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Abstract. In this work we introduce a new code-based signature scheme, called FuLeeca, based

on the NP-hard problem of finding low Lee-weight codewords. The scheme follows the Hash-and-

Sign approach applied to quasi-cyclic codes of small Lee-weight density. Similar approaches in the

Hamming metric have suffered statistical attacks, which reveal the small support of the secret basis.

Using the Lee metric we are able to thwart such attacks. We use existing hardness results on the

underlying problem and study adapted statistical attacks. We propose parameters for FuLeeca and

compare them to the best known post-quantum signature schemes. This comparison reveals that

FuLeeca is extremely competitive. For example, for NIST category I, i.e., 160 bit of classical security,

we obtain an average signature size of 276 bytes and public key sizes of 389 bytes. This not only

outperforms all known code-based signature schemes, but also the signature schemes Dilithium,

Falcon and SPHINCS+ selected by NIST for standardization.

Keywords: Post-Quantum Cryptography · Signature scheme · Code-Based Cryptography ·

Lee metric

1 Introduction

In 1994, Shor [38] has introduced an algorithm, running in polynomial time on a capable quantum

computer, to solve the integer factorization problem as well as the discrete logarithm problem. Most of the

currently deployed public key cryptosystems and digital signature schemes are based on these problems

and thus will be broken in the quantum-era. As a consequence, NIST announced a standardization

competition in order to find viable solutions to replace the currently used cryptosystems with quantum-

secure alternatives in 2016.
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Since the standardization call several of the submitted cryptosystems have been broken or removed

from the competition as the proposed parameters seemed inferior to other schemes. Recently, several

cryptosystems have been selected for standardization, both for key encapsulation and digital signatures.

The most competitive and already selected signature schemes in terms of parameter sizes (keys and

signature sizes) are based on structured lattices, namely CRYSTALS-Dilithium [18] and Falcon [23].

If signature sizes or signing times are not a major concern, hash-based signatures like SPHINCS+[1]

provide even smaller key sizes. However, schemes based on other hard problems featuring competitive

key and signature sizes are required in case that a major breakthrough in attacking schemes based on

structured lattices is achieved.

One possibility to build quantum-secure signature schemes is to rely on hard problems from coding

theory that have been well examined over decades [9, 4, 3, 11]. In this work, we thus propose a code-

based signature scheme in the Lee metric. While classical code-based cryptography considers vector

spaces endowed with the Hamming metric, other metrics like the rank metric have attracted attention

in the context of cryptography. This work marks the first Lee-based cryptographic primitive.

In general, there are two main methods to construct code-based signature schemes: the first one applies

the Fiat-Shamir transform [22] to a code-based zero-knowledge identification scheme and the second one

is called Hash-and-Sign approach [8]. The former approach usually suffers from huge signature sizes, due

to large cheating probabilities within the identification scheme, and the latter features small signature

sizes at the cost of larger public key sizes.

The signature scheme we present in this paper is based on the Hash-and-Sign approach, which has

been introduced in 2001 by Courtois, Finiasz and Sendrier [15] (following the idea of [8]) and is often

called the CFS scheme. This classical code-based Hash-and-Sign signature scheme is a direct adaption

of the McEliece public-key encryption scheme. In fact, the rationale is to start with an algebraically

structured secret code that comes with an efficient decoding algorithm. The public key is a disguised

version of the secret code. To generate a signature, the message and a nonce is hashed until the digest

results in a syndrome of a low-weight error vector. This approach has some potential drawbacks that have

been exploited for attacks in the past: on the one hand, the public code might be distinguishable from a

random code and thus leak information on the secret code1. On the other hand, the event that the hash

of a message is a syndrome of a low weight codeword is highly unlikely and therefore this process has

to be repeated many times. This causes the signing time of CFS to be impractically high. Additionally,

as the public key is a disguised version of an algebraically structured code, the public key size of CFS

tends to be rather large. The CFS scheme was the starting point for several Hash-and-Sign signature

schemes, such as [2, 26, 14], which have not survived cryptanalysis [32, 34]. The code-based scheme WAVE

[16] also follows the same blueprint but translated into the theoretical framework pioneered by Gentry,

Peikert and Vaikuntanathan [25]. Additionally, it is based on the hardness of finding errors having large

Hamming weights instead of small ones, thereby preventing all aforementioned attacks and so far no

successful cryptanalysis has been mounted.

1See for example [21], where the CFS scheme using high rate Goppa codes has been attacked.
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Code-based signature schemes based on quasi-cyclic structures with low Hamming density codes in

the Hamming metric, e.g., [2, 33], are vulnerable to statistical key attacks, [36, 17]. These attacks have

in common that they make use of the small support of the secret key. An attacker can recover the sparse

secret key by observing the distribution of many signatures and comparing it to a random distribution.

