence in
terms of signal quality for our experiments.

As a further attempt to block the clock noise from the
Microblaze, we applied a 95-105 MHz fifth-order band-stop
filter. But, this had a very negligible effect on the signal
clarity and thus, we did not use it for our evaluation. This
can be attributed to the fact that NVDLA accelerator is
significantly larger than the Microblaze.

3.4. Difficulty in full trace capture

Another challenge is to capture the full trace correspond-
ing to a complete inference operation. A simple four-layer
CNN requires about 0.5 seconds for inference on NVDLA.
In order to capture the full execution trace, one needs to have
a high sampling rate, thus requiring large memory in the
oscilloscope. This is necessary as lower sampling rate results
in layers diminishing around the noise level due to low
accuracy, which makes it quite challenging to distinguish
between NN layers execution and the background noise. A
high-resolution oscilloscope might not be readily available
to everyone as it is in our case. So, we used the approach
of capturing the trace in multiple smaller chunks. The idea
is to run the same inference on repeat and advance in time
by setting the correct trigger delay in the oscilloscope and
saving the trace before performing the advance. We wrote
a small GUI-based application to automate this process.
This approach allowed us to capture a long trace as well
as maintain the high sampling rate of around 2GS/s.



3.5. Downsampling algorithm for visualization

Almost all the captured traces consist of more than 400K
sample points, in some of the traces there are even millions
of sample points. Such high sampling rate is necessary to
observe the small differences in power leakages especially
when multiple kernels/filters are executing in parallel. But,
it is difficult to plot a trace without downsampling these
many sample points using the commonly available applica-
tions. Since, our main objective is reverse engineering the
structure, it is very important to preserve overall pattern of
the captured traces.

Algorithm 1: Max-Min sliding window downsam-
pling

Input: T // array consisting of captured

trace data

Output: S // array consisting of downsampled

trace data

Data: tlen // denotes the length of captured

trace

1 slen // denotes the length of downsampled

trace

2 i := 0
3 final samples := slen/2
/* denotes the length of samples considered

in a window */

4 samples per block := tlen/final samples
5 current block pos := 0
6 while i < (final samples * 2 - 2) do
7 j := 0
8 Wmax := INT MIN
9 Wmin := INT MAX

/* find maximum and minimum in the

current window */

10 while j < samples per block do
11 current value := T[current block pos +

j]
12 if current value > Wmax then
13 Wmax := current value

14 if current value > Wmin then
15 Wmin := current value

16 j := j + 1
/* save the datapoints */

17 if i % 2 == 0 then
18 S[i] := Wmax

19 else
20 S[i] := Wmin

/* slide window with overlapping half

points */

21 current block pos = current block pos +
(samples per block/2)

We first evaluated different known approaches such as
averaging, decimation, interpolation, etc. But the obtained

results after downsampling ended up being lossy and im-
portant/expected peaks were either not visible clearly or
were hard to distinguish from the noise. To overcome this,
we devised a sliding window max-min based downsampling
technique (Algorithm 1) and used it in our experiments. The
intuition behind this is that we want to preserve maximum
and minimum peaks alternatively. For this, we first calculate
the maximum and minimum values in the current window
(lines 10-15). Then, we alternatively store these values (lines
17-20) while sliding the window with 50% overlap (line
21). This ensures that the leakage pattern is not lost after
downsampling.

3.6. Final measurement setup

An Agilent DSO6034A oscilloscope was used to capture
the traces from the SASEBO board. The measurement setup
is shown in Figure 6. A custom GUI application was devel-
oped to control the oscilloscope and the SASEBO board
using USB and UART interfaces respectively. As the signal
levels are quite low, a custom low-noise, wide-band 20dB
amplifier utilizing an Analog Devices HMC8410 MMIC
was used to boost the signal levels. The amplifier helps to
improve the SNR and overall experimental results. Using a
100 MHz low-pass filter followed by a 35 MHz high-pass
filter provided the best results for the signal as shown in
Figure 7. Hence, we used this combination to capture all
the traces in our experiments. Also, a DC block was used
to remove the 1V bias voltage from the FPGA VCCINT
signal.

