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ABSTRACT
Digital signatures are fundamental components of public key cryp-

tography. They allow a signer to generate verifiable and unforgeable

proofs—signatures—over arbitrary messages with a private key, and

allow recipients to verify the proofs against the corresponding and

expected public key. These properties are used in practice for a

variety of use cases, ranging from identity or data authenticity

to non-repudiation. Unsurprisingly, signature schemes are widely

used in security protocols deployed on the Internet today.

In recent years, some protocols have extended the basic syntax of

signature schemes to support key blinding, a.k.a., key randomization.

Roughly speaking, key blinding is the process by which a private

signing key or public verification key is blinded (randomized) to

hide information about the key pair. This is generally done for

privacy reasons and has found applications in Tor and Privacy Pass.

Recently, Denis, Eaton, Lepoint, and Wood proposed a technical

specification for signature schemes with key blinding in an IETF

draft. In this work, we analyze the constructions in this emerging

specification. We demonstrate that the constructions provided sat-

isfy the desired security properties for signature schemes with key

blinding. We experimentally evaluate the constructions and find

that they introduce a very reasonable 2-3x performance overhead

compared to the base signature scheme. Our results complement

the ongoing standardization efforts for this primitive.

1 INTRODUCTION
Digital signature is a fundamental primitive used in the design

of modern applications. Like their counterpart handwritten signa-

tures, digital signatures provide a number of useful properties for

applications, including verifiability and unforgeability. Informally,

these properties mean that a signature computed over a message

m with signing key sk can convince a verifier with overwhelming

probability that it was signed by a participant with the correspond-

ing public key pk. As such, digital signature schemes, or simply

signature schemes, have a wide variety of applications, ranging

from identity or data authenticity to non-repudiation. They are

used in a wide assortment of Internet security protocols and tech-

nologies, including, though certainly not limited to, TLS and QUIC

for secure network connections [10], DNSSEC for DNS record au-

thenticity and integrity [4], and WebAuthn for authentication in

web applications [1].

Signature Schemes with Key Blinding. A digital signature

scheme allows someone in possession of a public key, message, and

signature computed over that message to verify the validity of the

signature. This functionality allows anyone in possession of the

public key to link two (message, signature) pairs signed under the

same private key together. Indeed, in most cases, this is a desired

†
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property. Consider, for example, the use of signatures in WebAuthn.

The server, which verifies authentication credentials presented by

clients (containing a public key and signature), must necessarily

learn when two credentials belong to the same user account so that

the right application account is associated with the credential.

However, this link between two (message, signature) pairs may

not always be desirable. In some settings, it is useful to produce

signatures with a given key pair (sk, pk) such that the resulting

signature is not linkable to pk without knowledge of a particular

witness. That is, given pk corresponding to sk, witness 𝑟 , and a

message signature 𝜎 , one can determine if the signature was in-

deed produced using sk. In effect, the witness “blinds” the key pair

associated with a message signature.

The desired goal of this blinding step is to ensure that a verifier

cannot distinguish between two signatures produced from the same

long term sk and two signatures produced from distinct keys sk
and sk′. In other words, two independently blinded public keys and

signatures are unlinkable. We refer to schemes with this type of

functionality as signature schemes with key blinding.

Use Cases. There are a variety of application use cases that moti-

vate this type of primitive. Indeed, some applications have already

deployed variants this primitive in practice, motivating the need

for security analysis. We describe some of these application use

cases below.

Tor Hidden Services. In Tor hidden services [23], each hidden

service has a long-term identity key pair they used to sign data such

as the service descriptors necessary to connect to the service. The

identifier of a service is the public key used to verify this descriptor.

To prevent long-term persistent blocking of any service based on

its public key identifier, Tor derives per-epoch keys that are used

for signing and verifying service descriptors. Roughly speaking, in

epoch 𝑖 , a service with long-term key pair (sk, pk) blinds its public
key using a fresh blinding key bk. As a result, knowledge of pk,
the blinding key bk, and the epoch lets one verify any signature

produced for the epoch and associate it with a long-term service

identity, whereas this is not possible without that knowledge [19].

Private Airdrop. Private airdrop for cryptocurrencies is another
application of signature schemes with key blinding. Airdrop is

a procedure for bootstrapping new cryptocurrency applications,

wherein a sender gives away currency for recipients to let them

join the system. Private airdrop hides the recipient of the airdrop

in order to further entice users to join without compromising their

privacy or safety [24].

At a high level, private airdrop works by having the sender

generate a blinding key bk, blind the recipients public key pk under

bk to produce bpk, a blinded public key, sign the messagem to be

placed on the cryptocurrency blockchain to produce 𝜎 , and then

publish the (m, 𝜎, bpk). The sender also sends bk to the recipient

out of band. Anyone can verify 𝜎 overm using bpk. However, only
1

https://orcid.org/0000-0003-3796-042X


Edward Eaton, Tancrède Lepoint, and Christopher A. Wood

Figure 1: Top: basic Privacy Pass issuance. Bottom: rate-limited Privacy Pass issuance using signatures with key blinding. The
key pair (sk𝐼 , pk𝐼 ) correspond to the blind signature protocol used in Privacy Pass, not the signature scheme with key blinding.

the intended recipient that received bk out of band can validate

that bpk is the blinded representation of pk with respect to blind

bk.
Rate-Limited Privacy Pass. In Privacy Pass [6, 7], clients inter-

act with an attester and issuer service to produce tokens, which are

simply signatures over a client-chosen nonce. For privacy reasons,

tokens are computed using a blind signature protocol [9] so that

only the client learns the output signature and the attester and

issuer learn nothing. The rate-limited version of Privacy Pass [18]

aims to extend this basic version of Privacy Pass with the ability

for the attester to limit the number of tokens clients request for

specific websites, without the attester learning which website a

specific client is interacting with. (Revealing that information to

the attester would allow the attester to collect the client’s brows-

ing history.) As such, the attester requires a unique identifier that

is based on a per-client identifier and a per-website identifier for

accounting purposes, e.g., so it can keep track of a monotonically

increasing counter whenever a token is requested for that identifier.

To prevent the attester frommasquerading as a client and request-

ing a token for a website of its choosing – effectively a dictionary
attack to learn the websites a client visits – clients sign the token

requests to the issuer with a secret key they know. Their identifier

then becomes the corresponding public key. Importantly, to ensure

that the issuer cannot use this public key and signature to link any

two token requests to the same client, clients sign their requests

with a freshly chosen blind. This lets the issuer check each request

for validity without letting the attester forge requests on behalf of a

client; this interaction is shown in Figure 1. Apple’s Private Access

Tokens system uses the split Attester and Issuer model of Privacy

Pass [2]. In addition to the basic issuer, this system allows issuers

to register for supporting the rate-limited variant [3].

Standardization and Applicability. Given the wide variety of

existing and possible applications of this signature schemes with

key blinding, the Crypto Forum Research Group (CFRG) recently

started working on specifying them for practical applications. The

draft specification [8] includes full details for two concrete signature

schemes – one of which is based on Ed25519, a variant of EdDSA

specified in [20], and another variant based on ECDSA [5]. While

EdDSA and Schnorr signatures in general are often simpler, support

for ECDSA is widespread enough in practice that including support

for both was preferred by the community.

The straightforward way to extend a signature scheme over

elliptic curves in particular with key blinding support is to sample

a random key and then compute the blinded key as the scalar

product of the signing key and blinding key. This technique lends

itself naturally to EdDSA as described in [8] and as analyzed in this

work, ECDSA is required new approaches. In particular, Morita

et al. [21] demonstrate (in Section 4.2) that a related key attack

on ECDSA (and DSA in general) which can arise if there exists

such a linear relationship between the long-term signing key and

blinding key. Extending ECDSAwith key blinding support therefore

required mitigating this related key attack. This paper analyzes the

construction proposed in [8] and proves that it achieves the desired

security properties.
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As such, this paper complements the ongoing work to specify sig-

nature schemes with key blinding support for EdDSA and ECDSA.

This is an important step to ensure safety and correctness of the

techniques in the specification and will help enable wider applica-

bility. Moreover, given that both EdDSA and ECDSA techniques are

actively deployed in practice right now, analysis of these schemes

has implications for real world systems.

Our Approach and Contributions. In this paper, we provide

security analysis for a standardized mechanism being used in prac-

tice and in emerging privacy-enhancing technology standards. We

formalize the syntax and security definitions for signature schemes

with key blinding and unblinding, and formally prove security un-
forgeability and unlinkability for two concrete schemes based on

EdDSA and ECDSA. The EdDSA construction matches that which

is widely deployed in applications such as Tor and the ECDSA

construction – which is new – matches that which is deployed in

applications such as rate-limited Privacy Pass. We also experimen-

tally evaluate the computational cost these extensions compared

to the base signature schemes. Our results indicate that they con-

tribute modest overhead compared to the base schemes, dominated

by the cost of additional private key operations, yielding 2x to 3x

overhead for EdDSA and ECDSA, respectively.

Outline. The rest of this paper is organized as follows. Section 2

describes the formal syntax and security definitions for signature

schemes with key blinding. Section 3 presents a description of the

EdDSA and ECDSA variants. Sections 4 and 5 present the formal

security analysis of EdDSA and ECDSA variants, respectively. Sec-

tion 6 presents our experimental benchmarks. Finally, Section 7

describes related work and Section 8 concludes.

2 SYNTAX AND SECURITY DEFINITIONS
In this section we describe the syntax and security definitions for

signature schemes with key blinding as described in 1.

Syntax. A digital signature scheme is a tuple of three algorithms:

(Sig.KeyGen, Sig.Sign, Sig.Verify)
Sig.KeyGen generates a private and public key pair, (sk, pk). One
can then invoke Sig.Sign given signing key sk and a message m
to produce a signature 𝜎 . Sig.Verify accepts as input public key pk,
message m, and signature 𝜎 and outputs 1 if the signature is valid,

and 0 otherwise. A signature scheme is correct if for allm ∈ {0, 1}∗,
it holds that

Pr

[
Sig.Verify(pk,m, 𝜎) = 1

����� (sk, pk) ← Sig.KeyGen()
𝜎 ← Sig.Sign(sk,m)

]
= 1 ..

A signature schemes with key blinding extends the syntax of a

digital signature scheme the following algorithms:

(BK.BlGen,BK.BlPubKey,BK.BlSign) .
BK.BlGen generates a blinding key bk. BK.BlPubKey takes as

input a public key pk, a blinking key bk, and a context ctx, and
outputs a blinded public key bpk. BK.BlSign takes as input a pri-

vate key sk, blinding key bk, a context ctx, and a messagem, and

produces a signature 𝜎 . Correctness requires that for all messages

m ∈ {0, 1}∗ and contexts ctx ∈ {0, 1}∗, it holds that

Pr


BK.Verify(bpk,m, 𝜎) = 1

����������
(sk, pk) ← BK.KeyGen()
bk ← BK.BlGen()
bpk ← BK.BlPubKey(pk, bk, ctx)
𝜎 ← BK.BlSign(sk, bk,m, ctx)


= 1.

Optionally, a signature scheme with key blinding may allow one

to unblind a public key with respect to its blinding key, yielding

the original (unblinded) public key. This function is denoted by

BK.UnblindPublicKey. Correctness requires that for every context

ctx ∈ {0, 1}∗, any key pair (sk, pk) and blinding key bk output by

BlGen, it holds that

Pr[UnblindPublicKey(BlPubKey(pk, bk, ctx), bk, ctx) = pk] = 1.

