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ABSTRACT

Given a network of nodes with certain communication and compu-

tation capacities, what is the maximum rate at which a blockchain

can run securely? We study this question for proof-of-work (PoW)

and proof-of-stake (PoS) longest chain protocols under a ‘bounded

bandwidth’ model which captures queuing and processing delays

due to high block rate relative to capacity, bursty release of adver-

sarial blocks, and in PoS, spamming due to equivocations.

We demonstrate that security of both PoW and PoS longest chain,

when operating at capacity, requires carefully designed scheduling

policies that correctly prioritize which blocks are processed first,

as we show attack strategies tailored to such policies. In PoS, we

show an attack exploiting equivocations, which highlights that the

throughput of the PoS longest chain protocol with a broad class

of scheduling policies must decrease as the desired security error

probability decreases. At the same time, through an improved anal-

ysis method, our work is the first to identify block production rates

under which PoW longest chain is secure in the bounded band-

width setting. We also present the first PoS longest chain protocol,

SaPoS, which is secure with a block production rate independent of

the security error probability, by using an ‘equivocation removal’

policy to prevent equivocation spamming.

1 INTRODUCTION

The goal of a blockchain protocol is to create a secure and decen-

tralized ledger of transactions. This protocol is run by a network

of nodes, each with certain capabilities in terms of communication

rates and computing power. In this work, we study the connec-

tion between these processing capacities (in the wider sense) of

individual nodes, and the security of the system.

In order to remain secure under adversarial conditions, blockchain

protocols have been parameterized to leave a ‘security margin’ be-

tween the transaction rate under normal operation, and each node’s

capacity limits. For instance, Bitcoin only produces one block of

transactions per ten minutes, even though it usually only takes a

few seconds for a node to download and process each block [12].

On the other hand, protocols that push close to the limits of their

nodes, become insecure when the processing capacities of nodes

are overwhelmed (such as Solana [30, 37, 31]). The natural question

to ask then is: given a capacity limit of nodes, what is the maximum

block rate under which a blockchain remains secure?

In this work, we focus on longest chain (LC) protocols (a.k.a.

Nakamoto consensus [32])—a well-studied class of blockchain pro-

tocols that can be instantiated using various Sybil resistance mech-

anisms such as proof-of-work (PoW) [32, 18] and proof-of-stake

(PoS) [11, 2, 36, 10]. This protocol selects the nodes that will mine

LK, JN, SS and AZ are listed alphabetically.

(a) PoW/PoS LC assuming bounded delay [13, eqn. (2)], [19]:
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(b) PoS LC without equivocation removal in bounded

bandwidth networks ( [34], this work (Lem. 15)):
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(c) PoW/PoS LC in bounded bandwidth networks (this work):
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Figure 1: Regions of fraction 𝛽 of adversarial nodes, block pro-

duction rate 𝜆, and network model parameters delay bound

Δ or bandwidth 𝐶, with security proofs ( ) and attacks ( )

for Nakamoto consensus. (a) In the bounded delay model,

the tradeoff is fully characterized by 𝛽 =
1−𝛽

1+(1−𝛽 )𝜆Δ . (b) In
[34], 𝜆/𝐶 decreases with the security parameter 𝜅. One of our

attacks (App. G) shows that some dependency of 𝜆/𝐶 on 𝜅

is unavoidable for the protocols studied in [34]. (c) In this

work, our attacks show that resilience 𝛽 has a sharp cutoff at

large 𝜆/𝐶, rather than an asymptotic decay suggested by the

bounded delay analysis. Our security proof shows that 𝜆/𝐶
independent of 𝜅 suffices for secure PoW, and PoS LC with a

protocol modification equivocation removal.

the next block based on a continuously running lottery. A selected

node collects pending transactions, creates a new block extending
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Figure 2: A trace of a simulation of the longest chain protocol

using a scheduling rule. This trace displays the timeline of

events for each of 4 nodes. The nodes have a total mining

rate 𝜆 = 1, and each processes blocks at a rate of𝐶 = 1. Blocks

appear as squares at coordinate (𝑡, 𝑝) if they were mined by

node 𝑝 at time 𝑡 . The 𝑖-th block of height ℎ to be mined is

named ℎ.𝑖. For each node, we also display which blocks it is

processing throughout the simulation, using horizontal bars

from start to end of the processing.

the longest chain of blocks it sees, and sends the block to the net-

work. Nodes must download and process the transactions in a chain

before they can extend it. Attackers prevail if they manage to grow

a chain at a faster pace than the honest nodes do, which they can

then use to double-spend or to censor transactions.

It seems at first that it is sufficient for nodes to have enough

processing capacity to keep up with block production. However,

in LC, the production of blocks occurs at random times, which

means the network and computing load is bursty. With limited

processing capacity, nodes must queue blocks for processing. Even

without adversarial activity, the resulting queuing delays increase

the time it takes to process blocks. Moreover, a malicious node can

selectively delay the release of blocks that it produces, so that the

processing load is not just purely random but is to some degree

determined adversarially. In PoS, the adversary can additionally

produce equivocations—conflicting versions of the block it was

allowed to produce—and send them to different nodes. Nodes cannot

always predict which of two conflicting blocks will eventually be

part of the chain and may thus waste processing capacity on blocks

that are later discarded. Attackers can use this to increase load and

queuing delays. While blocks are waiting to be processed, nodes

cannot mine on top of them, and the honest nodes’ chain slows

down. This makes it easier for an adversary to attack the system.

Fig. 2 shows a sample trace of a simulation of the proof-of-work

longest chain protocol. The figure presents both block creation

events, and block processing activity. Queuing effects are evident.

For example, node 0 processes blocks almost without pause, occa-

sionally preempting for higher over lower blocks. Several times,

blocks are created on the same height due to delays in processing.

Due to queuing of blocks, nodes need a carefully chosen ‘sched-

uling rule’ to determine which blocks to process first. We observe

that choosing the right scheduling policy is challenging. Differ-

ent attacks can be carried out by the adversary, depending on this

scheduling rule, slowing down the growth of the honest chain and

breaking the blockchain’s security (Figs. 6 and 7, details in Sec. 2).

To analyze the security of Nakamoto consensus, previouswork [25,

18, 13, 36, 38, 19] has considered the ‘bounded delay’ model. In this
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Figure 3: Calculation based on Thms. 1 and 2 of theminimum

bandwidth per node that is sufficient to ensure security of LC

with the parametrizations used by two major blockchains:

Bitcoin (PoW, 𝜆 = 1/600 blocks/s, max. block size 1 MB), and

Cardano (PoS, 𝜏 = 1 s, 𝜌 = 1/20 blocks/slot, max. block size

88 KB). This suggests that to defend against worst-case at-

tacks, Bitcoin might need more per-node bandwidth than

commonly recommended (0.4 Mbps [5]).

model, blocks are processed by all honest nodes within a fixed

time of Δ seconds after they are published. The works [13, 19] give

a tight characterization of the tradeoff between the fraction 𝛽 of

adversarial nodes, delay bound Δ, and the block production rate

𝜆 (Fig. 1(a)). However, this model assumes the processing time of

each block to be independent of the processing load. Thus, this

model fails to capture the effect of queuing delays. The bounded

delay model is only a suitable approximation for limited capacity

when the block rate is much smaller than the capacity, and newly

produced blocks typically find the queue empty. This leads to ab-

surd conclusions, such as that the protocol remains secure against

a non-zero adversary for arbitrarily high block rates (Fig. 1(a)).

To study the security of blockchains ‘at capacity’, we adopt the

‘bounded bandwidth’ model proposed in [34]. Thus, henceforth, we

adopt the word ‘bandwidth’, but continue to mean ‘capacity’ in the

wider sense, intending to model nodes’ rate-limits across domains such

as communication, computation, or storage. We also use ‘download’

to mean ‘process’ in the wider sense. The work [34] analyzed suitable

download rules to secure PoS LC where the adversary can spam

nodes with equivocating blocks, and waste their download band-

width. However, their rules and analysis result in an undesirable

scaling of the block rate with the desired security parameter, i.e.,

logarithm of the security error probability (Fig. 1(b)). We solve this

by introducing a new variant proof-of-stake protocol that we call

SaPoS. To the best of our knowledge, there is no security analysis

of PoW LC under bounded bandwidth. It stands to reason that the

analysis of [34] carries over to PoW ‘in some form’, but this analysis’

undesirable scaling of the block rate might be too pessimistic for

PoW, where the adversary cannot equivocate.

1.1 Our Results

The PoS LC protocols studied in [34] cannot have block rate

independent of the security parameter (Fig. 1(b)). We show

this with an attack (App. G). This indicates that overcoming the
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dependence of block rate on security parameter requires not just

tighter analysis, but a change to protocol and/or scheduling policy.

PoW LC is secure with block rate independent of the security

parameter (Fig. 1(c)). On a high level, bandwidth-related attacks

require the adversary to release withheld blocks to distract honest

nodes from downloading honestly produced blocks. In PoW, blocks

spent for an attack today cannot be spent tomorrow, and vice versa.

Thus, the adversary is subject to an overall budget constraint. The

analysis of [34] ignores this constraint. Instead, it assumes that at

every moment the adversary uses the maximum number of blocks

it has available in any of its strategies (which is possible in PoS).

Thus, [34] replaces the overall worst-case adversary with a fictitious

one that acts worst-case point-wise. This makes the analysis of [34]

overly pessimistic for PoW. We provide a new analysis technique

(Sec. 1.3.1) that might be of independent interest and with which

we can capture the budget constraint of the adversary.

SaPoS, a variant of PoS LC that is secure with block rate

independent of the security parameter (Fig. 1(c)). We learn

from the PoW result to modify PoS LC to achieve this. Due to

equivocations in PoS, the budget constraint of PoW does not readily

carry over to PoS. Rather, the adversary can produce many blocks

per block production opportunity, and use these blocks to attack at

different points in time. In fact, [34] explicitly gives this reasoning

for their approach, and our attack in App. G exploits this effect.

To re-introduce the budget constraint of PoW LC into PoS LC,

we propose equivocation removal (Sec. 1.3.2). Thereby, we preserve

the LC protocol’s simple blockchain structure, but modify it so

that per block production opportunity, honest nodes download at

most one of possibly many equivocating blocks. To this end, honest

nodes collectively remove the content of equivocating blocks before

they reach the ledger of confirmed transactions. We call the PoS

LC protocol with this modification SaPoS, for Sanitizing-Proof-of-

Stake. Based on our analysis, we calculate the minimum sufficient

bandwidth to secure PoW LC and SaPoS with the parameters of

major PoW/PoS blockchain implementations (Fig. 3).

Ensure all transactions have their fee paid. Equivocation re-

moval comes with a drawback: At the time of block production, an

honest node might not yet have learned about equivocating blocks

in its prefix, and as a result might add transactions to the newly

produced block that at execution turn out invalid, due to equivo-

cation removal. This lack of predictable transaction validity leads

to attacks where the adversary spams the ledger with transactions

whose funding source is later invalidated, so no fees can be claimed

for the resources they occupy. We present a mechanism (Sec. 1.3.3)

to ensure appropriate fees get paid.

1.2 Related Works

Several earlier works have analyzed the security of PoW [18, 32, 13,

35, 26, 38, 19] and PoS [25, 11, 2, 36, 10, 13, 3] LC protocols in the

bounded delay model. Our analysis builds on tools from several of

these works, primarily pivots [36] (or Nakamoto blocks [13]), and

convergence opportunities [35, 36, 26] (or similar [13, 38]).

In the bounded delay model, what is the value of the bound Δ?
This is an important question because the parameters of the proto-

col, such as block production rate, must be tuned according to the

delay bound. It is a tricky question because unlike the bandwidth

limit, which is a physical limit of the hardware used, delay depends

on the network load. One approach is to set the delay to the ‘time

taken to process one block’, i.e., Δ = 1/𝐶 . While this may be rea-

sonable at rates much smaller than the bandwidth (as processing

queues are mostly empty), queuing delay breaks this bound oth-

erwise. A more conservative approach is to set the delay to be at

the tail of the probability distribution of the delay. In theory, given

an enqueuing and dequeuing process, it is possible to characterize

the distribution of the queuing delay, and this approach is taken in

[16]. In practice, the delay distribution can be estimated through

network experiments [12, 27]. Another work [39] analyzes security

in a random (iid) delay model.

The problem here is that the network load, hence queuing delay,

is not purely a random process, but it is controlled by the adver-

sary. This effect is hard to see in experiments. The analysis in [34],

although in a bounded bandwidth model, parameterizes the pro-

tocol according to a delay bound that holds under the worst-case

adversary at all times with overwhelming probability. The above

approaches that choose high-probability delay bounds lead to a

conservative parameterization where the block rate must decrease

as the error probability of the delay bounds decreases (increasing

security parameter) as in [34]. As mentioned in Sec. 1.1, our analy-

sis exploits the limited supply of blocks in PoW (and in PoS after

equivocation removal) to show that while not all honest blocks may

be downloaded in time, at least some of them will be, enough to

overcome the adversary’s power.

The unsuitability of the bounded delay model at high throughput

led to a more careful modeling of limited communication capac-

ities of nodes. Increase in delay due to increase in the block size

was pointed out in early Bitcoin discussions [6] and also in exper-

iments with the Bitcoin network [12]. Works [44, 4] model and

analyze this effect, but the model still assumes that processing de-

lays are bounded as long as the average network load is below the

capacity, thus failing to capture increasing queuing delays while

operating near capacity. Increase in delay due to increasing rate of

block production was analyzed in [16], capturing the relationship

between the bandwidth constraint and queuing delays. Work [34]

extends and formalizes the model from [16] to consider adversarial

spamming, particularly due to equivocations in proof-of-stake.

Capacity limits apply not only to downloads, but also to pro-

cessing of blocks. For instance, to validate a block, an Ethereum

validator must execute all smart contracts in it. While download

and processing are similar in that the time taken increases with

the number of transactions, they are different in that processing is

hard to parallelize due to transactions that depend on each other.

A line of work [14, 40] studies methods to parallelize execution of

smart contracts to make use of multi-core architectures.

1.3 Overview of Methods

1.3.1 New Analysis Technique. Traditional LC security analysis

(Fig. 4(a)) is based on the notion of a pivot [36] (or Nakamoto

block [13]). A pivot is a point of time in which a block is pro-

duced by an honest node (i.e., it includes pending transactions)

with an additional property that in every interval around the pivot,

there are more honest than adversarial block production opportu-

nities. A probabilistic argument shows that typically pivots happen

3



Lucianna Kiffer, Joachim Neu, Srivatsan Sridhar, Aviv Zohar, and David Tse

(a) Sleepy analysis [36]:
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Figure 4: (a) Sleepy analysis [36] is based on pivots. Pivots are
special honest blocks (cf. liveness) which by a combinatorial

argument remain in the chain forever (cf. safety), and by a

probabilistic argument happen frequently. The equivalence

of the qualities required for the probabilistic/combinatorial

argument follows from the bounded delaymodel. (b) Our new

analysis (red) decomposes pivots’ probabilistic/combinatorial

qualities into ppivots and cpivots. These are no longer equiv-

alent under bounded bandwidth, but among many consecu-

tive ppivots exists one cpivot. A new probabilistic argument

shows the abundance of ppivots.

frequently. A combinatorial argument shows that the pivot block

remains in the longest chains of all honest nodes forever. Safety

and liveness of LC with suitable parameters follow swiftly.

In the bounded delay network model, the qualities required

for the probabilistic and combinatorial argument, respectively, are

equivalent. As a result, it has not been widely observed that these

properties are actually not identical. In the bounded bandwidth

model, these properties are no longer equivalent. Our first concep-

tual contribution is to decompose pivots’ probabilistic/combinatorial

qualities into ppivots and cpivots (Fig. 4(b)). Ppivots are honest block

production events where in every time interval around them there

are more honest than adversarial block production opportunities

(same as pivots in the bounded delay analysis). Cpivots are honest

block production events where in every time interval around them

there are more chain growth events than non-chain-growth events,

where chain growth occurs only when an honest block is produced

and downloaded soon by all honest nodes.

Some ppivots no longer turn into cpivots under bounded band-

width, because adversarial block release can delay the download of

honestly produced blocks, and thus some honest block production

opportunities might not translate to chain growth. Our first techni-

cal contribution is a combinatorial argument to show that if there

is a sufficiently high density of ppivots over a sufficiently long time

interval, then one of these ppivots is typically a cpivot. This relies

on the adversary’s limited budget of blocks it can spam with.

The original probabilistic argument of Sleepy [36] guarantees

only a fairly low density of ppivots. Thus, our second technical

contribution is to show, using a Chernoff-style tail bound for weakly

dependent random processes, that long time intervals typically have

a high density of ppivots. This completes the analysis for PoW LC.

1.3.2 Equivocation Removal. To control bandwidth consumption,

we stipulate that in PoS, per block production opportunity, every

honest node downloads at most one equivocating block. To ensure

that honest nodes can still switch from one chain to another longer

chain, both of which might contain a different equivocating block

from the same block production opportunity, we allow honest nodes

to not download, but treat as empty, any block for which they see

an equivocation. Note that headers of two equivocating blocks

from the same block production opportunity can serve as a succinct

equivocation proof in that they suffice for honest nodes to convince

one another that an equivocation was committed. Therefore, if an

honest node that sees an equivocation for a block in its longest

chain, publishes an equivocation proof in the block that it produces,

nodes can agree on which blocks were equivocated and hence

consistently treat them as empty.

A caveat so far is that an adversary could reveal an equivoca-

tion late and cause inconsistent ledgers across honest nodes and/or

time. To avoid this, we enforce a deadline for how late an equivoca-

tion proof can be included in the chain. Our analysis shows how

to parameterize the deadline and the LC protocol’s confirmation

time such that, if any honest node has removed the content of any

equivocating block on its longest chain, then an appropriate equi-

vocation proof is timely included on-chain, and all honest nodes

remove the block’s content before it reaches the output ledger.

1.3.3 Ensuring Fees Get Paid Despite Lack Of Predictable Validity.
Equivocation removal leads to lack of predictable transaction va-

lidity, which risks that the adversary gets to spam the ledger with

transactions ‘for free’. To ensure that honest block producers only

include transactions that pay for their blockspace, we propose to

introduce gas deposit accounts that can only be used for transac-

tion fees. We also require that any deposit to such an account is

not reflected in the balance until the deadline has passed for the

inclusion of any equivocation proof that might lead to removal

of transactions from the deposit’s prefix. This gives honest block

producers a lower bound on the account’s balance (e.g., more funds

than the lower bound might be available if a transaction spending

from the gas account gets removed due to an equivocation) which

they can use to reliably determine whether a transaction can pay

fees. Withdrawals from these accounts can take place immediately.

2 SCHEDULING POLICIES & ATTACKS

Since download and processing resources are constrained, it be-

comes increasingly important to correctly prioritize the blocks that

are downloaded and validated. In this section we describe two pos-

sible scheduling policies for nodes running Nakamoto consensus.

We show attacks tailored to each such policy and thus show that the

choice of policy has a high impact on security. The attacks in this

section apply to both PoW and PoS Nakamoto consensus, as the

attacks only exploit the block production process that is common

to both. The precise setup of the attacks is described in App. B.

In the PoW setting, since headers contain all information needed

to verify that enough work has been spent to mine the block, invalid

block headers can be ignored, and the attacker is unable to produce

blocks without spending computation. Similarly in the PoS setting,
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the attacker cannot produce blocks for a slot where it is not elected

a leader as per the PoS lottery. We restrict ourselves to process only

blocks whose parent block is already fully validated. Thus, when

we describe the priority of some header block as high, we actually

start to process its first unprocessed ancestor.

The Longest-Header-Chain policy. This policy aims to match

Nakamoto consensus’ confirmation rule. It prioritizes the process-

ing of blocks that are on the longest announced header chain, regard-

less of which blocks we already have. We assign each unprocessed

header a priority ℎ if it is on a header chain of height ℎ.

The Greedy policy. This policy prioritizes downloading blocks

that extend the chain a node has already processed. If a header of

a block at height ℎ is announced, and we already have ℎ𝑖 blocks

from that chain, then we set the priority of the block to be (ℎ𝑖 , ℎ)
and compare between the two priorities lexicographically.

2.1 Attacking the Longest-Header-Chain Policy:

The Teasing Attack

The Longest-Header-Chain policy seems to be a natural policy

when considering the longest-chain protocol. We would like to

consider attacks that break the safety or liveness of the chain using

as little mining power as possible. The naive attack strategy, that

bounded-delay analysis suggests to be worst-case [13], is to have

the attacker mine a secret chain of blocks without releasing any

blocks to the network. If the attacker is able to outpace the rate of

growth of the honest chain, it can publish its blocks at will, and

undo all transactions in the blockchain. Since honest nodes take

time to process each block, the rate of growth of the chain is slower

than the honest nodes’ block creation rate and the attacker can

more easily succeed in this naive attack if bandwidth is low. This

effect is detailed in App. B.1. But can we do better than this attack?

The Teasing Attack. We show that in fact, an adversary can

strategically announce headers and release blocks in a way that will

exploit the longest-header-chain policy to waste some processing

done by the honest nodes. In Fig. 5, we describe the teasing attack

that achieves this. We see that this attack utilizes the chain that

the attacker constructs not only to later overtake the public chain,

but also to induce processing of one extra block for every block

that grows the length of the honest chain. It therefore effectively

doubles the processing invested per growth event of the public main

chain. To entice nodes to process blocks needlessly, the attacker

reveals a long header chain from its secret chain, teasing the nodes

to download a block from that chain, but makes the rest of the

blocks unavailable for download.

To demonstrate the attack, we simulate a network with 100

nodes that together create 1 block per second. The simulations were

written as event-driven simulations using Python’s simpy package.
1

See App. B for details on the implementation and setup. To start

the attack, the attacker must pre-mine a short private chain longer

than the honest chain. Even if the attacker’s mining rate is lower

than the honest mining rate, the attacker still succeeds in doing this

with some probability. Thereafter, it starts the teasing attack and

the subsequent increased processing delays slow down the honest

chain growth rate, which allows the adversary to maintain its lead.

