
TIDAL: Practical Collisions on State-Reduced
Keccak Variants

Sahiba Suryawanshi, Dhiman Saha, Shashwat Jaiswal

de.ci.phe.red Lab
Department of Electical Engineering and Computer Science

Indian Institute of Technology Bhilai, India
(sahibas,dhiman,shashwatj)@iitbhilai.ac.in

Abstract. An important tool that has contributed to collision search
on Keccak/SHA3 is the Target Difference Algorithm (TDA) and its inter-
nal differential counterpart Target Internal Difference Algorithm (TIDA),
which were introduced by Dinur et al. in separate works in FSE 2012 and
2013 respectively. These algorithms provide an ingenious way of extend-
ing the differential trails by one round and exploiting the affine subspaces
generated due to the low algebraic degree of the Keccak S-box. The cur-
rent work introduces TIDAL, which can extend TIDA by one more round
capitalizing on linearization techniques introduced by Guo et al. in JoC.
This approach requires increment consistency checks, which is also im-
proved in this work. The TIDAL strategy, in conjunction with a determin-
istic internal differential trail, has been applied to Keccak variants up to
400-bit state-size and leads to practical collision attacks for most of them
up to 5 rounds. In particular collisions have been confirmed for 4-round
Keccak[136, 64] with a complexity of 220 and on 6-round of Keccak[84,16]
with a complexity of 25. Further, this work completely characterizes all
collision attacks on state-reduced variants, showcasing that TIDAL covers
most space up to 5 rounds. As state and round-reduced Keccak variants
are used to realize the internal states of many crypto primitives, the re-
sults presented here generate a significant impact. Finally, it shows new
directions for the long-standing problem of state-reduced variants being
difficult to be attacked.

1 Introduction

Collision search is one of the fundamental problems that provide insight into
the strength of a cryptographic hash function. The latest hash standard SHA3

and its parent submission to the SHA3 competition Keccak have been one of the
most extensively studied hash algorithms. Collision search for SHA3 has evolved
in various directions but most of the effort has been concentrated on attacking
the variants in the SHA3 standard and to be more precise, on the maximum size
permutation. This had lead to the belief that state-reduced or so-called smaller
variants of Keccak are particularly difficult to attack and the same has been
acknowledged by the designers as well. In FSE 2021, Boissier et al.made an effort
to target state-reduced variants. However, the authors themselves acknowledge

that complexities observed for up to 2-round have been impractical and ‘even
two rounds required a strong effort’. The current work tries to set up a framework
to deal with state-reduced variants and bridge gap by drastically reducing the
collision search complexity to practical limits for most of the variants up to 5
rounds.

Previous Work: Collisions are the holy grail of any hash function analy-
sis and Keccak/SHA3 have been no exceptions. In 2011, Naya-Plasencia et al.
gave the first practical 2-round collision and 3-round near-collision on SHA3-224

and SHA3-256, using a double kernel to find the differential path [17]. Later
in 2012, Dinur et al. gave practical 4-round and 5-round near-collision attacks
on the same variants [7]. In the attack, they used a 3-round high probability
trail and a 1-round connector derived using what they referred to as the Tar-
get Difference Algorithm (TDA). In 2013, the same group of authors gave a
practical 3-round and theoretical 4-round collision on SHA3-384 and SHA3-512,
and increased the number of rounds for SHA3-224 and SHA3-256 to 5-round
by mounting squeeze attacks [8], which leverage the idea of internal differential
cryptanalysis. In 2017, Qiao et al. extended Dinur’s TDA by 1 more round by
applying linearization leading to a 6-round collision attack [19]. In the same
year, Song et al. improved Qiao’s work by using non-full S-box linearization [21]
and saving the degrees of freedom providing practical collision attacks on many
variants which included a 6-round collision on Keccak[1440,160]. In 2020, Guo
et al. [11] gave a 5-round collision on SHAKE-128, SHA3-224, and SHA3-256 and
a 6-round collision on Keccak-p[1440, 160] and Keccak-p[640, 160]. They ex-
tended the 1-round connector provided by Dinur et al., to upto three rounds
and developed an approach to find suitable differential trails compatible with
the connector. Nevertheless, their technique does not apply to larger capacity
sizes like SHA3-384 and SHA3-512 because of insufficient degree of freedom. In
FSE 2022 [13], Huang et al. overcame the limitations faced by earlier works for
states with larger capacities and reported a practical 4-round collision attack
on SHA3-384. They used a 2-block message in place of the 1-block message and
used SAT solver instead of linearization to improve their result. Also, in place of
linearization, they have used SAT solver to improve their result. The analysis of
SHA3 is also being explored from a quantum computing perspective. In a quan-
tum setting [12], Guo et al. gave a 6-round collision on SHAKE-128, SHA3-224
and SHA3-256 using an SAT-based toolkit to search the differential trail. The
earliest attempt of attacking a state-reduced variant is attributed to Kölbl et
al. [15] who reported collisions on the Keccak variants instantiating the 800-bit
permutation. Recently, the interest in state-reduced versions has been renewed
by Boissier et al. mounting collision attacks on two rounds of the 200 and 400-bit
version of Keccak permutation using algebraic and linearization techniques [6].

The current work attempts to explore the collision search problem with re-
gards to the smaller i.e., state-reduce versions of the Keccak-p permutation
particularly looking at 100, 200, 400-bits versions. This is motivated by two
conditions. The first one being the recent work by Boissier et al. and their in-
ability to penetrate more than 2-round for upto 200-bit variants. This difficulty

2

has also been acknowledged by the designers and is attributed to the faster
diffusion in a smaller state [3]. The second reason is the fact that many au-
thenticated lightweight ciphers like CAESAR [1] candidate Ketje [4] and NIST
LWC [2] Finalists ISAP [9] and Elephant [10] prefer to instantiate state-reduced
permutations for realizing their internal states. This inspires us to systemati-
cally investigate how collision search problem pans out for the smaller states.
For a thorough analysis we come up with a general framework to capture the
way states are reduced, classifying them as Type-I which preserve the ratio of
rate and capacity of the SHA3 standard and Type-II for fixed capacity size of
160 conforming to Keccak Crunchy Contest. To put things in context, it can
be noted that the variant attacked by Kölbl et al. is Type-I while out of the
attacks reported by Boissier et al. on three variants, two are of Type-I and the
remaining one is of Type-II. We revisit the idea of squeeze-attacks that capi-
talize on the ways internal differentials evolve in the Keccak state. In particular,
we give an algorithm to extend the Target Internal Difference Algorithm (TIDA)
of Dinur et al. by one more round which allows us to generate a subspace of two-
round symmetric states. This is coupled with a deterministic 1.5 round internal
differential trail which leads to a 5-round squeeze attack giving us practical colli-
sions for most of the state-reduced Type-I Keccak variants. The TIDA approach
requires the incremented consistency check throughout an evolving system of
linear equations. Therefore, the proposed approach utilizes data from earlier it-
erations while performing an incremental linear equation system’s consistency
check. As a result, it requires lesser operations than the traditional method used
in TDA/TIDA.

Our Contributions: The current work constitutes a comprehensive treat-
ment for plugging the gap in the collision attack space that has been existing in
the Keccak cryptanalysis literature for the sub-800 permutations size zone. The
major contributions are outlined below with a summary furnished in Table 1.

– Revisiting the TIDA strategy to understand the way it differs from TDA

– Equip an approach to handle incremental consistency check operation effi-
ciently.

– Introducing TIDAL, a strategy to extend basic TIDA for another round adapt-
ing state-of-the-art linearization techniques

– Mounting squeeze attacks leveraging TIDAL to get most efficient collisions
on 2, 3, 4, 5 rounds of many state-reduced Keccak variants

– Characterization of the collision attack space for state-reduced Keccak vari-
ants utilizing a general framework to capture the way states are reduced

Organization The rest of the paper is organized as follows. Section 2 gives a
brief description of the SHA3, squeeze attack, Internal Differential Cryptanalysis
of Keccak, Target Difference Algorithm, and TDA-Connector. In Section 3, we
re-introduce the TIDA algorithm and give an algorithm for the same. Also, pro-
vide an approach to improve the consistency of check operation. TIDAL, which
extends the TIDA by one more round, is introduced in Section 4. We also provide
degrees of freedom and experimental support for it in this section. The notion

3

Table 1: Summary of the results. Here DoF stands for Degree of Freedom

State Reduce
Keccak variant

DoF
Generic
Collision

Complexity

TIDAL Collision Complexity
Number of Rounds

2 3 4 5

Keccak-p[144, 56] 242 228 220 220 220 -

Keccak-p[136, 64] 234 232 220 220 220 231

Keccak-p[288, 112] 286 256 240 240 240 -

Keccak-p[272,128] 270 264 240 240 240 262

of our attack devises in Section 5, along with the experimental result, which
supports our attack. Comparisons of best results for different variants of state
reduce Keccak are given in Section 6. Finally, concluding remarks are provided
in Section 7.

