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Abstract. The block cipher GOST 28147-89 was the Russian Federa-
tion encryption standard for over 20 years, and is still one of its two
standard block ciphers. GOST is a 32-round Feistel construction, whose
security benefits from the fact that the S-boxes used in the design are
kept secret. In the last 10 years, several attacks on the full 32-round
GOST were presented. However, they all assume that the S-boxes are
known. When the S-boxes are secret, all published attacks either target
a small number of rounds, or apply for small sets of weak keys.
In this paper we present the first practical-time attack on GOST with
secret S-boxes. The attack works in the related-key model and is faster
than all previous attacks in this model which assume that the S-boxes
are known. The complexity of the attack is less than 227 encryptions.
It was fully verified, and runs in a few seconds on a PC. The attack is
based on a novel type of related-key differentials of GOST, inspired by
local collisions.
Our new technique may be applicable to certain GOST-based hash func-
tions as well. To demonstrate this, we show how to find a collision on
a Davies-Meyer construction based on GOST with an arbitrary initial
value, in less than 210 hash function evaluations.

1 Introduction

The block cipher GOST 28147-89 (usually shortened to GOST) was developed
in the USSR in the 1970’s, as an alternative for DES. From 1989 to 2015, it was
the official encryption standard of the USSR, and then of the Russian Federation
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(RF), and was obligatory to use in the RF in all data processing systems pro-
viding public services [16]. Since 2015, an instantiation of GOST with specified
S-boxes named Magma is one of the two ciphers in the RF encryption standard
GOST R 34.12-2015 [15]. Consequently, GOST is still very widely used in the
Russian Federation.

GOST is a 32-round Feistel construction whose round function uses eight
4-to-4 bit S-boxes. The structure of the S-boxes was kept secret, and reportedly,
different sets of S-boxes were used in different industry branches. The set used
in the banking industry had leaked and was published in [30], and most previ-
ous attacks on GOST used that set of S-boxes. In the new standard GOST R
34.12-2015, the S-boxes were specified (to another set of values). Another central
feature of the design of GOST is the key schedule. The 256-bit key is represented
as an array of eight 32-bit words (K1,K2, . . . ,K8), and the subkeys used in the
32 rounds are taken directly from the array in a structured form. This property
was exploited in several attacks on GOST.

Previous works. In the last 30 years, GOST has been the target of numerous
cryptanalytic attempts. Most of these attempts assumed that the S-boxes are
known (thus, not targeting the original strong version of the cipher). Under this
assumption, in the standard single-key model, several attacks can break the full
32-round GOST faster than exhaustive key search [11, 12, 20], but all of them
have an impractical time complexity of at least 2179 encryptions (see also [10]
and the multiple references therein). In the related-key model (in which the
adversary may request encryptions under pairs of unknown keys with a known
relation and her goal is to recover the keys), several practical-time attacks on
the full 32-round GOST were obtained. After two works that could attack only
reduced-round variants [21, 31], Ko et al. [24] were the first to obtain a related-
key attack on the full 32-round variant. Their attack, which uses the related-
key differential technique [21], requires 236 chosen plaintexts and time of 236

encryptions. Biryukov and Nikolic [7] presented an attack on the full 32 rounds
which uses complementation properties and requires 238 chosen plaintexts and
238 encryptions. Rudskoy [28] and Pudovkina and Khoruzhenko [26] presented
related-key boomerang attacks [22] with semi-practical complexities. The best
among these attacks, by Ko et al. [24], has a complexity of 236.

Only several papers targeted the original variant of GOST, with secret S-
boxes. Saarinen [29] presented an attack with a complexity of 232 that applies
for the 232 keys of the form (K,K, . . . ,K,K). Bar-On et al. [2] presented an
attack on 24 rounds that applies for all keys and has a complexity of 263, as well
as an attack on the full 32-round version that applies for the 2128 keys of the form
(K1,K2,K3,K4,K4,K3,K2,K1) and has a complexity of 240. All these attacks
are based on variants of the slide technique [8]. Zhao et al. [34] presented an
attack on the full 32-round variant using algebraic fault analysis. They showed
that insertion of 270 faults and time of a few hours are sufficient to recover the
secret S-boxes. Neither of these attacks endanger the security of the full GOST
with secret S-boxes – the attacks either target partial encryption, or apply only
for a small set of weak keys, or require using the side-channel attack model.
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No. of Fraction Secret Dataa Timeb Technique and
Rounds of Keys S-boxes? Source[c]

21 all no 256 CP 256 RK Diff. [31]
24 all no ?d ?d RK Diff. [21]
25 all no 5 CP 232 RK Diff. [27]
32 all no 236 CP 236 RK Diff. [24]
32 all no 238 CP 238 Complementation [7]
32 all no 210 ACPC 271 RK Boom. [28]
32 all no ?dACPC ?d RK Boom. [26]
24 all yes 263 CP 263 Slide [2]
32 2−224 yes 232 CP 232 Slide [29]
32 2−128 yes 240 CP 240 Slide [2]
32 all yes 227 CP 227 RK Diff. (Sec. 4)

a Time is measured in GOST encryptions
b “CP” — Chosen plaintext, “ACPC” — Adaptive Chosen Plaintext
and Ciphertext

c “RK” — Related-Key, “Diff.” — Differential, “Boom.” — Boomerang
d The notation ‘?’ means that the attack complexity was not specified

Table 1: Comparison of Our Results with Previous Attacks on GOST

Our contributions. In this paper we present the first practical-time attack on
the full GOST with secret S-boxes. Our attack, which works in the related-key
model, recovers the secret S-boxes and the secret key, requiring only 227 chosen
plaintexts and time of 227 encryptions in the worst case (among 100 experi-
ments), and about 224 chosen plaintexts and time of 224 encryptions on average.
Thus, our attack is significantly faster than all previously known related-key
attacks on GOST, although those attacks assume that the S-boxes are known.
Needless to say, our attack is significantly stronger than all previous attacks on
GOST with secret S-boxes, as none of those attacks can break the full GOST for
all keys. The attack was fully verified experimentally and runs in a few seconds
on a PC. A comparison of the complexity of our attack with the complexities of
previously known attacks on GOST is presented in Table 1.

Like the attack of Ko et al. [24], our attack uses the related-key differential
technique [21]. However, the differential characteristic we use differs significantly
from the characteristic used in [24]. Our characteristic has the form of local
collisions between two encryption processes over three rounds of GOST, in which
in the first round, a state difference is created by a subkey difference, in the
second round the state difference is ‘kept from spreading’, and in the third round
the state difference is canceled by another properly selected subkey difference.
Such local collisions, first proposed by Chabaud and Joux [9], were very effective
in collision attacks against hash functions from the SHA family (e.g., [5,32,33]).
We use them for the GOST block cipher at the first time.
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Being a collision-based related-key attack, our attack is naturally effective
against certain types of GOST-based hash functions. We demonstrate this effec-
tiveness by showing that for a Davies-Meyer hash function based on GOST, one
can find a collision in less than 210 hash function evaluations, for an arbitrary
initial value. Previously, the techniques from Mendel et al.’s attack [25] on the
GOST hash function [17] could be used to find a collision in a Davies-Meyer hash
function based on GOST almost instantly, but only if the 64-bit initial value is
of the form (x, x) for a 32-bit value x. Otherwise, no ways to find a collision in
less than 232 hash function evaluations were known.

We present two additional applications of our techniques: the first S-box
recovery attack on the cipher GOST2 [13], and a simplification of the S-box
recovery attack of Bar-On et al. [2] on GOST with a palindromic key schedule.

Organization of the paper. In Section 2 we describe the structure of GOST
and briefly recall the related-key differential technique used in the paper. In
Section 3 we present the new type of differentials of GOST we employ. The
related-key attack on the full 32-round GOST is presented in Section 4. Potential
applications of the techniques to hash functions based on GOST, including the
GOST hash function [17], are discussed in Section 5. We conclude the paper
with a summary and discussion in Section 6.

2 Preliminaries

2.1 The Structure of GOST

GOST 28147-89 is a 64-bit block size, 256-bit key size block cipher, composed of
32 Feistel rounds. For each 1 ≤ i ≤ 32, the i’th round is defined as follows (see
Figure 1):

FKi
(XL, XR) = (XR, XL⊕ ≪11 (S(XR ⊞Ki))),

where:

– ⊕ denotes bit-wise XOR and ⊞ denotes modular addition modulo 232.
– For each 32-bit word A, ≪11 (A) denotes cyclic left-rotation of A by 11 bits.
– Ki is the round key. The key schedule is very simple: Divide the 256-bit key

into eight 32-bit subkeys K1, . . . ,K8. These subkeys are used in this order
three times in rounds 1–24, and in the reverse order K8, . . . ,K1 in the last
8 rounds 25–32.

– S is an S-box layer of eight 4-to-4 bit S-boxes1 S0 . . . , S7 : {0, 1}4 → {0, 1}4,
where S0 is performed on the four least significant bits, and S7 is performed
on the four most significant bits. These S-boxes are kept secret. In addition,
they are not necessarily permutations.

1 The somewhat nonstandard notations used here follow the notations presented in
the up-to-date official document describing GOST [15].
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Fig. 1: One GOST Round.

2.2 Related-Key Differential Attacks

Differential attacks. Differential cryptanalysis was introduced by Biham and
Shamir [6]. It analyzes the development of differences through the encryption
process of pairs of plaintexts.

Let E be an n-bit block cipher consisting of r rounds. A differential with
probability p of E is a statistical property of the form Pr[E(P )⊕E(P ′) = ΩO |
P⊕P ′ = ΩI ] = p, denoted by ΩI

p−→ ΩO. If p ≫ 2−n, the differential can be used
to distinguish E from a random permutation, given O(p−1) pairs of plaintexts
with difference ΩI .