1
Source code: https://github.com/avivz/finitebwlc
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Figure 5: Teasing attack: Green/red are honest/adversarial

blocks, and numbers on blocks indicate height in the

blockchain. Semi-transparent blocks have been announced

(i.e., headers released) but were not yet downloaded by honest

nodes. (a)We begin when honest nodes have a chain of length

2. All blocks have been downloaded and validated by honest

nodes. (b) An honest node builds a block at height 𝑘 = 3, and

announces it. The majority of the nodes are still mining on

top of the block at height 𝑘 −1. The adversary wishes to delay

the download of the new block. (c) The adversary announces

a block at height 𝑘 + 1 from a chain it had been withholding.

Since this is the longest announced chain, honest nodes pri-

oritize its download beginning with the adversary’s block 2.

(d) Honest nodes have downloaded and validated the adver-

sary’s block 2. Since they do not yet have a longer validated

chain, they keep mining as before. When they request the

adversary’s block of height 𝑘 = 3, they find it to be unavail-

able (‘?’), and so ignore the rest of the attacker’s chain and

resume downloading the honest block of height 𝑘 = 3. (e)

While download was delayed, some mining power may have

been wasted and another conflicting honest block of height

𝑘 = 3may have been constructed. Notice now that we are in

a scenario similar to the beginning of the attack and that a

similar sequence can now repeat. (f) Once an honest node

mines a block of height 4, the attacker announces a block

at height 5, and proceeds to allow a download of height 3,

delaying again the verification of the honest block at height 4.

Eventually, the attack breaks safety as the adversary releases

content for its chain to overtake the honest chain.

We compare the rate of growth of the honest chain when the

attacker mines silently and does not publish blocks (private attack)

to the scenario in which a teasing attack (Fig. 5) is being carried

out. The chain’s rate of growth then sets the bound on the system’s

security: if the attacker manages to mine faster than the honest

network is growing (i.e. 𝜆
adv

> 𝜆
grwth

), then it is able to continue

the attack indefinitely.

Fig. 6 depicts the result of our simulation. It shows that with the

teasing attack, the network’s processing power is slowed roughly

by a factor of 2. As a result, the effective delay of block propagation

5
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Figure 6: The rate of chain growth relative to honest block

production, when nodes prioritize downloads towards the

longest known header chain, for various bandwidths. With a

teasing attack ( ), processing is effectively slowed by a factor

of 2, which lowers the growth rate of the chain (and hence

lowers security, cf. Fig. 1(c)) compared to a silent attacker ( ).

increases, and the attacker succeeds with greater ease compared

to the naive attack. Since the silent attack is the worst-case attack

for Nakamoto consensus according to bounded-delay analysis [13],

the teasing attack demonstrates that scheduling policies must be

taken into account when considering the security of the protocol,

and sufficient capacity needs to be provisioned to ensure security.

2.2 The Greedy Policy and the Forking Attack

The teasing attack relied strongly on the fact that the attacker could

entice nodes with a long header chain that is later discovered to

be unavailable for download. It is natural in this case to consider

adjusting the download rule to one that prefers the proverbial ‘bird

in the hand over two birds in the bush’, i.e., to extend the blocks

we already downloaded over the illusive promise of a longer chain

that the attacker may withhold from us.

While the greedy policy performs well at high processing rates,

we unfortunately find that it preforms poorly in the low processing

rate regime. Specifically, if a fork in the chain occurs, and nodes

are split evenly between the two alternatives, the fork may never

resolve. This is because nodes extend their own chain, and prioritize

download on their side of the split, while having insufficient pro-

cessing power to catch up with the other alternative chain. A fork

in the chain can result from a deliberate attack by an attacker that

releases blocks selectively to different nodes, by a network split, or

worse, by an unlucky timing of honest node mining events. In this

case, the blockchain fails even for small attackers. Importantly, a

fork that never resolves is either a safety or a liveness failure, as no

transaction on either side of the split can be safely accepted.

To demonstrate this download rule in action, we simulate a

network of 100 nodes that are split evenly between two partitions

for only 15 seconds, i.e., for an expected time required to produce 15

blocks.
2
Once the network split ends, the simulation continues for

another 4000 seconds, allowing nodes the opportunity to converge

on a chain. Wemeasure the height of the latest block all nodes agree

upon. If nodes do not recover from the partition, this block will be

2
Such short splits are relatively easy to induce in reality (transient problems with

Internet routing, denial-of-service on the network, etc.) and thus a practical scheduling

rule must recover from such splits.
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Figure 7: The rate nodes grow the agreed chain after the

network splits into two sets of 50 nodes for 15 secs, when the

download rule is “longest-header-chain” ( ) or “greedy” ( ).

Nodes using the greedy policy prioritize downloads on their

current chain. Under low bandwidth, they do not recover

from the split, resulting in two chains forking at genesis,

providing no growth of the agreed chain. Thus, longest chain

is insecure without an adversary (cf. Fig. 1(c)).

the genesis and the liveness of the protocol has failed. Otherwise,

nodes quickly agree on the main chain and the height of the latest

agreed block is just a little behind the longest tip of the chain.

We simulate the evolution after a brief partition for both the

longest-header-chain policy as well as for the greedy policy. Our

results (Fig. 7) show that in settings where bandwidth is greater than

1/2, nodes manage to catch up with the chain and the rate of growth

matches for both scheduling policies. In lower bandwidth settings,

however, nodes never catch up. Note that this attack requires no

adversarial mining, yet the protocol is insecure (cf. Fig. 1(c)). This

is in stark contrast to the bounded-delay analysis which suggests

that the protocol retains security against a non-mining adversary

at any bandwidth (cf. Fig. 1(a)), and highlights again the need to

study the security of blockchains at capacity.

3 PROTOCOL & MODEL

Pseudocode of an idealized LC protocol Π𝜌,𝜏,𝑘conf is provided in

Alg. 1. Details of the protocol’s resource-based block production

lottery, i.e., of production and verification of blocks, are abstracted

through an idealized functionality F
hdrtree

(cf. [36, Fig. 2], [34,

Alg. 3]). Pseudocode for instantiations F PoW,𝜌

hdrtree
and F PoS,𝜌

hdrtree
mod-

eling proof-of-work (PoW) and proof-of-stake (PoS) are provided

in Alg. 2 and Alg. 3, respectively. Helper functions used in the

pseudocode are detailed in App. A.1. We study these protocols in a

unified model for a networkZ with finite bandwidth (Fig. 8), and

for the powers and limits of an adversary A.

3.1 Longest Chain Protocols

For ease of exposition, the execution features a static set of 𝑁

equipotent nodes, each of which runs an independent instance of

Π𝜌,𝜏,𝑘conf . Temporary crash faults (‘sleepiness’) of nodes (in PoW

and PoS), heterogeneous distribution of hash power (in PoW) or

stake (in PoS), and stake shift (in PoS) or difficulty adjustment (in

PoW), are left to be addressed with techniques from [11, 10, 36,

17]. We are interested in the large system regime 𝑁 →∞. Nodes
interact with each other and with the adversary A through an

6
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Algorithm 1 Idealized LC consensus protocol Π𝜌,𝜏,𝑘conf with down-
load logic (helper functions: App. A.1, environmentZ: App. A.2,

functionality F
hdrtree

: Alg. 2 for PoW, Alg. 3 for PoS)

1: ⊲ Global counter of slots 𝑡 ← 1, 2, ... of duration 𝜏 (for PoW: 𝜏 → 0, cf. Sec. 5)

2: on init(genesisC, genesisTxs)
3: ⊲ Initialize header tree hT , longest downloaded chain dC, and mappings from

block header to content blkTxs

4: hT, dC ← {genesisC}, genesisC
5: blkTxs[genesisC] ← genesisTxs ⊲ Unset entries of blkTxs are UNKNOWN

6: on receivedHeaderChain(C) ⊲ Called by Z or A
7: assert F

hdrtree
.verify(C) ⊲ Validate header chain

8: hT ← hT ∪ prefixChainsOf (C) ⊲ Add C and its prefixes to hT
9: Z.broadcastHeaderChain(C)
10: on receivedContent(C, txs) ⊲ Called by Z or A
11: ⊲ Defer processing the content until all prefixes’ contents are downloaded

12: defer until ∀C′ ≺ C : blkTxs[C′ ] ≠ UNKNOWN
13: assert C.txsHash = Hash(txs)
14: receivedHeaderChain(C) ⊲ Validate header chain

15: blkTxs[C] ← txs
16: Z.uploadContent(C, txs)
17: ⊲ Update the longest downloaded chain among downloaded chains

18: T′ ← {C′ ∈ hT | blkTxs[C′ ] ≠ UNKNOWN}
19: dC ← argmaxC′ ∈T′ | C′ |
20: at slot 𝑡 ← 1, 2, ... ⊲ LC protocol main loop

21: txs← Z.receivePendingTxs( )
22: ⊲ Produce and disseminate a new block if eligible

23: if C′ ≠ ⊥ with C′ ← F
hdrtree

.extend(dC, txs)
24: Z.broadcastHeaderChain(C′ )
25: Z.uploadContent(C′, txs)
26: ⊲ Confirm all but the last 𝑘

conf
blocks on the longest downloaded chain

27: LOG𝑡 ← txsLedger(blkTxs, C ⌈𝑘conf ) ⊲ Ledger of node 𝑝 at time 𝑡 : LOG𝑡
𝑝

28: ⊲ Throughout, download content for some C chosen by download rule (e.g. Alg. 4)

Algorithm 2 Idealized functionality F PoW,𝜌

hdrtree
: block production lot-

tery and header chain structure for PoW (helper functions: App. A.1)

1: on init(genesisC, numNodes)
2: 𝑁 ← numNodes
3: T ← {genesisC} ⊲ Global set of valid header chains

4: on extend(C, txs) from node 𝑃 (possibly adversarial) at slot 𝑡

5: ⊲ Abstraction of proof-of-work lottery: each node can call this once per slot and

produces a block with probability 𝜌/𝑁 independently of other nodes and slots

6: if lottery[𝑃, 𝑡 ] ≠ ⊥ return ⊥ ⊲ allow only one block per successful lottery

7: lottery[𝑃, 𝑡 ] $← (true with probability 𝜌/𝑁 , else false)
8: if C ∈ T ∧ lottery[𝑃, 𝑡 ] ⊲ New header chain valid if parent chain C is valid

9: ⊲ Produce a new block header extending C
10: C′ ← C∥ newBlock(txsHash : Hash(txs) )
11: T ← T ∪ {C′ } ⊲ Register new header chain in header tree

12: return C′
13: return ⊥
14: on verify(C)
15: return C ∈ T ⊲ Header chain is valid if previously added to header tree

environmentZ that models the network and is detailed in Secs. 3.2

and A.2. The protocol proceeds in slots of duration 𝜏 (Alg. 1, l. 20).

At each slot 𝑡 , the protocol queries the block production lottery

F
hdrtree

in an attempt to extend the longest downloaded chain dC
in the node’s view with a new block of pending transactions txs. If
successful, the node disseminates both the resulting block header

C′ and the associated block content txs via the environmentZ to all

nodes. Finally, the protocol identifies the 𝑘
conf

-deep prefix dC ⌈𝑘conf
containing all but the last 𝑘

conf
blocks of dC. The transactions along

dC ⌈𝑘conf are concatenated to produce the output ledger LOG𝑡 .
When a node 𝑝 receives a new valid block header C (Alg. 1, l. 6),

𝑝 adds C to its header tree hT , records C as first seen at the current

slot, and relays C to all other nodes viaZ. Throughout the execu-

Algorithm 3 Idealized functionality F PoS,𝜌

hdrtree
: block production lot-

tery and header chain structure for PoS (helper functions: App. A.1)

1: ⊲ init(genesisC, numNodes) and verify(C) same as in Alg. 2

2: on isLeader(𝑃, 𝑡 ) from A (only for adversarial node 𝑃 ) or FPoS,𝜌
hdrtree

3: ⊲ Abstraction of proof-of-stake lottery: each node is chosen leader in each slot

with probability 𝜌/𝑁 independently of other nodes and slots

4: if lottery[𝑃, 𝑡 ] = ⊥
5: lottery[𝑃, 𝑡 ] $← (true with probability 𝜌/𝑁 , else false)
6: return lottery[𝑃, 𝑡 ]
7: on extend(𝑡 ′, C, txs) from A (only for adversarial node 𝑃 ) or FPoS,𝜌

hdrtree

8: ⊲ New header chain is valid if parent chain C is valid, 𝑃 is leader for slot 𝑡 ′ ,
and 𝑡 ′ is later than the tip of C and is not in the future

9: if (C ∈ T) ∧ FPoS,𝜌
hdrtree

.isLeader(𝑃, 𝑡 ′ ) ∧ (C.time < 𝑡 ′ ≤ 𝑡 )
10: ⊲ Produce a new block header extending C
11: C′ ← C∥ newBlock(time : 𝑡 ′, node : 𝑃, txsHash : Hash(txs) )
12: T ← T ∪ {C′ } ⊲ Register new header chain in header tree

13: return C′
14: return ⊥
15: on extend(C, txs) from node 𝑃 (possibly adversarial) at slot 𝑡

16: return FPoS,𝜌
hdrtree

.extend(𝑡, C, txs)

Algorithm 4 ‘Download longest header chain’ rule Dlong

1: function dlLongestHdrChain(hT, blkTxs)
2: T′ ← {C ∈ T′ | blkTxs[C] = UNKNOWN} ⊲ Ignore downloaded chains

3: C ← argmaxC′ ∈T′ | C′ | ⊲ Select the longest chain

4: C′ ← argminC′′⪯C : blkTxs[C′′ ]=UNKNOWN | C′′ | ⊲ First unknown block on that

chain (if non-existent: ⊥)
5: return C′

tion, the protocol requests fromZ the content for block headers

decided by a download priority rule (Alg. 1, l. 28). As a concrete

example, we use the ‘download longest header chain’ rule (Alg. 4)

in which a node downloads content for the first block header with

unknown content on the longest header chain it has seen. Once a

valid block’s content is received (Alg. 1, l. 10), the node makes it

available to other nodes viaZ, and updates its dC.

Proof-of-Work. The characteristics of PoW-based block produc-

tion, e.g., in Bitcoin [32, 18], are captured by the idealized function-

ality F PoW,𝜌

hdrtree
(Alg. 2). Each block production attempt is committed

to a parent block and block content (Alg. 2, l. 4), and only a single

block is produced when the attempt is successful. Per slot, each

node can make one block production attempt that will be success-

ful with probability 𝜌/𝑁 , independently of other nodes and slots

(Alg. 2, l. 7). This model, for ease of exposition, assumes uniform

hash power across all nodes. Since each slot represents a single

PoW evaluation, we study PoW in the regime 𝜌 = Θ(𝜏), 𝜏 → 0.

In turn as 𝜌 → 0, with probability 1, each slot produces at most

one block across all nodes. The PoW model thus implies that every

block must be produced in a slot strictly after its parent block.

Proof-of-Stake. PoS LC protocols such as from the Ouroboros [25,

11, 2] or Sleepy Consensus [36, 10] families can be modeled using

F PoS,𝜌

hdrtree
(Alg. 3). As in PoW, each node can make one block pro-

duction attempt per slot that will be successful with probability

𝜌/𝑁 , independently of other nodes and slots (Alg. 3, l. 5)
3
, model-

ing uniform stake. In PoS, however, (even past) block production

opportunities can be ‘reused’ to produce multiple blocks with dif-

3
There may be multiple blocks in one slot, as in the Ouroboros [25, 11, 2] and Sleepy

Consensus [36, 10] protocols.
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Figure 8: Bandwidth constrained network model [34, Fig. 4]:

1 Honest node produces a block, made of header and

content. A hash in the header commits to the con-

tent. 2 Header is flooded (Z.broadcastHeaderChain),

and arrives at all nodes (Π𝜌,𝜏,𝑘conf .receivedHeaderChain)

with at most Δ
h

delay. 3 Content is made available

for peer-to-peer pull-based download (Z.uploadContent).
4 Content associated with the header is downloaded

(Π𝜌,𝜏,𝑘conf .receivedContent), subject to a maximum rate

of𝐶. 5 The adversary can push headers and content to nodes,

bypassing the delay and bandwidth constraints.

ferent parents and/or content, i.e., to equivocate (Alg. 3, ll. 2, 7). The

regime of interest is 𝜏 = Θ(1).

3.2 Bandwidth Constrained Network

We borrow the bandwidth constrained network model of [34]

(Fig. 8). In this model,Z abstracts push-based flooding of ‘small’

block headers and pull-based downloading of ‘large’ block contents

from peers. Block header chains sent viaZ.broadcastHeaderChain
are eventually delivered byZ to every node, cf. Alg. 1, l. 6. Headers

are delivered with a per-node per-header delay determined by A,

up to a commonly known delay upper bound Δ
h
. Block content

made available viaZ.uploadContent is kept byZ in what can

be thought of as a ‘cloud’. Nodes can request the content associated

with a particular header. If content matching the header is avail-

able, then it is delivered byZ to the node, cf. Alg. 1, l. 10. Content

download is subject to a per-node bandwidth constraint of 𝐶 . See

App. A.2 for a more formal description ofZ.

The ‘cloud’ captures key properties of pull-based peer-to-peer

downloading. At first, content matching a particular header might

not be available (e.g., A produced a block and disseminated its

header, but withheld its content). Later, such content can become

available (e.g., A releases the content to one honest node). Thus,

the ‘cloud’ ensures neither data availability nor strong consistency

of query outcomes, unlike stronger primitives such as verifiable

information dispersal [7, 22, 46, 33]. However, once content for a

header does become available, it is unique and remains available.

This captures the header’s binding commitment to the content, and

the fact that honest nodes share content with peers. Requests for

unavailable content do not count towards the download budget.

Also note that the adversary can push headers and content bypass-

ing bandwidth and delay constraints, and this models non-uniform

bandwidth across nodes, and additional effects (analogous to adver-

sarially controlled delay up to maximum Δ in the bounded delay

model).

Powers and Limits of the Adversary. The static adversary A
chooses a set of nodes (up to a fraction 𝛽 of all 𝑁 nodes, where 𝛽

is common knowledge) to corrupt before the randomness of the

execution is drawn and the execution commences. Uncorrupted

honest nodes follow Π𝜌,𝜏,𝑘conf at all times. Corrupted adversarial

nodes follow arbitrary computationally bounded Byzantine behav-

ior, coordinated by A in an attempt to break consensus. Among

other things, the adversary can: withhold block headers and content,

or release them late or selectively to honest nodes; push headers

and content to nodes while bypassing the delay and bandwidth

constraints; break ties in Π𝜌,𝜏,𝑘conf ’s chain selection and content

download policy; in PoS, reuse block production opportunities to

produce multiple blocks (equivocations, cf. F PoS,𝜌

hdrtree
.extend), and

extend chains using past opportunities as long as the purported

block production slots along every chain remain strictly increasing.

3.3 Security of Ledger Protocols

For an execution of Π𝜌,𝜏,𝑘conf where every honest node 𝑝 at every

slot 𝑡 outputs a ledger LOG𝑡𝑝 , we recall the security desiderata:

• Safety: For all adversarial strategies, for all slots 𝑡, 𝑡 ′, and for all

honest nodes 𝑝, 𝑞: LOG𝑡𝑝 ⪯ LOG𝑡
′
𝑞 or LOG𝑡

′
𝑞 ⪯ LOG𝑡𝑝 .

• Liveness with parameter 𝑇
live

: For all adversarial strategies, if a

transaction tx is received by all honest nodes by slot 𝑡 , then for

every honest node 𝑝 and for all slots 𝑡 ′ ≥ 𝑡 +𝑇
live

, tx ∈ LOG𝑡 ′𝑝 .

A consensus protocol is secure over slot horizon𝑇
hrzn

with parameter

𝑇
live

iff it satisfies safety, and liveness with parameter 𝑇
live

, with

overwhelming probability over executions of slot horizon 𝑇
hrzn

.

3.4 Notation

Nodes are identified using 𝑝, 𝑞. Our notation distinguishes between

three notions of ‘time’: Slots of Π𝜌,𝜏,𝑘conf are indicated by 𝑟, 𝑠, 𝑡 . Slots
in which one or more blocks are produced form a sub-sequence

{𝑡𝑘 }, defined in Sec. 4.2. Indices into this sub-sequence are denoted

by 𝑖, 𝑗, 𝑘 . Physical parameters of our model, header propagation

delay Δ
h
and bandwidth 𝐶 , are specified in units of real time.

We denote intervals of indices (or slots) as (𝑖, 𝑗] ≜ {𝑖 + 1, ..., 𝑗},
with the convention that (𝑖, 𝑗] ≜ ∅ for 𝑗 ≤ 𝑖 . We study executions

over a finite horizon of𝑇
hrzn

slots (or𝐾
hrzn

indices), and any interval

(𝑖, 𝑗] with 𝑖 < 0 or 𝑗 > 𝐾
hrzn

considered truncated accordingly. The

notation (𝑖, 𝑗] ≻ 𝐾 (resp. ⪰, ≺, ⪯,≍) is short for 𝑗 − 𝑖 > 𝐾 (resp.

≥, <, ≤,=). In the analysis, we denote with upper-case Latin letters

several random processes over indices (e.g.,𝑋𝑘 ) or slots (e.g.,𝐻𝑡 ). For

any set 𝐼 of indices (analogously for slots), we define𝑋𝐼 ≜
∑
𝑘∈𝐼 𝑋𝑘 .

We denote by 𝜅 the security parameter. An event E𝜅 occurs with

overwhelming probability (wop) if Pr [E𝜅 ] ≥ 1 − negl(𝜅). Here, a
function 𝑓 (𝜅) is negligible negl(𝜅), if for all 𝑛 > 0, there exists 𝜅∗𝑛
such that for all 𝜅 > 𝜅∗𝑛 , 𝑓 (𝜅) < 1

𝜅𝑛 .
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4 SECURITY ANALYSIS

4.1 Unified Model for PoW and PoS

We develop a unified probabilistic model for the block production

of both PoW and PoS as per Algs. 2 and 3. This enables us to prove

properties of the block production process and block tree structure

that are common to both variants (Sec. 4.3). We then use these

properties to prove security of PoW LC (Sec. 5) and PoS LC (Sec. 6).