Figure 6: Overall measurement setup

4. Model Extraction

Here we describe how a combination of SPA and timing
side-channel attacks can be used to extract different parame-
ters of a neural network. The traces were captured at 2GS/s,
but for visual perspective we have shown the downsampled



Figure 7: Filter setup

traces except for the zoomed versions. The downsampling
was performed using Algorithm 1. As per the NVDLA
documentation, only ReLU and PReLU are supported for
nv small configuration. But, out of these two, only ReLU
activation is supported in nvdla compiler [28] for parsing.
Hence, we only focus on identifying and differentiating
between convolution, pooling and fully connected layer and
their respective parameters.

4.1. Identifying different number of layers

The first and foremost target in structure recovery is
to identify the number of layers in the neural network
model. The complete model takes about 0.5 seconds to finish
execution using NVDLA. Due to the memory limit of the
oscilloscope, we captured the trace for this part in multiple
chunks as described in Section 3.5. In Figure 8, we show
partial execution windows of about 5ms each, corresponding
to different layer types. One can see that in all the figures,
there is one significant peak (highlighted in the figure) along
with multiple smaller peaks.
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Figure 8: Truncated Linux execution window = 5ms

The higher peaks is the time when the corresponding
layer is being executed in the hardware. Whereas, we believe

the smaller peaks either correspond to Linux OS performing
some task in the background or data being transferred
from BRAM or DRAM for the next layer execution. It is
quite evident that the larger peaks corresponding to model
operations are distinguishable from rest of the peaks. But,
it is important to note that careful inspection of the full
model execution may be required to accurately identify the
number of layers. This is because the execution time for the
corresponding operation is quite small (a few microseconds).

4.2. Distinguishing different layer types

Figure 9 shows the power trace corresponding to the
different layers. The regions of interest are highlighted in the
figure. The power trace for all the layers are quite different
from one another and can be easily recognized. As both
convolution and fully connected layer perform the MAC
operation, they consume a lot of power and the leakage
is quite high compared to a pooling layer. This is clearly
visible from the zoomed in traces shown in Figure 10. Fur-
ther, due to the nature of implementation of the convolution
layer (not all the nodes are connected to one another), we
observe more distinct equally spaced peaks in the power
trace. Whereas, in case of a fully connected layer, the peaks
are always continuous and fine-grained.
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Figure 10: Zoomed in view of different layers

4.3. Reverse engineering of the convolution hyper-
parameters

4.3.1. Kernel size. The next target is to identify the kernel
size. As the most commonly used kernel sizes are 3×3, 5×5
and 7×7. So, in our attack, we focused on these three kernel
sizes only. The obtained power trace is shown in Figure 11.
The points a, b and c mark the end of convolution operation
for different kernel sizes.
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Figure 11: Identifying kernel size

One can note that for a 3×3 kernel, the convolution
finishes earlier compared to a 5×5 and a 7×7 kernel. This
is marked as point a. Similarly, point b marks the end of
convolution operation with a 5×5 kernel and point c denotes

the end of convolution with a 7×7 kernel. This demonstrates
that there is a significant difference in execution time for
different kernel sizes.

Figure 12: Zoomed in width difference for different kernel
sizes

The larger kernel size requires more number of stripe
operations. As a result, the width of individual peaks visible
in Figure 11 is different for different kernel sizes. This is
demonstrated in Figure 12. For better visualization, we have
highlighted the width of a single peak for each kernel size.
Hence, using timing analysis, one can easily find out the
kernel size. One can also note that the highlighted pattern
is repeated continuously.

4.3.2. Number of output nodes. As we used nv small
configuration for our attack, the number of possible kernels
that can be executed in parallel is 8. So, our aim now is to
find out how many kernels are being executed in parallel.
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In our experiments, we observed that the power leakage
is additive as shown in Figure 13. The figure shows power
consumption traces when the number of kernels executed in
parallel are 1, 2, 4 and 8 respectively. One can clearly see
that there is a difference in the power leakage depending
on the number of kernels. For better clarity, we also show
a zoomed in version of the trace (Figure 13b). Using this
observation, one can build a power template and use it
to easily guess the number of kernels being executed in
parallel.