2 Preliminaries

2.1 Keccak Internal State and the SPONGE Mode of Operation

The Keccak structure follows the SPONGE construction that maps a variable
length input to a fixed or variable length output using a fixed-length permuta-
tion. The internal state is b bits wide where b = c+ r with c being the capacity
and r the rate. Here b ∈ {25, 50, 100, 200, 400, 800, 1600}. The internal state is
three-dimensional and can be visualized as an array of 5×5 slices where number
of slices (ls) vary as per the permutation size, ls = log2(

b
25). The nomenclature

of the state is captured in Figure 1. The number of iterations (nr) of the round
function is governed by nr = 12+2× ls. Absorb and squeeze are the two phases
of the SPONGE construction. Initially, the message is processed in the absorption
phase, and then the squeeze phase generates the message digest. The message M
is broken into multiple blocks of size r. The last block requires a 10∗1 padding.
The round function is R = ι ◦ χ ◦ π ◦ ρ ◦ θ. The working of the sub-operations
are as follows :

– θ (Theta): θ mapping is a linear operation that provides diffusion. In this
mapping A[x, y, z] XORed with parities of neighboring 2 columns in the
following manner:

A[x, y, z] = A[x, y, z]⊕P [(x−1) mod 5, ∗, z]⊕P [(x+1) mod 5, ∗, (mod64)]

Here P [x, ∗, z] is parity of a column that can be calculated as :

P [x, ∗, z] =⊕4
j=0 A[x, j, z]

– ρ (Rho): ρ is also a linear operation in which inter-slice dispersion happens.
Each lane rotates bitwise in this operation by predefined offset values. These
rotation offsets for each lane are distinct, as shown in the Table 2. Here
column and row represent y axis and x asix values respectively.

A[x, y, z] = A[x, y, z≪t] for x, y = 0, ...4

4

Pl
an
e

Sh
ee
t

La
ne

St
at
e (
16
Sli
ce
s)

Slice

Fig. 1: Nomenclature of Keccak internal state parts w.r.t Keccak-p[400]

Here ≪ is a bitwise rotation

Table 2: Offset values of rotation for each lane(ρ)

4 18 2 61 56 14

3 41 45 15 21 8

2 3 10 43 25 39

1 36 44 6 55 20

0 0 1 62 28 27

y/x 0 1 2 3 4

– π (Pi): This is another linear operation that breaks horizontal and vertical
alignment. In this operation, the permutation happens on slices by inter-
changing lanes as:

A[y, (2x+ 3y) mod 5, z] = A[x, y, z] for x, y = 0, ...4, z = 0, ...63
– χ (Chi): χ is the only non-linear operation with degree two that operates

on rows independently as:
A[x, y, z] = A[x, y, z]⊕ (∼ A[x+ 1, y, z]) ∧A[x+ 2, y, z]

– ι (iota): A unique RC add to lane A[0, 0] depend on round number.
A[0, 0, ∗] = A[0, 0, ∗]⊕RC

Keccak Variants The current work focuses on state-reduced variants clas-
sifying them into Type-I and Type-II based on how the reduction affects the
ratio of rate and capacity parameters of SPONGE. If the state-size is reduced in
proportion to the standard version then we call it Type-I. For example SHA3-224
uses rate (r) of 1152 and capacity (c) of 448 for Keccak-p[1600] permutation.

5

When reduced to 800 bits this becomes [r = 576, c = 224] while for 400 bits this
becomes [r = 288, c = 112]. On the other had, Type-II variants maintain a fixed
capacity (c = 160) for any state-size. This variant particularly fits the Crunchy
contest specification where the hash-size is fixed at 160 bits.

b
=

1
6
0
0

r
=

1
1
5
2

c
=

4
4
8

b
=

8
0
0

r
=

5
7
6 c
=

2
2
4

b
=

4
0
0

r
=

2
8
8

c
=

1
1
2

(a) Type-I Variant

b
=

1
6
0
0

r
=

1
4
4
0

c
=

1
6
0

b
=

8
0
0

r
=

6
4
0 c
=

1
6
0

b
=

4
0
0

r
=

2
4
0

c
=

1
6
0

(b) Type-II Variant

Fig. 2: Keccak state-reduced variant classification. Type-I variant shown here is
based on SHA3-224

Squeeze Attack The philosophy of the squeeze attack is about achieving faster
collisions in a target subset. It was mounted by Dinur et al. in FSE 2013 by
leveraging the generalized internal differentials of the Keccak state. The idea is
to map many Keccak inputs into a relatively small subset of possible outputs.
The trick is to be able to do so with a surprisingly large probability. The success
of the attack is generally premised in forcing the output to conform to some very
specialized form. For a random permutation generating such inputs that map to
the target subset actually lead to complexities greater than the Birthday Bound
(BB) and are hence unusable. Herein lies the crux of the analysis which aims to
exploit the non-random properties of Keccak-p permutation and in turn achieve
an advantage over BB. In the squeeze attacks mounted by the authors in FSE
2013, they capitalized the internal symmetry of the Keccak state to generate
faster collisions in a special target subset. In doing so the authors explored the
idea of Internal Differential Cryptanalysis which is illustrated next.

Internal Differential Cryptanalysis of Keccak Internal differentials cap-
ture the internal difference between parts of the internal state and study the
evolution of these differences across different rounds in a manner similar to a
classical differential attack. The only difference is that a first order internal dif-
ferential requires a single message/state while the classical counterpart requires

6

two. The primary idea is to leverage the internal relations of a state to mount
attacks and was first explored by Peyrin [18] in Crypto 2010. In the context of
Keccak the idea was generalized by Dinur et al. in FSE 2013 to find collisions
for up to 5-round. Kuila et al. [16] later extended it to find practical distinguish-
ers on Keccak-p for up to 6-round. Nikolic and Jean [14] used the same idea to
devise internal differential boomerang distinguishers. Further works that exploit
the internal symmetry of Keccak state involve the SymSum distinguisher by
Saha et al. [20] and its extension by Suryawanshi et al. [22]. All these work use
translation invariance property of four out of five sub-operations of the Keccak

round function which was already reported by the designers [5]. The current
work is another effort in this direction that leverages the internal differential
counterpart of the Target Difference Algorithm introduced by Dinur et al. in
FSE 2012.

Target Difference Algorithm [7] The Target Difference Algorithm, as the
name suggests, tries to generate conforming message pairs that, after one round
of Keccak, deterministically produce a target difference. It takes a target dif-
ference (α1) as input which is essentially the input difference of a differential
trail and outputs the message pair (m1,m2) such that R1(m1)⊕ R1(m2) = α1.
The basic idea of this algorithm is to generate a system of linear equations to
capture all constraints induced due to α1 and the static constraints due to the
capacity and padding part of the input state. If that equation system has a so-
lution, TDA outputs the message and fails otherwise, implying that there is no
guarantee of getting the solution for arbitrary target differences. Thus, it is a
heuristic algorithm. This algorithm has 2 phases: the difference phase and the
value phase. In the difference phase, the system of equations is generated based
on the state difference and its solution provides the state difference at the start
of the first round. Like the difference phase, the value phase involves a set of
equations based on absolute values, the solution of which gives the actual value
of the state at the start of the first round.

TDA Connector [11] Guo et al. introduced a TDA connector that extends
TDA up to 2 and 3 rounds by linearizing the S-boxes of first and second rounds
respectively. Like TDA, the input to the connector is the target difference ∆T
against which it generates a system of equations whose solution is message pair
(M1,M2). This pair under two rounds (R2) of Keccak satisfies the output dif-
ference ∆T as ∆T = R2(M1)⊕R2(M2). By limiting the input of the S-box to a
specified affine subspace, linearization S-box’s output is achieved. For connectors,
linearization for S-boxes requires more constraints thereby reducing the degrees
of freedom. To minimize the constraints, authors proposed non-full linearization
and provided some observations highlighting the properties of solution subspace
(Refer Appendix B) that facilitate this.