The use of the Lee metric thwarts such attacks, as even though the Lee weight of the secret basis is low,

the number of non-zero entries is relatively large.

FuLeeca is therefore based on quasi-cyclic codes in the Lee metric. In a nutshell, the signature scheme

works as follows: the secret key is a quasi-cyclic low Lee-weight generator matrix and the public key is

its systematic form. Note that recovering the original low Lee-weight basis is as hard as the problem of

finding low Lee-weight codewords, which has been proven to be NP-hard [40]. The binary hash output

of the message m is mapped onto {±1} and is considered as the target vector c for the main step of the

scheme: the signer uses the low Lee-weight basis to find a codeword, which is connected to the signature

for m, with two properties: firstly, the Lee weight should be low and secondly, the signum of the codeword

should have many 1s, respectively −1s, in the same places as the target vector c. This second property

is used to bind the message to the signature, while the first property is essential to make the scheme

secure.

For our chosen parameters targeting NIST security level I, the public key and signature sizes are only

389 bytes and 276 bytes, respectively. The sum of the public key and signature sizes is smaller than that

of all signature schemes currently proposed within the NIST competition.

A multiple-use signature scheme should have an existential unforgeability under adaptive chosen mes-

sage attacks (EUF-CMA) security proof. For code-based signatures constructed from a zero-knowledge

identification scheme this property is assured through the number of rounds and the cheating probability.

However, the EUF-CMA security proof is notoriously difficult for Hash-and-Sign approaches. To the best

of our knowledge, WAVE [16] is the only known code-based Hash-and-Sign signature scheme that pro-

vides such a proof. Even though we do not provide a full security proof for FuLeeca, we consider attacks

exploiting the leakage via published hash/signature pairs, and design our scheme integrating counter-

measures for those attacks. Heuristically, we observe that our scheme does not leak any information via

the standard attack vectors.

This paper is structured as follows: In Section 2 we introduce the notation that is used throughout

this paper and recall the required coding-theoretic basics. In Section 3 we describe the proposed Lee-

metric signature scheme FuLeeca. In Section 4 we analyze the security of the proposed scheme. We first

consider the best known solver to find low Lee weight codewords, and secondly we provide heuristics for

EUF-CMA security, which allow the signature scheme to be used multiple times. Finally, in Section 5 we

analyze the performance of the scheme. We compare the key sizes, the signature size and the computation

time for signing and verification to other post-quantum signature schemes. Section 6 concludes the paper.
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2 Preliminaries

2.1 Notation

Throughout this work, we denote vectors in bold lowercase and matrices in bold uppercase letters. We

refer to the i-th element of the vector v by vi and similarly, to the j-th row of a matrix A by aj and we

denote the element in the j-th row and k-th column by aj,k. The identity matrix of size n is denoted by

In. We denote by uppercase letters sets and for a set S ⊂ {1, . . . , n}, we denote by |S| the cardinality

and by SC = {1, . . . , n} \ S the complement.

The sampling of an element a from the uniform distribution over a set K is denoted by a
$←− K. While

the sampling of an element a according to a distribution χ is given by a
$←− χ and by a slight abuse of

notation we denote sampling of a vector v independently and identically distributed (i.i.d.) from χ by

v
$←− χ. We denote the entropy of a random variable X by H(X).

Throughout this paper, we denote by Fp the finite field of order p, where p is a prime. We often choose

to represent this prime field as {−p−1
2 , . . . , 0, . . . , p−1

2 }, which we call the symmetric representation. For

a set S ⊂ {1, . . . , n} of size s and matrix A ∈ Fk×n
p , we denote by AS the k × s matrix formed by the

columns of A indexed by S, similarly for a vector x ∈ Fn
p , we denote by xS the vector of length s formed

by the entries of x indexed by S.

2.2 Lee-metric Codes

An [n, k] linear code C is a k-dimensional linear subspace of Fn
p . An [n, k] linear code can be compactly

represented either through a generator matrix G ∈ Fk×n
p , which has the code as its image or through

a parity-check matrix H ∈ F(n−k)×n
p having the code as its kernel. The elements of a code are called

codewords and for any x ∈ Fn
p , we call s = xH> the syndrome of x. The rate of an [n, k] code is R = k

n .

For an [n, k] linear code C and a set I ⊂ {1, . . . , n}, we denote by CI the set of restrictions on codewords

restricted to the coordinates specified in I. We say that I ⊂ {1, . . . , n} of size k is an information set, if

|CI | = |C|. As a consequence, we have that for a generator matrix G, respectively a parity-check matrix

H of the code, GI and HIC are invertible. We say that a generator matrix G, respectively a parity-check

matrix H are in systematic form (with respect to I), if GI = Ik, respectively HIc = In−k.