Unlinkability. A signature scheme with key blinding is said to

be unlinkable if, informally, an adversary without knowledge of

the long-term public key who observes many blinded public key,

and signatures that verify under those blinded public keys, cannot

distinguish between a blinding of the long-term public key, or a

blinding of a freshly-generated public key. This is formally captured

in Fig. 2.

We define the advantage AdvunlinkableA an adversary has in win-

ning this game as:���Pr[UnlinkabilityA (𝜆) = 1] − Pr[UnlinkabilityA (𝜆) = 0]
��� .

Note that this formulation of unlinkability differs slightly from

ones previously seen in the literature [11]. In the other version of

unlinkability, the adversary is allowed to query theBlPublicKey
oracle with a𝑏𝑘 of their choice, receiving the corresponding blinded

public key, instead of a public key blinded with a random and un-

known 𝑏𝑘 . The reason for the difference is that we are interested in

establishing the unlinkability of the scheme when the key-blinding

scheme admits an unblinding functionality. If the scheme allows

for unblinding, then the blinding key 𝑏𝑘 must be treated as privi-

leged information and not allow the adversary to see or control it.

The differences between one-way and bi-directional blinding are

discussed further in Section A.1.

In order to establish unlinkability for Ed25519, we follow the

proof technique of Eaton et al. [11]. In particular, we show that two

conditions hold: (1) an adversary with access to a blinding oracle

and signing oracle cannot distinguish between a new blinding

of a long-term key and a blinding of a freshly-chosen key (the

‘independent blinding’ property), and (2) that signatures with an

identical distribution that are produced from blinded public keys

depends only on the blinded public key and not on long-term public

key. Intuitively, the former property means that the blinded public

key is independent from the long-term public key, whereas the

latter means that signatures leak no information about the long-

term signing key. Eaton et al. previously established that these two

properties are sufficient for unlinkability when one-way blinding

is employed. In Appendix B we show that these properties are

also sufficient for bidirectional blinding. Then, in Section 4.1 we

establish these two properties for Ed25519.

For ECDSA, we take a more direct approach to establishing

unlinkability guided by the way that blinding in ECDSA entirely

re-randomizes both the public key and secret key space (Section 5.1).
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Game UnlinkabilityA (𝜆)
1 : Σ← ∅
2 : sk𝑆 , pk𝑆 ← KeyGen( )
3 : 𝑠 = 0

4 : 𝑏 ← {0, 1}

5 : 𝑏′ ← ABlPublicKey,Challenge,BlKeySign ( )
6 : return 𝑏 = 𝑏′

Oracle BlPublicKey()
1 : bk ← BlGen( )
2 : bpk = BlPubKey(pk𝑆 , bk)
3 : Σ← Σ ∪ { (bpk, bk) }
4 : return bpk

Oracle Challenge()
1 : if 𝑠 = 1; return ⊥
2 : 𝑠 = 1

3 : if 𝑏 = 0

4 : sk′𝑆 , pk
′
𝑆 ← KeyGen( )

5 : sk∗𝑆 ← sk′𝑆 , pk
∗
𝑆 ← pk′𝑆

6 : else

7 : sk∗𝑆 ← sk𝑆 , pk∗𝑆 ← pk𝑆
8 : bk∗ ← BlGen( )
9 : bpk∗ = BlPubKey(pk∗𝑆 , bk

∗ )
10 : Σ← Σ ∪ { (bpk∗, bk∗ ) }
11 : return bpk∗

Oracle BlKeySign(m, bpk)
1 : if 𝑠 = 1 ∧ bpk = bpk∗; return BlSign(sk∗𝑆 , bk

∗,m)
2 : if (bpk, bk) ∉ Σ; return ⊥
3 : return BlSign(sk𝑆 , bk,m)

Figure 2: Unlinkability security game for a signature scheme
with key blinding.A is given access to all oracles in the game.

This approach would likely also work for Ed25519, but we have

elected to use the framework for Ed25519 as it is more generic and

teases apart the properties of signatures being independent of the

long-term secret key.

Unforgeability. Unforgeability is mostly the same as it is for

classical digital signatures, with one major change: signing requests

and forgeries are made with respect to blinded public keys chosen

by the adversary.

Strong unforgeability is defined in Figure 3.
1
It mostly resembles

the standard game of strong unforgeability, with a few key differ-

ences introduced by blinding. The adversary is given the public key

pk. They are able to make adaptive signing queries with respect

to any blind key bk of their choosing, including no blind key at

all (indicated with bk =⊥). Eventually, they must submit a forgery,

1
Note that the existential variant of this game in the context of ECDSA was defined

in [17, Sec. 6].

Game UnforgeabilityA (𝜆)
1 : Σ← ∅
2 : sk, pk ← KeyGen( )

3 : (m∗, bk∗, 𝜎∗ ) ← ABlKeySign (pk)
4 : if bk∗ =⊥
5 : pk∗ ← pk

6 : else

7 : pk∗ ← BlPubKey(pk, bk∗ )
8 : if Verify(pk∗,m∗, 𝜎∗ )
9 : if (bk∗,m∗, 𝜎∗ ) ∉ Σ

10 : return𝑇𝑟𝑢𝑒

11 : return 𝐹𝑎𝑙𝑠𝑒

Oracle BlKeySign(m, bk)
1 : if bk =⊥
2 : 𝜎 ← Sign(sk,m)
3 : else

4 : 𝜎 ← BlSign(sk, bk,m)
5 : Σ← Σ ∪ { (bk,m, 𝜎 ) }
6 : return 𝜎

Figure 3: Signature scheme strong unforgeability security
game.

consisting of a message, a signature, and an optional blind key. If

the signature verifies with respect to the (blinded) public key, and

that exact signature was not returned from the BlKeySign with

the samem∗, bk∗ input, then the adversary wins the game.

This definition considers any tuple (m∗, bk∗, 𝜎∗) for which 𝜎∗

was not the result of query to BlSign(m∗, bk∗) a valid forgery. In

other words, if an adversary submits a signing query, and then is

able to modify either 𝜎∗ or bk∗ (or both) and still have an accepting

signature, then they have won. This means that signatures are not

malleable, and are uniquely tied to the bk for which they were

issued.

One can also define weaker notions of unforgeability for key-

blinding schemes. In one previous work [11], the authors only

considered the signature scheme broken if the tuple (m∗, bk∗) was
new—in other words, if an adversary modified the signature but not

bk this did not count as a break. In another previous paper [14], the

model only accepts forgeries if the message is entirely new. This

leaves open the possibility that signatures can be modified or valid

to verify under other bk values, which may or may not present an

issue for protocols.
2

In this work, we establish the strong unforgeability of Ed25519

as per the security notion in Figure 3. Additionally, we establish

the existential unforgeability of ECDSA with key-blinding, i.e.,

unforgeability in the simpler model where only the tuple (bk∗,𝑚∗)
is verified to be in Σ. Indeed, plain ECDSA is known to not be

strongly unforgeable: for any valid signature 𝜎 = (𝑟, 𝑠), (𝑟,−𝑠) is
2
An issue based on such malleability property, on the original variant of ECDSA with

key blinding without the H2S hash function in Figure 5, was reported by Lepoint at

https://github.com/tfpauly/privacy-proxy/issues/166.

4

https://github.com/tfpauly/privacy-proxy/issues/166


Security Analysis of Signature Schemes with Key Blinding

also a valid signature. Instead, plain ECDSA is proved to be strongly

unforgeable up to sign in [17, Sec. 4.1.1]. Similarly, the analysis

in Section 5 enables to deduce that ECDSA with key blinding is

strongly unforgeable up to sign. We leave as an open problem

whether ECDSA can be modified to meet the stronger security

definition in Figure 3. In Section A.3 we discuss some of the design

decisions that might enable this.

3 CONCRETE SIGNATURE SCHEMES
This section presents the constructions of signature with key blind-

ing based on EdDSA and ECDSA proposed in [8]. The correctness

of these constructions is immediate; we prove their unforgeability

and unlinkability in Sections 4 and 5. Considerations that led to

these concrete constructions is discussed in Section A.

3.1 EdDSA with Key Blinding
The Ed25519 signature scheme standardized in RFC8032 [20] is a

variant of the EdDSA Schnorr signature scheme. The vanilla variant

of Ed25519 consists of three algorithms: KeyGen, Sign, and Verify.
The input to KeyGen, referred to as a private key or seed, is a

random 32 bytes. 𝐿 is the order of the Ed25519 group, i.e.,

𝐿 = 2
252 + 27742317777372353535851937790883648493 ,

and𝐺 is the generator for the group. ScalarClamp is a function that
interprets its input as a little-endian integer and performs clamping.

A description of Ed25519 with key blinding is shown in Fig. 4.

KeyGen( )

1 : sk ← {0, 1}256

2 : ⊥, pk,⊥← InnerKeyGen(sk)
3 : return sk, pk

InnerKeyGen(sk)
1 : ℎ ← SHA512(sk)
2 : 𝑥 ← ScalarClamp(ℎ[0 : 32] )
3 : 𝐴← 𝑥𝐺

4 : pre ← ℎ[32 : 64]
5 : return 𝑥,𝐴,pre

BlSign(sk, bk,m)
1 : 𝑥,𝐴,pre ← InnerKeyGen(sk)
2 : 𝛽, pre′ ← SHA512(bk)
3 : 𝑟 ← SHA512( (pre | |pre′ ),m)
4 : 𝑅 ← 𝑟𝐺

5 : 𝐴′ ← 𝛽 · 𝐴
6 : 𝑘 ← SHA512(𝑅,𝐴′,m)
7 : 𝑠 ← (𝑟 + 𝑘𝑥𝛽 ) mod 𝐿

8 : return (𝑅, 𝑠 )

BlGen( )

1 : return bk ← {0, 1}256

BlPubKey(pk, bk)
1 : ℎ ← SHA512(bk)
2 : 𝛽 ← ℎ[0 : 32]
3 : bpk ← 𝛽 · pk
4 : return bpk

Verify(pk,m, (𝑅, 𝑠 ) )
1 : 𝑘 ← SHA512(𝑅,𝐴,m)
2 : return 𝑠𝐺 = 𝑅 + 𝑘𝐴

Figure 4: Ed25519 with key blinding.

3.2 ECDSA with Key Blinding
We describe the ECDSA with Key Blinding scheme over an elliptic

curve 𝐸 of prime order 𝑞, with generator 𝐺 , using the notation

of [17] in Fig. 5, denoted ECDSA. In particular, we denote 𝐶 the

conversion function from an elliptic curve point to an element of

Z𝑞 . The secret key for ECDSA is a random sk = 𝑑 ∈ Z∗𝑞 , and the

public key is pk = 𝑑 ·𝐺 ∈ 𝐸. The key blinding BlPubKey operation

with parameter bk can be applied on a public key pk as follows.

If bk = ⊥, set 𝛽 = 1, otherwise set 𝛽 = H2S(bk) where H2S is the

hash_to_field from [12], and output BlPubKey(pk, bk) = 𝛽 ·pk ∈
𝐸.