NVDLA small allows execution of only 8 kernels in
parallel. Hence, if the number of kernels in the model are
more than 8 then they are executed in batches of 8. For
instance, if the model has 20 kernels to be executed, then
three batches will be created with 8, 8 and 4 kernels. The
individual batches are also visible in the power trace when
they are executed one after another. We demonstrate this for
different kernels in Figure 14 where we show the execution
of 1 kernel versus 20 kernels. One can see that the time
required to finish execution of 1 kernel is repeated three
times for 20 kernels.
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Figure 14: Effect of batch size and kernel size

The points a-b, b-c and c-d in the figure mark three batch
execution for the current model. As there are three batches,
it can be concluded that a maximum of 24 kernels are there
in the architecture. In order to get the precise number of
kernels, the strategy discussed for Figure 13 can be utilized
to deduce the exact number of kernels for the last batch. One
can also observe that the distance between points a-b, b-c
and c-d are different for different kernel sizes. This is the

same time execution difference which we exploited earlier
in identifying the different kernel sizes. Another interesting
thing to note is that for the region a-b, there is a difference
in signal amplitude due to parallel execution of one versus
eight kernels.

4.3.3. Padding. Padding means adding empty pixels at the
edge of an input. This is a very common technique typically
used in neural networks to preserve the boundaries of an
input and to prevent shrinking of the input after each convo-
lution layer. The padding applied to an input is constrained
by the fact that it should always be less than the kernel
size used for that specific layer. For instance, if the kernel
size is 3×3, then the padding size can only be less than
3. Hence, we show the obtained power trace for only valid
padding cases. Figure 15 shows the difference in padding
possible for a 3×3 kernel size. One can note that as the
padding size increase, the number of individual peaks also
increases. Further, the width of the peak does not change as
the kernel size is not changing.
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Figure 15: Padding for 3x3 kernel

Similar behaviour is observed for padding corresponding
to a 5×5 kernel. In this case, the possible padding sizes are
0, 1, 2, 3 and 4 and the observed power traces are shown
in Appendix A (Figure 21). One interesting thing to note is
that the increase in number of peaks or the execution time
is consistent with the increase in padding size.

4.3.4. Stride. A common strategy to apply a kernel over
an input image is to slide the kernel. The step size used for
sliding the kernel is defined by the stride parameter. A stride
of more than one is most commonly used for downsampling
and for computational efficiency.

The stride for a layer is usually constrained by its kernel
size and is defined to be less than or equal to the kernel
size. For instance, if the kernel size is 3×3, then the valid



strides can be 1, 2 and 3. Figure 16 shows the difference
between different strides for a 3×3 kernel. Further, the stride
is applied when sliding from both left to right and from top
to bottom. Thus, increasing the stride significantly reduces
the number of stripe operations and hence the overall time
required for the convolution operation. This is clearly visible
from the power trace as well. When stride=3, the convolu-
tion execution period is significanty lower when compared
to that of stride=1.
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Figure 16: Stride for 3x3 kernel

4.4. Reverse engineering pooling layer

Apart from recovering different parameters for the con-
volution layer, we also did some experiments to observe
leakage patterns for a pooling layer to identify its kernel
size and stride. As compared to a convolution layer, there is
no stripe operation in a pooling layer. Instead, the throughput
of a pooling layer for nv small architecture is 1. This means
that if one is using a 3×3 kernel with Average Pooling, then
the complete kernel is applied in one clock cycle to generate
the output. Hence, the observed leakage pattern is not same
as in a convolution layer.

4.4.1. Kernel size. The traces obtained for two different
kernel sizes 2×2 and 3×3 are shown in Figure 17. It is quite
evident that power consumption required when kernel size
is 3×3 is consistently more compared to when it is 2×2.
This might be because more number of pixels are being
processed in a single clock cycle in case of a 3×3 kernel
as compared to a 2×2 kernel.