Classically, in coding theory the vector space Fp is endowed with the Hamming metric, where the

Hamming weight of a vector v, denoted by wtH(v), is given by the number of non-zero entries of v.

However, for this paper we are interested in a different metric, called the Lee metric.

The Lee weight of an element a ∈ Fp is defined as

wtL(a) := min{a, p− a}, (1)

where the representation of a is chosen to be in {0, . . . , p− 1}. In fact, one can think of the Lee weight

as the L1-norm modulo p. Clearly, the Lee weight of an element can be at most (p− 1)/2, thus we will

denote this value by M . For a vector v ∈ Fn
p its Lee weight is defined as the sum of the Lee weights of
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its elements, i.e.,

wtL(v) :=
n∑

i=1

wtL(vi). (2)

Notice that a vector of relatively large Lee weight does not have to be of large Hamming weight and

vice versa (the Lee weight and Hamming weight coincide only for p = 2 and p = 3). In fact, we have that

wtH(v) ≤ wtL(v) ≤MwtH(v) and the average Lee weight of the vectors in Fn
p is given by nM/2. For our

scheme the aforementioned connections between Lee and Hamming weight are essential as they enable

us to use generator matrices of low Lee weight that nevertheless have substantial Hamming weight.

The Lee weight induces the Lee distance, which we define by dL(x,y) := wtL(x−y), for all x,y ∈ Fn
p .

For a linear code C we define the minimum Lee distance to be

dL(C) = min{wtL(c) | c ∈ C, c 6= 0}.

We denote by δ the relative minimum Lee distance, that is δ = dL(C)
nM . Let us denote by VL(p, n, r) the

Lee sphere of radius t

VL(p, n, t) := {x ∈ Fn
p | wtL(x) = t},

and by

FL(p, T ) = lim
n→∞

1

n
logp(|VL(p, n, TnM)|)

its asymptotic size. The exact formulas for the size of VL(p, n, t) and FL(p, T ) can be found in [40].

Let us denote by A(n, δ) the maximal size of a code in Fn
p of minimum Lee distance δMn and by

R(δ) = lim sup
n→∞

1

n
logp(A(n, δ)).

The Gilbert-Varshamov bound in the Lee-metric then states: R(δ) ≥ 1 − FL(p, δ). In [12] it was shown

that random Lee-metric codes attain with high probability the Lee-metric Gilbert-Varshamov (GV)

bound, i.e., a random code has with high probability a relative minimum Lee distance δ such that

R(δ) = 1 − FL(p, δ). If C ∈ Fn
p is a random code of dimension k, we can also compute the expected

number of codewords of a given Lee weight w as |VL(p, n, w)|pk−n.

2.3 Basic Cryptographic Tools

We denote the security parameter assuming a classical attacker by λ and the security parameter for an

attacker having access to a capable quantum computer by λ′. We use standard definitions of probabilistic

polynomial time algorithms. We denote by “Hash” a Hash function in the perfect random oracle model.

In a digital signature scheme we have two parties: the signer and the verifier. The signer randomly

samples a secret key sk and computes and publishes the connected public key pk. Given a message m, the

signer then uses the secret key sk to compute a signature v. The signer then sends (m,v) to the verifier.

The verifier checks the validity of the signature v for the message m under the constraints imposed by

the scheme using the public key. An adversary might try to construct a valid signature, either using just

the knowledge of the public key, or after having observed several signatures corresponding to different

messages. The adversary is only allowed to succeed with negligible probability, e.g., < 2−λ.
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3 System Description

In this section, we describe the digital signature scheme FuLeeca.

For our scheme we represent the elements of Fp within{
−p− 1

2
, . . . , 0, . . . ,

p− 1

2

}
for p > 3 prime and n ∈ N even. As usual, we write M for the maximal Lee weight in Fp, that is

M = p−1
2 . We define a function sgn(x), that gives us the sign of an element in Fp.

Definition 1 (Signum). For x ∈ Fp =
{
−p−1

2 , . . . , 0, . . . , p−1
2

}
let

sgn(x) =


0 if x = 0,

1 if x > 0,

−1 if x < 0.

For the symmetric representation of Fp this corresponds to the common signum function. Furthermore,

we define a matching function mt(x,y) that compares x and y and counts the number of symbols that

hold the same sign.

Definition 2 (Sign Matches). Let x,y ∈ Fn
p and consider the number of matches in their sign such

that

mt(x,y) = |{i ∈ {1, . . . , n} | sgn(xi) = sgn(yi), xi 6= 0, yi 6= 0}|.