Differentials can be used for key-recovery attacks as well, in a procedure

called iR-attack. In this procedure, the adversary finds a differential ΩI
p−→ ΩO

for the first r − i rounds of E and uses it to recover key material in the last i
rounds. First, the adversary asks for the encryption of O(p−1) pairs (P, P ′) of
plaintexts that satisfy P ⊕ P ′ = ΩI . Then, she guesses some of the subkey bits
used in the last i rounds, partially decrypts the ciphertext pairs through the last
i rounds and checks whether the difference at the input to the (r − i + 1)’th
round is equal to ΩO at least several times. As the data is expected to contain
several plaintext pairs that satisfy the differential, it is expected that the check
succeeds for the correct key guess and fails for wrong key guesses with a high
probability.

Related-key differential cryptanalysis. Related-key (in short, RK) attacks were
introduced by Biham [3] and by Knudsen [23], independently. The attack model
in these attacks is that the adversary may obtain the encryption of plaintexts
under several related unknown keys, where the relation between the keys is
known to (or can be chosen by) the adversary. The goal of the adversary is to
recover the keys.
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In [21], Kelsey et al. introduced the related-key differential cryptanalysis.
In a related-key differential attack, the adversary can ask for the encryption
of plaintext pairs with a chosen difference ΩI (i.e., P, P ′ = P ⊕ ΩI), under
unknown keys with a chosen difference ΩK (i.e., K,K ′ = K⊕ΩK). A related-key
differential with a probability of p of a block cipher E under two keys K,K ′ =
K ⊕ ΩK is a statistical property of the form Pr[EK(P ) ⊕ EK′(P ′) = ΩO |
P ⊕P ′ = ΩI ] = p, denoted by ΩI

p−−→
ΩK

ΩO. Related-key differentials can be used

for key-recovery in a similar way to ordinary differentials.

3 The New Related-Key Differential of GOST

In this section we present the new related-key differential of GOST which we use
in our attacks. The differential is based on a 3-round ‘local collision’, inspired
by local collisions in hash functions, first proposed by Chabaud and Joux [9].

For the sake of concreteness, we first present the differential for the special
case of GOST with the S-boxes used in the banking industry, which was con-
sidered in most previous works on GOST. Afterwards, we show how to use the
differential when the S-boxes are unknown.

3.1 The Basic 3-Round Iterative Related-Key Differential

Consider the encryption through the first three rounds of GOST of a plaintext
P under two related keys K,K ′ such that K ′

1 = K1 ⊕ e31,K
′
2 = K2 ⊕ e10,K

′
3 =

K3 ⊕ e31 (see Fig. 2).

At the first round, since the state difference is zero and the subkey difference is
in the most significant bit, the modular addition behaves like XOR with respect
to differences, and thus, the XOR difference after the key addition is e31. As
the S-box S7 in the set used in the banking industry satisfies the differential

8
1/4−−→ 8, with a probability of 1

4 the difference after the S-box layer is e31, which
is mapped to e10 by the left rotation. At the second round, the input difference
e10 is canceled by the sub-key difference with a probability of 1

2 . At the third
round, the difference after the key addition is e31 (like in the first round), and
thus, with a probability of 1

4 the difference after the rotation is e10, which is
canceled in the XOR operation at the end of the round, resulting in a zero state
difference at the input of the fourth round. Hence, we get the following 3-round
iterative differential characteristic:

(0, 0)
1
4−−−−−−→

ΩK1
=e31

(0, e10)
1
2−−−−−−→

ΩK2
=e10

(e10, 0)
1
4−−−−−−→

ΩK3
=e31

(0, 0),

as depicted in Fig. 2. Since this related-key differential characteristic is of the
form 0 → 0, it can be viewed as a local collision.
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ΩI = (0, 0)

≪11 ◦S ⊞⊕
e31

0e31e10
0

≪11 ◦S ⊞⊕
e10

00 e100

≪11 ◦S ⊞⊕
e31e31e10

ΩO = ΩI = (0, 0)

0
e10

p1 = 1
4

p2 = 1
2

p3 = 1
4

Fig. 2: Our 3-Round iterative RK differential characteristic on GOST (using the
banking industry S-boxes).

3.2 The Full 32-Round Differential

Consider the encryption of a plaintext P under two keys K,K ′ with key differ-
ence

ΩK = (e31, e10, e31, 0, 0, 0, 0, 0).

By the 3-round iterative differential characteristic described above we have the
following 8-round iterative differential:

(0, 0)
2−5

−−→
ΩK

(0, 0).

Since the eight sub-keys used in rounds 9–16 and 17–24 are the same as in rounds
1–8, we obtain the 24-round iterative differential:

(0, 0)
2−15

−−−→
ΩK

(0, 0).

In rounds 25–32, the subkeys are used in reverse order, and hence, there is no
key difference until round 29 (inclusive). Thus, we get the following 29-round
differential:

(0, 0)
2−15

−−−→
ΩK

(0, 0).

At the last three rounds, the subkey differences are e31, e10, e31, respectively.
Hence, we may apply again the basic three-round differential characteristic, to
obtain a 32-round related-key differential with probability of 2−20. In order to
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reduce the data complexity of attacks exploiting the differential, we prefer to
use in these rounds a truncated differential characteristic (i.e., a differential
characteristic that predicts the difference only in part of the state) which holds
with a probability close to 1.

For this sake, we examine the development of the difference in the last three
rounds. The input difference to round 30 is zero and the subkey difference is e31.
Thus, after the key addition the difference is e31, and after the S-box layer the
difference is of the form ?0000000x (where ? is an unknown 4-bit value), which is
mapped by the left rotation to 00000XY 0x (where X ∈ {0, . . . , 7}, Y ∈ {0, 8}).

At round 31, with a probability of over 99% the truncated difference after
the key addition (in which the subkey difference is e10) is of the form 000???Q0x
(where Q ∈ {0, 8}), since we require the addition carry to go through at most
9 bits. After the S-box layer the difference is 000????0x, which is mapped to
Z???W000x (where W ∈ {0, 8}, Z ∈ {0, . . . , 7}) by the left rotation. This differ-
ence is copied to the right half of the ciphertext.

At round 32, the difference after the key addition (in which the subkey differ-
ence is e31) is ????T000x. After the S-box layer, the difference is ?????000x which
is mapped by the left rotation to ??U00V ??x (where V ∈ {0, . . . , 7}, U ∈ {0, 8}).
This is the difference in the left half of the ciphertext.

Hence, we have a related key truncated differential on the entire cipher

(0, 0)
2−15

−−−→
ΩK

(??U00V ??x, Z???W000x),

where U,W ∈ {0, 8}, V, Z ∈ {0, . . . , 7}, and ? is an unknown value, as depicted
in Figure 3. To conclude, this related-key truncated differential predicts a zero
difference in 28 bits with a probability of about 2−15.

3.3 The Related-Key Differential for GOST with Secret S-boxes

Recall that our 3-round iterative differential characteristic,

(0, 0)
1
4−−−−−−→

ΩK1
=e31

(0, e10)
1
2−−−−−−→

ΩK2
=e10

(e10, 0)
1
4−−−−−−→

ΩK3
=e31

(0, 0),

relies on the differential transition 8
1
4−→ 8 in the S-box S7. When S7 is a secret

S-box, this differential might be impossible, and we have no direct way to check
its probability.

To overcome this, we consider four additional related keys, obtained by chang-
ing the difference inK2. Namely, while we leave the key difference inK1,K3 fixed
at e31, we consider four differences in K2:

Ω0
K2

= e7, Ω
1
K2

= e8, Ω
2
K2

= e9, Ω
3
K2

= e10.

If in S7, a differential of the form 8
p−→ (2i + 2i+1 + . . . + 2i+b−1) is satisfied

(where i ∈ {0, 1, 2, 3} and b ∈ {1, . . . , 4− i}; note that the sum contains between
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ΩI = (0, 0)

≪11 ◦S ⊞⊕
e31

0e31D1
0

≪11 ◦S ⊞⊕
e10D2D3 D10

≪11 ◦S ⊞⊕
e31D3 ⊕ e31D4

ΩO = (D4, D3)

D3
D1

D1 = 00000XY 0x, D2 = 000???Q0xD3 = Z???W000x, D4 =??U00V ??x, where
X,Z, V ∈ {0, . . . , 7}, Q, Y,W,U ∈ {0, 8}.

Fig. 3: The last three Rounds of our RK truncated differential characteristic on
the full GOST (considering the banking industry S-boxes).

one and four terms), then the following 3-round differential characteristic holds,2

with overall probability of p22−b:

(0, 0)
p−−−−−−→

ΩK1
=e31

(0, e7+i,7+i+1,...,7+i+b−1)
2−b

−−−−−−−→
Ωi

K2
=e7+i

(e7+i,7+i+1,...,7+i+b−1, 0)

p−−−−−−→
ΩK3

=e31
(0, 0).

Furthermore, as we are interested only in the probability of having a zero output
difference after three rounds for a given subkey difference (formally called ‘proba-
bility of a differential’) and not in the probability of the exact transition sequence
from the zero input difference to the zero output difference (formally called ‘prob-
ability of a differential characteristic’), we can enjoy several differential charac-
teristics at the same time. Indeed, when we consider the encryption of two iden-
tical plaintexts under the subkey difference Ω(K1,K2,K3) = (e31, e7+i, e31), the

probability of having a zero difference after three rounds is at least
∑4

b=1 p
2
b2

−j ,
where pb is the probability of the transition 8 → (2i+2i+1+ . . .+2i+b−1) in S7.