KeyGen( )
1 : sk ← Z∗𝑞
2 : pk ← sk ·𝐺
3 : return (sk, pk)

BlGen

1 : return bk ← {0, 1}256

InnerBlind(bk)
1 : if bk = ⊥ then 𝛽 ← 1

2 : else 𝛽 ← H2S(bk) ∈ Z∗𝑞
3 : return 𝛽

BlPubKey(pk, bk)
1 : 𝛽 ← InnerBlind(bk)
2 : return 𝛽 · pk

BlSign(sk, bk,m)
1 : ℎ ← Hash(m) ∈ Z𝑞
2 : 𝛽 ← InnerBlind(bk)
3 : 𝑟 ←$ Z∗𝑞 ; R ← 𝑟 ·𝐺
4 : 𝑡 ← 𝐶 (R) ∈ Z𝑞
5 : if 𝑡 = 0 ∥ ℎ + 𝑡𝛽sk = 0 then return 𝑓 𝑎𝑖𝑙

6 : 𝑠 ← 𝑟−1 (ℎ + 𝑡𝛽sk)
7 : return (𝑠, 𝑡 )

Verify(bpk,𝑚, (𝑠, 𝑡 ) )
1 : ℎ ← Hash(𝑚) ∈ Z𝑞
2 : R ← 𝑠−1ℎ ·𝐺 + 𝑠−1𝑡 · bpk
3 : if 𝑅 ≠ O ∧𝐶 (R) = 𝑡 then return 𝑡𝑟𝑢𝑒

4 : else return 𝑓 𝑎𝑙𝑠𝑒

Figure 5: ECDSAwith key blinding . The schememakes use of
two hash functions Hash : {0, 1}∗ → Z𝑞 and H2S : {0, 1}∗ → Z∗𝑞 .

4 SECURITY ANALYSIS OF EDDSAWITH KEY
BLINDING

In this section, we analyze the security of the rate-limited issuance

protocol components build on EdDSA, and in particular Ed25519.

We focus on proving two properties: (1) unlinkability and unforge-

ability of EdDSA with key blinding, and (2) unforgeability and

pseudorandomness of BK−PRF built on EdDSA.

4.1 Signature Unlinkability
Wenow proceed to show that EdDSAwith key blinding as described

in Section 3.1 is unlinkable. As discussed in Section 2 and expanded

upon in Appendix B, showing that the key-blinding scheme is

unlinkable can be reduced to establishing two properties: the in-
dependent blinding property, which states that blinding suitably

re-randomizes the public key space, and signing with oracle repro-
gramming, which states that a public key and the ability to program

5
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a random oracle is enough to simulate a signing oracle—in other

words, that the distribution of signatures is dependent only on the

public key.

First, we show the following.

Theorem 4.1 (EdDSA Independent Blinding). For any proba-
bilistic polynomial time adversary A, we have that AdvIndBlind,𝑛A,Ed25519 ≤
𝑛AdvDDHA , where AdvDDHA is the adversary’s advantage in winning
the DDH game.

To prove this, assume there exists an adversary A that succeeds

with advantage AdvIndBlind,𝑛A,Ed25519 ≥ 𝜖 (𝜆) with a slightly modified ver-

sion of BlPubKey, denotedModBlPubKey. In particular, rather than
BlPubKey outputting a single public key pk𝑅 given input key pk
and blind key bk,ModBlPubKey invokes BlPubKey on input key pk
and blind key bk and returns pk𝑅 , but it also returns pub(bk) – the

public blind key corresponding to the scalar used to blind pk. For
Ed25519 as described in 4, this is 𝛽𝐺 , where 𝛽 ∥pre′ = SHA512(bk).
Given 𝑦 = ModBlPubKey(pk, bk), we denote 𝑦 [0] as pub(bk) and
𝑦 [1] as pk𝑅 .

Note that this is strictly more information than the adversary

would learn when interacting with BlPubKey directly. Now, let

(⊥, pk
0
) = Ed25519.KeyGen(), and (⊥, pk𝑖 ) = Ed25519.KeyGen()

and (bk𝑖 ,⊥) = Ed25519.KeyGen() for 𝑖 = 1, . . . , 𝑛. Consider the

following distribution output from ModBlPubKey invoked upon a

fixed public key (pk
0
):

𝐿1, . . . , 𝐿𝑛 =

ModBlPubKey(pk
0
, bk1), . . . ,ModBlPubKey(pk

0
, bk𝑛)

And the following distribution output from ModBlPubKey in-

voked upon freshly generated public keys (pk𝑖 ):
𝑅1, . . . , 𝑅𝑛 =

ModBlPubKey(pk
1
, bk1), . . . ,ModBlPubKey(pk𝑛, bk𝑛)

Importantly, both distributions use the same bk𝑖 . For 𝑖 = 0, . . . , 𝑛,

let 𝑋 (𝑖 ) = (𝐿1, . . . , 𝐿𝑛−𝑖 , 𝑅𝑛−𝑖+1, . . . , 𝑅𝑛) be the distribution defined

in terms of 𝐿 and 𝑅. Observe that 𝑋 (0) = 𝑅1, . . . , 𝑅𝑛 and 𝑋 (𝑛) =
(𝐿1, . . . , 𝐿𝑛). Assume, towards a contradiction, that Pr[A(𝑋 (0) ) =
1] − Pr[A(𝑋 (𝑛) ) = 1] ≥ 𝜖 (𝜆). By the triangle inequality, it fol-

lows that there exists an 𝑖∗ for which Pr[A(𝑋 (𝑖∗−1) ) = 1] −
Pr[A(𝑋 (𝑖∗ ) ) = 1] ≥ 𝜖 (𝜆)

𝑛 . The difference between 𝑋 (𝑖
∗−1)

and

𝑋 (𝑖
∗ )

effectively simplifies to a difference between

𝐿𝑖∗ = ModBlPubKey(pk
0
, bk𝑖∗ )

and

𝑅𝑖∗ = ModBlPubKey(pk𝑖∗ , bk𝑖∗ )
Given a distinguisher D between 𝐿𝑖∗ and 𝑅𝑖∗ , one can construct

a distinguisher D′ between the DDH triples (pk
0
, 𝐿𝑖∗ [0], 𝐿𝑖∗ [1])

and (pk
0
, 𝑅𝑖∗ [0], 𝑅𝑖∗ [1]). Thus, we can bound this distinguishing

advantage AdvDDHA , and therefore AdvIndBlind,𝑛A,Ed25519 ≤ 𝑛AdvDDHA .

This establishes unlinkability against an adversary who does

not make any signing queries and 𝑛 queries to the blinding oracle.

To account for the BlKeySign oracle, use Lemma 1 from [11],

which requires that we show that Ed25519 permits signing with

oracle preprogramming. To prove this, upon signing message𝑚,

we construct our simulator as follows. First, it randomly samples

two scalars (𝑘, 𝑠), computes 𝑅 = 𝑠𝐺 −𝑘𝐴′, and then reprograms the

random oracle (SHA512 for Ed25519) such that SHA512(𝑅,𝐴′,𝑚) =
𝑘 , where 𝐴′ the blinded public key used to verify the message

signature.

Since the adversary controls𝑚 but not the signing keys sk or

bk, the min-entropy this simulator’s output is dependent only on

bk, or 2
−𝑞

, where 𝑞 is the order of the Ed25519 group. (The size of
prefix exceeds log

2
(2𝑞).) Moreover, since the random oracle was

preprogrammed such that the simulator’s output is valid, the result-

ing distribution of output signatures is the same as the real signing

protocol. Therefore the statistical difference from Definition B.2

𝛿Ed25519 = 0.

Lastly, note that the adversary cannot determine when oracle

preprogramming occurs since that would have required them to

query SHA512(𝑅,𝐴′,𝑚) before signing occurred, which cannot

happen as 𝑅 is computed based on a random 𝑟 . The minimum

entropy of 𝑅 is less than log
2
(1/𝐿 + 1/2259), where the 1/2259

term

comes from the slight ‘wraparound’ of 𝑟 when taken modulo 𝐿,

since 𝑟 is a uniform 512 bits.

Thus, from Lemma 1 in [11], we have the following unlinkability

result.

Theorem 4.2 (EdDSA Unlinkability). For any probabilistic
polynomial time adversaryA that makes 𝑞𝑆 singing queries, 𝑛 blind-
ing queries, and 𝑞𝐻 random oracle queries, it holds that

AdvunlinkabilityA,Ed25519 ≤ 𝑞𝐻𝑞𝑆 (
1

𝐿
+ 1

2
259
) + 𝑛AdvDDHA .

4.2 Signature Unforgeability
Strong unforgeability is defined in Figure 3. It mostly resembles the

standard game of strong unforgeability, with a few key differences

introduced by masking. The adversary is given the public key 𝐴.

They are able to make adaptive signing queries with respect to

any mask of their choosing, including no mask at all. Eventually,

they must submit a forgery, consisting of a message, a signature,

and an optional mask. If the signature verifies with respect to the

(masked) public key, and that exact signature was not returned

from the BlKeySign oracle with the samem, bk∗ input, then the

adversary wins the game.

To establish the strong unforgeability of Ed25519 with key-

blinding, we show that an adversary who can win the game in

Figure 3 implies the existence of an adversary who can break the

security of ‘raw’, or unblinded Ed25519 with SHA512 replaced with
a random oracle. The unforgeability of Ed25519 with key-blinding

has been considered before, in a draft posted by Hopper to the Tor

mailing list [19]. Our proof builds on Hopper’s in a few key ways.

First, our formulation of unforgeability is generalized and sepa-

rated from the Tor context. It allows the adversary to make signing

queries and forgeries with respect to any blinding key, or optionally

no blinding key at all. Our proof is also tighter, and takes into close

consideration some of the details of Ed25519 (such as secret key

clamping and the fact that the output of the hash function is not

uniform over the order of the group).

To show the security reduction, we need to establish an algorithm

B that has access to a random oracle 𝐻B , a public key 𝐴, and an

adversary A that can win the game in Figure 3. Our algorithm B
will simulate a random oracle 𝐻A for the adversaryA. The central

idea is to program 𝐻A so that a relationship between it an 𝐻B is

6
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strictly enforced. This relationship allows the security reductions

to translate between valid signatures made with respect to 𝐻B and

a blinded public key 𝐴′ and a signature that is valid with respect to

𝐻A and an unblinded public key 𝐴.

To see how this can be done, consider the forgery (m∗, bk∗, (𝑅∗, 𝑠∗)).
If we let 𝛽 be the scalar so that 𝛽𝐴 = Ed25519.BlPubKey(𝐴, bk∗),
then the verification process insists that 𝑠∗𝐺 = 𝑅∗+𝐻A (𝑅∗, 𝛽𝐴,𝑚∗)𝛽𝐴.
We will program the random oracle 𝐻A so that 𝐻A (𝑅∗, 𝛽𝐴,𝑚∗) ≡
𝛽−1𝐻B (𝑅∗ + 𝜈𝛽𝐴,𝐴,𝑚∗) + 𝜈 (mod 𝐿) for a random scalar 𝜈 . We

can then see that

𝑠∗𝐺 =𝑅∗ + 𝐻A (𝑅∗, 𝛽𝐴,m∗)𝛽𝐴

=𝑅∗ +
(
𝛽−1𝐻B (𝑅∗ + 𝜈𝛽𝐴,𝐴,m∗) + 𝜈

)
𝛽𝐴

=𝑅∗ + 𝜈𝛽𝐴 + 𝐻B (𝑅∗ + 𝜈𝛽𝐴,𝐴,m∗)𝐴, (1)

making (𝑅∗ + 𝜈𝛽𝐴, 𝑠∗) a valid signature ofm∗ under the public key
𝐴 with respect to the random oracle 𝐻B .