Recall that the protocol runs in discrete units of time called slots,

and that we consider 𝜏 → 0 to model PoW. A block production

opportunity (BPO) is a pair (𝑝, 𝑡) where according to the PoW/PoS

block production lottery, node 𝑝 is eligible to produce a block in

slot 𝑡 . A BPO is called honest (resp. adversarial) if node 𝑝 is honest

(resp. adversarial). The random variables 𝐻𝑡 and 𝐴𝑡 denote the

number of honest and adversarial BPOs in slot 𝑡 , respectively. When

the number of nodes 𝑁 → ∞ and each node holds an equal rate

of block production, by the Poisson approximation of a binomial

random variable, we have 𝐻𝑡
i.i.d.∼ Poisson((1 − 𝛽)𝜌) and 𝐴𝑡 i.i.d.∼

Poisson(𝛽𝜌), independent of each other and across slots. The total

number of BPOs per slot is 𝑄𝑡 = 𝐻𝑡 +𝐴𝑡 . An execution refers to a

particular realization of the random process {(𝐻𝑡 , 𝐴𝑡 )}.
In PoW, as we take 𝜏 → 0, the block production process con-

verges to a Poisson point process. As noted in Sec. 3.1, each BPO

corresponds to a different slot, and in both PoW and PoS we may

assume that blocks in one chain must come from increasing slots.

In this unified model, we make the adversary’s powers the

strongest of both PoW and PoS. Specifically, we allow the adversary

to create multiple blocks from the same BPO (equivocations) which

is only possible in PoS but not in PoW. However, we assume in

the unified analysis that honest nodes use a download rule which

downloads at most one block per BPO. From a bandwidth perspec-

tive, this puts both PoW and PoS on an equal footing. Then as seen

in [13, 19], the additional ability to equivocate does not change

the block tree properties and therefore allows us to use similar

techniques in our unified analysis. The assumption of downloading

at most one block per BPO clearly holds for any download rule in

PoW, but we define an equivocation removal policy to achieve this

in PoS, so that the unified model applies to PoS as well.

4.2 Definitions

‘Good’ slots are slots with exactly one honest BPO and no adversar-

ial BPOs in that slot, and no BPOs in 𝜈 slots after. This definition is

inspired by convergence opportunities [35, 36, 26], loners [13], and

laggers [38]. Here, 𝜈 is an analysis parameter whose value is chosen

such that each honest node can receive the block header from the

honest BPO, and download content for𝐶 within 𝜈 + 1 slots. That is,

(𝜈 + 1)𝜏 ≜ Δ
h
+𝐶/𝐶. (1)

Definition 1. We call a slot 𝑡 good, bad, empty, respectively, de-

noted as Good(𝑡), Bad(𝑡), Empty(𝑡), respectively, iff:

Good(𝑡) ≜ (𝐻𝑡 = 1) ∧ (𝐴𝑡 = 0) ∧ (𝐻 (𝑡,𝑡+𝜈 ] +𝐴(𝑡,𝑡+𝜈 ] = 0) (2)

Bad(𝑡) ≜ (𝐻𝑡 +𝐴𝑡 > 0) ∧ ¬Good(𝑡) (3)

Empty(𝑡) ≜ (𝐻𝑡 +𝐴𝑡 = 0) . (4)

Note that Empty(𝑡) = ¬Good(𝑡) ∧¬Bad(𝑡). We denote by 𝑡𝑘 the

𝑘-th non-empty slot. Then, we can introduce random processes over

indices, with index 𝑘 corresponding to the 𝑘-th non-empty slot 𝑡𝑘 .

The process {𝐺𝑘 } counts good slots, with 𝐺𝑘 ≜ 1 if Good(𝑡𝑘 ), and
𝐺𝑘 ≜ 0 otherwise (i.e., if Bad(𝑡𝑘 )). Correspondingly, {𝐺𝑘 } counts
bad slots, 𝐺𝑘 ≜ 1 −𝐺𝑘 .

Proposition 1. The random variables {𝐺𝑘 } are independent and
identically distributed (iid) with

Pr [𝐺𝑘 = 1] ≜ 𝑝G = (1 − 𝛽) 𝜌𝑒
−𝜌 (𝜈+1)

1 − 𝑒−𝜌 . (5)

Proof is in App. C. Throughout the analysis, we will assume that

𝑝G = 1

2
+ 𝜀G with 𝜀G ∈ (0, 1/2] (‘honest majority’ assumption).

A special role is played by good slots 𝑡𝑘 as these are candidate

slots in which the block produced at 𝑡𝑘 is ‘soon’ downloaded by

all honest nodes. We count these slots with {𝐷𝑘 }, and all other

non-empty slots with {𝐷𝑘 }. Specifically, 𝐷𝑘 ≜ 1 if Good(𝑡𝑘 ) and
the block produced at 𝑡𝑘 has been downloaded by all honest nodes

by the end of slot 𝑡𝑘 + 𝜈 , 𝐷𝑘 ≜ 0 otherwise, and 𝐷𝑘 ≜ 1 − 𝐷𝑘 . We

call slots 𝑘 with 𝐷𝑘 = 1 as 𝐷-slots and those with 𝐷𝑘 = 1 as 𝐷-slots.

Finally, we define two random walks on indices of non-empty

slots with increments {𝑋𝑘 } and {𝑌𝑘 } that will come in handy for

the definition of probabilistic and combinatorial pivots:

𝑋𝑘 ≜ 𝐺𝑘 −𝐺𝑘 𝑌𝑘 ≜ 𝐷𝑘 − 𝐷𝑘 (6)

Note that the increments {𝑋𝑘 } are iid, and not affected by adversar-
ial action, while the increments {𝑌𝑘 } do depend on the adversarial

action and are thus in particular not iid. Also note that ∀𝑘 : 𝑌𝑘 ≤ 𝑋𝑘
since 𝐷𝑘 = 1 =⇒ 𝐺𝑘 = 1.

Definition 2. We call an index 𝑘 a ppivot (short for probabilistic

pivot), denoted as PPivot(𝑘), iff:
PPivot(𝑘) ≜ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝑋 (0,𝑖 ] < 𝑋 (0,𝑘 ] ≤ 𝑋 (0, 𝑗 ] ) (7)

This definition of ppivots captures the probabilistic aspects of [36,

Def. 5] used in [36, Sec. 5.6.3] and casts them as conditions on a

random walk, inspired by [13, 29], to simplify the analysis.

These alternative characterizations of ppivots are insightful:

Proposition 2.

PPivot(𝑘) ⇐⇒ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝑋 (𝑖, 𝑗 ] > 0) (8)

⇐⇒ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝐺 (𝑖, 𝑗 ] > 𝐺 (𝑖, 𝑗 ] ) (9)

⇐⇒ (𝑋𝑘 = 1) ∧ (∀𝑗 ≥ 𝑘 : 𝑋 (𝑘,𝑗 ] ≥ 0)
∧ (∀𝑖 < (𝑘 − 1) : 𝑋 (𝑖,𝑘−1] ≥ 0) (10)

Proof. Elementary, using 𝑋 (𝑖, 𝑗 ] = 𝑋 (0, 𝑗 ] − 𝑋 (0,𝑖 ] . □

In particular, eqn. (10) characterizes a ppivot as an index 𝑘 such

that 𝐺𝑘 = 1 and the simple random walks ℓ ↦→ 𝑋 (𝑘,𝑘+ℓ ] and ℓ ↦→
𝑋 (𝑘−1−ℓ,𝑘−1] starting at 0 remain non-negative forever (Fig. 9). The

process {𝑃𝑘 } counts ppivots, with increments 𝑃𝑘 ≜ 1{PPivot(𝑘 ) } .

Definition 3. We call an index 𝑘 a cpivot (short for combinatorial

pivot), denoted as CPivot(𝑘), iff:
CPivot(𝑘) ≜ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝑌(0,𝑖 ] < 𝑌(0,𝑘 ] ≤ 𝑌(0, 𝑗 ] ) (11)

This definition of cpivots captures the combinatorial aspects

of [36, Def. 5] used in [36, Sec. 5.6.2] and casts them as conditions

on a random walk, inspired by [13], to simplify the analysis. The

equivalences of Prop. 2 hold for cpivots analogously. Note that a

9
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Figure 9: Illustration of ppivot (eqn. (10)): A ppivot as an index

𝑘 so that 𝑋𝑘 = 1 ( ) and 𝑋 (0,.] is strictly below 𝑋 (0,𝑘 ] left of 𝑘
and weakly above 𝑋 (0,𝑘 ] right of 𝑘 ( ), elsewhere ( ).

cpivot is also a ppivot because 𝑌𝑖 ≤ 𝑋𝑖 .
We denote by dC𝑝 (𝑡) the longest fully downloaded chain of an

honest node 𝑝 at the end of slot 𝑡 , and let |𝑏 | denote the height of
a block 𝑏. We use the same notation |C| to denote the length of a

chain C, define 𝐿𝑝 (𝑡) =
��
dC𝑝 (𝑡)

��
and 𝐿min (𝑡) = min𝑝 𝐿𝑝 (𝑡).

4.3 Unified Analysis in the Probabilistic Model

In this section, we develop all the tools needed to prove the safety

and liveness of the PoW and PoS longest chain protocols.

In Sec. 4.3.1 we show that a block produced in a slot correspond-

ing to a cpivot stabilizes, i.e., remains in the longest downloaded

chain of all honest nodes. This is useful because if transactions in a

block are confirmed after waiting long enough so at least one cpivot

occurs, the prefix of the cpivot stabilizes and so those transactions

remain in every honest node’s ledger (safety). The occurrence of

cpivots also guarantees liveness because the block from a cpivot is

honest, so it adds new valid transactions to the ledger.

Further, we show that ppivots occur very often (Sec. 4.3.2) and

the adversary cannot prevent all ppivots from becoming cpivots

(Sec. 4.3.3). Thus, at least one cpivot occurs in a long enough time

interval, the length of which can be set as the confirmation time.

4.3.1 Combinatorial Pivots Stabilize. In this section, we show that

the honest block produced in a slot corresponding to a cpivot per-

sists in the longest downloaded chain of all honest nodes after 𝜈

slots. Towards this, we first show that if 𝐷𝑘 = 1, i.e., if all honest

nodes download the block produced in the good slot 𝑡𝑘 , then the

length of the longest downloaded chain of honest nodes increases

(made precise in Prop. 3). Due to this, since all intervals around a

cpivot contain more indices with 𝐷𝑘 = 1 than those with 𝐷𝑘 = 0,

there can never be a chain which is longer than an honest node’s

longest downloaded chain and does not contain the block corre-

sponding to the cpivot (Lem. 1). In turn, this means that the block

corresponding to the cpivot remains in all honest nodes’ longest

downloaded chains forever. Lem. 1 is proved in App. C.1.

Proposition 3. If 𝐷𝑘 = 1, then 𝐿min (𝑡𝑘 + 𝜈) ≥ 𝐿min (𝑡𝑘 − 1) + 1.

Proof. Since 𝐷𝑘 = 1, slot 𝑡𝑘 is a good slot. Let 𝑏 be the unique

honest block produced in slot 𝑡𝑘 , and let honest node 𝑝 be its pro-

ducer. Since honest nodes produce blocks on their longest down-

loaded chain, |𝑏 | = 𝐿𝑝 (𝑡𝑘 −1) +1 ≥ 𝐿min (𝑡𝑘 −1) +1. Further, 𝐷𝑘 = 1

means that the block 𝑏 is downloaded by all honest nodes by the

end of slot 𝑡𝑘 + 𝜈 . Therefore, 𝐿min (𝑡𝑘 + 𝜈) ≥ |𝑏 |. □

Lemma 1. Let 𝑏∗ be the block produced in a non-empty slot 𝑡𝑘 such

that CPivot(𝑘). Then for all header chains C′ that are valid at slot
𝑡 ≥ 𝑡𝑘 + 𝜈 and |C′ | ≥ 𝐿min (𝑡), 𝑏∗ ∈ C′. Further, for all honest nodes
𝑝 and for all slots 𝑡 ≥ 𝑡𝑘 + 𝜈 , 𝑏∗ ∈ dC𝑝 (𝑡).

4.3.2 Probabilistic Pivots Are Abundant. Sufficiently long intervals

of indices contain a number of ppivots proportional to the interval

length. Recall that throughout, 𝑝G = 1

2
+ 𝜀G with 𝜀G ∈ (0, 1/2].

Lemma 2. For 𝐾cp = Ω(𝜅2), and 𝐾
hrzn

= poly(𝜅),
Pr

[
∀ (𝑖, 𝑗] ⪰ 𝐾cp : 𝑃 (𝑖, 𝑗 ] ≥ (1 − 𝛿)𝑝ppivot𝐾cp

]
≥ 1 − exp(−Ω(𝜅)) = 1 − negl(𝜅). (12)

The proof is in App. C.2.

4.3.3 Many Probabilistic Pivots Imply One Combinatorial Pivot. As
a concrete choice of download rule, we consider the ‘download

longest header chain’ rule Dlong (Alg. 4). This rule has some useful

properties that we prove below. Intuitively, nodes using this rule

(P1) do not download the same block twice,

(P2) download at most one block from each BPO (in PoW),

(P3) either download the most recent honest block, or fully utilize

their bandwidth to download other blocks (don’t stay idle), and

(P4) download only blocks that were produced ‘recently’.

(P1) clearly holds as this rule only downloads content for headers

whose content is yet UNKNOWN, hence was not downloaded before.

(P2) holds in PoW because there is only one block per BPO. In

PoS, the download rule is modified to satisfy this property (Sec. 6).

(P3) holds because the download rule Dlong is never idle, and will

always download towards an honest block when it has downloaded

all longer chains and there is bandwidth remaining. Moreover, we

expect that under a secure execution, (P4) holds because the longest

header chain can not fork off toomuch from the longest downloaded

chain of an honest node, otherwise it would cause a safety violation.

More precisely, due to Lem. 1, any longest header chain in any

honest node’s view must extend the block produced in the most

recent cpivot, and therefore blocks with higher download priority

must have been produced after the most recent cpivot (Prop. 4).

Given the above properties of the download rule, we nowwant to

show that cpivots occur often. To start with, let us show that there is

at least one cpivot in

(
0, 𝐾cp

]
. From Lem. 2, there are many ppivots

in

(
0, 𝐾cp

]
. If there were no cpivots in

(
0, 𝐾cp

]
, then the adversary

must prevent each ppivot from turning into a cpivot. We know that

in any interval around a ppivot, there are more good indices than

bad indices, in fact good indices outnumber bad indices by a margin

that increases linearly with the size of the interval. Therefore, for

a ppivot to not be a cpivot, the adversary must prevent an honest

node from downloading the most recent honest block in several of

these good slots. From Prop. 4, for each such index, the adversary

must ‘spend’ at least 𝐶 blocks that the honest node downloads.

These blocks must come from a ‘budget’ that can at most contain

all blocks mined since the beginning of the protocol. However, these

intervals around the ppivots begin no later than slot 𝐾cp, so the

number of such blocks is limited. If this ‘budget’ falls short of the

number of blocks required to overthrow all cpivots, then there must

be at least one cpivot in

(
0, 𝐾cp

]
.

Next, we would like to show that there is at least one cpivot

in

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
for all𝑚 ≥ 0 (where we just saw the base
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case𝑚 = 0) Here, the adversary might save up many blocks from

the past and attempt to make honest nodes download these blocks

at a particular target slot 𝑡𝑘 . This is where the property of the

download rule proven in Prop. 4 becomes useful. Given that one

cpivot occurred in

(
(𝑚 − 1)𝐾cp,𝑚𝐾cp

]
, Prop. 4 ensures that honest

nodes will only download blocks that are produced after (𝑚−1)𝐾cp.
This allows us to bound the ‘budget’ of blocks that the adversary

can use to overthrow cpivots, and therefore show that there is at

least one cpivot in

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
. We thus prove the required

claim inductively in Lem. 3.

While all the analysis below is done for the download ruleDlong,

the proofs only use the properties (P1), (P2), (P3), (P4) and thus

apply to several other simple download rules. A few examples are

i) “download towards the freshest block” [34], ii) “download only

blocks that are consistent with the node’s confirmed chain”, or iii)

“at slot 𝑡𝑘 , only download blocks produced in slots (𝑡𝑘 −𝑇dl, 𝑡𝑘 ]” for
some 𝑇

dl
. In fact, iii) gives an alternative definition of the property

(P4) instead of the one in Prop. 4. In this work, we did not adopt

i) because ‘freshness’ cannot be determined in PoW, and ii) and

iii) because they would fail to recover from a network split (as

demonstrated in the forking attack in Sec. 2.2). In Sec. 6, we modify

the ‘download longest header chain rule’ to remove equivocations

in PoS. We show that this rule satisfies the above properties, and

hence the analysis of this section carries over in PoS as well.

Proposition 4. If 𝐺𝑘 = 1 and 𝐷𝑘 = 0, then during slots [𝑡𝑘 , 𝑡𝑘 + 𝜈],
all honest nodes using the download rule Dlong download content of

at least𝐶 blocks that are produced in (𝑖, 𝑘], where 𝑖 < 𝑘 is the largest

index such that CPivot(𝑖) (if such an 𝑖 does not exist, 𝑖 = 0).

Lemma 3. If all honest nodes use the download rule Dlong, and if

∀ (𝑖, 𝑗] ⪰ 𝐾cp :
𝐶

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
> 𝑄 (𝑖−2𝐾cp, 𝑗] , and (13)

∀𝑚 ≥ 0 :

𝐶

4

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] > 𝑄 ( (𝑚−2)𝐾cp,(𝑚+2)𝐾cp] , (14)

then ∀𝑚 ≥ 0 : ∃𝑘∗𝑚 ∈
(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
: CPivot(𝑘∗𝑚).

This is proven inductively using Prop. 4. The proof is in App. C.3.

5 PROOF-OF-WORK

For PoW, we use the simple download rule ‘download the longest

header chain’. In Lem. 3, we showed that under this download rule,

cpivots occur in every 𝐾cp-interval. We will use this to prove safety

and liveness and identify the protocol parameters for which this

holds wop in Thm. 1. Proofs are in App. D.

As noted in Sec. 3.1, it is most appropriate for PoW to set 𝜏 → 0,

and to state its security properties in terms of real time. In order

to use the results from Sec. 4, we must bridge between indices and

real time. This is easy to do as the number of indices or non-empty

slots is proportional to the time interval. In fact, as 𝜏 → 0, the

block production process converges to a Poisson point process with

rate 𝜆 ≜ 𝜌/𝜏 . Moreover, each non-empty slot has exactly one BPO

(arrivals of a Poisson point process do not coincide).

Proof details in App. D. Result with Δ
h
≈ 0 (reasonable approxi-

mation for large block sizes) plotted in Fig. 1(c).

Theorem 1. For all 𝛽 < 1/2, 𝜆 > 0, such that

𝜆 < max

𝐶

1

Δ
h
+𝐶/𝐶

ln

(
2(1 − 𝛽)𝐶

𝐶 + 4 +
√︁
8𝐶 + 16

)
, (15)

the PoW longest chain protocol Π𝜌,𝜏,𝑘conf with the download rule

Dlong, 𝜏 → 0, 𝜌 = 𝜆𝜏 , and 𝑘
conf

= Θ(𝜅2) is secure with liveness la-

tency 𝑇 real

live
≜ 𝑇

live
𝜏 = Θ(𝜅2) over a time horizon of 𝐾

hrzn
= poly(𝜅)

block productions.

6 SANITIZING-PROOF-OF-STAKE (SAPOS)

6.1 Equivocation Removal

For PoS, due to spamming by equivocations, we need a policy to

ensure that nodes download at most one block from each BPO. We

therefore propose the Sanitizing-Proof-of-Stake (SaPoS) protocol,

in which the contents of provably equivocating blocks are sanitized

from the blockchain. Pseudocodes Alg. 5 and Alg. 6 are in App. E.1.

The Download Rule in SaPoS. On top of any existing download

rule (such as Dlong), we add another rule that an honest node

does not download content for a header C if it has seen another

equivocating header from the same BPO (same producing node

and slot) as C. Instead of downloading content for such a header,

the node considers that content to be “downloaded” and sets it to

be empty (Alg. 5, l. 21). This means that the node can continue to

download content for headers that extend C, and these blocks will

be candidates for the node’s longest downloaded chain dC.

Equivocation Proofs. With only the above download rule, one

honest node may download content for a header while another may

not (depending on when each node saw an equivocating header).

In order to output a consistent ledger that all honest nodes have

downloaded, honest nodes must agree on which blocks had an

equivocation, and must unilaterally blank their contents.

For this, when an honest node produces a new block header,

it adds an ‘equivocation proof’ against any equivocating blocks

among the recent blocks in its downloaded longest chain. Specif-

ically, the node picks from among the last 𝑘
epf

block headers in

its longest downloaded chain dC, block headers C′ for which the

node has seen an equivocating block header C′, and there is no

equivocation proof against it in any block header in dC. The node
then creates an equivocation proof which consists of the two block

headers C and C′ and adds the equivocation proof to the header of

the block that it creates (Alg. 5, l. 6).

The deadline 𝑘
epf

for adding equivocation proofs exists so that

the adversary cannot release an equivocation after its block has

been confirmed, and force honest nodes to then blank the content

for that block, thereby altering the ledger. The deadline also keeps

the size of equivocation proofs in a header limited. We also don’t

want an equivocation proof to be repeated in several headers in a

chain. Therefore, a block header C is considered invalid if it contains

an equivocation proof against a block not in the prefix of C, a block
more than 𝑘

epf
blocks above C, or contains an equivocation proof

that has already been proven in the prefix of C (Alg. 6, l. 6).