We are interested in a close estimate of the probability of an attacker being able to reuse any of

the previously published signatures. For that, we introduce a function calculating the probability that a

vector and a uniformly random hash digest (in {±1}n) have at least µ̂ sign matches. When talking about

the security of the signature scheme, we will usually consider the negative log2 of this probability.

Definition 3 (Logarithmic Matching Probability (LMP)). For a fixed v ∈ Fn
p and c

$←− {±1}n,

the probability of c to have µ := mt(c,v) sign matches with v is

B(µ,wtH(v), 1/2),

where B(k, n, p) is the binomial distribution defined as

B(k, n, p) =

(
n

k

)
pk(1− p)n−k .

To ease notation, we write LMP(v, c) = − log2(B(µ,wtH(v), 1/2)).

Remark 4. The LMP(v, c) is closely related to the number of sign matches between v and c. We use the

LMP to justify that message and signature are bound together. The difference compared to just counting

the sign matches between v and c is that the LMP also takes into account that the Hamming weight

of v, i.e. the necessary amount of sign matches depends on wtH(v). Specifically, for a set of published

codewords, the problem of finding a message hash c = Hash(m||nonce) having the required number of
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matches when compared with any of the codewords should be equivalent to the problem of finding a

(second-)preimage for some hash function producing outputs of LMP(v, c) bits. We consider this problem

to be hard if the deployed hash function is secure. Throughout this work we assume access to a perfect

hash function (Random Oracle).

In [5], the authors computed the marginal distribution of entries where vectors are uniformly dis-

tributed on a Lee sphere VL(p, n, w). As n tends to infinity we have the following result on the distribution

of the elements in x ∈ Fn
p .

Lemma 5 ([5, Lemma 1]). Given a vector x ∈ VL(p, n, w). Then, for any x ∈ Fp, the probability that

some entry xi is equal to x, is independently of i given by

pw(x) =
1

Z(β)
exp(−β wtL(x)),

where Z denotes the normalization constant and β is the unique solution to w =
∑p−1

i=0 wtL(i)pi(x).

Definition 6 (Typical Lee Set). For a fixed weight w, let pw(x) be the probability from Lemma 5 of

the element x ∈ Fp. Then we define the typical Lee set as

T (p, n, w) =
{
x ∈ Fn

p | xi = x for bpw(x)ne coordinates i ∈ {1, . . . , n}
}
,

i.e., the set of vectors, for which the element x occurs bpw(x)ne times.

3.1 Key Generation

The key generation of our signature scheme is presented in Algorithm 1. The basic idea to generate the

secret key Gsec is to sample two cyclic matrices A,B ∈ Fn/2×n/2
p of low Lee weight wkey, where A has

to fulfill the extra property of being an invertible matrix. Note that this property is satisfied for random

matrices with large probability. The public key is obtained by computing the row reduced echelon form

of Gsec, referred to as Gsys. The public key is then formed by the non-trivial part of Gsys, which we

denote by T .

Algorithm 1: Key Generation
Input: public parameters for prime p, code length n, security level λ, Lee weight wkey

Output: public key T , private key Gsec

1 a, b
$←− T (p, n/2, wkey).

2 Construct cyclic matrix A ∈ Fn/2×n/2
p from all shifts of a. A needs to be invertible. If it’s not, resample

a according to Step 1

3 Construct B ∈ Fn/2×n/2
p from all shifts of b.

4 Gsec =
(
A B

)
∈ Fn/2×n

p .

5 Gsys =
(
In/2 T

)
of Gsec with T = A−1B.

Note that |T (p, n/2, wkey)|2 corresponds to the cardinality of our key space. In order to prevent brute

force attacks this cardinality needs to be larger than 2λ.
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3.2 Signature Generation

Most of the Hash-and-Sign schemes require the Hash of a message to be a syndrome for a public parity-

check matrix. In this Hash-and-Sign algorithm, however, we proceed differently and use the generator

matrix to generate signatures which are low Lee-weight codewords. The connection to the Hash of the

message vector is established through a number of sign matches that is a lot larger than the expected

number of matches for a unrelated Hash.

The signature generation takes as input the message m to be signed and uses the private key Gsec

to generate the signature y. To do so, the algorithm utilizes the short basis of the code, namely the rows

of Gsec, to find a codeword v = [y,yT ] of Lee weight slightly less than wsig. Without having access to

a short basis (the private key) it is computationally hard to find codewords in the desired Lee weight

range. This property is important to make the scheme secure. Loosely speaking, the property that enough

signs between the codeword v and Hash(m||nonce) are matching establishes the connection between the

signature and the message. Furthermore, assuming the Hash function to be a random oracle, changing

the nonce if a signing attempt does not work, guarantees that any message can be signed successfully.