2 If a differential of the form 8
p−→ 0 is satisfied, then an even stronger 1-round iterative

differential characteristic of GOST can be constructed, as is described in Section 3.4.
We note that the existence of such a transition implies that the S-boxes are not
bijective, but the official document describing GOST [16] permits using such S-
boxes.
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Note that out of the 16 possible output differences of S7, 11 are of the pre-
scribed form (for some b, i). Hence, for a random S-box, with an overwhelming
probability at least one of these differentials is possible.

Among the differential characteristics we consider, the lowest probability is
obtained in the case p = 2−3, b = 4, in which the probability of the entire

truncated differential is about
(
p2 · 2−b

)3
= 2−30. (Note that in a 4-bit S-box,

the lowest possible non-zero probability of a differential is 2−3). The highest
probability is obtained in the case p = 1, b = 1, in which the probability of the

entire truncated differential is at least
(
p2 · 2−b

)3
= 2−3.

In practice (as we have verified by running experiments on many randomly
chosen S-boxes), in most cases for at least one of the four key differences, the
overall probability of the truncated differential is at least 2−24. Thus, by repeat-
ing the attack procedure for at most 5 key differences, we will be able to use the
differential in the secret S-box setting (also obtaining some information on the
S-box on the way).

3.4 Other Variants of the Differential

Besides the variants described above, many other variants of the differential can
be considered. For example, instead of inserting the local collision at the first
three rounds, one may insert it at any three other consecutive rounds. The active
S-box S7 can be replaced with any other S-box, and the input difference 8 can be
replaced with any other input difference. The key difference in the third round
can differ from the difference in the first round, as long as it is contained in the
same S-box. Some of these changes affect the probability of the differential (e.g.,
when the subkey difference at the first and the third rounds is ei for i ̸= 31, we
have to ‘pay’ probability of (1/2)2 to bypass the key addition operations at the
first and the third rounds).

The following additional variant could be useful in the case of non-invertible
S-boxes (which are allowed by the design of GOST). If a differential of the form

(2i+2i+1+. . .+2i+b−1)
p−→
Sj

0 (where i ∈ {0, 1, 2, 3} and b ∈ {1, . . . , 4−i}) is sat-

isfied, then we get an 1-round iterative differential characteristic (0, 0)
p·2−b≥2−7

−−−−−−−→
ΩK1=e4j+i

(0, 0). Using this characteristic, one can easily construct a related-key differential

for the full cipher of the form (0, 0)
p3·2−3b≥2−21

−−−−−−−−−−−−−−−−→
ΩK=(e4j+i,0,0,0,0,0,0,0)

(D, 0), where D has a

few active bits. Alternatively, one may reach a ciphertext difference with more
active bits by inserting the key difference e4j+i in the subkey K2. Using this
variant of the differential, the adaptation of the attack described in Section 4
to the setting of non-invertible S-boxes is very simple. Hence, from now on we
focus on the case of invertible S-boxes.

We use several of these variants in our attack (see Sections 4.3 and 4.4); other
variants may be useful for future attacks on GOST and on other related cryp-
tosystems. As a concrete application, we note that a variant of the differential
applies to GOST2 – a variant of GOST with a modified key schedule that was
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proposed in [13] and studied in [1,14]. While the primary goal of the modified key
schedule proposed in GOST2 was to thwart attacks based on the key schedule,
a slight change of our differential holds for the modified key schedule as well.
Specifically, using the same key difference, the only significant change is that
the last occurrence of the ‘local collision’ is in rounds 29–31 instead of 30–32.
This slightly increases the complexity of our attack (as one has to assume some
probabilistic differential transition at round 29 in order to control the avalanche
in round 32), but the attack works and requires less than 230 encryptions.

4 The New Related-Key Attack on GOST with Secret
S-boxes

In this section we present our new attack on GOST with secret S-boxes. The
attack uses several variants of the related-key differential presented in Section 3
to gradually recover the bits of the subkey K1 (used at the last round) and
the secret S-boxes. Once all the S-boxes and the full subkey K1 are recovered
(up to a few candidates), the other subkeys can be recovered in a similar way
with a lower complexity, by attacking a reduced-round variant of GOST and
using the knowledge of the S-boxes. For the sake of simplicity, we present the
attack in the case where all S-boxes of GOST are permutations (see Section 3.4
regarding non-invertible S-boxes), and use adaptively chosen plaintext queries in
order to reduce the number of related-keys used in the attack. We describe the
modifications needed for using only chosen plaintexts (which were fully verified
experimentally) in Section 4.6.

This section is organized as follows. In Section 4.1 we describe the strategy we
use to recover the S-boxes. In Sections 4.2, 4.3, 4.4, and 4.5 we present the attack
(divided into four main steps for the sake of convenience), and in Section 4.6
we report on the experimental verification of the attack. The code we use in the
attack is enclosed to the paper and will be made publicly available.

4.1 The Strategy Used for S-box Recovery

In order to recover the secret S-boxes, we examine the last round of encryption
(i.e., round 32). As we shall see in Section 4.2, the related-key differential allows
us to find pairs (vi, v

′
i) of inputs/outputs of the round function of round 32,

for which we know the inputs and the XOR difference between the outputs.
We claim that given a secret S-box S : {0, 1}n → {0, 1}n, the number of such
random pairs (vi, v

′
i) needed to recover S, up to an XOR of all outputs of S with

the same constant (which we cannot distinguish since at the output of S, we
know only XOR differences), is O(n2n). Indeed, we can use the following simple
algorithm to recover S.

First,3 we assume w.l.o.g. that S(0) = 0 (since we recover S only up to an
XOR with a constant). Secondly, we sort the pairs (vi, v

′
i) according to vi, and

3 We alert the reader that this algorithm is different (and much simpler) than the
algorithm presented in [18]. The reason for the difference is that in our case we
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look for pairs of the form (vi, v
′
i) = (0, x). The assumption S(0) = 0 implies

S(x) = S(vi) ⊕ S(v′i). Then, we look for pairs of the form (vj , v
′
j) = (x, y),

which yield S(y) = S(vj)⊕ S(v′j), where S(vj) = S(x) was already found at the
previous stage. We continue in this fashion until all values S(·) are recovered.

When does this process recover the full S-box? Let G be a graph whose vertex
set is {0, 1}n, where vi and v′i are connected by an edge if the pair (vi, v

′
i) exists

in our data set. The process recovers S if and only if the graph is connected.
It is well-known that a graph on 2n vertices that has m = 2n−1(n + c) edges
which are chosen uniformly at random, is connected with probability that tends
to e−e−c

as n → ∞ (see, e.g., [19, Theorem 4.1]). Hence, the process is expected
to recover the full S-box with a high probability, once significantly more than
n2n−1 pairs (which is equal to 32 for n = 4) are given.

In our case, the value of n is relatively small and the pairs are not random (as
they stem from plaintext pairs that satisfy a related-key differential). Hence, the
number of required pairs may be somewhat larger than in the general asymptotic
result. Our experiments (presented in Section 4.6) show that on average, with
256 pairs, the S-box is recovered with a fairly high probability.

The S-box recovery algorithm is described in Algorithm 1, where at the j’th
iteration, we find the value of S(v) for each vertex v whose distance from the
vertex 0 in the graph G is j. In addition, the algorithm outputs ‘Failure’ if it
encounters two equal pairs of inputs which lead to different output differences.
Thus, the algorithm can be used also for filtering out wrong subkey guesses which
lead to such a contradiction.

This simple S-box recovery algorithm is not tailor-made for our attack, and
can be used in other differential-based S-box recovery attacks as well. For exam-
ple, it can be used in the S-box recovery step of the attack of Bar-On et al. on
GOST with palindromic key schedule [2, Sec. 5], instead of the more complex
and more data-consuming algorithm of Dunkelman and Huang [18] which recov-
ers the S-box from its difference distribution table. Indeed, once the differential
part of the attack provides us with right pairs for which the actual input values
are known and only the knowledge of the outputs is differential (as is commonly
the case, e.g., in attacks on Feistel networks), there is no need to pass through
the difference distribution table and our algorithm is sufficient. In the specific
case of the attack of [2], this does not affect the overall complexity since the
S-box recovery part is not the heaviest part of the attack. However, this might
have effect in other cases.

4.2 First Stage of the Attack – Recovering Two S-boxes

In this subsection we present the first stage of the attack. At this stage, we use
the related-key differential presented in Section 3, along with a partial guess of
the subkey K1 used at round 32, to obtain 256 pairs of inputs to each of the
S-boxes S4, S5, for which we know the output differences. This will allow us

know the inputs to the S-box and the output differences, while the algorithm of [18]
assumes only knowledge of the input and output differences.
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Algorithm 1 S-box Recovery.

Input: A table T of m triples (vi, v
′
i, di) where for each i, (vi, v

′
i) is a pair of

input values to an S-box S : {0, 1}4 → {0, 1}4 and di = S(vi) ⊕ S(v′i) is the
corresponding output difference.
Sort T according to the first value.
Set S(0) = 0.
for all v ∈ {1, . . . , 15} do

Set S(v) = −1.
end for
for all i such that vi = 0 do

Set S(v′i) = di.
end for
for all j ∈ {1, . . . , 15} do

for all i ∈ {0, . . . ,m− 1} do
if S(vi) ≥ 0 ∧ S(v′i) = −1 then

Set S(v′i) = vi ⊕ di.
end if
if S(vi) = −1 ∧ S(v′i) ≥ 0 then

Set S(vi) = v′i ⊕ di.
end if
if S(vi) ≥ 0 ∧ S(v′i) ≥ 0 ∧ S(vi)⊕ S(v′i) ̸= di then

Abort the algorithm and output ‘Failure’.
end if

end for
end for
Output

to significantly reduce the number of possible candidates for the guessed subkey
bits, and for each remaining guess, to recover these two S-boxes (up to an output
XOR with a constant) using Algorithm 1.

