
Non-Interactive Blind Signatures
for Random Messages

Lucjan Hanzlik

CISPA Helmholtz Center for Information Security
hanzlik@cispa.de

Abstract. Blind signatures allow a signer to issue signatures on mes-
sages chosen by the signature recipient. The main property is that the
recipient’s message is hidden from the signer. There are many appli-
cations, including Chaum’s e-cash system and Privacy Pass, where no
special distribution of the signed message is required, and the message
can be random. Interestingly, existing notions do not consider this prac-
tical use case separately. In this paper, we show that constraining the
recipient’s choice over the message distribution spawns a surprising new
primitive that improves the well-established state-of-the-art. We formal-
ize this concept by introducing the notion of non-interactive blind sig-
natures (NIBS). Informally, the signer can create a presignature with a
specific recipient in mind, identifiable via a public key. The recipient
can use her secret key to finalize it and receive a blind signature on a
random message determined by the finalization process. The key idea
is that online interaction between the signer and recipient is unneces-
sary. We show an efficient instantiation of NIBS in the random oracle
model from signatures on equivalence classes. The exciting part is that,
in this case, for the recipient’s public key, we can use preexisting keys for
Schnorr, ECDSA signatures, El-Gamal encryption scheme or even the
Diffie-Hellman key exchange. Reusing preexisting public keys allows us
to distribute anonymous tokens similarly to cryptocurrency airdropping.
Additional contributions include tagged non-interactive blind signatures
(TNIBS) and their efficient instantiation. A generic construction in the
random oracle or common reference string model based on verifiable ran-
dom functions, standard signatures, and non-interactive proof systems.

Keywords: Blind Signatures, Non-Interactive Scheme, Random Oracle
Model, Signatures on Equivalence Classes

1 Introduction

Blind signatures are a cryptographic primitive introduced by David Chaum [16].
Contrary to standard digital signature schemes, the signing process is an in-
teractive protocol between two parties: the signer and the user (also called the
recipient). The main property of blind signature schemes is like the name sug-
gests blindness. It ensures that the signer does not ‘see’ the signed message. Blind
signatures also require one-more unforgeability, where an adversary has access

©IACR 2023 This is the full version of an article that will be published in the proceedings of EUROCRYPT 2023.

2 Lucjan Hanzlik

to a signing oracle and must return one-more message-signature pair than the
number of queries made.

Blind signature schemes find many applications. In Chaum’s seminal work
[16], it was shown how to use a blind signature for electronic cash (or e-cash),
the forerunner of modern cryptocurrencies. The design of e-cash inspired many
follow-up work [37,21,12,4]. The idea is elegant but simple. The bank issues e-
cash as signatures on random identifiers chosen by users. To spend, the user
shows the identifier (i.e., message) and the corresponding signature to the mer-
chant, who can collect the amount from the bank. The bank keeps a list of
‘used’ identifiers to prevent double-spending. To make transactions unlinkable,
the bank uses a blind signature to create the signature together with the user.

E-cash implements the idea of a single-use unlinkable electronic coins (e-
coins), coupons or tokens. This interpretation inspired recent advances. Tum-
blebit [31] is a cryptographic tumbler that uses blind signatures as a building
block. It introduces an intermediary party that issues a single-use coupon in
exchange for cryptocurrency. The payer can send this coupon to another user
who can redeem it for cryptocurrency. To ensure unlinkability, the intermediary
issues several coupons in a given interval, creating an anonymity set. Blindness
provides the property that any combination of sender/recipient is equally likely
for the given anonymity set. This idea was also used in Privacy Pass [17], which
relies on single-use coupons to make web browsing using anonymous networks
more user-friendly. One of the use cases of Privacy Pass allows users to re-
deem coupons while omitting the increased number of CAPTCHAs that service
providers challenge when using anonymous networks. Privacy Pass was recently
extended with a rate-limiting version [32] also called Private Access Tokens. One
of the main changes is that the coupon is not created on a random message but
rather on a challenge created by the server. The challenge is to ensure that mali-
cious users do not hoard coupons to circumvent daily limits. Blind signatures are
used differently in voting schemes [14] and anonymous credentials (AC) [6,23].
Voters can get a signed receipt without revealing their vote. In AC, blind sig-
natures provide means for issuing unlinkable credentials. Contrary to the e-cash
application, the signed message in those applications is not a random identifier.

We observe that the user can randomly choose the blindly signed message in
many applications, and the selected message does not need to be from a specific
distribution. Following this, we consider the following research question.

Can we use this observation to move research on blind signatures forward?

Prior Work on Blind Signatures

In his seminal work [16], David Chaum introduced the idea of blind signatures.
He defined a signing function s that commutes with a function c. The user
can now send c(m) to the signer, who signs this blinded message and returns
s(c(m)). Because of the commutativeness property, the user can extract s(m)
using the inverse function c−1 without the signer learning anything about the
signed message m. It is worth noting that the user can always pick what gets

Non-Interactive Blind Signatures for Random Messages 3

Scheme
Communication complexity |m|+ |sig| |pk| Reusable

Security
U→ S S→ U 1st msg.

Blind BLS [10] n× 382 n× 382 510 3072 7 ROM
Privacy Pass [17] n× 257 n× 257 + 512 385 257 7 ROM

RSA (PAT) [35,16] n× 3072 n× 3072 3200 3072 7 ROM

NIBS 382† n× 1655 1909 1526 3 ROM+GGM

TNIBS 382† n× 2546 2800 1526 3 ROM+GGM

Our Generic O(1)† O(n) 3 ROM or CRS

†− The recipient’s public key must be sent to the signer. There is no cost if a PKI is available.

Table 1. Comparison between two-move blind signatures, Privacy Pass, and our NIBS
and TNIBS. n denotes the number of signatures/tokens issued concurrently. All results
are given in bits and refer to a 3072-bit RSA modulus, BLS12-381 [11] parameters
for pairing-based schemes and a standard 256-bit elliptic curve for Privacy Pass. We
assume that messages/nonces are 128-bit long. We indicate if the first message of user
U can be reused by signer S to issue new tokens.

signed. The main security properties defined by Chaum are that the inverse
function s−1 does not leak anything about s, and c(x) does not leak anything
about x. Those intuitions for unforgeability and blindness were more formally
captured in follow-up work.

Pointcheval and Stern [40,41] defined unforgeability using a so-called one
more forgery. Instead of defining it as the inability to extract the secret key s
from the public key s−1, they introduced a security experiment where the ad-
versary is given oracle access to the signer. The winning condition is to output
k + 1 message-signature pairs while only making k queries to the oracle. Juels,
Luby, and Ostrovsky [33] introduced a formal experiment defining the notion
of blindness, where the adversary must guess the order in which it issues two
messages (m0,m1) of its choosing. This definition considers the signing keys to
be honestly generated by the experiment and given to the adversary. Contrary
to that, the adversary outputs the public key in the maliciously generated key
model [18]. The adversary is not required to execute the key generation algo-
rithm or even to know the corresponding secret key. At the end of the blindness
experiment, the adversary also receives the corresponding signatures (σ0, σ1). If
one of the signatures was incorrect or the user algorithm aborted, the adver-
sary gets (⊥,⊥) instead information about which interaction failed. Camenisch,
Neven, and Shelat introduced blindness under selective failure [13], which con-
siders this additional information. Fischlin and Schröder later showed [19] how
to turn every blind signature scheme into a selective-failure blind one.

Chaum’s definition considers what we call today a two-move blind signa-
ture scheme with one message from the user and one from the signer. While
follow-up work considers the interaction between the user and signer as an inter-
active protocol with multiple rounds, two-move blind signatures are considered
round-optimal and provide concurrent security. Many round-optimal schemes
were proposed [18,22,34], including the practical blind BLS scheme [10] with

4 Lucjan Hanzlik

concise signature size. Interestingly, in his work Pass [38], calls two-move blind
signatures non-interactive. Notably, interaction is inherent since the user must
keep an internal state to de-blind the signer’s response. Three-move blind signa-
tures were also explicitly defined [29] since they can be generically constructed
from linear identification schemes in the random oracle model. Constructing such
schemes from standard assumptions without the random oracle or common ref-
erence string model seems hard [20]. We can build blind signatures from various
assumptions, including post-quantum secure ones [30,3]. Recently, Chairattana-
Apirom et al. [15] showed how to build concurrent secure blind signature schemes
from discrete logarithm and RSA-type assumptions.

Paraphrasing the research question stated above. Can we use the observation
that in many applications, the user can randomly choose the message to design
something new that was not considered in prior work and opens a new chapter
in the blind signature literature?

Our Contribution

In the case of two-move blind signatures, the user/recipient sends the requested
message in the blinded form to the signer and later uses the interactions state to
unblind the response. Our main idea is that since the recipient does not require
any specific distribution or structure of the message, the message can be an
output of the unblinding step. In other words, there is no need for interaction.

We capture this by defining a new cryptographic primitive called non-interactive
blind signatures for random messages or NIBS for short. As it turned out, defin-
ing meaningful notation for such signatures is not simple, and the following
strawman approach does not work. Since no interaction is required, the signer
can create a presignature psig on some random message/nonce and share it. The
recipient can then finalize the presignature to a signature on a random mes-
sage. As already mentioned, such a notion does not work and cannot provide
meaningful security properties. The problem with defining non-interactive blind
signatures in that way is that the recipient can repeat the process and get a
new message-signature pair. The returned pair must be a signature on a new
message. Otherwise, the signer could link the issuing process to the final signa-
ture. Fortunately, our notion of NIBS does not have the same problems as the
strawman approach.

What is needed is some secret input from the recipient. The natural idea is to
use the recipient’s public key. The signer must include the recipient’s public key
as input to the signing process. The returned presignature can be finalized using
the recipient’s secret key and the signer’s nonce. Later, we will show a scheme
where we can use, for example, the recipient’s PKI public key or ephemeral keys
from TLS connections. Using the preexisting public key of the recipient, we can
use NIBS in various applications where we cannot use standard blind signatures.

The main contribution of this paper is the formal definition of NIBS and an
appropriate security model. The intuition behind NIBS can be easily explained
using an analogous notion to the one used by Chaum [16]. The signer com-
putes a presignature s(nonce, c) using issuing function s, a nonce of its choosing,

Non-Interactive Blind Signatures for Random Messages 5

and the recipient’s function c. The recipient can finalize the presignature using
c−1(nonce, s(nonce, c)) = (m, s(m)), i.e., use the correspoding secret key c−1 to
its public key c. We require that m and s(m) not leak any information about
c and the used nonce. We capture those properties using two definitions called
recipient blindness and nonce blindness. The former captures the property that
m and s(m) do not leak information about c while the latter property that they
do not leak any information about nonce. We formally define recipient blindness
via an experiment where the adversary is explicitly given two honestly generated
public keys of recipients and outputs two presignatures finalized by the experi-
ment to (m0, sig0) and (m1, sig1). Finally, the adversary is given (m0, sig0) and
(m1, sig1) in random order. For nonce blindness, the adversary is given just one
recipient public key. In both cases, we do not consider aborts, i.e., if one of the
signatures cannot be finalized, we give (⊥,⊥) to the adversary. Our blindness
definitions are defined in the malicious key model, where the adversary generates
the signing key. We also define an honest key model notion. For unforgeability,
we consider the standard one-more definition. The adversary gets access to an
oracle returning presignatures for the adversary-specified nonce and public key.
In the end, the adversary must return more valid signatures than queries, similar
to one-more unforgeability of standard blind signatures.

NIBS are distinct from two-move blind signatures [38] and standard blind
signatures in general. The former supports recipient-specified messages, while in
NIBS, the message is an output of the unblinding process and is unpredictable for
the recipient and the signer. NIBS can be issued without interaction, given the
recipient’s public key. Standard blind signatures are inherently interactive and
require the recipient to keep a state to unblind the signer’s response successfully.
There are two ways of using NIBS. The first way is to use an existing PKI for
recipients’ public keys. A signer can issue presignatures to a set of users without
interacting with them and publish the corresponding presignatures. Recipient
blindness ensures that a given final message-signature pair cannot be linked to
any particular recipient in the set. Nonce blindness allows the signer to repeat
the process and issue more than one presignature per user. Alternatively, NIBS
can be part of a two-move protocol. The first message is a freshly generated
recipient public key, and the signer’s response is the presignature. The result
is not a standard two-move blind signature since the recipient will receive a
signature under a random message. However, as we already discussed, this is
acceptable in many applications. The main advantage compared to standard
blind signature is that we can reuse the first message of the two-move protocol
with NIBS in consecutive runs. The same is not possible for standard blind
signatures. Nonce blindness ensures that reusing the recipient’s public key does
not allow an adversary to link final message-signature pairs to a recipient.

The main disadvantage of non-interactive blind signatures is that there is
no simple way of including information about the freshness of the signature.
Consider the following scenario. The user must provide a fresh signature that
she adheres to the service’s policies to access it, which might include a per-day
limit. The signature is implemented via a blind signature scheme to protect the

6 Lucjan Hanzlik

user’s privacy. Of course, the user can hoard signatures and reuse them later.
So the service requires that a challenge be signed instead of a random message,
and NIBS cannot be used here. However, note that we already know how to date
blind signatures [2] using partial blindness. We can formalize a similar definition
in the non-interactive setting. Our next contribution is the definition of tagged
non-interactive blind signatures TNIBS.