Theorem 4.3 (Ed25519 Unforgeability). Let A be an adver-
sary capable of winning the Ed25519 unforgeability security game in
Figure 3 with 𝑞𝐻 queries to a random oracle𝐻A and 𝑞𝑆 queries to the
oracle BlKeySign with probability 𝑝 . Then there exists an adver-
sary B who can break the strong unforgeability of Ed25519 without
key-blinding in 𝑞𝐻 queries to a random oracle 𝐻B and 𝑞𝑆 queries to
a signing oracle, with probability at least

𝑝 −
8𝑞2

𝐻
+ 16𝑞𝐻 + 11

2
259

−
𝑞2

𝐻
+ 2𝑞𝐻𝑞𝑆 + 1

𝐿
. (2)

Proof. We will use a game-hopping proof to establish Theo-

rem 4.3. For assistance in following the proof, we present two figures

showing pseudocode for the evolution of how queries are handled.

Figure 6 presents how the oracle operates in the final game, 𝐺7.

Line comments indicate in which game each line of code is added.

Note that we define three routines for the random oracle depend-

ing on the nature of the input. Originally all three are the same

(responding with a uniform 512 bits), but change as game hops are

introduced. Note as well that we only consider new queries. In all

cases, if a query is repeated, an identical response is provided. In

Figure 7 we present similar code for the signing oracle. As the way

the signing oracle operates changes much more, we present the

pseudocode in its entirety for games where it changes—games 𝐺6

and 𝐺7.

Game 𝐺0 corresponds to the unforgeability game in Figure 3.

This means that the adversary has access to a BlKeySign oracle

that takes in a message and an (optional) blinding key, and com-

putes a signature by way of BlSign. The adversary also has access

to a random oracle 𝐻A , which replaces all instances of SHA512.
Because the adversary is explicitly given the identity public key in

the unforgeability game, there is no reason to provide them with a

BlPublicKey oracle—they may compute the functionality them-

selves for any blinding key of their choice. However, computing

BlPubKey still requires a query to the random oracle.

In game 𝐺1 we will abort if the adversary ever queries a 𝑏𝑘 to

𝐻A such that the resulting blinding, 𝐴′ is equal to the identity

point 0. Recall that we do not use the clamping procedure for the

blinding key. So the only way for the adversary to get a blinding to

the identity point is if the 𝛽 value that is generated is a multiple of

𝐿. This happens with probability close to
1

𝐿
, but since we have a

uniform 256 bits and 𝐿 does not divide 2
256

, we also add a 1/2256

term to denote the probability of hitting the ‘last’ multiple of 𝐿 (this

does not compute the exact probability, but provides a simple upper

bound). Therefore, | Pr𝐺0
[A wins] − Pr𝐺1

[A wins] | ≤ 1

𝐿
+ 1

2
256

.

In game 𝐺2, we will modify the game to abort if the adversary

ever “predicts” a blinded public key without first constructing that

key bymaking the requisite query to𝐻A . Specifically, in the signing
(and verification) routine, the tuple (𝑅,𝐴′,m) is queried, where 𝑅
is the commitment point, 𝐴′ is the (blinded) public key, and𝑚 is

the message. In game 𝐺2, we will maintain a list of blindings that

the adversary has observed, and abort if they first query a tuple

(𝑅,𝐴′,m) for which 𝐴′ has not been blinded to, and later query a

𝑏𝑘 to 𝐻A that results in a blinding to 𝐴′.
To do this, we maintain a table𝑇1 of the blindings that the adver-

sary has knowledge of. When the adversary makes a query 𝐻A (𝑞)
and 𝑞 can be parsed as a blinding key (i.e., it is 𝜆 bits), then (as-

suming this is the first time the query has been made) we sample a

response ℎ ← {0, 1}512
and calculate 𝛽 ← ℎ[0 : 32] and𝐴′ ← 𝛽 ·𝐴.

Record (𝑞, ℎ,𝐴′) in a table 𝑇1, and return ℎ to A.

When the adversary makes a query of the form (𝑅,𝐴′,m) (that is,
where 𝑅 and𝐴′ are points on the curve andm is an arbitrary-length

message), we check and see if 𝐴′ appears in the third column of

table 𝑇1. If it does not appear in the table, then we add it to a list

𝑈 of unexplained blinded public keys. If, when adding entries into

table 𝑇1, we ever add a public key 𝐴′ that appears on the list of

unexplained blinded public keys, we abort the game.

To consider the probability that we abort, we need to consider

the chance that a query the adversary makes to 𝐻A causes an

entry to 𝑇1 that is on the list𝑈 . We can divide the adversary’s 𝑞𝐻
queries to 𝐻A queries into the 𝑞𝐻,1 that are just 𝜆 bits and the

𝑞𝐻,2 of the form (𝑅,𝐴′,𝑚). So we can see that if all 𝑞𝐻,2 queries

had different 𝐴′ values and all added an a different 𝐴′ to 𝑈 , then

when a query is made to add an entry to𝑇1, the chances that it will

‘hit’ one of the 𝑞𝐻,2 values is (similar to the chances of hitting the

identity point),
𝑞𝐻,2

𝐿
+ 𝑞𝐻,2

2
256

. So with 𝑞𝐻,1 such queries, the overall

probability is bounded by 𝑞𝐻,1𝑞𝐻2

(
1

𝐿
+ 1

2
256

)
. Since 𝑞𝐻,1 and 𝑞𝐻,2

must both be less than or equal to 𝑞𝐻 , this probability is bounded by

𝑞2

𝐻

(
1

𝐿
+ 1

2
256

)
. Thus | Pr𝐺2

[A wins] − Pr𝐺1
[A wins] | ≤ 𝑞2

𝐻

𝐿
+ 𝑞2

𝐻

2
256

.

In Game 𝐺3 we change how responses to the random oracle are

generated when the adversary makes a query of the form (𝑅,𝐴′,m).
At this point, we introduce a random oracle for the reduction,𝐻B . In
the final game, when we show how to construct a forgery for plain

Ed25519 signatures, it will be with respect to the random oracle

𝐻B . On input of a query 𝑞 = (𝑅,𝐴′,m), instead of responding with
a uniformly random ℎ ← {0, 1}512

, we do the following:

(1) Perform a lookup on table 𝑇1 to see if 𝐴′ appears in the

last column of an entry (𝑞, ℎ,𝐴′). If so, then take 𝛽 ← ℎ[0 :

32] and sample 𝜈 ← {0, . . . , 𝐿 − 1}. If there is no entry

in 𝑇1 with 𝐴′ in the last column, simply respond with a

random response 𝑦 ← {0, 1}512
, and add (𝑞,𝑦,⊥) to 𝑇2. If

the adversary is making a query with the unblinded public

key (so 𝐴′ = 𝐴, set 𝛽 ← 1.

(2) Compute 𝑅 + 𝜈𝐴′ and query ℎ ← 𝐻B (𝑅 + 𝜈𝐴′, 𝐴,m).
(3) Compute 𝑧 ← 𝛽−1ℎ′ + 𝜈 (mod 𝐿).

7
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𝐻A (𝑞 = 𝑏𝑘)
1 : ℎ←$ {0, 1}512

// All

2 : 𝛽 ← ℎ[0 : 32] // 1+

3 : 𝐴′ ← 𝛽 · 𝐴 // 1+

4 : if 𝛽 ≡ 0 (mod 𝐿) // 1+

5 : Abort Game // 1+

6 : if 𝐴′ ∈ 𝑈 // 2+

7 : Abort Game // 2+

8 : if 𝑏𝑘 = 𝑠𝑘 ∧ query is from A // 4+

9 : Abort Game // 4+

10 : 𝑇1 ← 𝑇1 ∪ { (𝑞,ℎ,𝐴′ ) } // All

11 : return ℎ // All

𝐻A (𝑞 = 𝑝𝑟𝑒 ∥m, 𝑝𝑟𝑒 ∥𝑝𝑟𝑒′∥m)
1 : ℎ←$ {0, 1}512

// All

2 : 𝑝𝑟𝑒∗ ← 𝐻A (𝑠𝑘 ) [32 : 64] // 5+

3 : if 𝑝𝑟𝑒 = 𝑝𝑟𝑒∗ // 5+

4 : Abort Game // 5+

5 : 𝑇3 ← 𝑇3 ∪ { (𝑞,ℎ) } // All

6 : return ℎ // All

𝐻A (𝑞 = (𝑅,𝐴′,m))
1 : ℎ←$ {0, 1}512

// All

2 : 𝜈 ←⊥ // All

3 : if �𝑞′, ℎ′ : (𝑞′, ℎ′, 𝐴′ ) ∈ 𝑇1 ∧𝐴′ ≠ 𝐴 // 2+

4 : 𝑈 ← 𝑈 ∪ {𝐴′ } // 2+

5 : else // 3+

6 : if 𝐴′ = 𝐴 // 3+

7 : 𝛽 ← 1 // 3+

8 : else ∃𝑞′, ℎ′ : (𝑞′, ℎ′, 𝐴′ ) ∈ 𝑇1 // 3+

9 : 𝛽 ← ℎ′ [0 : 32] // 3+

10 : 𝜈←$ {0, . . . , 𝐿 − 1} // 3+

11 : ℎB ← 𝐻B (𝑅 + 𝜈𝐴′, 𝐴,m) // 3+

12 : 𝑧 ← 𝛽−1ℎB + 𝜈 (mod 𝐿) // 3+

13 : 𝑘←$ {0, 1, . . . , 𝑑 } // 3+

14 : ℎ ← 𝑧 + 𝑘𝐿 // 3+

15 : if ℎ ≥ 2
512

// 3+

16 : Abort Game // 3+

17 : 𝑇2 ← 𝑇2 ∪ { (𝑞,ℎ, 𝜈 ) } // All

18 : return ℎ // All

Figure 6: Random oracle changes across games.