Step 5 assures that the Hash of the message, i.e., the vector c, is in {±1}n making its signs comparable

with the signs of vectors in Fn
p . In Step 8, we are checking how many matches the row gi has with the

target vector c. We take into account how many of the signs of c and gi are matching in Step 9. We do

this by setting the magnitude in the corresponding position of the information vector according to the

number of matches and the scaling factor s. Thus, if the row has has a number matches when compared

with the target c that is noticeably above average, we add this row multiple times. Similarly, if the

number of matches is far below average, we subtract the same row multiple times.

Steps 10-26, which we refer to as the Concentrating procedure, are necessary to ensure that the

signatures vary as little as possible in Lee weight and sign matches. To have signatures with much lower

Lee weight than other signatures or varying LMP is undesirable, as this might leak information on the

secret key. Thus, the iterative approach in lines 10-26 is used to obtain signatures with an almost equal

matching probability (LMP) and almost constant Lee weight.

Note that, since we greedily minimize the absolute distance to the targeted LMP, the algorithm

will choose to add or subtract rows to increase or decrease the number of sign matches as necessary.

Interestingly, we don’t have to control the (relative) Lee weight of the code word explicitly, since both

adding and subtracting rows will slowly increase the weight with high probability (assuming we do not

undo earlier decisions). Once we would exceed the targeted weight by adding or subtracting an additional

row, we stop. If additionally, the observed LMP exceeds the threshold specified for verification, we return

the systematic portion (just the first half) of the produced codeword together with the nonce. Else we

discard the failed attempt, sample a new nonce and repeat the procedure from the beginning.

In Step 20 and 23 we ensure that a row of the generator matrix that has been added throughout the

iterative procedure will not be subtracted in any of the subsequent steps. Similarly, this also holds for

rows that have been subtracted. This is necessary to avoid falling into infinite loops.
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Algorithm 2: Signing
Input: secret key Gsec with rows gi, secret matrix A, message m, thresholds ε, signature weight wsig,

scaling factor s ∈ R, security level λ.

Output: signature = (nonce, y).

1 Set G =

 Gsec

−Gsec

 with rows g′
i

2 repeat

3 nonce $←− {0, 1}λ+64; // Simple signing starts

4 c← Hash(m || nonce)

5 ci ← (−1)ci ∀i

6 x← (0, . . . , 0)

7 for i← 1 to n/2 do

8 xmt = mt(gi, c)− wtH (gi)
2

9 xi = bxmtsc ; // Simple signing ends

end

10 A ← {1, . . . , n} ; // Allowed row index set

repeat

11 ν ← (0, . . . , 0); // Concentrating starts

12 w ← (0, . . . , 0)

13 for i ∈ {1, . . . , n} do

14 νi ← |LMP(xGsec + g′
i, c)− (λ+ 64 + ε)| ; // Difference to target LMP

15 wi ← wtL(xGsec + g′
i)

end

16 i← argminAν`

17 if wi ≤ wsig then

18 if i ≤ n
2

then

19 xi ← xi + 1

20 A ← A \ {i+ n/2}

21 else

22 xi−n/2 ← xi−n/2 − 1

23 A ← A \ {i− n/2}

24 else if LMP(xGsec, c) ≥ λ+ 64 then

25 return (nonce, y ← xA)

26 else

27 go to Step 3 ; // Concentrating ends

end

end
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We also remark that the codeword corresponding to the signature xGsec will never be close to any

of the rows in the secret basis Gsec. This is due to the number of sign matches between these rows and

the target vector c being far too low. In fact, only after having added several rows we can ensure that

the signs of xGsec are close to the target LMP. Furthermore, we exploit the fact that adding rows of the

secret generator matrix increases the Lee weight with high probability, thereby we are able to generate

signatures marginally below the target Lee weight.

3.3 Verification

The verification process is quite simple and given in Algorithm 3. First, the verifier checks that v is indeed

a codeword of the public code. This is ensured by computing v as [y yT ]. Then, the verifier checks that

the codeword v has a Lee weight of at most wsig. Finally, one checks whether a sufficient amount of the

signs of the non-zero elements of the codeword v match Hash(m||nonce), i.e., LMP(v, c) ≥ λ+ 64.

Algorithm 3: Verification
Input: signature y, message m, nonce, public key T , Lee weight wsig.

Output: Accept or Reject

1 c← Hash(m || nonce)

2 ci ← (−1)ci ∀i

3 v = [y yT ].

4 Accept if the following two conditions are satisfied:

(a) wtL(v) ≤ wsig,

(b) LMP(v, c) ≥ λ+ 64.

Otherwise, Reject.