Target Internal Difference Algorithm [8] Dinur et al. [8] has given a 5-
round collision attack on SHA3-256, in which they extend the trail using TIDA.

7

TIDA is similar to TDA, but TIDA is an approach that connects the internal dif-
ferential trail (the initial internal difference of trail is at the output of the first
round) to the initial state of the Keccak. The initial internal difference of the trail
is the internal target difference, and the algorithm outputs messages in which
the internal difference after one round would be the internal target difference.

3 Revisiting the Target Internal Difference Algorithm

Our motivation to revisit the TIDA technique stems from our struggle while
implementing it from our knowledge of the implementation of TDA. As per the
authors of TIDA, its extension from TDA is straightforward and their rendition of
TIDA is minimal. However, our experience shows that one needs to have a detailed
account of the scheme in order to understand the nuances while implementing
the same. This motivation leads to the following algorithmic depiction of our
recreation of the algorithm. We have to emphasize that we are not aware if the
original authors of TIDA did follow the same steps as outlined below.

Let E∆ and EM are the system of equations for differences and values. Then,
the variables ∆X = {∆x1

, ∆x2
, . . . ,∆x800

} and X = {x1, x2, . . . , x1600} represent
the state of difference and actual values after the linear layer (L). As we are
taking internal differences, for standard SHA3, |∆X | = 800 and |X| = 1600. The
introductory procedure of TIDA is as follows.

1. Add initial equations for capacity and padding.
(a) Add equations in E∆ for capacity i.e. L−1(∆x) == 0
(b) Add equations in Em for capacity and padding, i.e. L−1(x) == 0 and

L−1(x) == p [here, we require only half the equations for the capacity
part. Another half will be taken care of by equations added in E∆].

(c) Substitute the ∆xij
to zero for ith in-active S-box in E∆ where j is 5 bit

of S-box.
(d) Add equations to Em for in-active S-box to define the differences between

2 halves.

8

Algorithm 1: Target Internal Difference Algorithm (TIDA)
Input : γ0: Target Difference
Output: ‘No Solution’ or M such that C1 ⊕ C2 = γ1 where R1(M) = C and C = C1||C2

Difference Phase
1 E∆ ← {} ▷ Empty System

2 ∆X ← {∆x1
, ∆x2

, · · · , ∆x800
} ▷

Allocating difference variables after linear layer.

Note that state-size is halved.

This is the first deviation from TDA

3 exp∆ = L−1(∆X)

4 E∆ ← E∆ ∪ (exp∆(c) = 0) ▷

Adding equations w.r.t capacity only

Note padding constraints are not needed

This is the another deviation from TDA

5 foreach ith inactive S-box with input difference variables (∆xi1
, · · ·∆xi5

) do

E∆ ← E∆ ∪ {∆xi1
= 0, · · · , ∆xi5

= 0}
6 if E∆ inconsistent then output “Fail” and exit()

7 foreach active S-box do Initialize IDSL1 and store it in IDSD
8 for iteration < Threshold do
9 foreach active S-box in IDSD do

10 Retrieve output difference δout

11 Select a 2D affine subspace (S) from IDSL
12 E∆ ← E∆ ∪ (3 Affine Equations for S)
13 if E∆ inconsistent then
14 if All 2D affine subspaces are not exhausted then Goto Step 11
15 else
16 Change the IDSD order by bringing the failed S-box at first position
17 Goto Step 9 (Next Iteration)

18 end

19 end

20 end
Value Phase

21 EM ← {} ▷ Empty System
22 X ← {x1, x2, · · · , x1600} ▷ Allocating state variables after linear layer

23 expM = L−1(X)

24 EM ← EM ∪ {exp∆(c′||p) = 0||p} ▷

{
Adding eqn. for half of the capacity part

This is another deviation from TDA

25 foreach ith inactive S-box with input state variables (xi1
, · · · xi5

) do

EM ← EM ∪ {(xi1
⊕ xi1+32 = 0), (xi2

⊕ xi2+32 = 0), · · · , (xi5
⊕ xi5+32 = 0)}

26 if EM is not consistent then output “Fail” and exit()

27 foreach ith active S-box in IDSD do
28 Retrieve output difference δout

i

29 Choose one δinij
as per affine subspace stored in E∆

30 EM ← EM ∪ {Lin. Eqns. for affine subspace from soutions of (δinij
, δout)}

31 if EM is consistent then
32 EM ← EM ∪{xij

⊕xij⊕32 = δinij
, 1 ≤ j ≤ 5}} ▷ Another deviation from TDA

33 end
34 else Goto Step 29

35 end

36 end
37 if iteration < Threshold then output M
38 else ‘No solution’ and exit()

2. For each active S-box, add a 2-dimensional affine subspace of input dif-
ferences. After adding a set of equations in E∆ for each S-box, check the
consistency of the system of equations.

1 IDSL and IDSD are data structures defined by Dinur et al. [7] to store list of input
differences and the order in which these lists are stored for the entire state.

9

3. For each active S-box, fix one of the input differences from the affine subspace
and add an n-dimensional affine subspace of the solution subspace in Em.
(a) After adding a set of equations for each S-box, check the consistency of

the system of equations.
(b) For a consistent system of equations, add equations in E∆ for the selected

input difference

In the algorithm, we have reduced some constraints that will improve the
complexity. The detailed approach for TIDA is given in Algorithm 1. It is inter-
esting to note that, despite its introduction in FSE 2013, Algorithm 1 is the first
detailed description of TIDA available in literature.

Input difference subset list (IDSL) stores the input difference subsets
in a sorted manner for each of the t active S-boxes. Suppose δout is the output
difference for a specific S-box, then we compare two input difference subsets
{δ1, δ2, δ3, δ4} and {δ5, δ6, δ7, δ8} in such a way that the equations below hold.

DDT (δ1, δout) ≥ DDT (δ2, δout) ≥ DDT (δ3, δout) ≥ DDT (δ4, δout) ≥ 0

DDT (δ5, δout) ≥ DDT (δ6, δout) ≥ DDT (δ7, δout) ≥ DDT (δ8, δout) ≥ 0

We start by comparing the sizes of the largest subspace, if DDT (δ1, δout) ≥
DDT (δ5, δout), we prefer the input difference subset with the larger size. If their
size is the same, we compare the next two i.e. DDT (δ2, δout) ≥ DDT (δ6, δout)
and so on to choose accordingly. The input difference subset data structure
(IDSD) contains the IDSLs. Each element in IDSL has a pointer to an input
difference subset that points to the corresponding input difference subsets. Each
active S-box has a single entry in the IDSD, which is then arranged by the IDSD
order (which may differ from the natural order of the S-boxes). The initial IDSD
order is selected randomly and shuffled during the execution of the Algorithm1.

Improving Consistency Check in TIDA The incremental consistency check,
which we refer to as lines 9–20 and 27–35 of algorithm 1, adds some restrictions
to the system of equations for each S-box and verifies their correctness continu-
ously. Therefore, we apply the Gauss elimination approach to examine that the
equation is consistent, which calls for translating elementary row operations into
their Echelon form. The same fundamental row operations must be continually
converted into their Echelon form when new equations are added to the system
of equations. As a result, it overdue the operations. We know that the Echelon
form is the same as a system of linear equations. Hence, adding new linear equa-
tions directly to the given system of equations is equivalent to adding them to
the row echelon form (REF) of the given system of equations. As a result, while
new operations are being added, the system of equations’ past-due operations
on the same equations will be reduced.

Experimental Verification: For the proof-of-concept, we use the Type-I vari-
ant Keccak-p[72,28] with a width of 100, rate = 72, and capacity = 28. For

10

target internal difference ∆T of size 50, TIDA returns conforming state M of
size 100, which has internal difference α0 of size 50 such that M = m1||m2 and
m1 ⊕m2 = α0 as shown in Table 3.