The success probability of the attack and its complexity significantly depend
on the differential properties of the S-boxes on which we make no assumptions.
For the sake of convenience, in this subsection and in the following subsections
we give a rough estimate of the success probability and of the complexity at
the end of each step, and present the exact figures obtained experimentally in
Section 4.6. When the differential we consider is clear from the context, we call
a pair that satisfies it a right pair.

Step 1: Finding the first right pair. As described in Section 3.3, if we consider
GOST encryptions of the same plaintext P under five related keys: K, {K ⊕
Ωi

K1}i∈{0,1,2,3}, where Ωi
K1 = (e31, e7+i, e31, 0, 0, 0, 0, 0), then for most choices

of the secret S-box, the following RK truncated differential holds for one of the
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key differences:

(0, 0)
p̄≥2−24

−−−−−→
Ωi

K1

(??U00V ??x, Z???W000x),

where U,W ∈ {0, 8}, V, Z ∈ {0, . . . , 7}, and ? is an unknown value. To exploit the
differential, we generate plaintexts Pj one by one, and ask for their encryption
using the five related keys until one of the following occurs:

1. We find a plaintext P and i ∈ {0, 1, 2, 3} such that EK(P )⊕EK⊕Ωi
K1

(P ) =

(??U00V ??x ∥ Z???W000)x. In this case we continue to the next step, in
which many more right pairs will be found.

2. After the generation of 227 ciphertexts, no pair that satisfies the RK trun-
cated differential was found. We refer to such a case as a failure and abort
the attack.

Assuming that p̄ = 2−24, after trying 224 plaintexts Pj we obtain 226 pairs that
satisfy the zero input difference and the key difference of one of the related-key
differentials we try in parallel. Hence, with a probability of 1− (1− 2−24)2

26 ≈
1 − e−4 ≈ 0.98, we obtain at least one right pair. (Note that as the input
difference of the differential is zero, the right pair is composed of the same
plaintext, encrypted under two different keys.)

Step 2: Finding many more right pairs at a reduced cost. Once we find a single
right pair, we can find many right pairs at a significantly lower cost, using the
concept of neutral bits that was introduced by Biham and Chen [4] and used in
the collision attacks on the hash functions SHA-0 and SHA-1 [4, 5]. We observe
that there are many plaintext bits that have almost no effect on the first three
rounds of the differential. Specifically, a change in bits 12–22 (which are included
in the right half of the plaintext) and/or in bits 32–38, 52–63 (which are included
in the left half of the plaintext) affect the differential at most with a very small
probability. (This effect occurs only in case of a very long carry chains). There-
fore, given a single right pair, we can generate 230 more pairs that satisfy the
first 3 rounds of the differential with a probability close to 1, by changing the
value of some of the 30 neutral bits listed above. Each of these 230 additional
pairs satisfies the differential with probability of at least 2−16 (instead of 2−24).

Therefore, after checking 225 of the 230 additional pairs, we are expected to
find at least 225 · 2−16 = 29 additional right pairs. Note that as the probability
that a random plaintext pair satisfies the truncated ciphertext difference is 2−28,
with a high probability all pairs which remain at this stage are indeed right pairs.

Step 3: Partially guessing the subkey K1 and recovering the S-boxes S4, S5. At
this point, we have 256 plaintext-ciphertext pairs (Pj , Cj), (Pj , C

′
j) such that

EK(Pj) = Cj , EK′(Pi) = C ′
j , K ⊕ K ′ = Ωi

K1 = (e31, e7+i, e31, 0, 0, 0, 0, 0) for
some i ∈ {0, 1, 2, 3}, and Cj ⊕ C ′

j = (??U00V ??x ∥ Z???W000)x, where U,W ∈
{0, 8}, V, Z ∈ {0, . . . , 7}, and ? is an unknown value.
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We guess the 24 least significant bits of K1 and partially decrypt the cipher-
text pairs through the last round to obtain the input values to the S-boxes S4, S5.
Assuming that the pair is a right pair, the corresponding output difference must
be equal to bits 59–63,32–34 of Cj⊕C ′

j (which correspond to a left rotation by 11
bits of bits 16–23 in the output of the 32’th round function), since the difference
in the corresponding bits in the differential is zero (as D1 = 00000XY 0x). This
allows using Algorithm 1 to recover the S-boxes S4, S5 (up to XOR of the output
with a constant), under the assumption that the subkey guess is correct.4

This step can be performed efficiently, such that its complexity will be less
than 227 encryptions, as we explain at the end of the next step.

Step 4: Eliminating wrong subkey guesses. As mentioned in Section 4.1, Algo-
rithm 1 not only recovers the S-boxes, but also allows us to filter out wrong
subkey guesses, as those guesses lead to a contradiction between the values of S.

In order to further reduce the number of possible subkey guesses, we use three
additional subkey filtering steps. These steps are based on checking whether
there is an addition carry that affects the input difference to one of the S-boxes
S4, S5, S6, and each of them can be applied to some of the right pairs.

1. Assume that the ciphertexts (Ci, C
′
i) in some right pair satisfy Ci ⊕ C ′

i =
(??U00V ??x ∥ Z??0W000x), where U,W ∈ {0, 8}, V, Z ∈ {0, . . . , 7}, and ?
is an unknown value. (This means that in addition to being a right pair,
we require that the difference in bits 16–19 is zero.) If bits 59–62 of the
difference Ci ⊕C ′

i are not all equal to zero, then the inputs to the S-box S4

that correspond to Ci and C ′
i cannot be equal (as bits 59–62 correspond to a

left shift by 11 bits of the output of S4). Since we assume that Ci and C ′
i are

equal in bits 16–19, this may happen only if in exactly one of the addition
operations Ci ⊞K1, C

′
1 ⊞K1 there is a carry into bit 16. In other words, we

have either
(K1 (mod 216))⊞ (Ci (mod 216)) ≥ 216

and
(K1 (mod 216)))⊞ (C ′

i (mod 216)) < 216,

or vice versa. This yields an inequality of the form ai < K1 (mod 216) < bi.
2. By the same reasoning, if Ci ⊕ C ′

i = (??U00V ??x ∥ Z?0?W000x) (meaning
that in addition to being a right pair, we require that the difference in bits 20–
23 is zero), and bits 63 and 32–34 of the difference Ci ⊕C ′

i are not all equal
to zero, then we have either

(K1 (mod 220))⊞ (Ci (mod 220)) ≥ 220

and
(K1 (mod 220)))⊞ (C ′

i (mod 220)) < 220,

4 We note that while we can use the same strategy to obtain 256 pairs of known input
values with known output differences for S6 as well, it turns out that due to addition
carries, many of these pairs are equal and so we do not obtain enough information
for recovering this S-box. Instead, we recover it at a later stage.
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or vice versa.

3. By the same reasoning, if Ci ⊕ C ′
i = (??U00V ??x ∥ Z0??W000)x (meaning

that in addition to being a right pair, we require that the difference in bits 24–
27 is zero), and bits 35–38 of the difference Ci⊕C ′

i are not all equal to zero,
then we have either

(K1 (mod 224))⊞ (Ci (mod 224)) ≥ 224

and

(K1 (mod 224)))⊞ (C ′
i (mod 224)) < 224,

or vice versa.

For sake of efficiency, we perform the key filtering of Step 4 before the S-box
recovery process of Step 3, and divide the key guessing into several steps. That
is, first we guess the 16 least significant bits of K1 and perform the first key
filtering step. Then, for the remaining values of bits 0–15 of K1, we guess bits
16–19 of K1 and perform the second key filtering step. Then, for the remaining
values of bits 0–19 of K1, we guess bits 20–23 of K1 and perform the third key
filtering step. For the remaining subkey values, we perform the S-box recovery
procedure of Step 3 along with the additional key filtering it provides.

According to our experiments (using 100 different keys and S-boxes), about
214.2 possible values of bits 0–23 of K1 pass this filtering. Among these values,
about 27.8 possible values pass the additional filtering of Algorithm 1, and for
each of them, we recover the S-boxes S4 and S5, up to XOR of the output with
a constant. (Among the 100 experiments, the highest number of surviving keys
was 2274 ≈ 211.2). The time complexity of this step is significantly smaller than
227 encryptions.

4.3 The Second Stage of the Attack – Recovering Two Additional
S-boxes

In this subsection we present the second stage of the attack. At this stage, we use
a variant of the related-key differential presented in Section 3 to further reduce
the number of possible values of the subkey K1 and to recover the S-boxes S1, S2

(up to an output XOR with a constant).

The differential we use at this stage. In the choice of the differential, we can
exploit the fact that the S-box S4 was already recovered at the first stage.5 As
follows from the analysis presented in Section 3.3, for any input difference of S4 of
the form 2i+2i+1+ . . .+2i+ℓ−1 (where i ∈ {0, 1, 2, 3} and ℓ ∈ {1, . . . , 4− i}) and
any output difference of the form 2j +2j+1 + . . .+2j+b−1 (where j ∈ {0, 1, 2, 3}

5 Although theoretically S4 depends on the 24 least significant bits of K1, our ex-
periments show that in most of the cases the same S-box is suggested by all the
remaining keys. We thus use the S-box S4 of the first remaining key.
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and b ∈ {1, . . . , 4− j}), the following 3-round iterative differential characteristic
holds:

(0, 0)
2−ℓ·DDTS4

[(i..i+ℓ−1)][(j..j+b−1)]
−−−−−−−−−−−−−−−−−−−−−−→

Ωi
K1

=e16+i

(0, e27+j,27+j+1,...,27+j+b−1)

2−b

−−−−−−−→
Ωj

K2
=e27+j

(e27+j,27+j+1,...,27+j+b−1, 0)
2−ℓ·DDTS4

[(i..i+ℓ−1)][(j..j+b−1)]
−−−−−−−−−−−−−−−−−−−−−−→

Ωi
K3

=e16+i

(0, 0),

where DDTS4 [(i..i+ℓ−1)][(j..j+b−1)] denotes the probability of the transition

(2i + 2i+1 + . . .+ 2i+ℓ−1) −→
S4

(2j + 2j+1 + . . .+ 2j+b−1).