4.4.2. Stride. Figure 18 shows the traces for different
strides. It is interesting to note that the power consumption

0 1 2 3

−6

−4

−2

0

2

4

6

8

Sample Points (×103)

V
o
lt
a
g
e
(×

10
−

2 )

3×3 Kernel 2×2 Kernel

Figure 17: Pooling kernel size

required when stride=1 is more compared to when stride=2.
This is true for both a 2×2 and a 3×3 kernel. We believe
this is because when stride=2, the amount of processing is
less as compared to stride=1.
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Figure 18: Distinguishing stride for pooling layer

4.5. AI-assisted automated attack flow

Figure 19 presents the complete flow of our AI-assisted
attack. In step ➊, we develop and train multiple NN models
using the MNIST dataset. Then, we use the trained models
for inferencing on SASEBO-GIII (step ➋) to obtain side-
channel power profiles (step ➌) as shown in section 4. One
should note that the generated profiles and models are for
different layer types and their parameters such as different
kernel sizes, stride sizes etc. and not the complete model.
Hence, the same power profiles can be used for widely
varying CNN models. These profiles are used as datasets
for training the attack CNN models in step ➍. Steps ➊-➍
constitute the initial profiling phase of the attack.

In step ➎ and ➏, the target victim model is used for ac-
tual application inference and the final outcome is provided
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Figure 19: Overview of the AI-assisted attack flow.

in step ➐. When the hardware platform is running the actual
inference, it is leaking data which the attacker is capturing in
step ➑. The final part of the attack (step ➒) is to utilize the
trained attack models (from step ➍) for inferencing with
the captured power trace to recover the respective neural
network parameters.

5. Results and Evaluation

In this section, we demonstrate the attack and present
results for the same. For this, we trained four attack models
for reverse engineering kernel size, number of kernels exe-
cuting simultaneously in a convolution layer, distinguishing
pooling layer type (Maximum or Average) and pooling
kernel size. The attack models were trained using Keras
and Tensorflow backend. The details of respective model
architecture are provided in Appendix B. As mentioned in
section 4.5, the datasets for all the attack models were gen-
erated using a subset of models from Appendix C. Further,
we used our trained models for inferencing the structure
parameters for LeNet network.

Figure 20 shows the accuracies for different trained mod-
els. For all the experiments, we used 20% of the training set
as validation data. As the differences between the parameters
were quite visible in the power traces, the AI based trained
models demonstrate high accuracy. As shown in section
4.3.1, the difference in kernel sizes are clearly visible, as
a result the model is trained faster with very few traces and
epochs. Whereas, the traces for the pooling layer type were
visually indistinguishable. This can be attributed to the fact
that the throughput of the pooling layer is one. Hence, the
time execution will remain the same no matter what type
of pooling is used and the power consumption is also quite

similar. But, training the AI with more traces and epochs
we were able to recover the pooling layer type with a very
good accuracy as well.
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Figure 20: Training and validation accuracy for different
attack models

Table 2 presents test accuracies for different trained
models. For our evaluation, we captured 100 traces from
LeNet using random inputs for inferencing corresponding to
the first convolution and pooling layers. One can see that the
test accuracies for our model as well as the LeNet is quite
high. This validates the effectiveness of our trained attack
models for reverse engineering the victim model structure
and its parameters.



TABLE 2: Summary of the test accuracies.

Ref. as Layer Architectural Our model LeNet
Parameters Test Set Acc. Test Set Acc.

AM1 Conv Parallel kernels 1500 100% 100 100%
AM2 Conv Kernel size 1500 100% 100 100%
AM3 Pool Type (AVG or MAX) 2000 96.7% 100 95%
AM4 Pool Kernel size 1000 99.0% 100 99%

Even though we demonstrate the automated attack using
four network parameters, the same methodology can be
applied to perform recovery of rest of the parameters. This
is because most of the differences in the parameters can be
clearly observed in the traces as discussed in section 4 and
can be trained using AI. Table 3 presents a summary of the
attack results. One can see that nearly all the architectural
parameters can be recovered using our attack. We did not
make any attempt to recover padding size for the pooling
layer. We believe similar to kernel and stride size, padding
size should be recoverable too as in the case of a convolution
layer.