Table 3: Showing the input message M has an internal difference α0 return by
TIDA for target difference ∆T of Keccak-p[72,28]

γ0 α0 = m1 ⊕m2 M = m1||m2

01 00 00 01 00 00 11 01 00 00 0101 0110 1011 1111 1111

10 00 00 01 00 00 11 00 10 00 0101 0011 0000 1000 0101

10 00 00 01 00 00 00 11 00 00 1010 0000 1001 1010 0000

10 00 00 00 00 11 00 00 00 00 1001 1111 1111 0000 0000

10 00 00 01 10 00 00 00 00 00 0000 0000 0000 0000 0000

4 TIDAL: Extending TIDA using Linearization

In this section, we introduce TIDAL which is a mechanism to extend TIDA idea
by one more round. The fundamental idea of TIDAL is to convert the two rounds
of Keccak-p permutation into a system of linear equations and is inspired from
Guo et al.’s TDA Connector. However, the technique needs to be adapted as we
need to handle internal differences and hence also incorporate the effect of round
constants. One round of Keccak-p permutation can be expressed as ι◦χ◦ρ◦π◦θ,
where χ is the only non-linear function. Given, a target difference ∆Ti, the
solution of the linear system of equations outputted by TIDAL will give a message
subspace M such that ∀M ∈ M, R2(M) = C = C1||C2, where C1 ⊕ C2 =
∆Ti and R2(·) represents two rounds of Keccak-p. We can trivially generate
linear equations for the four linear mappings of the Keccak round function.
However, we need to modify the S-box linearization strategy given by Guo et
al. [11] for the non-linear map χ to handle internal differences. For convenience of
understanding, we denote the individual internal differences of the state before
L(= ρ ◦ π ◦ θ), χ and ι of the ith round as αi, βi and γi respectively. Thus, for

ith round, the state difference propagation can be visualized as αi
L→ βi

χ→ γi
ι→

αi+1. The actual values of the state corresponding to state differences of β0, γ0,
α1 and β1 are denoted by W,X, Y and Z respectively. Bit-level state variables
are (wj ∈W), (xj ∈ X), (yj ∈ Y) and (zj ∈ Z) where (1 ≤ j ≤ 25b), b being the
width of Keccak state. This entire setting used for TIDAL is given in the Fig. 3.

TIDAL strategy takes the input ∆Ti = α2, and has three parts: Main Lin-
earization, Basic Linearization and Pre-process procedures. The Algorithmic ren-
dition of these procedures is captured in Algorithms 2, 3 and 4 respectively. For
the rest of the discussion, please refer Fig. 3. In the main procedure using ∆Ti

as input, we first calculate the state difference γ1 in the second round XORing

11

α0

c

β0

W

γ0

X

α1

Y

β1

Z

γ1 α2 → TIDAL

L︷ ︸︸ ︷
θ0 → ρ0 → π0

χ0 ι0
L︷ ︸︸ ︷

θ1 → ρ1 → π1
χ1 ι1

Fig. 3: Initial 2-round of Keccak-p. Here αi, βi and γi represent intermediate
internal difference of the state after the sub-operations of the round function.

the specific round-constant2. This is a deterministic step. Now, we select the
output difference δout for each active S-box in γ1 and randomly select the input
difference δin from the Difference Distribution Table (DDT) of Keccak S-box
such that DDT(δin, δout) ̸= 0. Altogether, these input differences δin will con-
stitute the state difference β1. From β1 to α1 is again a deterministic step as
α1 = θ−1◦π−1◦ρ−1(β1). Then, we calculate the γ0 by XORing the rounds constant
of first round to α1. Once we have γ0, we can apply TIDA (Algorithm 1) to obtain
the state difference β0 and a system of equations EM . It can be noted that here we
use a slight variation of Algorithm 1 for TIDA as we need the system of equations
but not the actual message. We obtain α0 from β0 in the same way as stated
above. After retrieving the state internal differences (α0, β0, γ0, α1, β1 and γ1)
and system of equations EM for the first round, we need to add more con-
straints so that the new system of equations will linearize the χ layer of the first
round. The claim is that the solution of this system of equations will satisfy the
target internal difference (∆Ti) after the second round.

We need to add some constraints to capture the input difference δin from γ1
to β1 for each active S-box in γ1. The solution subspace generates an affine set
for each possible transition δin → δout and ensure that this transition happens
which would otherwise be probabilistic. The set of constraints for every active
S-box due to the affine set mentioned above can be presented as the following
system of linear equations (1). Here, Z = ρ ◦π ◦ θ ◦ ι(X) = L1 ·X (Refer Fig. 3).
As the transition between γ0 to β1 is linear, we can re-express Equation (1)
as Equation (2). We already have a system of linear equations EM at β0 (as
retrieved from TIDA), which is represented as Equation (3).

B · Z = tb (1)

B · L1 ·X = tb (2)

A1 ·W = tA1
(3)

A2 ·W = tA2
(4)

Here A1 has the constraints corresponding to the affine sets between γ0 and β0

similar to the affine set between γ1 and β1 along with extra constraints as given in
Step 32 of Algorithm 1. Additionally, A2 is Equation (4) enforces the conditions

2 Note that for algorithms involving internal difference like TIDA and TIDAL, round-
constants play a vital role. However, they can be ignored for TDA.

12

Algorithm 2: The Main Procedure of TIDAL

Input : α2: Target Difference after 2 rounds
Output: “Fail” or EM such that solution of EM = L(M) where

C1 ⊕ C2 = α1, R2(M) = C and C = C1||C2

1 γ1 ← α2 ⊕ rc2 ▷ rc2 → round constant of second round
2 Populate β1 by selecting compatible δin from γ1
3 α1 ← L−1(β1)
4 γ0 ← α1 ⊕ rc1 ▷ rc1 → round constant of first round
5 β0, α0 and EM ← TIDA(γ0) ▷ Refer Algorithm 1
6 Obtain matrix B and vector tb from γ1, β1 ▷ Refer Equation (1)
7 Compute flag variable U
8 while counter < Threshold do
9 Execute Basic Linearization Procedure (EM , β0, α1, U)← Algorithm 3

10 if Algorithm 3 succeeds then
11 EM ← EM ∪ {B.L1.(Lχ0 .W + tLχ0

) = tb}
12 if Eqn is consistent then return EM

13 return “Fail”

for capacity and padding part. It is worth noting that we require conditions for
only half of the capacity bits as stated earlier in Step 24 of Algorithm 1. Our
final aim is to express the complete system of linear equations in terms of the
state variable W . Equation (4) and (3) conform to that. To restate Equation (2)
in terms of W , we need to linearize the χ layer of first round. It is interesting to
note that it is sufficient to linearize only those variables in X which appear in
Equation (2). Thus partial linearization is sufficient for restating Equation (2)
in terms of W as already observed by Guo et al. [11]. For partial linearization,
first, we must find those bits of W that participate in Equation (1). We modify
the technique devised by Guo et al. to take into account the relations induced
between the two halves of the state.

We use a flag U = (U0, U1, . . . , Ub/2∗(5−1)) where Ui = {U(i,1), U(i,2), . . . , U(i,5)},
when U(i,j) = 1, which means at least one of (xi, xi+25∗b/2) participates in Equa-
tion (1). This step is a deviation from TDA Connector as we to keep track of
the bit xi+25∗b/2 at the symmetric position corresponding to bit xi. To compute
the value of U(i,j), we need to look at the coefficients of xi and xi+25∗b/2 in
Equation (2). If any of them has a coefficient value of 1, then we set U(i,j) = 1
otherwise U(i,j) = 0. Depending on the value of U(i,j), partial linearization will
happen due to Observation 3 (Refer Appendix B).

The rest of procedure follows TDA Connector strategy and is restated below
for the sake of completeness.

When Ui = 11111, we require linearization of all 5 bits of ith S-box.

– Case 1: If DDT value is 2 or 4 by Observation 2, the solution subspace is
already linear.

– Case 2: If DDT value is 8 by Observation 2 we need to randomly select one
of the six linearizable affine subspaces.