Here, the characteristic of the first and the third round holds since in the modular
addition operation, the difference 2i is transformed to 2i + 2i+1 + . . . + 2i+ℓ−1

with probability 2−ℓ. (Note that such addition carries are not considered in
Section 3.3, as there the difference is in bit e31 for which modular addition does
not have carry).

The probability of the 3-round iterative differential

(0, 0)
ΩK2=(e16+i,e27+j ,e16+i)−−−−−−−−−−−−−−−−→ (0, 0) (1)

is much higher than the probability of each separate differential characteristic,
since it enjoys the contributions of all differential characteristics that correspond
to these values of i, j and all possible values of ℓ, b.

In order to choose the key difference of the differential, we compute a lower
bound on the probability of the differential (1) for all i, j:

pi,j =

4−j∑
b=1

2−b

(
4−i∑
ℓ=1

2−ℓDDTS4
[(i..i+ ℓ− 1)][(j..j + b− 1)]

)2

.

Then, we choose i, j such that pi,j is maximal and ask for the encryption of the
same plaintext under keys with difference ΩK2 = (e16+i, e27+j , e16+i).

We performed an experiment with 100 randomly chosen S-boxes. The largest
value pi,j was about 2−6 on average, and for 99 out of the 100 S-boxes it was
larger than 2−7.3. We therefore assume that pi,j ≥ 2−7.3. Using the key difference

ΩK2 = (e16+i, e27+j , e16+i, 0, 0, 0, 0, 0),

we get the 29-round related-key differential

(0, 0)
p3
i,j≥2−22

−−−−−−→
ΩK

(0, 0).

As in the differential presented in Section 3, we do not use probabilistic dif-
ferential transitions in the last three rounds, in which the subkey differences
are e16+i, e27+j , e16+i (respectively), and instead, we use a truncated differential
based on following the possible differences.



18 Practical-Time Related-Key Attack on GOST with Secret S-boxes

At round 30, the input difference is zero and the subkey difference is e16+i.
Thus, after the key addition the difference is 00??0000x with a high probability.
This truncated difference is preserved by the S-box layer, and then is mapped
by the left rotation to ?Y 00000Xx (where X ∈ {0, . . . , 7}, Y ∈ {0, 8}).

At round 31, the truncated difference after the key addition (in which the
subkey difference is e27+j) is ?Q00000?x (where Q ∈ {0, 8}). After the S-box
layer, the difference is ??00000?x, which is mapped to 0000Z??Wx (where W ∈
{0, 8}, Z ∈ {0, . . . , 7}) by the left rotation. This difference is copied to the right
half of the ciphertext.

At round 32, the difference after the key addition (in which the subkey dif-
ference is e16+i) is 00?????Tx (where T ∈ {0, 8}). After the S-box layer, the dif-
ference is 00??????x which is mapped by the left rotation to ?????U0Vx (where
V ∈ {0, . . . , 7}, U ∈ {0, 8}). This is the difference in the left half of the ciphertext.

Hence, we have a related key truncated differential on the entire cipher:

(0, 0)
p3
i,j≥2−22

−−−−−−→
ΩK2

(?????U0Vx, 0000Z??Wx),

where V,Z ∈ {0, . . . , 7}, U, Y ∈ {0, 8}, and ? is an unknown 4-bit value. We use
this characteristic to recover two additional S-boxes, S1, S2, and to eliminate
more wrong keys.

The following steps are similar to the corresponding steps of Stage 1. As
there are many small differences, we provide a detailed description.

Step 1: Finding the first right pair. We generate plaintexts one by one, and ask
for their encryption using the two related keys, K,K ′ = K ⊕ ΩK2, until one of
the following occurs:

1. We find a plaintext P such that the difference EK(P ) ⊕ EK⊕ΩK2
(P ) is of

the form (?????U0Vx ∥ 0000Z??Wx). In this case we continue to the next
step, in which many more right pairs are found.

2. After the generation of 225 ciphertexts, no pair that satisfies the RK trun-
cated differential was found. We refer to such a case as a failure and abort
the attack.

Assuming that p3i,j = 2−22, after trying 224 plaintexts Pj we obtain 224 pairs
that satisfy the zero input difference and the key difference of the related-key
differentials. Hence, with a probability of 1− (1− 2−22)2

24 ≈ 1− e−4 ≈ 0.98, we
obtain at least one right pair.

Step 2: Finding many more right pairs at a reduced cost. Again, once we find a
single right pair, we can find many right pairs at a lower cost, using neutral bits.
We observe that a change in bits 4–12 and/or in bits 44–58, 63 of the plaintext
affects the differential with a very small probability. (This effect occurs only in
case of a very long carry chain). Therefore, given a single right pair, we can
generate 225 more pairs that satisfy the first 3 rounds of the differential with a
probability close to 1, by changing the value of some of the 25 neutral bits listed
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above. Each of these 225 additional pairs satisfies the differential with probability
of about p2i,j ≥ 2−14.6 (instead of p3i,j).

Therefore, after checking 222.6 additional pairs, we are expected to find 222.6 ·
2−14.6 = 28 additional right pairs. Note that as the probability that a random
plaintext pair satisfies the truncated ciphertext difference is 2−28, with a high
probability all pairs which remain at this stage are indeed right pairs.

Step 3: Recovering the S-boxes S1, S2. At this point, we have 256 plaintext-
ciphertext pairs (Pj , Cj), (Pj , C

′
j) such that EK(Pj) = Cj , EK′(Pi) = C ′

j , K ⊕
K ′ = ΩK2 = (e16+i, e27+j , e16+i, 0, 0, 0, 0, 0) for the chosen i, j ∈ {0, 1, 2, 3}, and
Cj ⊕ C ′

j = (?????U0Vx ∥ 0000Z??Wx), where U,W ∈ {0, 8}, V, Z ∈ {0, . . . , 7},
and ? is an unknown value.

For each remaining value of the 12 least significant bits of K1, we partially
decrypt the ciphertext pairs through the last round to obtain the input values
to the S-boxes S1, S2. Assuming that the pair is a right pair, the corresponding
output difference must be equal to bits 47–54 of Cj ⊕ C ′

j (which are a left
rotation by 11 bits of bits 4–11, and are of the left half of the ciphertext), since
the difference in the corresponding bits in the differential is zero. This allows
using Algorithm 1 to recover S-boxes S1, S2 (up to XOR of the output with a
constant), under the assumption that the subkey guess is correct.

Step 4: Eliminating wrong subkey guesses. As mentioned in Section 4.1, Algo-
rithm 1 not only recovers the S-boxes, but also allows us to filter out wrong
subkey guesses, as those guesses lead to a contradiction between the values of S.

In order to further reduce the number of possible subkey guesses, we use an
additional subkey filtering step, which we apply for each of the 256 pairs.

Assume that the ciphertexts (Ci, C
′
i) in some right pair satisfy Ci ⊕ C ′

i =
(?????U0Vx ∥ 00000??Wx), where U,W ∈ {0, 8}, V ∈ {0, . . . , 7}, and ? is an
unknown value. (This means that in addition to being a right pair, we require
that the difference in bits 12–14 is zero.) If bits 55–58 of the difference Ci ⊕ C ′

i

are not all equal to zero, then the inputs to the S-box S4 that correspond to Ci

and C ′
i cannot be equal (as bits 55–58 correspond to a left shift by 11 bits of the

output of S4). Since we assume that Ci and C ′
i are equal in bits 12–15, this may

happen only if in exactly one of the addition operations Ci ⊞K1, C
′
1 ⊞K1 there

is a carry into bit 12. In other words, we have either

(K1 (mod 212))⊞ (Ci (mod 212)) ≥ 212

and
(K1 (mod 212)))⊞ (C ′

i (mod 212)) < 212,

or vice versa. This yields an inequality of the form ai < K1 (mod 212) < bi.
For the sake of efficiency, we first perform the key filtering of Step 4, and then

we perform the S-box recovery process of Step 3, along with the additional key
filtering it provides. According to our experiments (using 100 randomly selected
keys and S-boxes), about 1.2 keys remain out of 224 possible values of the 24
least significant bits of K1. For each of them we recover the S-boxes S1, S2, up
to XOR of the output with a constant.
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4.4 The Third Stage of the Attack – Recovering One Additional
S-box

In this subsection we present the third stage of the attack. At this stage, we use
another variant of the related-key differential presented in Section 3 to further
reduce the number of possible values of the subkey K1 and to recover the S-box
S7 (up to an output XOR with a constant). As this stage is very similar to the
second stage, we present it briefly.

The differential we use at this stage. In the choice of the differential, we exploit
the fact that the S-box S2 was already recovered at the second stage.6

We choose the key difference ΩK3 = (e8+i, e19+j , e8+i, 0, 0, 0, 0, 0), where
(i, j) is chosen such that

pi,j =

4−j∑
b=1

2−b

(
4−i∑
ℓ=1

2−ℓDDTS2
[(i..i+ ℓ− 1)][(j..j + b− 1)]

)2

is maximal. For this key difference, we obtain the 32-round related-key truncated
differential

(0, 0)
p3
i,j≥2−22

−−−−−−→
ΩK3

(0V ?????Ux, ?W0000Z?x),

where V,Z ∈ {0, . . . , 7}, U, Y ∈ {0, 8}, and ? is an unknown 4-bit value.