Definitions themself are not attractive if one cannot instantiate them with
existing cryptography. Therefore we show how to build NIBS and TNIBS effi-
ciently in the random oracle model. The central primitive we use are signatures
on equivalence classes (SPS-EQ) [27,24] and their tagged version (TBEQ) [28].
Interestingly, both schemes support recipient public keys in the form of standard
discrete logarithm public keys pk = gsk. Thus, our construction supports keys
from various schemes like El-Gamal encryption, Diffie-Hellman key exchange,
Schnorr, and DSA/ECDSA signatures. One caveat is that the underlying group
(generated by g) must be a source group for which an admissible bilinear pair-
ing function exists. Fortunately, we know how to construct such pairing-friendly
groups [9] and use them to support the above algorithms. As our last contri-
bution, we propose a generic construction of NIBS and TNIBS, which we can
construct by generalizing ideas from the equivalence class construction. Both
generic constructions are setup-free but rely on the random oracle model. We
targetted a setup-free setting since it, by definition, allows to reuse recipients
keys from different schemes, i.e., the recipients are not required to use a common
reference string (CRS) to generate their keys. However, one can easily translate
both schemes to work with a CRS instead of the random oracle model. For com-
pleteness, we will now summarize our contribution. In this paper, we improved
the state-of-the-art of blind signatures as follows.

1. We introduce the notion and security model for (tagged) non-interactive
blind signatures.

2. We show a very efficient construction in the random oracle model from sig-
natures on equivalence classes that works well with preexisting public keys.

3. We provide a generic construction of NIBS and TNIBS in the random or-
acle model using verifiable random functions, digital signatures, and non-
interactive proofs. Depending on the requirements, one can easily replace
the random oracle model with the common reference string model.

Our Techniques

One of the main contributions of our paper is the efficient instantiation of non-
interactive blind signatures in the random oracle model. Our construction is
based on signature on equivalence classes that were already used as a building
block to construct round-optimal blind signatures [23,22]. A SPS-EQ signature
on (g, gx) can be transformed to a signature under (gr, grx) without the secret
signing key. Moreover, the transformed signature on (gr, grx) is indistinguishable
from a fresh signature on this message. This property is called the perfect adap-
tation of signatures. Together with the fact that messages (g, gx) and (gr, grx)

Non-Interactive Blind Signatures for Random Messages 7

are indistinguishable, under the decisional Diffie-Hellman assumption, form the
main privacy property used in the design of [23,22].

The idea of our construction is as follows. The signer uses the SPS-EQ scheme
to sign (gskR ,H(nonce)), where gskR is the recipients public key. It is worth not-
ing that this key can be a preexisting public key of the recipient, as already
mentioned in the introduction. The equivalence class signature is the NIBS pres-
ignature the user receives from the signer. The user can easily check the presig-
nature using the SPS-EQ verification function. The interesting part follows. The

actual NIBS signature is a SPS-EQ signature on the message (g,H(nonce)sk
−1
R),

also called the canonical representative of the equivalence class [5]. Note that
we fix the first component of the message vector to g for the user to be able to
compute exactly one blind signature from a presignature.

The unforgeability of the scheme directly follows from the unforgeability of
the SPS-EQ scheme and the canonical representative notion. A “fresh” blind
signature implies a signature on a class that was not signed already, which con-
stitutes a valid forgery for the SPS-EQ scheme. On the other hand, blindness
follows from the perfect adaptation of the SPS-EQ scheme and the inverse and
strong decisional Diffe-Hellman assumptions. The idea is that anyone but the

recipient cannot distinguish H(nonce) from H(nonce)sk
−1
R . Thanks to careful ran-

dom oracle programming, we show that the blindness of our construction relies
on those assumptions.

We can easily modify this construction to support tags. In other words, with
small changes, we can construct a TNIBS scheme using the same ideas. Hanzlik
and Slamanig [28] introduced the notion of tag-based equivalence class signatures
TBEQ. Contrary to SPS-EQ, they allow the signer to specify a tag τ that remains
unchanged even after the user transforms the signature to a different represen-
tative of the same class. The idea of our TNIBS scheme is simple. We replace
the SPS-EQ scheme in the NIBS construction above with a TBEQ scheme. The
resulting construction is a tag-based, non-interactive blind signature scheme.
Blindness follows from the same assumptions. The main difference is the un-
forgeability, which is now based on the unforgeability of the TBEQ scheme.

Surprisingly this construction follows a blueprint that we describe in the form
of our generic construction. Firstly, we notice that the message in the construc-

tion is H(nonce)sk
−1
R . The key property we use is that this value is unpredictable

for the signer. Otherwise, the blindness property cannot hold. Looking at this
value more closely, we notice that it can be interpreted as an evaluation of a
pseudo-random function (PRF) on input nonce with key skR. In other words, the
presignature defines the input to the PRF and its key. The blind signature is a
signature on the evaluation of the PRF. Note that rather than a PRF, we have to
consider a verifiable random function (VRF) since it provides a verification key
that can be used as a public key. Finally, we observe that the SPS-EQ signature
ensures that the recipient can only receive a valid blind signature if she correctly
evaluates the VRF. Thus, the signature on equivalence classes actually acts as
a proof system that binds the recipient and ensures correct evaluation of the
random function.

8 Lucjan Hanzlik

Equipped with all those observations, we define our generic construction
as follows. The signer creates the presignature by signing the recipient’s VRF
verification key pkR and a nonce nonce. Since the presignature is a standard
digital signature, it can be easily verified. The random blind signature message
m is the evaluation of the VRF on nonce. The signature is a non-interactive proof
that the recipient knows a signature on pkR and nonce and that m is a proper
evaluation of a VRF with key pkR on input nonce. We can also use this blueprint
to construct TNIBS generically. The only difference is that the presignature is
additionally a signature under the tag τ . The statement of the proof system also
changes a bit and now must include τ as part of the statement.

Applications

Privacy Pass. Privacy Pass [17] is a system designed to make life easier for
anonymous network users who frequently solve CAPTCHAs. The idea is to let
users first get a single-use token from an issuer via a non-anonymous network
connection and let them redeem those tokens instead of solving CAPTCHAs.
This provides a more user-friendly experience when using an anonymous net-
work like TOR or a VPN connection. A Privacy-pass token is composed of the
input and output of an oblivious pseudo-random function, where the issuer holds
the function’s secret key. During the issuing process, the user’s platform (e.g.,
browser extension) requests an evaluation of the PRF on a chosen random input,
similar to the e-cash scenario. It is worth noting that an oblivious PRF can be
seen as a designated-verifier blind signature.

Recently, a rate-limiting version of Privacy Pass [32] called Private Access
Token (PAT) was introduced. In this new variant, the number of tokens a user
can get depend on a policy enforced by a trusted mediator. Moreover, the RSA
blind signature scheme is used instead of the oblivious PRF, and the signed
message is chosen as part of the service’s challenge. This new version was recently
introduced into iOS 16 and is supported by Apple 1. In this setting, iCloud plays
the role of the mediator and enforces the service’s access policy. If the policy
applies to the user, the issuer finalizes an RSA blind signature query made by
the user. For a formal analysis of the RSA blind signature scheme used in PAT,
see [35]. In both versions, the user and issuer must repeat the protocol several
times to create multiple tokens at once, i.e., batch issuing. Although both parties
can execute the protocol concurrently, the user is always required to participate.
The same problem arises in the case of issuing more tokens after some time. We
can improve this using (tagged) non-interactive blind signatures (see table 1).

As we mentioned multiple times in the e-cash scenario, we are not always
interested in the structure of the signed message and only care about the fresh-
ness of the token. This is also the case for the standard version of Privacy Pass,
where the user chooses the input of the oblivious PRF. Replacing the oblivious
PRF with NIBS would improve the communication complexity in the case of
multi-token issuance. In such a case, the user sends her public key to the issuer

1 https://developer.apple.com/videos/play/wwdc2022/10077/

Non-Interactive Blind Signatures for Random Messages 9

and reives n presignatures, which can be finalized into n unique tokens. The
communication complexity from the user to the issuer is independent of n. The
issuer can also afterward decide on the number of issued tokens. The exciting
part is that to create more tokens, the issuer does not need to interact with the
user and can make fresh presignatures using the user’s public key. This design
allows the issuer to issue new tokens periodically without interaction. Users can
then later download them at their convenience. It is worth noting that this is
impossible with an oblivious PRF or standard blind signatures, which inherently
require interaction between both parties.

Unfortunately, standard NIBS cannot replace the RSA blind signature scheme
in Private Access Token since the service and not the user chooses the signed
message. PAT was introduced to enforce an access policy and only issue tokens
for users adhering to the policy. Because the service chooses the blindly signed
message, it knows that the user must conform to the latest policy, and the proof
is fresh. Otherwise, a malicious user could hoard and use tokens during a given
period breaking any per-day (or other) time policies. It is worth noting that the
service gains no additional properties by picking a non-random message since it
is hidden from both the mediator and the issuer. To get around this, instead of
using NIBS, we can use the tagged version TNIBS. The tag remains unchanged
after the user transforms the presignature into the final signature. This way, the
service can date signatures. Using TNIBS instead of the RSA blind signature
would have the same benefits as using NIBS in the case of the standard Privacy
Pass. Moreover, our TNIBS solution is DLP based, which would be an alternative
to the required RSA assumption.

Whistleblowing System. Ring signatures [42] were introduced as a way for whistle-
blowers to leak trusted intel without revealing their identity. According to a re-
cent EU directive [1], big companies must implement a whistleblowing system
for their employees to leak information anonymously about any misconduct of
the employer. Ring signatures would be an ideal candidate to support such a
system. The whistleblower combines the public keys of all employees and creates
the ring signature. This solution does not work in case no PKI is implemented
at the company. An alternative approach would be to build a system supporting
Privacy Pass. A company or third-party supported service would issue single-use
tokens to verified employees, who can later redeem the token with the intel. Un-
fortunately, this solution is inherently not private. Employees must first request
a token, making them a target, i.e., whistleblowers hide inside the anonymity
set of token owners and not in the set of all employees.

Implementing a whistleblowing system using NIBS would mitigate some of
those problems. Assuming the recipient’s public key is the ephemeral Diffie-
Hellman key used for establishing a TLS connection, the system could look
as follows. Every time an employee connects to some internal system of the
company, she gets a token for the whistleblowing system. To redeem the token,
the employee must install a plugin that retains the ephemeral TLS credential and
later uses them to finalize the NIBS. It is worth noting that in this design, the
company is oblivious to who installed the plugin, and potentially all employees

10 Lucjan Hanzlik

could be the owner of a token showing up in the whistleblowing system. This
application shows the power of our non-interactive blind signatures. We can use
NIBS in systems where all recipients are potential users and can either use the
presignature or just ignore it without the signer knowing about their choice.

Airdropping e-coins. Airdropping is a mechanism that allows sending cryptocur-
rency to users. This technique is frequently used to bootstrap interest in a cur-
rency by gifting cryptocurrency to users. An ideal scheme preserves the privacy
of the recipient [43] once she redeems her coins. An airdropping system must
also provide means for public accountability so that users can check that the
airdropping mechanism will only produce a limited number of unique tokens.

Tublebit [31] is a protocol for anonymous cryptocurrency payments. At its
core, the protocol implements the e-cash scenario. A designated party called
the tumbler issues blind signatures for cryptocurrency payments. Blind signa-
tures can later be redeemed to finalize the payment. Non-interactive blind signa-
tures can add the airdropping functionality to the tumbler, introducing potential
ways to attract new users. The key property of NIBS that allows this is non-
interactives. The tumbler can look for publicly available public keys/addresses
(e.g., on the blockchain or Github) and blindly drop NIBS to their owners.

Lottery System. NIBS can also be used to implement a fair lottery system.
Users can register their public key for a given round by paying the lottery fee.
What each user receives from the service is a NIBS presignature. The lottery
winner is the user with a valid signature under the smallest/biggest message. This
approach requires the service to replace the signing key with each lottery round.
However, if we use the tagged version, the service can easily tag each signature
with the round for which it was created. The lottery is fair, and the service
cannot predict the outcome of the lottery because of the blindness property.
On the other hand, because of one-more unforgeability, only users that pay can
receive the prize.

Open Problems and Relation to Impossibility Results

The main open problem is to design an efficient NIBS scheme without pairings.
Although one can instantiate our generic construction without using them, it will
probably not be efficient due to the general-purpose use of proof systems. Ef-
ficient instantiations of NIBS from post-quantum assumptions are also desired.
Another interesting problem is instantiating NIBS from standard assumptions
without the CRS or random oracle model. Fischlin and Schröder [20] showed
that constructing a statistical blind three-move blind signature from standard
falsifiable assumptions without relying on the random oracle model or the com-
mon reference string model is impossible. The results carry over to two-move
schemes and computational blind schemes with certain additional constraints.
Fortunately, there exist ways to circumvent those impossibility results, e.g., using
complexity leveraging [25].

Non-Interactive Blind Signatures for Random Messages 11

As already mentioned, one way of using NIBS is to run a two-move proto-
col. One would think this means that impossibility results also apply to NIBS.
However, this is unclear and requires further investigation. Recall that a two-
move protocol from NIBS is not a standard blind signature. In the latter, the
recipient can arbitrarily choose the message, whereas, in the former protocol, the
message depends on the nonce selected by the signer and the recipient’s secret
key. In other words, despite the NIBS two-move protocol being useful in similar
applications as standard blind signatures, the notion is different.