SignOracle0 (𝑏𝑘,m)
1 : 𝑥,𝐴, 𝑝𝑟𝑒 ← InnerKeyGen(𝑠𝑘 )
2 : if 𝑏𝑘 =⊥
3 : 𝛽 ← 1

4 : 𝑟 ← 𝐻A (𝑝𝑟𝑒 ∥m)
5 : else

6 : 𝛽 ∥𝑝𝑟𝑒′ ← 𝐻A (𝑏𝑘 )
7 : 𝑟 ← 𝐻A (𝑝𝑟𝑒 ∥𝑝𝑟𝑒′ ∥m)
8 : 𝑥 ′ ← 𝑥 · 𝛽 (mod 𝐿)
9 : 𝐴′ ← 𝛽 · 𝐴
10 : 𝑅 ← 𝑟 ·𝐺
11 : 𝑘 ← 𝐻A (𝑅,𝐴′,m)
12 : 𝑠 ← 𝑟 + 𝑘𝑥 ′ (mod 𝐿)
13 : return (𝑅, 𝑠 )
14 :

15 :

16 :

SignOracle6 (𝑏𝑘,m)
if 𝑏𝑘 =⊥

𝛽 ← 1

else

𝛽 ← 𝐻A (𝑏𝑘 ) [0 : 32]
𝑥 ′ ← 𝑥 · 𝛽 (mod 𝐿)
𝐴′ ← 𝛽 · 𝐴
𝑟 ←$ {0, 1}512

if 𝑟 ≥ 𝑑 · 𝐿
Abort Game

𝑅 ← 𝑟 ·𝐺
𝑘 ← 𝐻A (𝑅,𝐴′,m)
𝑠 ← 𝑟 + 𝑘𝑥 ′ (mod 𝐿)
return (𝑅, 𝑠 )

SignOracle7 (𝑏𝑘,m)
(𝑅, 𝑠 ) ← Sign(m)
if 𝑏𝑘 =⊥

𝛽 ← 1

else

𝛽 ← 𝐻A (𝑏𝑘 ) [0 : 32]
𝐴′ ← 𝛽 · 𝐴
𝜈←$ {0, . . . , 𝑑 }
𝑧 ← 𝛽−1𝐻B (𝑅,𝐴,m) + 𝜈 (mod 𝐿)
𝑘←$ {0, . . . , 𝑑 }
ℎ ← 𝑧 + 𝑘𝐿
𝑅′ ← 𝑅 − 𝜈𝐴′

if (𝑅′, 𝐴′,m) ∈ 𝑇2 or ℎ ≥ 2
512

Abort Game

𝑇2 ← 𝑇2 ∪ { ( (𝑅′, 𝐴′,m), ℎ, 𝜈 ) }
return (𝑅 − 𝜈𝐴′, 𝑠 )

Figure 7: Signing oracle changes across games.

(4) We can do this by sampling 𝑘 ← {0, 1, . . . , 𝑑} where 𝑑 is

the smallest integer such that 𝐿 · (𝑑 + 1) > 2
512

, and setting

𝑦 ← 𝑧 + 𝑘 · 𝐿. If 𝑦 ≥ 2
512

, return ⊥ and abort the reduction.

(5) Otherwise, record (𝑞,𝑦, 𝜈) in 𝑇2 and return 𝑦.

To consider how much𝐺3 affects the probability the adversary

wins, we must consider the distribution of the resulting 𝑦 and the

probability that we abort. Note that for each 𝑦 ∈ {0, . . . , 2512 − 1,

there is a unique 𝑧 and 𝑘 such that 𝑧 + 𝑘 · 𝐿 = 𝑦. Furthermore, since
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𝜈 is a uniform and independent value mod𝐿 for each query the

adversary makes, so is 𝑧, regardless of what 𝛽 and ℎ are. As well, 𝑘

is uniform. So as long as we don’t abort, the resulting 𝑦 is uniform

and independent of anything else in the game, and therefore the

distribution of outputs to the random oracle is indistinguishable.

Therefore all we need to consider is the probability that the game

is aborted. We then consider the chances that 𝑧 + 𝑘 · 𝐿 ≥ 2
512

and show that it is negligible. Because 𝑑 is the smallest integer

such that (𝑑 + 1) · 𝐿 > 2
512

, if 𝑘 ≤ 𝑑 − 1, then (𝑘 + 1) · 𝐿 ≤ 2
512

.

As 𝑧 ≤ 𝐿 − 1, 𝑧 + 𝑘 · 𝐿 < (𝑘 + 1) · 𝐿 ≤ 2
512

. So the only way

for 𝑧 + 𝑘 · 𝐿 ≥ 2
512

is for 𝑘 = 𝑑 , which happens with probability

1/(𝑑+1). As𝑑 > 2
259

, this is cryptographically negligible. Therefore

| Pr𝐺3
[A wins] − Pr𝐺2

[A wins] | ≤ 1

𝑑+1 < 1

2
259

.

In game 𝐺4 we abort if the adversary ever guesses the secret

key, that is, if they ever query 𝑠𝑘 to 𝐻A . The adversary has no

information about 𝑠𝑘 and so their only option is to guess, meaning

that | Pr𝐺4
[A wins] − Pr𝐺3

[A wins] | ≤ 𝑞𝐻
2

256
.

In game𝐺5 we abort if the adversary is able to guess at the prefix

used to generate the value 𝑟 . Recall that two prefixes are used to

generate the 𝑟 value when BlKeySign is invoked: 𝑝𝑟𝑒 and 𝑝𝑟𝑒′,
generated from 𝑠𝑘 and 𝑠𝑘′ respectively. In this game, we abort if

the adversary ever queries 𝑝𝑟𝑒 as a prefix to 𝐻A . Since we already
abort if the adversary queries 𝑠𝑘 to the random oracle, the adversary

has no information on 𝑝𝑟𝑒 , and thus their probability of success

can be bounded by their ability to guess 𝑝𝑟𝑒 . So, | Pr𝐺5
[A wins] −

Pr𝐺4
[A wins] | ≤ 𝑞𝐻

2
256

.

In game 𝐺6 we modify the signing oracle to slightly change the

distribution of 𝑟 . Rather than using 𝐻A to generate 𝑟 we sample

𝑟 ←$ {0, 1}512
and then abort if 𝑟 ≥ 𝑑 · 𝐿. The point of this is

that it ensures that the distribution of 𝑟 is now perfectly uniform

modulo 𝐿. Since we have already ensured that the adversary does

not query the proper prefix to learn what 𝑟 should be, we only need

consider the probability that we abort. In this case that probability

can be computed exactly as
2

512 (mod 𝐿)
2

512
, which will simply bound

by
𝐿

2
512

< 1

2
259

. Thus | Pr𝐺6
[A wins] − Pr𝐺5

[A wins] | ≤ 1

2
259

.

Finally in game 𝐺7 we simulate the signing oracle rather than

honestly generating signatures. When the adversary makes a sign-

ing query (bk,m), perform the following:

(1) If the an identical signing query has been made before,

provide the same response.

(2) Otherwise, we first query the (plain) signing oracle on the

messagem. The result is a signature (𝑅, 𝑠), which verifies

with respect to 𝐻B and 𝐴. In other words, we have that

𝑠𝐺 = 𝑅 + 𝐻B (𝑅,𝐴,m)𝐴.
(3) Compute 𝛽 ← 𝐻A (𝑠𝑘′) [0 : 32] and𝐴′ ← 𝛽𝐴. Or, if bk =⊥

(the adversary wants a signature under the unblinded public

key) set 𝐴′ ← 𝐴 and 𝛽 ← 1.

(4) Sample a random 𝜈←$ {0, . . . , 𝐿 − 1}.
(5) Program𝐻A so that𝐻A (𝑅−𝜈𝐴′, 𝐴′,𝑚) ≡ 𝛽−1𝐻B (𝑅,𝐴,m)+

𝜈 (mod 𝐿). That is, compute 𝑧 ← 𝛽−1𝐻B (𝑅,𝐴,m) + 𝜈
(mod 𝐿), then sample a 𝑘 ← {0, . . . , 𝑑}, compute ℎ ←
𝑧 + 𝑘 · 𝐿 and add ((𝑅 − 𝜈𝐴′, 𝐴′,m), ℎ, 𝜈) to 𝑇2. If the query

(𝑅 − 𝜈𝐴′, 𝐴′,m) already appears in table 𝑇2 or ℎ ≥ 2
512

,

then abort the reduction.

(6) Return signature (𝑅 − 𝜈𝐴′, 𝑠).

The translation discussed in the proof summary (Equation 1)

establishes that this is indeed a valid signature forA. Furthermore,

our reprogramming of 𝐻A maintains the translation between valid

signatures. There are only two small ways in which an adversary

could detect that we are not performing an honest signing execution.

First is that the𝑅−𝜈𝐴′ sent to the adversary is generated in an atypi-
cal way, instead of being calculated from𝐻A ((𝑝𝑟𝑒 ∥𝑝𝑟𝑒′),m)𝐺 . But

we already abort the reduction if the adversary ever makes a query

to 𝐻A with 𝑝𝑟𝑒 as a prefix, so this can only be detected by the

distribution of the signature. But note that the point 𝑅 − 𝜈𝐴′ still
has the proper distribution. Since 𝐴′ is a point of order 𝐿, by multi-

plying by 𝜈 we get a uniformly random point of order 𝐿 (or with

probability 1/𝐿, the identity point). This is also true of the 𝑅 point

in game 𝐺6. Thus there is no difference in the distribution of the

“𝑅” value of the signature, and as their is only one valid 𝑠 value for

any given 𝑅, the distribution of the entire signature is correct.

The second possibility is that we are forced to abort the signing

procedure because (𝑅 − 𝜈𝐴′, 𝐴′,m) was already queried to 𝐻A ,
and thus the oracle cannot be programmed. But note that since

𝐴′ ≠ 0 (the identity point), then we again have that 𝜈𝐴′ is a uniform
point, so that the input has a high degree of entropy, so that it is

unlikely that the adversary could possibly have queried it before.

So this means that 𝑅 − 𝜈𝐴′ can take on any of 𝐿 values, and so

the probability that it has already been queried is at most 𝑞𝐻 /𝐿,
making the probability that the adversary is able to cause this to

happen negligible for each signing query.

Finally, there is the probability that the resulting ℎ is larger than

2
512

. Just as in the game hop between games 𝐺2 and 𝐺3, this can

be bounded by 1/(𝑑 + 1) < 1/2259
. So we can bound the difference

between games 𝐺5 and 𝐺6 by | Pr𝐺7
[A wins] − Pr𝐺6

[A wins] | ≤
𝑞𝑆 ·𝑞𝐻

𝐿
+ 1

2
259

.

Signature Extraction. Finally, we need to establish that if an

adversary submits a forgery, this can be translated to a forgery

for with respect to 𝐴 and the random oracle 𝐻B . Without loss of

generality, we can assume that the adversary has verified their own

forgery. Therefore, they have submitted a m∗, bk∗, (𝑅∗, 𝑠∗) such
that if

𝐴′∗ ← Ed25519.BlPubKey(𝐴, bk) ,
then Ed25519.Verify(𝐴′∗,m∗, (𝑅∗, 𝑠∗)) accepts and

(bk∗,m∗, (𝑅∗, 𝑠∗)) ∉ Σ .

For the signature to verify, we have that

𝑠∗𝐺 = 𝑅∗ + 𝐻A (𝑅∗, 𝐴′∗,m∗)𝐴′∗ .
At this point, we can take 𝑞 = (𝑅∗, 𝐴′∗,𝑚∗) to look up in table 𝑇2.

Since the signature has been verified, it must appear in the table.

There are two possibilities. Either we find a response 𝑦 and value 𝜈 ,

or we find just the response and⊥. This second case cannot happen,
as it wouldmean that𝐴′∗ was added to the list of unexplained public
keys, and then later was constructed as part of a blinding.

Thus we can safely consider the case that when the signature

is submitted, we find in table 𝑇2 a response 𝑦 and values 𝛽 and 𝜈 .

Whether this entry was added by result of a hash or a signing query,

we know that 𝑦 = 𝛽−1𝐻B (𝑅 + 𝜈𝐴′∗, 𝐴,m) + 𝜈 . From equation 1, we

have that this means that (𝑠∗, 𝑅 + 𝜈𝐴′∗) is a valid signature. The

9
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remaining question is whether it is a valid forgery, that is whether
(m, (𝑠∗, 𝑅 + 𝜈𝐴′∗)) is a new message-signature pair.