3.4 Signature Compression

Notice that the verifier can compute h = (−1)Hash(m||nonce) and thus also y′ = y ? h, where ? is the

component-wise multiplication. Since y = y′ ? h, it is enough to send y′, and the verifier is able to

recover v. This reduces the entropy in the sent vector since most of the signs in h match the signs of the

signature.

Note that y′ is heavily concentrated rather than uniform over Fp (this is similar to Falcon [23]). We

make use of the well known fact that it is possible to losslessly compress y′ close to its entropy [20],

thereby reducing the signature size of the scheme.

4 Security Analysis

In this section, we assess the security of the proposed system. The analysis consists of three parts: we

begin by considering the generic solvers for the low Lee weight codeword finding problem. The second
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part describes known attacks and our countermeasures. Finally, we take all those attacks into account

we show that the presented parameters achieve the security levels required by NIST.

4.1 The underlying hard problem and generic solvers

The adversary can attempt to recover the secret key from the public key, which is known as a key recovery

attack. For FuLeeca, this is equivalent to finding any of the the rows of the secret generator matrix, which

are of weight wkey. Alternatively, the attacker can try to forge a signature directly, without knowledge of

the secret key. Forging a signature of FuLeeca is therefore equivalent to finding a codeword that satisfies

both the number of required matches and the weight restriction. Hence, both attacks require solving

instances of the low Lee weight codeword finding problem, which is formally defined as follows.

Problem 7 (Finding Low Lee-Weight Codewords). Given H ∈ F(n−k)×n
p and w ∈ N find a c ∈ Fn

p such

that cH> = 0 and wtL(c) = w.

This problem has first been studied in [27]. As usual, Problem 7, i.e. finding low-weight codewords is

equivalent to the decoding problem. The decisional version of this problem has been proven to be NP-

complete in [40]. Several algorithms have been proposed to solve this problem, they all belong to the

family of Information Set Decoding (ISD) algorithms.

Remark 8. Note that ISD algorithms try to solve the syndrome decoding problem, that is: given a

parity-check matrix H ∈ F(n−k)×n
p , a syndrome s ∈ Fn−k

p and a target weight t, they find an error vector

e ∈ Fn
p , such that He> = s> and wt(e) = t. Thus, by setting s = 0, we can use such solvers to find

codewords of weight t. However, note that Prange’s algorithm [35] searches for a transformed syndrome

s′ = sU , for some invertible U and wants the transformed syndrome to have weight t. As this is never

satisfied for s = 0, Prange cannot be used to find low weight codewords. However, all improvements

upon Prange, such as Stern/Dumer [39, 19], MMT [31], BJMM [7] try to first enumerate the error vector

in the information set and then check whether the remaining vector has the remaining weight. This can

also be applied to s = 0.

ISD algorithms make use of an information set of the code, where one assumes a small weight and

thus constructs lists of these partial solutions. Let us quickly recall the main steps of an ISD algorithm.

Given H ∈ F(n−k)×n
p , choose an information set I and bring H into a partial systematic form. For this,

let J be a set of size k + `, which contains the information set I and transform H as

UHP = H̃ =

In−k−` H1

0 H2

 ,

where U ∈ F(n−k)×(n−k)
p is some invertible matrix and P ∈ Fn×n

p is a permutation matrix. Thus, we also

split the unknown solution c into the indices J and Jc, i.e., cP> = (c1, c2). Assuming that c2 has Lee

weight v, we get the following two equations:

c1 + c2H
>
1 = 0

c2H
>
2 = 0.
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Thus, we can first solve the second equation, c2H>
2 = 0 with wtL(c2) = v as we then can easily check if

the missing part c1 has the remaining Lee weight, by wtL(c2H
>
1 ) = w − v.

In [40], several algorithms have been presented to solve the smaller instance, namely using Wagner’s

approach of a set partitioning and using representation technique. In [13], the authors presented the

amortized Wagner’s approach. Finally, in [6] the authors presented an adaption of these algorithms,

taking into account that a random low Lee weight codeword has the exponential weight distribution

observed in [5]. In these papers, it has been observed, that the amortized BJMM approach attains

the lowest computational cost, and thus we consider this algorithm to compute the security level of the

proposed parameters. For the details of the algorithm, we refer to [6]. Mathematica programs to compute

these computational costs are publicly available2. We adapted the program which computes the classical

asymptotic cost c in the form 2c·n, by considering the cost c/2 on a capable quantum computer (see

[10, 13]). Since we sample the secret basis for the generator matrix using the typical Lee sets, i.e., any

x ∈ Fp occurs in the sought-after error vector e in pwkey
(x) ·n number of times, it makes sense to use this

information in an ISD algorithm. However, as shown in [6], the amortized BJMM algorithm outperforms

even the attempts to use restricted balls. Thus, we build our security analysis on this fastest known

algorithm.