We leave two open questions here. The first would be to verify if one can
extend the impossibility results to blind signature schemes, where the message
is not chosen by the recipient but is an output of the signing protocol. Note that
the two-move protocol based on NIBS is an instantiation of such blind signatures.
A positive answer to this question would mean that NIBS cannot be instantiated
from standard falsifiable assumptions without ROM or a trusted setup phase.
Alternatively, one could try to construct such a NIBS scheme, implying that the
impossibility results from [20] do not hold if the message is not chosen by the
recipient but as part of the protocol.

2 Preliminaries

2.1 Notation, Bilinear Groups and Assumptions

We denote by y ← A(x) the execution of algorithm A on input x and with
output y. By r←$S we mean that r is chosen uniformly at random over the set
S. We will use 1G to denote the identity element in group G and [n] to denote
the set {1, . . . , n}. Throughout the paper we will use the multiplicative notation
and by AO we denote an algorithm A that has access to oracle O.

Definition 1 (Bilinear Groups). Let us consider cyclic groups G1, G2, GT
of prime order p. Let g1, g2 be generators of respectively G1 and G2. We call
e : G1 × G2 → GT a bilinear map (pairing) if it is efficiently computable and
the following holds: 1) Bilinearity: ∀(S, T) ∈ G1 × G2, ∀a, b ∈ Zp, we have
e(Sa, T b) = e(S, T)a·b, 2) Non-degeneracy: e(g1, g2) 6= 1 is a generator of group
GT . We will consider Type-3 pairings, i.e., there is no efficiently computable
isomorphism between G1 and G2.

Definition 2 (Inverse Decisional Diffie-Hellman Assumption in G1 [7]).

For all PPT adversaries A given elements (gα1 , g
β
1)∈ G2

1 it is hard to decide
whether β = α−1 mod p or β←$Z∗p. We will use AdvinvDDH(A) to denote the
advantage of the adversary A in solving this problem.

Definition 3 (Strong Decisional Diffie-Hellman Assumption in G1 [39]).

For all PPT adversaries A given elements (gα1 , g
β
1 , g

β−1

1 , gγ1)∈ G4
1 it is hard to de-

cide whether γ = α · β mod p or γ←$Z∗p. We will use AdvsDDH(A) to denote
the advantage of the adversary A in solving this problem.

12 Lucjan Hanzlik

2.2 Signature Schemes

Definition 4. A signature scheme SIG consists of three PPT algorithms (KeyGen,
Sign,Verify) with the following syntax.

KeyGen(λ): On input a security parameter λ, it outputs a public and secret sign-
ing key (pk, sk).

Sign(sk,m): On input a key sk and a message m, it outputs a signature σ.
Verify(pk,m, σ): On input a public key pk, a message m and a signature σ, it

outputs either 0 or 1.

We require the following properties of a signature scheme.

Correctness: For every security parameter λ ∈ N and every message m given
that (pk, sk)← SIG.KeyGen(λ), sig← SIG.Sign(sk,m) it holds that

SIG.Verify(pk,m, sig) = 1.

Existential Unforgeability under Chosen Message Attacks: Every PPT
adversary A has at most negligible advantage in the following experiment.

EUF-CMAA,SIG(λ)

Q := ∅
(sk, pk)← SIG.KeyGen(λ)

(m∗, σ∗)← AO1(sk,·)(pk)

return m∗ 6= m ∀m ∈ Q ∧
SIG.Verify(pk,m∗, σ∗) = 1

O1(sk,m)

σ ← SIG.Sign(sk,m)

Q := Q ∪ {m}
return σ

The advantage of A is defined by AdvSIG(A) = Pr[EUF-CMAA,SIG(λ) = 1].

2.3 Dual-Mode Witness Indistinguishable Proofs

In our generic construction, we will use non-interactive proofs. To this end, we
will use the dual-mode non-interactive witness indistinguishable proof system
proposed by Groth-Sahai (GS) [26]. The main property of this system is that
there exists a common reference string (crs) that can be either in the “binding”
or “hiding” modes. Depending on the type, the system satisfies perfect soundness
and extractability or perfect witness indistinguishability.

An interesting property of GS proofs [26] is that crs is composed of group
elements that depending on the mode, fulfill a specific relation, e.g., a DDH tuple
can be used as in the binding mode, and a non-DDH tuple in the hiding mode.
Thus, instead of generating the common string by a trusted party, we can use
the random oracle to output it. The idea is that with high probability, we will
end up with a string in the hiding mode by querying the random oracle Hcrs(1),
which outputs values of the form of reference strings. On the other hand, the
reduction in the proof can program oracle Hcrs to output a string in binding
mode.

Non-Interactive Blind Signatures for Random Messages 13

Definition 5 (Dual-Mode Witness Indistinguishable Proofs). A dual-
mode witness indistinguishable proof system for language LR consists of algo-
rithms DMWI = (Setup,Prove,Verify,Extract) with the following syntax.

Setup(λ, binding): On input of security parameter, it outputs a common reference
string crs which we call binding. It additionally outputs a trapdoor tdExt.

Setup(λ, hiding): On input of security parameter, it outputs a common reference
string crs, which we call a hiding reference string.

Prove(crs, x, w): On input a common reference string crs, a statement x and a
witness w, it outputs a proof π.

Verify(crs, x, π): On input the common reference string crs, a statement x, a
proof π, it outputs either 0 or 1.

Extract(tdExt, x, π): On input the extraction trapdoor tdExt, a statement x and a
proof π, it outputs a witness w.

We require that DMWI meets the following properties.

Mode Indistinguishability: For all λ we define the advantage of A against
mode indistinguishability as follows: AdvmodeIND,A(λ) =∣∣∣Pr

mode = mode∗ :
mode←$ {binding, hiding};
(crs)← Setup(λ,mode);

mode∗ ← A(λ, crs)

− 1

2

∣∣∣,
where the probability is taken over the random choice of mode and the ran-
dom coins of Setup. We say that the proof system is mode indistinguishable
if for all PPT adversaries, A the advantage is negligible.

Perfect Completeness in both Modes: For all security parameters λ ∈ N,
all statements x ∈ LR and all witnesses w for which R(x,w) = 1, crs ←
Setup(λ, binding), and π ← Prove(crs, x, w) it holds that Verify(crs, x, π) = 1.
The same holds for crs← Setup(λ, hiding).

Perfect Soundness in Binding Mode: For all adversaries A we have

Pr

[
(crs, tdExt)← Setup(λ, binding)

:
Verify(crs, x, π) = 1

(x, π)← A(crs) ∧ x /∈ LR

]
= 0

Extractability in Binding Mode: For any (x, π), it holds:

Pr

[
(crs, tdExt)← Setup(λ, binding)

:
Verify(crs, x, π) = 1

w ← Extract(tdExt, x, π) =⇒ R(x,w) = 1

]
= 1

Perfect Witness-Indistinguishability in Hiding Mode: We say that proof
system for language LR is perfectly witness indistinguishable if all adver-
saries A the following is 0:

∣∣∣Pr

crs← Setup(λ, hiding)

: b̂← A(crs, π∗)
(x,w0, w1)← A(crs)

b←$ {0, 1}
π∗ ← Prove(crs, x, wb)

− 1

2

∣∣∣,
where A is restricted to outputs such that R(x,w0) = R(x,w1) = 1.

14 Lucjan Hanzlik

2.4 Verifiable Random Function [36]

Definition 6 (Verifiable Random Function VRF). A verifiable random func-
tion VRF = (Gen,Eval,P,V) with input length n(λ) and output length m(λ) con-
sists of the following PPT algorithms:

Gen(λ): On input of security parameter, outputs secret key skVRF and public
verification key pkVRF.

Eval(skVRF, x): On input a secret key skVRF and input value x ∈ {0, 1}n(λ) it
returns the output value y ∈ {0, 1}m(λ)

P(skVRF, x): On input a secret key skVRF and x this prover algorithm outputs a
proof πVRF that y is consistent with the verification key pkVRF.

V(pkVRF, πVRF, x, y): On input a verification key pkVRF, proof πVRF, x, y this
algorithm outputs 1 or 0.

We require that VRF meets the following properties.

Completness: For every security parameter λ and input x ∈ {0, 1}n(λ)

Pr

 (skVRF, pkVRF)← Gen(λ)
: V(pkVRF, πVRF, x, y) = 1y ← Eval(skVRF, x)

πVRF ← P(skVRF, x)

 = 1.

Uniqueness: For every security parameter λ and input x ∈ {0, 1}n(λ), arbitrary
verification key pkVRF, there exists at most a single y ∈ {0, 1}m(λ) for which
there exists an accepting proof πVRF. That is, if

V(pkVRF, πVRF, x, y) = V(pkVRF, π
′
VRF, x, y

′) = 1

then y = y′.

Adaptive Indistinguishability: Every PPT adversary A has at most negligi-
ble advantage in the following experiment.

ExpA,VRF(λ)

Q := ∅
b←$ {0, 1}
(skVRF, pkVRF)← Gen(λ)

(st, x∗)← AO1(skVRF,·)(pkVRF)

y0 ← Eval(skVRF, x
∗)

y1 ←$ {0, 1}m(λ)

b̄← AO1(skVRF,·)(st, yb)

return b = b̄ ∧ x∗ 6∈ Q

O1(skVRF, x)

y ← Eval(skVRF, x)

πVRF ← P(skVRF, x)

Q := Q ∪ {x}
return (y, πVRF)

The advantage of A is defined by AdvVRF(A) = Pr[ExpA,VRF(λ) = 1].

Non-Interactive Blind Signatures for Random Messages 15

2.5 Structure-Preserving Signatures of Equivalence Classes

Structure-preserving signatures on equivalence classes (SPS-EQ) [27,24] can be
used to sign equivalence classes [M] of vectors M ∈ (G∗i)` for ` > 1 and with
equivalence relation: M,N ∈ G`i : M ∼R N ⇔ ∃ s ∈ Z∗p : M = Ns.

Definition 7 (SPS-EQ). An SPS-EQ scheme SPS-EQ on message space (G∗i)
for i ∈ {1, 2} consists of the following PPT algorithms.

KeyGenEQ(λ, `): On input of security parameter λ and input message vector
length ` > 1, it outputs a key pair (skEQ, pkEQ).

SignEQ(skEQ,M): On input of input a secret key skEQ and representative M ∈
(G∗i)`, outputs a signature σEQ for equivalence class [M].

ChgRepEQ(M,σEQ, µ, pk): On input of input representative M ∈ (G∗i)` of equiv-
alence class [M], a signature σEQ on M , a value µ and a public key pkEQ,
returns an updated message-signature pair (M ′, σ′), where the new represen-
tative is M ′ = Mµ and σ′EQ its corresponding (or, updated) signature.

VerifyEQ(pkEQ,M, σEQ): On input of a public key pkEQ, a representative M ∈
(G∗i)`, and a signature σEQ it deterministically outputs a bit b ∈ {0, 1}.

VKeyEQ(skEQ, pkEQ): On input of secret key skEQ and a public key pkEQ, it de-
terministically checks if it represents a valid key pair and outputs a bit b.

Definition 8 (Correctness). An SPS-EQ scheme on (G∗i)` is called correct
if for all security parameters λ ∈ N, ` > 1, (skEQ, pkEQ) ← KeyGenEQ(λ, `),
M ∈ (G∗i)` and µ ∈ Z∗p:

VKeyEQ(skEQ, pkEQ) = 1 ∧ Pr
[
VerifyEQ(M, SignEQ(M, skEQ), pkEQ) = 1

]
= 1

∧ Pr
[
VerifyEQ(ChgRepEQ(M,SignEQ(M, skEQ), µ, pkEQ), pkEQ) = 1

]
= 1.

Definition 9 (EUF-CMA). For scheme SPS-EQ and adversary A we define the
following experiment:

EUF-CMAA,SPS-EQ(λ, `)

Q := ∅
(skEQ, pkEQ)← KeyGenEQ(λ, `)

(M∗, σ∗EQ)← AO1(skEQ,·)(pkEQ)

return [M∗] 6= [M] ∀M ∈ Q ∧
VerifyEQ(pk,M∗, σ∗EQ) = 1

O1(skEQ,M)

σ ← SignEQ(skEQ,M)

Q := Q ∪ {M}
return σEQ

A SPS-EQ over (G∗i)` is unforgeable if for all PPT adversaries A, their advantage
defined as AdvSPS-EQ(A) = Pr[EUF-CMAA,SPS-EQ(λ, `) = 1] is negligible.

Definition 10 (Perfect adaption of signatures under malicious keys [23]).
Let ` > 1. A SPS-EQ scheme on (G∗i)` perfectly adapts signatures under mali-
cious keys if for all tuples (pkEQ,M, σEQ, µ) with

M ∈ (G∗i)` ∧ VerifyEQ(M,σEQ, pkEQ) = 1 ∧ µ ∈ Z∗p
we have that the output of ChgRepEQ(M,σEQ, µ, pkEQ) is a uniformly random
element in the space of signatures, conditioned on VerifyEQ(Mµ, σ′EQ, pkEQ) = 1.