There are two possibilities: either m was already submitted as a

signing query in B’s strong unforgeability game or it was not. If it

was not, then clearlym is a valid forgery. If it was, then we need to

show that the signature is new. The potential problem is this: the

adversaryA submits a signing query (bk1,m1) to theBlKeySign
oracle. This is resolved into a valid signature as described above,

meaning that first m1 is sent to the signing oracle, resulting in

a signature (𝑠1, 𝑅1), valid with respect to 𝐴 and 𝐻B . This is then
translated into a signature (𝑠2, 𝑅2) that is valid with respect to

𝐴′
1
= Ed25519.BlPubKey(𝐴, bk1) and the oracle 𝐻A . When the

adversary submits the forgery (m∗, bk∗, (𝑠∗, 𝑅∗)), we have that the
tuple (bk, 𝑠∗, 𝑅∗) ≠ (bk1, 𝑠2, 𝑅2), making it a valid forgery, but when

translated into a signature with respect to 𝐴 and 𝐻B as described

above, the result is (𝑠1, 𝑅1). In other words, breaking the strong

unforgeability means finding a sort of ‘collision’ in our method of

translating between valid signatures, one coming from an honest

signing query, the other not.

The reason that this should not happen is because the random

choice of 𝜈 will make it negligibly likely that such a collision occurs.

When the adversary submits a their forgery query (𝑅∗, 𝐴′,m∗), this
will be translated by a random 𝜈 into (𝑅∗ −𝜈𝐴′, 𝐴,m∗). The chance
that this actually matches a previous signature (𝑅,𝐴,m∗) is just the
chance that 𝑅∗ − 𝜈𝐴′ = 𝑅, which is a straightforward 1/𝐿 chance.

So each time the adversary submits a hash query, the chance that it

matches one of the previous signature queries is 𝑞𝑆/𝐿, resulting in

an overall chance of this happening of 𝑞𝐻𝑞𝑆/𝐿. As a result, we can
calculate that | Pr[Forgery extracted] − Pr𝐺6

[A wins] | ≤ 𝑞𝐻𝑞𝑆
𝐿

.

Putting the differences between the subsequent games and the

ability to extract a forgery provides the expected bound.

□

5 SECURITY ANALYSIS OF ECDSAWITH KEY
BLINDING

In this section, we analyze the security of the rate-limited issuance

protocol components build on ECDSA. As we did in 4, we focus

on proving two properties: (1) unlinkability and unforgeability of

ECDSA with key key blinding, and (2) unforgeability and pseudo-

randomness of BK−PRF built on ECDSA.

5.1 Unlinkability
We prove unlinkability directly, rather than relying on the frame-

work in Appendix B. This is because of difficulties in establishing the

signing with oracle reprogramming property for ECDSA signatures

with key-blinding. While simulating signatures by programming

the random oracle is possible with ECDSA (as proven by Fersch,

Kiltz, and Poettering [13]), there are technical problems when one

tries to adapt this technique to the key-blinding case. This is primar-

ily because the random oracle input that needs to be programmed is

simply the messagem, which has no entropy. As a result, we cannot

program the random oracle at the time of simulating a signature,

and instead we need to simulate the signature when the random

oracle is first queried (and then ifm is queried to the signing oracle

later, respond consistently). But this in turn causes issues because

we do not know which bpk value to simulate the signature for.

Because of this, we take a different and more direct approach to

proving unlinkability. We note that this approach, while less generic

than the framework in Appendix B, is actually much simpler, and

likely also works for Ed25519. We prove the following.

Theorem 5.1 (ECDSA Independent Blinding). For any proba-
bilistic polynomial time adversary A, we have that AdvIndBlindA,ECDSA ≤
𝑞𝐻 /2256.

Proof. We proceed by a game hopping proof. The original game

𝐺0 is the unlinkability game in Figure 2, instantiated with ECDSA.

Then, in game𝐺1 we replace the inner workings ofBlPublicKey
by first sampling bk, but then rather than blinding the identity

public we, we simply sample a new key pair from ECDSA.KeyGen(),
and adding the resulting (pk, sk) to Σ and returning pk. To match

this change, we also modify the BlSign oracle. So long as bpk ≠

bpk∗, when a (𝑚, pk) is submitted, we check for (pk, sk) ∈ Σ and

simply return ECDSA.Sign(sk,m).
We can do this because in ECDSA, for any keypair (pk𝑆 , sk𝑆 )

the distribution of (𝛽 · pk𝑆 , 𝛽 · sk𝑆 ) is identical to that of a freshly

sampled (pk, sk) (over the randomness in sampling 𝛽). So long as

the adversary does not query H2S(bk) there is no way to distin-

guish that the blinding key is not being constructed properly. As

each bk is a uniform 32 bytes, the probability that the adversary

is able to query a bk in 𝑞𝐻 random oracle queries is a straightfor-

ward 𝑞𝐻 /2256
, which is thus the difference between the adversary’s

advantage in games 𝐺0 and 𝐺1.

For game 𝐺2, we delay the sampling of the identity keypair

(pk𝑆 , sk𝑆 ) to when they are needed. Since they are no longer used in
the BlPublicKey or in the BlKeySign until the Challenge
oracle is called. The first time the identity keypair is used is then in

the 𝑏 = 1 branch of execution of the Challenge oracle, meaning

we would move sk𝑆 , pk𝑆 ← KeyGen() to between line 6 and 7 of

Challenge. This does not cause a difference in the adversary’s

advantage whatsoever, and is purely a syntactic change.

But we can now observe in game 𝐺2 that the two execution

branches depending on the bit 𝑏 are entirely identical. Thus, the

adversary has no advantage in determining the bit 𝑏, and we are

able to derive the expected bound. □

5.2 Unforgeability
The EUF-CMA security game is that of [17, Def. 1] modified so that

the signing oracle takes a message m and a blinding parameter bk.
Similarly, the adversary must produce a signature on a messagem′

under a specific blinding parameter bk′ ∈ {0, 1}∗ ∪ {⊥}, and the

adversary wins if the signature is valid and the pair (m′, bk′) was
not given to the signing oracle. We define Adv𝑒𝑐𝑔𝑔𝑚𝑐𝑚𝑎 [A,S𝑒𝑐𝑑𝑠𝑎]
to be the advantage of A in winning this modified game in the

elliptic-curve generic-group model.

We prove the following theorem, using the properties on hash

functions as defined in Appendix C.

Theorem 5.2. Let A be an adversary attacking S𝑒𝑐𝑑𝑠𝑎 defined
in Fig. 5, that makes at most 𝑁 signing or group queries. Then there
exists adversaries B𝐼𝑎 , B𝐼𝑏 , B𝐼𝑐 , B𝐼 𝐼𝑎 , B𝐼 𝐼𝑏 , B𝐼 𝐼 𝐼 , whose running
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times are essentially the same as A, such that

Adv𝑒𝑐𝑔𝑔𝑚𝑐𝑚𝑎 [A,S𝑒𝑐𝑑𝑠𝑎] ≤ Adv𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 [B𝐼𝑎,Hash]
+ Adv

1𝑝𝑟𝑜𝑑 [B𝐼𝑏 ,Hash,H2S]
+ Adv

2𝑝𝑟𝑜𝑑 [B𝐼𝑐 ,Hash,H2S]
+ (4 + 𝑜 (1))𝑁Adv𝑟𝑝𝑟 [B𝐼 𝐼𝑎,Hash]
+ (4 + 𝑜 (1))𝑁Adv𝑞𝑢𝑜𝑡 [B𝐼 𝐼𝑏 ,Hash,H2S]
+ Adv𝑧𝑝𝑟 [B𝐼 𝐼 𝐼 ,Hash] .

We deduce the following corollary.

Corollary 5.3. If Hash and H2S are modeled as random oracle
where𝑄𝑖 for 𝑖 ∈ {1, 2} is a bound on the number of queries to H𝑖 and
𝑁 a bound on the number of signing or group queries made by A,
then

Adv𝑒𝑐𝑔𝑔𝑚,𝑟𝑜
𝑐𝑚𝑎 [A,S𝑒𝑐𝑑𝑠𝑎] ≤ 𝑂

(
max(𝑁,𝑄1𝑄2) ·

𝑄1𝑄2

𝑞

)
.

Note that all the transformations from [17, Lemma 1] defining

a lazy symbolic simulator hold, where to process a signing query

(ℎ, bk), the symbolic simulator runs the same algorithm but with

InnerBlind(bk) · D in place of D. Denote (m′, (𝑠′, 𝑡 ′), bk′) the ad-
versary forgery and denote ℎ′ = Hash(m′), 𝛽′ = InnerBlind(bk′)
and

R′ = (𝑠′)−1ℎ′G + (𝑠′)−1𝑡 ′𝛽′D
computed during verification.

Similarly to [17, Sec. 5], let’s define the following types of forgers.

Type I. R′ = ±R for some R computed by the signing oracle.

Type II. R′ ≠ ±R for any R computed by the signing oracle

and ℎ′ ≠ 0

Type III. Neither Type I nor Type II.

Type I forgeries. First, consider a type I forger where R′ = ±R
for some R computed by the signing oracle (which must be unique).

There exists 𝑠 , 𝑡 , ℎ, and bk such that

(𝑠′)−1 (ℎ′ + 𝑡 ′𝛽′D) = ±𝑠−1 (ℎ + 𝑡𝛽D), and 𝑡 = 𝑡 ′

where 𝛽 = InnerBlind(bk). Hence, there exists 𝜇 ∈ {−1, 1} such
that

(𝑠′)−1 (ℎ′ + 𝑡𝛽′D) = 𝜇𝑠−1 (ℎ + 𝑡𝛽D)
which yields

(𝑠′)−1ℎ′ = 𝜇𝑠−1ℎ and (𝑠′)−1𝑡𝛽′ = 𝜇𝑠−1𝑡𝛽 ,

and therefore

ℎ′/𝛽′ = ℎ/𝛽 .
If 𝛽′ = 𝛽 (Type Ia forgeries), then ℎ′ = ℎ and this implies a collision

on the hash functionHash. If bk = ⊥ or bk′ = ⊥ (Type Ib forgeries),

then such a forger can be used to solve the “1prod” property of

Hash and H2S. If bk, bk′ ≠ ⊥ (Type Ic forgeries), then such a forger

can be used to solve the “2prod” property of Hash and H2S.

We have shown that,

• if A is an efficient adversary which produces a Type Ia

forgery with probability 𝜖𝐼𝑎 , there exists an efficient adver-

sary B𝐼𝑎 such that Adv𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 [B𝐼𝑎,Hash] ≥ 𝜖𝐼𝑎 ,

• if A is an efficient adversary which produces a Type Ib

forgery with probability 𝜖𝐼𝑏 , there exists an efficient adver-

sary B𝐼𝑏 such that Adv
1𝑝𝑟𝑜𝑑 [B𝐼𝑏 ,Hash,H2S] ≥ 𝜖𝐼𝑏 .

• if A is an efficient adversary which produces a Type Ic

forgery with probability 𝜖𝐼𝑐 , there exists an efficient adver-

sary B𝐼𝑐 such that Adv
2𝑝𝑟𝑜𝑑 [B𝐼𝑐 ,Hash,H2S] ≥ 𝜖𝐼𝑐 .

Type II forgeries.
Next, consider a type II forger where R′ ≠ ±R for any R com-

puted by the signing oracle. Suppose

𝜋−1 (R′) = 𝑎 + 𝑏D .