Ledger Construction in SaPoS. To create the ledger at the end of

slot 𝑡 , an honest node takes all blocks on its longest header chain

that are 𝑘
conf

-deep, then blanks the contents of any block against
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which there is an equivocation proof in a block header following it

(Alg. 5, l. 12).

6.2 Security Theorem

Recall that the analysis in Sec. 4.3.3 uses four properties of the down-

load rule. It is easy to see that with the addition of equivocation

removal, the ‘download longest header chain’ rule satisfies these

properties in PoS. The equivocation removal rule in SaPoS clearly

satisfies the property that each honest node never downloads the

same block twice (P1), and downloads at most one block from each

BPO (P2). The rule will never prohibit download of an honest block

because it has no equivocations, and blocks in its prefix will either

be downloaded or blanked. Moreover, the rule never remains idle

as long as there are block headers remaining with UNKNOWN content
(P3). Finally, SaPoS does not spend bandwidth on any more blocks

than the base download rule does, and since the base download

rule Dlong does not download blocks before the most recent cpivot

(Prop. 4), the rule with equivocation removal also does not (P4). This

means that the analysis of Sec. 4.3.3 works for SaPoS. Just like in

PoW, this leads to liveness and consistency of the confirmed header

chains of all honest nodes. Therefore, to ensure consistency of the

ledger, we only need to show that the ledger construction process

in SaPoS retains consistency. That is, if one honest node blanks the

content of a block in its ledger, then all honest nodes do. Conversely,

if one honest node does not blank the content for a block in its

ledger, no honest node does. Proof details in App. E.2. Result with

Δ
h
≈ 0 (large block sizes), and 𝜏 → 0 (small slot approximation)

plotted in Fig. 1(c).

Theorem 2. For all 𝛽 < 1/2, 𝐶 ∈ N, and 𝜌, 𝜏 satisfying

𝐶

16

(2𝑝G − 1)2
𝑝G

>
𝜌

1 − 𝑒−𝜌 , 𝑝G = (1 − 𝛽)𝑒−
𝜌

𝜏

(
Δ
h
+𝐶/𝐶

)
, (16)

there exists𝑘
epf
, 𝑘

conf
= Θ(𝜅2) such that the SaPoS protocolΠ𝜌,𝜏,𝑘conf ,𝑘epf

SaPoS

with the download rule Dlong, is secure with liveness latency 𝑇 real

live
=

Θ(𝜅2) slots over a time horizon of 𝐾
hrzn

= poly(𝜅) block productions.

7 PREDICTABLE TRANSACTION VALIDITY

As discussed in Sec. 6.1, our PoS protocol variant SaPoS requires

that honest nodes build on top of a header chain whose full block

contents they cannot download (due to having already downloaded

other blocks from the same equivocating BPO). In Bitcoin’s history,

suchmining without validating block contents (termed SPVmining)

has led to forks where some miners were extending blocks which

later turned out to be invalid [24]. Thus, reaching consensus on the

header chain is not enough, we need to consider how nodes catch

up to and handle missing block contents.

One option to consider is using excess bandwidth to catch-up to

the longest chain’s contents. Here we hit the crux of what is termed

the data availability (DA) problem [1]. We must guarantee that the

contents of the blocks is available. DA would be satisfied if nodes

only extended blocks that at least one honest node had downloaded

the contents of. The problem is that we don’t know who is honest.

In lieu of a DA scheme, in SaPoS (Sec. 6.1) we choose instead to

sanitize, or exclude, the contents of equivocations from the ledger

so no additional block downloads are needed and chain quality

(more honest than dishonest blocks in the ledger) holds. We still

have the problem of predictable transaction validity—honest blocks

may include transactions that depend on content from blocks whose

equivocations were not known at the time. Additionally, the adversary

could use equivocations to invalidate transactions, taking up free

space in honest blocks and lowering the effective throughput (valid

confirmed transactions) of the ledger. We thus decouple the validity

of transactions at the time they are added to a block, from when

they are executed post-consensus.

Definition 4. A transaction has predictable validity if it is valid

both at the time an honest node adds it to a block and when that

block is executed.

Traditional LC protocols, which require a node to download

and validate blocks before building on them, satisfy this definition

as the state before the block is executed is deterministic. With

our equivocation scheme, an honest node cannot know if a recent

block will be equivocated. What we can guarantee is that at the

time of creating a block, honest nodes have seen all transactions

which will be executed. Unfortunately, the converse is not correct:

not all transactions nodes have seen will be executed. If nodes limit

transactions included in a block to those that don’t depend on any

recent state, then they can be sure all equivocations that could affect

the validity state of a transaction have been included. The following

lemma follows naturally.

Lemma 4. If a node produces a block whose transactions do not

share state with any transaction included in the last 𝑘
epf

blocks, then

the block satisfies predictable transaction validity.

See App. F for proof details.

Block creators thus choose which transactions to include in a

block so they remain valid and pay for their block space, note this

is not a consensus rule. In practice, the Defi-ecosystem consists

of very interdependent transactions (e.g., transactions interacting

with major token exchanges and other prominent smart contracts)

[20, 9], so it may not be practical to limit the interaction between

transactions. The key property we want to guarantee is that any

transaction included in an honest block that is part of the canonical

chain will be paid for, i.e., the adversary cannot take up free honest

block space, so we relax the definition of predictable validity.

Definition 5. A transaction has predictable fee validity if its fee

can be paid both when an honest node adds it to a block and when

that block is executed.

The block creator only needs to ensure that the transaction

will be paid for, regardless of the outcome of its execution, so we

decouple the fee mechanism from the transaction validity. Since the

cost of transacting in smart contract platforms depends on the

length of execution which, in turn, depends on state, we must also

be sure to include a cost for the transaction size in SaPoS that is

paid independently of execution gas costs. This is to ensure that

attackers won’t be able to spam the blockchain with transactions

that are later sanitized, but still take up space in blocks.

Then for the miner to get paid, we require that the account fund-

ing the transaction has enough funds to cover the maximum gas,

even if all transactions in its recent ancestor blocks are make it to

the sanitized ledger and consume the maximum gas they could pos-
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sibly need. To do this, we introduce a notion of gas deposit accounts

to SaPoS that can only be used for transaction fees (transactions

internally do not have access to these accounts). The maximum gas

for a transaction can be bounded using the maximum gas value

set be the sender in Ethereum-style transactions. Therefore, users

who primarily make simple transactions (direct transfers having

low maximum gas) or transact infrequently (few transactions in

recent ancestor blocks) only need to maintain little balance. We

also require that any deposit to the account is not considered in the

balance until 𝑘
epf

blocks after the deposit transaction. Withdraws

however can take place immediately, as direct transactions.

Lemma 5. If a node produces a block whose transactions are funded

by gas deposit accounts with sufficient balance (balance before 𝑘
epf

blocks minus any fees since), then all transactions in the block satisfy

predictable fee validity.

See App. F for proof details.

Thus, by sanitizing the contents of equivocating blocks and using

our gas deposit scheme, we ensure that nodes download amaximum

of one block per slot and that honest block creators only include

transactions that pay for their spot in the block.

Note that in our scheme, we are primarily concerned with effec-

tive throughput as honest block space taken up by transactions that

pay their place in the blockchain. There are user-side complexities

that our scheme does not directly address. Since transactions can

be sanitized, we can no longer rely on transaction nonce schemes

that are strictly incremental but instead must relax them to strictly

increasing. In lieu of stronger validity guarantees, it is the onus of

the user to make sure their transactions behave correctly in the

event some get sanitized. Sanitizing block content also opens up

the potential for the adversary to perform free options (for a limit-

ted amount of time) by including transactions in a block that they

can later decide to cancel (by revealing an equivocation at no cost

within the allowed window).

8 CONCLUSION

In this workwe focused on the security of the longest chain protocol

both in the PoW and PoS settings. While block downloading and

processing is usually implemented in an ad-hoc manner and is not

typically discussed in the context of the protocol’s security analysis,

our work highlights the importance of correctly prioritizing block

download and processing. In addition to providing a security proof

using new techniques, and attacks on natural prioritization rules

in the PoW setting, we also propose SaPoS, a new proof-of-stake

variant. Several important open questions remain:

• There remain gaps between security bounds we provide in the

PoW setting and the known attacks in this case (cf. Fig. 1(b)).

Can better attacks be found? What are the optimal prioritization

rules for which security is achieved?

• In the PoW setting, the attacker is unable to equivocate, but in

SaPoS we were forced to deal with equivocations. This came at a

cost to the latency of transaction execution, and with decreased

certainty about the state at which the transaction is eventually

executed. Can these costs be avoided, so that PoS based LC is

on par with the PoW variant?

• The difficulty adjustment algorithm (DAA) seems to apply even

more stress to limited capacity nodes. Can DAAs be designed

for this setting and incorporated into the security analysis?

• Can processing and download parallelization, pre-processing

and pre-fetching of blocks be utilized more efficiently in order

to securely improve the throughput of LC based protocols?

• In SaPoS, the deadline for including equivocation proofs is not

user-dependent, but baked into the protocol. A user cannot in-

crease this to achieve lower error probability. This is a drawback

compared to traditional Nakamoto consensus. Can it be avoided?
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A PROTOCOL ALGORITHMS REFERENCE

A.1 Helper Functions for Pseudocode

• Hash(txs): Cryptographic hash function to produce a binding

commitment to txs (modelled as a random oracle)

• C′ ⪯ C, C ⪰ C′: Relation describing that C′ is a prefix of C
• C∥C′: Concatenation of C and C′
• |C|: Length of C
• (true with probability 𝑥 , else false): Bernoulli random vari-

able with success probability 𝑥

• prefixChainsOf (C): Set of prefixes of C, i.e., all C′ with C′ ⪯ C
• newBlock(txsHash : Hash(txs)) and

newBlock(time : 𝑡, node : 𝑃, txsHash : Hash(txs)): Produce a

new PoW and PoS block header with given parameters, respec-

tively

• txsLedger(blkTxs, C): Concatenates the block contents stored

in blkTxs for the blocks along the chain C, to obtain the corre-

sponding transaction ledger

• (C BPO≡ C′) ≜ (C ≠ C′) ∧ (C.node = C′ .node) ∧ (C.time =

C′ .time): Relation for distinct headers from the same BPO

A.2 EnvironmentZ
The environment Z initializes 𝑁 nodes and lets A corrupt up

to 𝛽𝑁 nodes at the beginning of the execution. Corrupted nodes

are controlled by the adversary. Honest nodes run Π𝜌,𝜏,𝑘conf . The
environment maintains a mappingZ.blkTxs from block headers to

the block content (transactions). This mapping is referred to as the

‘cloud’ in Sec. 3 and Fig. 8.Z also maintains for each node a queue

of pending block headers to be delivered after a delay determined

by the adversary. If A has not instructedZ to deliver a header Δ
h

real time after it was added to the queue of pending block headers,

thenZ delivers it to the node.

Honest nodes andA interact withZ via the following functions:

• Z.broadcastHeaderChain(C):
If called by an honest node, Z enqueues C in the queue of

pending block headers for each node, and notifies A. Then, for

each node 𝑃 , on receiving deliver(C, 𝑃) from A, or when Δ
h

time has passed since C was added to the queue of pending

headers,Z triggers 𝑃 .receivedHeaderChain(C).
• Z.uploadContent(C, txs):
Z stores a mapping from the header chain C to the content txs
of its last block by settingZ.blkTxs[C] = txs.Z only stores the

content txs if Hash(txs) = C.txsHash.
• Z.receivePendingTxs():
Z generates a set of pending transactions and returns them.

• If node 𝑃 at slot 𝑡 requests the content associated with a block

header C, Z acts as follows. If Z.blkTxs[C] is set, then let

txs = Z.blkTxs[C] (if not, Z ignores the request). If the re-

quest was received from an honest node 𝑃 , if Z has recently

triggered 𝑃 .receivedContent(.) at a rate below𝐶 , thenZ trig-

gers 𝑃 .receivedContent(C, txs) (else,Z ignores the request).

If the request was received from A,Z sends (C, txs) to A.

At all times, A can trigger 𝑃 .receivedHeaderChain(C) and
𝑃 .receivedContent(C, txs) for honest nodes 𝑃 (bypassing header

delay and bandwidth constraint in an adversarially chosen way).
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B SIMULATION DETAILS

To complement the theoretical analysis, we conducted simulations

of a PoW blockchain with bandwidth constraints. We evaluated

several download rules with and without the presence of attackers.

The simulations were written as event-driven simulations using

Python’s simpy package.
4

Nodes in our simulation generate blocks in a Poisson process

with rate proportional to their mining power.We assume themining

difficulty is fixed, and do not include any adjustment by a difficulty

adjustment algorithm (DAA). In fact, DAAs tend to worsen process-

ing problems as they increase the block creation rate if the chain

does not grow fast enough—which in turn requires more download

from nodes.

Nodes process blocks one at a time according to the priority

dictated by the processing policy, at a rate determined by their

capacity. They are allowed to preempt their current task if new

information (headers that are published, blocks that they mined)

presents them with a higher priority targets. Since queues can

grow large if nodes do not manage to process all blocks in a timely

manner, we maintain priority queues of bounded size (typically

100) and evict low priority tasks from the queue as needed. If nodes

do keep up, queues remain small, and all is well. If however queues

grow large, it is usually safe to discard low priority tasks, since

higher priority alternatives are arriving at a fast pace, advertised

by peers that continue to mine. The high rate of incoming header

announcements implies the node will never manage to process all

low priority blocks unless their priority changes (in which case

they will be re-advertised).

As preemption of downloads may cause nodes to alternate be-

tween downloads, we run the risk of wasting work if we discard

partially processed information. We therefore allow nodes to retain

partial work in an LRU cache of size 10. Cached entries allow nodes

to resume processing where they left off. (We note that in practice,

it may be difficult to cache information, and that in realistic settings

such caching mechanisms may be targeted by an adversary that will

flood nodes with incorrect information that they cannot validate

prior to completing the processing of the entire block.)

Except where we note otherwise, headers are assumed to propa-

gate instantly in the simulations. Block headers in the PoW settings

contain the proof-of-work itself, which can be easily validated. We

therefore assume the adversary never publishes headers it did not

actually mine. To remain close to the theoretical analysis, we model

all processing tasks as dependent only on the resources available

to the node itself. In reality, things are much more complex: nodes

typically propagate blocks in a P2P network, which means both the

overlay network topology and the underlying internet topology

both greatly impact block download rates and performance. Block

processing in turn, behaves differently and does not depend on

the topology. With bandwidth nodes need to decide on ways to

balance incoming and outgoing bandwidth between their peers,

and attackers may try to isolate nodes via eclipse attacks [21, 43,

42, 41, 8]. Our simplified setting allows us to focus more on the

priority rules in isolation from the effects of topology and other

P2P related issues that are bandwidth-specific.

4
Source code: https://github.com/avivz/finitebwlc

An Example Run. Fig. 2 is an example of a trace generated by

our simulation for a simple setting with only 5 nodes. The x-axis

is time, and each node’s timeline is represented horizontally at a

different height along the y-axis. Blocks that are created are shown

as squares, placed at the time of their creation, and arrows point to

their parent blocks. Each block is named ℎ. 𝑗 to denote that it is the

𝑗 ’th block of height ℎ to be created.

The timeline of each node also depicts the blocks it is processing

at any particular time. For example, block 1.1 is created within the

first second of the simulation by Node 3 and other nodes begin

to process it immediately. This work concludes before the next

block is mined. However, that is not always the case. Block 3.2 for

example, is mined by Node 1 at around time 4, but a previous block

at this height (block 3.1) was mined earlier. Node 1 had not finished

validating it, and therefore did not mine on top of it.

Finally, it is possible to see processing tasks that are preempted

and resumed later. For example, Node 0 is in the process of vali-

dating block 3.2 when block 4.1 is advertized. It stops its current

download since 4.1 represents a longer chain. Node 0 resumes the

download of block 3.2 one second later.

Each point in our simulation result graphs is typically computed

from multiple repetitions of the same experiment. We normalize

time so that a block is created by the honest nodes once every

time unit in expectation. We thus consider the basic time unit as 1

second, and the total block creation rate as 𝜆
hon

= 1. Each time we

start the chain at the genesis block and run for a period of 5, 000

to 10, 000 seconds (depending on the experiment). Bandwidth is

measured in units of blocks per second. The standard deviation of

values plotted is typically well below 1% of the values themselves.

Error bars are thus too small to properly appear in the plot, and

were not added.

B.1 Chain Growth Rate at Capacity

The rate at which the chain grows without the presence of an

attacker sets a bound on the security of the system: if the chain

grows at a rate 𝜆
grwth

, then an attacker mining at that rate or above

is able to overtake the blockchain at will.

As a baseline comparison for other simulations, we consider a a

network of 100 honest nodes without the presence of an attacker,

and measure the rate of growth of the chain 𝜆
grwth

in two scenarios:

(a) Non-zero header delay Δ
h
> 0, and infinite processing speed

𝐶 = ∞. (b) No header delay Δ
h
= 0, and a constant processing rate

𝐶 < ∞. The first case is equivalent to the bounded delay model, and

blocks arrive at all nodes exactly Δ
h
seconds after they are created.

The second scenario is in our model and includes queueing delays

of blocks. To properly compare between the two models, we note

that Δ−1
h

can be considered as an effective rate at which a single

block is propagated.

Fig. 10 depicts the results of the simulations. It shows that indeed

as bandwidth decreases (or header propagation time increases) the

chain grows at a slower pace. It is perhaps surprising to see that

some growth of the chain occurs even when download rates are

below the rate needed to download all blocks produced (e.g., a

processing rate of 1/2 allows nodes to download at most 1/2 of

the blocks that are created). The reason progress still takes place

at extremely low rates is that nodes that are behind create blocks
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Figure 10: The rate of chain growth (as a fraction of block pro-

duction rate) for 100 identical nodes in the bounded-delay

model ( ) and in the bounded-bandwidth model ( ). No at-

tacker is present. In the bounded-delay model the x-axis is

Δ−1 (the inverse of the delay bound for delivering messages)

which is interpreted as the effective rate at which a single

block is delivered.

that others do not need to process, and hence their blocks, which

do not contribute to the height of the chain, at least do not waste

resources.

Fig. 10 also shows that the limited capacity case is slightly worse

than the bounded delay setting for comparable delays. We note

that in our simulation, even in the limitted capacity case, if blocks

of the same height are created, the first one is advertised to all

nodes instantly and is downloaded first. This results in this block

being downloaded in a coordinated manner by all nodes, and thus

most likely extended. This is the same as in the bounded delay

setting. Queuing delays (i.e., delaying a block while we are down-

loading its parent) occur only on rare occasions—when a miner

has single-handedly managed to mine several consecutive blocks

(a rare occurence in our highly decentralized setting).

C SECURITY ANALYSIS PROOFS

Refer to Tab. 1 for a recap of notation and definitions.

Proof of Prop. 1. First, for any 𝑘 ,

Pr [𝐺𝑘 = 1] = Pr [Good(𝑡𝑘 ) | ¬Empty(𝑡𝑘 )] (17)

=
Pr [Good(𝑡𝑘 )]
Pr [Empty(𝑡𝑘 )]

=
(1 − 𝛽)𝜌𝑒−𝜌 (𝜈+1)

1 − 𝑒−𝜌 . (18)

Take an iid random process {𝑇𝑘 } with Pr [𝑇𝑘 = 𝑡] = (1 − 𝑝E)𝑝𝑡
E

for 𝑡 ≥ 0 where 𝑝E = Pr [𝐻𝑡 +𝐴𝑡 = 0]. The random variables {𝑇𝑘 }
describe the inter-arrival times between non-empty slots. Take

another iid random process {𝐺 ′
𝑘
}, independent of {𝑇𝑘 }, such that

𝐺 ′
𝑘

= 1 with probability Pr [𝐻𝑡 = 1 ∧𝐴𝑡 = 0 | 𝐻𝑡 +𝐴𝑡 > 0] and
𝐺 ′
𝑘
= 0 otherwise. The random process {𝐺𝑘 } can be equivalently

defined as 𝐺𝑘 = 1 iff 𝐺 ′
𝑘
= 1 and 𝑇𝑘 ≥ 𝜈 .

The independence of the random variables {𝐺𝑘 } then follows

from the independence of the random variables {(𝑇𝑘 ,𝐺 ′𝑘 )}. □

C.1 Combinatorial Pivots Stabilize

Proposition 5. For any 𝑖 < 𝑗 ,

𝐿min (𝑡 𝑗 + 𝜈) ≥ 𝐿min (𝑡𝑖+1 − 1) + 𝐷 (𝑖, 𝑗 ] . (19)

Table 1: Summary of notation (cf. Secs. 3.4 and 4.2)

Protocol parameters

𝜏 Slot duration (seconds)

𝜌 Avg. no. of BPOs per slot

𝑘
conf

Confirmation depth

Model parameters

𝛽 Fraction of adversarial nodes

Δ
h

Header propagation delay (seconds)

𝐶 Bandwidth (blocks/second)

Analysis variables

𝜈 No. of empty slots after a good slot

𝐶 No. of blocks downloaded in 𝜈 slots

𝑡𝑘 𝑘-th non-empty slot

𝐺𝑘 1 iff slot 𝑡𝑘 is good

𝐷𝑘 1 iff 𝐺𝑘 = 1 and block in 𝑡𝑘 downloaded

𝑃𝑘 1 iff index 𝑘 is a ppivot

Proof. For each 𝑘 ∈ {𝑖 + 1, ..., 𝑗}, if 𝐷𝑘 = 1,

𝐿min (𝑡𝑘+1 − 1) ≥ 𝐿min (𝑡𝑘 + 𝜈) (𝐷𝑘 = 1 =⇒ 𝑡𝑘+1 > 𝑡𝑘 + 𝜈) (20)
≥ 𝐿min (𝑡𝑘 − 1) + 1 (from Prop. 3). (21)

If 𝐷𝑘 = 0, clearly 𝐿min (𝑡𝑘+1 − 1) ≥ 𝐿min (𝑡𝑘 − 1). Adding these up

gives the required result. □

Proof of Lem. 1. Note that dC𝑝 (𝑡) is a valid chain at slot 𝑡 and��
dC𝑝 (𝑡)

�� = 𝐿𝑝 (𝑡) ≥ 𝐿min (𝑡). Therefore, it suffices to show the first

claim of the lemma.