TABLE 3: Summary of the results. Recovered parameters
are denoted by ✓ and the parameters which we did not
attempt to recover are denoted by − .

Architectural Parameters Result
Number of layers ✓

Type of layers ✓

Sequence of layers ✓

Convolution layer
Number of parallel executing kernels ✓
Total number of kernels ✓
Kernel size ✓
Stride size ✓
Padding size ✓

Pooling layer
AVG or MAX ✓
Kernel size ✓
Stride size ✓
Padding size −
Inputs −
Weights −

Further, recovery of inputs and weights require a dif-
ferent form of attack like Differential Power Analysis. In
this work, we have not targeted such attacks and left the
possibility of recovering these parameters as possible future
extension.

6. Further Discussions

• Porting our setup and attack to other NN ac-
celerators. As discussed in Section 3, apart from
integrating the accelerator in the architecture, there
are many other difficulties which can result in un-
successful recovery and thus, biased evaluation. The
currently available NN accelerators such as Intel
NCS, Google’s TPU are available in the form of
a USB stick, so we believe integration might not

be an issue. The rest of the approaches discussed in
this paper for signal filtering, full trace capture and
downsampling can be used for evaluating these ac-
celerators as well. Further, one can experiment with
a similar attack strategy using EM for measuring the
power traces and observing the difference.

• Applicability on other real-world models. Since
the side channel leakage is clearly visible in the
power traces, and most of the network parameters
are recoverable, thus, the attack techniques demon-
strated using LeNet in this work can be directly
applied to recover other real world models such as
AlexNet, SqueezeNet etc. as well, especially as they
do not add any more attack complexity compared to
LeNet.

• Possible side-channel countermeasures. Typical
side-channel countermeasures like masking are used
to protect secrets such as inputs, weights etc. [7]–
[9], but they do not protect the overall operation and
information such as number of layers, type of layers,
etc. There has been some progress in protecting the
structure using obfuscation techniques [20] such as
layer widening, layer branching etc. But, detailed
evaluation of such techniques on hardware platforms
with power traces is yet to be explored.

7. Conclusion

In this paper, we present an in-depth evaluation of a
commercial widely deployed NN accelerator from NVIDIA.
To the best of our knowledge, this is the first such work in
this direction. We first show that the network parameters and
hyperparameters such as padding, stride and kernel size are
distinguishable using SPA and timing side-channel attack.
Then, we utilized these power traces to train attack AI
models achieving very high accuracy. These trained models
were then used to recover network parameters from LeNet
execution on NVDLA with more than 95% accuracy. We
also provide details about how to overcome the challenges
faced due to a highly pipelined and parallel hardware archi-
tecture and capture traces with good SNR.

Availability

We will provide the relevant source code for the devel-
oped tools at https://github.com/ after publication.
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Figure 21: Padding for 5x5 kernel

Appendix B.
Attack Models Architecture and Configuration

TABLE 4: Summary of the training configuration.

Attack Training Training
Model # set size configuration

AM1 6000
epochs=16, batch=64, optimizer=SGD,

momentum=0.6, init lr= 0.005

AM2 3000
epochs=12, batch=64, optimizer=SGD,

momentum=0.7, init lr= 0.005

AM3 10000
epochs=70, batch=32, optimizer=SGD,

momentum=0.9, init lr=0.009

AM4 9000
epochs=50, batch=32, optimizer=SGD,

momentum=0.9, init lr=0.008

TABLE 5: Model architecture for Attack Model 1 (AM1)