16 Lucjan Hanzlik

KeyGenEQ(λ, `): choose ~x←$ (Z∗p)` and set skEQ := ~x and pkEQ := g~x2 = (gx12 , . . . , g
x`
2).

SignEQ(skEQ,M): parse skEQ = ~x, M ∈ (G∗1)`, and choose y←$Zp. Compute

Z1 :=

(∏̀
i=1

Mxi
i

)y
, Y1 := g

1
y

1 and Y2 := g
1
y

2

Return σ := (Z1, Y1, Y2).

ChgRepEQ(M,σEQ, µ, pkEQ): Choose ψ←$Z∗p and return σ′EQ := (Zψµ1 , Y
1
ψ

1 , Y
1
ψ

2).

VerifyEQ(pkEQ,M, σEQ): parse pkEQ = (pk1 = gx12 , . . . , pk` = g
x`
2), M ∈ (G∗1)`, and

σEQ = (Z1, Y1, Y2). Return 1 if the following checks hold and 0 otherwise:

∏̀
i=1

e(Mi, pki) = e(Z1, Y2) ∧ e(Y1, g2) = e(g1, Y2)

VKeyEQ(skEQ, pkEQ): . choose ~x←$ (Z∗p)` and check that pkEQ = g~x2 = (gx12 , . . . , g
x`
2).

Scheme 1: SPS-EQ Scheme from [24]

In this work, we will use the scheme presented by Fuchsbauer, Hanser, and
Slamanig in [24]. A signature on a message (M1, . . . ,M`) ∈ (G∗1)` is of the form

(Z, Y1, Y2) where Z =
(∏`

i=1(Mi)
xi
)y

, Y1 = g
1/y
1 , Y2 = g

1/y
2 and x1, . . . , x` is the

secret key of the signer. The signatures can be adapted to a signature on message

(M b
1 , . . . ,M

b
`) using random coins r, b ← Z∗p and computing (Zr·b, Y

1/r
1 , Y

1/r
2).

More details can be found in Scheme 1.

2.6 Tag-Based Equivalence Class Signatures

Hanzlik and Slamanig [28] introduced the notion of tag-based equivalence class
signatures (TBEQ). Additionally, to the message M being a representative of
class [M], the signature scheme support an auxiliary tag τ ∈ {0, 1}∗. The key
idea is that the tag remains the same for a given signature and does not change
with the change of the representation. They also propose an efficient instantiation
of their scheme, which is an adaptation of scheme from [24] with an additional

component H(τ)
1
y in σEQ. A detailed description of the scheme can be found in

Scheme 2. Below we define TBEQ more formally.

Definition 11 (TBEQ). Tag-Based Equivalence Class Signature TBEQ consists
of the following PPT algorithms.

KeyGenTEQ(λ, `): On input of security parameters λ and message vector length
` > 1, it outputs a key pair (skTEQ, pkTEQ).

SignTEQ(skTEQ,M, τ): On input of a secret key skTEQ, representative M ∈ (G∗i)`,
and tag τ ∈ {0, 1}∗, outputs a signature σTEQ for equivalence class [M].

Non-Interactive Blind Signatures for Random Messages 17

KeyGenTEQ(λ, `): choose ~x←$ (Z∗p)` and set skTEQ := ~x and pkTEQ := g~x2 =

(gx12 , . . . , g
x`
2).

SignTEQ(skTEQ,M, τ): parse skTEQ = ~x, M ∈ (G∗1)`, τ ∈ {0, 1}∗ and choose y←$Zp.
Compute

Z1 :=

(∏̀
i=1

Mxi
i

)y
, Y1 := g

1
y

1 , Y2 := g
1
y

2 and V2 := H(τ)
1
y .

Return σTEQ = (Z1, Y1, Y2, V2).

ChgRepTEQ(M,σTEQ, µ, pkTEQ): Choose ψ←$Z∗p and return (Mµ, σ′TEQ) with

σ′TEQ := (Zψµ1 , Y
1
ψ

1 , Y
1
ψ

2 , V
1
ψ

2).

VerifyTEQ(pkTEQ,M, τ, σTEQ): parse pkTEQ = (pk1 = gx12 , . . . , pk` = g
x`
2), M ∈ (G∗1)`,

τ ∈ {0, 1}∗ and σTEQ = (Z1, Y1, Y2, V2). Return 1 if the following checks hold and 0
otherwise:

∏̀
i=1

e(Mi, pki) = e(Z1, Y2) ∧

e(Y1, g2) = e(g1, Y2) ∧ e(g1, V2) = e(Y1, H(τ))

Scheme 2: TBEQ Signature Scheme from [28]

ChgRepTEQ(M,σTEQ, µ, pk): On input of representative M ∈ (G∗i)` of equiva-
lence class [M], a signature σTEQ on M , a value µ and a public key pkTEQ,
returns an updated message-signature pair (M ′, σ′), where the new represen-
tative is M ′ = Mµ and σ′TEQ its corresponding (or, updated) signature.

VerifyTEQ(pkTEQ,M, τ, σTEQ): On input of a public key pkTEQ, a representative
M ∈ (G∗i)`, tag τ ∈ {0, 1}∗ and a signature σTEQ it deterministically outputs
a bit b ∈ {0, 1}.

VKeyTEQ(skTEQ, pkTEQ): On input secret key skTEQ and a public key pkTEQ, it
deterministically checks if it is a valid key pair and outputs a bit b ∈ {0, 1}.

Definition 12 (EUF-CMA). For scheme TBEQ and adversary A we define
the following experiment:

EUF-CMAA,TBEQ(λ, `)

Q := ∅
(skTEQ, pkTEQ)← KeyGen(λ, `)

(M∗, σ∗TEQ, τ
∗)← AO1(skTEQ,·,·)(pkTEQ)

return Verify(pkTEQ,M
∗, τ∗, σ∗TEQ) = 1 ∧

([M∗], τ∗) 6= ([M], τ) ∀(M, τ) ∈ Q

O1(sk,M, τ)

σ ← Sign(sk,M, τ)

Q := Q ∪ {(M, τ)}
return σ

A TBEQ is EUF-CMA, secure if for all PPT adversaries A, their advantage
defined as AdvTBEQ(A) = Pr[EUF-CMAA,TBEQ(λ, `) = 1] is negligible.

18 Lucjan Hanzlik

3 Non-interactive Blind Signatures (NIBS)

We will now discuss the syntax and security of non-interactive blind signatures
NIBS. The signer uses the recipient’s public key pkR to generate a presignature
psig. To do so, the signer first creates a signing keypair (sk, pk) using the KeyGen
algorithm. The idea is for the recipient’s public key to be a key for a scheme that
is independent of NIBS. However, to model the security definition, we need to
introduce a key generation algorithm RKeyGen that outputs a keypair (skR, pkR).

To issue a presignature, the signer uses the Issue algorithm that takes as input
the secret key sk, the recipient’s public key pkR, and a nonce. The nonce allows
the signer to issue multiple signatures for the same public key. We made the nonce
an explicit parameter to model what we call nonce blindness that captures the
unlinkability of NIBS issued to the same public key. After receiving a presignature
the user can execute the Obtain algorithm and compute the final signature or
output ⊥ in case the presignature is invalid (e.g., issued for a different public
key or nonce). We provide the syntax more formally in definition 13.

Definition 13 (Non-interactive Blind Signature). A non-interactive blind
signature NIBS scheme consists of the following PPT algorithms.

KeyGen(λ): On input security parameter λ, outputs a key pair (sk, pk).

RKeyGen(λ): On input security parameter λ, outputs a key pair (skR, pkR).

Issue(sk, pkR, nonce): On input a secret key sk, user public key pkR and nonce
nonce ∈ N , outputs a pre-signature psig.

Obtain(skR, pk, psig, nonce): On input a user secret key skR, signer’s public key
pk, pre-signature psig and nonce nonce ∈ N , outputs a message-signature
pair (m, sig) or ⊥.

Verify(pk, (m, sig)): On input a public key pk, a message-signature pair (m, σ)
deterministically outputs a bit b ∈ {0, 1}.

Similar to standard blind signatures, one can define NIBS with respect to a com-
mon reference string. In such a case, we would define a crsNIBS←$Setup(λ) setup
algorithm, where crsNIBS becomes an implicit input to all other algorithms.

Definition 14 (Correctness). A NIBS scheme is called correct if for all secu-
rity parameters λ, (sk, pk)← KeyGen(λ), (skR, pkR)← RKeyGen(λ), nonce:

Pr
[
Verify(pk,Obtain(skR, pk, Issue(sk, pkR, nonce), nonce)) = 1

]
= 1.

We model unforgeability using a standard one-more definition. The adversary
is allowed to make any number k of signing queries but, in the end, must return
at least ` = k + 1 valid message-signature pairs for unique messages. The main
difference in our definition is that we allow the adversary to specify the recipient’s
public key and the nonce. We discuss one-more unforgeability more formally in
definition 15.

Non-Interactive Blind Signatures for Random Messages 19

Definition 15 (One-More Unforgeability). For scheme NIBS and adversary
A we define the following experiment:

OM-UNFA,NIBS(λ)

(sk, pk)← KeyGen(λ)

((m1, sig1), . . . , (m`, sig`))← A
O1(sk,·,·)(pk)

return mi 6= mj for 1 ≤ i < j ≤ ` ∧
Verify(pk,mi, sigi) = 1 for 1 ≤ i ≤ ` ∧
k < `

O1(sk, pkR, nonce)

if k not initialized then

k := 0

psig← Issue(sk, pkR, nonce)

k := k + 1

return psig

A NIBS scheme is one-more unforgeable, if for all PPT adversaries A, their
advantage defined as AdvOM-UNF

A,NIBS = Pr[OM-UNFA,NIBS(λ) = 1] is negligible.

We will now discuss the blindness properties of our non-interactive blind sig-
natures. On a high level, we want presignatures and signatures to be unlinkable
for the signer, independent of which public keys and nonces were used. We in-
troduce two security definitions, recipient blindness and nonce blindness, which
capture this intuition formally. We will also use the notion of full blindness to
define a non-interactive blind signature scheme that is recipient and nonce blind.

In the case of nonce blindness, we consider the scenario of a malicious signer
trying to distinguish who was the original recipient of a signature it sees. To do
so formally, we create an experiment where the adversary is given two unique
public keys and issues two presignatures (psig0 and psig1) for potentially differ-
ent nonces and a public key that it can choose maliciously. We will also consider
a variant called the honest key model, where the adversary must additionally
return the secret signing key that matches the returned public key. In the ex-
periment, the challenger finalizes both presignatures and gives the finalized sig-
natures (sigb, sig1−b) to the adversary. The order of the signatures provided to
the adversary depends on a bit b, which the adversary must guess. If the Obtain
algorithm outputs ⊥ for one of the presignatures, the challenger sends (⊥,⊥) to
omit simple distinguishing attacks. The experiment is defined more formally in
fig. 1 and recipient blindness in definition 23.

Recipient blindness considers only single signatures issued to a particular
public key. To create more signatures for the same public key, we introduced the
explicit parameter nonce. We will now look at a scenario where the signer issues
several presignatures to the same public key under different nonces and later
wants to link the presignatures to the final signatures. We formalize it with the
notion of nonce blindness. We create an experiment similar to the above one. The
adversary is given one public key and issues two presignatures for two unique
nonces. Again, the challenger finalizes both presignatures and gives signatures
(sigb, sig1−b) to the adversary. The adversary must guess bit b. The experiment
is defined more formally in fig. 1 and nonce blindness in definition 24

Finally, we define full blindness as the combination of both definitions. In
other words, if a scheme is recipient and nonce blind, then it is fully blind. The
intuition behind that follows from a hybrid argument. Recipient blindness en-
sures that signatures issued to different public keys are unlinkable, independent

20 Lucjan Hanzlik

of the nonce used. On the other hand, nonce blindness ensures that multiple
signatures for the same public key are unlinkable.

RBndA,NIBS(λ)

(skR0 , pkR0
)← RKeyGen(λ)

(skR1 , pkR1
)← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk)← A(pkR0
, pkR1

)

(m0, sig0)← Obtain(skR0 , pk, psig0, nonce0)

(m1, sig1)← Obtain(skR1 , pk, psig1, nonce1)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b←$ {0, 1}
b̂← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

NBndA,NIBS(λ)

(skR, pkR)← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk)← A(pkR)

(m0, sig0)← Obtain(skR, pk, psig0, nonce0)

(m1, sig1)← Obtain(skR, pk, psig1, nonce1)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b←$ {0, 1}
b̂← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

Fig. 1. Blindness Experiments for Non-interactive Blind Signatures

Definition 16 (Recipient Blindness). A NIBS scheme is recipeint blind, if
for all PPT adversaries A, their advantage is negligible:

AdvRBnd
A,NIBS = |Pr[RBndA,NIBS(λ) = 1]− 1/2|.

Definition 17 (Nonce Blindness). A NIBS scheme is nonce blind, if for all
PPT adversaries A, their advantage is negligible:

AdvNBnd
A,NIBS = |Pr[NBndA,NIBS(λ) = 1]− 1/2|.

Definition 18 (Full Blindness). A NIBS scheme is fully blind if it is recipient
and nonce blind.