For contradiction, let 𝑠 ≥ 𝑡𝑘 + 𝜈 be the first slot in which there is

a valid header chain C′ such that |C′ | ≥ 𝐿min (𝑠) and 𝑏∗ ∉ C′.
Let 𝑏′ be the block with maximum height on the chain C′, such

that 𝑏′ was produced in a slot 𝑡𝑖 with 𝐷𝑖 = 1. For C′ to be a valid

chain at slot 𝑠 , we need 𝑡𝑖 ≤ 𝑠 . Since the block 𝑏′ is produced
by an honest node, 𝑏′ extends dC𝑞 (𝑡𝑖 − 1) for some honest node

𝑞. Therefore, dC𝑞 (𝑡𝑖 − 1) is a prefix of C′. This means that 𝑏∗ ∉

dC𝑞 (𝑡𝑖 − 1). Moreover,

��
dC𝑞 (𝑡𝑖 − 1)

�� = 𝐿𝑞 (𝑡𝑖 − 1) ≥ 𝐿min (𝑡𝑖 − 1). If
𝑖 > 𝑘 , then 𝑡𝑖 − 1 ≥ 𝑡𝑘 + 𝜈 (since 𝐷𝑘 = 1) and 𝑡𝑖 − 1 < 𝑠 (shown

above). This is a contradiction because we assumed that 𝑠 is the

first slot such that 𝑠 ≥ 𝑡𝑘 + 𝜈 and 𝑏∗ ∉ C′ and |C′ | ≥ 𝐿min (𝑠) for
some valid chain C′. Since 𝑏∗ is the only block produced in slot 𝑡𝑘 ,

𝑖 = 𝑘 is also not possible. We conclude that 𝑖 < 𝑘 .

Since 𝐷𝑖 = 1 and 𝑏′ is produced in slot 𝑡𝑖 ,

𝐿min (𝑡𝑖 + 𝜈) ≥
��𝑏′��. (22)

By assumption, ��C′�� ≥ 𝐿min (𝑠). (23)

Let 𝑡 𝑗 be the last non-empty slot such that 𝑡 𝑗 ≤ 𝑠 . Note that

𝑗 ≥ 𝑘 > 𝑖 . We must consider two cases:

(1) Case 1: 𝑠 ≥ 𝑡 𝑗 + 𝜈 or 𝐷 𝑗 = 0. If 𝐷 𝑗 = 0, we don’t have to worry

about whether the block from slot 𝑡 𝑗 was downloaded by all

honest nodes. If 𝐷 𝑗 = 1 but 𝑠 ≥ 𝑡 𝑗 + 𝜈 , then we know that all

honest nodes have downloaded the block from slot 𝑡 𝑗 before
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the end of slot 𝑠 . That is,

𝐿min (𝑠) ≥ 𝐿min (𝑡 𝑗 + 𝜈) (24)

≥ 𝐿min (𝑡𝑖+1 − 1) + 𝐷 (𝑖, 𝑗 ] (from Prop. 5) (25)

≥ 𝐿min (𝑡𝑖 + 𝜈) + 𝐷 (𝑖, 𝑗 ] . (26)

By definition of 𝑏′, all blocks in C′ appearing after 𝑏′ corre-
spond to 𝐷-slots. These blocks must be from distinct indices

greater than 𝑖 but at most 𝑗 . So,��C′�� ≤ ��𝑏′�� + 𝐷 (𝑖, 𝑗 ] . (27)

From eqns. (22), (23), (26) and (27), we derive

𝐷 (𝑖, 𝑗 ] ≤ 𝐷 (𝑖, 𝑗 ] =⇒ 𝑌(𝑖, 𝑗 ] ≤ 0 =⇒ 𝑌(0,𝑖 ] < 𝑌(0, 𝑗 ] (28)

where 𝑖 < 𝑘 ≤ 𝑗 .
(2) Case 2: 𝑡 𝑗 ≤ 𝑠 < 𝑡 𝑗 + 𝜈 and 𝐷 𝑗 = 1. In this case, the block

from slot 𝑡 𝑗 may not have enough time to be downloaded by all

honest nodes before the end of slot 𝑠 . However, for any 𝑙 < 𝑗

such that 𝐷𝑙 = 1, 𝑡𝑙 + 𝜈 < 𝑡 𝑗 ≤ 𝑠 , so there is enough time to

download the block from slot 𝑡𝑙 . Let 𝑙 ∈ (𝑖, 𝑗 − 1] be the greatest
index such that 𝐷𝑙 = 1. Then, 𝑡 𝑗 > 𝑡𝑙 + 𝜈 , and 𝐷 (𝑖,𝑙 ] = 𝐷 (𝑖, 𝑗−1] .

𝐿min (𝑠) ≥ 𝐿min (𝑡 𝑗 ) (29)

≥ 𝐿min (𝑡𝑙 + 𝜈) (30)

≥ 𝐿min (𝑡𝑖+1 − 1) + 𝐷 (𝑖,𝑙 ] (from Prop. 5) (31)

≥ 𝐿min (𝑡𝑖 + 𝜈) + 𝐷 (𝑖, 𝑗−1] . (32)

Note that since 𝐷 𝑗 = 1, 𝐷 (𝑖, 𝑗 ] = 𝐷 (𝑖, 𝑗−1] . Therefore, as in the

previous case, ��C′�� ≤ ��𝑏′�� + 𝐷 (𝑖, 𝑗−1] . (33)

From eqns. (22), (23), (29) and (33),

𝐷 (𝑖, 𝑗−1] ≤ 𝐷 (𝑖, 𝑗−1] =⇒ 𝑌(𝑖, 𝑗−1] ≤ 0 =⇒ 𝑌(0,𝑖 ] < 𝑌(0, 𝑗−1] . (34)

Note that since we assumed 𝑠 ≥ 𝑡𝑘 + 𝜈 and 𝑠 < 𝑡 𝑗 + 𝜈 , we know
that 𝑗 > 𝑘 . Therefore, 𝑖 < 𝑘 ≤ 𝑗 − 1.

In either case, eqn. (28) or eqn. (34) contradict the assumption

CPivot(𝑘) (Def. 3). □

C.2 Probabilistic Pivots are Abundant

We build up to the proof of Lem. 2 through a series of propositions,

starting with recalling a versatile tail bound.

Proposition 6 (Hoeffding’s inequality [23] [15, Thm. 4]). Let

𝑍1, ..., 𝑍𝑛 be independent bounded random variables with ∀𝑖 : 𝑍𝑖 ∈
[𝑎, 𝑏], where −∞ < 𝑎 ≤ 𝑏 < ∞. Then, ∀𝑡 ≥ 0:

Pr

[(
𝑛∑︁
𝑖=1

𝑍𝑖

)
− E

[
𝑛∑︁
𝑖=1

𝑍𝑖

]
≥ 𝑡𝑛

]
≤ exp

(
− 2𝑛𝑡2

(𝑏 − 𝑎)2

)
(35)

Pr

[(
𝑛∑︁
𝑖=1

𝑍𝑖

)
− E

[
𝑛∑︁
𝑖=1

𝑍𝑖

]
≤ −𝑡𝑛

]
≤ exp

(
− 2𝑛𝑡2

(𝑏 − 𝑎)2

)
. (36)

Proposition 7. With 𝛼2 ≜ 2𝜀2
G
,

∀ (𝑖, 𝑗] : ∀𝛿 ≥ 0 :

Pr

[
𝑋 (𝑖, 𝑗 ] ≤ (1 − 𝛿)2𝜀G ( 𝑗 − 𝑖)

]
≤ exp(−𝛼2𝛿2 ( 𝑗 − 𝑖)). (37)

Proof. By Hoeffding’s inequality (Prop. 6). □

Proposition 8.

∀𝑘 : Pr [PPivot(𝑘)] ≥ (2𝑝G − 1)2/𝑝G ≜ 𝑝ppivot (38)

Proof. Eqn. (10) characterizes PPivot(𝑘) as the intersection of

three independent events:

E1 ≜ {𝑋𝑘 = 1} (39)

E2 ≜ {∀ℓ : 𝑋 (𝑘,𝑘+ℓ ] ≥ 0} (40)

E3 ≜ {∀ℓ : 𝑋 (𝑘−1−ℓ,𝑘−1] ≥ 0} (41)

Their probabilities are easily calculated [28]:

Pr [E1] = 𝑝G Pr [E2] = Pr [E3] = (2𝑝G − 1)/𝑝G (42)

□

Proposition 9. With 𝛼3 ≜ 2𝑝2
ppivot

,

∀ (𝑖, 𝑗] ≍ 2𝐾1𝐾2 : Pr

[
𝑃 (𝑖, 𝑗 ] ≤ (1 − 𝛿)𝑝ppivot2𝐾1𝐾2

]
≤ 2𝐾1 exp(−𝛼3𝛿2𝐾2) + 𝐾2

hrzn
exp(−𝛼2𝐾1) . (43)

Proof. Let E ≜ {∀ (𝑖, 𝑗] ⪰ 𝐾1 : 𝑋 (𝑖, 𝑗 ] > 0}. From Prop. 7 with

𝛿 = 1, and a union bound over all intervals (≤ 𝐾2

hrzn
many), we get

Pr [¬E] ≤ 𝐾2

hrzn
exp(−𝛼2𝐾1). (44)

For any given index 𝑘 , we can partition the intervals of eqn. (8)

into ‘long’ and ‘short’ intervals (length at least vs. less than 𝐾1):

E𝑘 ≜ {PPivot(𝑘)} = EL𝑘 ∧ E
S

𝑘
(45)

EL
𝑘
≜ {∀𝑘 ∈ (𝑖, 𝑗] ⪰ 𝐾1 : 𝑋 (𝑖, 𝑗 ] > 0} (46)

ES
𝑘
≜ {∀𝑘 ∈ (𝑖, 𝑗] ≺ 𝐾1 : 𝑋 (𝑖, 𝑗 ] > 0}. (47)

Note that EL
𝑘
⊇ E. Thus, for any two given indices𝑘1, 𝑘2, if𝑘1, 𝑘2 are

‘far apart’, i.e., if |𝑘1 − 𝑘2 | ≥ 2𝐾1, then E𝑘1 and E𝑘2 are conditionally
independent given E (since ES

𝑘1
and ES

𝑘2
are).

We bound and decompose 𝐼∗ ≜ (𝑖, 𝑗] = (𝑖, 𝑖 + 2𝐾1𝐾2] =
⋃

2𝐾1

ℓ=1
𝐼ℓ :

∀ℓ ∈ {1, ..., 2𝐾1} : 𝐼ℓ ≜ {𝑖 + 0 · 2𝐾1 + ℓ, ...
..., 𝑖 + (𝐾2 − 1) · 2𝐾1 + ℓ}. (48)

We define corresponding events, ∀ℓ ∈ {1, ..., 2𝐾1}:
E∗ ≜

{
𝑃𝐼 ∗ ≤ (1 − 𝛿)𝑝ppivot2𝐾1𝐾2

}
(49)

Eℓ ≜
{
𝑃𝐼ℓ ≤ (1 − 𝛿)𝑝ppivot𝐾2

}
. (50)

Clearly, E∗ ⊆ ⋃
2𝐾1

ℓ=1
Eℓ . Thus, by a union bound,

Pr

[
E∗

�� E] ≤ 2𝐾1∑︁
ℓ=1

Pr [Eℓ | E] . (51)

Furthermore, ∀ℓ ∈ {1, ..., 2𝐾1}, and with 𝜇ℓ ≜ E
[
𝑃𝐼ℓ

�� E] :
Pr [Eℓ | E] = Pr

[
𝑃𝐼ℓ ≤ (1 − 𝛿)𝑝ppivot𝐾2

�� E] (52)

(a)

≤ Pr

[
𝑃𝐼ℓ ≤ (1 − 𝛿)𝜇ℓ

�� E] (53)

(b)

≤ exp(−2𝛿2𝜇2ℓ /𝐾2)
(c)

≤ exp(−2𝑝2
ppivot

𝛿2𝐾2), (54)

where (a) and (c) use

𝜇ℓ = 𝐾2E
[
1{PPivot(𝑘 ) }

�� E] ≥ 𝐾2E [
1{PPivot(𝑘 ) }

]
≥ 𝐾2𝑝ppivot (55)

(Prop. 8), and (b) uses that {PPivot(𝑘1)} and {PPivot(𝑘2)} are con-
ditionally independent given E for 𝑘1, 𝑘2 ∈ 𝐼ℓ , and Hoeffding’s

inequality (Prop. 6).
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Thus, we complete the proof by observing, as desired, that

Pr

[
E∗

]
= Pr

[
E∗ ∩ E

]
+ Pr

[
E∗ ∩ ¬E

]
(56)

≤ Pr

[
E∗

�� E] + Pr [¬E] (57)

≤ 2𝐾1 exp(−2𝑝2
ppivot

𝛿2𝐾2) + 𝐾2

hrzn
exp(−𝛼2𝐾1) . (58)

□

Proof of Lem. 2. From Prop. 9 by setting 𝐾1, 𝐾2 = Ω(𝜅) and
𝐾cp = 2𝐾1𝐾2. □

C.3 Many Probabilistic Pivots Imply One

Combinatorial Pivot

Proof of Prop. 4. In slot 𝑡𝑘 , there is exactly one block 𝑏 pro-

duced by an honest node, and the block header is made public at

the beginning of the slot, and is seen by all honest nodes within Δ
h

time. Thereafter, each node has enough time to download 𝐶 blocks

during slots [𝑡𝑘 , 𝑡𝑘 + 𝜈].
Under the download rule Dlong, all honest nodes download con-

tent for their longest header chain. If 𝐷𝑘 = 0 i.e. an honest node did

not download content for the block 𝑏 before the end of slot 𝑡𝑘 + 𝜈 ,
then that honest node must download the content for at least 𝐶

blocks on chains longer than the height of the block 𝑏 or in the

prefix of the block 𝑏. Since honest nodes produce blocks extending

their longest chain, 𝑏 extends dC𝑝 (𝑡𝑘 − 1) for some 𝑝 . Let 𝑏∗ be
the block produced in slot 𝑡𝑖 where CPivot(𝑖) (suppose 𝑖 exists).
CPivot(𝑖) =⇒ 𝑌𝑖 = 1, therefore this block is unique, and also

𝑡𝑘 > 𝑡𝑖 + 𝜈 . Due to Lem. 1, any valid header chain longer than 𝑏 at

time slot 𝑡𝑘 must contain 𝑏∗. Therefore, the only blocks that are

downloaded by an honest node during slots [𝑡𝑘 , 𝑡𝑘 + 𝜈]
(1) must be produced after 𝑡𝑖 because they extend 𝑏∗, and
(2) must be produced no later than 𝑡𝑘 because there are no blocks

produced in (𝑡𝑘 , 𝑡𝑘 + 𝜈].
In case a cpivot 𝑖 < 𝑘 does not exist, the claim is trivial. □

Proposition 10.

¬CPivot(𝑘) =⇒ ∃ (𝑖, 𝑗] ∋ 𝑘 : 𝑌(𝑖, 𝑗 ] ≤ 0. (59)

Proof. From Def. 3, ¬CPivot(𝑘) implies that either there exists

𝑖 < 𝑘 such that 𝑌(0,𝑖 ] ≥ 𝑌(0,𝑘 ] or there exists 𝑗 ≥ 𝑘 such that

𝑌(0,𝑘 ] > 𝑌(0, 𝑗 ] . In the first case, (𝑖, 𝑘] ∋ 𝑘 and 𝑌(𝑖,𝑘 ] ≤ 0. In the

second case, (𝑘 − 1, 𝑗] ∋ 𝑘 and 𝑌(𝑘−1, 𝑗 ] ≤ 𝑌(𝑘,𝑗 ] + 1 ≤ 0. □

Proposition 11. If 𝑌(𝑖, 𝑗 ] ≤ 0, then

𝐷 (𝑖, 𝑗 ] ≥ 𝐷 (𝑖, 𝑗 ] , (60)

𝐺 (𝑖, 𝑗 ] − 𝐷 (𝑖, 𝑗 ] ≥
1

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
. (61)

Proof. Eqn. (60) follows from the definition 𝑌𝑖 = 𝐷𝑖 −𝐷𝑖 . Then,

𝐺 (𝑖, 𝑗 ] +𝐺 (𝑖, 𝑗 ] = 𝐷 (𝑖, 𝑗 ] + 𝐷 (𝑖, 𝑗 ] (62)

𝐺 (𝑖, 𝑗 ] +𝐺 (𝑖, 𝑗 ] ≥ 2𝐷 (𝑖, 𝑗 ] (63)

2𝐺 (𝑖, 𝑗 ] − 2𝐷 (𝑖, 𝑗 ] ≥ 𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ] . (64)

□

Proposition 12. If 𝑃 (𝑖, 𝑗 ] > 0, then 𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ] ≥ 𝑃 (𝑖, 𝑗 ] .

Proof. Let 𝑛 = 𝑃 (𝑖, 𝑗 ] . First, consider the case 𝑛 = 1. There is

exactly one ppivot 𝑘 ∈ (𝑖, 𝑗]. From Def. 2,𝑋 (0,𝑖 ] < 𝑋 (0, 𝑗 ] . Therefore,
𝑋 (𝑖, 𝑗 ] > 0, hence 𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ] ≥ 1.

For the general case, let 𝑘1, ..., 𝑘𝑛 be the ppivots in (𝑖, 𝑗]. Then, we
can apply the 𝑛 = 1 case on the disjoint intervals (𝑖, 𝑘1], (𝑘1, 𝑘2] , ...,
(𝑘𝑛−1, 𝑗] and then sum them up.

This can also be seen from Fig. 9. Each ppivot corresponds to a

height that the random walk 𝑋𝑘 attains exactly once. This means

that in any interval containing 𝑛 ppivots, the random walk 𝑋𝑘
‘moves up’ by at least 𝑛 units, and this is possible only if there are

𝑛 more ‘ups’ than ‘downs’. □

Lemma 6. If all honest nodes use the download rule Dlong, and if

∀ (𝑖, 𝑗] ⪰ 𝐾cp, 𝑖 < 𝐾cp :
𝐶

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
> 𝑄 (0, 𝑗 ] , and (65)

𝐶

4

𝑃(0,𝐾cp] > 𝑄 (0,2𝐾cp] , (66)

then ∃𝑘∗
1
∈

(
0, 𝐾cp

]
: CPivot(𝑘∗

1
).

Proof. Due to eqn. (66), there is at least one ppivot in

(
0, 𝐾cp

]
(otherwise 𝑃(0,𝐾cp] = 0). Suppose for contradiction that there is no

cpivot in

(
0, 𝐾cp

]
. Since cpivots are also ppivots, it is enough to con-

sider that none of the ppivots is a cpivot. Then around each ppivot,

there must be at least one interval which violates the combinatorial

pivot condition. Formally, there is a set of intervals I such that:⋃
𝐼 ∈I

𝐼 ⊇
{
𝑘 ∈

(
0, 𝐾cp

]
: PPivot(𝑘)

}
(67)

∀𝐼 ∈ I : 𝑌𝐼 ≤ 0 (from Prop. 10). (68)

Without loss of generality, each interval 𝐼 ∈ I contains at least

one ppivot (removing all intervals that do not contain a ppivot

maintains eqns. (67) and (68)). Then if (𝑖, 𝑗] ∈ I, 𝑖 < 𝐾cp.
First, let’s consider the large intervals with |𝐼 | ≥ 𝐾cp. Consider

indices 𝑘 ∈ 𝐼 for which 𝐺𝑘 = 1 (good) but 𝐷𝑘 = 0 (𝐷-slot). From

Prop. 4, for each such index, all honest nodes download 𝐶 blocks

that are produced no later than 𝑡𝑘 . The number of indices 𝑘 ∈ 𝐼
with 𝐺𝑘 = 1 and 𝐷𝑘 = 0 is exactly 𝐺𝐼 − 𝐷𝐼 . For each such index,

there must exist𝐶 distinct blocks produced in or before the interval

𝐼 . Therefore if 𝐼 = (𝑖, 𝑗],

𝑄 (0, 𝑗 ] ≥ 𝐶
(
𝐺 (𝑖, 𝑗 ] − 𝐷 (𝑖, 𝑗 ]

)
(69)

≥ 𝐶
2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
(from Prop. 11). (70)

This is a contradiction to eqn. (65).

Therefore all intervals 𝐼 ∈ I are small (|𝐼 | < 𝐾cp). Then for each

𝐼 ∈ I, 𝐼 ⊂
(
0, 2𝐾cp

]
. Also,

𝐺𝐼 − 𝐷𝐼 ≥
1

2

(
𝐺𝐼 −𝐺𝐼

)
(from Prop. 11) (71)

≥ 1

2

𝑃𝐼 (from Prop. 12). (72)

Consider the indices 𝑘 ∈
(
0, 2𝐾cp

]
with 𝐺𝑘 = 1 and 𝐷𝑘 = 0. Let

I𝑘 = {𝐼 ∈ I : 𝑘 ∈ 𝐼 } be the set of intervals that contain 𝑘 . Let 𝐼𝐿
𝑘
be

an interval in I𝑘 that stretches farthest to the left, and let 𝐼𝑅
𝑘
be an

interval that stretches farthest to the right (these may also be the

same). Note that all other intervals in I𝑘 are contained in 𝐼𝐿
𝑘
∪ 𝐼𝑅

𝑘
.