Steps 1,2: Finding 256 right pairs. To find one right pair, we generate plaintexts
one by one, and ask for their encryption using the two related keys, K,K ′ =
K ⊕ΩK3, until either we find a right pair with respect to the differential, or we
try 226 pairs and don’t find a right one (in which case we abort the attack and
declare ‘Failure’). By the same analysis as in the second stage, with probability
of 98% we obtain a right pair after trying at most 224 plaintexts.

To find many additional right pairs at a reduced cost, we again use neutral
bits. We observe that a change in bits 0–4, 28–31 and/or in bits 36–50, 63 of the
plaintext affects the differential at most with a very small probability. Therefore,
given a single right pair, we can generate 225 more pairs that satisfy the first
3 rounds of the differential with a probability close to 1, by changing the value
of some of these 25 neutral bits. Each of these 225 additional pairs satisfies the
differential with probability of about p2i,j ≥ 2−14.6. Therefore, after checking

222.6 additional pairs, we are expected to find 222.6 · 2−14.6 = 28 additional right
pairs. As above, with a high probability all pairs which remain at this stage are
indeed right pairs.

6 Although S2 depends on the 12 least significant bits of K1, since only about 1.2 keys
remain out of 224 possible values of the 24 least significant bits of K1, we assume
that the S-box S2 suggested by all remaining keys is the same. This assumption was
verified experimentally. We thus use the S-box S2 suggested by the first remaining
key.
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Steps 3,4: Guessing the rest of the bits of K1, and recovering S-box S7. At
this point, we have 256 plaintext-ciphertext pairs (Pj , Cj), (Pj , C

′
j) such that

EK(Pj) = Cj , EK′(Pi) = C ′
j , K ⊕K ′ = ΩK3 = (e8+i, e19+j , e8+i, 0, 0, 0, 0, 0) for

the chosen i, j ∈ {0, 1, 2, 3}, and Cj ⊕ C ′
j = (0V ?????Ux ∥?W0000Z?x), where

U,W ∈ {0, 8}, V, Z ∈ {0, . . . , 7}, and ? is an unknown value.
We guess the 8 most significant bits of K1, and for each remaining value of

the 24 least significant bits of K1 we get a candidate for the entire subkey K1.
For each candidate, we partially decrypt the ciphertext pairs through the last
round to obtain the input values to the S-box S7. Assuming that the pair is a
right pair, the corresponding output difference must be equal to bits 39–42 of
Cj⊕C ′

j (which are a left rotation by 11 bits of bits 28–31, and are of the left half
of the ciphertext), since the difference in the corresponding bits in the differential
is zero. This allows using Algorithm 1 to recover S-box S7 (up to XOR of the
output with a constant), under the assumption that the subkey guess is correct.
Algorithm 1 also allows us to filter out wrong subkey guesses, as those guesses
lead to a contradiction between the values of S7.

According to our experiments (using 100 different keys and S-boxes), 24.1

suggestions for the full subkey K1 remain, and for each of them, we obtain a
unique suggestion for the S-boxes S1, S2, S4, S5, and S7, up to XOR of the output
with a constant.

4.5 The Fourth Stage of the Attack – Recovering the Rest of the
S-boxes and Eliminating More Wrong Candidates of K1

In this subsection we present the fourth stage of the attack. At this stage, we
reuse ciphertext pairs obtained at the previous stages to fully recover the S-boxes
and the subkey K1.

Step 1: Recovering the rest of the S-boxes (S0, S3, S6), up to XOR of the output
with a constant. While neither of the three differentials used in the attack does
not provide enough data for recovering S-boxes S0, S3, S6, we can recover them
by combining ciphertext pairs obtained from two differentials.

1. At the first and second stages together, we obtain 512 plaintext-ciphertext
pairs (Pj , Cj), (Pj , C

′
j) such that bits 12–15 (which form the input to S3) of

Cj ⊕C ′
j are of the form W ∈ {0, 8} (at the first stage) or Z ∈ {0, . . . , 7} (at

the second stage). For each remaining candidate of K1, we partially decrypt
these ciphertext pairs through the last round to obtain the input values to the
S-box S3. Assuming that the pair is a right pair, the corresponding output
difference must be equal to bits 55–58 of Cj ⊕ C ′

j (which are a left rotation
by 11 bits of bits 12–15, and are of the left half of the ciphertext), since the
difference in the corresponding bits in both differentials is zero. This allows
using Algorithm 1 to recover the S-box S3 (up to XOR of the output with a
constant), under the assumption that the subkey guess is correct, and also
to filter out wrong subkey guesses, as those guesses lead to a contradiction
between the values of S3.
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2. Similarly, at the first and the third stages together, we obtain 512 pairs
(Pj , Cj), (Pj , C

′
j) such that the bits 24–27 (which form the input to S6) of

Cj⊕C ′
j can obtain any value (at the first stage) or are of the form W ∈ {0, 8}

(at the third stage). This allows using Algorithm 1 to recover the S-box S6

(up to XOR of the output with a constant), under the assumption that the
subkey guess is correct, and also to filter out wrong subkey guesses, as those
guesses lead to a contradiction between the values of S6.

3. Similarly, at the second and third stages together, we obtain 512 pairs
(Pj , Cj), (Pj , C

′
j) such that the bits 0–3 (which form the input to S0) of

Cj ⊕ C ′
j are of the form W ∈ {0, 8} (at the second stage) or can obtain

any value (at the third stage). This allows using Algorithm 1 to recover the
S-box S0 (up to XOR of the output with a constant), under the assumption
that the subkey guess is correct, and also to filter out wrong subkey guesses.

According to our experiments, in most of the cases, at this stage a unique
value of bits 0–27 of K1 remains. (Specifically, among 100 experiments, only in
a single experiment two values remained).

Step 2: Fully recovering the S-boxes, and recovering the rest of K1 up to a few
remaining candidates. Due to the differential nature of the attack, analysis of the
last round recovers the S-boxes only up to XOR of the output with a constant,
and also cannot recover bits 28–31 of K1 (as these bits affect no addition carries
to other S-boxes). In order to recover the missing key/S-box material, we analyze
round 31. Note that at this stage, for each guess of bits 28–31 of K1, we are able
to decrypt the ciphertexts through the last round, to obtain inputs to the round
function of round 31, which are correct up to XOR with the same 32-bit constant
A. We recover A and filter out wrong guesses of bits 28–31 of K1, in the following
steps.

1. In the plaintext-ciphertext pairs (Pj , Cj), (Pj , C
′
j) obtained at the first stage,

the difference at the input to the round function of round 31 is of the form
00000XY 0x, where X ∈ {0, . . . , 7},Y ∈ {0, 8}. Hence, by guessing the 12
least significant bits of A and of K2, we can obtain the input values to
the S-boxes S1, S2 in round 31. Assuming that the pair is a right pair, the
corresponding output difference must be equal to bits 15–22 of Cj ⊕ C ′

j

(which are a left rotation by 11 bits of bits 4–11), since the difference in
the corresponding bits in the differential is zero. As the S-boxes S1, S2 are
known (up to XOR of the output with a constant, which does not affect
output differences), this provides a very strong filtering condition on the
guessed values.
For the sake of efficiency, we apply this filtering in a two-stage process. First
we guess bits 0–7 of A and K2 and check the filtering condition in S1, and
then we guess bits 8–11 of A and K2 and check the filtering condition in S2.

2. In a similar manner, in the plaintext-ciphertext pairs (Pj , Cj), (Pj , C
′
j) ob-

tained at the third stage, there is a non-zero difference at the inputs of the
S-boxes S4, S5. This allows guessing bits 12–23 of A and K2 and obtain an



Practical-Time Related-Key Attack on GOST with Secret S-boxes 23

additional strong filtering condition on the guessed values by checking out-
put differences of S4, S5 (whose inputs are known for each guess of the bits
of A,K2).

3. Finally, in the plaintext-ciphertext pairs (Pj , Cj), (Pj , C
′
j) obtained at the

second stage, there is a non-zero difference at the inputs of the S-boxes S6, S7.
This allows guessing bits 24–31 of A and K2 and obtaining an additional
strong filtering condition on the guessed values by checking output differences
of S6, S7 (whose inputs are known for each guess of the bits of A,K2).

Step 3: Discarding the remaining wrong candidates. We remain with a few values
of the most significant bits of A and of K2 which cannot be recovered by exam-
ining merely rounds 31,32, due to the differential nature of the attack. In order
to recover them, we analyze round 30. Note that at this stage, we can decrypt
the ciphertexts through rounds 32,31 to obtain inputs to the round function of
round 30, up to a few possible values which stem from the remaining possible
values for A and K2. Since these values are different from each other on the most
significant bits, we need to perform the filtering using differences between inputs
to S-box S7 in round 30.

In a similar manner to Step 2, we divide the elimination of the subkey K3

used at round 30 into three steps, using the three differentials. First, in the third
differential we use, at round 30, the S-box S2 has a non-zero input difference.
Hence, we can guess bits 0–11 of K3, compute the inputs to this S-box, and
check whether its output difference is equal to bits 51–54 of the difference at the
input to round 30 (which correspond to a left rotation by 11 bits of bits 8–11).
By the same reasoning as above, this equality must hold for any right pair with
respect to the third differential. As the S-box S2 is known, this provides us with a
strong filtering condition on bits 0–11 of K3. Then, in the second differential, at
round 30, the S-box S4 has non-zero input difference, which provides a filtering
condition on bits 12–19 and the remaining values of bits 0–11. Finally, in the
first differential, at round 30, the S-box S7 has non-zero input difference, which
provides a filtering condition on bits 20–31 and the remaining values of bits 0–19.