In both cases, we define blindness in a way that the adversary returns just
the public key pk. The definitions do not assume any particular structure of the
public key. Moreover, they allow the adversary to choose the public key so that
a corresponding secret key sk might not even exist. We call this notion malicious
key model. We will define a weaker version of blindness, where we will require
the adversary to output sk additionally. This notion is called honest key model
and is known for the case of standard blind signatures. Below we will define it
more formally.

Definition 19 (Honest Key Model). A NIBS scheme is recipient blind in
the honest key model, respectively nonce blind in the honest key model if the
adversary outputs (psig0, nonce0, psig1, nonce1, sk, pk)← A(pkR0

, pkR1
) in exper-

iment RBndA,NIBS, respectively outputs (psig0, nonce0, psig1, nonce1, sk, pk) in ex-
periment NBndA,NIBS

Non-Interactive Blind Signatures for Random Messages 21

Remark 1. Any honest key can be transformed into a malicious key blind non-
interactive blind signature using a zero-knowledge proof of knowledge of the
secret key sk. In this transformation, the pubic key pk′ for the malicious key
blind scheme is composed of the old public key pk and the proof of possession
of the secret key sk in the form of a proof of knowledge. The security reduction
follows by extracting the secret key from the adversary’s proof of possession and
running the reduction for honest key blindness.

4 Tagged NIBS

Partially blind signatures [2] allow the signer and recipient to agree on some
common information that is included as part of the signed message. The signer
knows that the user cannot change this information. At the same time, the
recipient is assured that blindness holds with respect to this information. Since
both parties agree on the message, partially blind signatures are, in some sense,
interactive by definition.

We will show how to adapt the partially blind notion to the non-interactive
case. The common information will be only chosen by the signer, which might
limit the application compared to partially blind signatures. However, we show
that this is enough for protocols that require some kind of freshness nonce to
be included in the signature. To distinguish that in case of NIBS only the signer
chooses the common information, we will call our primitive tagged NIBS. The
main changes in the syntax in comparison to standard NIBS are that the Issue,
Obtain, and Verify take an additional input in the form of the tag τ .

Definition 20 (Tagged Non-interactive Blind Signature). A tagged non-
interactive blind signature scheme TNIBS consists of the following PPT algo-
rithms.

KeyGen(λ): On input security parameter λ, outputs a key pair (sk, pk).

RKeyGen(λ): On input security parameter λ, outputs a key pair (skR, pkR).

Issue(sk, pkR, nonce, τ): On input a secret key sk, user public key pkR, nonce
nonce ∈ N , and tag τ ∈ T , outputs a pre-signature psig.

Obtain(skR, pk, psig, nonce, τ): On input a user secret key skR, signer’s public key
pk, pre-signature psig , nonce nonce ∈ N and tag τ ∈ T , outputs the tuple
(m, τ, sig) or ⊥.

Verify(pk, (m, τ, sig)): On input a public key pk, a message m, tag τ ∈ T and
signature σ deterministically outputs a bit b ∈ {0, 1}.

22 Lucjan Hanzlik

Definition 21 (Correctness). A TNIBS scheme on is called correct if for
all security parameters λ, (sk, pk) ← KeyGen(λ), (skR, pkR) ← RKeyGen(λ),
nonce ∈ N , τ ∈ T :

Pr
[
Verify(pk,Obtain(skR, pk, Issue(sk, pkR, nonce, τ), nonce, τ)) = 1

]
= 1.

To define one-more unforgeability for our tagged NIBS we need to change
the signing oracle. We now allow the adversary to query it with the recipient’s
public key pkR, a nonce nonce, and a tag τ . We say that an adversary succeeded
in breaking unforgeability if it returns at least ` = kτ + 1 valid signatures on
unique messages and only queried the signing oracle kτ times for a given tag τ .
More details are given in definition 22.

Definition 22 (One-More Unforgeability). For scheme tagged TNIBS and
adversary A we define the following experiment:

OM-UNFA,TNIBS(λ)

(sk, pk)← KeyGen(λ)

(τ, (m1, sig1), . . . , (m`, sig`))← A
O1(sk,·,·,·)(pk)

return mi 6= mj for 1 ≤ i < j ≤ ` ∧
Verify(pk, (mi, τ, sigi)) = 1 for 1 ≤ i ≤ ` ∧
kτ < `

O1(sk, pkR, nonce, τ)

if kτ not initialized then

kτ := 0

psig← Issue(sk, pkR, nonce, τ)

kτ := kτ + 1

return psig

A TNIBS scheme is one-more unforgeable, if for all PPT adversaries A, their
advantage defined as AdvOM-UNF

A,TNIBS = Pr[OM-UNFA,TNIBS(λ) = 1] is negligible.

We will now move our attention to the blindness definitions of tagged non-
interactive blind signatures. As we already mentioned, blindness can only hold
with respect to the same tag. Since the tag is chosen by the signer and cannot
be changed, it is additional information that can be used to distinguish if two
signatures were signed under the same tag or not. The experiments for the
blindness definitions are defined formally in fig. 2.

Definition 23 (Recipient Blindness). A TNIBS scheme is recipeint blind, if
for all PPT adversaries A, their advantage is negligible:

AdvRBnd
A,TNIBS = |Pr[RBndA,TNIBS(λ) = 1]− 1/2|.

Definition 24 (Nonce Blindness). A TNIBS scheme is nonce blind, if for all
PPT adversaries A, their advantage is negligible:

AdvNBnd
A,TNIBS = |Pr[NBndA,TNIBS(λ) = 1]− 1/2|.

Definition 25 (Full Blindness). A TNIBS scheme is fully blind if it is recip-
ient and nonce blind.

Non-Interactive Blind Signatures for Random Messages 23

RBndA,TNIBS(λ)

(skR0 , pkR0
)← RKeyGen(λ)

(skR1 , pkR1
)← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk, τ)← A(pkR0
, pkR1

)

(m0, sig0)← Obtain(skR0 , pk, psig0, nonce0, τ)

(m1, sig1)← Obtain(skR1 , pk, psig1, nonce1, τ)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b←$ {0, 1}
b̂← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

NBndA,TNIBS(λ)

(skR, pkR)← RKeyGen(λ)

(psig0, nonce0, psig1, nonce1, pk, τ)← A(pkR)

(m0, sig0)← Obtain(skR, pk, psig0, nonce0, τ)

(m1, sig1)← Obtain(skR, pk, psig1, nonce1, τ)

if sig0 = ⊥ or sig1 = ⊥ then

(m0, sig0) := ⊥; (m1, sig1) := ⊥
b←$ {0, 1}
b̂← A((mb, sigb), (m1−b, sig1−b))

return b = b̂

Fig. 2. Blindness Experiments for Tagged Non-interactive Blind Signatures

5 SPS-EQ Construction of NIBS

In this section, we present an efficient construction of non-interactive blind sig-
natures from signatures on equivalence classes. The main advantage of our solu-
tion is that it admits recipients’ public keys of the form used by many discrete
logarithm schemes. The idea of the construction is as follows. The signer uses
a signature on equivalence classes to create a presignature psig on the vector
(pkR = gskR1 ,H(nonce)), where H is a hash function modeled as a random or-
acle. The recipient knowing the secret key skR can change the presignatures

representation to a SPS-EQ signature on the vector (g1,H(nonce)sk
−1
R) which is

returned as the final signature sig. In the end, a valid blind signature is SPS-EQ
on a vector of messages where the first element is g1 and the second element

is H(nonce)sk
−1
R . Full blindness of the construction relies on the fact that the

value H(nonce)sk
−1
R is indistinguishable from a random element under the inverse

decisional Diffie-Hellman assumption. One more unforgeability follows directly
from the unforgeability of SPS-EQ. The construction is presented in detail in
scheme 3. Note that the scheme is only blind in the honest key model since we
rely on the perfect adaptation of signatures, i.e., to prove security, the reduction
will use the SPS-EQ signing key to resign messages. We could use the DMWI
proof system and its extraction property, which, based on remark 1, would allow
us to transform the scheme into one secure in the malicious key model. We opted
to present it this way because of two reasons. Firstly, it simplifies the presenta-
tion and shows the essence of our construction. Secondly, we want an efficient
scheme, and using a proof system for NP languages would be impractical. We
will later show in the discussion section that for the SPS-EQ from [24], proof
of knowledge of the signing key can be done via ` proofs of knowledge of dis-
crete logarithms in G2. Note that in our scheme ` = 2, which shows that our
instantiation can be easily transformed into the malicious key model.

24 Lucjan Hanzlik

KeyGen(λ): generate SPS-EQ keypair (pkEQ, skEQ) ← KeyGenEQ(λ, 2) and set
(sk, pk) := (skEQ, pkEQ).

RKeyGen(λ): choose x←$Z∗p. Set skR := x and pkR := gx1 .

Issue(sk, pkR, nonce): generate SPS-EQ signature psig← SignEQ(sk, (pkR,H(nonce))).

Obtain(skR, pk, psig, nonce): output ⊥ if VerifyEQ(pk, (pkR,H(nonce)), psig) = 0,

otherwise adapt presignature sig← ChgRepEQ((pkR,H(nonce)), psig, sk−1
R , pk) output

message-signature pair (m = H(nonce)sk
−1
R , sig).

Verify(pk, (m, sig)): output VerifyEQ(pk, (g1,m), sig).

Scheme 3: SPS-EQ Construction of NIBS

Security

Theorem 1 (One-more Unforgeability). Scheme 3 is one-more unforgeable
in the random oracle model assuming the SPS-EQ scheme is existentially un-
forgeable under adaptively chosen-message attacks.

Proof (Sketch). The proof follows by a straightforward reduction to the secu-
rity of the SPS-EQ. The reduction uses the provided signing oracle to generate
presignatures for the adversary’s A queries. Finally, the adversary outputs `
valid message-signature pairs for the NIBS scheme, simultaneously making only
qs signing queries. Without loss of generality, we can assume that ` = qs + 1
(otherwise, the reduction omits the additional message-signature pairs). Note
that since all ` pairs are signatures under unique messages, it follows that they
also belong to separate equivalence classes due to the notion of canonical rep-
resentative. Thus, the adversary returned SPS-EQ message-signature pair for `
different classes, while the reduction only queries the SPS-EQ signing oracle `−1
times. However, because of the hiding property, the reduction cannot guess the
class for which it did not query the SPS-EQ signing oracle, i.e., the forgery. So
the only way to win the unforgeability experiment is for the reduction to choose
one message-signature pair at random. With probability 1/`, this guess will be
correct, and the pair will be a valid forgery against the SPS-EQ scheme. The full
proof can be found in Appendix A.

Theorem 2 (Recipient Blindness). Scheme 3 is recipient blind (in the hon-
est key model) in the random oracle model assuming the inverse decision Diffe-
Hellman assumption holds in G1 and that the SPS-EQ scheme perfectly adapts
signatures under a malicious signer.

Proof (Sketch). The idea behind the proof is to make the challenged messages
m0,m1 and corresponding signatures sig0, sig1 independent of the public keys
pkR0

, pkR1
. We achieve this by making indistinguishable changes to how the

Non-Interactive Blind Signatures for Random Messages 25

recipient blindness experiment generates them. Firstly, the reduction program
the random oracle H so that for all queried nonces nonce the reductions know
rnonce, such that H(nonce) = grnonce1 . It replaces the public key of one of the

recipients with gα1 , where (gα1 , g
β
1) is an instance of the inverse decisional Diffie-

Hellman problem. Thanks to the programming of the oracle, the reduction can
compute the messages as (g1, (g

β
1)rnonce), without knowing the recipient’s secret

key. The reduction uses the known SPS-EQ signing key and perfect adaptation
of signatures to resign the presignature. If (gα1 , g

β
1) is an inverse decisional Diffie-

Hellman tuple, then the reductions simulation is perfect. This way, the reduction
can change the messages signed by the challenged signatures sig0, sig1 to be
independent of the public keys pkR0

, pkR1
. Thus, the best an adversary can do is

to guess the bit b in the experiment. The full proof can be found in Appendix A.

Theorem 3 (Nonce Blindness). Scheme 3 is nonce blind (in the honest key
model) in the random oracle model assuming the strong decision Diffe-Hellman
assumption holds in G1 and that the SPS-EQ scheme perfectly adapts signatures
under a malicious signer.

Proof (Sketch). The proof follows a blueprint similar to the above one. The
main difference is that now given a strong decisional Diffie-Hellman instance

(gα1 , g
β
1 , g

β−1

1 , gγ1), we set the recipient’s public key to gβ
−1

1 . The reduction pro-
grams the oracle H similarly but tries to guess the query H(nonce0) to program
it to gα1 . The programming allows the reduction to compute the message m0 as
(g1, g

γ
1). Note that if γ = α · β, the simulation is perfect, and the reduction can

use an adversary noticing that m0 is computed incorrectly to solve the strong
decisional Diffie-Hellman problem. The reduction can make message m0 and sig-
nature sig0 independent of nonce0. It can use the same strategy to make m1 and
sig1 independent of nonce1. Finally, the adversary is given only messages and
signatures independent of nonce0, nonce1. The best it can do is guess the bit b̄.
The full proof can be found in Appendix A.

5.1 Tagged NIBS from TBEQ

Scheme 3 can be easily transformed into a TNIBS. The only change is to re-
place the standard structure-preserving signature scheme with the tagged version
TBEQ. We present more details in Scheme 4.