Therefore, all intervals in I𝑘 except 𝐼𝐿
𝑘
and 𝐼𝑅

𝑘
can be removed from
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(a)

𝐴 𝐵𝐶

(b)

Figure 11: Blue circles represent ppivots, red crosses repre-

sent indices with𝐺𝑘 = 1 and 𝐷𝑘 = 0. (a) Given intervals𝐴, 𝐵,𝐶

all containing the 2nd blue circle from left, interval 𝐶 is re-

dundant. (b) Given 𝑛 blue circles, the adversary needs at least

𝑛/4 red crosses to draw a set of intervals satisfying eqns. (67)

and (68). Here is a placement of red crosses relative to blue

circles that achieves the minimum number of red crosses.

I while maintaining eqns. (67) and (68) (see Fig. 11(a)). This process

is repeated for all 𝑘 ∈
(
0, 2𝐾cp

]
with 𝐺𝑘 = 1 and 𝐷𝑘 = 0, so that in

the resulting set I, each such index 𝑘 is contained in at most two

intervals. Then,∑︁
𝑘∈(0,2𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 | ≤
∑︁

𝑘∈(0,2𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

2 (73)

= 2

(
𝐺(0,2𝐾cp] − 𝐷(0,2𝐾cp]

)
. (74)

This sum can be rewritten as∑︁
𝑘∈(0,2𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 | =
∑︁
𝐼 ∈I
(𝐺𝐼 − 𝐷𝐼 ) (75)

≥
∑︁
𝐼 ∈I

1

2

𝑃𝐼 (76)

≥ 1

2

𝑃(0,𝐾cp] (due to eqn. (67)). (77)

Therefore,

𝐺(0,2𝐾cp] − 𝐷(0,2𝐾cp] ≥
1

4

𝑃(0,𝐾cp] . (78)

This can also be seen from Fig. 11(b).

Finally, as shown before, for each 𝑘 with 𝐺𝑘 = 1 and 𝐷𝑘 = 0, all

honest nodes download at least 𝐶 distinct blocks produced in or

before index 𝑘 (Prop. 4). This gives

𝑄 (0,2𝐾cp] ≥ 𝐶
(
𝐺(0,2𝐾cp] − 𝐷(0,2𝐾cp]

)
(79)

≥ 𝐶
4

𝑃(0,𝐾cp] (80)

which is a contradiction to eqn. (66). □

Proof of Lem. 3. This will be proved through induction. For the

base case (𝑚 = 0), Lem. 6 shows that ∃𝑘∗
1
∈

(
0, 𝐾cp

]
: CPivot(𝑘∗

1
).

For𝑚 ≥ 1, assume that ∃𝑘∗
𝑚−1 ∈

(
(𝑚 − 1)𝐾cp,𝑚𝐾cp

]
such that

CPivot(𝑘∗
𝑚−1). Nowwewant to show that∃𝑘∗𝑚 ∈

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
such that CPivot(𝑘∗𝑚). Suppose for contradiction that there is no

cpivot in

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
. As in the proof of Lem. 6, there is a

set of intervals I such that:⋃
𝐼 ∈I

𝐼 ⊇
{
𝑘 ∈

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
: PPivot(𝑘)

}
(81)

∀𝐼 ∈ I : 𝑌𝐼 ≤ 0. (82)

Without loss of generality, each interval 𝐼 ∈ I contains at least one

ppivot. Then if (𝑖, 𝑗] ∈ I, 𝑖 < (𝑚 + 1)𝐾cp and 𝑗 > 𝑚𝐾cp.

First, consider the large intervals with |𝐼 | ≥ 𝐾cp. Consider indices
𝑘 ∈ 𝐼 for which 𝐺𝑘 = 1 (good) but 𝐷𝑘 = 0 (𝐷-slot). From Prop. 4,

for each such index 𝑘 , all honest nodes download 𝐶 blocks that are

produced in the interval

(
𝑘∗
𝑚−1, 𝑘

]
. The number of indices 𝑘 ∈ 𝐼

with𝐺𝑘 = 1 and𝐷𝑘 = 0 is exactly𝐺𝐼−𝐷𝐼 . For each such index, there
must exist𝐶 distinct blocks from distinct BPOs that are downloaded

by honest nodes. Therefore if 𝐼 = (𝑖, 𝑗],

𝑄 (𝑘∗𝑚−1, 𝑗] ≥ 𝐶
(
𝐺 (𝑖, 𝑗 ] − 𝐷 (𝑖, 𝑗 ]

)
(83)

≥ 𝐶
2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
(from Prop. 11). (84)

But 𝑘∗
𝑚−1 > (𝑚 − 1)𝐾cp and 𝑖 < (𝑚 + 1)𝐾cp. Therefore𝑄 (𝑘∗𝑚−1, 𝑗] ≤

𝑄 (𝑖−2𝐾cp, 𝑗] . Then we have a contradiction to eqn. (13).

Therefore all intervals 𝐼 ∈ I are small (|𝐼 | < 𝐾cp). Then for each

𝐼 ∈ I, 𝐼 ⊂
(
(𝑚 − 1)𝐾cp, (𝑚 + 1)𝐾cp

]
. Also,

𝐺𝐼 − 𝐷𝐼 ≥
1

2

(
𝐺𝐼 −𝐺𝐼

)
≥ 1

2

𝑃𝐼 (from Props. 11 and 12) (85)

Consider the indices 𝑘 ∈
(
(𝑚 − 1)𝐾cp, (𝑚 + 1)𝐾cp

]
with 𝐺𝑘 = 1

and 𝐷𝑘 = 0. Following the arguments in the proof of Lem. 6, we

can reduce the set I so that in the resulting set I, each such index

𝑘 is contained in at most two intervals. Then,∑︁
𝑘∈( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 |

≤ 2

(
𝐺( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] − 𝐷( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp]

)
. (86)

This sum can be rewritten as∑︁
𝑘∈( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 | =
∑︁
𝐼 ∈I
(𝐺𝐼 − 𝐷𝐼 ) (87)

≥
∑︁
𝐼 ∈I

1

2

𝑃𝐼 (88)

≥ 1

2

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] . (89)

Therefore,

𝐺( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] − 𝐷( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp]

≥ 1

4

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] . (90)

Finally, for each 𝑘 with 𝐺𝑘 = 1 and 𝐷𝑘 = 0, all honest nodes

download at least 𝐶 distinct blocks produced in or before the most

recent cpivot before (𝑚 − 1)𝐾cp. By induction assumption, we have

a cpivot 𝑘∗
𝑚−2 ∈

(
(𝑚 − 2)𝐾cp, (𝑚 − 1)𝐾cp

]
. This gives

𝑄 ( (𝑚−2)𝐾cp,(𝑚+1)𝐾cp]
≥ 𝐶

(
𝐺( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] − 𝐷( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp]

)
(91)

≥ 𝐶
4

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] (92)

which is a contradiction. □

D PROOF-OF-WORK SECURITY PROOFS

Proposition 13.

∀𝑘, 𝐾 ∈ N : Pr
[
𝜏 (𝑡𝑘+𝐾 − 𝑡𝑘 ) ≥

𝐾

𝜆(1 − 𝛿)

]
≤ exp

(
− 𝐾𝛿2

2(1 + 𝛿)

)
(93)

Proof. This results from a Poisson tail bound for the number

of BPOs in real time 𝐾/𝜆, and noting that each non-empty slot has

exactly one BPO. □
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Lemma 7. If for some 𝐾cp > 0,

∀𝑚 ≥ 0 : ∃𝑘∗𝑚 ∈
(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
: CPivot(𝑘∗𝑚), (94)

then the PoW longest chain protocol Π𝜌,𝜏,𝑘conf with 𝑘
conf

= 2𝐾cp + 1
satisfies safety. Further, if

∀𝑘 ∈ N, 𝐾 ≥ 𝐾cp : 𝑡𝑘+𝐾 − 𝑡𝑘 <
𝐾

𝜆𝜏 (1 − 𝛿) , (95)

then it also satisfies liveness with 𝑇
live

=
6𝐾cp+2
𝜆𝜏 (1−𝛿 ) .

Proof. Safety: For an arbitrary slot 𝑡 , let 𝑘 be the largest in-

dex such that 𝑡𝑘 ≤ 𝑡 . From eqn. (94), every interval of 2𝐾cp in-

dices contains at least one cpivot. Therefore, there exists 𝑘∗ ∈(
𝑘 − 2𝐾cp − 1, 𝑘 − 1

]
such thatCPivot(𝑘∗). Let 𝑏∗ be the block from

index 𝑘∗. Due to Lem. 1, for all honest nodes 𝑝, 𝑞 and 𝑡 ′ ≥ 𝑡 ,

𝑏∗ ∈ dC𝑝 (𝑡) and 𝑏∗ ∈ dC𝑞 (𝑡 ′). But 𝑘∗ ≥ 𝑘 − 𝑘conf , so the block

𝑏∗ cannot be 𝑘
conf

-deep in any chain at slot 𝑡 Therefore, LOG𝑡𝑝
is a prefix of 𝑏∗ which in turn is a prefix of dC𝑞 (𝑡 ′). We can thus

conclude that either LOG𝑡𝑝 ⪯ LOG𝑡
′
𝑞 or LOG𝑡

′
𝑞 ⪯ LOG𝑡𝑝 . Therefore,

safety holds.

Liveness: Assume a transaction tx is received by all honest nodes
before slot 𝑡 . Again let 𝑘 be the largest index such that 𝑡𝑘 ≤ 𝑡 . We

know that there exists 𝑘∗ ∈ (𝑘, 𝑘 + 2𝐾cp] such that CPivot(𝑘∗). The
honest block 𝑏∗ from index 𝑘∗ or its prefix must contain tx since
tx is seen by all honest nodes at time 𝑡 < 𝑡𝑘∗ . Since 𝑘

∗
is a cpivot,

for all (𝑖, 𝑗] ∋ 𝑘∗, 𝐷 (𝑖, 𝑗 ] > 𝐷 (𝑖, 𝑗 ] (Def. 3 and eqn. (6)), and hence

𝐷 (𝑖, 𝑗 ] >
𝑗−𝑖
2
. Particularly,

𝐷 (𝑘∗−1,𝑘∗+2𝑘
conf
−1] > 𝑘conf (96)

=⇒ 𝐷 (𝑘∗,𝑘∗+2𝑘
conf
−1] > 𝑘conf − 1. (97)

Then from Prop. 5,

𝐿min (𝑡𝑘∗+2𝑘
conf
−1 + 𝜈) − 𝐿min (𝑡𝑘∗+1 − 1) ≥ 𝐷 (𝑘∗,𝑘∗+2𝑘

conf
−1]

≥ 𝑘
conf

. (98)

Due to Lem. 1, 𝑏∗ ∈ dC𝑝 (𝑡 ′) for all honest nodes 𝑝 and 𝑡 ′ ≥ 𝑡𝑘∗ + 𝜈 ,
and 𝐿min (𝑡𝑘∗+1 − 1) ≥ |𝑏∗ |. This means that 𝑏∗ is 𝑘

conf
-deep in

dC𝑝 (𝑡 ′) for all honest nodes 𝑝 and all 𝑡 ′ ≥ 𝑡𝑘∗+2𝑘
conf
−1 + 𝜈 . Finally,

with 𝑘∗ ≤ 𝑘 + 2𝐾cp and eqn. (95),

𝑡𝑘∗+2𝑘
conf
−1 + 𝜈 − 𝑡 ≤ 𝑡𝑘+6𝐾cp+1 + 𝜈 − 𝑡𝑘

≤ 𝑡𝑘+6𝐾cp+2 − 𝑡𝑘

<
6𝐾cp + 2
𝜆𝜏 (1 − 𝛿) . (99)

Therefore, tx ∈ LOG𝑡 ′𝑝 for all 𝑡 ′ ≥ 𝑡 +𝑇
live

. □

Proof of Thm. 1. First, we show that the conditions of Lem. 3

hold, and therefore cpivots occur. Define the event

E1 =
{
∀ (𝑖, 𝑗] ⪰ 𝐾cp : 𝑃 (𝑖, 𝑗 ] > (1 − 𝛿)𝑝ppivot ( 𝑗 − 𝑖)

}
(100)

Suppose that E1 occurs, and 𝐶
16
𝑝ppivot (1 − 𝛿) > 1. Then,

∀ (𝑖, 𝑗] ⪰ 𝐾cp :
𝐶

4

𝑃 (𝑖, 𝑗 ] >
𝐶

4

(1 − 𝛿)𝑝ppivot ( 𝑗 − 𝑖) (101)

> 4( 𝑗 − 𝑖) (102)

(a)

= 𝑄 (𝑖−2𝐾cp, 𝑗+𝐾cp] (103)

where (a) is because as 𝜏 → 0, each non-empty slot has exactly one

BPO. This satisfies eqn. (14) in Lem. 3. Further,

𝐶

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
≥ 𝐶

2

𝑃 (𝑖, 𝑗 ] (104)

> 3( 𝑗 − 𝑖) (105)

> 𝑄 (𝑖−2𝐾cp, 𝑗] (106)

which satisfies condition eqn. (13) in Lem. 3. Therefore there is

one cpivot in every interval of the form

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
. Also

suppose the following event occurs:

E2 =
{
∀𝑘 ∈ N, 𝐾 ≥ 𝐾cp : 𝑡𝑘+𝐾 − 𝑡𝑘 <

𝐾

𝜆𝜏 (1 − 𝛿)

}
. (107)

Then Lem. 7 guarantees safety and liveness with 𝑘
conf

= 2𝐾cp and

𝑇
live

=
6𝐾cp+2
𝜆𝜏 (1−𝛿 ) .

By choosing 𝐾cp = Ω(𝜅2), 𝐾
hrzn

= poly(𝜅), and using Lem. 2,

Prop. 13,

Pr [¬E1] = negl(𝜅) (108)

Pr [¬E2] ≤ 𝐾2

hrzn
𝑒−𝐾cp𝛿

2/(2(1+𝛿 ) ) = negl(𝜅) . (109)

By a union bound, the probability of failure of either E1 or E2 is
negl(𝜅). Finally, indices are mapped to real time as 𝑇 real

live
≜ 𝑇

live
𝜏 .

Finally, we take the limit 𝜏 → 0. With the relations 𝜆 = 𝜌/𝜏 ,
(𝜈 + 1)𝜏 ≥ Δ

h
+𝐶/𝐶 , and 𝑝ppivot = (2𝑝G − 1)2/𝑝G,

𝑝G = (1 − 𝛽) 𝜌𝑒
−𝜌 (𝜈+1)

1 − 𝑒−𝜌 → (1 − 𝛽)𝑒−𝜆
(
Δ
h
+𝐶/𝐶

)
, (110)

𝐶

16

(2𝑝G − 1)2
𝑝G

(1 − 𝛿) > 1 (111)

Note that 𝐶 is an analysis parameter whose value is arbitrarily.

To find the maximum block production rate 𝜆 that the protocol

can achieve, we should optimize over 𝐶 . To find the maximum

achievable 𝜆, we can take 𝛿 → 0 as we can increase the latency

through increasing𝐾cp to still satisfy the error bounds. Then solving

for 𝑝G from eqn. (111),

𝑝G >
𝐶 + 4 +

√︁
8𝐶 + 16

2𝐶
. (112)

Then from eqn. (110),

𝜆

(
Δ
h
+𝐶/𝐶

)
> ln

(
2(1 − 𝛽)𝐶

𝐶 + 4 +
√︁
8𝐶 + 16

)
. (113)

Maximizing over 𝐶 gives the resulting threshold.

□

E PROOF-OF-STAKE

E.1 Pseudocodes for Equivocation Removal

Algs. 5 and 6

E.2 Security Proofs

Proposition 14. For all 𝛿 ∈ (0, 1), 𝑘, 𝐾 ∈ N,

Pr

[
𝑡𝑘+𝐾 − 𝑡𝑘 ≥

𝐾/(1 − 𝑒−𝜌 )
1 − 𝛿

]
≤ 𝑒−2𝐾 (1−𝑒

−𝜌 )𝛿2 , (114)

Proof. This results from a Hoeffding bound for the number of

non-empty slots in 𝐾/(1 − 𝑒−𝜌 ) slots. □
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Algorithm 5 PoS LC consensus protocol Π
𝜌,𝜏,𝑘

conf
,𝑘

epf

SaPoS
with down-

load logic and equivocation removal (helper functions: App. A.1,

environmentZ: App. A.2, functionality F ′PoS,𝜌
hdrtree

: Alg. 6)

1: ⊲ Global counter of time slots 𝑡 ← 1, 2, ... of duration 𝜏 (for PoW: 𝜏 → 0, cf. Sec. 5)

2: ⊲ Same as in Alg. 1: init(genesisC, genesisTxs) , receivedHeaderChain(C) ,
receivedContent(C, txs)

3: ⊲ (C BPO≡ C′ ) ≜ (C ≠ C′ ) ∧ (C.node = C′ .node) ∧ (C.time = C′ .time)
4: at time slot 𝑡 ← 1, 2, ... ⊲ LC protocol main loop

5: txs← Z.receivePendingTxs( )
6: ⊲ Construct equivocation proofs against headers in prefix not already proven

7: eqProofs ← {(C1 ⪯ dC, C2 ∈ hT) | (C1
BPO≡ C2 ) ∧ ( | C1 | > |dC| −

𝑘
epf
) ∧ ( (C1, C2 ) ∉

⋃
C⪯dC C.eqProofs) }

8: ⊲ Produce and disseminate a new block if eligible

9: if C′ ≠ ⊥ with C′ ← F
hdrtree

.extend(dC, txs, eqProofs)
10: Z.uploadContent(C′, txs)
11: Z.broadcastHeaderChain(C′ )
12: ⊲ Blank the content of blocks against which there was an equivocation proof

13: blkTxs
′ [C] ← (∅ if (C, _) ∈ ⋃

C′⪯C∗ C′ .eqProofs, else blkTxs[C])
14: ⊲ Confirm all but the last 𝑘

conf
blocks on the longest downloaded chain

15: LOG𝑡 ← txsLedger(blkTxs, C ⌈𝑘conf ) ⊲ Ledger of node 𝑝 at time 𝑡 : LOG𝑡
𝑝

16: do throughout

17: Choose C from download rule (e.g. Alg. 4)

18: if ∃C′ ∈ hT : C′ BPO≡ C
19: blkTxs[C] ← ∅ ⊲ don’t download C, query download rule again

20: else

21: Download content for C

Algorithm 6 Idealized functionality F ′PoS,𝜌
hdrtree

: block production lot-

tery and header chain structure for PoS (helper functions: App. A.1)

1: ⊲ init(genesisC, numNodes) and verify(C) same as in Alg. 2

2: ⊲ isLeader(𝑃, 𝑡 ) same as in Alg. 3

3: on extend(𝑡 ′, C, txs, eqProofs) from A (from adversarial node 𝑃 ) or FPoS,𝜌
hdrtree

4: ⊲ New header chain is valid if parent chain C is valid, 𝑃 is leader for slot 𝑡 ′ ,
and 𝑡 ′ is later than the tip of C and is not in the future

5: if (C ∈ T) ∧ FPoS,𝜌
hdrtree

.isLeader(𝑃, 𝑡 ′ ) ∧ (C.time < 𝑡 ′ ≤ 𝑡 )
6: ⊲ Check equiv. pfs. are valid, point to ‘recent’ headers, and do not repeat

7: if ∀(C1, C2 ) ∈ eqProofs : (C1 ⪯ C) ∧ (C2 ∈ T) ∧ (C1
BPO≡ C2 )

∧( | C1 | > | C | − 𝑘epf ) ∧ ( (C1, C2 ) ∉
⋃
C′⪯C C′ .eqProofs) }

8: ⊲ Produce a new block header extending C
9: C′ ← C∥ newBlock(time : 𝑡 ′, node : 𝑃, txsHash : Hash(txs) )
10: T ← T ∪ {C′ } ⊲ Register new header chain in header tree

11: return C′
12: return ⊥
13: on extend(C, txs, eqProofs) from node 𝑃 (possibly adversarial) at time slot 𝑡

14: return FPoS,𝜌
hdrtree

.extend(𝑡, C, txs, eqProofs)

Lemma 8. If for some 𝐾cp > 0,

∀𝑚 ≥ 0 : ∃𝑘∗𝑚 ∈
(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
: CPivot(𝑘∗𝑚), (115)

∀𝑘 ∈ N, 𝐾 ≥ 𝐾cp : 𝑡𝑘+𝐾 − 𝑡𝑘 <
𝐾/(1 − 𝑒−𝜌 )

1 − 𝛿 , (116)

then SaPoS with 𝑘
conf

= 6𝐾cp + 1 and 𝑘epf = 4𝐾cp satisfies safety

and liveness with 𝑇
live

=
14𝐾cp+2

(1−𝑒−𝜌 ) (1−𝛿 ) .

Proof. First, we prove safety. Consider arbitrary slots 𝑡 ≤ 𝑡 ′
and let ℎ be the largest index such that 𝑡ℎ ≤ 𝑡 . Consider a block
𝑏𝑖 ∈ dC𝑝 (𝑡) ⌈𝑘conf which was produced in index 𝑖 ≤ ℎ − 𝑘

conf
. From

eqn. (115), every interval of 2𝐾cp indices contains at least one cpivot.