13

Algorithm 3: The Basic Linearization Procedure of TIDAL

input : EM , β0, α1, U
output: EM , (Lχ0 , tLχ0

): matrix and vector for linearizing χ0

1 lsb, Lχ0 , TLχ0
← Pre-Process Procedure (EM , β0, α1, U) ▷ Refer Algorithm 4

2 foreach S-box in lsb do
3 Initialize an empty list llin of set of equations
4 if S-box is active then Add corresponding LAS equations to llin
5 ▷ LAS ← Linearizable Affine Subspaces
6 else Add equations to llin according to U
7 while for untested set in llin do
8 Randomly choose an untested set of equations
9 if set of equations are consistent with EM then

10 Add them to EM

11 Update (Lχ0 , tLχ0
) for that S-box

12 Update (Lχ0 , tLχ0
) for other half of state ▷ Deviation from TDA

Connector
13 end
14 else if all sets have been tested then
15 return “Fail”
16 end

17 end

18 end
19 return EM , (Lχ0 , tLχ0

)

Algorithm 4: The Pre-process Procedure of TIDAL

input : β0, α1, U

output:

{
lsb : List of S-Box,

(Lχ0 , tLχ0
) : matrix and vector for linearizing χ0

1 Initialize an empty list lsb, matrix Lχ0 , and vector tLχ0

2 foreach S-box do
3 from β0, α1 obtain δin, δout respectively
4 if Ui > 0 then
5 if DDT (δin, δout) = 2 or 4 then
6 Update (Lχ0 , tLχ0

) for that S-box

7 Update (Lχ0 , tLχ0
) for other half of state ▷ Deviation from TDA

Connector
8 end
9 else if DDT (δin, δout) = 8 then add S-box to lsb

10 else if S-box inactive then add S-box to lsb
11 end

12 end

14

– Case 3: If DDT value is 32 by Observation 1 we need to randomly select one
of the 80 linearizable affine subspaces.

When Ui ̸= 11111, we require partial linearization of ith S-box.

– Case 1: If DDT value is 2 or 4 by Observation 2, the solution subspace is
already linear.

– Case 2: If the DDT value is 8, one of 5 has one of the five-bit will be non-
linear. Suppose that for ith S-box jth bit is non-linear, then if U(i,j) = 0,
we do not require linearization; otherwise, we randomly select one of the six
linearizable affine subspaces.

– Case 3: If DDT value is 32 by Observation 3, we require partial linearization,
depending on how many bits are required for linearization.

We add new equations to EM for inactive S-boxes and active S-boxes with DDT
value 8 as Equation (5). After linearizing the S-box, it can expressed as Equa-
tion (6). By substituting the value of X in Equation (6), we get Equation (7).

A3 ·W = tA3 (5)

Lχ0 ·W + tLχ0
= X (6)

B · L1 · (Lχ0 ·W + tLχ0
) = tb (7)

We add Equations (7) and (5) to EM (Recall that EM already has Equa-
tions (3) and (4)), and the solutions of Em should satisfy ∆Ti after two rounds of
Keccak. TIDAL provides a way to produce message-subspaces that can determin-
istically lead to a given target internal difference after two rounds. In the next
subsection we discuss the degrees of freedom of TIDAL. Subsequently we show
how we can combine TIDAL with squeeze attacks to produce practical collisions
on state-reduced Keccak up to 5 rounds.

4.1 Degrees of Freedom for TIDAL

We can only control r−2 bits of Keccak state by taking 2-bit fixed padding (i.e.,
11 in binary). Thus the maximum number of messages we can generate is 2r−2.
The required number of random messages to achieve the desired internal differ-
ence of ∆ is 2−|∆|. By the notion of the internal difference, |∆| is equal to half
the size of the state. Thus, for standard SHA3, |∆| is 800. Suppose the size of the
state-reduced Keccak variant is S, then |∆| = S

2 . The maximum number of mes-

sages that satisfy the specified target difference is 2r−2−
S
2 and hence the degrees

of freedom are 226, 250, 254 and 2102 for state-reduced variants Keccak-p[128, 72],
Keccak-p[152, 48], Keccak-p[526, 144] and Keccak-p[304, 96], respectively. The
dimension D of the solution-space of TIDAL depends on the number of equations
in EM corresponding to capacity, padding, active and inactive S-boxes. We can
express the dimension of the solution-space as below.

D =

s∑

i=1

D1,i −

 c

2
+ p+

s∑

j=1

E2,j

15

Here, c and p denote constraints of initial state for capacity, and padding,
respectively. D1,i represents the dimension of the solution-space of the ith S-box
of the first round and E2,j denotes the equations corresponding to the jth S-box
of the second round. For the first and second rounds, the total dimensions is
given by

∑s
i=1D1,i and the total number of equations is given by

∑s
i=1 E2,j over

the all s S-boxes in the internal difference. The values of D1,i and E2,j are given
below.

D1,i =

1, DDT(δin, δout) = 2

2, DDT(δin, δout) = 4

2 ∼ 3, DDT(δin, δout) = 8

2 ∼ 5, DDT(δin, δout) = 32†

E2,j =

4, DDT(δin, δout) = 2

3, DDT(δin, δout) = 4

2, DDT(δin, δout) = 8

0, DDT(δin, δout) = 32†

Here, δin and δout represents the input and output differences of each S-box.
As a result of partial linearization of first round, dimension of S-box deviates,
which is better than complete linearization increases and is thus an improvement
over complete linearization.

4.2 Experimental Verification

For an arbitary target internal difference α2, TIDAL returns a message subspace
M such that ∀M ∈ M,M = m1||m2 and m1 ⊕ m1 = α0 which satisfies α2

after 2-round. In our experiment, we have taken α2 as zero state (signifying zero
internal difference) for a state-reduced variant Keccak-p[72,28], with a width of
4 (state size = 100), rate = 72, and capacity = 28. Table 4 shows a message
satisfying α2 as a zero state after 2-round.

Table 4: Input message M with internal difference α0 generated by TIDA for
target difference α2 for Keccak-p[72,28]

α2 α0 = m1 ⊕m2 M = m1||m2
00 00 00 00 00 00 11 10 11 01 0000 1100 1000 1001 1011
00 00 00 00 00 10 10 00 10 01 1000 1000 0101 0010 1110
00 00 00 00 00 01 10 00 11 10 1011 1000 1010 0011 0111
00 00 00 00 00 01 00 00 00 00 0100 1111 1111 0000 0000
00 00 00 00 00 00 00 00 00 00 0000 0000 0000 0000 0000

5 Finding Collisions using TIDAL

This section summarises our attacks, which have three stages, as depicted in
Fig. 4. The first stage executes the TIDAL connector with zero target internal
difference, which extends the trails for 2-round backward. The second stage has

†For inactive S-box

16

deterministic trail that starts with a symmetric state (zero internal difference).
The third stage uses the squeeze attack technique developed by Dinur et al. to
cover forward 1.5 rounds and relies on the facts that χ has low diffusion and
needs the allocation of 2 variables for each bit-difference in the output difference
of the deterministic trail. The χ operation maps 5 bits of input of a row to itself.
The n−bit output digest requires np = ⌈ n

5·ls ⌉ number of planes where ls denotes

the lane-size. In terms of the internal difference, each plane has ns =
ls
2 number

of S-boxes each of which can have 25 possible values. Therefore, an n-bit hash
can actually have 25·ns·np possible values instead of 2n. Suppose the hamming
weight of the output difference of the deterministic trail is hw. As stated earlier,
this would imply 2 · hw variable allocations. Then in this squeezed hash-space
by Birthday Paradox, the number of messages required to find a collision is
2(5·ns·np+2·hw)/2. The generic collision complexity being 2

n
2 , we have a collision

attack whenever (2(5·ns·np+2·hw)/2 < 2n/2).

ra
te

ca
pa

ci
ty

2 Round
Internal Differential Connector

Self-Symmetric
Message Subspace

TIDAL

1.5 Round
Deterministic Trail

1.5 Round
Output Bounding Phase

ha
sh

Specialized target subset
for squeeze attack

Input Message Subspace
Generated by TIDAL

Fig. 4: TIDAL Flow for 5-Round Collision Search

The complete procedure for collision search is provided in Algorithm 5, which
runs TIDAL and generates the required messages according to collision complex-
ity. For this attack TIDAL outputs a message subspace on which when we apply
Keccak for 2-round, and it always gives a symmetric state. This is the crux of
all attacks that follow. Due to TIDAL, we are able to augment the squeeze attack
strategy shown by Dinur et al. to cover extra rounds. After generating suffi-
cient messages, run Keccak for pre-determined number of rounds and search for
collision.