This completes the recovery of bits 0–27 of the subkeyK1, and the S-boxes 0–
6. In addition, for each possible value of bits 28–31 of the subkey K1, we recover
S7 and the subkey K2, up to a swap between their most significant bits (which
we cannot recognize). Our experiments show that in about 74% of the cases
(i.e., in 65 out of the 88 successful experiments), 8 possible vales of bits 28–31
of K1 remain, and in the rest of the cases, all of the 16 possible values of these
four bits remain. As all the S-boxes are known at this stage, the few remaining
subkey candidates can be easily discarded by attacking a reduced-round version
of GOST.

This stage does not require additional data, and is significantly faster than
the previous steps.
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1st stage 2nd stage 3rd stage 4th stage Overall

Success rate 97/100 94/97 92/94 88/92 88%

Data complexity 222.2 222.4 223.2 0 224.2

Time complexity 222.2 222.4 223.2 negligible 224.2

Memory complexity 29.5 29 29 0 3 · 29 = 210.6

Table 2: The success rate and the data, time, and memory complexities of the
attack (average over 100 experiments), using 7 related keys and 256 right pairs
for each characteristic.

4.6 Experimental Verification of the Attack

In this section we describe the experimental verification of the full attack, using
100 different randomly chosen keys and randomly chosen S-boxes. (All S-boxes
were chosen to be permutations, following the discussion in Section 3.4).

General information. The code for the experiments is written in C++, uses
a Microsoft Visual C++ (MSVC) compiler, and the operating system we use
is Windows. The 100 experiments together took 1121 seconds on a single PC,
where the longest experiment took 91 seconds and the median experiment took
7 seconds.

Results. Table 2 describes the success rate and the average complexity of the
experiments, for each of the four stages of the attack. The maximal time com-
plexity of the full attack was 227 encryptions, while the minimum was 218.7

encryptions. The bulk of the memory is used to store the 29 ciphertexts (i.e.,
28 pairs) at each stage and the remaining keys. Our experiments show that on
average, after the first stage there are about 27.8 remaining keys. (The highest
number of remaining keys after the first stage was about 211.2). Therefore, the
memory required for the first stage is about 29 + 27.8 ≈ 29.5 64-bit blocks on
average (with a maximum of about 29 + 211.2 ≈ 211.4 64-bit blocks). After the
second and the third stages only a few key candidates remain, and therefore, a
few memory cells are sufficient for storing them.

The number of related keys required in the attack. To minimize the number
of related keys, we used in the experiments adaptive chosen plaintexts, as the
key differences at the second and the third stages are chosen according to the
previous stages. Our attack uses 7 related keys: four key differences for the first
characteristic, and one for each of the two additional characteristics.

One can minimize the number of related keys used in the first stage, by trying
the four options one by one (instead of trying them in parallel). This method
uses about 4.2 related keys on average. On the other hand, the data and the
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CP/ACP ACP ACP CP

Number of RK 4.2 7 13

Data and time complexity 226.3 224.2 225.1

Table 3: A comparison between chosen plaintext (CP) and adaptively chosen
plaintext (ACP) modes, in terms of the number of related keys used and the
average complexity.

Number of right pairs 128 192 256 384 512

Success rate 84% 88% 88% 91% 83%

Data and time complexity 223.9 224.2 224.2 224.5 225

Table 4: The effect of the number of right pairs on the success rate and on the
average data and time complexity of the full attack.

time complexity of the first stage are somewhat increased: the average is 226.3

encryptions and the maximum is 229.7 encryptions.
We performed also experiments of the attack in the chosen plaintext model,

by using 13 related keys (i.e., trying the four options of the key difference in
round 2 for each characteristic). The success rate of the full attack was 89%, and
the time and the data complexity of the full attack was about 225.1 encryptions
on average, with a maximum of 227.3 encryptions. The memory complexity was
the same as in the adaptive chosen plaintext model. These resuls are summarized
in Table 3.

The number of right pairs. We also examined the effect of the number of right
pairs we use for each characteristic on the success rate and on the data and
time complexity. Table 4 reports the results for some values of the number of
right pairs. While it may seem that an increase in the amount of right pairs
should increase the success rate, this is not always the case, since once the
data complexity is increased, more wrong pairs pass the filtering and undermine
the attack. In particular, increasing the number of right pairs from 256 to 512
decreases the success rate of the attack. Switching the algorithm to accept the
majority of the suggestions (e.g., by discarding inconsistent pairs) would result
in a higher success rate, at the expense of significantly slowing down the attack.

5 Possible Application to GOST-based Hash Functions

In this section we discuss possible applications of our techniques to GOST-
based hash functions. First, we present an extremely efficient collision attack
on a hash function based on GOST in the Davies-Meyer mode, and then we
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present observations that may be useful in future attacks on the actual GOST
hash function [17].7

5.1 Collision Attack on a Davies-Meyer Construction using GOST

Davies-Meyer construction instantiated by GOST and its security. The Davies-
Meyer construction is a way to transform a block cipher into a compression
function. Let E : {0, 1}n · {0, 1}k → {0, 1}n be a block cipher, one can transform
it into a compression function f : {0, 1}n · {0, 1}k → {0, 1}n, which accepts an
n-bit chaining value and a k-bit message block to produce a new n-bit chaining
value using the transformation: f(cv,m) = Em(cv)⊕cv, where cv is the chaining
value andm is the message block. Such a hash function can be used in the Merkle-
Damg̊ard mode of iteration to produce a hash function using a standard padding
scheme to make the message M a multiple of k-bit blocks, and selecting an IV
which is set as H0, the first chaining value. Then, take the padded message
M ′ = (M1|| . . . ||Mt) composed of t blocks, and set H0 = IV , and iteratively
apply Hi = EMi(Hi−1)⊕Hi−1 for i = 1, . . . , t until Ht, the digest is computed.

It is clear from the construction that regardless of the block cipher used,
a collision in the constructions can be found in time 2n/2. Thus, the proposed
construction is not secure, as the 64-bit block length of GOST allows finding a
collision generically with time complexity of about 232.

Collision attack using Mendel et al.’s technique. A possible way to find a collision
faster by exploiting the structure of GOST is to use the technique presented by
Mendel et al. [25] in their attack on the GOST hash function. This technique
assumes that for some i, the chaining value Hi−1 is of the form (x, x), for some
32-bit value x, and aims at finding two messages Mi,M

′
i such that

Hi = EMi
(Hi−1)⊕Hi−1 = EM ′

i
(Hi−1)⊕Hi−1 = H ′

i.

By the structure of GOST, the 256-bit word Mi, which can be chosen by the
adversary, is divided into eight 32-bit words, which are used as the subkeys of
the first eight rounds of GOST. Using this property, the adversary can easily find
two different values Mi,M

′
i for which the intermediate value after eight rounds

of GOST is (x, x). (For this, one can choose the first six subkeys arbitrarily and
find the unique value (on average) of the last two subkeys that leads to (x, x)
by examining 1-round GOST.) For both values, the adversary obtains a fixed
point of 8-round GOST. As rounds 9–16 and 17–24 of GOST are identical to
rounds 1–8, the intermediate value after 24 rounds is equal to (x, x) as well.
Finally, at the last 8 rounds of GOST, the subkeys are used in a reversed order.
As GOST is a Feistel construction, this means that when the intermediate value
after 24 rounds is (x, x), the last 8 rounds ‘undo’ the previous 8 rounds, and
the resulting ciphertext is a swapped version of the intermediate value after 16

7 We remind the reader that the GOST hash function uses 4 parallel applications of
the GOST block cipher, has a 256-bit chaining value and a 256-bit message block.
See more details in Section 5.2.
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rounds, which in our case is (x, x). Hence, EMi(Hi−1) = EM ′
i
(Hi−1) = (x, x),

which yields a collision in Hi.
This attack strongly uses the assumption that Hi−1 = (x, x). In the attack of

Mendel et al. on the actual GOST hash function, they check 232 chaining values
Hj until they obtain a chaining value of the form (x, x) and only then they apply
the attack. It is unclear whether this attack strategy can be applied to find a
collision with complexity of less than 232 when the initial value does not have
the specific form (x, x).

Efficient collision attack using our technique. We show that with our technique,
we can find a collision in time of less than 210 hash function evaluations, for any
value of Hi−1.

We examine the encryption process EMi
(Hi−1), where the block cipher E

is GOST and the key Mi is the i’th message block that can be chosen by the
adversary. We find two values Mi = (Mi,1, . . . ,Mi,8) and M ′

i = (M ′
i,1, . . . ,M

′
i,8)

such that in the encryption processes EMi(Hi−1) and EM ′
i
(Hi−1):

1. The basic 3-round differential of GOST presented in Section 3 is satisfied in
rounds 1–3,

2. We have Mi,j = M ′
i,j for j = 4, 5, 6, 7, 8, and

3. The intermediate value after 8 rounds in the encryption process EMi
(Hi−1)

is Hi−1.

Once such two values Mi,M
′
i are found, we track the intermediate differences

between the encryption processes EMi
(Hi−1) and EM ′

i
(Hi−1). We denote the

value of the intermediate states at the end of round ℓ in the encryption processes
EMi(Hi−1) and EM ′

i
(Hi−1) by Xℓ, X

′
ℓ (respectively), and the difference between

them by ∆Xℓ = Xℓ ⊕X ′
ℓ.