Therefore for any 𝑖 , there exist cpivots 𝑗, 𝑘 such that

𝑖 < 𝑗 < 𝑘 ≤ 𝑖 + 4𝐾cp . (117)

Also, let 𝑙 be the last cpivot before (excluding) index ℎ. Then

𝑙 ≥ ℎ − 2𝐾cp ≥ 𝑖 + 𝑘conf − 2𝐾cp > 𝑖 + 4𝐾cp . (118)

From eqn. (117) and eqn. (118), we have

𝑖 < 𝑗 < 𝑘 ≤ 𝑖 + 𝑘
epf

< 𝑙 < ℎ. (119)

These are shown in Fig. 12. Let𝑏 𝑗 , 𝑏𝑘 , 𝑏𝑙 be the blocks corresponding

to the respective cpivots (see Fig. 12). Due to Lem. 1 and 𝑡 ≥ 𝑡ℎ >

𝑡𝑙 + 𝜈 ,
𝑏𝑖 ⪯ 𝑏 𝑗 ⪯ 𝑏𝑘 ⪯ 𝑏𝑙 ⪯ dC𝑝 (𝑡) ∩ dC𝑞 (𝑡 ′) . (120)

Since the above holds for all 𝑏𝑖 ∈ dC𝑝 (𝑡) ⌈𝑘conf , we obtain that

dC𝑝 (𝑡) ⌈𝑘conf ⪯ dC𝑞 (𝑡 ′). We can thus conclude that

dC𝑝 (𝑡) ⌈𝑘conf ⪯⪰ dC𝑞 (𝑡
′) ⌈𝑘conf (121)

where C1 ⪯⪰ C2 denotes C1 ⪯ C2 or C2 ⪯ C1. Due to eqn. (121),

the 𝑘
conf

-deep header chains of 𝑝 at 𝑡 and of 𝑞 at 𝑡 ′ are consistent.
Without equivocation removal, this was enough to show safety

of the corresponding ledgers. Now to show that the two ledgers

LOG𝑡𝑝 and LOG𝑡
′
𝑞 are consistent, we only need to show that if the

content of a block is blanked in LOG𝑡𝑝 , it is also blanked in LOG𝑡
′
𝑞 ,

and conversely if it is not blanked in LOG𝑡𝑝 , it is not blanked in

LOG𝑡
′
𝑞 .

Suppose that the content of 𝑏𝑖 is blanked in LOG𝑡𝑝 . This means

that either there was an equivocation for 𝑏𝑖 in node 𝑝’s view (hence

node 𝑝 did not download the content), or there is an equivocation

proof against 𝑏𝑖 in a header in dC𝑝 (𝑡). The header of 𝑏𝑖 must be

seen by all honest nodes 𝑝 before the end of slot 𝑡 𝑗 + 𝜈 (since

𝑏 𝑗 ∈ dC𝑝 (𝑡 𝑗 + 𝜈)). Then since block 𝑏𝑘 is honest, 𝑡𝑘 > 𝑡 𝑗 + 𝜈 , and
𝑘 ≤ 𝑖 + 𝑘

epf
, either 𝑏𝑘 or another block in its prefix must include

an equivocation proof against 𝑏𝑖 . We know that 𝑏𝑘 ∈ dC𝑞 (𝑡 ′), so
the content of block 𝑏𝑖 will be blanked in LOG𝑡

′
𝑞 as well.

Suppose that the content of 𝑏𝑖 is not blanked in LOG𝑡𝑝 . This
means that there is no equivocation proof against 𝑏𝑖 in dC𝑝 (𝑡).
Since 𝑙 ≥ ℎ − 2𝐾cp, the block 𝑏𝑙 cannot be more than 2𝐾cp-deep in

dC𝑝 (𝑡), i.e.,
|𝑏𝑙 | ≥

��
dC𝑝 (𝑡)

�� − 2𝐾cp . (122)

But 𝑏𝑖 is 𝑘conf -deep in dC𝑝 (𝑡) (as assumed), so

|𝑏𝑖 | ≤
��
dC𝑝 (𝑡)

�� − 𝑘
conf

. (123)

Together, we have

|𝑏𝑙 | ≥ |𝑏𝑖 | + 𝑘conf − 2𝐾cp > |𝑏𝑖 | + 𝑘epf . (124)

Therefore 𝑏𝑙 or any block extending it cannot contain an equivo-

cation proof against 𝑏𝑖 . Since 𝑏𝑙 ∈ dC𝑝 (𝑡) and 𝑏𝑙 ∈ dC𝑞 (𝑡 ′), there
cannot be any block in dC𝑞 (𝑡 ′) before 𝑏𝑙 , that is not in dC𝑝 (𝑡).
Therefore, there is no equivocation proof against 𝑏𝑖 in dC𝑞 (𝑡 ′).
Also, node 𝑞 must have downloaded block 𝑏𝑖 , otherwise there must

have been an equivocation proof in 𝑏𝑘 or its prefix as discussed

in the previous paragraph. So, the content of 𝑏𝑖 is not blanked

in LOG𝑡
′
𝑞 . We can thus conclude that either LOG𝑡𝑝 ⪯ LOG𝑡

′
𝑞 or

LOG𝑡
′
𝑞 ⪯ LOG𝑡𝑝 . Therefore, safety holds.

We next prove liveness. Assume a transaction tx is received by

all honest nodes before slot 𝑡 . Again let ℎ be the largest index such

that 𝑡ℎ ≤ 𝑡 . We know that there exists 𝑘∗ ∈ (ℎ,ℎ + 2𝐾cp] such that

CPivot(𝑘∗). The honest block 𝑏∗ from index 𝑘∗ or its prefix must
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𝑏𝑖 𝑏 𝑗 𝑏𝑘 𝑏𝑙
... ...... ...... ...

𝑘
epf

blocks

𝑘
conf

blocks

Latest possible equivocation

proof against 𝑏𝑖 stabilizes

Includes equivocation proof against 𝑏𝑖

Header of 𝑏𝑖 seen by all honest nodes

Figure 12: Illustration for the proof of Lem. 8. Consider an

arbitrary block 𝑏𝑖 that is 𝑘conf -deep in the longest chain of

a node. Indices 𝑗, 𝑘, 𝑙 are cpivots. Since cpivots stabilize, the

corresponding blocks 𝑏 𝑗 , 𝑏𝑘 , 𝑏𝑙 are in all honest nodes’ longest

chains. At cpivot 𝑗 , we know for sure that all honest nodes

saw the header of 𝑏𝑖 because they saw the header for 𝑏 𝑗 . At

cpivot 𝑘 , we know for sure that if 𝑏𝑖 had an equivocation,

then an equivocation proof against 𝑏𝑖 must have entered the

chain. At cpivot 𝑙 , we know for sure that the last block that

can add an equivocation proof against 𝑏𝑖 has stabilized (as

the deadline of 𝑘
epf

blocks has passed). Thus, a ledger formed

from 𝑘
conf

-deep blocks (sufficient to obtain three cpivots) will

remain safe.

contain tx since tx is seen by all honest nodes at time 𝑡 < 𝑡𝑘∗ . Since

𝑘∗ is a cpivot, for all (𝑖, 𝑗] ∋ 𝑘∗, 𝐷 (𝑖, 𝑗 ] > 𝐷 (𝑖, 𝑗 ] (Def. 3 and eqn. (6)),
and hence 𝐷 (𝑖, 𝑗 ] >

𝑗−𝑖
2
. Particularly,

𝐷 (𝑘∗−1,𝑘∗+2𝑘
conf
−1] > 𝑘conf (125)

=⇒ 𝐷 (𝑘∗,𝑘∗+2𝑘
conf
−1] > 𝑘conf − 1. (126)

Then from Prop. 5,

𝐿min (𝑡𝑘∗+2𝑘
conf
−1 + 𝜈) − 𝐿min (𝑡𝑘∗+1 − 1) ≥ 𝐷 (𝑘∗,𝑘∗+2𝑘

conf
−1]

≥ 𝑘
conf

. (127)

Due to Lem. 1, 𝑏∗ ∈ dC𝑝 (𝑡 ′) for all honest nodes 𝑝 and 𝑡 ′ ≥ 𝑡𝑘∗ + 𝜈 ,
and 𝐿min (𝑡𝑘∗+1 − 1) ≥ |𝑏∗ |. This means that 𝑏∗ is 𝑘

conf
-deep in

dC𝑝 (𝑡 ′) for all honest nodes 𝑝 and all 𝑡 ′ ≥ 𝑡𝑘∗+2𝑘
conf
−1 + 𝜈 . Further,

the content of an honest block will never be blanked out in any

honest node’s ledger. Finally, with 𝑘∗ ≤ ℎ + 2𝐾cp and eqn. (95),

𝑡𝑘∗+2𝑘
conf
−1 + 𝜈 − 𝑡 ≤ 𝑡ℎ+2𝐾cp+2𝑘conf−1 + 𝜈 − 𝑡ℎ

≤ 𝑡ℎ+2𝐾cp+2𝑘conf − 𝑡ℎ

<
2𝐾cp + 2𝑘conf
(1 − 𝑒−𝜌 ) (1 − 𝛿) . (128)

Therefore, tx ∈ LOG𝑡 ′𝑝 for all 𝑡 ′ ≥ 𝑡 +𝑇
live

with𝑇
live

as in the lemma

statement. □

We also need another proposition to bound the number of BPOs

in a given number of slots, in order to bound 𝑄 (𝑖, 𝑗 ] .

Proposition 15.

∀𝑡,𝑇 ∈ N : Pr
[
𝑡+𝑇∑︁
𝑟=𝑡

(𝐻𝑡 +𝐴𝑡 ) ≥ 𝜌𝑇 (1 + 𝛿)
]
≤ exp

(
− 𝜌𝑇𝛿2

2(1 + 𝛿)

)
. (129)

Proof. This results from a Poisson tail bound since

∑𝑡+𝑇
𝑟=𝑡 (𝐻𝑡 +

𝐴𝑡 ) ∼ Poisson(𝜌𝑇 ). □

Proof of Thm. 2. First, we show that the conditions of Lem. 3

hold, and therefore cpivots occur. Suppose that the following three

events occur.

E1 =
{
∀ (𝑖, 𝑗] ⪰ 𝐾cp : 𝑃 (𝑖, 𝑗 ] > (1 − 2𝛿)𝑝ppivot ( 𝑗 − 𝑖)

}
, (130)

E2 =
{
∀𝑡 ∈ N,𝑇 ≥

𝐾cp

1 − 𝑒−𝜌 :

𝑡+𝑇∑︁
𝑟=𝑡

(𝐻𝑡 +𝐴𝑡 ) < 𝜌𝑇 (1 + 𝛿)
}
, (131)

E3 =
{
∀𝑘 ∈ N, 𝐾 ≥ 𝐾cp : 𝑡𝑘+𝐾 − 𝑡𝑘 <

𝐾/(1 − 𝑒−𝜌 )
1 − 𝛿

}
. (132)

From E2 and E3, we get

∀ (𝑖, 𝑗] ⪰ 𝐾cp : 𝑄 (𝑖, 𝑗 ] ≜
𝑗∑︁

𝑘=𝑖+1
(𝐻𝑡𝑘 +𝐴𝑡𝑘 ) (133)

with 𝑇 =
𝑗 − 𝑖

(1 − 𝑒−𝜌 ) (1 − 𝛿) , ≤
𝑡𝑖+𝑇∑︁
𝑡=𝑡𝑖

(𝐻𝑡 +𝐴𝑡 ) (134)

<
𝜌 ( 𝑗 − 𝑖) (1 + 𝛿)
(1 − 𝑒−𝜌 ) (1 − 𝛿) (135)

≤ 𝜌 ( 𝑗 − 𝑖)
(1 − 𝑒−𝜌 ) (1 − 2𝛿) . (136)

Then if
𝐶
16
𝑝ppivot (1 − 4𝛿) >

𝜌

(1−𝑒−𝜌 ) ,

∀ (𝑖, 𝑗] ⪰ 𝐾cp :
𝐶

4

𝑃 (𝑖, 𝑗 ] >
𝐶

4

(1 − 2𝛿)𝑝ppivot ( 𝑗 − 𝑖) (137)

>
4𝜌 ( 𝑗 − 1) (1 − 2𝛿)
(1 − 𝑒−𝜌 ) (1 − 4𝛿) (138)

>
4𝜌 ( 𝑗 − 1)

(1 − 𝑒−𝜌 ) (1 − 2𝛿) (139)

> 𝑄 (𝑖−2𝐾cp, 𝑗+𝐾cp] . (140)

This satisfies eqn. (14) in Lem. 3. Further,

𝐶

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
≥ 𝐶

2

𝑃 (𝑖, 𝑗 ] (141)

>
3𝜌 ( 𝑗 − 1)

(1 − 𝑒−𝜌 ) (1 − 2𝛿) (142)

> 𝑄 (𝑖−2𝐾cp, 𝑗] (143)

which satisfies condition eqn. (13) in Lem. 3. Therefore there is one

cpivot in every interval of the form

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
. Then by

Lem. 8, the protocol achieves safety and liveness with appropriately

chosen 𝑘
conf

, 𝑘
epf
,𝑇

live
.

By using Lem. 2,𝐾cp = Ω(𝜅2),𝐾
hrzn

= poly(𝜅), Props. 14 and 15,
and union bounds, the probability of failure of either E1, E2 or E3
is negl(𝜅).

The required security threshold is obtained from (𝜈 + 1)𝜏 ≥
Δ
h
+𝐶/𝐶 , 𝑝G = (1 − 𝛽) 𝜌𝑒

−𝜌 (𝜈+1)

1−𝑒−𝜌 ,
𝐶
16
𝑝ppivot >

𝜌
1−𝑒−𝜌 , and 𝑝ppivot =

(2𝑝G − 1)2/𝑝G,. As in the case of PoW, 𝐶 is a free parameter that

can be optimized to find the best set of parameters. □

F TRANSACTION VALIDITY PROOFS

Proof of Lem. 4. In Sec. 6.1, we have that equivocation proofs

against a block need to be included within the next 𝑘
epf

blocks.

A node creating a block thus knows all equivocation proofs that
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will ever be included in their header chain against blocks that are

𝑘
epf

-deep, thus the state of the 𝑘
epf

-deep chain is determined. Since

equivocations for the last 𝑘
epf

blocks can only remove transactions,

the node knows all transactions that may be included in the final

chain. From this, the node can determine all states S that could be

touched by any transaction in the last 𝑘
epf

blocks.
5
A transaction

𝑡𝑥 that does not depend on any state in S for its execution, can

thus be executed on the state of the 𝑘
epf

-deep chain, therefore, sat-

isfying predictable transaction validity. A node then only includes

transactions that don’t rely on a state in S. Note that transactions
in the same block could depend on the same state. □

Proof of Lem. 5. Consider a funding gas account acc with bal-

ance 𝑏 before the last 𝑘
epf

blocks in the chain. This balance is set

for that account as no equivocation proofs against blocks that are

𝑘
epf

-deep are allowed by the protocol. Note that any transactions

in the last 𝑘
epf

blocks that fund the account can still be sanitized

from the ledger so we do not consider them in the balance yet. The

node instead considers all transactions Tacc(𝑘
epf
) in the last 𝑘

epf

which use the funds from the account (including any withdrawals).

Since the transactions funded by acc that end up in the ledger are

a subset of Tacc(𝑘
epf
) , and all fees are extracted regardless of how

a transaction executes, the node will at worst underestimate the

balance of acc at the tip of the chain. □

G ATTACK ON POS LCWITHOUT

EQUIVOCATION REMOVAL

In this section, we present an attack to establish a bound (as a func-

tion of the security level) on the block production rate (and hence,

throughput, or bandwidth requirement) of a single chain PoS LC

protocol without an equivocation removal policy. For concreteness,

we demonstrate this attack on PoS LC using any one of three down-

load rules: ‘download the longest header chain’, ‘download towards

the freshest block’, and ‘equivocation avoidance’. For the ‘download

the longest header chain’ rule, [34, Figure 3] showed one attack

and the attack in this section generalizes that. On the other hand,

[34] proved PoS LC secure under the other two download rules by

setting the duration of a slot proportional to the security parameter

𝜅 , to achieve security with probability 1− negl(𝜅). Hence the block
production rate (and throughput) decays as 𝑂

(
1

𝜅

)
. In this section,

we show an attack which succeeds if the block production rate is

Ω
(

1

log(𝜅 )

)
.

Furthermore, while the attack in [34, Figure 3] required that

the PoS LC protocol rejects blocks with invalid transactions after

downloading them, this attack does not require that. Therefore, this

attack works even if the PoS LC protocol accepts blocks with invalid

transactions into the output ledger (e.g., to subsequently clean

them up deterministically across honest nodes). This is because

as noted in Sec. 7, even if the protocol accepts blocks with invalid

transactions, honest nodes must download the block content (to

ensure data availability). This is why we require an equivocation

removal policy so that honest nodes can unilaterally discard content

5
Note that this includes all states a transaction could have changed if it executed

differently. This could be achieved by transactions needing to include an access list

of all states they are allowed to change. One can imagine a DOS attack where a

transaction’s access list could prevent future transactions.

for blocks that they do not download. This is what allows us to

overcome the Ω
(

1

log(𝜅 )

)
throughput bound in this work.

Before describing the attack, we briefly recap the download rules

analyzed in this section. In the ‘download towards the freshest block’

rule (cf. [34, Alg. 2]), a node chooses the block produced in the most

recent time slot (‘freshest’), and if it not yet downloaded, downloads

the first unknown block in the chain containing that block. One

the node downloads the freshest block, it stops downloading any

blocks until a block header from a more recent slot shows up. In the

‘equivocation avoidance’ rule ([34, Alg. 4]), the node first filters the

tree of its headers by keeping only one leaf per BPO (ties broken by

the adversary). From among the remaining headers, the node picks

a block to download as per the ‘download longest header chain’

rule. The ‘download longest header chain’ rule is as described in

Alg. 4.

G.1 Attack Strategy

The attack works in two phases. See Figure 13 for reference.𝐶 is the

bandwidth constraint (in blocks per second), 𝜏 is the slot duration,

and 𝜅 is the security parameter.

Setup phase. At time slot 𝑡0, the adversary creates a chain C
which forks off the honest chain C0 by at least 𝐿 = log(𝜅) blocks,
and is at least as long as C0. The prefix length 𝐿 is chosen so that

the setup succeeds with non-negligible probability. The adversary

initially keeps C private.

Execution phase. The adversary creates different chains C1, C2, ...
which contain equivocations of the blocks in C, and pushes one

chain to each honest node.

(1) Let 𝑡1 > 𝑡0 be the first time slot with a block production. For

any block 𝑏1 produced in slot 𝑡1, if 𝑏1 is produced by an honest

node, then, the adversary breaks ties such that𝑏1 extends one of

the equivocating chains C𝑖 . If 𝑏1 is produced by the adversary,

the adversary produces 𝑏1 at the tip of another chain made

of equivocations of the blocks in C. Regardless, any block 𝑏1
produced in 𝑡1 extends a chain that forks off the downloaded

longest chain by 𝐿 new blocks that need to be downloaded,

hence it will take a long time for an honest node to download

up to the block 𝑏1.

(2) The adversary repeats step 1 in all time slots 𝑡2, 𝑡3, ... with a

block production. Assuming there are many honest nodes, each

block extends a different equivocating chain and is too long to

catch up with. The adversary continues this until the following

condition occurs.

(3) Let 𝑡∗ be the first time slot since 𝑡0 in which an honest block

𝑏∗ is produced, such that there are no other blocks produced

in slots [𝑡∗, 𝑡∗ + 𝐿/(𝐶𝜏)). This condition ensures that there is

enough time for 𝑏∗ to be downloaded by all honest nodes.

If the adversary had at least one block production opportunity

𝑡 ′ ∈ [𝑡0, 𝑡∗ + 𝐿/(𝐶𝜏)), then the adversary attaches a block 𝑏′

produced in slot 𝑡 ′ to the chain C. The adversary makes the

following updates,

• C0 ← chain ending in 𝑏∗,
• C ← chain ending in 𝑏′,
• 𝑡0 ← 𝑡∗,
• 𝐿 ← 𝐿 + 1,

23



Lucianna Kiffer, Joachim Neu, Srivatsan Sridhar, Aviv Zohar, and David Tse

C0

C
𝑏1

C′
𝑏2

𝑏∗ (new C0)

𝑏′ (new C)

𝐿 = log(𝜅 ) blocks

Time 𝑡0 𝑡1 𝑡2 𝑡∗ 𝑡∗ + 𝐿
𝐶𝜏

No blocks

Figure 13: Illustration of the new attack of Section G.2. At

time 𝑡0, C0 is the longest downloaded chain of all honest

nodes, and the adversary produces a chain C that forks off

C0 by 𝐿 = log(𝜅) blocks. Blocks produced in time slots 𝑡1, 𝑡2, ...

(whether honest or adversarial) extend the chain C or a chain

C′ containing equivocation of the blocks in C, and are not

downloaded by all honest nodes in time before the next block

production opportunity. Time slot 𝑡∗ is the first slot such that

there are no block productions in the
𝐿
𝐶𝜏

slots after 𝑡∗. The
block 𝑏∗ produced in slot 𝑡∗ therefore gets downloaded. If

the adversary had at least one block production opportunity

𝑡 ′ ∈ [𝑡0, 𝑡∗ + 𝐿/(𝐶𝜏)], then the adversary sets the chain ending

in 𝑏∗ as new C0 and the chain ending in 𝑏′ as new C, and
repeats the attack.

and thereafter repeats steps (1)–(3).

If the adversary failed to get one block production opportunity

in [𝑡0, 𝑡∗ + 𝐿/(𝐶𝜏)), then the adversary gives up.

G.2 Analysis Overview

The analysis below reuses notation defined in Section 4.2. For the

attack to succeed, we assume the following:

• The protocol parameters 𝜌, 𝜏 satisfy
𝜌
𝜏 > 𝐶

log𝜅
log

1−𝛽
𝛽

, where

𝛽 is the fraction of adversarial nodes and 𝐶 is the bandwidth

constraint of each honest node in blocks per second.

• The total number of nodes 𝑁 is large.

• The adversary is allowed to break ties among equally long chains

in the fork choice rule.

• The adversary is allowed to break ties among equal priority

chains in the download rule.

The fork length 𝐿 = log(𝜅) is chosen such that the adversary

can succeed in the setup phase with probability at least 𝑒−𝑂 (𝐿) =
1/poly(𝜅) at any given time, even with a minority stake. Hence

this setup can be achieved by the adversary with non-negligible

probability eventually during an execution of length poly(𝜅).
Now consider the execution phase. The key vulnerability ex-

ploited in this attack is that if the highest priority chain according

to the download rule is on a long fork of which honest nodes have

not downloaded any blocks, it will take a long time for honest nodes

to download up to the tip of this chain. If the next block arrival

happens before this chain is downloaded, the adversary makes hon-

est nodes shift their download priority to a different chain, which

is also on an equally long fork. This keeps repeating and honest

nodes never finish downloading a chain that would help grow their

longest downloaded chain.