Security

All proofs follow the same strategy as the corresponding ones for Scheme 3,
which can be found in Appendix A. The only difference in the proofs is that we
rely on perfect adaptation and unforgeability of the TBEQ scheme instead of the
SPS-EQ scheme.

Theorem 4 (One-more Unforgeability). Scheme 4 is one-more unforgeable
in the random oracle model assuming the TBEQ scheme is existentially unforge-
able under adaptively chosen-message attacks.

26 Lucjan Hanzlik

KeyGen(λ): generate TBEQ keypair (pkTEQ, skTEQ) ← KeyGenTEQ(λ, 2) and set
(sk, pk) := (skTEQ, pkTEQ).

RKeyGen(λ): choose x←$Z∗p. Set skR := x and pkR := gx1 .

Issue(sk, pkR, nonce, τ): return presignature psig← SignTEQ(sk, (pkR,H(nonce)), τ).

Obtain(skR, pk, psig, nonce, τ): output ⊥ if VerifyTEQ(pk, (pkR,H(nonce)), τ, psig) = 0,

otherwise adapt pre-signature sig ← ChgRepTEQ((pkR,H(nonce)), psig, sk−1
R , pk)

output message-signature pair (m = H(nonce)x
−1

, sig).

Verify(pk, (m, sig)): output VerifyTEQ(pk, (g1,m), τ, sig).

Scheme 4: TBEQ Construction of TNIBS

Theorem 5 (Recipient Blindness). Scheme 4 is recipient blind (in the hon-
est key model) in the random oracle model assuming the inverse decision Diffe-
Hellman assumption holds in G1 and that the SPS-EQ scheme perfectly adapts
signatures under a malicious signer.

Theorem 6 (Nonce Blindness). Scheme 4 is nonce blind (in the honest key
model) in the random oracle model assuming the strong decision Diffe-Hellman
assumption holds in G1 and that the SPS-EQ scheme perfectly adapts signatures
under a malicious signer.

5.2 Discussion

Instantiating NIBS and TNIBS. We already mentioned at the beginning of this
section that depending on how the SPS-EQ scheme is instantiated in our con-
struction, we can end up with schemes with different properties. An efficient
instantiation follows if we use the SPS-EQ scheme from [24]. The used equiva-
lence class signature requires type 3 pairings groups. Barreto, Lynn, and Scott
[8] introduced the BLS family of pairing-friendly groups that can be used in
this case. We instantiate it with the popular BLS12-381 parameters [11]. In this
setting the groups are defines as G1 = E(Fq), G2 = E′(Fq2) and GT = Fq12 for a
381-bit prime q. Consequently, the recipient’s public key and the message space
are in G1. The blind signature comprises two elements in G1 and one in G2. The
signer’s public key is two group elements in G2. Assuming we use the BLS12-381
groups, this constitutes a signature size of 1527-bits, where the message is an
element of G1 and size 382-bit.

Recipient Public Key. With the above instantiation, the recipient’s public key
space is set to G1, where G1 is a standard elliptic curve. Thus, preexisting public
keys for other schemes can be used as the recipient’s public key. In particular, we
can use public keys for the ECDSA, Schnorr signature scheme, ephemeral keys

Non-Interactive Blind Signatures for Random Messages 27

for the Diffie-Hellman protocol, and keys for the El-Gamal encryption scheme
defined over the group G1 in our instantiation.

Composing the above schemes with NIBS does not seem to introduce security
issues. Still, it will require providing proof for a composed primitive. We leave
the formal proofs for future work. However, we can reduce the security of those
schemes to the strong decisional Diffie-Hellman assumption, allowing the security
of NIBS to hold independent of the use of the secret key in the other scheme.

Interestingly, we cannot use a BLS signature scheme public key. Recall that
for BLS (for type-3 pairings), the public key gx1 is in G1, then signatures are
in G2 and of the form HG2

(m)x. The message in our construction for such a

public key would be m = H(nonce)x
−1

. A malicious signer could then compute
e(m,HG2

(m)x), for some known BLS signature of the recipient under m, and
compare it with e(H(nonce),H(m)). How the BLS signature scheme uses the
recipient’s secret key breaks the blindness properties of NIBS. The intuition is
that the assumption used in unforgeability proof of BLS signatures cannot hold
simultaneously with the strong decisional Diffie-Hellman assumption.

6 Generic Construction

In the previous section, we presented one NIBS and one TNIBS scheme that can
efficiently be instantiated using signatures on equivalence classes and its variant.
An interesting observation we make here is that the resulting random message
in both of those schemes is H(m)sk

−1

. Blindness then follows from the inverse
and strong decisional Diffie-Hellman assumptions. However, looking at it more
closely, we notice that this is actually a valid evaluation of a pseudo-random
function with key sk. Note that PRFsk(m) := H(m)sk

−1

is a known construction.
This observation is key to why blindness holds for those schemes. Even though
the signer is choosing the input to the function, its evaluation is indistinguishable
from random. Let us use this intuition to derive a generic construction.

The main problem is ensuring that given a presignature on the input to
the function, the recipient will evaluate it correctly and preserve the signer’s
signature. In schemes 3 and 4, this was possible because the relation defined
by the equivalence class signatures worked well with the PRF. We can achieve
something similar using non-interactive proofs and a verifiable random function
VRF. Unfortunately, we will require proofs for NP languages. Additionally, we
will use a trapdoor witness that will allow us to simulate this proof, i.e., we
will allow for a trapdoor witness that we will be able to use in the proof by
programming the random oracle Hcrs. Alternatively, instead of using a trapdoor
witness to simulate proofs, we can use a DMWI proof system with a trusted
setup. Thus, this allows us to rely on the common reference string instead of the
random oracle model. The idea of the scheme is as follows. The presignature is
a standard digital signature psig on the recipients VRF public key pkVRF and the
nonce. To obtain a valid signature, the recipient first evaluates the VRF on input
nonce to receive message m. Later the recipient creates proof that it knows a
signature psig under a key pkVRF and nonce nonce and that m is the result of the

28 Lucjan Hanzlik

Let VRF = (Gen,Eval,P,V) be a verifiable random function, DMWI = (Setup,
Prove,Verify,Extract) be a dual-mode witness indistinguishable proof system for the
language LR and SIG = (KeyGen,Sign,Verify) be a standard digital signature scheme.
Moreover, let Hcrs be a random oracle that, on inputs from {0, 1}∗, outputs elements
from the space of reference strings for the DMWI system. Finally, let us define the
following relation R:

((m, pk), (nonce, psig, pkR, πVRF, r)) ∈ R ⇐⇒
Hcrs(1) = DMWI.Setup(λ, binding; r) ∨
VRF.V(pkR, πVRF, nonce,m) = 1 ∧
SIG.Verify(pk, (pkR, nonce), psig) = 1

KeyGen(λ): generate keypair (sk, pk)← SIG.KeyGen(λ).

RKeyGen(λ): generate keypair (skR, pkR)← VRF.Gen(λ).

Issue(sk, pkR, nonce): create presignature psig← SIG.Sign(sk, (nonce, pkR)).

Obtain(skR, pk, psig, nonce): output ⊥ if SIG.Verify(pk, (nonce, pkR)), psig) = 0, other-
wise compute m ← VRF.Eval(skR, nonce), compute πVRF ← VRF.P(skR, nonce), set
statement x = (m, pk) and witness w = (nonce, psig, pkR, πVRF, ·). Compute blind
signature sig← DMWI.Prove(Hcrs(0), x, w). Output message-signature pair (m, sig).

Verify(pk, (m, sig)): Set statement x = (m, pk) and output DMWI.Verify(Hcrs(0), x, sig).

Scheme 5: Generic Construction of NIBS

VRF’s evaluation. The actual non-interactive blind signature is then this proof.
More details are given in Scheme 5.

Remark 2 (Generic TNIBS). We can easily transform Scheme 5 to a tagged
version. To make it work, the signer must include the tag τ as the message in
the presignature, i.e., we replace psig ← SIG.Sign(sk, (nonce, pkR)) with psig ←
SIG.Sign(sk, (nonce, pkR, τ)) and modify relation R accordingly. In the generic
TNIBS version, the tag τ is part of the statement x.

Security

Theorem 7 (One-more Unforgeability). Scheme 5 is one-more unforgeable
in the random oracle model assuming the signature scheme SIG is existentially
unforgeable under adaptively chosen-message attacks, the dual-mode proof system
DMWI is mode indistinguishable and extractable in binding mode, and the VRF
meets the uniqueness property.

Proof (Sketch). The proof works as follows. We first program the random oracle
Hcrs in a way that we can extract the witness used by the adversary, i.e., we

Non-Interactive Blind Signatures for Random Messages 29

set Hcrs(0) to output a string in binding mode. Additionally, we program the
oracle so the adversary cannot use the trapdoor witness for Hcrs(1), i.e., we set
Hcrs(1) to output a string in hiding mode. Now a reduction can extract ` valid
digital signatures for the SIG scheme while at the same time only querying `− 1
time. Moreover, the adversary can easily identify the (pk∗, nonce∗, psig∗) which
is valid SIG.Verify(pk, (pk∗, nonce∗), psig∗) = 1 while at the same time was not
queried to the signing oracle of the signature scheme SIG. It is possible thanks
to the uniqueness property of the VRF and the fact that the adversary must
output distinct messages. Thus, (pk∗, nonce∗, psig∗) is a valid forgery for the SIG
unforgeability experiment. The full proof can be found in Appendix B.

Theorem 8 (Recipient Blindness). Scheme 5 is recipient blind in the ran-
dom oracle model assuming DMWI is mode indistinguishable and perfect witness
indistinguishable in the hiding mode, and the VRF is indistinguishable.

Proof (Sketch). The proof works as follows. The reduction programs the random
oracle Hcrs in a way that it can simulate the DMWI proof using the trapdoor
witness (·, ·, ·, ·, r), where Hcrs(1) = crs and (crs, ·) ← Setup(λ, binding; r). Now
the reduction does not need the VRF to generate signatures. Thus, we can replace
the messages m0,m1 with random values. Since we do not query for proofs of
correct evaluation, this follows from the indistinguishability of the VRF. The full
proof can be found in Appendix B.

Theorem 9 (Nonce Blindness). Scheme 5 is nonce blind in the random or-
acle model assuming DMWI is mode indistinguishable and perfect witness indis-
tinguishable in the hiding mode, and the VRF is indistinguishable.

Proof (Sketch). The proof sketch follows the same strategy as above. The full
proof can be found in Appendix B.

7 Conclusions

In this paper, we looked at blind signatures from a practical perspective. We
noticed that in many use cases, the distribution of the signed message does not
have to be chosen by the recipient. In other words, the application will work
even if the message is random but eventually known. By formalizing this idea,
we introduced the notion of non-interactive blind signatures for random mes-
sages. The key property is that no online interaction between the signer and
the recipient is required. It allows us to use blind signature in new applica-
tions, including distributing e-coins similarly to cryptocurrency airdropping. We
also showed two constructions. One is efficient and admits preexisting public
keys from other schemes. The other scheme generically captures the concept of
NIBS and is constructed from well-known primitives. We also show how to date
non-interactive signatures by introducing the notion of tagged NIBS. We also
proposed open problems.

30 Lucjan Hanzlik

References

1. Abazi, V.: The European Union Whistleblower Directive: A ‘Game Changer’ for
Whistleblowing Protection? Industrial Law Journal 49(4), 640–656 (10 2020).
https://doi.org/10.1093/indlaw/dwaa023

2. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T.
(eds.) ASIACRYPT’96. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (Nov
1996). https://doi.org/10.1007/BFb0034851

3. Agrawal, S., Kirshanova, E., Stehlé, D., Yadav, A.: Practical, round-
optimal lattice-based blind signatures. In: Yin, H., Stavrou, A., Cremers,
C., Shi, E. (eds.) ACM CCS 2022. pp. 39–53. ACM Press (Nov 2022).
https://doi.org/10.1145/3548606.3560650

4. Au, M.H., Susilo, W., Mu, Y.: Practical compact e-cash. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 07. LNCS, vol. 4586, pp. 431–445. Springer,
Heidelberg (Jul 2007)

5. Backes, M., Hanzlik, L., Schneider-Bensch, J.: Membership privacy for
fully dynamic group signatures. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) ACM CCS 2019. pp. 2181–2198. ACM Press (Nov 2019).
https://doi.org/10.1145/3319535.3354257

6. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R.,
Gligor, V.D., Yung, M. (eds.) ACM CCS 2013. pp. 1087–1098. ACM Press (Nov
2013). https://doi.org/10.1145/2508859.2516687

7. Bao, F., Deng, R.H., Zhu, H.: Variations of Diffie-Hellman problem. In: Qing, S.,
Gollmann, D., Zhou, J. (eds.) ICICS 03. LNCS, vol. 2836, pp. 301–312. Springer,
Heidelberg (Oct 2003)

8. Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 02. LNCS,
vol. 2576, pp. 257–267. Springer, Heidelberg (Sep 2003). https://doi.org/10.1007/3-
540-36413-7 19

9. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (Aug 2006). https://doi.org/10.1007/11693383 22

10. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.)
PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003).
https://doi.org/10.1007/3-540-36288-6 3

11. Bowe, S.: BLS12-381: New zk-SNARK elliptic curve construction. https://

electriccoin.co/blog/new-snark-curve/, March 2017 (2017)
12. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,

R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(May 2005). https://doi.org/10.1007/11426639 18

13. Camenisch, J., Neven, G., shelat, a.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-
delberg (May 2007). https://doi.org/10.1007/978-3-540-72540-4 33

14. Canard, S., Gaud, M., Traoré, J.: Defeating malicious servers in a blind signa-
tures based voting system. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 148–153. Springer, Heidelberg (Feb / Mar 2006)

15. Chairattana-Apirom, R., Hanzlik, L., Loss, J., Lysyanskaya, A., Wagner, B.: PI-
cut-choo and friends: Compact blind signatures via parallel instance cut-and-choose
and more. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part III. LNCS, vol.