17

----1-1-	1-1-----	--------	--------	-----1-1
--------	-1-----1	--------	-1-----1	--------
---1-1--	--------	--------	---1-1--	--------
1-1-----	--------	--1-1---	--------	--------
--------	--------	----1-1-	--------	--1-1---

----1-1-	--------	--------	--------	--------
--------	--------	--------	--------	--------
--------	--------	--------	--------	--------
--------	--------	--------	--------	--------

--------	--------	--------	--------	--------
--------	--------	--------	--------	--------
--------	--------	--------	--------	--------
--------	--------	--------	--------	--------

--1-	--1-	----	----	---1
----	-1--	----	-1--	----
-1--	----	----	-1--	----
--1-	----	1---	----	----
----	----	--1-	----	1---

--1-	----	----	----	----
----	----	----	----	----
----	----	----	----	----
----	----	----	----	----

----	----	----	----	----
----	----	----	----	----
----	----	----	----	----
----	----	----	----	----

Fig. 5: Deterministic trail for state-reduce Keccak variants with state size 200
and 400 starting from round 3

Algorithm 5: TIDAL Collision Search

Input :

{
S ← State-size C ← Capacity H ← hash-length

Rn ← #Collision-Rounds RS ← Starting round

Output: “’Fail” or Colliding Message Pair
1 Initialize, α2 ← All zero state ▷ Target zero internal difference
2 Compute collision complexity C ▷ Size of Squeezed hash-space
3 Initialize message spaceM← {}
4 Execute TIDAL (α2) ▷ Refer Algorithm 2, Appropriate round constants

must be picked from Table 5
5 if Algorithm 2 “Fail” then return “Fail”
6 else
7 foreach m ∈M do
8 Run Keccak[S] for Rn rounds starting from Rs

9 Stores all hashes in a list Hl

10 end
11 Search for collision in Hl

12 return Colliding message pairs

13 end

5.1 Using Null-Space for Generating Conforming Message Subspace

The TIDAL strategy need not be invoked for individually generating conforming
input messages. We can invoke it once to retrieve the entire message subspace of
conforming messages as per the dimension of EM using a well-known strategy.
To do so we use the basis vector of the null-space, which corresponds to the
vector set for a homogeneous system of equations A · x = 0. For instance, if x1

and x2 are two solutions to the system of equations A · x = b, then we have
A · x1 = b and A · x2 = b. Thus A · x1 − A · x2 = b− b = 0, is in the null-space.

18

As a result, given a single solution xs and a null basis vector xb, we can produce
all solutions in the message subspace. The same idea allows us to generate all
solutions from the message subspace of EM using one solution returned by TIDAL

and the null-space basis vectors.

5.2 A note on Round Constants

The above-explained collision search algorithm can apply to any consecutive
rounds starting from any round. Here we are stressing on the starting round
because of the impact of the round constant, which we can see in the Table 5.
We can see that for different widths of Keccak, the hamming weight of internal
difference after ι is different. Table 5 shows some of the rounds. For all 24 rounds
see Table 8 in Appendix C. In some cases, ι does not affect states of specific size
and rounds. For example, for state sizes of 32, 16 and 8, the round constant
of round 4, 22 and 4 respectively does not affect the internal state difference
after ι operation for those rounds. Thus, we start our trail according to the
round constants internal difference hamming weight. It is possible to reduce the
complexity of finding collisions or increase the number of rounds with the same
complexity by changing the starting round.

Table 5: This table shows some of the round constant for state reduced Keccak

along with the hamming weight of internal difference due to round constant for
different state size. Here, Ls(n) and nr represent size of lane is n and round

nr
Round Constant

Ls(64) HW Ls(32) HW Ls(16) HW Ls(8) HW Ls(4) HW

3 0x800000000000808a 5 0x0000808a 4 0x808a 2 0x8a 1 0xa 0

4 0x8000000080008000 1 0x80008000 0 0x8000 1 0x00 0 0x0 0

22 0x8000000000008080 3 0x00008080 2 0x8080 0 0x80 1 0x0 0

5.3 Experimental Verification

We use a trail with probability one to find a 4-round collision on state-reduce
Keccak. For Keccak-p[336,64], the rate is 336, thus degree of freedom is 2r−2−200 =
2134. Since we require one plane for output digest, thus, the output space is of
size 25∗8∗1, and the probability of trail is 1. Thus we need to try for 220 messages.
Moreover, after applying the TIDAL, the dimension of the solution space is 238,
which is sufficient to choose random 220 messages from the message space given
by TIDAL. We have verified the above argument and got collision with complex-
ity 220 given in Table 6. Interestingly, we can find a collision for states of size
100 up to 6 rounds with same complexity i.e. 25 because of the round constant
of the third and fourth rounds. It is happening because the internal difference
for the third and fourth round constant is zero, as depicted in the Table 5. We
found collision on Keccak[84,16] for 6-round given in the Appendix A.

19

Table 6: 4-round outer collision for Keccak-p[336,64] with hash 8FA5 0BAB B5B5

2E25 303F
CDD9 A2F3 B8D8 D74F 5EC6 6E7A 2E7F E888 1F87 9A02
DAAE BEAE 0942 0408 E6DC E89C 2131 E9A2 A4A8 3C06

M1 31B4 D390 70E8 ECE3 5152 M2 33B6 1F5C CC54 2A25 E8EB
78A0 366A 80FA E672 E9E8 37EF FFA3 2258 33A7 7978
C07E 0000 0000 0000 0000 CD73 0000 0000 0000 0000

Table 7: 4-round inner collision for Keccak-p[334,64]

BDA9 BFEE C8A8 D941 2FB7 3226 BEEF 6B0B 57CF E37B
E692 2030 A9E2 868A BF85 FC88 B1A1 C883 0C00 6C56

M1 BD38 4605 029A ECE3 2221 M2 2CA9 C586 37AF 3E31 B9BA
E139 376B 443E B125 8081 22FA B7EB 116B 3EAA 3031
D866 0000 0000 0000 0000 DB65 0000 0000 0000 0000
B63C 11B1 0104 E4EA 8007 153F 3191 ABAF 4E49 389D
FAFB F5F4 8383 F1B0 B9B8 5D5D A9A9 2160 FCBD 4141

Out1 3226 FCF8 1703 B2A6 3024 Out2 8591 F7E7 EFEF C4C4 D8CC
FE76 C6C6 EFC7 D2D2 F171 43CB F7DF 0C24 B616 0606
F9FB 545C 212B 2921 7C54 ADAF 545C 212B 2921 7C54

5.4 A note on Inner Vs Outer Collisions

The collision occurs at the rate part of the state in the outer collision, whereas
in an inner collision, the collision occurs in the inner part of the state (capacity
part of the state). We can get state collision after getting the inner collision by
choosing the next input block of the message pair. Our attack focuses on state-
reduced Keccak where the length of the hash is equal to the capacity (n=c). In
our attack with 1 probability trail, the output space we require to find the inner
collision will be 2(5·ns·np+2·hw)/2, by Birthday Paradox, where np is the number
of planes needed for c bit, ns is the total number of slices in internal difference
and hw is the hamming weight of the state difference at the end of trail. Thus,
our attack can apply to inner and outer collisions with the same complexity for
all state reduced Keccak variants. The is the example of inner collision with
complexity 220 for Keccak-p[334,64] is given in Table 7.

6 Comparative Analysis

The TIDAL strategy allows us to find new collision attacks on state-reduced
variants. For an existing trail, TIDAL is always better than TIDA whereas in
the absence of a probabilistic trail, TIDAL can work with zero or low hamming
weight deterministic trails which is not applicable for TIDA. Thus TIDAL can be
seen as an improvement over TIDA, not only from the perspective of penetrating
more rounds but also in terms of compatibility with deterministic trails. The
same applies while comparing TIDAL with the TDA Connector strategy. While
TDA Connector requires extensive GPU based trail search [11], TIDAL can work
with deterministic trails albeit with higher (but still practical) complexities.