Honest nodes get some respite when there is an honest block

produced in slot 𝑡∗ such that there are no other blocks produced in

slots [𝑡∗, 𝑡∗ +𝐿/(𝐶𝜏)). The three download rules ‘download longest
header chain’, ‘download towards the freshest block’, and ‘equi-

vocation avoidance’ ensure that the honest block 𝑏∗ produced in

slot 𝑡∗ remains the highest priority chain to download during the

slots [𝑡∗, 𝑡∗+𝐿/(𝐶𝜏)). Given a bandwidth constraint of𝐶 blocks per

second, i.e., 𝐶𝜏 blocks per time slot, honest nodes can completely

download a fork of length 𝐿 in 𝐿/(𝐶𝜏) time slots.

However, this does not end the attack.While waiting for one hon-

est block production opportunitywith 𝐿/(𝐶𝜏) empty slots following

it, if the adversary gets one block production opportunity, this al-

lows the adversary to create a new chain whose length matches

the longest downloaded chain of honest nodes. The situation now

looks just like at the start of the execution phase, except that the

adversary’s chain now forks from the honest nodes’ new down-

loaded longest chain by 𝐿 + 1 blocks (one more than before). The

adversary then and repeats the execution phase all over again with

the new chain it has produced, and with 𝐿 ← 𝐿 + 1. As the adver-
sary’s fork length 𝐿 increase, it takes more time for honest nodes to

download up to the tip of a newly produced block extending that

fork. This means it takes even longer for honest nodes to produce a

block after which there are 𝐿/(𝐶𝜏) empty slots such that the block

gets downloaded. Thereby, it becomes more likely that the adver-

sary produces one block before honest downloads download a new

chain, and continue the attack for another iteration with a larger

fork length 𝐿. As a result of this vicious cycle, the adversary can

continue this attack forever with non-negligible probability!

This attack breaks safety of the protocol because the downloaded

longest chain of honest nodes switches to a different chain every

time the condition in Section G.1 (3) occurs.

G.3 Analysis Details

Building up on the definitions from Section 4.2, define a time slot 𝑡

to be honest if 𝐻𝑡 > 0, and attacking if 𝐴𝑡 > 0. Also defineH(𝑟,𝑠 ]
andA (𝑟,𝑠 ] as the number of honest and attacking slots respectively

in the interval (𝑟, 𝑠]. B(𝑟,𝑠 ] is the number of slots 𝑡 ∈ (𝑟, 𝑠] such
that 𝐻𝑡 +𝐴𝑡 > 0.

Definition 6. For all 𝑡 , define the event

𝐹𝑡 :=
{
∃𝑟 < 𝑡 : (𝐻𝑟 > 0) ∧ (A (𝑟,𝑡 ] ≥ H(𝑟,𝑡 ] ) ∧ (A (𝑟,𝑡 ] ≥ 𝐿)

}
. (144)

Lemma 9. If 𝐹𝑡 occurs, then the setup phase of the attack succeeds

at time slot 𝑡 , i.e., there exists an adversarial strategy which creates a

chain C that forks off the longest downloaded chain of all honest nodes

at time 𝑡 by 𝐿 blocks and is at least as long as the longest downloaded

chain.

Proof. Let 𝑏 be an honest block produced in slot 𝑟 < 𝑡 where 𝑟

satisfies (𝐻𝑟 > 0) ∧ (A (𝑟,𝑡 ] ≥ H(𝑟,𝑡 ] ) ∧ (A (𝑟,𝑡 ] ≥ 𝐿). The adver-
sary’s strategy is as follows. In time slot 𝑟 , the adversary pushes the

block 𝑏 to all nodes irrespective of bandwidth, so that
��
dC𝑝 (𝑟 )

�� = |𝑏 |
for all honest nodes 𝑖 . The adversary then creates a private chain

using its own blocks, extending the block 𝑏 (all these blocks are kept

hidden). The adversary can add one block to this chain in every

slot in which the adversary produces a block, therefore the length
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of the adversary’s chain at time 𝑡 is |𝑏 | + A (𝑟,𝑡 ] . On the other hand,

in every time slot that an honest block is produced, at most one

block is added to the longest chain of all honest nodes, therefore

the length of the honest chain at time 𝑡 is at most |𝑏 | +H(𝑟,𝑡 ] . Since
A (𝑟,𝑡 ] ≥ H(𝑟,𝑡 ] , the adversary’s chain has the same or greater

length compared to the honest chain at time slot 𝑡 . Since the last

block that is common between the honest and adversary’s chain is

𝑏, and A (𝑟,𝑡 ] ≥ 𝐿, the adversary’s chain forks off the honest chain

by at least 𝐿 blocks. Therefore, we have the required conditions for

the attack setup. Note that the adversary does not need to be able

to predict when the event 𝐹𝑡 would occur. Since creating blocks in

proof-of-stake does not require computation time, the adversary

can create this chain after it observes that the event 𝐹𝑡 occurred. □

Lemma 10. Let 𝑡 > 𝑡0 be a successful time slot ( i.e., 𝐻𝑡 + 𝐴𝑡 > 0)

such that there exists another successful time slot 𝑡 ′ ∈ (𝑡, 𝑡 + 𝐿/(𝐶𝜏)].
Then none of the blocks produced in slot 𝑡 are ever downloaded by

any honest node. Hence for all honest nodes 𝑝 , 𝐿𝑝 (𝑡 ′ − 1) = 𝐿𝑝 (𝑡).

Proof. For all blocks 𝑏 that are produced in slot 𝑡 , the attack

strategy in Section G.1 ensures that the number of blocks to be

downloaded in the prefix of𝑏 (including𝑏) is 𝐿+1. Since each honest
node can download at most 𝐶𝜏 blocks per time slots, no honest

node can download the entire prefix within 𝐿/(𝐶𝜏) time slots (the

adversary does not push any blocks to honest nodes during this

period). At time slot 𝑡 ′, either an adversarial block or an honest

block (or both) are produced. In either case, step 2 of the execution

phase ensures that at slot 𝑡 ′, this new block has the highest priority

under all three download rules. This is because i) it is clearly the

freshest block at slot 𝑡 ′, ii) it is one of the longest chains (and

the adversary breaks ties), and iii) it has a non-equivocating tip

and has length 𝐿 + 1, which is one of the longest chains (and the

adversary breaks ties), Therefore, at time slot 𝑡 ′, all honest nodes
switch to download a different block, and therefore the block𝑏 is not

downloaded. Since for all honest nodes 𝑝 , no block is downloaded,

it is clear that 𝐿𝑝 (𝑡 ′ − 1) = 𝐿𝑝 (𝑡). □

Lemma 11. Let 𝑡 be a successful time slot such that for all time

slots 𝑡 ′ ∈ (𝑡, 𝑡 + 𝐿/(𝐶𝜏)], there are no blocks produced in slot 𝑡 ′

( i.e., 𝐻𝑡 ′ +𝐴𝑡 ′ = 0). Then, each honest node downloads at least one

block produced in slot 𝑡 , and for all honest nodes 𝑝 , 𝐿𝑝 (𝑡 + 𝐿/(𝐶𝜏)) =
𝐿𝑝 (𝑡) + 1.

Proof. Since 𝑡 is an honest time slot, let 𝑏 be one of the honestly

produced blocks in this time slot. At time slot 𝑡 , 𝑏 is one of the

freshest blocks. It remains one of the freshest blocks until time

slot 𝑡 + 𝐿/(𝐶𝜏) because there are no other blocks produced in this

interval. As per the attack strategy, for both honest and adversarial

blocks 𝑏, the block 𝑏 is on the longest chain in every node’s view,

and is not an equivocation.

In case of a tie in the download rules, we assume that all hon-

est nodes break the tie in favour of the same block 𝑏 (as this is

chosen by the adversary). Therefore, the block 𝑏 has the highest

download priority for all honest nodes in slots [𝑡, 𝑡 +𝐿/(𝐶𝜏)]. Since
the number of blocks to be downloaded in the prefix of 𝑏 (includ-

ing 𝑏) is 𝐿 + 1, these blocks can be downloaded before the end of

slot 𝑡 + 𝐿/(𝐶𝜏). We know that 𝑏 is longer than all honest nodes’

longest downloaded chains at slot 𝑡 because of the attack strategy

and Lemma 10. Therefore the length of the longest downloaded

chain of every honest node grows by 1. □

Lemma 12. Let 𝑡a be the first time slot such that 𝑡a > 𝑡0 + 𝑇conf ,
𝑡a is a successful time slot, and there are no blocks produced in slots

(𝑡a, 𝑡a + 𝐿′/(𝐶𝜏)] where 𝐿′ is the value of the attacker’s parameter 𝐿

at time slot 𝑡0 +𝑇conf . If the attacker does not terminate before slot 𝑡a,

then there is a safety violation.

Proof. At the end of time slot 𝑡0 +𝑇conf , let LOG
𝑡0+𝑇conf
𝑝 denote

the ledger output by an honest node 𝑝 . Note that this ledger con-

tains all blocks mined before slot 𝑡0 in the longest downloaded

chain of node 𝑝 , dC𝑝 (𝑡0 + 𝑇conf ). As per the attack strategy Sec-

tion G.1 steps (1) and (2), the block produced in time slot 𝑡a extends

a different equivocating chain that forks off dC𝑝 (𝑡0 +𝑇conf ) by 𝐿′
blocks. Since there are no blocks produced in slots (𝑡a, 𝑡a+𝐿′/(𝐶𝜏)],
all honest nodes download this new chain and hence update their

longest downloaded chain. However, note that at least 𝐿′ blocks
that were in LOG𝑡0+𝑇conf𝑝 are replaced by different blocks in dC𝑝 (𝑡a),
and therefore LOG𝑡0+𝑇conf𝑝 and LOG𝑡a𝑝 are not prefixes of each other.

This causes a safety violation. □

Lemma 13. For all 𝑡 ,

Pr [𝐹𝑡 ] ≥ 𝑝H
(
1 − 2𝑒−𝐿/9

)
1

√
8𝐿
𝑒−4𝛼4𝐿, (145)

where 𝛼4 = 1

4
ln

(
𝑝

4𝑝H

)
+ 3

4
ln

(
3𝑝
4𝑝H

)
and 𝑝H ≜ Pr [𝐻𝑡 > 0] = 1 −

𝑒−(1−𝛽 )𝜌 .

Proof. Let 𝑇 = 2𝐿
𝑝 (1 + 𝜖) for some 𝜖 > 0 and let 𝑠 = 𝑡 −𝑇 .

Pr [𝐹𝑡 ]
= Pr

[
∃𝑟 < 𝑡 : (𝐻𝑟 > 0) ∧ (A (𝑟,𝑡 ] ≥ H(𝑟,𝑡 ] ) ∧ (A (𝑟,𝑡 ] ≥ 𝐿)

]
≥ Pr

[
𝐻𝑠 > 0 ∧ A (𝑠,𝑡 ] ≥ H(𝑠,𝑡 ] ∧ A (𝑠,𝑡 ] ≥ 𝐿

]
= Pr [𝐻𝑠 > 0] Pr

[
A (𝑠,𝑡 ] ≥ H(𝑠,𝑡 ] ∧ A (𝑠,𝑡 ] ≥ 𝐿

]
≥ Pr [𝐻𝑠 > 0] Pr

[
H(𝑠,𝑡 ] ≤ 𝐿 ∧ A (𝑠,𝑡 ] ≥ 𝐿

]
(a)

≥ Pr [𝐻𝑠 > 0] Pr
[
H(𝑠,𝑡 ] ≤ 𝐿 ∧ B(𝑠,𝑡 ] ≥ 2𝐿

]
≥ 𝑝H Pr

[
H(𝑠,𝑡 ] ≤ 𝐿 ∧ 2𝐿 ≤ B(𝑠,𝑡 ] ≤ 2𝐿(1 + 2𝜖)

]
≥ 𝑝H Pr

[
2𝐿 ≤ B(𝑠,𝑡 ] ≤ 2𝐿(1 + 2𝜖)

]
Pr

[
H(𝑠,𝑡 ] ≤ 𝐿 | B(𝑠,𝑡 ] = 2𝐿(1 + 2𝜖)

]
(146)

where (a) is becauseH(𝑠,𝑡 ] + A (𝑠,𝑡 ] ≥ B(𝑠,𝑡 ] . By Chernoff bounds

for 𝛿 ∈ (0, 1),

Pr

[
B(𝑠,𝑡 ] < 𝑝 (𝑡 − 𝑠) (1 − 𝛿)

]
≤ exp

(
−𝑝 (𝑡 − 𝑠)𝛿

2

2

)
, (147)

Pr

[
B(𝑠,𝑡 ] > 𝑝 (𝑡 − 𝑠) (1 + 𝛿)

]
≤ exp

(
−𝑝 (𝑡 − 𝑠)𝛿

2

3

)
. (148)

where 𝑝 ≜ Pr [𝐻𝑡 +𝐴𝑡 > 0] = 1 − 𝑒−𝜌 . With 𝑡 − 𝑠 = 2𝐿
𝑝 (1 + 𝜖) and

𝛿 = 𝜖
1+𝜖 ,

Pr

[
B(𝑠,𝑡 ] < 2𝐿

]
≤ exp

(
− 2𝐿𝜖2

2(1 + 𝜖)

)
,

Pr

[
B(𝑠,𝑡 ] > 2𝐿(1 + 2𝜖)

]
≤ exp

(
− 2𝐿𝜖2

3(1 + 𝜖)

)
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=⇒ Pr

[
2𝐿 ≤ B(𝑠,𝑡 ] ≤ 2𝐿(1 + 2𝜖)

]
≥ 1 − 2 exp

(
− 2𝐿𝜖2

3(1 + 𝜖)

)
. (149)

Each non-empty time slot (𝐻𝑡 + 𝐴𝑡 > 0) is an honest slot (𝐻𝑡 >

0) independently with probability
𝑝H
𝑝 . Therefore conditional on

B(𝑠,𝑡 ] = 2𝐿(1 + 2𝜖), H(𝑠,𝑡 ] has a binomial distribution. Then we

can use tail bounds for the binomial distribution to show that

Pr

[
H(𝑠,𝑡 ] ≤ 𝐿 | B(𝑠,𝑡 ] = 2𝐿(1 + 𝜖)

]
≥ 1√︁

4𝐿(1 + 2𝜖)
exp (−2𝛼4𝐿(1 + 2𝜖)) (150)

where 𝛼4 = 𝐷

(
1

2(1+2𝜖 ) | |
𝑝H
𝑝

)
and

𝐷 (𝑥 | |𝑦) = 𝑥 ln
(
𝑥

𝑦

)
+ (1 − 𝑥) ln

(
1 − 𝑥
1 − 𝑦

)
. (151)

Putting these together,

Pr [𝐹𝑡 ] ≥ 𝑝H
(
1 − 2𝑒−2𝐿𝜖

2/3(1+𝜖 )
)

1√︁
4𝐿(1 + 2𝜖)

𝑒−2𝛼4𝐿 (1+2𝜖 ) . (152)

Since 𝜖 is arbitrary, we may choose 𝜖 = 1

2
to get a lower bound on

the required probability. □

Corollary 3. For large 𝜅, if 𝐿 = Θ(log𝜅) and 𝜌 = Ω
(
1

𝑛

)
, then

Pr [𝐹𝑡 ] ≥ 1

poly(𝜅 ) .

Recall that the attack goes on forever if the attacker gets one

block production opportunity before the honest nodes download a

longer chain. We have seen that honest nodes download a longer

chain if and only if a non-empty slot is followed by at least 𝐿/𝐶
empty time slots.

Definition 7. A successful time slot 𝑡 is called a 𝑇 -loner if no

blocks are produced in the 𝑇 slots following 𝑡 , i.e., B(𝑡+1,𝑡+𝑇 ] = 0.

The predicate Loner𝑇 (𝑡) is true iff slot 𝑡 is a 𝑇 -loner.

We observe that

Pr [Loner𝑇 (𝑡) | 𝐻𝑡 +𝐴𝑡 > 0] = (1 − 𝑝)𝑇 . (153)

Lemma 14. If (1 − 𝛽)𝑒−𝜌𝑇 < 𝛽 , then the probability that the

adversary gets one block production opportunity before a 𝑇 -loner

occurs is at least 1 − (1−𝛽 )𝑒
−𝜌𝑇

𝛽
> 0.

Proof. We begin by calculating the probability there is at least

one attacking slot before there is an 𝑇 -loner. This ensures that the

final step of the attack in Section G.1 is successful and that the

adversary can updates it state and continue the attack. Let 𝑡1, 𝑡2, ...

be the sequence of successful slots since the start of the attack. Let

𝑡𝑁 be the first 𝑇 -loner in this sequence (note that 𝑁 is a random

variable).

Pr

[
∃𝑖 ≤ 𝑁 : 𝐴𝑡𝑖 > 0

]
=

∞∑︁
𝑘=1

Pr [𝑁 = 𝑘] Pr
[
∃𝑖 ≤ 𝑘 : 𝐴𝑡𝑖 > 0 | 𝑁 = 𝑘

]
. (154)

Here,

Pr [𝑁 = 𝑘] =
𝑘−1∏
𝑖=1

Pr

[
¬Loner𝑇 (𝑡𝑖 ) | 𝐻𝑡𝑖 +𝐴𝑡𝑖 > 0

]
Pr

[
¬Loner𝑇 (𝑡𝑘 ) | 𝐻𝑡𝑘 +𝐴𝑡𝑘 > 0

]

=

(
1 − (1 − 𝑝)𝑇

)𝑘−1
(1 − 𝑝)𝑇 . (155)

Moreover, conditioned on 𝑡 being a successful slot, the events

Loner𝑇 (𝑡) and 𝐴𝑡 > 0 are independent. Therefore,

Pr

[
∃𝑖 ≤ 𝑘 : 𝐴𝑡𝑖 > 0 | 𝑁 = 𝑘

]
= 1 −

𝑘∏
𝑖=1

Pr

[
𝐴𝑡𝑖 = 0 | 𝐴𝑡𝑖 + 𝐻𝑡𝑖 > 0

]
= 1 −

(
𝑒−𝛽𝜌 (1 − 𝑒−(1−𝛽 )𝜌 )

(1 − 𝑒−𝜌 )

)𝑘
= 1 −

(
1 − 1 − 𝑒−𝛽𝜌

1 − 𝑒−𝜌

)𝑘
≥ 1 − (1 − 𝛽)𝑘 (156)

Putting them together,

Pr

[
∃𝑖 ≤ 𝑁 : 𝐴𝑡𝑖 > 0

]
(157)

≥
∞∑︁
𝑘=1

(
1 − (1 − 𝑝)𝑇

)𝑘−1
(1 − 𝑝)𝑇

(
1 − (1 − 𝛽)𝑘

)
= 1 − (1 − 𝑝)𝑇 (1 − 𝛽)

1 − (1 − (1 − 𝑝)𝑇 ) (1 − 𝛽)

≥ 1 − (1 − 𝑝)
𝑇 (1 − 𝛽)
𝛽

. (158)

Finally, we substitute 𝑝 = 1 − 𝑒−𝜌𝑇 . □

Lemma 15. If the protocol parameters 𝜌, 𝜏 satisfy
𝜌
𝜏 > 𝐶

𝐿
log

1−𝛽
𝛽

,

then with probability non-negligible in 𝜅 , the attack never terminates.

Proof. From Corollary 3, for 𝐿 = log(𝜅) and large enough 𝜌 ,

the attack setup occurs with non-negligible probability.

If the adversary gets one block production opportunity before

an 𝐿/(𝐶𝜏)-loner, then the adversary can continue the attack by

upgrading 𝐿 to 𝐿 + 1. This means that in the next iteration of the

attack, the adversary needs one block production opportunity be-

fore an (𝐿+1)/(𝐶𝜏)-loner. Since an (𝐿+1)/(𝐶𝜏)-loner is rarer than
an 𝐿/(𝐶𝜏)-loner, the adversary has increased chances of getting

one block production before an (𝐿 + 1)/(𝐶𝜏)-loner, and therefore

upgrading the attack to 𝐿 + 2. This process repeats whereby if the

adversary upgrades the attack to the next phase, it increases the

chance that the attacker can further upgrade the attack to the next

phase, and so forth.

The probability that the attack continues forever is therefore

Pr [attack continues forever] ≥
∞∏
𝑙=𝐿

(
1 − (1 − 𝛽)𝑒

− 𝜌𝑙

𝐶𝜏

𝛽

)
≥
∞∏
𝑙=𝐿

(
1 − 𝑒−

𝜌 (𝑙−𝐿)
𝐶𝜏

)
=

∞∏
𝑙=1

(
1 − 𝑒−

𝜌𝑙

𝐶𝜏

)
=

(
𝑒−

𝜌

𝐶𝜏 ; 𝑒−
𝜌

𝐶𝜏

)
∞
. (159)

Here, (𝑥 ;𝑥)∞ is called the 𝑞-Pochhammer symbol and (𝑥 ;𝑥)∞ ∈
(0, 1) for all 𝑥 ∈ (0, 1) [45]. The condition 𝜌

𝜏 > 𝐶
𝐿
log

1−𝛽
𝛽

is derived
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from the condition in Lemma 14 with 𝑇 = 𝐿
𝐶𝜏

. □

Corollary 4. For the protocol Π𝜌,𝜏,𝑘conf to satisfy safety and

liveness, the throughput of the protocol must be 𝑂

(
1

log𝜅

)
.

This is seen by noting that the throughput is
1−𝑒−𝜌
𝜏 ≤ 𝜌

𝜏 ≤
𝐶

log𝜅
log

1−𝛽
𝛽

. If this is not true, then the attacker never terminates,

hence there is a safety violation as per Lemma 12. The maximum

block production rate 𝜆 =
𝜌
𝜏 calculated from Lem. 15 is plotted in

Fig. 1(b).
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