First, we claim that Mi,M
′
i that satisfy the three above conditions can be

found in time which is significantly faster than 29 hash function evaluations.
Indeed, as was explained in Section 3, by looking at the S-box S7 of GOST we can
choose the difference between the words Mi,1,Mi,2,Mi,3 and the corresponding
words of M ′

i such that the differential will hold with probability of at least
2−8. (This holds for most of the possible choices of the S-box S7.) Then, we
can try 210 pairs (Mi,M

′
i) with the prescribed difference and check whether the

intermediate difference ∆X3 is zero. With a high probability, a pair that satisfies
the differential will be found, thus achieving (1). In order to achieve (3), we can
fix the value of Mi,4,Mi,5,Mi,6 and find the unique value of the words Mi,7,Mi,8

(on average) such that X8 = Hi−1, by assuming that (3) holds and separately
examining rounds 7 and 8 of GOST, for which we know the input and the output
values. Words M ′

i,j for 4 ≤ j ≤ 8 are taken to be equal to the corresponding
words of Mi, in order to satisfy (2).

Due to (1), (2) and (3), we have X ′
8 = Hi−1 as well. This means that Hi−1

is a fixed point of the first 8 rounds of GOST, for both keys Mi and M ′
i . Since

rounds 9–16 and 17–24 of GOST are identical to rounds 1–8, it follows that
X24 = X ′

24 = Hi−1. The zero difference between the encryption processes is
preserved until the input of round 30 (as there is no subkey difference and no
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state difference), and at the last three rounds, the subkeys generated by the keys
Mi,M

′
i (which are Mi,3,Mi,2,Mi,1 and M ′

i,3,M
′
i,2,M

′
i,1, respectively) satisfy the

subkey difference of the 3-round related-key differential. Hence, the ciphertext
difference is equal to 0 (which means that we get a collision) with probability of
at least 2−8.

Finally, we observe that once we obtain one pair (Mi,M
′
i) that satisfies

the differential in rounds 1–3, we can easily generate 29 additional pairs that
satisfy the differential by leaving Mi,1,Mi,2,Mi,3 unchanged, slightly altering
Mi,4,Mi,5,Mi,6, recomputing Mi,7,Mi,8, and setting M ′

i such that (1),(2) are
satisfied. With a high probability, one of these pairs satisfies the differential in
rounds 30–32, and thus, provides a collision. Thus, we obtain a collision in the
hash function, in time complexity of less than 210 hash function evaluations.

5.2 Observations on the GOST Hash Function

The GOST hash function. The GOST hash function, defined in the standards
GOST R 34.11-94 [17] and GOST 34.311-95, was the Russian Federation hash
function standard for almost 20 years, until it was replaced by the hash function
Streebog in 2012. It is a 256-bit hash function based on a parallel application of
four instances of the GOST block cipher to related inputs, followed by a mixing
transformation. The exact description of the hash function is rather complex.
We briefly describe the details required for our observations, and refer the reader
to [17] for the complete specification.

Similarly to the construction described above, the message M is padded to
M ′ whose length is a multiple of 256 bits, then M ′ is divided to 256-bit blocks
M ′ = (M1|| . . . ||Mt), and then a serial application of f : {0, 1}256 × {0, 1}256 →
{0, 1}256 is used to compute Hi = f(Mi, Hi−1) for i = 1, . . . , t. We omit the way
in which the digest is generated from Ht, as we concentrate on the compression
function f .

The structure of f is the following. First, the 256-bit word Mi is used to
generate four 256-bit words Ki,1, . . . ,Ki,4, using XORs of iterated applications
of a linear transformation A that mixes 64-bit chunks of Mi and a permuta-
tion P that changes the order of 8-bit chunks of the resulting words. Then,
Hi−1 is partitioned into 64-bit blocks as Hi−1 = (Hi−1,1|| . . . ||Hi−1,4) and the
GOST block cipher is applied four times in parallel, to obtain the 256-bit value
Si = (GOSTKi,1(Hi−1,1)|| . . . ||GOSTKi,4(Hi−1,4)). Finally, an LFSR-based mix-
ing function χ which depends on Si but also on Mi and Hi−1 is used to produce
Hi = χ(Hi−1,Mi, Si).

The attack of Mendel et al. At Crypto’2008, Mendel et al. [25] presented an
attack on the GOST hash function, which allows finding a collision with time
complexity of 2105 hash function evaluations and finding a preimage with time
complexity of 2192 hash function evaluations. While the attack is far from being
practical, it breaks the collision and preimage resistance of the GOST hash
function.
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The basic observation behind the attack is that when Hi−1,1 is of the form
(x, x), one can easily generate many 256-bit keys Ki,1 such that Hi−1,1 is a fixed
point of GOSTKi,1

(·). Specifically, one can generate up to about 2192 such keys,
with a cost of a few operations for generating each key (as one can arbitrarily
choose the first six 32-bit words of Ki,1 and find the unique value of the last two
words which yields a fixed point by analyzing rounds 7,8 separately).

As Ki−1,1 is obtained from Mi by a simple linear transformation, the adver-
sary can compute 2192 values of Mi which lead to the same 64 initial bits of Si,
with a cost of a few operations for generating each such value Mi. If the value Hi

would depend only on Si and Hi−1 like in the Davies-Meyer construction, one
could obtain a collision in Hi after observing 296 such values Mi, by the birthday
paradox. (In fact, if this was the case, one could use the attack of Dinur et al.
on GOST [12] to obtain 264 values of Mi which lead to the same 128 initial bits
of Si in time 264, by combining multi-collisions in two instances of GOST, and
then obtain a collision in Hi in time 264 using the birthday paradox). Mendel et
al. show that by adding a 64-bit linear restriction, one can leverage the collision
in 64 bits of Si into a collision in 64 bits of Hi despite the existence of the mixing
function χ. (This additional restriction is the reason why the strategy of com-
bining multi-collisions in two instances of GOST cannot be applied, due to lack
of degrees of freedom). The overall complexity of the collision attack of Mendel
et al. is higher than 296 (specifically, it is 2105) due to the need to overcome
the finalization that was not described above. The preimage attack of Mendel et
al. is based on the same technique.

The possibility of applying our technique to the GOST hash function. As de-
scribed in Section 5.1, our technique can be used to find efficiently pairsKi,1,K

′
i,1

such that GOSTKi,1
(Hi−1,1) = GOSTK′

i,1
(Hi−1,1). Each such pair can be found

at the cost of less than 210 GOST evaluations, even if Hi−1,1 does not have the
form (x, x). A natural strategy for applying this technique to attack the GOST
hash function is to find pairs of values (Mi,M

′
i) such that collisions in two in-

stantiations of GOST occur simultaneously, thus yielding a collision in 128 bits
of Hi.

The first obstacle on the way of this strategy is that the words Ki,j are
related through the transformations A,P , and thus, it is not clear a-priori that
one can obtain differences that comply with our related-key differential in both
Ki,1 and Ki,2 simultaneously. However, it turns out that the exact structure
of A,P does allow to achieve this, at least to some extent. Specifically, let us
call a difference of the form e31, e7, e31 in three subsequent subkey words or a
cyclic rotation of it a local collision, and observe that if the subkey difference
can be decomposed as the sum of two such local collisions (probably, in different
words), then the probability of the related-key differential is only squared, which
still allows finding collisions efficiently in many cases. Examination of A,P shows
that there are many ways to choose a difference in Mi such that in two of the
words Ki,j the difference will form a local collision. For example, if the nonzero
bits in the difference in Mi are the most significant bits of xi4, xi5, xi8 (using
the notation of [17]), then the differences in the words Ki,1 and Ki,2 form local
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collisions and the difference in the word Ki,3 is the sum of two local collisions.
This may allow finding many pairs of values (Mi,M

′
i) which lead to a collision

in the 128 initial bits of Si.
The second obstacle in the way of this strategy is the mixing transformation

χ. Examination of the structure of χ (or more specifically, of the transformation
Ψ−12(∆(Mi)) which affects it; note that the effect of Hi−1 can be neglected, as
we assume that there is no difference in Hi−1) shows that for the input difference
described above, the partial collision in Si does not lead to a collision in any of
the four 64-bit parts of Hi, due to the mixing. A possible way to overcome
this obstacle is to modify the difference ∆(Mi) in such a way that the effect of
Ψ−12(∆(Mi)) will be smaller. For example, if the nonzero bits in ∆(Mi) are the
most significant bits of xi9, xi11, xi18, then a collision in Si,4 leads to a collision
in Hi,4. For this value of ∆(Mi), the difference in Ki,4 forms the sum of two
local collisions, and thus, one may find collisions in Si,4 (and thus, also in Hi,4)
with a reduced cost. However, we could not find a way to obtain collisions in
two words of Hi simultaneously, due to the effect of χ.

Finally, the third obstacle is that while the attack of Mendel et al. uses huge
multi-collisions due to GOST’s mode of iteration (that contains a an additive
checksum of all chaining values Hi), our attack provides us only with pairs of
values of Mi which yield collisions in part of the state Hi. This makes leveraging
a partial collision into a full collision significantly more expensive.

To summarize, it seems that the mixing function χ thwarts the natural strat-
egy of using our technique to attack the GOST hash function. However, more
sophisticated applications might be possible, especially as the structure of A,P
allows obtaining local collisions or their combinations in several words Ki,j si-
multaneously.

6 Summary and Conclusions

In this paper we presented a related-key attack on GOST with secret S-boxes,
which is the first known attack on the full GOST with secret S-boxes that works
for all keys. We fully verified our attack, and it runs in about 11 seconds on a
PC, with a success rate of 88%. The main technique we used in the attack is a
new related-key differential of GOST, which is based on 3-round local collisions,
in the spirit of the collision attacks on the SHA-0 and SHA-1 hash functions.
We showed that our techniques apply to other variants of GOST as well, such
as the block cipher GOST2 and a Davies-Meyer hash function based on GOST.
The main open question for further research is, whether our techniques can be
applied to attack the GOST hash function.
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