By the verification equation, we have that 𝜋−1 (R′) = (𝑠′)−1 (ℎ′ +
𝑡 ′𝛽′D), hence

𝑎 = (𝑠′)−1ℎ′ and 𝑏 = (𝑠′)−1𝑡 ′𝛽′ .

Since ℎ′ ≠ 0, then 𝑎 ≠ 0 and the previous equations imply that

𝑡 ′ = (𝑏/𝑎) · ℎ′/𝛽′. Note that the group element R′ must have been

generated at random by some group oracle query made directly

by the adversary (since it was not generated during a signature

query). Since the coefficients 𝑎, 𝑏 were already determined before

this query, the values of R′ is independent of these coefficients.

If bk′ = ⊥ (Type IIa forgeries), then 𝑡 ′ = (𝑏/𝑎) · ℎ′ and we

are back exactly to [17, Sec. 5.3, Type II]. Henceforth, we can use

such a forger to breaking the random-preimage resistance of Hash.
Otherwise (Type IIb forgeries), we use such a forger to break the

quotient property of Hash and H2S by choosing 𝑒 = 𝑎/𝑏 and the

value 𝑡 would correspond to 𝑡 ′.

We have shown that,

• ifA is an efficient adversary that makes at most 𝑁 signing

or group queries and which produces a Type IIa forgery

with probability 𝜖𝐼 𝐼𝑎 , there exists an efficient adversary

B𝐼 𝐼𝑎 such that Adv𝑟𝑝𝑟 [B𝐼 𝐼𝑎,Hash] ≥ (1/4 + 𝑜 (1))𝜖𝐼 𝐼𝑎/𝑁 ,

• ifA is an efficient adversary that makes at most 𝑁 signing

or group queries and which produces a Type IIb forgery

with probability 𝜖𝐼 𝐼𝑏 , there exists an efficient adversary

B𝐼 𝐼𝑏 such thatAdv𝑞𝑢𝑜𝑡 [B𝐼 𝐼𝑏 ,Hash,H2S] ≥ (1/4+𝑜 (1))𝜖𝐼 𝐼𝑏/𝑁 .

Type III forgeries. Those forgeries directly gives us a forgery

with ℎ′ = 0, which immediately yields an adversary can that break

the zero preimage resistance of Hash.

6 BENCHMARKS
In this section we provide benchmarks that capture the amount of

overhead the EdDSA and ECDSA signature schemes with key blind-

ing add on top of the base schemes. In particular, we benchmark all

functions necessary for key generation, public key blinding, public

key unblinding, and blind key signing. We confiure ECDSA over P-

384 and SHA-384
3
. We fix the length of the ctx andm to 32 random

bytes for each operation, since this is a reasonable length for most

known applications. We do not vary the context length as the base

signature scheme does not support context strings, nor do we vary

the message length since messages are input to hash functions and

consequently have significantly less cost compared to public key

operations.

3
We chose P-384 as larger groups are necessary to deal with the semi-static DH oracle

attacks in Privacy Pass.
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We ran the performance benchmarks on a laptop computer run-

ning macOS 12.6 with a 2.6 Ghz 6-Core Intel Core i7 CPU and with

32 GB of RAM. The results for EdDSA and ECDSA are shown in

Table 1. With a fixed message length of 32 bytes, blind key signing

is 200.4% slower than the base signing scheme for Ed25519, and

blind key signing is 315.5% slower than the base signing scheme

for ECDSA. These results are not surprising given that blinding

the signing key, at a minimum, doubles the number of private key

operations required for each scheme.

Table 1: Computation costs for Ed25519 and ECDSA signing
with key blinding.

Operation Time (ns/op)

Ed25519 ECDSA

BlGen 1258 339555

BlPubKey 87351 1025784

UnblindPublicKey 84238 1005225

BlSign 114192 1490511

Sign 32492 350035

7 RELATEDWORK
This work is not the first to study signature schemes with key

blinding. Hopper analyzed a variant based on EdDSA specifically

in the context of Tor [19]. However, this work is inherently tied

to the context that Tor uses for key blinding and is not generally

applicable. Beyond applicability, the unforgeability proof is non-

tight. It amounts to the adversary essentially guessing the random

oracle query that is going to result in a forgery. In contrast, our

proofs are tight. Finally, the unforgeability security definition does

not consider it a break if a given (m∗, bk∗) pair was queried before,

but 𝜎∗ is new (i.e., strong unforgeability). In contrast, our definitions

cover this stronger notion of unforgeability.

Fleischhacker et al. [15] also study this topic. However, their

work does not consider unlinkability of signatures with key blind-

ing. In particular, their unforgeability security definition considers

a tuple (m∗, bk∗, 𝜎∗) a forgery if the message has never been sub-

mitted to the signing procedure before. In contrast, for EdDSA we

consider it a forgery if any of the following holds: m∗ has never
been submitted, or it was submitted with respect to a different

bk∗, or (m∗, bk∗) was submitted but the signature that resulted

was different (i.e., strong unforgeability). As such, our definition is

stronger, especially since signatures that support key blinding are

often vulnerable to malleability attacks.

Wahby et al. [24] also study ECDSA and EdDSA signature vari-

ants with a key blinding like property, yet study different properties.

Unforgeability is similarly defined, asking the adversary to produce

a valid signature over anym∗ with respect to a specific sk given ac-

cess to any other message and signature pairs. However, their work

does not explicitly cover unlinkability. Instead, it covers a notion

of anonymity that is specific to the airdrop use case. Anonymity is

defined with respect to a single signing transcript, rather than arbi-

trarily many transcripts, and also permits some quantified amount

of leakage about the singing key pair. In contrast, our unlinkability

definition does not permit any leakage and is not constrained to

just one transaction.

Morita et al. [21] showed that ECDSA with naive multiplicative

key blinding, i.e., without the H2S function to map bk to a scalar

that blinds the private and public key, was vulnerable to forgeries.

The construction in Section 3 resolve this by removing the linear

relationship between related keys with H2S.
Groth and Shoup proved security of ECDSA with additive key

derivation in [16]. The concrete construction in this work uses

multiplicative blinding, in particular because certain applications of

this scheme want repeated blindings of the same private and public

key, i.e., bpk′ ← BlPubKey(BlPubKey(pk, bk, ctx), bk′, ctx′).

8 CONCLUSION
In this work we present a formal analysis of signature schemes

with key blinding, a primitive that’s deployed in practice and being

standardized for the purposes of more widespread use. We prove

that the EdDSA and ECDSA variants being standardized meet the

desired security properties. Our experimental results demonstrate

that they add modest amount of overhead compared to the base

signature scheme. It is an open question to build such primitives

with post quantum security. Future work should explore this topic,

especially as this primitive finds more widespread use in practice.
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A CONFIGURATIONS OF KEY-BLINDING
In this section we discuss a few of the design choices that can

be made when implementing signatures with key-blinding and

the extent to which these decisions can impact the security of the

scheme.

A.1 One-way vs. Bidirectional blinding
A key design decision in defining a key-blinding scheme is whether

the blinding procedure is intended to be one-way or not. Consider

key-blinding as used in the rate-limited privacy pass token [18].

Here the public keys used in key-blinding are used in combination

with a kind of DH-OPRF protocol. A requirement of this is that

one of the participants in the protocol (the attester) needs to ‘un-

blind’ the blinded public key, taking the blinding key bk, using it to
compute the scalar 𝛽 and computing 𝛽−1 · bpk.

A critical point here is that the blinding key bk is a secret value,
unavailable to the adversary. Thus the unblinding process is only

possible for trusted actors, and we do not need to worry about the

unlinkability of the scheme.

Contrast this with key-blinding as used in Tor [23]. Here the

blinding key bk is formed from entirely public parameters available

to anyone operating within the network. Despite this, the intention

is that seeing a blinded public key leaks no information about the

identity public key. This can be accomplished by including the

identity public key in the context with any other data.

By doing this, when observing a blinded public key, the mathe-

matical scalar 𝛽 used to blind the public key is unknown without

the identity public key. As a result, the blinded public key can-

not be unblinded unless you already have the identity public key,

rendering the unblinded process useless.

Choosing whether blinding should be one-way or bidirectional

is an important design for protocol designers using key-blinding. In

general, unless unblinding is absolutely required by by the protocol,

one-way blinding should be used. This strengthens the unlinkability

property, because the adversary can learn and even control the 𝑏𝑘

value without being able to learn anything about the identity public

key.

A.2 Clamping
Secret key clamping is a procedure used to tweak the output distri-

bution of an Ed25519 secret key. Recall that in RFC8032, Ed25519

secret keys are a uniformly random 32 bytes. This secret key is then

hashed with SHA512 to generate 64 bytes, the lower 32 of which

are used for the secret scalar. These 32 bytes are then pruned, or

clamped: the lowest three bits are set to 0, the highest bit is set to 0,

and the second highest bit is set to 1. The result is interpreted as

a little-endian integer to be multiplied by the standard generator.

The cumulative effect is that if the first 256 bits of the SHA512 hash

of the secret key are 𝑎0, 𝑎1, . . . , 𝑎255 then the secret scalar will be

equal to

∑
253

𝑖=3
𝑎𝑖 · 2𝑖 + 2

254
.

When a bk is used to generate a blinded public key, designers

and implementers have a choice whether to perform the same

clamping procedure to generate the scalar 𝛽 before being applied

to the identity public key. Recall that 𝐿 is greater than 2
252

but less

than 2
253

. The result of clamping is that 2
251

of the possible scalars

(mod 𝐿) are ‘hit’; less than half.

This means that when an identity key is blinded using a clamped

scalar, only half of the resulting key space can be hit. Conversely,

from a blinded public key only half of the key space is a potential

identity key. This means that from an information theoretic per-

spective, a blinded public key causes a bit of entropy of the identity

public key to be lost. After observing 252 or so blinded public keys,

the identity public key is (information theoretically) determined.

This is unlikely to result in a practical attack. Computationally,

eliminating a potential identity public key as a candidate based off

of a blinded public key requires knowing if the the scalar that leads

to that blinded key is a possible output of the hash function, an

infeasible task. Nonetheless we assume for the rest of the paper

that clamping is not used to generate the blinding scalar, as the

resulting distribution is much closer to uniform. This matches the

recommendation in [8].

A.3 Inclusion of the (blinded) public key in the
hash function

As discussed in Section 2, in the definition of (strong) unforgeability

we have provided, a forgery (m∗, bk∗, Sig∗) is considered valid if

the signature verifies and if Sig∗ was not the response to a query
(m∗, bk∗) to the signing oracle. This means that if an adversary

submits a query (m∗, bk) and then is able to generate a signature

on the same message but with respect to a different bk∗, the forgery
is considered valid and the adversary has broken the scheme.
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One reason security in this model is preferable is that naively

constructed schemes can be insecure in this model due to related

key attacks [22]. Consider an alternative form of Ed25519 blinding

where the scalar 𝛽 is incorporated additively instead of multiplica-

tively. That is, we calculate bpk = 𝛽 ·𝐺 +pk = (𝛽 + sk) ·𝐺 instead of

𝛽 · 𝑝𝑘 . If bpk is not included in the hash function when generating

𝑘 for a signature (𝑅, 𝑠) on a messagem, then for any other blinding

factor 𝛽′, (𝑅, 𝑠 −𝑘 · 𝛽 +𝑘 · 𝛽′) is a valid signature onm with respect

to the blinded public key generated with 𝛽′.
A key point enabling these attacks is whether the blinded public

key bpk is included in the hash function when hashing the message

as part of signing (e.g., on line 6 of BlSign in Figure 4 or line 1 of

BlSign in Figure 5). Adding bpk here ties the signature to the bk
used for that signature and can prevent this kind of related key

attack, as we will see when we prove the unforgeability of Ed25519

in Section 4.2. We leave it as an open question on whether the

inclusion of the blinded public key (as well as bound checks on 𝑠)

is all that is necessary to make ECDSA unforgeable in the sense of

Figure 3.