Finally, it has to be taken into account that the quasi-cyclic structure of the private key gives a

polynomial speedup according to [37] and starting from a relatively large weight wsig we assume that

one cannot retrieve a secret basis vector. In Euclidean lattices such a technique is known as sieving and

has been extensively studied [29]. Notably the works [24, 30] show that finding a codeword of low Lee

weight in a quasi-cyclic code is significantly easier in case the code dimension n/2 is a composite number.

In fact the security reduces to the codeword finding problem in a quasi-cyclic code with dimension equal

to the smallest factor of n/2. Therefore, for all considered parameter sets in this work we choose n/2 to

be prime.

4.2 Security against known attacks

In the multi-use scenario, an attack requires to solve the low weight codeword finding problem in the Lee

metric. However, in this case, an attacker has access to several published signatures. That a previously

published signature can be directly used to sign another message is prevented by setting a sufficiently

high threshold for the number of required sign matches. Therefore, we consider attacks exploiting leakage

via published hash/signature pairs and provide reasoning why our proposed scheme does not suffer from

those attacks.

This is of particular interest since previous schemes [2, 33] allowed for attacks [36, 17], which utilize

the information that is leaked by published signatures to mount attacks. In the Hamming metric a basis

vector as well as the signatures have low weight, i.e., a small support. The attacks exploit the observation

2https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/

Lee-ISD-restricted.nb

https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
https://git.math.uzh.ch/isd/lee-isd/lee-isd-algorithm-complexities/-/blob/master/Lee-ISD-restricted.nb
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that the supports of the published signatures, which are linear combinations of the basis elements, are

correlated to the supports of the basis elements.

Such support-based attacks can not be applied to FuLeeca: in the Lee metric, basis elements of low

Lee weight do not necessarily have a small support. This enables us to have secret bases which are of

low Lee weight and have a relative Hamming weight of approximately 1/4. Learning this support by

intersecting the supports of multiple signatures is infeasible since all published signatures have almost

full Hamming weight.

To avoid leakage via published Hash/Signature pairs we integrated a specific procedure into the

Signing algorithm, which we refer to as the “Concentrating” procedure. In the following we first examine

the Signing algorithm without applying the specified “Concentrating” procedure. We randomly draw

k = 500 nonces and messages and observe the corresponding outputs of the hash-function h1, . . . , hk,
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Fig. 1: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two different keys (left and

right) after application of “Simple Signing”.
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Fig. 2: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) for two different keys after

application of both “Simple Signing” and “Concentrating”.
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Fig. 3: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) using two different keys both

after application of the “Simple Signing” part of Algorithm 2 and as well as applying the “Concentrating”

procedure (dense clusters in the upper right).

i.e., h` = Hash(nonce||m`). For two different private keys we compare the Lee weights and sign matches

of the corresponding signatures after just applying “Simple Signing”.

Figure 1 shows the relation between the relative Lee weights and the LMP between the codeword and

the target vector, which is the hash of the message. Since the signature algorithm effectively correlates

the secret key and the hashes it appears to be possible to learn at least some information about the secret

key based on the location of the resulting code words in this Lee weight / LMP space. The distribution

of signatures for both private keys of Figure 1 show that the LMP between hash and codeword as well

as the resulting Lee weights vary significantly and depend on the secret key. Since we are using two

different private keys, we obtain two different signatures for each of the hashes. To exemplify this, we

marked the resulting signatures before the “Concentrating” procedure for the same hash (the red dots)

but using different private keys in Figure 1. Even though we do not provide a specific attack exploiting

this behavior, the results show that information about the private key is leaked and can potentially be

exploited to recover the secret key.

Figure 2 shows the codewords for the signatures for all hashes considered in Figure 1 after the

“Concentrating” part of Algorithm 2 has been completed. The difference between the distributions for

the different secret keys shall be as small as possible to minimize leakage about the secret key. Like

in Figure 1 we again marked the signatures for the same hashes and different secret keys, this time

after the “Concentrating” procedure in Figure 2. The results show that the “Concentrating” procedure

significantly reduces the leakage observable via the relative Lee weight / LMP map.

Figure 3 provides the information observable from Figure 1 and Figure 2 within a single plot to

further illustrate the effect of the “Concentrating” procedure.