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/

Non-Interactive Blind Signatures for Random Messages 31

13509, pp. 3–31. Springer, Heidelberg (Aug 2022). https://doi.org/10.1007/978-3-
031-15982-4 1

16. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) CRYPTO’82. pp. 199–203. Plenum Press, New York,
USA (1982)

17. Davidson, A., Goldberg, I., Sullivan, N., Tankersley, G., Valsorda, F.: Privacy pass:
Bypassing internet challenges anonymously. PoPETs 2018(3), 164–180 (Jul 2018).
https://doi.org/10.1515/popets-2018-0026

18. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (Aug 2006). https://doi.org/10.1007/11818175 4

19. Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg
(Mar 2009). https://doi.org/10.1007/978-3-642-00468-1 17

20. Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature
schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215.
Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-13190-
5 10

21. Frankel, Y., Tsiounis, Y., Yung, M.: Fair off-line e-cash made easy. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT’98. LNCS, vol. 1514, pp. 257–270. Springer, Heidelberg
(Oct 1998). https://doi.org/10.1007/3-540-49649-1 21

22. Fuchsbauer, G., Hanser, C., Kamath, C., Slamanig, D.: Practical round-optimal
blind signatures in the standard model from weaker assumptions. In: Zikas, V.,
De Prisco, R. (eds.) SCN 16. LNCS, vol. 9841, pp. 391–408. Springer, Heidelberg
(Aug / Sep 2016). https://doi.org/10.1007/978-3-319-44618-9 21

23. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015,
Part II. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (Aug 2015).
https://doi.org/10.1007/978-3-662-48000-7 12

24. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. Journal of Cryptology
32(2), 498–546 (Apr 2019). https://doi.org/10.1007/s00145-018-9281-4

25. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q.,
Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer,
Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-5 27

26. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-540-78967-3 24

27. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg
(Dec 2014). https://doi.org/10.1007/978-3-662-45611-8 26

28. Hanzlik, L., Slamanig, D.: With a little help from my friends: Constructing prac-
tical anonymous credentials. In: Vigna, G., Shi, E. (eds.) ACM CCS 2021. pp.
2004–2023. ACM Press (Nov 2021). https://doi.org/10.1145/3460120.3484582

29. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from
identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part III. LNCS, vol. 11478, pp. 345–375. Springer, Heidelberg (May 2019).
https://doi.org/10.1007/978-3-030-17659-4 12

32 Lucjan Hanzlik

30. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revis-
ited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol.
12171, pp. 500–529. Springer, Heidelberg (Aug 2020). https://doi.org/10.1007/978-
3-030-56880-1 18

31. Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: TumbleBit:
An untrusted bitcoin-compatible anonymous payment hub. In: NDSS 2017. The
Internet Society (Feb / Mar 2017)

32. Hendrickson, S., Iyengar, J., Pauly, T., Valdez, S., Wood, C.A.: Rate-Limited To-
ken Issuance Protocol. Internet-Draft draft-privacypass-rate-limit-tokens-03, IETF
Secretariat (July 2022)

33. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended
abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 150–164.
Springer, Heidelberg (Aug 1997). https://doi.org/10.1007/BFb0052233

34. Katsumata, S., Nishimaki, R., Yamada, S., Yamakawa, T.: Round-optimal blind
signatures in the plain model from classical and quantum standard assumptions.
In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol.
12696, pp. 404–434. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-
3-030-77870-5 15

35. Lysyanskaya, A.: Security analysis of RSA-BSSA. Cryptology ePrint Archive, Re-
port 2022/895 (2022), https://eprint.iacr.org/2022/895

36. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In:
40th FOCS. pp. 120–130. IEEE Computer Society Press (Oct 1999).
https://doi.org/10.1109/SFFCS.1999.814584

37. Miyazaki, S., Sakurai, K.: A more efficient untraceable e-cash system with partially
blind signatures based on the discrete logarithm problem. In: Hirschfeld, R. (ed.)
FC’98. LNCS, vol. 1465, pp. 296–308. Springer, Heidelberg (Feb 1998)

38. Pass, R.: Limits of provable security from standard assumptions. In: Fortnow,
L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp. 109–118. ACM Press (Jun 2011).
https://doi.org/10.1145/1993636.1993652

39. Pfitzmann, B., Sadeghi, A.R.: Anonymous fingerprinting with direct non-
repudiation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 401–
414. Springer, Heidelberg (Dec 2000). https://doi.org/10.1007/3-540-44448-3 31

40. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT’96. LNCS, vol. 1163, pp. 252–265. Springer,
Heidelberg (Nov 1996). https://doi.org/10.1007/BFb0034852

41. Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. Journal of Cryptology 13(3), 361–396 (Jun 2000).
https://doi.org/10.1007/s001450010003

42. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (Dec 2001).
https://doi.org/10.1007/3-540-45682-1 32

43. Wahby, R.S., Boneh, D., Jeffrey, C., Poon, J.: An airdrop that preserves recipient
privacy. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 444–
463. Springer, Heidelberg (Feb 2020). https://doi.org/10.1007/978-3-030-51280-4 -
24

https://eprint.iacr.org/2022/895

Non-Interactive Blind Signatures for Random Messages 33

A Full Proofs for the SPS-EQ Construction of NIBS

Proof (Theorem 1). We will prove this theorem by a series of hybrid arguments.
Let A be a PPT-adversary against the one-more unforgeability of NIBS. Assume
that A makes at most qH = poly(λ) random oracle queries and qs = poly(λ)
signing queries.

Game G0: The original one-more unforgeability experiment G0 := OM-UNFA,NIBS.

Game G1: We abort the game if there is a collision in the responses of the ran-
dom oracle.

Claim. We claim that the adversary’s A advantage in hybrids G0 and G1 only
differs by a negligible factor, i.e.:

|Pr[G1(A) = 1]− Pr[G0(A) = 1]| ≤ qH
2λ

We can apply a union bound over all qh queries to the random oracle, and the
claim follows.

Claim. We claim that the adversary’s A advantage in hybrid G1 is negligible,
given the SPS-EQ scheme is existentially unforgeable under adaptively chosen-
message attacks. More specifically, there exists a reduction R1 such that

(qs + 1) ·AdvSPS-EQ(RA1) = Pr[G1(A)].

We implement the reduction R1 straightforwardly. Instead of using the
KeyGenEQ(λ, 2) algorithm to generate the signer’s key pair R1 sets pk := pkEQ
where the public key pkEQ is the public key received from the challenger against
unforgeability of the SPS-EQ scheme. Moreover, to issue presignatures it uses
the provided signing oracle instead of signing directly via

psig← SignEQ(sk, (pkR,H(nonce))).

Finally, the adversary A output ` signatures ((m1, sig1), . . . , (m`, sig`)) for which
we have:

mi 6= mj for 1 ≤ i < j ≤ `, and VerifyEQ(pk, (g1,mi), psig) = 1 for 1 ≤ i ≤ `.

It follows that all SPS-EQ messages form distinct relations. However, because
of the class hiding property of the SPS-EQ, the reduction R1 cannot compute
which signature is for a fresh class (i.e., not queries to the SPS-EQ signing ora-
cle). However, the winning conditions guarantee there is at least one such class.
The way to get around it is for the reduction to guess the correct index j and re-
turn (mj , sigj). Since A will only make up to qs signing oracle queries, we can set
` = qs+1 (ignoring additional message-signature pair). Now we let the reduction
randomly pick one of the ` message-signature pairs and output it as the forgery.
Note that this guess is correct with probability, at least 1/(qs + 1), and the re-
duction will output a valid (i.e., output by the signing oracle) message-signature
pair. The claim follows.

34 Lucjan Hanzlik

Proof (Theorem 2). We will prove this theorem by a series of hybrid arguments.
Let A be a PPT-adversary against the recipient blindness of NIBS.

Game G0: The original recipient blindness experiment G0 := RBndA,NIBS.

Game G1: Instead of using Obtain to compute sig0 and sig1, in this game we
first verify the validity of the presignatures, i.e., output (⊥,⊥) if

VerifyEQ(pk, (pkR0
,H(nonce)), psig0) = 0, or

VerifyEQ(pk, (pkR1
,H(nonce)), psig1) = 0.

Otherwise, we compute fresh SPS-EQ signatures as follows:

sigi ← SignEQ(sk, (g1,H(nonce)
sk−1
Ri)) for i ∈ {0, 1}.

Game G2: Similar to G1, but we program the random oracle in the following
way: H(nonce) = grnonce1 , for some rnonce←$Zp. The experiment also keeps a list
with elements (nonce, rnonce).

Game G3: We again replace the way we generate signature sig0. Instead, com-
puting it as:

sig0 ← SignEQ(sk, (g1,H(nonce)sk
−1
R0))

we compute it as

sig0 ← SignEQ(sk, (g1, g
r
1))

for some random r←$Z∗p.

Game G4: We do the same change as in hybrid G3 but for the signature sig1.

We will show the indistinguishability of the hybrids via a sequence of claims.

Claim. We claim that the adversary’s A advantage in hybrids G0 and G1 are
the same, i.e.:

Pr[G1(A) = 1] = Pr[G0(A) = 1].

The claim follows directly from the perfect adaption of signatures under mali-
cious keys of the SPS-EQ scheme.

Claim. We claim that the adversary’s A advantage in hybrids G1 and G2 are
the same, i.e.:

Pr[G2(A) = 1] = Pr[G1(A) = 1].

The only change we make is the behavior of the random oracle. Since the pro-
gramming still provides uniformly random elements, the claim follows.

Non-Interactive Blind Signatures for Random Messages 35

Claim. Hybrids G2 and G3 are computationally indistinguishable, given the in-
verse decisional Diffie-Hellman assumption holds. More specifically, there exists
a reduction R1 such that

AdvinvDDH(RA1) = |Pr[G3(A) = 1]− Pr[G2(A) = 1]|.

The reduction R1 takes as input the inverse decisional Diffie-Hellman instance
(gα1 , g

β
1) and instead of generating (skR0

, pkR0
) via the RKeyGen algorithm, it

sets pkR0
:= gα1 . All other values are setup as in G3. The adversary returns

the tuple (psig0, nonce0, psig1, nonce1, pk). The reduction now finds the entry
(nonce0, rnonce0) in the random oracle list and computes:

sig0 ← SignEQ(sk, (g1, (g
β
1)rnonce0)).

R1 continues the simulation of hybrid G3 and outputs whatever the adversary
outputs. Clearly, if the tuple (gα1 , g

β
1) is an inverse decisional Diffie-Hellman tuple,

then RA1 simulates G3(A) perfectly. On the other hand, if the tuple is not an
inverse decisional Diffie-Hellman tuple, then RA1 simulates G4(A) perfectly. The
claim follows.

Claim. Hybrids G3 and G4 are computationally indistinguishable, given the in-
verse decisional Diffie-Hellman assumption holds. More specifically, there exists
a reduction R2 such that

AdvinvDDH(RA2) = |Pr[G4(A) = 1]− Pr[G3(A) = 1]|.

The proof of the claim follows analogously to the proof of the above claim, except
that we perform the change for the second key pair (skR1

, pkR1
).

Claim. We claim that the adversary’s A advantage in hybrid G4 is 1/2, i.e.:

Pr[G4(A)] = 1/2.

The claim follows since signatures sig0 and sig1 are signatures under random
values and independent of the bit b. The only thing adversary A can do is guess
bit b.

Proof (Theorem 3). We will prove this theorem by a series of hybrid arguments.
Let A be a PPT-adversary against the nonce blindness of NIBS. Assume that A
makes at most qH = poly(λ) random oracle queries.

Game G0: The original nonce blindness experiment G0 := NBndA,NIBS.

Game G1: We abort the game if there is a collision in the responses of the
random oracle.

Game G2: Similar to G1, but we program the random oracle in the following
way: H(nonce) = grnonce1 , for some rnonce←$Zp. The experiment also keeps a list
with elements (nonce, rnonce).

36 Lucjan Hanzlik

Game G3: Instead of using Obtain to compute sig0 and sig1, in this game we
first verify the validity of the presignatures, i.e., it outputs (⊥,⊥) if

VerifyEQ(pk, (pkR,H(nonce0)), psig0) = 0, or

VerifyEQ(pk, (pkR,H(nonce1)), psig1) = 0.

Otherwise, we compute fresh SPS-EQ signatures as follows:

sigi ← SignEQ(sk, (g1,H(noncei)
sk−1
R)) for i ∈ {0, 1}.