B UNLINKABILITY WITH UNBLINDING
In this section we replicate the proof technique in [11] to estab-

lish unlinkability for key-blinding schemes with bidirectional, as
opposed to just one-way blinding. We recall the first property that

we will reduce unlinkability to.

Definition B.1. (Signing with Oracle Reprogramming) Let Sig by

a signature scheme that relies on a random oracle 𝐻 . We say that

the signature scheme admits signing with oracle reprogramming

if their exists a reprogrammed point extractor Ext and a forgery

function Forge that takes in pk,m and returns a (𝑦, 𝜎) such that

Sig.Verify𝐻 :Ext(𝜎,𝑝𝑘,𝑚) ↦→𝑦 (𝑝𝑘,𝑚, 𝜎) → 1, where 𝐻 : 𝑥 ↦→ 𝑦 de-

notes a random oracle modified so that 𝐻 (𝑥) = 𝑦.

For more details on this point extractor function and forgery

function we refer to [11]. Whether the adversary is able to notice

that signing queries are being simulated rather than honestly gener-

ated can be established through two distributions: that of the joint

distribution of the signature and the output of the hash function,

and the whether the distribution of the input to the hash function

is sufficiently high to ensure that the adversary has not previously

queried it on a point that then needs to be programmed.

Definition B.2. (Signature Distribution Change) Let Sig be a

signature scheme defined with respect to a random oracle 𝐻 that

admits signing with oracle reprogramming. For a public key pk
and a messagem, we consider the adversary’s ability to distinguish

the distribution (𝑦𝑓 , 𝜎𝑓 ) ← Forge(pk,m) from the distribution of

(𝑦𝑟 , 𝜎𝑟 ) where 𝜎𝑟 ← Sig.Sign(sk,m) and 𝑦𝑟 = 𝐻 (Ext(𝜎𝑟 , pk,m))
(i.e., the real output of the hash function on the input that would

otherwise need to be programmed). We denote the 𝐿1 distance

between these distributions as 𝛿 , that is,

𝛿Sig =
∑︁
𝜎,𝑦

��
Pr[𝜎𝑟 = 𝜎,𝑦𝑟 = 𝑦] − Pr[𝜎𝑓 = 𝜎,𝑦𝑓 = 𝑦]

��
(3)

Definition B.3. (Programmed point min-entropy) Let Sig be a

signature scheme with respect to a random oracle 𝐻 that admits

signing with oracle reprogramming. Let ℎ𝑚𝑖𝑛,Sig denote the min-

entropy of Ext(𝜎, pk,m), where (𝑦, 𝜎) ← Forge(pk,m).

Following the proof technique in [11], we first reduce the ability

of an adversary to compromise the unlinkability property to an

adversary who makes no signing queries using the signing with

oracle reprogramming capabilities of the signature scheme.

Lemma B.4. (Lemma 1 in [11]) Let BK be a key-blinding signature
scheme which admits signing with oracle reprogramming with 𝐿1

distance 𝛿BK and min-entropy of reprogrammed points ℎ𝑚𝑖𝑛,BK. Let
A be an adversary making 𝑞𝐵 queries to the signing oracle, 𝑞𝑆 queries
to the signing oracle, and𝑞𝐻 queries to the random oracle. UsingA, we
construct a key-only adversary A𝑞𝑆=0 who makes no signing queries
for which AdvunlinkableA ≤ AdvunlinkableA𝑞𝑆 =0

+ 𝑞𝐻𝑞𝑆2
−ℎ𝑚𝑖𝑛,BK + 𝑞𝑆𝛿BK.

This lemma in no way depends on whether the signature scheme

admits unblinding or not, and so we simply refer to the proof in [11].

Next we need to consider the advantage of an adversary who makes

no signing queries. To do this, we need to consider the distribution

(over the randomness in the random oracle) induced by blinding

the public key. We consider the difference between the blinding of

a sequence of different public keys and blindings of the same public

key, for randomly generated bk.

Definition B.5. (Independent Blinding) Let BK be a key-blinding

signature scheme and let𝑛 be a positive integer. Let pk
0
, pk

1
, . . . , pk𝑛

be public keys generated from BK.KeyGen. Sample blinding keys

bk1, . . . , bk𝑛 from BK.BlGen. The blinding advantage of an adver-

saryA, denoted AdvIndBlind,𝑛A is the advantage ofA in distinguish-

ing the following two distributions:

1)BK.BlPubKey(pk
0
, bk1), . . . ,BK.BlPubKey(pk0

, bk𝑛)
2)BK.BlPubKey(pk

1
, bk1), . . . ,BK.BlPubKey(pk𝑛, bk𝑛) .

This formulation of independent blinding is actually slightly

simpler than the one found in [11], which had to contend with the

identity public key being passed in as part of the context in order to

make the blinding process one-way. This also allows us to simplify

the proof of the next Lemma.

Lemma B.6. (Variation on Lemma 2 of [11]) Let BK be a key-
blinding signature scheme.Let A𝑞𝑆=0 be an adversary in the un-
linkability game (Figure 2) that makes no queries to its signing or-
acle. Then there exists an algorithm B such that AdvunlinkableA𝑞𝑆 =0

≤
AdvIndBlind,𝑛B , where 𝑛 is the number of queries that A𝑞𝑆=0 makes to
the BlPublicKey oracle.

Proof. We modify the BlPublicKey oracle so that rather

than blinding pk𝑆 each time, a new public key is derived from

BK.KeyGen and blinded. Since the BlKeySign oracle goes un-

queried, this means only the Challenge oracle is dependent on

the identity public key 𝑝𝑘𝑆 , and specifically 𝑝𝑘𝑆 is only used in

the 𝑏 = 1 branch of execution. So, we can in fact delay the sam-

pling of 𝑠𝑘𝑆 , 𝑝𝑘𝑆 to exactly this point in the game (to just before

line 7 of Challenge() in Figure 2). But then these two branches

depending on the bit 𝑏 are entirely identical, and so the adversary’s

advantage in determining 𝑏 is zero.

By noting that all we have done is replace 𝑝𝑘𝑆 with random,

new public keys just as in Definition B.5, we obtain the desired

result. □
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Combining Lemmas 1 and 2 we obtain the proof of unlinkability

for when bidirectional key-blinding is permitted we obtain the

following:

Theorem B.7. Let BK be a key-blinding scheme that admits sign-
ing with oracle reprogramming with 𝐿1 statistical distance on forg-
eries 𝛿BK and min-entropy of programmed points ℎ𝑚𝑖𝑛,BK. Let A be
an adversary who attacks the unlinkability game with advantage
AdvunlinkableA , making 𝑞𝑆 signing queries, 𝑞𝐵 blinding queries, and
𝑞𝐻 random oracle queries. Then there exists an algorithm B distin-
guishing the independent blinding distributions with advantage at
least

AdvIndBlind,𝑞𝐵B ≥ AdvunlinkableA − 𝑞𝐻𝑞𝑆2
−ℎ𝑚𝑖𝑛,BK − 𝑞𝑆𝛿BK .

C HARD PROBLEMS ON HASH FUNCTIONS
C.1 Classical Problems
Wedenote byAdv𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 [A,H],Adv𝑟𝑝𝑟 [A,H], andAdv𝑧𝑝𝑟 [A,H]
the advantage of an adversary A to break the collision resistance,

random preimage resistance, and zero preimage resistance of a hash

function H respectively; cf. [17, Sec. 4.2] for proper definitions.

C.2 Problems on Pairs of Hash Functions
We introduce the following advantages, which we use in the proof

of unforgeability for ECDSA, and prove that they are negligible in

the random oracle model (superscripted by ‘ro’).

Definition C.1 (Product Intractibilities). Let H1,H2 be hash func-

tions whose output spaces are Z𝑞 and Z∗𝑞 . Let A be an adversary.

We define Adv
1𝑝𝑟𝑜𝑑 [A,H1,H2] as the advantage ofA breaking

the “1prod” property of H1 and H2, defined as the probability that

A is able to find a tuple (𝑚,𝑚′, 𝛽) such that

H1 (𝑚) = H1 (𝑚′)H2 (𝛽)
We define Adv

2𝑝𝑟𝑜𝑑 [A,H1,H2] as the advantage ofA breaking

the “2prod” property of H1 and H2, defined as the probability that

A is able to find two pairs (𝑚, 𝛽), (𝑚′, 𝛽′) such that

H1 (𝑚)H2 (𝛽′) = H1 (𝑚′)H2 (𝛽) .

Lemma C.2. If H1 and H2 are modeled as random oracle, then
Adv𝑟𝑜

1𝑝𝑟𝑜𝑑
[A,H1,H2] ≤ 𝑄2

1
𝑄2/𝑞 andAdv𝑟𝑜

2𝑝𝑟𝑜𝑑
[A,H1,H2] ≤ 𝑄2

1
𝑄2

2
/𝑞,

where 𝑄𝑖 for 𝑖 ∈ {1, 2} is a bound on the number of queries to H𝑖

made by A.

Proof. The probability that the 𝑖0-th query to 𝐻1, 𝑖1-th query

to 𝐻1, 𝑗0-th query to 𝐻2, 𝑗1-th query to 𝐻2 are such that ℎ𝑖0 =

ℎ𝑖1ℎ 𝑗1/ℎ 𝑗0 is 1/𝑞 (and similarly for ℎ𝑖0 = ℎ𝑖1ℎ 𝑗1 ). The results follow

by inductive application of the union bound. □

Definition C.3 (Quotient Intractibility). Let H1,H2 be hash func-

tions whose output spaces are Z𝑞 and Z∗𝑞 . Let A be an adversary.

We define Adv𝑞𝑢𝑜𝑡 [A,H1,H2] as the the advantage of A breaking

the quotient property of H1 and H2, defined as the probability that

A wins the following game.

• A chooses 𝑒 ∈ Z𝑞 and sends it to the challenger;

• The challenger chooses 𝑡 ∈ Z∗𝑞 uniformly at random and

gives 𝑡 to A;

• A outputs (𝑚′, 𝛽′) and wins if 𝑡𝑒 = H1 (𝑚′)/H2 (𝛽′).

Lemma C.4. If H1 and H2 are modeled as random oracle, then
Adv𝑟𝑜𝑞𝑢𝑜𝑡 [A,H1,H2] ≤ 𝑄1𝑄2/𝑞 where 𝑄𝑖 is a bound on the number
of queries to H𝑖 made by A.

Proof. If 𝑒 = 0, the probability that A succeeds is bounded by

𝑄1/𝑞. Otherwise, the probability that the 𝑖-th query to 𝐻1 and the

𝑗-th query to H2 are such that ℎ1 · 𝑡𝑒 = ℎ2 is 1/𝑞. The result follows
by inductive application of the union bound. □
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