Similarly, we also observe that the shape of the distribution of signatures in the Lee weight / LMP

space does not appear to meaningfully depend on the distribution of the same signatures after “Simple

Signing”. This is demonstrated in Figure 4 and 5 where for a single key we apply “Simple Signing” to
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Fig. 4: Evaluation of 500 signatures for simulated hashes (i.i.d uniform) before applying the “Concentrat-

ing” procedure. Unlike the previous figures, all of the displayed signatures were created using a single

key. The vectors are divided into two (nearly equally large) groups, where the ratio between the log

probability (LMP) and the Lee weight is above average (left), respectively below average (right).
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Fig. 5: The same two sets of hashes for the same key (as in figure 4) after applying the “Concentrating”

algorithm.

the same set of hashes as before but split the signatures into two groups of almost equal size. For group

one obtaining a codeword with the required LMP after application of the “Concentrating” procedure

is expected to be easier than for group two since in terms of the ratio between the log probability and

the Lee weight all of these are above average, while group two is below average. In fact, the percentage

of hashes in group two that lead to a valid signature in the end is slightly lower than for group one,

however this observation is to be expected for effectively every private key and thus this does not reveal

any useful information about any chosen key in particular.
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Fig. 6: Asymptotic Quantum Cost of Amortized Lee BJMM for p = 251

4.3 Security of the chosen parameters

We assume that the used Hash functions are cryptographically secure.

The best known attack to find a codeword of low Lee weight given our public key Gpub is Information

Set Decoding using the quantum amortized BJMM algorithm in the Lee metric. Therefore, the complexity

of this attack is used to determine the parameters. The Lee weight wkey of the secret key, i.e., a, b ∈ Fn/2
p

with wtL(a) = wtL(b) = wkey and the Lee weight wsig of the codeword connected to the signature, i.e.,

v ∈ Fn
p with wtL(v) = wsig are chosen as follows: since we want both, key recovery attacks and forgery

attacks, to have a cost of at least 2λ
′
= 2n·α, we plot the asymptotic cost α of the ISD algorithm for

relative Lee weights in the interval [0, 1], as shown in Figure 6. For the chosen p = 251, the minimum

Lee distance on the GV bound is at δ = 0.023. This is exactly the peak of the graph, with an asymptotic

cost factor of 0.47 in the binary complexity exponent. This allows us to choose the two intersection

points of the cost curve with y = λ′

n as the key and signature weights. That is wkey is chosen as the

first intersection point and wsig is chosen as the second intersection point. For example, the parameter

choice p = 251, n = 778, wsig = 0.0588, wkey = 0.00255 leads to the desired quantum cost of 280, since

α(wsig) = α(wkey) = 0.1042. This simple routine is performed for all proposed parameter sets.

5 Efficiency & Performance

Due to the quasi-cyclic structure of the private matrix Gsec it is sufficient to store only one of its

rows. Therefore, the size of the private key is in the order Op(n), where the constant depends on the

parameter p.

We take a conservative choice for the NIST security levels [28], as shown in Table 1. The chosen

parameters and associated data sizes for the NIST categories I, III and V are given in Table 2. The

signature size is the size averaged over 10k generated compressed signatures. For compression, we have

adapted the mechanisms as used in the Falcon signature scheme. These compressed signatures can be

padded to have a fixed size. Notice that the signature sizes already include the size of the nonces. As
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Table 1: Conservative NIST Categories

NIST Security Level Classical Cost Quantum Cost

I 160 80

III 224 112

V 288 144

Table 2: Parameters for the proposed signature scheme FuLeeca. All sizes are given in Bytes.

q n ωsig ωkey NIST category secret key size public key size sign. size

251 778 0.059 0.0025 I 778 389 276

251 1154 0.060 0.0023 III 1154 577 408

251 1538 0.061 0.0021 V 1538 769 540

proposed in [20], it is possible to compress the signatures resulting from Algorithm 2 to achieve the

signature sizes given in Table 2. Note that the chosen parameters are not optimized yet and thus, we

expect further improvements.

A comparison with SPHINCS+ [1], Dilithium [18] and Falcon [23] shows that our scheme provides

parameters that outperform all three NIST selected schemes in terms of total bandwidth (public key +

signature size). Furthermore, we outperform all known code-based signature schemes in terms of public

key and signature size.

6 Conclusion

In this paper, we proposed a Hash-and-Sign signature scheme based on the problem of finding low Lee

weight codewords. Taking known statistical attacks into account, we refined the simple signing process

to render the scheme multiple-use. The scheme can be efficiently implemented as it only uses simple

arithmetics and is able to achieve extremely short signatures of 276 bytes and public keys of 389 bytes

Table 3: Comparison to other post-quantum signature schemes for the NIST category I security level

(and NIST level II for Dilithium). All sizes are given in Bytes.

Scheme public key size sign. size Total data size

FuLeeca 389 276 665

WAVE >2 000 000 2100 >2 002 100

Falcon 897 666 1563

SPHINCS+ 32 7856 7888

Dilithium 1312 2420 3732
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for the NIST category I security level. This compares favorably to state-of-the-art lattice-based and

code-based schemes.
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