Game G4: We again replace the way we generate signature sig0. Instead, com-
puting it as:

sig0 ← SignEQ(sk, (g1,H(nonce0)sk
−1
R))

we compute it as

sig0 ← SignEQ(sk, (g1, g
r
1))

for some random r←$Z∗p.

Game G5: We do the same change as in hybrid G4 but for the signature sig1.

We will show the indistinguishability of the hybrids via a sequence of claims.

Claim. We claim that the adversary’s A advantage in hybrids G0 and G1 only
differs by a negligible factor, i.e.:

|Pr[G1(A) = 1]− Pr[G0(A) = 1]| ≤ qH
2λ

We can apply a union bound over all qh queries to the random oracle, and the
claim follows.

Claim. We claim that the adversary’s A advantage in hybrids G1 and G2 are
the same, i.e.:

Pr[G2(A) = 1] = Pr[G1(A) = 1].

The only change we make is the behavior of the random oracle. Since the pro-
gramming still provides uniformly random elements, the claim follows.

Claim. We claim that the adversary’s A advantage in hybrids G2 and G3 are
the same, i.e.:

Pr[G3(A) = 1] = Pr[G2(A) = 1].

The claim follows directly from the perfect adaption of signatures under mali-
cious keys of the SPS-EQ scheme.

Non-Interactive Blind Signatures for Random Messages 37

Claim. Hybrids G3 and G4 are computationally indistinguishable, given the
strong decisional Diffie-Hellman assumption holds. More specifically, there exists
a reduction R1 such that

qH ·AdvsDDH(RA1) = |Pr[G4(A) = 1]− Pr[G3(A) = 1]|.

The reduction R1 takes as input the strong decisional Diffie-Hellman instance

(gα1 , g
β
1 , g

β−1

1 , gγ1) and sets pkR := gβ
−1

1 . It first randomly samples an index j ←
[qH] and aborts if the j-th random oracle query of A is not a query for nonce0.
It follows that R1 does not abort with probability 1/qH. Moreover, for the j-
th random oracle query it returns gα1 , i.e., H(nonce0) := gα1 . The adversary
returns the tuple (psig0, nonce0, psig1, nonce1, pk). The reduction now finds the
entry (nonce1, rnonce1) in the random oracle list and computes:

sig0 ← SignEQ(sk, (g1, (g
γ
1)), and

sig1 ← SignEQ(sk, (g1, (g
β
1)rnonce1)).

R1 continues the simulation and outputs whatever the adversary outputs.

Clearly, if the tuple (gα1 , g
β
1 , g

β−1

1 , gγ1) is a strong decisional Diffie-Hellman
tuple, then RA1 simulates G3(A) perfectly. On the other hand, if the tuple is not
a strong decisional Diffie-Hellman tuple, then RA1 simulates G4(A) perfectly.
The simulations work, assuming the reduction does not abort the experiment.

Claim. Hybrids G4 and G5 are computationally indistinguishable, given the
strong decisional Diffie-Hellman assumption holds. More specifically, there exists
a reduction R2 such that

qH ·AdvsDDH(RA2) = |Pr[G5(A) = 1]− Pr[G4(A) = 1]|.

The proof of the claim follows analogously to the proof of the above claim, except
that we perform the change for signature sig1 and nonce nonce1.

Claim. We claim that the adversary’s A advantage in hybrid G5 is 1/2, i.e.:

Pr[G5(A)] = 1/2.

The claim follows since signatures sig0 and sig1 are signatures under random
values and independent of the bit b. The only thing adversary A can do is guess
bit b.

B Full Proofs for the Generic Construction of NIBS

Proof (Theorem 7). We will prove this theorem by a series of hybrid arguments.
Let A be a PPT-adversary against the one-more unforgeability of NIBS.

Game G0: The original one-more unforgeability experiment G0 := OM-UNFA,NIBS.

Game G1: Similar to G0 but we program the random oracle Hcrs in a way that
on input 0 it outputs crs, where (crs, tdExt) ← Setup(λ, binding) and the extrac-
tion trapdoor is retained.

38 Lucjan Hanzlik

Claim. We claim that the adversary’s A advantage in hybrids G0 and G1 only
differs by a negligible factor, i.e.:

|Pr[G1(A) = 1]− Pr[G0(A) = 1]| ≤ AdvmodeIND,A(λ)

The claim follows directly from the mode indistinguishability of the DMWI
scheme.

Game G2: Similar to G1 but we program the random oracle Hcrs in a way that
on input 1 it outputs crs, where crs← Setup(λ, hiding).

Claim. We claim that the adversary’s A advantage in hybrids G1 and G2 only
differs by a negligible factor, i.e.:

|Pr[G2(A) = 1]− Pr[G1(A) = 1]| ≤ AdvmodeIND,A(λ)

The claim follows directly from the mode indistinguishability of the DMWI
scheme.

Claim. We claim that the adversary’s A advantage in hybrid G2 is negligible,
assuming the digital signature scheme SIG is existentially unforgeable under
adaptively chosen-message attacks. More specifically, there exists a reduction
R1 such that

AdvSIG(RA1) = Pr[G2(A)].

We implement the reduction R1 as follows. Instead of using the SIG.KeyGen(λ)
algorithm to generate the signer’s key pair, R1 sets the public key pk received
from the challenger against the unforgeability of the SIG scheme. Moreover, to
issue presignatures, it uses the provided signing oracle instead of signing directly.
Finally, the adversary A output ` signatures ((m1, sig1), . . . , (m`, sig`)) for which
we have:

DMWI.Verify(Hcrs(0), (m, pk), sigi) = 1 for 1 ≤ i ≤ `, and

mi 6= mj for 1 ≤ i < j ≤ `.

The reduction R1 now uses the extraction trapdoor retained in G1 to extract
witnesses w1, . . . , w` from sig1, . . . , sig`. Notice that since we know that Hcrs(1)
is a hiding common reference string and due to extractability in binding mode,
we have

wi = (noncei, psigi, pkRi , πi, ·),
where

VRF.V(pkRi , πi, noncei,mi) = 1 ∧
SIG.Verify(pk, (pki, noncei), psigi) = 1.

In other words, the reduction now possesses ` message-signature pair for the SIG
scheme. Moreover, the reduction can identify tuple (pk∗, nonce∗, psig∗) for which
it never queried its signing oracle. Note that due to the uniqueness property of
the VRF and because all messages m are distinct, there must be at least one such
tuple that the reduction extracts. Finally, R1 returns ((nonce∗, pk∗), psig∗) as a
valid forgery against the SIG unforgeability experiment. The claim follows.

Non-Interactive Blind Signatures for Random Messages 39

Proof (Theorem 8). We will prove this theorem by a series of hybrid arguments.
Let A be a PPT-adversary against the recipient blindness of NIBS.

Game G0: The original recipient blindness experiment G0 := RBndA,NIBS.

Game G1: Similar G0 but we program the random oracle Hcrs in a way that on
input 0 it outputs crs, where crs← Setup(λ, hiding).

Claim. We claim that the adversary’s A advantage in hybrids G0 and G1 only
differs by a negligible factor, i.e.:

|Pr[G1(A) = 1]− Pr[G0(A) = 1]| ≤ AdvmodeIND,A(λ)

The claim follows directly from the mode indistinguishability of the DMWI
scheme.

Game G2: Similar G1 but we program the random oracle Hcrs in a way that
on input 1 it outputs crs, where (crs, ·) ← Setup(λ, binding; r) and value r is
retained.

Claim. We claim that the adversary’s A advantage in hybrids G1 and G2 only
differs by a negligible factor, i.e.:

|Pr[G2(A) = 1]− Pr[G1(A) = 1]| ≤ AdvmodeIND,A(λ)

The claim follows directly from the mode indistinguishability of the DMWI
scheme.

Game G3: Similar to G2 but we use witnesses w0 = w1 = (·, ·, ·, ·, r) to re-
spectively generate proofs sig0 and sig1. In other words, we use the trapdoor
witness r for the statement Hcrs(1) = DMWI.Setup(λ, binding; r) to generate the
challenged signatures given to the adverary.

Claim. We claim that:

Pr[G3(A) = 1] = Pr[G2(A) = 1].

The claim follows directly from perfect witness indistinguishability in hiding
mode. Note that due to the changes in G1, the crs used to generate the proofs
is set to hiding mode.

Game G4: Let {0, 1}m(λ) be the output space of the VRF. G4 is similar to G3

but we replace m0 with a random value for the space {0, 1}m(λ).

Claim. We claim that the adversary’s A advantage in hybrids G3 and G4 only
differs by a negligible factor, i.e.:

|Pr[G4(A) = 1]− Pr[G3(A) = 1]| ≤ AdvVRF(A)

40 Lucjan Hanzlik

First, notice that because of the changes in G3, we do not use the secret VRF
key and never call the VRF.P algorithm. Thus, the claim follows directly using a
straightforward reduction to the adaptive indistinguishability of the VRF. To see
this more formally, consider a reduction R that plays the role of the adversary in
the adaptive indistinguishability experiment of the VRF. It first sets pkR0

to the
public key pkVRF received from the VRF experiment challenger. Now, because of
the changes in G3 the reduction R can use the trapdoor witness r to compute
sig0 and sig1. It also can compute m1 honestly. To compute m0, the reduction sets
x∗ := nonce0 and sends it to its VRF challenger. In return it receive yb. It uses
this response to set m0 := yb. Note that that if yb = VRF.Eval(skVRF, nonce0)
then R simulates G3 perfectly. Otherwise, if yb←$ {0, 1}m(λ) it simulates G4.
Thus, any adversary distinguishing the changes made can be used by R to break
the adaptive indistinguishability of the VRF.

Game G5: Let {0, 1}m(λ) be the output space of the VRF. G5 is similar to G4

but we replace m1 with a random value for the space {0, 1}m(λ).

Claim. We claim that the adversary’s A advantage in hybrids G4 and G5 only
differs by a negligible factor, i.e.:

|Pr[G5(A) = 1]− Pr[G4(A) = 1]| ≤ AdvVRF(A)

The claim follows the same arguments about the indistinguishability of the VRF
as above.

Claim. We claim that the adversary’s A advantage in hybrid G5 is 1/2, i.e.:

Pr[G5(A)] = 1/2.

The claim follows since the messages m0 and m1 are random values independent
of the recipient’s public key, and so do signatures sig0 and sig1. The only thing
adversary A can do is guess bit b.

Proof (Theorem 9).

Game G0: The original nonce blindness experiment G0 := NBndA,NIBS.

Game G1: Similar G0 but we program the random oracle Hcrs in a way that on
input 0 it outputs crs, where crs← Setup(λ, hiding).

Claim. We claim that the adversary’s A advantage in hybrids G0 and G1 only
differs by a negligible factor, i.e.:

|Pr[G1(A) = 1]− Pr[G0(A) = 1]| ≤ AdvmodeIND,A(λ)

The claim follows directly from the mode indistinguishability of the DMWI
scheme.

Game G2: Similar G1 but we program the random oracle Hcrs in a way that
on input 1 it outputs crs, where (crs, ·) ← Setup(λ, binding; r) and value r is
retained.

Non-Interactive Blind Signatures for Random Messages 41

Claim. We claim that the adversary’s A advantage in hybrids G1 and G2 only
differs by a negligible factor, i.e.:

|Pr[G2(A) = 1]− Pr[G1(A) = 1]| ≤ AdvmodeIND,A(λ)

The claim follows directly from the mode indistinguishability of the DMWI
scheme.

Game G3: Similar to G2 but we use witnesses w0 = w1 = (·, ·, ·, ·, r) to re-
spectively generate proofs sig0 and sig1. In other words, we use the trapdoor
witness r for the statement Hcrs(1) = DMWI.Setup(λ, binding; r) to generate the
challenged signatures given to the adverary.

Claim. We claim that:

Pr[G3(A) = 1] = Pr[G2(A) = 1].

The claim follows directly from perfect witness indistinguishability in hiding
mode. Note that due to the changes in G1, the crs used to generate the proofs
is set to hiding mode.

Game G4: Let {0, 1}m(λ) be the output space of the VRF. G4 is similar to G3

but we replace m0 with a random value for the space {0, 1}m(λ).

Claim. We claim that the adversary’s A advantage in hybrids G3 and G4 only
differs by a negligible factor, i.e.:

|Pr[G4(A) = 1]− Pr[G3(A) = 1]| ≤ AdvVRF(A)

First, notice that because of the changes in G3, we do not use the secret VRF
key and never call the VRF.P algorithm. Thus, the claim follows directly using
a straightforward reduction to the indistinguishability of the VRF.

Game G5: Let {0, 1}m(λ) be the output space of the VRF. G5 is similar to G4

but we replace m1 with a random value for the space {0, 1}m(λ).

Claim. We claim that the adversary’s A advantage in hybrids G4 and G5 only
differs by a negligible factor, i.e.:

|Pr[G5(A) = 1]− Pr[G4(A) = 1]| ≤ AdvVRF(A)

The claim follows the same arguments about the indistinguishability of the VRF
as above.

Claim. We claim that the adversary’s A advantage in hybrid G5 is 1/2, i.e.:

Pr[G5(A)] = 1/2.

The claim follows since the messages m0 and m1 are random values independent
nonces nonce0, nonce1 and so are signatures sig0 and sig1. Thus, the only thing
adversary A can do is guess bit b.

	Non-Interactive Blind Signatures for Random Messages