On the state-reduced Keccak, numerous attempts have been made to find a
collision. We demonstrate many approaches that can be used to find collisions on

20

TYPE-I and TYPE-II variants and highlight the best result among them. Fig. 6a,
6b, 6c and 6d show a summary of the best results of the 2, 3, 4, and 5-round
collision attacks on states with sizes 200 and 400. The figures have x-axis for
the rate and y-axis for the output size. Each dot in the above mentioned figures
show a collision found for an offered rate and output size. The vertical arrows
indicate an inner collision that can trivially transform into an outer collision.
Similarly, horizontal arrows parallel to the x-axis represent outer collisions. In
this case, the state-reduced version of SHA3 −i with state size j has collision
complexity k and is represented by the Type-xij(k) where Type-x can be either
TYPE-I or TYPE-II. Blue indicates where TDA-connector and TIDAL can apply.
All the results with complexity (2) are given by TDA-connector, whereas TIDAL
yields the best results for the remaining. Although TDA-connector and TIDAL

have the same applicability, TIDAL works best for higher rounds in absence of
trails. In Fig.6a, the orange line indicates the attack done by Boissier et al. [6],
which uses the combination of linearization and algebraic techniques for collision
attack. This is an inner collision attack with complexity 273, 252.5 and 2101.5 for
Keccak-p[40,160], Keccak-p[72,128] and Keccak-p[144,256], respectively. Green
line indicates the result given by Pawel Morawiecki, which uses a SAT solver
to attack the TYPE-II variant Keccak-p[160,240] in practical time. Lastly, the
brown line shows that Algebraic, TDA-connector, and TIDAL are all applicable
for some variants and the best result is also shown among them. To understand
it better, let us take the entry of Fig. 6a, Type-II160400(P) shows that a collision
can be found in practical time (P) on state-reduced variants (TYPE-II) with
state size 400. There is only a horizontal arrow, indicating that only outer colli-
sion exists for this variant. Similarly, in Fig. 6a, Type-I256200(2) illustrates that we
can find collision with complexity (2) on the state-reduced variant of SHA3-256
(TYPE-I) with state size 200, i.e., Keccak-p[144,56]. There are vertical and hori-
zontal arrows for this variant, which means both inner and outer collisions exist
for this variant. In same manner all entries of the figures can be interpreted.

In Fig. 6c, green line indicates a collision attack by Stefan et al. [15], which
applies to one of the crunchy contest variants, Keccak-p[160,240], for 4-rounds. It
uses a standard differential attack with a 4-round differential trail. Although the
TDA-connector applies to the variants as shown in Fig.6c, because of the lack of
trails for the TDA-connector, the best result so far is given by the collision attack
using TIDAL. This attack uses a 0.5-round trail for a 4-round collision. In Fig. 6b
and 6d, we have not found any other collision attack on state-reduced Keccak.
In Fig. 6b, the TDA connector with one round trail obtained the best result with
a complexity of 2. Nevertheless, we cannot find all variants’ TDA connector trails.
Thus, for those, TIDAL provides the best results. Similarly, for 5-round, TIDAL
has the best results using 1.5-round trails with a probability of 1.

7 Conclusion

In this work, we systematically investigated the collision attack space for state-
reduced Keccak variants. The variants have been classified as Type-I and Type-II
based on the way the ratio of rate and capacity is reduced when defining the

21

1
6
8

3
3
6

4
0

7
2

1
3
6

1
4
4

2
4
0

2
7
2

2
8
8

32

56
64

112

128

160

256

Type-II160200 (273)

Type-I256200 (252.5)

Type-I256200 (2)

Type-I512400 (2101.5)

Type-I224200 (2)

Type-II160400 (P)

Type-I256400 (2)

Type-I224400 (2)

Type-I128200 (2)
Type-I128400 (2)

rate

output

2-Round Collisions
Algebraic

SAT
TDA Conn/TIDAL

Overlap with Algebraic

Outer Collision

Inner Collision

(a) 2-Round Collision Attack Space

1
6
8

3
3
6

1
3
6

1
4
4

2
7
2

2
8
8

32

56
64

112

128

Type-I256200 (2)

Type-I224200 (2)

Type-I256400 (2)

Type-I224400 (2)

Type-I128200 (210)
Type-I128400 (220)

rate

output

3-Round Collisions
TDA Conn./TIDAL
Outer Collision

Inner Collision

(b) 3-Round Collision Attack Space

1
2
1

1
6
8

3
3
6

1
3
6

1
4
4

2
4
0

2
7
2

2
8
8

32

56

64

112

128

160

Type-I256200 (220)

Type-I224200 (220)

Type-II160400 (P)

Type-I256400 (240)

Type-I224400 (240)

Type-I128200 (210)

Type-I128400 (220)

rate

output

4-Round Collisions
High Prob. Path

TIDAL

Outer Collision

Inner Collision

(c) 4-Round Collision Attack Space

1
2
1

1
6
8

3
3
6

1
3
6

2
7
2

32

64

128

Type-I256200 (231)

Type-I256400 (262)

Type-I128200 (221)

Type-I128400 (242)

rate

output

5-Round Collisions
TIDAL

Outer Collision

Inner Collision

(d) 5-Round Collision Attack Space

Fig. 6: Collision attack space overview for 2 ∼ 5 Rounds. It can be noted that
TIDAL is able to cover many of the Type-I variants

state reduction. A new strategy TIDAL has been proposed that can produce
states that after 2 rounds of Keccak-p lead to a given target difference. Using
this, self-symmetric states are produced that form the input difference to a de-
terministic internal differential trail. This combination leads to an extension of
squeeze attacks proposed by Dinur et al. in FSE 2013, and this work explores
their applicability on state-reduced variants for the first time. Practical collisions
are observed for many variants, which have been verified by simulating in MAT-
LAB. Comparative analysis is depicted, showcasing the new strategy’s power
in penetrating higher rounds for Type-I variants. Existing works by Boissier et
al. and Kölbl et al. apply to a few state-reduced variants but leave a gap for
various others. This work addresses filling the void of the long-standing empty
space for collisions on state-reduced variants, which had been previously deemed
difficult. This work also improved the TIDA proposed by Dinur et al., which can

22

be employed on the TDA approach, where it reduces the additional work done
while finding a consistent system that, as a result, gives the required message
space.

Acknowledgment

Leading provider of IT services, consulting, and business solutions Tata Con-
sultancy Services (TCS) is a supporter of the research. The first author equips
financial support through the TCS Research Scholarship Program (TCS RSP).

References

1. CAESAR: competition for authenticated encryption: security, applicability, and
robustness (2014), http://competitions.cr.yp.to/caesar.html

2. NIST Lightweight cryptography project (2015), https://csrc.nist.gov/

Projects/lightweight-cryptography/email-list

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission
in NIST. Submission to NIST (Round 3) (2011), http://keccak.noekeon.org/
Keccak-submission-3.pdf

4. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: The Ketje authen-
ticated encryption scheme (2016), https://keccak.team/ketje.html.

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak reference. Sub-
mission to NIST (Round 2) 3(30), 320–337 (2011)

6. Boissier, R.H., Noûs, C., Rotella, Y.: Algebraic collision attacks on keccak. IACR
Trans. Symmetric Cryptol. 2021(1), 239–268 (2021). https://doi.org/10.46586/
tosc.v2021.i1.239-268, https://doi.org/10.46586/tosc.v2021.i1.239-268

7. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and keccak-
256. In: Canteaut, A. (ed.) Fast Software Encryption - 19th International Work-
shop, FSE 2012, Washington, DC, USA, March 19-21, 2012. Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 7549, pp. 442–461. Springer (2012).
https://doi.org/10.1007/978-3-642-34047-5_25, https://doi.org/10.1007/
978-3-642-34047-5_25

8. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of SHA-3
using generalized internal differentials. In: Moriai, S. (ed.) Fast Software Encryp-
tion - 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013.
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8424, pp. 219–
240. Springer (2013). https://doi.org/10.1007/978-3-662-43933-3_12, https:
//doi.org/10.1007/978-3-662-43933-3_12

9. Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Mennink, B., Primas, R.,
Unterluggauer, T.: Isap v2. 0 (2020), https://isap.iaik.tugraz.at/

10. Dobraunig, C., Mennink, B.: Elephant v1. (2019)
11. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical col-

lision attacks against round-reduced SHA-3. J. Cryptol. 33(1), 228–270
(2020). https://doi.org/10.1007/s00145-019-09313-3, https://doi.org/10.