Layer Type Channels Filter Size Stride Activation
Conv 32 3x3 1x1 LReLU (slope = 0.1)
MaxPool 32 2x2 2x2 -
Conv 64 3x3 1x1 LReLU (slope = 0.1)
MaxPool 64 2x2 2x2 -
Conv 128 3x3 1x1 LReLU (slope = 0.1)
MaxPool 128 2x2 2x2 -
FC 128 - - LReLU (slope = 0.1)
FC 3 - - Softmax

TABLE 6: Model architecture for Attack Model 2 (AM2)

Layer Type Channels Filter Size Stride Activation
Conv 32 3x3 1x1 LReLU (slope = 0.1)
MaxPool 32 2x2 2x2 -
Conv 64 3x3 1x1 LReLU (slope = 0.1)
MaxPool 64 2x2 2x2 -
FC 128 - - LReLU (slope = 0.1)
FC 3 - - Softmax

TABLE 7: Model architecture for Attack Model 3 and 4
(AM3 and AM4)

Layer Type Channels Filter Size Stride Activation
Conv 32 3x3 1x1 LReLU (slope = 0.1)
MaxPool 32 2x2 2x2 -
Conv 64 3x3 1x1 LReLU (slope = 0.1)
MaxPool 64 2x2 2x2 -
Conv 128 3x3 1x1 LReLU (slope = 0.1)
MaxPool 128 2x2 2x2 -
FC 128 - - LReLU (slope = 0.1)
FC 2 - - Softmax

Appendix C.
Models List

Each model in Table 8 is preceded by an input layer
and the last layer is a fully connected layer with 10 output
nodes corresponding to 10 digits in the MNIST dataset.



TABLE 8: Trained models architecture for profiling and generating datasets
Model # Operation Layer Name Number of Filters Filter size Stride size Padding size

1 Convolution Convolution + ReLU 1 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

2 Convolution Convolution + ReLU 2 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

3 Convolution Convolution + ReLU 4 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

4 Convolution Convolution + ReLU 8 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

5 Convolution Convolution + ReLU 20 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

6 Convolution Convolution + ReLU 1 5 × 5 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

7 Convolution Convolution + ReLU 20 5 × 5 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

8 Convolution Convolution + ReLU 1 7 × 7 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

9 Convolution Convolution + ReLU 20 7 × 7 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

10 Convolution Convolution + ReLU 4 3 × 3 2 × 2 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

11 Convolution Convolution + ReLU 4 3 × 3 3 × 3 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

12 Convolution Convolution + ReLU 4 5 × 5 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

13 Convolution Convolution + ReLU 4 5 × 5 2 × 2 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

14 Convolution Convolution + ReLU 4 5 × 5 3 × 3 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

15 Convolution Convolution + ReLU 4 5 × 5 4 × 4 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

16 Convolution Convolution + ReLU 4 5 × 5 5 × 5 0 × 0
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

17 Convolution Convolution + ReLU 4 3 × 3 1 × 1 1 × 1
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

18 Convolution Convolution + ReLU 4 3 × 3 1 × 1 2 × 2
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

19 Convolution Convolution + ReLU 4 3 × 3 1 × 1 3 × 3
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

20 Convolution Convolution + ReLU 4 5 × 5 1 × 1 1 × 1
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

21 Convolution Convolution + ReLU 4 5 × 5 1 × 1 2 × 2
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

22 Convolution Convolution + ReLU 4 5 × 5 1 × 1 3 × 3
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

23 Convolution Convolution + ReLU 4 5 × 5 1 × 1 4 × 4
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

24 Convolution Convolution + ReLU 4 5 × 5 1 × 1 5 × 5
Pooling Max pooling 1 2 × 2 1 × 1 0 × 0

25 Convolution Convolution + ReLU 4 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 3 × 3 1 × 1 0 × 0

26 Convolution Convolution + ReLU 1 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 2 × 2 2 × 2 0 × 0

27 Convolution Convolution + ReLU 1 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 3 × 3 1 × 1 0 × 0

28 Convolution Convolution + ReLU 1 3 × 3 1 × 1 0 × 0
Pooling Max pooling 1 3 × 3 2 × 2 0 × 0