1007/s00145-019-09313-3

12. Guo, J., Liu, G., Song, L., Tu, Y.: Exploring SAT for cryptanalysis: (quantum)
collision attacks against 6-round SHA-3. IACR Cryptol. ePrint Arch. p. 184 (2022),
https://eprint.iacr.org/2022/184

23

http://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/Projects/lightweight-cryptography/email-list
https://csrc.nist.gov/Projects/lightweight-cryptography/email-list
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://keccak.team/ketje.html.
https://doi.org/10.46586/tosc.v2021.i1.239-268
https://doi.org/10.46586/tosc.v2021.i1.239-268
https://doi.org/10.46586/tosc.v2021.i1.239-268
https://doi.org/10.46586/tosc.v2021.i1.239-268
https://doi.org/10.46586/tosc.v2021.i1.239-268
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12
https://isap.iaik.tugraz.at/
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/s00145-019-09313-3
https://doi.org/10.1007/s00145-019-09313-3
https://eprint.iacr.org/2022/184

13. Huang, S., Ben-Yehuda, O.A., Dunkelman, O., Maximov, A.: Finding collisions
against 4-round SHA3-384 in practical time. IACR Cryptol. ePrint Arch. p. 194
(2022), https://eprint.iacr.org/2022/194

14. Jean, J., Nikolic, I.: Internal differential boomerangs: Practical analysis of the
round-reduced keccak- f f permutation. In: FSE. Lecture Notes in Computer Sci-
ence, vol. 9054, pp. 537–556. Springer (2015)

15. Kölbl, S., Mendel, F., Nad, T., Schläffer, M.: Differential cryptanalysis of kec-
cak variants. In: Stam, M. (ed.) Cryptography and Coding - 14th IMA Inter-
national Conference, IMACC 2013, Oxford, UK, December 17-19, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8308, pp. 141–157. Springer
(2013). https://doi.org/10.1007/978-3-642-45239-0_9, https://doi.org/10.
1007/978-3-642-45239-0_9

16. Kuila, S., Saha, D., Pal, M., Chowdhury, D.R.: Practical distinguishers against
6-round keccak-f exploiting self-symmetry. In: Pointcheval, D., Vergnaud, D.
(eds.) Progress in Cryptology - AFRICACRYPT 2014 - 7th International Con-
ference on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8469, pp. 88–108. Springer
(2014). https://doi.org/10.1007/978-3-319-06734-6_6, https://doi.org/10.
1007/978-3-319-06734-6_6

17. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round
keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) Progress in Cryptology - IN-
DOCRYPT 2011 - 12th International Conference on Cryptology in India, Chen-
nai, India, December 11-14, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 7107, pp. 236–254. Springer (2011). https://doi.org/10.1007/

978-3-642-25578-6_18, https://doi.org/10.1007/978-3-642-25578-6_18
18. Peyrin, T.: Improved differential attacks for ECHO and grøstl. In: Rabin, T. (ed.)

Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 15-19, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6223, pp. 370–392. Springer (2010). https://doi.org/10.1007/
978-3-642-14623-7_20, https://doi.org/10.1007/978-3-642-14623-7_20

19. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced
keccak. In: Coron, J., Nielsen, J.B. (eds.) Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 10212, pp. 216–243
(2017). https://doi.org/10.1007/978-3-319-56617-7_8, https://doi.org/10.
1007/978-3-319-56617-7_8

20. Saha, D., Kuila, S., Chowdhury, D.R.: Symsum: Symmetric-sum distinguishers
against round reduced SHA3. IACR Trans. Symmetric Cryptol. 2017(1), 240–258
(2017)

21. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: Applications to colli-
sion attacks on round-reduced keccak. In: Katz, J., Shacham, H. (eds.) Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II.
Lecture Notes in Computer Science, vol. 10402, pp. 428–451. Springer (2017).
https://doi.org/10.1007/978-3-319-63715-0_15, https://doi.org/10.1007/
978-3-319-63715-0_15

22. Suryawanshi, S., Saha, D., Sachan, S.: New results on the symsum distinguisher on
round-reduced SHA3. In: AFRICACRYPT. Lecture Notes in Computer Science,
vol. 12174, pp. 132–151. Springer (2020)

24

https://eprint.iacr.org/2022/194
https://doi.org/10.1007/978-3-642-45239-0_9
https://doi.org/10.1007/978-3-642-45239-0_9
https://doi.org/10.1007/978-3-642-45239-0_9
https://doi.org/10.1007/978-3-642-45239-0_9
https://doi.org/10.1007/978-3-319-06734-6_6
https://doi.org/10.1007/978-3-319-06734-6_6
https://doi.org/10.1007/978-3-319-06734-6_6
https://doi.org/10.1007/978-3-319-06734-6_6
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.1007/978-3-642-14623-7_20
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-56617-7_8
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15

A Collision on 6-round

We found a collision for states of size 100 up to 6-round with same complexity
with 4-round because of round-constant of the third and fourth rounds, the con-
forming input states and hash is given below. Hash : 0 E 2 4 2

6-round collision with hash 0 E 2 4 2

M1

5 D D 1 2

B 2 0 0 0

9 F 6 D 6

E 9 6 0 8

F 0 0 0 0

M2

5 8 7 1 2

E D 0 5 5
9 0 9 2 6
E 3 6 5 7

F 0 0 0 0

B The observations that help in S-box linearization [11]

Observation 1 [11] Out of the entire 5-dimensional input space,

1. there are totally 80 2-dimensional linearizable affine subspaces.
2. there does not exist any linearizable affine subspace with dimension 3 or

more.

Observation 2 [11] Given a 5-bit input difference δin and a 5-bit output dif-
ference δout such that DDT (δin, δout) ̸= 0, i.e., the solution set V = {x :
S(x) + S(x+ δin) = δout} is not empty, we have

1. if DDT (δin, δout) = 4, then V is a linearizable affine subspace.
2. DDT (δin, δout) = 8 then there are six 2−dimensional subsets Vi ⊂ V, i =

0, 1, . . . , 5 such that Vi(i = 0, 1, . . . , 5) are linearizable affine subspaces.

Observation 3 [11] For a non-active Keccak S-box, when Ui is not 11111,

1. if Ui = 00000, it does not require any linearization.
2. if Ui ∈ {00001, 00010, 00100, 01000, 10000, 00011, 00110, 01100, 11000, 10001}

at least 1 degree of freedom is consumed to linearize the output bit(s) of the
S-box marked by Ui

3. otherwise, at least 2 degrees of freedom are consumed to linearize the output
bits of the S-box marked by Ui.

C Effect on hamming weight of round constants

25

Table 8: This table shows all round constant for state reduced Keccak along with
the hamming weight of internal difference due to round constant for different
state size. Here, Ls(n) and nr represent size of lane is n and round

nr
Round Constant

Ls(64) HW Ls(32) HW Ls(16) HW Ls(8) HW Ls(4) HW

1 0x0000000000000001 1 0x00000001 1 0x0001 1 0x01 1 0x1 1

2 0x0000000000008082 3 0x00008082 3 0x8082 1 0x82 2 0x2 1

3 0x800000000000808a 5 0x0000808a 4 0x808a 2 0x8a 1 0xa 0

4 0x8000000080008000 1 0x80008000 0 0x8000 1 0x00 0 0x0 0

5 0x000000000000808b 5 0x0000808b 5 0x808b 3 0x8b 2 0xb 1

6 0x0000000080000001 2 0x80000001 2 0x0001 1 0x01 1 0x1 1

7 0x8000000080008081 3 0x80008081 2 0x8081 1 0x81 2 0x1 1

8 0x8000000000008009 4 0x00008009 3 0x8009 3 0x09 2 0x9 2

9 0x000000000000008a 3 0x0000008a 3 0x008a 3 0x8a 1 0xa 0

10 0x0000000000000088 2 0x00000088 2 0x0088 2 0x88 0 0x8 1

11 0x0000000080008009 4 0x80008009 2 0x8009 3 0x09 2 0x9 2

12 0x000000008000000a 3 0x8000000a 3 0x000a 2 0x0a 2 0xa 0

13 0x000000008000808b 6 0x8000808b 4 0x808b 3 0x8b 2 0xb 1

14 0x800000000000008b 5 0x0000008b 4 0x008b 4 0x8b 2 0xb 1

15 0x8000000000008089 5 0x00008089 4 0x8089 2 0x89 1 0x9 2

16 0x8000000000008003 4 0x00008003 3 0x8003 3 0x03 2 0x3 2

17 0x8000000000008002 3 0x00008002 2 0x8002 2 0x02 1 0x2 1

18 0x8000000000000080 2 0x00000080 1 0x0080 1 0x80 1 0x0 0

19 0x000000000000800a 3 0x0000800a 3 0x800a 3 0x0a 2 0xa 0

20 0x800000008000000a 2 0x8000000a 3 0x000a 2 0x0a 2 0xa 0

21 0x8000000080008081 3 0x80008081 2 0x8081 1 0x81 2 0x1 1

22 0x8000000000008080 3 0x00008080 2 0x8080 0 0x80 1 0x0 0

23 0x0000000080000001 2 0x80000001 2 0x0001 1 0x01 1 0x1 1

24 0x8000000080008008 2 0x80008008 1 0x8008 2 0x08 1 0x8 1

26

	TIDAL: Practical Collisions on State-Reduced Keccak Variants

